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Single-Channel Multiple Regression for In-Car Speech
Enhancement

Weifeng LI†a), Katsunobu ITOU††, Nonmembers, Kazuya TAKEDA††, Member,
and Fumitada ITAKURA†††, Fellow

SUMMARY We address issues for improving hands-free speech en-
hancement and speech recognition performance in different car environ-
ments using a single distant microphone. This paper describes a new single-
channel in-car speech enhancement method that estimates the log spectra
of speech at a close-talking microphone based on the nonlinear regression
of the log spectra of noisy signal captured by a distant microphone and the
estimated noise. The proposed method provides significant overall qual-
ity improvements in our subjective evaluation on the regression-enhanced
speech, and performed best in most objective measures. Based on our iso-
lated word recognition experiments conducted under 15 real car environ-
ments, the proposed adaptive nonlinear regression approach shows an ad-
vantage in average relative word error rate (WER) reductions of 50.8% and
13.1%, respectively, compared to original noisy speech and ETSI advanced
front-end (ETSI ES 202 050).
key words: speech enhancement, speech recognition, multi-layer percep-
tron, mean opinion score, pairwise preference test, environmental adapta-
tion, K-means clustering

1. Introduction

Speech quality and intelligibility often significantly deteri-
orate in the presence of background noise, which degrades
performance in the subsequent processing, such as speech
coding or automatic speech recognition. Consequently,
modern communications systems employ some speech en-
hancement procedures at the preprocessing stage prior to
further processing (e.g., speech recognition). Speech en-
hancement algorithms have therefore been attractive re-
search in the past two decades. Especially, in view of
the steady increase for hands-free communication systems
in car-driving environments, there is renewed interest in
speech enhancement algorithms using a distant microphone.

Among a variety of speech enhancement methods,
spectral subtraction (SS) [1], [2] and short-time spectral
attenuation (STSA) based methods [3], [4] are commonly
used. Most SS based methods make assumptions about
the independence of speech and noise spectra, allowing
for simple linear subtraction of the estimated noise spec-
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tra. Although scaling factors for emphasis or de-emphasis
of the estimated noise have been proposed to reduce “mu-
sical tone” artifacts, the specifications of the scaling factors
are usually done experimentally. STSA based methods can
lead to a nonlinear spectral estimator by introducing a pri-
ori SNR; however, they require assumptions about ad hoc
statistical distributions for speech and noise spectra [5], [6].
Usually both SS and STSA based methods can only handle
additive noise.

In previous work, we proposed a new and effective
multi-microphone speech enhancement approach based on
multiple regression of log spectra [7] that used multiple spa-
tially distributed microphones. Their idea is to approximate
the log spectra of a close-talking microphone by effectively
combining of the log spectra of distant microphones. The
approach made no assumption about the positions of the
speaker and noise sources with respect to the microphones,
and worked in very small computation amounts. It has been
shown to be very effective based on our previous in-car
speech recognition experiments [8].

In this paper, we extend the idea to single-microphone
cases and propose that the log spectra of clean speech are ap-
proximated through the nonlinear regression of the log spec-
tra of the observed noisy speech and the estimated noise.
The proposed approach, which can be viewed as generalized
log spectral subtraction, has the following properties: 1) It
does not need any assumption concerning independence and
statistical distribution of speech and noise spectra; 2) It can
deal with a wide range of distortions, rather than only addi-
tive noise; 3) Regression weights are obtained through sta-
tistical optimization. Once the optimal regression weights
are obtained in the learning phase, they are utilized to gen-
erate the estimated log spectra in the test phase, where clean
speech is no longer required.

The main aim of this paper is to describe the proposed
method and evaluate its performance on speech enhance-
ment and recognition. Moreover, a two-stage noise spec-
tra estimator is developed for additional improvement of the
speech recognition performance. To develop a data-driven
in-car recognition system, we also devise an effective al-
gorithm for automatically adapting regression weights for
different noise environments. The organization of this pa-
per is as follows: In Sect. 2, we describe the in-car speech
corpus used in this paper. In Sect. 3, we present the pro-
posed regression-based speech enhancement algorithm. In
Sect. 4, we present subjective and objective evaluation ex-
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periments on regression-enhanced speech. We describe our
speech recognition experiments using the proposed method
in Sect. 5 and present the improvements in Sect. 6. Finally,
conclusions are drawn in Sect. 7.

