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PAPER

CENSREC-3: An Evaluation Framework for Japanese Speech
Recognition in Real Car-Driving Environments

Masakiyo FUJIMOTO†∗a), Kazuya TAKEDA††b), and Satoshi NAKAMURA†∗∗c), Members

SUMMARY This paper introduces a common database, an evaluation
framework, and its baseline recognition results for in-car speech recog-
nition, CENSREC-3, as an outcome of the IPSJ-SIG SLP Noisy Speech
Recognition Evaluation Working Group. CENSREC-3, which is a sequel
to AURORA-2J, has been designed as the evaluation framework of isolated
word recognition in real car-driving environments. Speech data were col-
lected using two microphones, a close-talking microphone and a hands-free
microphone, under 16 carefully controlled driving conditions, i.e., combi-
nations of three car speeds and six car conditions. CENSREC-3 provides
six evaluation environments designed using speech data collected in these
conditions.
key words: noisy speech recognition, common evaluation framework, in-
car speech database, CENSREC-3

1. Introduction

Recently, progress in speech recognition technology has
been brought about by the advent of statistical approaches
and large-scale corpora. Furthermore, it is also widely
known that progress has been accelerated by the U.S.
DARPA projects [1] initiated in the late ’80s. This involves
project participants competitively developing speech recog-
nition systems for the same task, using the same training and
test corpus.

However, current speech recognition performance
must still be improved if the system is to be exposed to noisy
environments, where speech recognition applications might
be used in practice. Therefore, noise robustness is an emerg-
ing and crucial factor to be solved for speech recognition
techniques.

With regard to the noise robustness problem, there have
been two major evaluation projects, SPINE1, 2 [2] and AU-
RORA [3]–[9]. The SPINE (SPeech recognition In Noisy
Environments) project was organized by the U.S.’s DARPA,
with SPINE1 in 2000 and SPINE2 in 2001. The task in-
cluded spontaneous English dialog between an operator and
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a soldier in a noisy field to evaluate spontaneous continuous
speech recognition in noisy environments. The results of
the project brought many improvements to continuous noisy
speech recognition, though that task seems quite specialized
and a little difficult to handle.

On the other hand, the European Telecommunications
Standards Institute (ETSI) AURORA group initiated a spe-
cial session in the EUROSPEECH conference. They are
actively working to develop standard technologies under
ETSI for distributed speech recognition [10]. In parallel
with their standardization activities, they have distributed
to academic researchers a noisy connected speech corpus
based on TI-digits [11] with baseline HTK (HMM Took
Kit) [12] scripts for further noisy speech recognition re-
search. To date, AURORA2 [3] (a connected digit corpus
with additive noise), AURORA3 [4]–[7] (an in-car noisy
digit corpus), and AURORA4 [8], [9] (a large-vocabulary
continuous-speech recognition corpus with additive noise
(noisy Wall Street Journal, vocabulary size: 5,000)) have
been distributed with HTK scripts, which can be used to ob-
tain baseline performance and even improvements over the
baseline results [13].

The authors voluntarily organized a special working
group in October 2001 under the auspices of the Informa-
tion Processing Society of Japan in order to assess speech
recognition technology in noisy environments. The focus
of the working group included the planning of comprehen-
sive fundamental assessments of noisy speech recognition,
standardized corpus collection, evaluation strategy devel-
opments, and distribution of standardized processing mod-
ules. As an outcome of the working group, we have al-
ready been produced the Japanese AURORA-2, AURORA-
2J [14], which comprises the English digits translated into
Japanese.

This paper introduces a common database, an eval-
uation framework, and its baseline recognition results for
in-car speech recognition, CENSREC-3 (Corpus and Envi-
ronments for Noisy Speech RECognition), as a sequel to
AURORA-2J∗∗∗.

AURORA-2J (CENSREC-1) was designed as a com-
mon evaluation framework for noisy speech recognition.
However, the noise environments provided by AURORA-
2J were simulated environments; namely, speech and noise
signals were recorded independently and the noisy speech

∗∗∗AURORA-2J is regarded as a part of the CENSREC series
and has been given an alternative name, CENSREC-1.
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Fig. 1 Roadmap of the CENSREC database. The gray ellipses indicate evolution of the CENSREC
database. The white ellipses indicate target applications or tasks for each CENSREC database.

data were artificially generated by adding the noise to the
speech. Such simulated noisy speech data are widely used
for evaluating noisy speech recognition due to the eases
of constructing the evaluation environment. However, the
transformation of speaking style is not considered and is ne-
glected in the simulated environments. Usually, a speaker
speaks loudly or shouts when he is in a noisy environment.
In this case, the transformations of energy dynamic range,
frequency characteristics, speaking speed, and so on ought
occur in uttered speech signals. Thus, to involve these trans-
formations of speaking style, it is necessary to collect the
speech data in real noise environments.

