
1040
IEICE TRANS. INF. & SYST., VOL.E89–D, NO.3 MARCH 2006

PAPER Special Section on Statistical Modeling for Speech Processing

Gamma Modeling of Speech Power and Its On-Line Estimation for
Statistical Speech Enhancement

Tran Huy DAT†∗a), Nonmember, Kazuya TAKEDA†, Member, and Fumitada ITAKURA††, Fellow

SUMMARY This study shows the effectiveness of using gamma distri-
bution in the speech power domain as a more general prior distribution for
the model-based speech enhancement approaches. This model is a super-
set of the conventional Gaussian model of the complex spectrum and pro-
vides more accurate prior modeling when the optimal parameters are es-
timated. We develop a method to adapt the modeled distribution parame-
ters from each actual noisy speech in a frame-by-frame manner. Next, we
derive and investigate the minimum mean square error (MMSE) and max-
imum a posterior probability (MAP) estimations in different domains of
speech spectral magnitude, generalized power and its logarithm, using the
proposed gamma modeling. Finally, a comparative evaluation of the MAP
and MMSE filters is conducted. As the MMSE estimations tend to more
complicated using more general prior distributions, the MAP estimations
are given in closed-form extractions and therefore are suitable in the imple-
mentation. The adaptive estimation of the modeled distribution parameters
provides more accurate prior modeling and this is the principal merit of the
proposed method and the reason for the better performance. From the ex-
periments, the MAP estimation is recommended due to its high efficiency
and low complexity. Among the MAP based systems, the estimation in
log-magnitude domain is shown to be the best for the speech recognition as
the estimation in power domain is superior for the noise reduction.
key words: speech enhancement, speech recognition, gamma model-
ing, fourth-order moment, MMSE, MAP, spectral magnitude, power, log-
spectral magnitude

1. Introduction

1.1 Statistical Speech Enhancement

Noise reduction is a major problem of speech process-
ing including speech recognition, hearing aid and mobile
communication. Among the single-channel noise reduc-
tion methods, the statistical estimation in the spectral do-
main is shown to be the most effective [1]. Two directions
of the model-based and data-driven approaches have been
proposed in the literature. The model-based methods use
a short-time learning of the joint distributions of the signal
and noise spectra and then employ a statistical estimator for
the clean speech spectrum [2]–[6], [9]–[11]. In contrast, the
data-driven methods use available data to derive empirical
codebook-dependent estimations [7], [8]. As the data-driven
methods are useful for speech recognition, the model-based
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method is more suitable for real-time systems, when the en-
vironment is unknown or the training is unavailable. The
modeling and fitting distributions of the speech and the noise
spectra and the choice of the estimation criterion, resulting
in the gain function, are two main issues of the model-based
speech enhancement.

1.2 Conventional Methods

Conventional methods assume the zero-mean Gaussian dis-
tributions of the noise and the speech spectra, and therefore,
only information on the variances (i.e., second-order statis-
tics) is required in order to determine the distributions [2]–
[4]. The signal and noise variances are updated frame by
frame and it is often expressed via a priori and a posteriori
signal to noise ratio (instantaneous SNR) [2], [3]. Using the
Gaussian model, different gain functions are derived on the
basic of different estimation criteria. The minimum mean
square error (MMSE) estimation in the spectral compo-
nent domain yields the classical Wiener filter. Ephraim and
Malah (1984–1985) developed the MMSE estimations for
speech spectral magnitude and its logarithm [2], [3], which
were shown to be superior to the Wiener filter. Later, Wolfe
and Godsill (2002) derived the maximum a posterior prob-
ability (MAP) estimation for speech spectral magnitude [4],
which is simpler but of the same efficiency as the MMSE
estimation. However, as the Gaussian model is suitable to
model the noise spectrum, this model is not optimal for the
speech signals. The reason is that the Gaussian model leads
to the independence between magnitude and phase, which is
unnatural for speech signal. Therefore, the speech spectrum
is expected to be better modeled by non-Gaussian distribu-
tions.

1.3 Non-Gaussian Model Based Speech Enhancement

Some non-Gaussian models have been proposed in the liter-
ature. The super-Gaussian model and the Laplacian-gamma
model of DFT coefficients were proposed by Lotter and
Vary [5] and Martin [6]. The common point of these models
is that, the signal variance is estimated and updated via pri-
ori SNR by the same way as in the Gaussian model-based
systems, as a fixed distribution parameter set is applied for
the whole signals. This parameter set is obtained from a
histogram of DFT coefficients taken over a clean speech
database. However, in real speech enhancement approaches,
the distribution of speech spectrum is time-frequency depen-
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Fig. 1 Statistical speech enhancement and main points of proposed sys-
tem.

dent since its variance is estimated and updated time by time
and therefore, the prior distribution parameters should be
estimated from actual noisy speech. Moreover, the models
proposed in [5] and [6] are not super-set of the conventional
Gaussian model and therefore their superiority can not al-
ways be provided from the theoretical point of view, even
in the case if we could estimate the parameters from noisy
speech.

