
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004
2815

LETTER

Impacts of Compiler Optimizations on Address Bus Energy:
An Empirical Study

Hiroyuki TOMIYAMA†a), Member

SUMMARY Energy consumption is one of the most critical constraints
in the design of portable embedded systems. This paper describes an em-
pirical study about the impacts of compiler optimizations on the energy
consumption of the address bus between processor and instruction mem-
ory. Experiments using a number of real-world applications are presented,
and the results show that transitions on the instruction address bus can be
significantly reduced (by 85% on the average) by the compiler optimiza-
tions together with bus encoding.
key words: compiler optimization, embedded systems, low energy, bus
encoding

1. Introduction

In the design of portable embedded systems, it is crucial
to minimize the energy consumption in order to keep the
battery life long. Address buses between processor and in-
struction memory are often one of major sources of energy
consumption due to their large load capacitance as well as
frequent accesses. Since the bus energy is almost propor-
tional to the number of transitions on the bus, various tech-
niques for address bus encoding have been proposed so far
in order to reduce the bus transitions. Most of encoding
techniques proposed for instruction address buses utilize the
sequential nature of instruction accesses, i.e., most accesses
are sequential with a fixed stride value. Examples of such
encoding techniques include Gray Coding [1], T0 Coding
[2], [3] and refinements of T0 such as Inc-Xor [4] and T0-C
[5]. For sequential accesses, only one bit changes with the
Gray encode, while no bit changes with the T0-based codes.

These encoding techniques rely on the sequential na-
ture of instruction accesses. In general, however, not all of
the instruction accesses are sequential due to control-flow
instructions such as branches, jumps and function calls. It
is known that the control-flow instructions typically account
for 10 to 20% in program code [6]. In terms of address bus
energy, it can be easily imagined that the straight-line code
is more efficient than one with a lot of control-flow instruc-
tions. This brings the idea of transforming programs in such
a way that the control flow is serialized. Some traditional
compiler optimizations such as loop unrolling and function
inlining serialize the control flow, thus they can be consid-
ered effective for bus energy reduction.

Manuscript received January 7, 2004.
Manuscript revised March 7, 2004.
Final manuscript received June 16, 2004.
†The author is with the Department of Information Engineer-

ing, the Graduate School of Information Science, Nagoya Univer-
sity, Nagoya-shi, 464-8603 Japan.

a) E-mail: hiroyuki@acm.org

This paper investigates the impacts of compiler opti-
mizations on the energy consumption of instruction address
buses. In this paper, we do not propose a new technique for
compiler optimization or bus encoding. The contribution of
this paper is to conduct experiments with a number of re-
alistic benchmark programs and demonstrate that compiler
optimizations have large impacts on the instruction address
bus energy. To the best of our knowledge, no previous liter-
ature explicitly studied this topic, and this is the first paper
which studies it and presents extensive experiments. In [7]
and [8], data layout techniques for energy minimization of
address buses were investigated in the fields of high-level
synthesis and compilation, respectively. However, both of
them focused on address buses for data memory. This pa-
per, on the contrary, addresses energy minimization of ad-
dress buses for instruction memory.

This paper is organized as follows. Section 2 describes
our experimental procedure and bus encoding and compiler
optimization techniques used in the experiments. In Sect. 3,
experimental results are presented. Finally, Sect. 4 con-
cludes this paper with a summary and future directions.

2. Experimental Setup

We have conducted a set of experiments to test the effec-
tiveness of compiler optimizations for address bus energy
minimization. This section describes the bus encoding tech-
niques and the compiler optimization techniques used in our
experiments as well as the experimental procedure.

2.1 Experimental Procedure

The flow of our experiments is shown in Fig. 1. As bench-
mark programs, we selected 10 real-world media applica-
tions from the MediaBench suite [12] including MPEG,
JPEG and so on. Each program was compiled with GNU C
Compiler 2.7.2.3 to generate the object code. At that time,
several optimization techniques were applied. Then, the ob-
ject code was executed on the SimpleScalar processor simu-
lator [14] to obtain a trace of instruction addresses. Finally,
the address trace was fed by bus transition analyzer which
we developed. The analyzer involves four types of address
bus model, i.e., a normal bus without encoding, the T0-
encoded bus, the T0-C bus, and the Inc-Xor bus, and it re-
ports the number of bus transitions for each bus model. This
procedure was repeated many times with changing compiler
optimization options as well as benchmark programs.



2816
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

Fig. 1 Flow of our experiments.

In the rest of this section, we describe in more detail the
bus encoding techniques and compiler optimizations used in
our experiments.