The speech data of CENSREC-3 were collected in real
car-driving environments to evaluate in-car speech recogni-
tion. Recently, in-car speech recognition, which is one of the
candidates for a hands-free interface for controlling electric
devices in a vehicle, has attracted attention as an extremely
important technique from the viewpoints of safety and con-
venience. An in-car environment is a typical noise condi-
tion of speech recognition, and transformations of speaking
style are also observed. Thus, careful design of an evalua-
tion framework for in-car speech recognition is an important
concern.

Incidentally, as a database for evaluating in-car speech
recognition, we have designed not only CENSREC-3 but
also CENSREC-2 [15]. Although the speech data of both
CENSREC-2 and CENSREC-3 are collected in real car-
driving environments, the purpose of each one’s database
design is different. Figure 1 shows our defined roadmap
of the CENSREC database. In the figure, the position of
CENSREC-2 is lower than CENSREC-3 in the layer of dif-
ficulty of speech recognition (the measure for the vertical
axis). CENSREC-2 was designed as the evaluation frame-
work for connected digit recognition in real car-driving en-
vironments. However, digit recognition is not widely ap-

plicable to tasks necessary for driving in the real world.
Thus, the target application of CENSREC-2 is not assigned
to the roadmap due to its inapplicability. On the other hand,
CENSREC-3 has been designed specifically as the evalu-
ation framework for isolated word recognition in real car-
driving environments. Since the main target application
of CENSREC-3 is human-voice (hands-free) control of car
navigation systems, CENSREC-3 is an evaluation frame-
work that assumes speech-oriented man-machine commu-
nication in a range of different car environments.

Speech data of the CENSREC-3 were collected using
two microphones, a close-talking microphone and a hands-
free microphone, under 16 carefully controlled driving con-
ditions, i.e., combinations of three car speeds and six car
conditions. CENSREC-3 provides six evaluation environ-
ments designed using speech data collected in these con-
ditions. Finally, this paper shows the evaluation results for
CENSREC-3 by using ETSI standard DSR front-end ES 202
050 [16], i.e., advanced front-end. We also analyze the cru-
cial environments for practical use of in-car speech recogni-
tion through the evaluations of CENSREC-3.

2. Data Recording

The CENSREC-3 database is composed of part of the
database collected by the Center for Integrated Acoustic In-
formation Research (CIAIR) [17].

2.1 Vocabulary

The speech recognition task of the CENSREC-3 database is
isolated word recognition in real car-driving environments.
Table 1 shows a list of 50 words recorded for test data, which
are classified into several groups, e.g., control commands,
song or musician names, street or highway names, place
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Table 1 A list of 50 recorded words.

digital locker ninsho kaishi
2001/1/1 yamada tarou

kensaku shuryo ansho bango
0123 4567
8901 2345
6789 contents
eiga Hitsuji tachino chinmoku

Sound of music game
Pack man ongaku

jpop konsyu no top10
genre betsu kensaku pops

rock Beatles
senkyoku Yesterday
Let it be haishin kaishi

ferry annai jikoku hyo
dai2bin wo yoyaku net news

topics onsei yomiage
tenki yohou koutsu jouhou

Kanagawa ken Yokohama shi
Naka ku Toukyou to

Setagaya ku Syuto kousoku
Touhoku jidoushadou Seven eleven

Uniqlo Star bucks
hotel ichiran Pacific hotel
yoyaku hyo service shuryo

names, shop names, and so on. In each group, we selected
some frequently used words.

2.2 Speech Data Recording

In-car speech data were collected in a vehicle specially
equipped with seven microphones mounted as shown in
Fig. 2. Microphones 1 (driver) and 2 (navigator) were
close-talking headset microphones, microphones 3 and 4
were attached to the dashboard, and microphones 5, 6, and
7 were fixed to the ceiling of the vehicle. The speech
data recorded with the driver’s close-talking (CT) micro-
phone (no.1: SONY ECM77B mounted on SENNHEISER
HMD410) and the hands-free (HF) microphone attached to
the ceiling of the driver’s seat (no.6: SONY ECM77B) are
used for CENSREC-3 [17].