In this study we focus in the following issues of the
non-Gaussian-model-based speech enhancement. First, we
look for a more general distribution model of the speech
spectrum, which should be a super-set of the conventional
Gaussian model. At other-hand this model should provide
a relatively low complexity in further implementation of the
speech spectral estimation. We found that the gamma mod-
eling in the speech power domain satisfies the told above re-
quirements and this model is adopted in this study. Second,
we develop on-line method to adaptively estimate the mod-
eled distribution parameters from each actual noisy speech
in a frame-by-frame manner. Third, we investigate and com-
pare several estimation methods, performing in different do-
mains, using the proposed prior distribution modeling. The
basic idea and logical scheme-diagram of this study is sum-
marized in Fig. 1. The organization of this paper is as fol-
lows. In Sect. 2, we address the prior distribution modeling
problem, including the gamma modeling in speech power
domain and its on-line parameter estimation. In Sect. 3,
we derive different speech spectral magnitude estimations
based on MMSE and MAP criteria in different domains us-
ing the proposed modeling. In Sect. 4, we report a compar-
ative evaluation of the estimation methods, using the AU-
RORA2J database. Finally, in Sect. 5, a summary of this
study is presented.

2. Prior Distribution Modeling and Its On-Line Esti-
mation

2.1 Additive Model

We consider the additive model of noisy speech in the
STDFT domain

X (n, k) = S (n, k) + N (n, k) , (1)

where X, S and N are the complex spectra of noisy speech,
clean speech and noise signals, respectively. Couple (n, k)
denotes a frame-frequency index and will be omitted in this
section. Hereafter, we use X, ϕX , S , ϕS , and N, ϕN to rep-
resent the magnitudes and phases of the complex spectra.
Since the magnitude is more informative and the phase is
sensitive to errors, speech enhancement systems estimate
only speech spectral magnitude as the phase is remained un-
changed. The key point of all algorithm is the joint distribu-
tion of noisy and clean speech magnitudes, denoted by

p (X, S ) = p (X|S ) p (S ) . (2)

Given the joint distribution, the clean speech magnitude can
be estimated using a criterion such as MMSE or MAP. We
will discuss this issue in the next section. From (1), the joint
distribution (2) is defined by the prior distribution of speech
spectral magnitude p (S ) and the conditional distribution
p (X|S ), which is derived from the noise distribution. As
in conventional systems [2]–[4], we assume the zero-mean
Gaussian distribution of the noise spectral components

NR,NI ∼ normal

0, σ2
N

2

 , (3)

where (.)R, and (.)I are the real and imaginary parts of the
complex spectrum. σ2

N is the noise spectral variance (i.e.,
spectral density or local power) given as

σ2
N =

〈
|N|2

〉
, (4)

where 〈 . 〉 denotes the expectation operator. The noise vari-
ance is unknown in advance and should be estimated from
noisy speech at each time-frequency index. Note that al-
though the behaviors of the noise spectrum is various by the
environments, the Gaussian model (3) is in general appro-
priated. The reason of this consideration is that the back-
ground noise is often presented as a superposition of a large
number of random fluctuations, and following the central
limit theory, its distribution should be close to the Gaus-
sian distribution. One important property of the Gaussian
model of the noise spectrum is that the joint distribution of
the speech and noise spectral magnitudes is given indepen-
dently from the phase component. This can be given as fol-
lows. Assumption (3) yields the joint conditional distribu-
tion of spectral components of noisy speech given the clean
speech, expressed as

p(XR, XI |S R, S I ) =
1

πσ2
N

exp

−NR
2 + NI

2

σ2
N

 , (5)
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where NR = XR−S R, and NI = XI−S I . The conditional joint
probability for the spectral magnitude and phase is derived
using the Jacobian transform [12],

p(X, ϕX | S , ϕS )

=
X

πσ2
N

exp

−X2 − 2XS cos (∆ϕ) + S 2

σ2
N

 , (6)

where ∆ϕ = ϕX −ϕN . Integrating (6) over the noisy phase, it
yields the Rician conditional probability, which is indepen-
dent from noisy speech phase, noted as

p (X | S ) =
X

2πσ2
N

exp

−X2 + S 2

σ2
N

 I0

2XS

σ2
N

 . (7)

Here, I0(x) is the modified Bessel function of the first-kind.

