1198

IEICE TRANS. INF. & SYST., VOL. E79-D, NO. 8 AUGUST 1996

[PAPER

An Acoustically Oriented Vocal-Tract Model
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SUMMARY  The objective of this paper is to find a parametric
representation for the vocal-tract log-area function that is directly
and simply related to basic acoustic characteristics of the human
vocal-tract. The importance of this representation is associated
with the solution of the articulatory-to-acoustic inverse problem,
where a simple mapping from the articulatory space onto the
acoustic space can be very useful. The method is as follows:
Firstly, given a corpus of log-area functions, a parametric model
is derived following a factor analysis technique. After that, the
articulatory space, defined by the parametric model, is filled with
approximately uniformly distributed points, and the correspond-
ing first three formant frequencies are calculated. These formants
define an acoustic space onto which the articulatory space maps.
In the next step, an independent component analysis technique
is used to determine acoustic and articulatory coordinate systems
whose components are as independent as possible. Finally, using
singular value decomposition, acoustic and articulatory coordi-
nate systems are rotated so that each of the first three compo-
nents of the articulatory space has major influence on one, and
only one, component of the acoustic space. An example showing
how the proposed model can be applied to the solution of the
articulatory-to-acoustic inverse problem is given at the end of the
paper.

key words: vocal-tract log-area function, formant frequencies,
factor analysis, independent component analysis, singular value
decomposition, articulatory-to-acoustic inverse problem

1. Introduction

In 1967, Schroeder[1] analytically described the rela-
tionship between the singularities (poles and zeros) of
the vocal-tract admittance measured at the lips, and the
Fourier cosine series [ 2] of the corresponding vocal-tract
cross-sectional log-area function. The analysis was re-
stricted to small perturbations of a uniform tract. For
the case of larger variations, Mermelstein[3] developed
a numerical procedure to solve the problem. It was
shown that the admittance poles, which correspond to
the formant frequencies, do not uniquely determine the
vocal-tract log-area function. The first M formant fre-
quencies can be used to find only the first M odd co-
efficients of the Fourier cosine series expansion of the
log-area function. The first M even coefficients of the
same Fourier series could be determined from the first
M admittance zeros. However, in contrast with the for-
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mant frequencies, the admittance zeros cannot be di-
rectly extracted from the speech signal which, therefore,
does not uniquely determine the corresponding log-area
function.

Yehia and Jtakura[4] then developed a procedure
to find, among all log-area functions that can gener-
ate a given set of three formant frequencies, the one
that can be reached by the vocal-tract with minimum
effort. Each log-area function was parametrized by the
first nine coefficients of its Fourier cosine series expan-
sion. However, for the case of the human vocal-tract, it
cannot be said that the parametrization by a truncated
Fourier series is optimum. It is so because cosine func-
tions, which are the eigenfunctions of a Fourier cosine
series expansion, are “general purpose functions” that,
in principle, are not directly related to the vocal-tract
anatomy.

The objective of this paper is to develop a paramet-
ric representation of the vocal-tract log-area function,
which is optimum from a statistical point of view and,
at the same time, is suitable to study the relationship
between the log-area function and the corresponding
formant frequencies. Such a representation can then
be used to solve the problem of finding the log-area
function most likely to occur, given a set of formant
frequencies.

The method used can be divided into three parts:
Firstly, a factor analysis procedure is used to represent
the log-area function by an appropriate number of pa-
rameters. After that, an independent component anal-
ysis technique is used to find coordinate systems, with
components as independent as possible, for the articu-
latory space defined by the log-area parametric model;
and for the acoustic space onto which it maps. Finally,
singular value decomposition is used to rotate both ar-
ticulatory and acoustic spaces in such a way that the first
three articulatory components have major influence on
one, and only one, acoustic component. These proce-
dures are explained in detail in the next sections.

