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PAPER

Selective Listening Point Audio Based on Blind Signal Separation
and Stereophonic Technology

Kenta NIWA†a), Takanori NISHINO††b), and Kazuya TAKEDA†c), Members

SUMMARY A sound field reproduction method is proposed that uses
blind source separation and a head-related transfer function. In the pro-
posed system, multichannel acoustic signals captured at distant micro-
phones are decomposed to a set of location/signal pairs of virtual sound
sources based on frequency-domain independent component analysis. Af-
ter estimating the locations and the signals of the virtual sources by con-
volving the controlled acoustic transfer functions with each signal, the spa-
tial sound is constructed at the selected point. In experiments, a sound field
made by six sound sources is captured using 48 distant microphones and
decomposed into sets of virtual sound sources. Since subjective evaluation
shows no significant difference between natural and reconstructed sound
when six virtual sources and are used, the effectiveness of the decompos-
ing algorithm as well as the virtual source representation are confirmed.
key words: acoustic field representation, blind source separation,
frequency-domain independent component analysis (FD-ICA), spatial
grouping

1. Introduction

As an extension of multi-viewpoint image processing, free-
viewpoint TV (FTV) systems [1], [2] that can generate
scenes at an arbitrarily selected viewpoint have become an
issue in MPEG standardization [3]. The goal of this research
is to build a selective listening point (SLP) audio system that
can be used for the audio part of the FTV system.

SLP audio is a spatial sound reproduction system char-
acterized by three requirements: 1) microphones should be
placed at distant locations from sound sources, 2) the system
must work on the condition that the number and locations
of the sound sources are unknown, 3) each sound source
may move independently, and 4) the reproduced sound sig-
nals can be presented with ordinary equipment such as
earphones, headphones and a stereo loudspeaker system.
Therefore, simply applying an existing spatial audio repro-
duction method, such as binaural recording [4] or transaural
audio [5] by boundary surface control with a speaker ar-
ray [6], fails to achieve SLP audio. Figure 1 shows a block
diagram of the SLP audio system.

In a previous work [7], we evaluated an SLP audio sys-
tem that combined blind source separation (BSS) and bin-
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aural audio with a head-related transfer function (HRTF). In
that system, BSS separated the mixtures of signals recorded
at distant microphones, into independent source signals.
Then a spatial impression was added to them through
HRTFs between the selected listening point and the source
locations. Through a preliminary experiment, we confirmed
that even signal separation by BSS is not perfect, but after
convolving the signals with transfer functions and remixing,
natural spatial sound was reconstructed.

However, in that experiment we presumed that the
number and locations of the sound sources were known.
In this paper, we extend the previous work to eliminate the
need for prior knowledge about either the number or loca-
tions of the sound sources.

Extension of the SLP algorithm mainly consists of
three parts [8]. The first is finding virtual sound sources.
Since accurate identification of real sound sources is not
necessary in SLP audio, e.g., discriminating closely located
sound sources is unnecessary, we roughly estimate the num-
ber of sound sources based on subspace analysis of the spa-
tial correlation matrix [9]. BSS is applied in the obtained
subspace to find the separation matrix for the estimated
number of source signals, which we call virtual source sig-
nals.

The second part is localizing the signals. Since we use
frequency-domain independent component analysis (FD-
ICA) for signal separation, there is an ambiguity known as
permutation in associating independent signal components
with the correct sound source for every frequency bin. In-
stead of solving this permutation problem, in the proposed
method, we cluster all of the virtual source signals into a
predetermined number of groups across all frequency bins.
Clustering, which is performed based on the acoustic trans-
fer functions from the position of the virtual source signal
to the microphones, is calculated from the pseudo-inverse
of the separation matrix. The reconstructed signal from the
group of virtual source signals, which we call the local sig-
nal mixture, represents either a signal of one source or a
mixture of different source signals located in close positions.

The third part is determining the reference location of
the local signal mixture. Here, we calculate the centroid of
the groups in the virtual source subspace and transfer them
back to the real geometrical space.

Through the above three steps, we can decompose mul-
tiple microphone signals into a set of virtual sound source
information, i.e., the location and associated signals, which
is the natural generalization of a typical 3D sound field rep-
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Fig. 1 Block diagram of selective listening point audio system. SLP audio system consists of four
parts: 1) recording with multiple distant microphones, 2) encoder based on blind source separation, 3)
decoder based on spatial audio technique, and 4) sound reproduction with ordinary audio device.

resentation. After decomposing, therefore, the local sound
field at the selected listening point is flexibly presented. In
this study, a binaural system based on an HRTF is used.

The rest of the paper is organized as follows. The ba-
sic idea of SLP audio using BSS is described in Sect. 2. In
Sect. 3, the proposed algorithm is detailed. After showing an
experimental evaluation in Sect. 4, we conclude the paper in
Sect. 5.