I0(x) =
∫ π

−π
exp

[−x cos(ϕ − φ)
]

dϕ (8)

From (7) and (2), the joint distribution p (X, S , ) is indepen-
dent from phase and therefore the magnitude estimation can
be carried out independently. This is the key factor to con-
sider the more preferable use of the modeling and estimation
in the magnitude domain over that in the complex spectral
domain as in [6].

2.2 Gamma Distribution of Speech Power

Now we turn our attention to the problem of the speech
prior distribution modeling. The conventional model also
assumes the zero mean Gaussian distribution of the speech
spectral components,

S R, S I ∼ normal

0, σ2
S

2

 , (9)

where σ2
S =

〈
|S|2

〉
denotes the speech spectral variance

(spectral density or local signal power), which is also es-
timated from actual noisy speech at each time-frequency in-
dex. As was mentioned above, the Gaussian model is not
optimal for speech signal since it leads to the independence
between magnitude and phase, which is unnatural for the
speech signals and the aim of this study is looking for a more
general model of speech prior distribution. Since the speech
magnitude can be estimated independently from phase, the
idea is looking for a more general distribution model in the
magnitude or power domain. From the assumption (9), the
Gaussian model leads to an exponential distribution of the
speech power (i.e., magnitude square) and after a normal-
ization to the local power, to a unit exponential distribution
of the normalized speech power

p

 S 2

σ2
S

 = exp

− S 2

σ2
S

 . (10)

The distribution (10) is a special case of gamma distribution
with unit parameters. From here, the gamma modeling in
the power domain is a direct generalization and super-set of

(10) and therefore is expected to better model the speech
spectrum if the optimal parameters can be estimated. The
distribution density function of gamma distribution of the
normalized speech power is noted as

p

 S 2

σ2
S

 = ba

Γ (a)

 S 2

σ2
S

a−1

exp

−b
S 2

σ2
S

 . (11)

Note that (a, b) is normalized to have a unit mean〈
S 2

〉
= σ2

S . (12)

This implies a relationship between a and b expressed as

a = b, (13)

and therefore, the system has only one-free parameter. Fig-
ures 2 and 3 show the distributions of the normalized speech
powers, which are directly estimated from 10 dB in-car
noisy speech at two frequency bins. We can see that, the
gamma modeling even visually better fits the actual distri-
butions than the unit exponential distribution derived from
the conventional Gaussian model. Moreover the behaviors

Fig. 2 Actual distribution of normalized speech power estimated from
noisy speech in frequency bin f = 512 Hz.

Fig. 3 Actual distribution of normalized speech power estimated from
noisy speech in frequency bin f = 2048 Hz.
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of speech powers are different in these bins.
Note that the gamma distribution (11) is equivalent to

the generalized gamma distribution in the magnitude do-
main, denoted by

p (S ) =
ba

Γ (a)σ2a
S

S 2a−1 exp

−b
S 2

σ2
S

 . (14)

Substituting (14) and (7) into (2), we obtain the joint distri-
bution of clean and noisy speech spectral magnitude noted
as

p (X, S ) = T (X) S 2a−1 exp

(
−S 2

λ

)
I0

2S

√
ϑ

λ

 , (15)

where

T (X) =
ba

Γ (a)σ2a
S

X

2πσ2
N

exp

− X2

σ2
N

 (16)

is independent of S and this term will be reduced in the
MMSE and MAP estimations. Variable λ satisfies

1
λ
=

b

σ2
S

+
1

σ2
N

, (17)

and ϑ is denoted in terms of “a priori SNR” ξ and “a poste-
riori SNR” γ by

ϑ =
ξ

ξ + b
γ, ξ =

σ2
S

σ2
N

, γ =
X2

σ2
N

. (18)

2.3 On-Line Parameter Estimation

The main point of this study is that we consider the esti-
mation of the modeled distribution parameters from actual
noisy speech. Note that in the earlier versions, we have
proposed offline estimation using noisy speech database [9]
and an adaptation in each frequency bin from actual noisy
speech [10]. In this study, we develop on-line estimation
method in a frame-by-frame manner. The basic idea here is
that we estimate and update the variance and fourth-order
moment of speech spectrum and use them to match the dis-
tribution parameters. Since the estimation is carried out
from noisy speech, we first describe the noise estimation.
The noisy speech periodogram is smoothed as

σ2
X (n, k) = αXσ

2
X (n − 1, k) + (1 − αX) |X (n, k)|2 , (19)

where σ2
X =

〈
|X|2

〉
is the variance of noisy speech spectrum,

σ2
X (1, k) = X2 (1, k). Then the noise variance is recursively

estimated using a voice activity detection (VAD)