Microphone 6 is the closest hands-free microphone to
the driver (speaker). Thus, it can capture the speech signal
with higher quality, e.g., higher SNR and lower distortion or
reverberation, than other hands-free microphones. Based on
this information, it is reasonable to use the closet hands-free
microphone for in-car speech recognition. In addition, the
microphone attached to the ceiling is also used as the hands-
free microphone for AURORA3. From the above advantage
and with respect to AURORA3, we chose microphone 6 as
the hands-free microphone to be used in this work.

The recording conditions for the evaluation data are
shown in Table 2. Speech data were recorded under 16
environmental conditions using combinations of three dif-
ferent vehicle speeds (idling, low-speed driving on a city
street, and high-speed driving on an expressway) and six in-
car environments (normal, with hazard lights on, with the
air-conditioner on (fan low/high), with the audio CD player

Fig. 2 Microphone positions for data collection: Side view (top) and top
view (bottom).

Table 2 Recording environments for test data.

Car speed In-car conditions
Idling Normal, Hazard lights on, Fan (low),
(quiet) Fan (high), Audio on, Windows open
Low Normal, Fan (low), Fan (high),
speed Audio on, Windows open
High Normal, Fan (low), Fan (high),
speed Audio on, Windows open

on, and with windows open). In these conditions, the “Haz-
ard lights on” condition is used only when idling. Thus,
we recorded the speech data under the six car conditions
for idling and five car conditions for low- and high-speed
driving (6 + 5 × 2 = 16 conditions). A total of 14,216 utter-
ances spoken by 18 speakers (8 males and 10 females) were
recorded by each microphone.

For training, drivers’ speech of phonetically-balanced
sentences was recorded under two conditions: while idling
and while driving on a city street with a normal in-car en-
vironment [17]. A total of 14,050 utterances spoken by 293
drivers (202 males and 91 females) were recorded by each
microphone. The number of sentences per driver was 50
(idling) or 25 (driving). The drivers uttered the sentences by
reading the written texts while idling. In the case of record-
ing while driving, the sentences were divided into some
short segments to be easily memorized by the drivers. The
drivers uttered each segment of the sentences after listening
to the recorded instruction speech played via headphones.
Speech data of the segments were saved in separate files. In
the CENSREC-3 database, since an “utterance” is defined as
the speech data saved in one file, the number of utterances
while driving is larger than in the case of idling even though
the actual amount of recorded data (the length of recorded
data) is less than in the case of idling.

Collecting speech comprising phonetically-balanced
sentences takes longer time that of just words. In collecting
the phonetically-balanced speech while driving, the driver’s
concentration may deteriorate, so for safety reasons we de-
creased the amount of data collection per driver while driv-
ing. In addition, in the case of high-speed driving, the driver
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Table 3 Average SNR in each environment (dB).

Data Training data Test data
Condition Normal Normal Fan (low) Fan (high) Audio on Windows open Hazard lights on
Microphone CT HF CT HF CT HF CT HF CT HF CT HF CT HF
Idling 40.52 18.20 41.19 16.75 32.86 11.01 25.76 5.47 31.46 11.57 29.92 8.63 33.50 12.48
Low speed 36.21 11.25 38.39 10.96 32.11 8.67 22.64 2.75 30.16 10.20 23.35 3.92 — —
High speed — — 30.11 5.89 28.58 3.59 21.65 1.46 24.46 5.08 21.28 0.91 — —

needs to concentrate more than when driving slowly, so we
did not collect speech comprising sentences while driving at
high speed. The speech signals for training and evaluation
were both sampled at 16 kHz, quantized into 16-bit integers,
and saved in the little-endian format.

Table 3 shows the average SNR (Signal to Noise Ratio)
in each recording condition. In the table, we can see that the
average SNR of speech data recorded by the close-talking
microphone is high. The SNR is higher than 20 dB even
when the recording condition is high-speed driving with the
windows open, which is the worst recording condition with
the lowest SNR. On the other hand, the average SNR of
speech data recorded by the hands-free microphone is low.
The SNR is less than 20 dB in all the recording conditions.
In addition to the hands-free case, the worst recording condi-
tion is high-speed driving with the windows open, for which
the SNR is approximately 0 dB.