2. Selective Listening Point Audio Using Blind Source
Separation

One of the simplest ways to define the 3D sound field is
to specify the locations of the sound sources and the corre-
sponding source signals:

Ω = {rn, sn(t)}, n = 1, · · · ,N, (1)

where rn and sn(t) denote the location and the signal of the
n-th sound source. Given listening position r(R), target sound
y(t) can be calculated by

y(t) =
N∑

n=1

h(rn, r(R)) ∗ sn(t), (2)

or in the frequency domain

Y(ω) =
N∑

n=1

H(rn, r(R)) · S n(ω), (3)

when the acoustic transfer function between rα and rβ is
given by h(rα, rβ). Typically in the binaural audio case, col-

umn vector h(rα, rβ) = [h(left )(rα, rβ), h(right)(rα, rβ)]T is
used for the transfer function (HRTF). Therefore, the main
problem of the SLP audio system is decomposing the mul-
tichannel signals captured through M distant microphones
into source information Ω.

Potentially, BSS can be used for part of the decom-
posing by finding a set of independent signals ŝ(t). In par-
ticular, the frequency-domain ICA [10] combined with ad-
vanced methods for solving permutation ambiguity [11] is
powerful under realistic acoustic conditions. However, since
the assumption about the number of sources is crucial in
BSS, accurate estimation of the independent source is diffi-
cult in such applications as SLP where the number of sound

sources varies widely.
In a previous study, we evaluated the performance

of SLP audio using BSS [7] under the assumption of the
prior knowledge of the number and locations of the sound
sources. Through the experiment, we found that imperfect
separation does not cause serious problems in an SLP audio
application because source signals are remixed in the target
signal anyway. Therefore, to achieve an SLP audio system,
we extend the BSS algorithm to operate it without any prior
knowledge of sound sources, and build a decomposing al-
gorithm that converts the multi channel signals into virtual
source information.

3. Algorithm

3.1 Estimating Virtual Source Signals

Since the number of sound sources is unknown, we first
roughly estimate them by subspace analysis on the spatial
correlation matrix [12]:

R(ω) = E{X(ω)X(ω)H}, (4)

where X = [X1(ω), · · · , XM(ω)]T is the frequency domain
representation of the signals captured at M distant micro-
phones. H and E denote the conjugate transpose and the
expectation operations, respectively. By decomposing R(ω)
into the form of R(ω) = V(ω)Λ(ω)V(ω)−1 and truncating
the dimensions whose eigen values are smaller than a prede-
termined threshold, we get Q eigen vectors of R(ω) matrix,
i.e., V′(ω) = [v1(ω), · · · , vQ(ω)]T . Although Q is an esti-
mate of the source number, as we see below, the overall per-
formance is not so sensitive to the accuracy of the estimate
because most of the signals are remixed in the target signal.
When Q is overestimated, the echoes of the original signal
are identified as likely independent sources. Λ′ denotes the
truncated version of the diagonal eigen value matrix.

FD-ICA is performed on subspace signal Z(ω) =
[Z1(ω), · · · ,ZQ(ω)]T given by

Z(ω) =
(
Λ′(ω)

)−1/2 V′(ω)X(ω). (5)

The iterative learning rule below [13], [14] is used for esti-
mating a separation matrix U(ω) for subspace signal Z(ω):

Ut+1 = Ut + μ · off-diag{E[ϕ(Z)ZH]}Ut, (6)
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where ϕ(z) = tanh(β · �(z)) + j · tanh(β · �(z)) denotes an
activating function.

The separation matrix for the original microphone sig-
nals is given by

W = U
(
Λ′
)−1/2 V′. (7)

Since there is the amplitude ambiguity in the separation
matrix W(ω), the projection back method [15] was used to
solve this problem. The projection back method is one of the
methods for solving this ambiguity, and the method gener-
ates the projected filter by using acoustic transfer functions
among the virtual sources and one of the microphones. In
our method, the separation matrix is projected by the aver-
age acoustic transfer function of the recorded environment.

Finally, Q independent signals S̃(ω), called virtual
source signals, can be calculated for each frequency bin by

S̃ = UZ = U
(
Λ′
)−1/2 V′X =WX. (8)

Note that we omit frequency index (ω) from S̃(ω), U(ω),
V(ω), W(ω), X(ω), Z(ω), and Λ(ω) in Eqs. (6) through (8).
Inverse short-time Fourier transform (ISTFT) and overlap
add will reproduce virtual source signals in time domain
s̃(t).

3.2 Grouping Virtual Signal Components

The pseudo-inverse of separation matrix W(ω) represents
the acoustic transfer functions from the source positions of
the virtual source signals to M microphones. We denote
the pseudo-inverse matrix by W+(ω) = [w+1 (ω), · · · ,w+Q(ω)],
where w+q (ω) is a transfer function vector from the position
of the q-th virtual source to M microphones, i.e., w+q (ω) =
[w+1q(ω), · · · ,w+Mq(ω)]T , for frequency ω. The phase compo-
nent of that vector contains geometrical information of the
virtual sources. In [11], [16]–[20], this geometrical informa-
tion was used to solve the permutation problem of FD-ICA.