σ2
N (n, k)

=

{
αNσ

2
N(n − 1, k) + (1 − αN)σ2

X(n − 1, k) H0

σ2
N(n − 1, k), H1

(20)

where H1 and H0 are the hypotheses of speech present and
absent, respectively. The initial noise variance is estimated

from the first 0.25 seconds duration of the observed signal

σ̂2
N (k) =

M
M − 1



M∑
i=1

X2[k, i]

M


, (21)

where M is the number of initial frames. The weight fac-
tor on the right-hand side is the unbiased compensation fac-
tor for the moment estimation from a finite number of sam-
ples [15]. A VAD based on spectral distance is adopted in
this study due to its possibility of it being implemented in
the real-time system.

d
[

C (n) , 
CN (n)

] > ρ H1
≤ ρ H0.

(22)

Here d[.] denotes in decibels the Euclidean distance be-
tween the current frame spectral vector C (n) and the previ-
ously stored memory noise spectral vector; ρ is a threshold-
decision. Currently, we used ρ= 3 dB. H1 and H0 are hy-
potheses described in (20). To eliminate the effect of low-
frequency noises, we cut off the bins which are lower than
160 Hz before applying (22). The smoothing factors αN

(0< αN < 1) and αX (0< αX < 1) are chosen by hearing the
enhanced sound output. We experimentally found that αN is
stably good at around the interval of 0.8 – 0.98. αX is more
sensitive and should be in the interval between 0.72 – 0.78.
Currently, αN = 0.90 and αX = 0.75 are used.

Given the noise estimation, we employ the decision-
directed scheme [2] to estimate the signal variance and
fourth-order moment. As in [2], we take a feedback from
the spectral magnitude estimation in a previous frame into
the estimations. For the signal variance estimation, the
decision-directed estimation is denoted by

σ2
S (n, k) = αS

∣∣∣∣ ̂S (n − 1, k)
∣∣∣∣2

+ (1 − αS ) max
[
σ2

X (n, k) − σ2
N (n, k) , 0

]
,

(23)

where αS (0 < αS < 1) is the smoothing factor, which is also
chosen by experimentation. Currently, αS = 0.9 is used.

Analogously, for the estimation of the fourth-order mo-
ment of speech spectrum, we first estimate the fourth-order
moment of noisy speech spectrum by using the conventional
recursive moving average

µ4,X (n, k) = α4,Xµ4,X (n − 1, k) +
(
1 − α4,X

) |X (n, k)|4 ,
(24)

where µ4,X =
〈
|X|4

〉
denotes the fourth-order moment of the

noise spectrum, α4,X (0 < α4,X < 1) is a smoothing fac-
tor. Number 4 indicates the order of statistic. The optimal
smoothing factor is also experimentally found by hearing
the enhanced output sound. Currently, α4,X = 0.75 is used.
The fourth-order moment of the noise spectrum is given fol-
lowing the Gaussian assumption, which lead to the expo-
nential distribution in the power domain [12]
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µ4,N =
〈
N4

〉
= 2σ4

N . (25)

Denote the fourth-order moment of the noisy speech in
terms of the noise and the speech as

µ4,X =

〈(
S 2 + N2 + 2S N cos (ϕS − ϕN)

)2
〉
. (26)

Approximating the distribution of the phase difference by a
uniform distribution, yields

µ4,X = µ4,S + µ4,N + 4σ2
Sσ

2
N . (27)

The fourth-order of speech spectrum can be subtracted from
noisy speech using (27). Applying one more decision-
directed scheme, the estimation of the fourth-order moment
of speech spectrum is expressed as

µ4,S (n, k)

= α4,S

∣∣∣∣ ̂S (k, n − 1)
∣∣∣∣4 + (

1 − α4,S
)

max

×
[
µ4,X (n, k) − µ4,N (n, k) − 4σ2

S (n, k)σ2
N (n, k) , 0

]
,

(28)

where µ4,S =
〈
|S|4

〉
denotes the fourth-order moment of

speech spectrum, α4,S is the smoothing factor in decision-
directed estimation. Currently, we use α4,S = 0.9.

The gamma model of speech power implies a relation-
ship between µ4,S and σS noted as

µ4,S =
a (a + 1)

b2
σ4

S . (29)

Taking into account (13) and applying one more smoothing
procedure, the gamma distribution parameter estimation is
given and expressed as

a (n, k) = b (n, k)

= αaa (n − 1, k) + (1 − αa)

µ4,S (n, k)

σ4
S (n, k)

− 1

−1

.