2. In-Car Speech Data and Speech Analysis

The speech data used are from CIAIR in-car speech cor-
pus [9]. Speech captured by a microphone at the visor posi-
tion is used in the following experiments. Speech collected
at a close-talking microphone (with a headset) is used for
reference speech. Test data includes Japanese 50 word sets
under 15 driving conditions (three driving environments ×
five in-car states = 15 driving conditions, as listed in Ta-
ble 1). For each driving condition, 50 words were uttered by
each of 18 speakers. The training data for acoustical mod-
eling comprised a total of 7,000 phonetically balanced sen-
tences, uttered by 202 male speakers and 91 female speak-
ers. 3,600 sentences were collected in the idling-normal
condition and 3,400 were collected while driving a data col-
lection vehicle (DCV) on the streets near Nagoya University
(city-normal condition).

Speech signals were digitized into 16 bits at a sampling
frequency of 16 kHz. For spectral analysis, a 24-channel
MFB analysis was performed on 25-millisecond windowed
speech with a frame shift of 10 milliseconds. Spectral com-
ponents lower than 250 Hz were filtered out to compensate
for the spectrum of engine noise, which was concentrated
in the lower frequency region. Log MFB parameters were
then estimated. The estimated log MFB vectors were trans-
formed into 12 mean normalized mel-frequency cepstral co-
efficients (CMN-MFCC) using Discrete Cosine Transfor-
mation (DCT) and mean normalization, after which time
derivatives (∆ CMN-MFCC) were calculated. These anal-
yses were realized by using HTK toolkits.

3. Regression-Based Speech Enhancement

Let s(i), n(i), and x(i) respectively denote the reference clean
speech (referred to as speech at a close-talking microphone
in this paper), noise, and observed noisy signals. By apply-
ing a window function and analysis using short-time discrete
Fourier transform (DFT), in the time-frequency domain we
have S (k, l), N(k, l), and X(k, l), where k and l denote fre-
quency bin and frame indexes, respectively. After the log
operation of the amplitude, we obtain S (L)(k, l), X(L)(k, l),
and N(L)(k, l):

Table 1 15 driving conditions (3 driving environments × 5 in-car states).

idling
driving environment city driving

expressway driving
normal
CD player on

in-car state air-conditioner (AC) on at low level
air-conditioner (AC) on at high level
window (near driver) open

S (L)(k, l) = log |S (k, l)|,
X(L)(k, l) = log |X(k, l)|,
N(L)(k, l) = log |N(k, l)|.
The idea of regression-based speech enhancement is to

approximate S (L)(k, l) by combining X(L)(k, l) and N(L)(k, l),
as shown in Fig. 1. Let Ŝ (L)(k, l) denote the estimated ver-
sion obtained from the inputs of X(L)(k, l) and N(L)(k, l). We
can obtain Ŝ (L)(k, l) by employing a multi-layer perceptron
(MLP) regression method, where a network with one hid-
den layer composed of eight neurons is used. (The number
of neurons are determined experimentally.)

Ŝ (L)(k, l) = bk +

8∑
p=1

(
wk,p tanh( f (X(L)(k, l),N(L)(k, l))

)
,

where tanh(·) is the tangent hyperbolic activation function
and

f (X(L)(k, l),N(L)(k, l))

= bk,p + wx
k,pX(L)(k, l) + wn

k,pN(L)(k, l).