2.3 Analysis of Observed Noise

From Table 3, we can see that the influence of noise was
negligible for the speech data recorded by the close-talking
microphone because SNRs of the data are considerably
high. On the other hand, the speech data recorded by the
hands-free microphone were seriously degraded by adverse
noises. The adverse noises are classified into two types:
driving (engine) noise and several ambient noises. In the
speech data recorded by the hands-free microphone, we an-
alyzed the adverse noise characteristics in each in-car con-
dition as follows:

Normal: The driving noise has a typical car noise char-
acteristic, namely the high energy distribution around
the low-frequency components as shown in Fig. 3 (a).
From the figure, we can see that the low-frequency en-
ergy increases in connection with car speed. The char-
acteristic of driving noise with time is almost station-
ary; thus, the “Normal” condition at each driving speed
can be regarded as a stationary noise environment.

Hazard lights on: Impulsive noise caused by the blinking
of hazard lights is overlapped on the data (speech and
engine noise) approximately every 350 msec. The du-
ration of impulsive noise is less than 20 msec.

Fan low / high: Two levels of blowing noises by the air-
conditioner overlap the data. Since in the “Fan high”
condition the air-conditioner blows more strongly than
in the “Fan low” condition, the SNR of the “Fan high”
condition is lower than that of “Fan low” as shown
in Table 3. The blowing noises have high energy not
only in the low-frequency component but also in the

high-frequency component as shown in Fig. 3 (c) and
(d), from which it is clear that the spectra have similar
shapes at each driving speed. Especially, the shapes
for the “Fan high” condition are almost the same,
meaning that the speech data recorded in the blow-
ing air-conditioner conditions are strongly affected by
the blowing noise. In addition, the characteristics of
the blowing noise with respect to time are almost sta-
tionary. Consequently, these conditions at each driv-
ing speed can be regarded as stationary noise environ-
ments.

Audio on: Music played by the CD player overlaps the
data. Samples of average log-power spectra are shown
in Fig. 3 (e). From that figure, the spectra have dif-
ferent shapes at each driving speed. Here, frequency
structures of the overlapping song usually have time-
varying characteristics. In addition, these time-varying
characteristics depend on the song, meaning that fre-
quency structures dynamically change according to the
overlapping song and the time slices.

Windows open: Noise of cutting through the wind is ob-
served. This noise has high energy not only in the low-
frequency components but also in the high-frequency
ones, just as for the blowing noises. From Fig. 3 (f), we
can see that the energy of the noise is strongly affected
by car speed. The noise of cutting through the wind has
almost stationary characteristics with respect to time.

In each environment, the noises produced by oncoming ve-
hicles sometimes overlap on the data. In this case, the noise
exhibits non-stationary characteristics.

3. Design of the Evaluational Framework

CENSREC-3 provides six evaluation environments for
speech recognition using the speech data collected in the
various recording conditions described in the previous sec-
tion†. The six evaluation environments, called “condition
1 . . . 6,” are defined based on the levels of acoustical mis-
matches between training data and testing data (the differ-
ences of driving speeds or/and microphones). Each eval-
uation environment consists of the acoustical conditions
marked by a circle (©) in Tables 4 and 5. In those tables,
the speech data are simply divided according to car speed

†Note that a license fee is required ONLY FOR part of the
training data, which were collected by using a HANDS-FREE MI-
CROPHONE. You should pay the license fee if you wish to use a
part of the charged data collected by using distant-talking micro-
phones, although the CENSREC-3 DVD disk includes both free
and charged speech data.
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Fig. 3 Examples of average log-power spectra of adverse noises recorded in each environment with
the hands-free microphone. The non-speech sections within the 50 word utterances spoken by one
speaker were used for estimation of these examples. The amount of the non-speech data was approx-
imately one minute (6,000 frames). The non-speech sections were detected by using the time labels
which were given by forced alignment.

and microphone used. Speech data marked by a circle in-
clude, therefore, data on all in-car conditions (six types for
idling and five types for low- or high-speed driving) spoken
by all speakers (293 speakers for training and 18 speakers
for testing).

For each of conditions 1, 2, and 3, data collected by
using the same microphones in the same recording environ-

ment were prepared both for training and testing. These con-
ditions correspond to the “Well-matched condition” of the
AURORA3 framework [4]–[7]. Condition 4 corresponds to
the “Moderately-mismatched condition” of the AURORA3
framework, of which training and test data were recorded
under different conditions; that is, training and test data were
collected while idling and driving, by using the same micro-
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Table 4 Training data for each recording condition.

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
Microphone CT HF CT HF CT HF CT HF CT HF CT HF
Idling (quiet) © © © — — © — © © — © —
Low speed © © © — — © — — © — — —

Table 5 Test data for each evaluation condition.