2.2 Address Bus Encoding Techniques

In our experiments, three address bus encoding techniques,
i.e., T0, T0-C and Inc-Xor, were used. We use the following
notations for explanation of the three encoding techniques.

b(t) : Original address value to be sent at time t.
B(t) : Encoded value which is actually transfered on the

bus at time t.
S : Stride value, i.e., the difference between consecutive ad-

dresses.

T0 is a redundant code developed by Benini et al. for
instruction address buses [2], [3]. In addition to the address
lines, it has a redundant bit line, named INC. For sequential
accesses, the sender sets the INC line and keeps the address
lines unchanged. Otherwise, the original address value b(t)
is sent on the bus and INC is de-asserted. A pseudo-code of
the T0 encoder is given below.

if (b(t) == b(t-1) + S) {
B(t) = B(t-1);

INC = 1;

} else {
B(t) = b(t);

INC = 0;

}
The T0-Concise code (or T0-C in short) developed by

Aghaghiri et al. [5] is an irredundant code based on T0. The
T0-C encoder works as follows.

if (b(t) == b(t-1) + S) {
B(t) = B(t-1);

} else if (B(t-1) != b(t)) {
B(t) = b(t);

} else {
B(t) = b(t-1) + S;

}

The last case, i.e., (b(t) != b(t-1) + 1) and (B(t-1)
== b(t)), can be considered as an exceptional case to the
T0 code. Since such a case rarely happens in practice, T0-C
is more efficient than T0 in terms of bus transitions due to
its irredundancy.

In [4], Ramprasad et al. developed another T0-based
irredundant code, called Inc-Xor†. The encoder works as
follows.

B(t) = b(t) ⊕ (b(t-1) + S) ⊕ B(t-1)
Here, ⊕ denotes the Exclusive-Or (Xor) function. It is easily
observed that no bit changes when the accesses are sequen-
tial.

The experimental results in [5] show that T0, T0-C
and Inc-Xor achieve the average savings of bus activities
by 62.0%, 73.1% and 75.0%, respectively. The experiments
in [4] also demonstrate the effectiveness of Inc-Xor over the
T0 and Gray codes.

Several other techniques have been proposed, for ex-
ample in [9], [10] and [11]. They are effective not only for
instruction address buses but also data address buses, but
the hardware overhead required by them is not negligible.
In our work, we use the three T0-based coding techniques
mentioned above because of their simplicity and effective-
ness.

2.3 Compiler Optimizations

In this work, the goal of compiler optimization is to serialize
instruction accesses. For this purpose, we tested two com-
piler optimization techniques, loop unrolling and function
inlining.

Loop unrolling is one of widely used compiler opti-
mizations which makes multiple copies of the loop body
and reduces the number of iterations of the loop. If the
number of iterations is known at compile-time, such a loop
is called a bounded loop, and unrolling of bounded loops
is called bounded loop unrolling. Otherwise, it is called
unbounded loop unrolling. Traditionally, loop unrolling is
used to improve the performance. The performance im-
provement comes from two reasons. One is that it reduces
the number of executions of condition testing, the corre-
sponding branch, and loop index variable updates. The
other is that loop unrolling extends opportunities for other
compiler optimizations such as instruction-level paralleliz-
ing scheduling. It is obvious that loop unrolling is effective
for reducing the address bus energy as well as enhancing
the performance since the number of branches is decreased.
Since loop unrolling generally increases code size, however,
it is generally unreasonable to unroll large loops. Most com-
pilers have their own heuristics to select loops to be un-
rolled.

Function inlining, which replaces a function call with
the body of the function, is also one of the most widely used
compiler optimizations. It has several benefits as follows.

†In [13], Inc-Xor is refered as T0-Xor.



LETTER
2817

First, it eliminates the function call overhead (extra code)
for storing and restoring registers and the program counter,
adjusting stack and frame pointers, jumping to the function,
and so on. Second, function inlining extends opportunities
for other compiler optimizations such as constant propaga-
tion, dead-code elimination, control flow simplification, and
so on, which are usually done on a function-by-function
basis. Obviously, function inlining is also effective for re-
ducing address bus energy since it eliminates function calls
which disturb sequential accesses. However, function in-
lining often increases the code size, especially in case the
function is called from more than one point of the program
code. Therefore, inlining large functions is unreasonable.
Most compilers have their own heuristics to select functions
to be inlined.

Loop unrolling and function inlining can be applied
separately as well as together. In our experiments, we tested
the following combinations of compiler optimization:

• O2: Compiler optimizations which do not increase the
code size (i.e., enabled by GCC’s “-O2” option).
• O2+FI: Function inlining in addition to O2.
• O2+BLU: Bounded loop unrolling in addition to O2.