(30)

Note that the smoothing operator in (30) is used to remove
the spikes on the estimation. We experimentally found that
a small smoothing factor αa yields a small residual noise in
the enhanced signal, but gives quite a large distortion. The
good compensation between noise reduction and distortion
is found to be in the interval between [0.6–0.7]. Currently,
αa = 0.7 is used. Finally, the joint distribution (2) can be
determined at each time-frequency index by (15)–(18).

3. Speech Spectral Magnitude Estimation

In this section, we turn our attention to the speech spectral
magnitude estimation. Given the joint distribution in (15),
the MMSE and MAP estimators can be used to estimate the
speech spectral magnitude. Here, we consider the gener-
alized estimation in a general domain noted by h(S ). The
motivation of this investigation is that the performance of
system should be improved using statistical estimation in

the domain, which is more close to the machine process-
ing features or human cues. In other words, we look for a
compression for the residual noise from the speech spectral
magnitude estimation.

In this general domain, the MMSE estimation can be
denoted as

h(Ŝ ) = E [h (S ) |X] =

∫ ∞

−∞
h(S )p (X, S ) dS∫ ∞

−∞
p (X, S ) dS

, (31)

and the MAP estimation is expressed as

Ŝ = arg max
h(S )

[
p (h(S )|h(X))

]
. (32)

The MAP estimation Eq. (32) can be denoted as

∂

∂h(S )
[
log (p (h(X), h(S )))

]
= 0, (33)

and using the Jacobian transform, it yields the estimation
equation in a compact form.

∂ log (p (X, S ))
∂S

− h′′ (S )
h′ (S )

= 0 (34)

We can see that, the generalized MMSE and MAP esti-
mation Eqs. (31) and (34) return to the usual forms when
h(S ) = S . In this study, we investigate the estimations using
the proposed gamma modeling in three different domains of
spectral magnitude noted as SM (i.e., h(S ) = S ), generalized
power domain noted as P (i.e., h(S ) = S α) and log-spectral
magnitude noted as LSM (i.e., h(S ) = log(S ))

3.1 Minimum Mean Square Error Estimation

3.1.1 MMSE-SM

Using (15) and (31), the MMSE estimation in the spectral
magnitude domain is expressed as

Ŝ =

∫ ∞

0
S 2a−1

S exp

(
−S 2

λ

)
I0

2S

√
ϑ

λ

 dS∫ ∞

0
S 2a−2

S exp

(
−S 2

λ

)
I0

2S

√
ϑ

λ

 dS

, (35)

where the expression inside the square brackets denotes the
Rician distribution. The upper and lower terms of expres-
sion (35) then can be considered as the moments of the Ri-
cian distribution, which is evaluated in [12] and denoted in
general form as

m (c, ϑ) = λ
c
2 Γ

( c
2
+ 1

)
M

(
− c

2
+ 1; 1;−ϑ

)
, (36)

where Γ(.) is the gamma function and M(α, β, γ) is the Kum-
mer confluent hyper-geometrical functions [13]; ϑ is defined
in (18). From (35) and (36), the MMSE estimation of speech
spectral magnitude is given by
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Ŝ = λ
1
2

Γ

(
2a + 1

2

)
Γ (a)

M

(
−2a − 1

2
; 1;−ϑ

)
M (−a + 1; 1;−ϑ)

. (37)

Note that, for the case a = b = 1, estimation (37) repro-
duces the well-known Ephraim-Malah estimation of speech
spectral magnitude [2].

3.1.2 MMSE-P

Analogously, the MMSE estimation in the generalized
power domain h(S ) = S α is given by the conditional ex-
pectation noted as

E
[
S α|X]

= λ
α
2

Γ

(
α

2
+ a

)
M

(
−α

2
− a + 1; 1;−ϑ

)
Γ (a) M (−a + 1; 1;−ϑ)

. (38)

The speech spectral magnitude estimation is given as a func-
tion of a and α

Ŝ = λ
1
2


Γ

(
α

2
+ a

)
M

(
−α

2
− a + 1; 1;−ϑ

)
Γ (a) M (−a + 1; 1;−ϑ)


1
α

. (39)

3.1.3 MMSE-LSM

For the MMSE estimation in the log-spectral magnitude do-
main, following [3], we apply the moment-generating func-
tion method, which is noted as

l̂n S =
∂

∂µ

[
E
(
exp (µ ln S ) |X)]

µ=0 . (40)

The moment-generating function of logarithm reproduces
the moment of the joint distribution

l̂n S =
∂

∂µ

[
E (S µ|X)

]
µ=0 . (41)

The right term of (41) is given in (38) and differentiating it
by terms yields

∂

∂µ
E
[
S µ|X]

µ=0 = ln λ +

∂

∂µ
Γ

(
µ

2
+ a

)
µ=0

2Γ (a)

+

∂

∂µ
M

(
−µ

2
− a + 1; 1;−ϑ

)
µ=0

2M (−a + 1; 1;−ϑ)
.