Here p is the index of the hidden neurons. The parameters
(regression weights) Θ = {bk,wk,p,wx

k,p,w
n
k,p, bk,p} are found

by minimizing the mean squared error (MSE):

E(k) =
J∑

l=1

[S (L)(k, l) − Ŝ (L)(k, l)]2, (1)

through the back-propagation algorithm [10]. Here, J de-
notes the number of training examples (frames). Once
Ŝ (L)(k, l) is obtained for each frequency bin, enhanced
speech can be generated by taking the exponential operation
and performing short-time inverse discrete Fourier trans-
form (IDFT) with the combination of the phase of the ob-
served noisy speech.

The proposed approach is cast into single-channel
methodology because once the optimal regression parame-
ters are obtained by regression learning, they can be utilized
to generate Ŝ (L)(k, l) in the test phase, where the speech of
the close-talking microphone is no longer required. Multi-
ple regression means that regression is performed for each
frequency bin. The use of minimum mean squared error
in the log spectral domain is motivated by the fact that log
spectral measure is more related to the subjective quality of

Fig. 1 Concept of regression-based speech enhancement.
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speech [11] and that some better results have been reported
with log distortion measures [12]† [13]. Although both the
proposed regression-based method and log-spectra ampli-
tude (LSA) estimator [6] employ minimum mean squared
errors (MMSE) cost function in the log domain, the former
makes no assumptions regarding the distributions of speech
and noise spectra. The proposed method differs from [13] in
that it does not need to estimate the mean and variance of the
log spectra of clean speech, which is nontrivial because only
noisy speech is available. Moreover, the proposed method
employs more general regression models and is frame-based
(without delay).

4. Speech Enhancement Performance

4.1 Experimental Data

The test speech was based on 50 isolated word sets under
seven real driving conditions listed in Table 2. Figure 2
shows a block diagram of the regression-based speech en-
hancement system for a particular driving condition. For
each driving condition, the data uttered by 12 speakers were
used for learning the regression weights, and the remaining
300 words from different six speakers (three male and three
female) were used for open testing.

For comparison, a parametric formulation of the gener-
alized spectral subtraction (PF-GSS) [14] and a log-spectra
amplitude (LSA) estimator [6] were also applied. For PF-
GSS, the version with constraint, which was suggested by
the authors, was used. An a priori SNR was calculated
by the well-known “decision-directed” approach [4]. An
improved minima controlled recursive averaging (IMCRA)
method [15] was used to estimate noise for all the enhanced
methods. We selected PF-GSS and LSA because they can

Table 2 Seven driving conditions for speech enhancement evaluation.

driving environment in-car state

city driving normal
city driving CD player on
city driving air-conditioner on at high level
city driving window open
idling normal
expressway driving normal
expressway driving window open

Fig. 2 Diagram of regression-based speech enhancement.

provide good noise reduction and reduce the annoying “mu-
sical tone” artifacts of enhancement schemes based on con-
ventional spectral subtraction while maintaining relatively
low computational complexity. Four types of speech (or al-
gorithms) must be evaluated:

1. original: observed noisy speech with no processing;
2. PF-GSS: speech enhanced using the PF-GSS method;
3. LSA: speech enhanced using the LSA method;
4. regression: speech enhanced using the proposed re-

gression method.

4.2 Subjective Evaluations

For each driving condition, five speech samples were ran-
domly selected from the 300 test signals. The characteris-
tics of enhanced speech signals differ according to driving
conditions and algorithms. Therefore, the total number of
speech samples was five samples × seven driving conditions
× four algorithms = 140.

Twelve test listeners or subjects (eight male and four
female students aging from 19 to 28 years) participated in
the evaluations of the original and enhanced speech. They
had no prior experience in psycho-acoustic measurements
and no history of hearing problems. They were seated in
a soundproof booth. Signal presentation was controlled by
computer. Signals were fed to listeners via a Sony-dynamic
stereo headphone (MDR-CD900ST). Presentation level was
individually adjusted so that perception was “loud but still
comfortable” to guarantee that most signal parts were audi-
ble to the listener.