• O2+BLU+ULU: Unbounded loop unrolling in addition to
O2+BLU.
• O2+FI+BLU+ULU: All of the above optimizations.

3. Experimental Results

Figures 2(a)–(k) show the results of our experiments. For
each benchmark program, the number of transitions on the
instruction address buses is depicted where the baseline is
O2 without bus encoding. Similar to the results in [5], Inc-
Xor was the best bus encoding for most cases in our exper-
iments. In case of the O2 compiler optimization, Inc-Xor
achieved over 80% saving of bus transitions on the average.
When all of the compiler optimizations were applied, i.e.,
O2+FI+BLU+ULU, the bus transitions was saved by 83%.

From Fig. 2, we can see that applying all the com-
piler optimizations did not always generate the most energy-
efficient code. In most cases, function inlining and loop
unrolling contributed to reduction in bus transitions. For
g721encode, g721decode and mpeg-decode, bus transi-
tions were significantly reduced by the compiler optimiza-
tions with the Inc-Xor encoding. In some cases such as

Fig. 2 The number of transitions on instruction address bus.



2818
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

adpcm-decode and epic, however, the compiler optimiza-
tions resulted in increased transitions on the contrary. For
mpeg-encode, bounded loop unrolling was very effective,
but function inlining and unbounded loop unrolling were
not.

Thus, the effectiveness of the compiler optimizations
for bus energy varies among the programs. In the design of
embedded systems, therefore, we need to apply the compiler
optimizations very carefully. At present, it is very difficult
to know which compiler optimization is effective for a given
program before we apply it. A simple approach is to repeat
compilation and simulation with changing compiler opti-
mization options in order to obtain the most energy-efficient
code. Figure 3 shows the best result among the five op-
timization options (i.e., 02, 02+FI, 02+BLU, 02+BLU+ULU
and 02+FI+BLU+ULU). Inc-Xor was used for bus encoding.
The figure indicates the normalized number of bus transi-
tions where the baseline is O2. In our results, the O2 option
was the best optimization option for adpcm-decode and
epic, O2+BLU+ULU for unpic, O2+BLU for mpeg-encode,
and O2+FI+BLU+ULU for the other programs. Figure 3
demonstrates that judicious application of the compiler op-
timizations reduces bus transitions by 24% on the average.
As mentioned above, the Inc-Xor encoding is assumed in
Fig. 3, and Fig. 2(k) shows that Inc-Xor achieves an average
reduction of 80% in bus transitions. Hence, the average sav-
ing of 85% can be obtained by the compiler optimizations
together with bus encoding, compared with the O2 compiler
option without bus encoding.

Figure 2 shows that for many programs the number of
bus transitions was reduced by function inlining and loop
unrolling even when the address bus was not encoded. This
is because the number of instructions executed was reduced
by the optimizations†. In summary, there exist two reasons
why function inlining and loop unrolling reduces transitions
on the instruction address bus. One reason is that they seri-
alize the program control flow, and the other one is that they
reduce the number of instruction memory accesses. This is
demonstrated by Figs. 4 and 5. Figure 4 shows the normal-
ized number of instructions executed where the baseline is

Fig. 3 The effectiveness of compiler optimization exploration.

O2. O2+FI+BLU+ULU achieved 9.5% reduction in the num-
ber of instructions (i.e., 9.5% performance improvement) on
the average. Figure 5 shows the percentage of nonsequential
instruction accesses. With the O2 compiler option, the ratio
of nonsequential accesses was 13.3% on the average. With
the O2+FI+BLU+ULU compiler option, the ratio went down
to 12.0%.

Although function inlining and loop unrolling are ef-
fective to reduce bus transitions, they have a common draw-
back, i.e., the code size problem, as mentioned in the previ-
ous section. In Fig. 6, the code size for each compiler op-
tion is presented. For O2+FI+BLU+ULU, the code size was
increased by 7.3% on the average. It is observed that the in-
crease in code size varies among the programs. For example,
the increase in code size was very small for g721encode
and g721decode, but the bus transitions were significantly
reduced. However, in most cases, there is a trade-off be-
tween address bus energy and code size, so it is very impor-
tant to explore and find the optimal trade-off point for each
application.

So far, we do not assume memory hierarchy. If the in-
struction cache exists, loop unrolling and function inlining

Fig. 4 The number of instructions executed.

Fig. 5 Percentage of nonsequential instruction accesses.

†Recall that function inlining and loop unrolling were origi-
nally developed to reduce the number of instructions to be exe-
cuted.