(42)

The two components on the right-hand of (42) can be de-
noted as

∂

∂µ
Γ

(
µ

2
+ a

)
µ=0

Γ (a)
= ψ (a) , (43)

∂

∂µ
M

(
−µ

2
− a + 1; 1;−ϑ

)
µ=0

M (−a + 1; 1;−ϑ)

=

∞∑
k=0

(−a + 2)k−1

k!
zk

k!

M (−a + 1; 1;−ϑ)
− ψ (−a + 2) , (44)

where ψ(.) is a polygamma function [13]. For the case
a = b = 1, (42) can be simplified by an approximation, it
reproduces the well-known Ephraim-Malah’s estimation for
the conventional Gaussian model [3]

l̂n S = ln λ + ψ (1) +
1
2

∞∑
k=0

1
k

(−ϑ)k

k!

= ln λ +
1
2

(
lnϑ +

∫ ∞

ϑ

et

t
dt

)
(45)

We can see that, the MMSE estimations tend to more com-
plicated using general prior distribution. Naturally, an ap-
propriate approximations of (37), (39) and (42) might re-
duce the computational cost and get these methods to be
realized in the real systems. Unfortunately, this is not sim-
ple mathematical problem, and we remain it to the future
work. In this study, we implement the estimations (37),
(39) and (42) using the numerical calculations of the hyper-
geometrical function [13].

3.2 Maximum a Posterior Probability Estimation

Maximum a posterior probability estimation is a powerful
estimation method, which requires the prior information.
Since the main point of this study is the improvement of the
prior distribution modeling of speech spectrum, this estima-
tion method is suitable from the theoretical point of view.
We will show that the MAP estimation is also suitable for
the implementation.

3.2.1 MAP-SM

Denote the Eq. (34) for the case of the estimation in spectral
magnitude domain as

∂

∂S
[
log (p (X|S ))

]
+

∂

∂S
[
log (p (S ))

]
= 0. (46)

Here, the Bessel function is approximated by [13]

I0(x) ≈ 1√
2πx

ex, x > 0. (47)

Note that, the relative error given by the approximation (47)
is less than 1% at x > 0.2, i.e.,

2XS

σ2
N

> 0.2. (48)

When speech magnitude is small,

2X

σ2
N

≈ 2S

σ2
N

≈ 2σS

σ2
N

, (49)

substituting (48) into (49) yields a constraint for the local

SNR denoted as 10 log10
σ2

S

σ2
N
> −20 dB, and therefore, the
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approximation error is negligible.
Using (47), the first component in (46) can be ex-

pressed as

∂

∂S
[
log (p (X|S ))

]
= − 2S

σ2
N

− 1
2S
+

2X

σ2
N

. (50)

For the proposed gamma model of speech power, substitut-
ing (14) and (50) into (46), yields a second-order equation
for the gain function G = S

X as

−G2 +
G(

1 +
b
ξ

) + 4a − 3

4γ

(
1 +

b
ξ

) = 0, (51)

where ξ and γ are defined in (18). A closed-form solution is
obtained and denoted by

G =
1

2

(
1 +

b
ξ

) + √√√√√√ 1

4

(
1 +

b
ξ

)2
+

4a − 3

4γ

(
1 +

b
ξ

) . (52)

The closed-form solution for the MAP estimation is impor-
tant because we can exactly yield the global maximum of
the posterior probability. Moreover, this tractable solution
is suitable for the implementation. Note that, the MAP
solution (52) is generalized of the solution given by us-
ing the conventional Gaussian model derived by Wolfe and
Godsill [4].

3.2.2 MAP-P

Using (34), the MAP estimation equation in the generalized
power domain h(S ) = S α is given as

∂ log (p (X, S ))
∂S

− (α − 1)
S

= 0. (53)

Analogously, the gain function is given in a closed-form so-
lution as

G =
1

2

(
1 +

b
ξ

) + √√√√√√ 1

4

(
1 +

b
ξ

)2
+

4a − 2α − 1

4γ

(
1 +

b
ξ

) . (54)

One interesting result is that, the Wiener filter can be con-
sidered as a special case of (54), when a = b = 1 (i.e., the
conventional Gaussian model) and α = 1.5. The gain func-
tion in that case is given as

G =
σ2

S

σ2
N + σ

2
S

=

(
1 +

1
ξ

)−1

. (55)

3.2.3 MAP-LSM

The MAP estimation equation for the estimation in the log-
spectral magnitude domain is derived and expressed as