2. The Corpus

In order to find a log-area representation which is op-
timum from a statistical point of view, it is necessary,
to have a corpus of log-areas large enough to allow a.
good statistical characterization of the vocal-tract. The
corpus used here consists of 519 log-areas. They were
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Fig. 1  Basic transformations carried out to build the corpus. (a) A sample of a midsagit-
tal profile. (b) Semipolar grid used to sample the midsagittal dimension in 29 points. (c)
Profile regenerated from the points sampled on the grid. (d) Midsagittal distances at the
points sampled on the grid (stems); and corresponding evenly spaced resampled sections
(stairstep graph). (e) Area function approximated by uniform tubes of same length. (f)

Corresponding log-area function.

derived from midsagittal profiles obtained by cineradio-
graphy[5] from a female subject (PB). The procedure
used to convert midsagittal profiles into log-areas is sim-
ilar to that described by Maeda[6], and 1s illustrated in
Fig. 1. The area functions were derived from the mid-
sagittal dimensions using the o — 8 model proposed by
Heinz and Stevens|[7]

A(l) = a(1)d(1)PD, (1)

where A(l) and d(l) are respectively the area and the
midsagittal dimension at a distance ! from the glottis.
The values of the parameters o and 8 were kindly pro-
vided by Maeda who obtained them using an ad hoc
method [6]. (Note that & and § in the equation above
do not have any relation with the vectors & and 3 that
will appear later.)

Admittedly, area functions obtained from midsagit-
tal profiles are not accurate. Even if more elaborate
models, such as those proposed by Perrier et al. [8] and
by Beautemps et al.[9], are used, the two-dimensional
information provided by a profile is not sufficient to
completely determine the area function, which depends
on the three-dimensional structure of the tract. This
is the main reason why the formant frequencies derived
from the area function [ 10] do not perfectly match those
extracted from the speech signal[6]. In this paper, the
formant frequencies used will be always derived from
the area function, using the method proposed in [10];
and not the formants extracted from the speech signal.
By doing so, any problems due to inaccuracies inherent
in the area function estimation method are avoided.

The log-area function is simply the natural log-
arithm of the area function. The only detail is that,
in order to avoid numerical problems with closures,
areas smaller than a given threshold e (in this paper,
¢ = 5mm?) are clipped to e. It, however, does not lead
to any considerable inaccuracies from either articula-
tory or acoustic points of view.

Each log-area function present in the corpus, when
approximated by a concatenation of uniform tubes of
equal length, as in the example shown in Fig. 1 (f), can
be represented by a vector containing the natural loga-
rithm of the section areas and the tract length. In this
paper, the following notation will be used

X; = [Ty, x0T, i=1,..., P, (2)

N\ L;
mki:h'lAi{<k’“§)?ji, k=1,...,K,
Tr41; = Li,

where L; is the tract length of frame ¢, expressed in
units normalized so that the variance of zx 1 is equal
to the largest variance of the first X' components of x;
A;(l) is the cross-section area of frame ¢ at distance [
from the glottis; K = 32 is the number of uniform sec-
tions present in each area function; and P = 519 is the
number of vectors present in the corpus.

3. The Parametric Model

The objective of this section is to find representations
for both the log-area space and the formant frequency
space so that
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e Each space be efficiently represented by a small
number of parameters.

e The components of each space be as independent
as possible.

e The mapping between both spaces be as simple as
possible.

These points will be analyzed one by one in the follow-
ing sections.

3.1 Eigenvalue Decomposition
3.1.1 Articulatory Space

The number of sections necessary to obtain a good ap-
proximation of the vocal-tract log-area function by a
concatenation of uniform tubes of equal length is con-
siderably larger than the dimension of the space com-
posed by the log-area functions that can be produced by
the human vocal-tract. This space, from now on, will be
called the articulatory space, and an eigenvalue decom-
position procedure will be carried out to parametrize it
by an appropriate number of components.

The procedure is as follows: Given the corpus of
log-area vectors defined in Eq.(2), the corresponding
covariance matrix is given by

1 P

C= 1 D s — pallxi — gl 3

=1

where p, is the mean log-area vector; and can be ex-
pressed as

C =usu’, ©

where S is a diagonal matrix containing the eigenval-
ues of C in decreasing order, and U is a unitary matrix
whose columns contain the corresponding normalized
eigenvectors. The expansion above is a Takagi’s factor-
ization, which is a singular value decomposition for the
particular case of symmetric matrices[11].

Using the same optimality principle of the
Karhunen-Loéve transform[12], x can then be approx-
imated by

a given by
a=Uy(x— ), Q)

where Uy is the matrix containing the first N columns
of U, ie. the normalized eigenvectors corresponding
to the N largest eigenvalues of C. The K + 1 = 33
eigenvalues are shown in Fig.2. Note that only the first
N =5 eigenvalues have non-negligible values, and that
they “explain” more than 92% of the variance of the
corpus of log-areas.
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Fig. 2 Eigenvalues of the log-area covariance matrix.
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Fig.3 Eigenvectors corresponding to the first 5 eigenvalues ob-
tained from the decomposition of the log-area covariance matrix.
All eigenvectors are normalized to have unit Euclidian norm.
The first K = 32 components correspond to the log-area along
the tract; and the last component corresponds to the tract length.
The corresponding eigenvalue square root is given as a reference
to the “importance” of each eigenvector.