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
Microphone CT HF CT HF CT HF CT HF CT HF CT HF
Idling © © © — — © — — — — — —
Low speed © © © — — © — © — © — ©
High speed © © © — — © — © — © — ©

Table 6 The number of utterances for training of each evaluation condition.

Car speed Mic. Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
CT 3,608 3,608 — — 3,608 3,608

Idling (quiet) HF 3,608 — 3,608 3,608 — —
Total 7,216 3,608 3,608 3,608 3,608 3,608
CT 10,442 10,442 — — 10,442 —

Low speed HF 10,442 — 10,442 — — —
Total 20,884 10,442 10,442 — 10,442 —

Total 28,100 14,050 14,050 3,608 14,050 3,608

phones. Both conditions 5 and 6 correspond to the “High-
mismatched condition” of the AURORA3 framework, of
which data collected by using different microphones under
different recording conditions are used for training and test-
ing. Tables 6 and 7 show the number of utterances for train-
ing and testing in each condition.

4. Baseline Performance

4.1 Baseline Scripts for Evaluation

The baseline scripts were designed to facilitate HMM train-
ing and evaluation by HTK [12]. The evaluation framework
was designed as follows:

• All scripts are written in Perl, and work with Perl ver-
sion 5 and later.
• The CENSREC-3 database provides parallel process-

ing by multiple computers to reduce the processing
time. Parallel processing is easily available by simply
adding the remote host names to the configuration file
of the baseline scripts.

Feature extraction

• The tool HCopy is used for feature extraction.
• The feature vector consisted of 12 MFCCs and log-

energy with their corresponding delta and acceleration
coefficients. Analysis conditions were pre-emphasis
1 − 0.97z−1, hamming window, 20-msec frame length,
and 10-msec frame shift. Regarding the baseline per-
formance, cepstral mean subtraction was not applied to
the feature vectors.
• In the Mel-filter bank analysis, a cut-off was applied to

frequency components lower than 250 Hz.

Acoustic model training

• The acoustic models used for speech recognition con-
sist of triphone HMMs with five states. In HMMs
trained by HTK, the initial (first) and the final (fifth)
states have no distributions. Substantially, the states
that do have distributions are restricted to the three cen-
ter states (second to fourth states). Each distribution is
represented with 32 mixture Gaussians, and there are
2,000 states that have the distributions. The topology
and the number of HMM parameters are decided with
respect to the standard triphone HMMs for in-car en-
vironments included in the CSRC (Continuous Speech
Recognition Consortium) products [18].
• In CENSREC-3, flat-start training [19], a well known

acoustic model training method, is used for estimating
the HMMs’ parameters. At first, the global model, i.e.,
the model with the global speech mean vector and diag-
onal variance matrix, is estimated using tool HCompV.
Next, the initial monophone HMMs, which have pa-
rameters equal to the global ones, are constructed. The
parameters of HMMs are re-estimated by iterative em-
bedded training with the Baum-Welch estimator, tool
HERest. The HMMs are first trained as the monophone
HMMs with a single Gaussian distribution using the
monophone labels. After the monophone HMM train-
ing (ten iterations of embedded training), the HMMs
are converted to tied-state triphone HMMs by using
tool HHEd and a decision tree. The iterative embedded
training is also applied to the triphone HMMs by using
the triphone labels. At every tenth iteration of triphone
HMM training, the number of mixture Gaussians is in-
creased by the power of two with tool HHEd.

Speech recognition

• Speech recognition is carried out with a Viterbi de-
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Table 7 The number of utterances for testing of each evaluation condition.

Car speed Mic. In-car condition Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
Normal 898 898 — — — —
Hazard lights on 900 900 — — — —
Fan (low) 887 887 — — — —

CT Fan (high) 900 900 — — — —
Audio on 896 896 — — — —
Windows open 899 899 — — — —
Total 5,380 5,380 — — — —

Idling Normal 898 — 898 — — —
Hazard lights on 900 — 900 — — —
Fan (low) 887 — 887 — — —

HF Fan (high) 900 — 900 — — —
Audio on 896 — 896 — — —
Windows open 899 — 899 — — —
Total 5,380 — 5,380 — — —

Total 10,760 5,380 5,380 — — —
Normal 848 848 — — — —
Fan (low) 850 850 — — — —
Fan (high) 895 895 — — — —CT
Audio on 849 849 — — — —
Windows open 897 897 — — — —
Total 4,339 4,339 — — — —