One reliable and easily implemented subjective mea-
sure is Mean Opinion Score (MOS). In this method, human
listeners rate test speech on a five-grade scale. Since MOS
introduces listener judgement bias, Hansen and Pellom sug-
gested incorporating a subjective Pairwise Preference Test
(PPT) [16]. In PPT, a series of pairwise randomized pro-
cessed signals are presented, and listeners simply select the
one they prefer. An advantage of PPT over MOS is its ease
for subjects and the elimination of judgement bias [17].

We performed both MOS and PPT on overall quality.
For MOS, listeners rated the speech signals on a five-grade
test based on Absolute Category Rating (ACR), as shown in
Table 3. The four kinds of speech signals, which were ran-
domly arranged, were presented as one measurement block.
To adjust the rating differences, listeners evaluated speech
signals corrupted by different noise levels and processing ar-
tifacts at the beginning of the subjective quality assessment.
For PPT, the four algorithms described in the last subsection
were compared. The six comparisons were presented as one
block and randomly arranged in each of these blocks. Lis-
teners were asked to state a preference for one of the two
presented algorithms.

†In [12], Porter and Boll found that for speech recognition,
minimizing the mean squared errors in the log |DFT | is superior to
using all other DFT functions and to spectral magnitude subtrac-
tion.
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Table 3 Attributes of five-point scale.

grade value quality description

5 excellent
4 good
3 fair
2 poor
1 bad

Fig. 3 Subjective MOS (averaged over seven driving conditions).

Figure 3 shows the subjective MOS results for the four
algorithms averaged over the seven driving conditions. It
is found that the subjective MOS of PF-GSS and LSA are
lower than the original observed noisy speech. This indi-
cates that although a significant amount of noise reduction
was obtained (which can be found in Table 5), PF-GSS and
LSA enhancement methods seem to decrease overall speech
quality rather than to increase it because of a loss or distor-
tion of speech components introduced. This is in line with
the results of most publications (e.g., [17], [18]) on single-
microphone speech enhancement schemes. Compared to
PF-GSS, LSA obtained higher MOS for the less “musical
tone” artifacts introduced, while the regression-based en-
hancement method yielded higher subjective MOS.

The PPT results are shown in Table 4. The numbers
in each row, which were calculated as vote percentages, de-
note the preference rates of one algorithm to another algo-
rithms. As same as MOS measure, the PF-GSS and LSA
methods are not preferred over the original observed speech.
Compared to PF-GSS, LSA gives higher preference scores.
The regression-based enhancement method achieves signif-
icantly higher preference rates than all other algorithms,
which clearly demonstrates the superiority of the proposed
method.

4.3 Objective Evaluations

Since subjective measures are time-consuming and costly,
objective measures, inspired by signal processing tech-
niques, provide an efficient and economical alternative.
We also performed objective evaluations of the four al-
gorithms. The objective evaluation platform proposed by
Hansen and Pellom [16] was employed, which includes the
following measures: Itakura-Saito Distortion (ISD), Log-
Likelihood Ratio (LLR), Log-Area-Ratio (LAR), Segmen-

Table 4 Preference rates between algorithms.

original PF-GSS LSA regression
original 0 75.48% 51.67% 31.43%
PF-GSS 24.52% 0 23.10% 10.24%

LSA 48.33% 76.90% 0 25.00%
regression 68.57% 89.76% 75.00% 0

Table 5 Results of objective evaluations (averaged over seven driving
conditions).

orignal PF-GSS LSA regression

ISD 1.47 0.95 1.19 0.91
LLR 0.43 0.44 0.45 0.27
LAR 4.71 4.61 4.70 3.42

SegSNR −8.02 −6.55 −5.49 −5.54
WSS 52.55 71.58 66.50 47.57

tal SNR (SegSNR), and Weighed Spectral Slope (WSS).
The WSS measure is based on an auditory model in which
36 overlapping filters of progressively larger bandwidth
are used to estimate the smoothed short-time speech spec-
trum [16], [17]. The measure calculates a weighted differ-
ence between the spectra slopes in each band.