The eigenvectors associated with the largest V =5
eigenvalues are shown in Fig.3. They will be used in
this paper to form a parametric model for the vocal-
tract log-area function. Since the components of this
model cannot be explicitly interpreted as articulators, it
cannot be qualified as an articulatory model[6],[13].
In spite of that, it is possible to observe in Fig.3 that:
the first and most important eigenvector is associated
with the tongue region; the tract-length is the dominant
component of the second and fifth eigenvectors; the lips
determine the dominant component of-the third eigen-
vector; and the tongue apex is the dominant region of
the fourth eigenvector. Also, note that there is almost
no influence of the glottal region on the first three eigen-
vectors.
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Fig. 4 Area function approximations by Fourier cosine series
expansion (dashed line), and by statistically optimum eigenvalue
expansion (solid line). The thick solid line shows the original
area. Above: expansion with 3 components. Below: expansion
with 5 components.
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Fig. 5 Vocal-tract length, lip area, and alveopalatal area tra-
jectories along the sentence (in French): Ma chemise est roussie.
The dashed lines show the original measured trajectories, while
the solid lines show the trajectories parametrized by the model
proposed here. For each case, the mean and the standard de-
viation values of the relative difference (in percentage) between
parametrized and original trajectories are also shown.

In order to illustrate the performance of this repre-
sentation, Fig. 4 shows an area function taken from the
corpus (thick line), and its approximations by a trun-
cated Fourier cosine series [4] (dashed line) and by the
parametric model proposed here (thin solid line). Note
that, in contrast with the Fourier series representation,
the parametric model is able to “capture” the vocal-tract
structure. In Fig. 5, original trajectories followed by the
tract length, by the area at the lips, and by the area of
a section in the alveopalatal region are shown by the
dashed lines. The corresponding trajectories obtained
with the parametric model proposed here are shown by
the solid lines. Since the parametric model is derived
from the log-area function, the approximation is partic-
ularly good for small areas, which are critical from the

acoustic point of view.

Summarizing, it was shown that vocal-tract log-
area vectors can be efficiently represented in an N = 5
dimensional articulatory space. Here, it is interesting
to note that most articulatory models[6],[13] are ex-
pressed by seven to nine components. This happens
because their formulation is oriented to the speech pro-
duction direct problem. In that case, it is important to
consider the number of degrees of freedom of the vocal
apparatus, which is usually larger than the dimension
of the articulatory space.

3.1.2  Acoustic Space

To each log-area vector there exist one, and only one,
set of formant frequencies associated with it. Here, the
set composed by the first three formant frequencies will
be called a formant vector, and the space formed by all
formant vectors that can be generated by the vocal-tract
will be called the acoustic space.

By performing an eigenvalue decomposition on the
covariance matrix of the formant vectors (in log-scale),
it was found that more than 92% of the total variance
can be explained by the first two eigenvalues. For this
reason, the possibility of representing the acoustic space
in two dimensions was considered. However, since the
acoustic information associated with the third eigen-
value can be important for the inverse problem, it was
decided to use the first three formant frequencies to
parametrize a three-dimensional acoustic space.

3.2 Independent Component Analysis

The objective of this section is to perform linear trans-
formations on the coordinate systems of both articula-
tory and acoustic spaces, so that the components of each
space become as independent as possible. The final ob-
jective is to find a mapping of the articulatory space
onto the acoustic space, where each component of the
acoustic space is mainly determined by one, and only
one, component of the articulatory space. Also, each
component of the articulatory space must have major in-
fluence on at most one component of the acoustic space.
In order to attain this objective, a necessary condition
is that the components of each space be as independent
as possible.