LETTER
2819

Fig. 6 Increase in code size.

Fig. 7 Instruction cache miss rates. (8 K-byte direct-mapped cache)

reduce the energy of the address bus between the processor
and the instruction cache. However, the increased code size
due to the compiler optimizations often leads to degradation
of the cache performance, which requires extra energy for
accessing main memory. In order to study the cache effect,
we have run cache simulation. Figure 7 shows the miss rates
of the instruction cache across the benchmark programs. For
g721encode and g721decode, the cache performance was
seriously degraded which may offset the energy saving on
the address bus. On the other hand, the cache performance
was improved for jpeg-encode in despite of the increased
code size. It is also seen that function inlining reduces cache
misses for jpeg-decode. This is mainly because function
inlining often improves the spatial locality of the program
code. For some other benchmark programs, no significant
difference in the cache performance was observed. Thus,
these results show that the impacts of the compiler optimiza-
tions on the cache performance is largely dependent on the
program.

As we have seen above, the compiler optimizations
produce various side effects on performance and energy of
processor and memory system as well as code size, and
these effects are sometimes good but sometimes bad de-
pending on the program. Development of a systematic
methodology to apply the compiler optimizations with con-

sidering all the effects is one of our remaining work.

4. Conclusions

This paper studied the impacts of compiler optimizations,
i.e., function inlining and loop unrolling, on the energy con-
sumption of the address bus between processor and instruc-
tion memory. We conducted a set of experiments using real-
world applications. The experimental results showed that
transitions on the instruction address bus were redeced by
85% by applying the compiler optimizations together with
bus encoding.

Since the compiler optimizations produce various side
effects, we are currently developing a systematic method-
ology for low-energy compilation which takes into account
these side effects.

Acknowledgment

The author would like to thank Professor Nikil Dutt of Uni-
versity of California at Irvine and Professor Hiroaki Takada
of Nagoya University for their valuable suggestions. This
work was partially supported by JSPS Grant-in-Aid for
Young Scientists (B) #16700058.

References

[1] C.L. Su, C.Y. Tsui, and A.M. Despain, “Saving power in the con-
trol path of embedded processors,” IEEE Des. Test Comput., vol.11,
no.4, pp.24–31, 1994.

[2] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano,
“Asymptotic zero-transition activity encoding for address buses
in low-power microprocessor-based systems,” Proc. Great Lakes
Symp. on VLSI, pp.77–82, 1997.

[3] L. Benini, G. De Micheli, E. Macii, D. Sciuto, and C. Silvano, “Ad-
dress bus encoding techniques for system-level power optimization,”
Proc. Design Automation and Test in Europe, pp.861–866, 1998.

[4] S. Ramprasad, N.R. Shanbhag, and I.N. Hajj, “A coding framework
for low-power address and data busses,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol.7, no.2, pp.212–221, 1999.

[5] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredundant address bus
encoding for low power,” Proc. Int’l Symp. on Low-Power Elec-
tronics and Design, pp.182–187, 2001.

[6] J.L. Hennessy and D.A. Patterson, Computer Architecture: A Quan-
titative Approach, Morgan Kaufmann Publishers, 2nd ed., 1996.

[7] P.R. Panda and N.D. Dutt, “Low-power memory mapping through
reducing address bus activity,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.7, no.3, pp.309–320, 1999.

[8] H. Tomiyama, H. Takada, and N. Dutt, “Memory data organization
for low-energy address buses,” IEICE Trans. Electron., vol.E87-C,
no.4, pp.606–612, April 2004.

[9] E. Musoll, T. Lang, and J. Cortadella, “Working-zone encoding for
reducing the energy in microprocessor address buses,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.6, no.4, pp.568–572,
1998.

[10] L. Benini, G. De Micheli, E. Macii, M. Poncino, and S. Quer,
“Power optimization of core-based systems by address bus encod-
ing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.6, no.4,
pp.554–562, 1998.

[11] M.N. Mamidipaka, D.S. Hirschberg, and N. Dutt, “Adaptive low-
power address encoding techniques using self-organizing lists,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.11, no.5,
pp.827–834, 2003.



2820
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

[12] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communicatons
systems,” Prof. Int’l Symp. on Microarchitecture, pp.330–335, 1997.

[13] W. Fornaciari, M. Polentarutti, D. Sciuto, and C. Silvano, “Power

optimization of system level buses based on software profiling,”
Proc. Int’l Workshop on Hardware/Software Codesign, pp.29–33,
2000.

[14] SimpleScalar Tools, http://www.simplescalar.com/