Speech collected by a close-talking microphone (with
a headset) was referred to as reference speech. To calculate
each of these measures, signals were segmented in frames
of 25 ms with a window shift of 10 ms. Because the mean
quality measure is typically biased by a few frames in the
tails of the quality measure distortion, taking the median of
the frame-level is more meaningful [16]. Therefore, finding
the median was used in our experiments.

Table 5 summarizes the objective evaluation measures
for the four algorithms. The proposed regression-based
speech enhancement method performs best in the ISD, LLR,
LAR, and WSS measures except SegSNR, further evidence
for its superiority. PF-GSS and LSA enhancement methods
provide quality improvements over the original noisy speech
in the ISD, LAR, and SegSNR measure, but not in the LLR
and WSS measures. It is found that the rank order of the
WSS measure is consistent with subjective MOS measure,
as shown in Fig. 3.

5. Speech Recognition Experiments

In this Section and Sect. 6, we focus on improving the
performance of in-car speech recognition using regression
methods. Test data are extended to 50 word sets under all
of the 15 real car driving conditions, as listed in Table 1.
1,000-state triphone Hidden Markov Models (HMM) with
32 Gaussian mixtures per state were used for acoustical
modeling. They were trained over a total of 7,000 phonet-
ically balanced sentences collected at the visor microphone
(3,600 in the idling-normal condition, and 3,400 while driv-
ing on the streets near Nagoya university (city-normal con-
dition)). The feature vector is a 25-dimensional vector (12
CMN-MFCC + 12 ∆ CMN-MFCC +∆ log energy).

The above regression algorithms are implemented in
each frequency bin mainly because they allow re-synthesis
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of estimated speech, which is crucial for speech enhance-
ment. However, for speech recognition one may directly ob-
tain log mel-filter bank (MFB) outputs, i.e., each log MFB
output of clean speech is estimated using the nonlinear re-
gression method described in Sect. 3. A diagram of in-car
regression-based speech recognition for a particular driving
condition is given in Fig. 4. Once the estimated log MFB
output is obtained for each mel-filter bank, the estimated log
MFB vectors are transformed into mean normalized mel-
frequency cepstral coefficients (CMN-MFCC) for recogni-
tion.

For comparison, we also performed recognition exper-
iments using a linear regression method and ETSI advanced
front-end [19]. In the linear regression method, no hidden
layer (neurons) was used. The acoustical model used for
ETSI advanced front-end experiments was trained over the
training data processed with ETSI advanced front-end. The
recognition performance averaged over the 15 driving con-
ditions is given in Fig. 5. It is found that all the enhance-
ment methods outperform the original noisy speech. LSA
gives higher recognition accuracy than PF-GSS. ETSI ad-
vanced front-end very marginally outperforms LSA. Al-
though linear regression is less effective than the conven-
tional enhancement methods, nonlinear regression achieves
the best recognition performance, outperforming ETSI ad-
vanced front-end by about 1.8%. Therefore, the nonlinear
regression method is used in the following experiments.

Fig. 4 Diagram of regression-based speech recognition.

Fig. 5 Recognition performance of different speech enhancement meth-
ods (averaged over 15 driving conditions).

6. Improvements of In-Car Speech Recognition

6.1 Incorporation of Two-stage Noise Spectra Estimation

Noise spectra estimation plays an important role in speech
enhancement systems. In our studies, better estimation of
noise spectra is expected to improve the estimation of the
log spectra of clean speech and result in higher recogni-
tion accuracy. In this subsection, a maximum a posterior
(MAP) noise estimator is developed to combine the conven-
tional noise estimation algorithms, i.e., after conventional
noise estimation, an MAP noise amplitude estimator is em-
ployed, as shown in Fig. 6. This idea is motivated by con-
ventional STSA speech enhancement algorithms such as
[4], [20]. However, MAP estimation is not utilized to en-
hance the speech but rather to enhance the noise.