3.2.1 Articulatory Space

The first step is to find how the articulatory space, de-
fined in the last section, maps onto the acoustic space.
To reach this target, firstly, the hyperrectangle defined by
the maximum and minimum points of each of the N = 5
components of the parametrized corpus is “filled” with
Qo = 30,000 uniformly distributed points. Figure 6 (a)
illustrates this operation by showing the projection on
the subspace defined by a; and as. However, not all
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Fig. 6 (a) Parametric subspace determined by the first two com-
ponents of .. (b) Points corresponding to realistic area functions
(articulatory space). (c) The same points shown in a coordinate
system with “less dependent” components.

the points in the hyperrectangle correspond to realis-
tic vocal-tract areas. For this reason, all points in the
hyperrectangle that correspond to areas out of the lim-
its defined by the P = 519 areas present in the corpus
are discarded. The remaining @Q = 7,285 points are
shown in Fig.6(b). After that, the independent com-
ponent analysis method proposed by Bell[14] is ap-
plied to these points to find a linear transformation
(Top : R5 — R) that changes the coordinate system
of the articulatory space into a system with statistically
“less dependent” components. (The term “less depen-
dent” is used because, in the present case, a simple lin-
ear transformation is not enough to obtain a complete
decomposition into independent components.) Mathe-
matically, this transformation is written as

/B:Taﬂ (a_l"/oz)v (7)

where p., is the mean of the ) = 7,285 vectors gener-
ated to “fill” the articulatory space. Figure 6 (c) shows
the same points shown in Fig. 6 (b), now plotted in the
new coordinate system.

3.2.2  Acoustic Space
For a given point 3 in the articulatory space, it is pos-

sible to find the corresponding log-area vector x using
the following inverse transformation
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Fig. 7 (a) Normalized histograms of the first 3 formant

log-frequencies corresponding to an articulatory space filled with
approximately uniformly distributed points. (b) Histograms
of the variables obtained after independent component analysis
(ICA) of the formant frequenmes (c) and (d) Scatter plots of the
first 2 variables shown in (a) and (b), respectively.

X = UN(Tafil,B + [J,a) + B (8)

Then, using the wave propagation model described
in [10], it is possible to calculate the formant vector
f formed by the first 3 formant frequencies associated
with x and, consequently, with 3

f = f(3). )

This procedure was carried out for all Q = 7,285 points
shown in Fig.6(c). The corresponding formant log-
frequency normalized histograms, which are approxi-
mations for the probability density functions, are shown
in Fig.7(a); while the scattering on the plane deﬁned
by log(f1) and log(f2) is shown in Fig.7(c).

After that, the independent component analysis
(ICA) method described in [14] was used to find a lin-
ear transformation (Ty, : R® — R®) that changes the co-
ordinate system defined by the formant log-frequencies
into a system with “less dependent” variables. This
transformation can be written as

g = Ty, [log(f) — piog £], (10)

where ftiog ¢ 18 the mean of the logarithm of the Q =
7,285 formant vectors available. The normalized his-
tograms obtained for the components of g are shown in
Fig.7 (b), and the scattering of the first two components
of g is shown in Fig.7 (d).

At this point, g and 3 define respectively acoustic
and articulatory vector variables whose components are
more independent than the components of f and . The
next step is to model the relationship between acoustic
and articulatory spaces.
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Before continuing, it is worthwhile to write some
lines about the independent component analysis ICA)
technique used here. The ICA problem consists of find-
ing a linear transformation which, when applied to a
given ensemble of random vectors, transforms it into
an ensemble of vectors whose components are statisti-
cally independent, in an ideal case; or as independent
as possible, in practical cases. The approach described
in [14] (and used in this paper) is based on entropy max-
imization which, under appropriate conditions, implies
mutual information minimization, and consequent in-
dependence maximization. The method was originally
used to solve the problem of blind separation of mixed
sound sources, but has a potentially larger range of ap-
plications.

3.3 Singular Value Decomposition

In this section, the mapping from 3 onto g is approx-
imated by a linear transformation (M : R® — R®) as
follows

g ~ Mg. (1D

In such a case, once there is an ensemble of vectors g and
B available, a minimum mean square error (MMSE)
procedure can be used to estimate M, yielding

M = GBY(BB")™*, (12)
with |

G=g...g0), ‘ (13)
and

B=[3,...8] (14)

In the above equations, ) = 7,285 is the number of
points present in the ensembles.