Low speed Normal 848 — 848 848 848 848
Fan (low) 850 — 850 850 850 850
Fan (high) 895 — 895 895 895 895HF
Audio on 849 — 849 849 849 849
Windows open 897 — 897 897 897 897
Total 4,339 — 4,339 4,339 4,339 4,339

Total 8,678 4,339 4,339 4,339 4,339 4,339
Normal 900 900 — — — —
Fan (low) 900 900 — — — —
Fan (high) 900 900 — — — —CT
Audio on 899 899 — — — —
Windows open 898 898 — — — —
Total 4,497 4,497 — — — —

High speed Normal 900 — 900 900 900 900
Fan (low) 900 — 900 900 900 900
Fan (high) 900 — 900 900 900 900HF
Audio on 899 — 899 899 899 899
Windows open 898 — 898 898 898 898
Total 4,497 — 4,497 4,497 4,497 4,497

Total 8,994 4,497 4,497 4,497 4,497 4,497
Total 28,432 14,216 14,216 8,836 8,836 8,836

coder, tool HVite. As the decoding parameter, the
pruning beam parameter is set to 0.0, which means that
the beam search is disabled, i.e., a full search is used
for decoding. The grammar scale factor is set to 0.0;
i.e., the decoding is done using only acoustic scores.
• In the recognition, a standard pronunciation dictionary

and recognition grammar are defined as described by
the EBNF syntax notation [19] shown in Fig. 4.
• In the case of a word with connected vowels that can

be pronounced by a long vowel, pronunciation rules
for both the connected vowels and the long vowel are
registered in the pronunciation dictionary. For exam-
ple, in the case of the Japanese word “Ninshou,” two
pronunciation rules, “n i N sh o u” and “n i N sh o:,”
are registered.

In the above descriptions, tools H* are HTK program com-
mands.

4.2 Baseline Recognition Results and Performance Com-
parison

Table 8 shows the details of baseline recognition results for
each car environment for evaluation conditions 1 to 6† . In
the table, we can see that results of matched conditions, i.e.,
conditions 1 to 3, are quite good. However, the word ac-
curacy of condition 3 is lower than those of conditions 1
and 2. This is caused by low SNR of speech data recorded

†There may be cases where the parameters of acoustic models
change slightly according to the number of computers and the op-
erating system used for experiments. This often affects the recog-
nition results (its fluctuation is approximately ±1%). The experi-
ments for obtaining the baseline results were performed by using
four computers with Red Hat Linux release 7.2. This phenomenon
is repeatable. Hence, when you carry out the baseline evaluation
with four computers, it is possible to obtain the same results as
shown in Table 8.
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Table 8 Details of CENSREC-3 baseline evaluation results (%).

Car speed Mic. In-car condition Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
Normal 99.89 100.00 — — — —
Hazard lights on 99.33 99.89 — — — —
Fan (low) 99.55 100.00 — — — —

CT Fan (high) 97.78 99.44 — — — —
Audio on 98.77 99.67 — — — —
Windows open 99.11 99.33 — — — —
Overall 99.07 99.72 — — — —

Idling Normal 99.44 — 99.78 — — —
Hazard lights on 98.78 — 98.89 — — —
Fan (low) 90.19 — 94.02 — — —

HF Fan (high) 53.56 — 53.44 — — —
Audio on 81.47 — 81.36 — — —
Windows open 89.66 — 89.88 — — —
Overall 85.50 — 86.21 — — —

Overall 92.29 99.72 86.21 — — —
Normal 100.00 100.00 — — — —
Fan (low) 100.00 100.00 — — — —
Fan (high) 97.99 98.77 — — — —CT
Audio on 98.82 99.41 — — — —
Windows open 99.11 98.55 — — — —
Overall 99.17 99.33 — — — —

Low speed Normal 98.00 — 99.17 88.21 56.60 45.99
Fan (low) 90.82 — 94.12 77.41 54.35 35.18
Fan (high) 62.57 — 60.11 41.79 43.46 28.83HF
Audio on 79.27 — 78.56 65.02 47.47 37.57
Windows open 64.66 — 65.33 45.60 23.97 15.27
Overall 78.73 — 79.10 63.17 44.92 32.33

Overall 88.95 99.33 79.10 63.17 44.92 32.33
Normal 99.89 99.89 — — — —
Fan (low) 99.67 99.89 — — — —
Fan (high) 97.67 99.22 — — — —CT
Audio on 99.78 99.78 — — — —
Windows open 96.66 95.21 — — — —
Overall 98.53 98.80 — — — —