In the proposed estimator, we assume x(i) = s(i)+ n(i).
By using short-time discrete Fourier transform (DFT), in the
time-frequency domain we have

X(k, l) = S (k, l) + N(k, l),

where

X(k, l) = R(k, l) exp{ jϕx(k, l)},
S (k, l) = A(k, l) exp{ jϕs(k, l)},
N(k, l) = B(k, l) exp{ jϕn(k, l)},

with frequency bin index k and frame index l, both of which
we drop in this subsection for compactness.

The MAP noise amplitude estimator is given by

B̂ = arg max
B

p(R|B)p(B), (2)

where p(·) denotes a probability density function (pdf). Let
us assume complex Gaussian models for noise and speech
spectral components with variances λn = E{|N|2} and λs =

E{|S |2}, respectively, where E{·} denotes the expectation op-
erator, and the variances of their real and imaginary parts
are λn/2 and λs/2, respectively. We then have a Rician like-
lihood p(R|B) and a Rayleigh prior p(B) as

p(B) =
2B
λn

exp

(
−B2

λn

)
; (3)

p(R|B) =
2R
λs

exp

(
−B2 + R2

λs

)
I0

(
2RB
λs

)
, (4)

where I0(·) is a 0-order modified Bessel function of the first
kind. Following [21], the 0-order modified Bessel function

Fig. 6 Concept of two-stage noise estimator.
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of the first kind can be approximated as I0(z) ≈ ez/
√

2πz.
For obtaining the noise amplitude estimator, the requirement
that the gradient of log[p(R|B)p(B)] with respect to B van-
ishes yields

2

(
1
λn
+

1
λs

)
B − 2R
λs
− 1

2B
= 0. (5)

By solving the above equation, we can obtain

B̂ =

 1
2(1 + ξ)

+

√
1

4(1 + ξ)2
+

ξ

4γ(1 + ξ)

 · R,
where a priori and a posteriori SNRs are defined as ξ =
λs/λn and γ = R2/λn, respectively, Here λn is obtained using
a conventional noise estimator, and a priori SNR is calcu-
lated by the well-known “decision-directed” approach [4].

In our previous work [22], a two-stage noise spectra es-
timator (IMCRA+MAP) had been shown to yield lower es-
timation errors than conventional IMCRA estimator for dif-
ferent noise types (such as white, pink, car, and so on). It
was also shown that when an IMCRA+MAP estimator was
integrated into a speech enhancement system, higher seg-
mental SNR and recognition accuracy were obtained. In our
in-car speech experiments, the recognition performance of
nonlinear regression in Fig. 5 was further improved by about
1.7% through the incorporation of the two-stage noise esti-
mator. Therefore, the two-stage noise estimator was used in
the following studies.

6.2 Environmental Adaptation

The regression-based recognition experiments described
above require prior information on driving conditions. To
develop a data-driven in-car recognition system, regression
weights should be changed adaptively for different driving
conditions. In this subsection, we develop a method that
discriminates in-car environments by using the features of
noise signals. The basic procedure is as follows: 1) Clus-
ter the noise signals, i.e., short-time non-speech segments
preceding utterances, into several groups. 2) For each noise
group, train the optimal regression weights using the speech
segments. 3) For unknown input speech, find a correspond-
ing noise group through the non-speech segments, and per-
form the estimation with the optimal weights for the noise
cluster. A diagram describing the environmental adaptation
system is shown in Fig. 7. In our experiments, non-speech
signals (preceding the utterance by 200 ms, i.e., 20 frames)
were viewed as noise signals.

Clustering the noise signals can be viewed as a kind
of computational auditory scene analysis (CASA) [23]. It
is a nontrivial task in our experiments since the differ-
ence between driving conditions is not so significant. An
important step is feature selection. In our studies, Mel-
frequency cepstral coefficients (MFCC) were selected be-
cause of their good discriminating ability, even for audio
classification [24], [25]. The MFCC features were extracted
frame by frame, their means in one noisy signal computed,

Fig. 7 Diagram of environmental clustering and regression-based speech
recognition. X(M), N(M), and S(M) denote the log MFB outputs obtained
from observed noisy speech, estimated noise, and reference clean speech,
respectively. R denotes the vector representation of driving environment
using Eq. (6).