Once M is determined, a singular value decomposi-
tion procedure[11] can be used to find rotations of the
acoustic (g) and articulatory (3) coordinate systems, so
that each of the first three components of the articula-
tory space has major influence on one, and only one,
component of the acoustic space. The singular value
decomposition of M yields

M= Ugh/J'Uﬂt’y? (15)

where Ugy, is a unitary matrix containing the normal-
ized eigenvectors of MM, Ug, is a unitary matrix con-
taining the normalized eigenvectors of M*M, and g is
a 3 x 5 matrix whose first 3 columns define a diagonal
matrix containing the square roots of the eigenvalues
of MM, and the elements of the last two columns are
all equal to zero. Now, since the multiplication of an
unitary matrix by a vector represents a rotation of this
vector,

v =U4,B (16)
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and
h=U}g (17)

define, respectively, “rotated” articulatory and acoustic
variables. The corresponding matrix of correlation co-
efficients [ 17] can be estimated by

HI®
RS “8>
where
H = [h;...hg), (19)
I'=[vi...7g), (20)

oy, and o, are the column vectors containing respectively
the standard deviations of h and ~, Q = 7,285 is the
number of points present in the ensembles, and the di-
vision of HI' by opo,' is performed element-wise. The
numerical result obtained is shown below

0.939 0.003 0.005 —0.004 —0.004
R=| 0.003 0.953 0.003 —0.004 0.002
0.002 0.001 0.461 0.001 0.002

This matrix shows that there exists a high degree of
correlation between the first two acoustic components
and the first two articulatory components. There is also
a not negligible degree of correlation between the third
acoustic and articulatory components. All other corre-
lation coefficients are very small.

At this point, in order to see the importance of the
independent component analysis described in Sect. 3.2,
it is interesting to compare R with the matrix of cor-
relation coefficients obtained when f and « are used in
place of g and 3 to obtain h and -y, as done in [15],[16].
The result is shown below

0.944 —0.270 —0.206 —0.308 —0.035 I
Rpo=| —0.270 0.944 —0.266 0.258 0.183
—0.112 -0.142 0.511 —0.069 —0.184

Note that, although the correlation between the acous-

tic components and the corresponding first three artic-
ulatory components continues to exist, the other corre-
lation coefficients are not negligible any more.

It should be pointed out, however, that uncorrela-
tion does not imply independence. This fact is illus-
trated in Fig. 8, where scatterings representing the joint
cross-distributions of the components of h and of v are
plotted. There exists, for example, an apparent nonlin-
ear relation between hg and ;. This kind of depen-
dence cannot be well approximated by the linear trans-
formation used in this work to model the mapping from
the articulatory space onto the acoustic space.

In spite of these limitations, the model success-
fully extracted two acoustic variables, namely h; and
hg, which depend approximately linearly on two, and
only two, articulatory variables, namely -y; and 5. The
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Fig. 8 Scatterings representing the joint distributions of the
components of the acoustic variable h and the components of
the articulatory variable . Note the high correlation between v1
and h1, and between v and hz. See also the nonlinear relation
between v and hs.

First Acoustic Corﬁponent

Gamma

Gammaz2

Fig. 9  First two acoustic components (hy, and hy) expressed
as functions of the first two articulatory components (v, and ~2),
when all other components (v3,v4, and ~s) are equal to zero.
Note that h; is almost independent of -, and that there are
one-lo-one relationships between k1 and v;, and between hy and

Y2-

remaining articulatory components, 73, 74, and s, have
little influence on hy and hs. Moreover, v, has little ef-
fect on hq, and the influence of 7y; on hy does not affect
the one-to-one relationship between v, and hy. These
facts are illustrated in Fig.9.

Once the parametric model is derived, and its basic
characteristics are analyzed, it is interesting to compare
articulatory and acoustic component trajectories for a
given sequence of vocal-tract shapes. The trajectories
associated with the French sentence ‘“Ma chemise est
roussie’’ are shown in Fig. 10. It is possible to observe
that the first two articulatory components are indeed
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Fig. 10  Articulatory and acoustic component trajectories along
the sentence (in French): Ma chemise est roussie. Note the simi-
larity between the first two articulatory trajectories and the first
two acoustic trajectories. (The dashed lines in the acoustic trajec-
tories indicate the intervals where the formants cannot be reliably
extracted from the speech signal due to very narrow constrictions
in the area function.)

closely related to the first two acoustic components. It
is also possible to see that there exist some similarities
between hz and hy, indicating that they are not inde-
pendent.

4. Application: The Inverse Problem

The main motivation that led to the construction of the
model described here is the solution of the articulatory-
to-acoustic inverse problem. The idea used is that, if
it is possible to find a simple relation between acous-
tic and articulatory parameters, then it is possible to
represent acoustic constraints in the articulatory space,
and combine them directly with minimum effort and
continuity constraints. Such a combination is necessary
once acoustic constraints do not uniquely determine the
vocal-tract geometry[3],[4],[18].