∂ log (p (X, S ))
∂S

+
1
S
= 0. (56)

Analogously, the gain function is given in a closed-form ex-
traction as

G =
1

2

(
1 +

b
ξ

) + √√√√√√ 1

4

(
1 +

b
ξ

)2
+

4a − 1

4γ

(
1 +

b
ξ

) . (57)

The MAP-LSM gain function for the conventional Gaussian
model is given as a special case of (57) noted by

G =
1

2

(
1 +

1
ξ

) + √√√√√√ 1

4

(
1 +

1
ξ

)2
+

3

4γ

(
1 +

1
ξ

) . (58)

3.3 Gain Curves

From the results given in previous paragraph, it can be seen
that the MMSE and MAP gain function based on the pro-
posed gamma modeling are controlled by the prior distribu-
tion parameters and the conventional Gaussian model is a
special case when these parameters are fixed as a = b = 1.
Since the performance of the enhancement filter is related
to the curve of the gain function, in this paragraph, we do
the investigation of these curves. Figures 4 and 5 show the
gain functions based on gamma modeling with two different
prior distribution parameters. Thegain functions based on
Gaussian model are also plotted as references. These gain
functions are functions of the instantaneous SNR, defined by
(γ − 1) [2]. From these figures, we can see that for the Gaus-
sian model, the Wiener filter and the MAP-LSM estima-
tion produce the highest and lowest reduction levels, respec-
tively. This effect explains the fact that the Wiener filter of-
ten over reduces the noise at the speech beginning and end-
ing frames. The curves of the gain functions of the gamma
model are various by the distribution parameter. When the
gamma parameter is small, the gamma model yields a lower
reduction level than the Wiener filter under a low-input SNR

Fig. 4 Gain curve for a = b = 0.1.



DAT et al.: GAMMA MODELING OF SPEECH POWER AND ITS ON-LINE ESTIMATION FOR STATISTICAL SPEECH ENHANCEMENT
1047

Fig. 5 Gain curve for a = b = 0.8.

and a higher reduction level under a high-input SNR. Dur-
ing vowel duration and in near-formant frequency bins, the
speech spectral distribution is less sparse and therefore, the
gamma distribution parameter must be larger. In this case,
the gamma model maintains the lower reduction level and
provides less distortions. Since the gamma distribution pa-
rameters are adapted from actual noisy speech, this effect
can be considered as an automatic optimization of the gain
function by the prior modeling and in the next section we
confirm this consideration by the experiments.

4. Experiments

4.1 Speech Enhancement Implementation

The speech spectral magnitude estimation methods using
the proposed gamma modeling are implemented in speech
enhancement systems. A diagram of processing is shown
in Fig. 6. The noisy speech is transformed into the STDFT
domain using a hamming window with a frame length of
25 ms and a frame shift of 10 ms. The noise and signal
statistics (i.e., the variance and fourth-order moment) are es-
timated in order to adapt the gamma parameters. The adap-
tive gamma distribution parameters are used in the MMSE
and MAP speech spectral magnitude estimations according
to (37), (39), (42), (52), (54) and (57). The systems are
named by the estimation method and the domain to be ap-
plied. They are MMSE-SM, MMSE-P, MMSE-LSM, MAP-
SM, MAP-P and MAP-LSM, respectively. Note that, we
do not consider the optimization of the generalized power
order and it was chosen by the experimentation, currently
α = 1.5 is used. For the reference, the similar estimations
are implemented using the conventional Gaussian model
(i.e., a = b = 1). The Gaussian-model-based systems
are identified by adding the symbol G. Finally, the phase
adding, and “overlap and add” techniques are applied to syn-
thesis the enhanced signal.

Fig. 6 Statistical speech enhancement using the proposed gamma model.

Fig. 7 Overall results of segmental SNR improvement [dB].

4.2 Evaluation and Discussion

The proposed speech enhancement systems are tested us-
ing the AURORA2J database [17]. The overall results of
the segmental SNR improvements is shown in Fig. 7 and
the relative improvements of automatic speech recognition
(ASR) for the clean training and multi-conditions train-
ing are in Figs. 8 and 9. For automatic speech recogni-
tion experiments, we apply enhancement filters to both test-
ing and training databases. The digit HMMs are stan-
dard complex back-end models of 16 states, and each state
has a 20-component GMM with a diagonal covariance ma-
trix [16]. From these figures, it can be seen that the proposed
gamma model performs better than the conventional Gaus-
sian model. This can be explained by the fact that the perfor-
mances of MMSE and MAP estimations are dependent on
the accuracy in the speech prior distribution modeling. Us-
ing more general distribution with frame-by-frame parame-
ter estimation, the proposed method provides more accurate
modeling and this is the principal merit of the method and
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Fig. 8 Overall results of ASR evaluation using AURORA-2J database in
relative improvement for clean training [%].