and then concatenated into a feature vector to represent the
driving environment:

R = [C1, . . . ,C12, E], (6)

where Ci and E denote i-order MFCC and log energy, re-
spectively. The upper bar denotes the mean values of the
features. Since the variances among C1, . . . ,C12 and E are
different, all of the elements in R are normalized so that their
mean and variance across all of the noise signals are 0 and
1.0, respectively. Prototypes of noise clusters are obtained
by applying the K-means-clustering algorithm to the feature
vectors extracted from the training set of noise signals. In
our experiments, the data uttered by 12 speakers were used
to cluster the noise conditions, and the data uttered by an-
other six speakers were used for testing, as shown in Fig. 7.

Figure 8 shows the word recognition accuracies for dif-
ferent numbers of clusters using adaptive nonlinear regres-
sion methods. “original” and “ETSI” are cited for compar-
ison. As seen from this figure, even the performance of 1
cluster (i.e., adaptation using universal regression weights)
significantly outperforms the original noisy speech and can
perform as well as ETSI advanced front-end, demonstrat-
ing the robustness of the proposed regression methods. For
regression based adaptations, as the number of clusters in-
creases up to four, the recognition accuracies consistently
increase due to the availability of more noise information,
while too many clusters (e.g., eight or more) yield a degra-
dation of the recognition performance. Finally, compared
to the original noisy speech and ETSI advanced front-end,
we obtained relative word error rate (WER) reductions of
50.8% and 13.1%, respectively, by using the proposed re-
gression method based on four clusters.

6.3 Discussion

In order to examine the relationship between the amount of
data for learning the regression weights and the recognition
performance, we preformed the following experiments (us-
ing nonlinear regression methods and with driving condi-
tions known). The training data comprising the first one
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Fig. 8 Recognition performance for different cluster using adaptive re-
gression methods (averaged over 15 driving conditions).

Fig. 9 Recognition performance for different amount of training data for
learning the regression weights (averaged over 15 driving conditions).

word, five words, 10 words, 20 words, and all 50 words
from each of 12 speakers were used for learning the re-
gression model respectively. The recognition results are
shown in Fig. 9. “IMCRA” and “IMCRA+MAP” denote
the different noise spectra estimator used. From this fig-
ure, it is shown that the two-stage noise spectra estimator
(IMCRA+MAP) shows its advantages over IMCRA estima-
tor. With the amount of training data increasing from “1
word” to “5 words”, the recognition performance increases
significantly. However, when the amount of training data
exceeds “10 words”, the recognition performance is not sen-
sitive to the amount of training data. It deserves to mention
that using the training data only “1 word” with two-stage
noise estimator can perform as well as ETSI advanced front-
end.

We also performed the experiments to examine the
recognition performance when the test words are different
from the training words for the regression model. For each
driving condition, the first 25 words from each of 12 speak-
ers were used for learning the regression model, and the test
data include the remaining 25 words from each of another
6 speakers. With driving conditions known and “IMCRA”
estimator, the recognition performance is 88.5%, which is
almost as high as those using the 25 words from back for
both training and testing (88.8%).

7. Conclusions

A regression-based speech enhancement method was pro-
posed, that approximates the log spectral of clean speech
with the inputs of the log spectra of noisy speech and esti-
mated noise. The proposed method employs statistical opti-
mization and makes no assumptions about the independence
or the distributions of the speech and noise spectra. The pro-
posed method provided consistent improvements in our sub-
jective evaluation of regression-enhanced speech and also
performed best in most of the objective measures. The re-
sults of our studies on isolated word recognition under 15
real car driving conditions show that the proposed method
outperforms conventional single-channel speech enhance-
ment algorithms. Other methods for speech enhancement
may be combined with the proposed method to obtain im-
proved recognition accuracy in noisy environments. This
method is expected to enhance recognition accuracy in very
noisy situations and to be applicable to a large number of
real-life environments.
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