In [19] and [4] the vocal-tract log-area function
was parametrized by a truncated Fourier cosine series.
After that, the acoustic constraint imposed by the first
three formant frequencies was combined with minimum
effort constraints expressed by a quadratic cost func-
tion. Here, instead of a Fourier series, the paramet-
ric model described in Sect.3 was used to represent the
vocal-tract. Then, using the method to combine acous-
tic and anatomical information described in [4], and
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Fig. 11  (a) Sequence of area functions, taken from the corpus,

corresponding to the diphthong /ui/, uttered in the (French) sen-
tence “Luis pense a ¢ca.” (b) Sequence of areas reconstructed from
the parametric representation of the original areas shown in (a).
(c) Sequence of areas estimated from the formant trajectories
shown in (d), under continuity and minimum effort constraints.
(d), (e) and (f) Formant frequency trajectories corresponding to
the sequences of areas shown in (a), (b) and (c) respectively. The
dashed lines shown in (e) and (f) are the original formant tra-
jectories shown in (d). For each pair of formant trajectories, the
maximum relative difference (in percentage) is also shown.

the continuity constraints explained in [19], it was pos-
sible to estimate sequences of area functions from the
corresponding first three formant trajectories. (A de-
tailed analysis of this method will be left for a future
publication, because it is not the target of this paper.)

In the example given in Fig. 11, the sequence of
area functions shown in (a) was used to generate the
formant trajectories shown in (d). These trajectories
were then used to recover the original sequence of ar-
eas, under minimum effort and continuity constraints.
The result is shown in (¢). The search for the best se-
quence of areas was performed in the articulatory “vy”
space. Note, however, that the sequence of areas shown
in (c) is close, but not identical, to that shown in (b),
which is the sequence of areas reconstructed from the
parametric “y” representation of the sequence shown
in (a). The reason for this is probably associated with
the fact that the mathematical cost function used does
not perfectly reflect the articulation effort determined by
the human physiology.

For comparison purposes, it is interesting to see the
results when the same problem is solved using a trun-
cated Fourier series to represent the log-area function,
as done in [3], [19] and [4], instead of the model de-
scribed in this paper. In [3], Mermelstein parametrized
the vocal-tract log-area function by the first six coef-
ficients of its Fourier cosine series expansion. It was
verified that, when the even coefficients are all equal
to zero, there exist a one-to-one relationship between
the first three formants and the three odd Fourier co-
efficients. Using this property, an interactive procedure
was implemented to find the unique set of odd Fourier
coefficients associated with a given set of formant fre-

1205

Fourier (Odd Terms) Fourier (All Terms)

Optimum Eigenvectors

(b)
S
SaaEss
SHTESS
N

y
[
i
ll,.
0y,

507

0.2

Formant Frequency Trajectories

N

T

23 M 3 m 3 m

I § - —

221 7 Fiaam| 2 T Fioew] 2 F1 1.2%

S 4 Max. Dif. F2- 4.6%( 4 Max Dif. F2.3.9%| 1 Max, Dill F2: 4 6%

o F3:.7% F3'36% F3.1.5%

o

Lo 0.1 02 0 0.1 02 0 0.1 0.2
Time (s) ~Time (s) Time (s)

Fig. 12 Above: Sequences of area functions estimated from
the formant trajectories shown in Fig. 11 (d) under different con-
straints: (a) The areas are represented by the first 6 components of
its Fourier cosine series expansion. The even coefficients are set
to zero. (b) Same as (a), but the 6 coefficients are determined un-
der anatomical constraints. (c) The same anatomical constraints
of (b) are used, but with optimized eigenvectors in place of the
cosine functions used in the Fourier series expansion. Below:
The solid lines in (d), (¢) and (f) show the formant trajectories
associated with the sequences of areas shown in (a), (b) and (c),
respectively. The dashed lines are the original formant trajecto-
ries shown in Fig. 11(d). For each pair of formant trajectories,
the maximum relative difference (in percentage) is also shown.