Fig. 9 Overall results of ASR evaluation using AURORA-2J database in
relative improvement for multi-conditions training [%].

the reason for the better performance. Among the methods
based on the proposed gamma model, the MAP estimations
yield better results than the MMSE estimations. For the
MMSE estimations, though the MMSE-SM and MMSE-P
give better results than the similar ones based on the conven-
tional Gaussian model, the computational cost is much more
expensive. The performance inferior of MMSE-LSM can
be explained by the fact that the errors occur in the numer-
ical calculations of the derivatives of the hyper-geometrical
functions. Note that, although this performance degradation
is caused by the implementation problem but not theoretical
problem, the MMSE estimations tend to be more complex
than the MAP estimation using a more general prior distri-

Table 1 Listening test: Q1-Which one is less distorted? Q-2 Which one
is less noisy? Q-3 Which one is best?

Q Subway Babble Car Exhibition
1 MAP-LSM MAP-LSM MMSE-P MAP-LSM
2 MAP-P MAP-P MAP-P MAP-P
3 MAP-LSM MAP-SM MAP-LSM MAP-SM

Q Restaurant Street Airport Station
1 MAP-LSM(G) MAP-LSM MAP-SM MAP-LSM
2 MAP-P MAP-SM MAP-P MAP-P
3 MMSE-LSM(G) MMSE-LSM MAP-SM MAP-LSM

Table 2 Best ASR evaluation results using AURORA2J database under
each noise condition.

Noise Subway Babble Car Exhibition
Method MAP-LSM MAP-LSM MAP-LSM MAP-SM

Noise Restaurant Street Airport Station
Method MMSE-P MAP-SM MAP-LSM MAP-LSM

bution and therefore is not recommended. The MAP estima-
tions based on the proposed gamma modeling are given in
closed-form solutions and from our experience the compu-
tational cost of these methods are approximately the same
as the Ephraim-Malah’s MMSE-LSM method. The MAP-
LSM performance is the best with approximately 2 dB of the
segmental SNR improvement, 5% of the relative improve-
ment in the clean training and 4% in the multi-conditions
training compared to the Ephraim-Malah’s MMSE-LSM.
The systems based on MAP estimations using the proposed
gamma modeling overcome the conventional ESTI front-
end [18], which is specially designed for speech recogni-
tion but does not provide enhanced signals. The proposed
method provide improvements in both ASR performance
and the sound quality and therefore is more appropriated for
the communication applications. A simple listening test is
performed by four subjects listening to 25 randomly chosen
utterances of each noise type. Table 1 shows the results of
the listening test. One interesting fact is that the MAP-P es-
timation using the gamma model is the best method for the
noise reduction as the MAP-LSM estimation provides less
distortion and is considered to have the best performance
under most noise conditions. Finally, Table 2 shows the best
ASR evaluation results under each noise environment. We
can see that, the MAP-LSM estimation using the proposed
gamma model is the best under 6 from 8 noise environments.
The MMSE estimation perform a little better than the MAP
estimation only under the restaurant noise environment. In
both cases, the gamma-model-based systems perform bet-
ter than those based on the conventional Gaussian model.
The superiority of the MAP compared to the MMSE using
the proposed gamma model can be explained by follows.
The MAP estimation is more sensitive to the prior distri-
bution than the MMSE estimation. The proposed gamma
distribution of speech power and its on-line estimation par-
ticularly improved the prior modeling and therefore this im-
provement was better realized in the MAP filters. The best
performance of the estimation in the log-spectral magnitude
domain confirm the fact that this domain is close to the hu-
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man cues and speech recognition feature.

5. Conclusions

The main points of this study are summarized as follows.
First, we propose a more general and flexible distribution
for the speech spectrum distribution modeling. Second, we
propose an adaptive estimation of the modeled distribution
parameters from actual noisy speech. Third, we derive, im-
plement and investigate the MMSE and MAP filters in dif-
ferent domains using the proposed model. The MMSE es-
timations tend to complicated using more general prior dis-
tributions and therefore are not recommended. In contrast,
the MAP estimations are suitable for the implementation
and yield better performance in both speech recognition and
sound quality. The MAP estimation in log-spectral magni-
tude and generalized power domains are recommended. The
optimal choice of the power order α is an interesting prob-
lem what we remain in the future work. We also intend to do
more experimental evaluations in other objective measure-
ments on the sound quality of the enhanced signals. This
model might also be applied for other signals such as music
or biomedical sounds.
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