High speed Normal 92.33 — 95.56 64.78 29.67 21.78
Fan (low) 85.11 — 89.44 48.22 30.67 19.89
Fan (high) 59.67 — 55.22 37.33 40.78 22.44HF
Audio on 78.31 — 79.20 49.72 30.03 23.92
Windows open 24.83 — 21.83 15.37 7.80 6.46
Overall 68.07 — 68.27 43.10 27.80 18.90

Overall 83.30 98.80 68.27 43.10 27.80 18.90
Overall 88.43 99.31 78.36 52.95 36.20 25.50

Fig. 4 Grammar written in EBNF.

by the hands-free microphone. On the other hand, the re-
sults of mismatched conditions, i.e., conditions 4 to 6, de-
teriorate according to the mismatching level. Especially,
the results of conditions 5 and 6, which have driving-speed
and microphone mismatches, are much worse than those of
the matched conditions. The most crucial in-car environ-
ment is “Windows open” one; in particular, the results of
the “Windows open” environment together with high-speed
driving are extremely low. In the hands-free condition, the
air-conditioner environments, i.e., “Fan low” or “Fan high,”

also seriously degrade word accuracy. Therefore, perfor-
mance improvement in these crucial environments is an im-
portant factor for in-car speech recognition, especially for
the hands-free-based approach.

We have also distributed a Microsoft Excel spreadsheet
to simplify the recognition performance comparison. All of
the baseline results and the averaged recognition result are
shown at the top of Table 9. The data entry for results (word
accuracy) should be made in the middle part of Table 9, after
which the relative improvement against the baseline result is
automatically given in the bottom part. In Table 9, the rela-
tive improvement is calculated with the following equation:

Relative improvement

=
%Acc −%Acc of baseline
100 −%Acc of baseline

× 100(%), (1)

where %Acc denotes the word accuracy.
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Table 9 CENSREC-3 spreadsheet and the evaluation results by ETSI ES 202 050 front-end.

4.3 Evaluation Results by ETSI ES 202 050 Front-End

Table 9 also shows the evaluation results of ETSI ES 202
050 front-end.

ETSI ES 202 050 was developed as the standard front-
end for distributed speech recognition that includes noise
reduction, parameter compression, and so on [16]. Noise
reduction of the front-end is based on Wiener filter theory
and is performed in two stages as shown in Fig. 5.

The linear spectrum of each frame is estimated in the
first stage, then frequency domain Wiener filter coefficients
are computed by using the current frame spectrum and the
spectra of the noise frames detected with VAD (Voice Activ-
ity Detection). In the PSD (Power Spectral Density) Mean
block, the spectrum is smoothed along the frame index. Fi-
nally, the input signal is de-noised by filtering the time do-
main Mel-warped Wiener filter, which is converted from the
Wiener filter for the linear frequency domain. In the second
stage, additional and dynamic noise reduction is performed
according to the signal-to-noise ratio of the output signal in
the first stage. After this, the DC offset of the de-noised
signal is removed.

The detailed results of ETSI ES 202 050 front-end are
given in Table 10. This table shows that the results by ETSI
ES 202 050 front-end are considerably higher than those
for the baseline performance. Especially, the word accu-
racies of the crucial conditions, i.e., “Fan low,” “Fan high,”
and “Windows open,” are significantly improved. However,
the word accuracies of the crucial environments recorded by
the hands-free microphone with during high-speed driving,
are not sufficient for practical use in in-car speech recogni-
tion. Thus, a continuous investigation of noise robust speech
recognition is necessary for real-world applications.

5. Evaluation Categories

Evaluation categories are designed for CENSREC-3 that
show how much the user’s method modified the baseline
back-end scripts from the viewpoint of changes in the train-
ing method of HMMs, model topology, feature parameters,
and so on. Users are requested to declare the category to
which they belong from the following categories, according

Fig. 5 Block diagram of noise reduction implemented in ETSI ES 202
050 front-end.

to the degree of modification to the back-end scripts from
the original baseline. No changes to the back-end scripts,
i.e., changes to only front-end processing, can be included
in category 0. Recognition results can be fairly compared
with other methods only within the same category. In addi-
tion, the following categories are borrowed from AURORA-
2J with some changes.

Category 0. No changes to the back-end scripts.
Category 1. If the HMM topology is the same as the base-

line scripts, any training process will be allowed. Dis-
criminative training can be introduced in this category.
The computational cost in the recognition phase should
be the same as it was. Other experimental conditions
are the same as in the back-end scripts.