quencies, when all even Fourier coefficients are equal
to zero. This procedure was used to obtain the se-
quence of areas shown in Fig. 12 (a) from the formant
trajectories shown in Fig. 11 (d). Note that the result is
substantially different from the original sequence of ar-
eas shown in Fig. 11 (a). This happens because setting
all even Fourier coefficients to zero is an artificial con-
straint that does not reflect the geometrical constraints
determined by the vocal-tract anatomy. A mathematical
framework to incorporate such anatomical constraints
into the articulatory-to-acoustic inverse problem was
proposed in [19] and [4]. This method was used to ob-
tain the sequence of areas shown in Fig.12(b). It can
be seen that it resembles the original sequence of areas
shown in Fig. 11 (a). However, abrupt variations, in-
herent in some regions of the vocal-tract, cannot be well
approximated, due to the smooth character of the cosine
functions, which are the eigenvectors of the Fourier co-
sine series representation. This is in contrast with the
eigenvectors used in the present paper (see Fig. 3, which
allow a good representation of the vocal-tract structure.
When such eigenvectors are used in place of cosine func-
tions, the result obtained is the sequence of areas shown
in Fig.11 (c), which is reproduced in Fig.12 (c) to allow
a better comparison.

The formant frequency trajectories associated with
the sequences of areas shown in Fig.12 (a), (b) and (c)
are shown respectively by the solid lines in Fig. 12(d),
(e) and (f). The dashed lines represent the original for-
mant trajectories shown in Fig. 11(d). These figures il-
lustrate the fact that, even under continuity constraints,
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substantially different sequences of area functions can
generate basically the same formant trajectories.

5. Conclusion

In this paper, an acoustically oriented vocal-tract para-
metric model was described. In contrast with articula-
tory models, which have the objective of representing
the vocal-tract in terms of elementary articulators, the
elements of the model presented here are approximately
linearly related to basic acoustic characteristics of the
vocal-tract.

The vocal-tract geometry was represented by vectors
containing the vocal-tract length and the natural loga-
rithm of the cross-sectional area, sampled at 32 points
evenly spaced along the tract. A factor analysis tech-
nique was then used to find an appropriate number
of dimensions, namely five, for the articulatory space.
The acoustic characteristics of the vocal-tract were rep-
resented by vectors containing the logarithms of the first
three formant frequencies. The set of all formant vec-
tors that can be generated by all possible articulatory
vectors define the acoustic space. The articulatory space
maps onto the acoustic space.

It was verified that, when appropriate linear trans-
formations are applied to the coordinate systems of both
articulatory and acoustic spaces, the first two articula-
tory components are highly correlated with the first two
acoustic components. There is also a relatively high
correlation between the third articulatory and acoustic
components. The influence of the fourth and fifth ar-
ticulatory components on the acoustic components is
small.

An important application of the parametric model
described here is in the solution of the articulatory-to-
acoustic inverse problem. The fact that there exists an
almost linear relationship between acoustic and articu-
latory variables allows a simple and efficient formula-
tion for the combination of acoustic, minimum effort,
and continuity constraints. An example was given for
the case of a diphthong, indicating that the method can
be successfully used.

Although the results obtained can be considered
satisfactory, some problems still remain to be solved.
Firstly, it is important to form a corpus with more accu-
rately measured areas. Secondly, the nonlinear relations
observed must be better analyzed, since they cannot be
modelled only by linear transformations. Also impor-
tant is the problem of speaker adaptation: The vocal-
tract parametric model presented here was derived for
a particular speaker using a data dependent technique.
So, when the model is used, for example, in the solution
of the inverse problem with a different speaker, an adap-
tation procedure is required. Finally, if the corpus of
areas available is large enough, it would be interesting
to expand the idea of a vocal-tract position paramet-
ric model, to a vocal-tract gesture parametric model. It
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could be important to allow a better modelling of conti-
nuity constraints during the speech production process.
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Appendix: Numeric Information

Most of the numeric information used in the implemen-
tation of the vocal-tract parametric model described in
this paper was not included in the main text. Instead,
for practical purposes, it is given in this appendix, and
can be used by the interested reader to implement, test
and analyze the model proposed.

In order to do this, some observations are impor-
tant: The first one is that the tract length is expressed
in normalized units, which can be converted into cen-
timetres as follows

1 length unit = 0.534 cm.

[ 0.006 —0.019 0.004 —0.004 0.052
0.010 -0.035 0.026 0.010 0.130
0.017 —0.045 0.036 —0.016 0.177
0.030 —-0.026 -0.012 —-0.110 -—0.142
0.039 —-0.050 —0.002 —0.030 0.000
0.057 —0.087 0.023 —0.013 0.136
0.083 —0.082 0.029 0.004 0.142
0.101 -0.071 0.042 0.034 0.161
0.111 —-0.054 0.053 0.059 0.159
0.113 —0.033 0.059 0.079 0.137
0.165 —-0.014 0.060 0.088 0.112
0.091 0.001 0.058 0.090 0.091
0.074 0.009 0.052 0.084 0.080
0.072 0.017 0.048 0.106 0.102
0.078 0.043 0.056 0.154 0.159
0.076 0.059 0.055 0.170 0.170

Un=| 0.056 0.136 0.063 0.208 0.177
0.011 0.226 0.092 0.233 0.199
0.043 0.220 0.128 0.199 0.232
0.102 0.205 0.135 0.131 0.227
0.184 0.216 0.136 0.047  0.217
0.264 0.205 0.130 —0.048 0.192
0.307 0.169 0.099 —-0.120 0.129
0.324 0.125 0.062 —0.157 0.068
0.334 0.081 0.028 —0.156 0.019
0.340 0.026 -0.010 -0.131 -0.020
0.348 —0.077 —-0.052 —-0.062 —0.048
0.331 -0.208 —0.106 0.112 -0.020
0.288 —0.296 —0.165 0.355 0.006
0.202 -0.262 -0.247 0.537 —0.002
0.005 0.1567 -0.514 0.165 0.111
0.099 0.304 —-0.712 —0.259 0.269

L 0.006 —0.584 0.002 —0.353 0.599
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The second observation is about the procedure used to
“fill” the articulatory space: First, a sufficiently high
number of points is uniformly generated in the hyper-
rectangle defined by a;,, and amax. After that, the
corresponding log-area vectors are calculated, and those
that exceed the limits defined by x,;, and xmax are
discarded, since they probably correspond either to un-
realistic area functions or to areas with constrictions
that are too narrow. The final observation is about the
procedure used to estimate the formants associated with
a given area function: They can be calculated using
the wave propagation model described in [10] and the
search procedure described in [3].

0.82 0.28 1.22
0.46 —0.12 1.14
0.02 —0.82 117
0.39 —0.76  1.13
0.81 —0.36  1.47
1.00 0.19 1.87
1.19 0.20 1.93
1.13 0.12  1.80
1.04 —0.26 1.67
0.97 —0.49 158
0.98 —0.55 1.54
1.07 —0.37  1.56
1.21 0.05 1.64
1.35 —021 1.77
1.35 —0.49 1.91
1.25 —0.14  1.93

po=| 1.08 |, Xmin Xmad = | —1.47 190 |,
0.62 —2.74  1.68
0.31 —3.00 1.43
0.39 —3.00 1.44
0.43 ~3.00 1.65
0.36 ~3.00 1.84
0.34 —3.00 1.92
0.32 ~3.00 1.95
0.27 ~3.00 2.01
0.18 —3.00 2.04
0.04 ~3.00  2.09
0.02 ~3.00 2.15
0.11 —3.00 2.17
0.19 ~3.00 2.11
0.22 —-3.00 1.77
0.11 —3.00 1.86

| 28.19 | | 25.92 33.40 |
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0.334 0.053 —0.655 0.356  0.743 —0.701
—1.300 0.348 0376 —0.541 —0.121 —0.624
po=| —0027 |, To,s=| —0225 —0.006 0.440 —0.859 —1.001 |,
—0.572 0.143  0.195 0.747  0.542 —0.018
—0.407 0519 —0.142 - 0248 —0.638  0.469
~6.1201 8.7632 0.164 —0.458 —0.185 —0.854  0.000
—7.6430 3.4521 —0.813 —0.030 —0.264 —0.083  0.511
Qmin Omax = | —4.1455 45351 |, Ug,= | 0378 0.046 0429 —0.045 0818 |,
—2.6781 2.1944 ~0.410 —0.012  0.836 —0.253 —0.263
—2.4002 2.2786 —0.032 —0.887 0.115 0.444  0.029
2.60 154 —7.0 185 ~0.063 0970  0.236
pogr=1| 324 |, Try=1| 83 230 —12.7 Uy = | 0692 0128 —0.711 |,
3.43 —52 —7.2 354 —0.719 —0.208  0.663
—0.457 —0.007  0.068  0.109 —0.810
M= | -0.105 0.641 —0.399 —0.008 —0.126
—0.084 0499 -0.140 0560  0.237
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