Category 2. If the HMM topology is the same, adaptation
processes can be introduced using some testing data.
Speaker or environment adaptation, and PMC (Parallel
Model Combination [20]) with one state noise model
can be allowed in this category. An increase in the
computational cost will be caused only by the adap-
tation process. Other experimental conditions are the
same as in the back-end scripts.

Category 3. Changes in the standard HMM topology. A
different number of mixtures and states can be allowed.
However, the recognition unit should be the same as
in the original back-end scripts (“triphone HMMs” in
CENSREC-3). PMC with more than one state noise
model can be included in this category. Other exper-
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Table 10 Details of CENSREC-3 evaluation results by ETSI ES 202 050 front-end (%).

Car speed Mic. In-car condition Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
Normal 99.89 99.89 — — — —
Hazard lights on 99.44 99.67 — — — —
Fan (low) 99.89 99.89 — — — —

CT Fan (high) 99.44 99.78 — — — —
Audio on 99.44 99.67 — — — —
Windows open 99.89 99.78 — — — —
Overall 99.67 99.78 — — — —

Idling Normal 99.78 — 100.00 — — —
Hazard lights on 98.11 — 98.22 — — —
Fan (low) 98.53 — 98.65 — — —

HF Fan (high) 84.33 — 85.11 — — —
Audio on 89.62 — 90.07 — — —
Windows open 96.77 — 97.22 — — —
Overall 94.52 — 94.87 — — —

Overall 97.09 99.78 94.87 — — —
Normal 99.88 99.76 — — — —
Fan (low) 100.00 99.88 — — — —
Fan (high) 99.22 99.33 — — — —CT
Audio on 99.18 99.53 — — — —
Windows open 99.55 99.11 — — — —
Overall 99.56 99.52 — — — —

Low speed Normal 98.82 — 99.17 97.52 96.11 91.51
Fan (low) 97.76 — 97.53 96.71 94.94 89.41
Fan (high) 87.37 — 89.05 84.92 80.34 66.82HF
Audio on 91.05 — 91.05 84.81 87.28 75.85
Windows open 86.85 — 86.85 83.50 78.82 68.23
Overall 92.26 — 92.63 89.38 87.32 78.13

Overall 95.91 99.52 92.63 89.38 87.32 78.13
Normal 100.00 99.78 — — — —
Fan (low) 100.00 99.89 — — — —
Fan (high) 99.33 99.33 — — — —CT
Audio on 98.89 99.44 — — — —
Windows open 99.22 99.22 — — — —
Overall 99.49 99.53 — — — —

High speed Normal 97.00 — 98.67 95.78 91.89 84.67
Fan (low) 95.33 — 96.22 93.89 89.33 83.11
Fan (high) 85.22 — 86.00 83.00 78.89 64.00HF
Audio on 92.10 — 92.55 87.43 86.54 75.42
Windows open 64.14 — 65.48 59.80 54.34 41.31
Overall 86.77 — 87.79 83.99 80.21 69.71

Overall 93.13 99.53 87.79 83.99 80.21 69.71
Overall 95.48 99.62 91.95 86.63 83.70 73.85

imental conditions are the same as in the back-end
scripts.

Category 4. Any process will be allowed as long as the de-
coder is the same as in the original back-end scripts
(HVite in CENSREC-3). Changes to a model unit,
syntax and lexicon for the decoder can be included in
this category.

Category 5. Any process with any computational cost will
be allowed.

Category B. The use of any training data not included in
CENSREC-3 — not only speech data, but also environ-
ment noise data. Of course, CENSREC-3 constitutes
the evaluation data. This category essentially differs
from categories 1 to 5.

6. Conclusions

In this paper, we introduced CENSREC-3, an evaluation

framework for Japanese in-car speech recognition, and pre-
sented the evaluation results by ETSI ES 202 050 front-end.
We also indicated the crucial conditions for practical use of
the in-car speech recognition.

In the near future, we will gradually design and dis-
tribute the evaluation frameworks of noisy speech recog-
nition for increasingly difficult conditions; i.e., non-
stationary noise environments, reverberant environments,
large-vocabulary continuous-speech recognition tasks, and
so on. We also plan to develop and distribute a noise
database for noisy speech recognition, alternative evaluation
measures to word accuracy. and a tool kit of conventionally
used noise compensation methods. The latest information
about CENSREC will be provided on the following Web-
site.

CENSREC Website:
http://sp.shinshu-u.ac.jp/CENSREC/
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