Since the estimate of the number of virtual sources
is not accurate and the spectral components of the virtual
source signals, i.e., S̃ 1(ω), · · · , S̃ Q(ω), have permutation am-
biguity across frequency indexes, we group closely located
virtual sources and reconstruct the mixture of the signals of
those virtual sources through clustering as follows.

The phase component of transfer function vector
w+q (ω) represents the relative arrival delay from the virtual
sound source to each microphone element. Therefore, we
define operation φ(·) on the transfer function vectors to ex-
tract the relative phase at each microphone [20]:

φ(w+q (ω)) = [exp( jξq,1), · · · , exp( jξq,M)]. (9)

ξq,m is the normalized delay given by

ξq,m =
arg(w+q,m(ω))

2ωd/πc
, (10)

where d is the array size in which the m-th microphone is lo-
cated and arg(·) operation calculates the relative phase angle
in that array. As seen in the experiment below, we assume

Fig. 2 Virtual source signals, their groups and centroids [8]. A column
vector of the pseudo-inverse of separation matrix, i.e., w+q (ω), represents
acoustic transfer functions from q-th virtual source to microphones at fre-
quency ω. The top figure shows that grouping transfer function vectors
across frequencies and combining corresponding signal components give a
mixture of closely located sound signals. Q = 4 virtual sources are clus-
tered into K = 5 clusters shown at bottom.

that each microphone is arranged as an element of one of
the L arrays. We denote a set of microphones included in
the l-th array by θ(l). A microphone array can catch acoustic
characteristics such as a transfer function and a sound pres-
sure distribution in the local acoustic field, and the acoustic
characteristics corresponding to the location of the sound
source are defined uniquely by using multiple arrays. By ap-
plying φ(·), we can cancel the frequency dependency from
w+q (ω) and cluster the virtual sources across frequency bins,
as shown in Fig. 2.

The similarity between phase vectors is defined by the
sum of scalar products over arrays:

Sim
(
w+α(ωψ),w+β (ωϕ)

)
=

L∑
l=1

∣∣∣∣∣∣∣∣
∑

m∈θ(l)
φ(w+α,m(ωψ))∗ · φ(w+β,m(ωϕ))

∣∣∣∣∣∣∣∣ , (11)

where (·)∗ represents a complex conjugate. For exam-
ple, we consider two virtual sources S̃ α(ω1) and S̃ β(ω2),
which propagated from one sound source, and these vir-
tual sources should be clustered to the same group. There
is the phase shift exp( jθ) between two transfer function vec-
tors φ(w+α(ω1)) and φ(w+β (ω2)) corresponding to two virtual
sources respectively. The calculation of absolute value in
Eq. (11) removes this phase shift because | exp( jθ)| = 1.
Therefore, the similarity measure in Eq. (11) is robust to the
constant phase shift due to the ambiguity of the array posi-
tion and the sound source. Based on this similarity measure,
we cluster Q × D transfer function vectors into K clusters.
D denotes the number of frequency bins. Note that K can be
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more than Q. A grouping information g is calculated by

g(q, ω) = arg max
k

Sim
(
w̄+k (ω),w+q (ω)

)
, (12)

where w̄+k = [w̄+1 , · · · , w̄+K] is the centroid of k-th cluster.
Centroids w̄+ are needed to estimate the location of local
signal mixture ŝ, and clusters are decided with the k-means
algorithm.

Denoting the clustering results in which transfer func-
tion vector w+q (ω) falls into the k-th category by k = g(q, ω),
local signal mixture Ŝ k(ω) is given by

Ŝ k(ω) =
Q∑

q=1

δk,g(q,ω)wq · X(ω), (13)

with δi, j as the Kronecker delta. Finally, ISTFT and overlap
add will reproduce a mixture of locally located signals in
time domain ŝk(t).

3.3 Location Estimation

The reference location of k-th local signal mixture ŝk can be
estimated from the centroid of the k-th cluster of the transfer
function vectors. Since we use a set of microphone arrays as
the distributed sensors, the steering vector is used for con-
verting the centroid to the signal source location.

For the l-th microphone array, a steering vector to lo-
cation r is given by

al(r) =

⎡⎢⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎜⎝ jπ|r
(r)
l,1 − r|
2dl

⎞⎟⎟⎟⎟⎟⎟⎠ , · · · ,
exp

⎛⎜⎜⎜⎜⎜⎜⎝ jπ|r
(r)
l,θ(l) − r|
2dl

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦ , (14)

where r(r)
l,i represents the position of the i-th element of the

l-th array and dl denotes the array size.
As in the clustering case, the similarity between the K

centroids of the transfer function vectors, {w̄+k }k=1,···,K , and a
steering vector [21] can be calculated. We search for the lo-
cation where the similarity becomes largest as the reference
position of local signal mixture

r̂k = arg max
r

L∑
l=1

∣∣∣∣∣∣∣∣
∑

m∈θ(l)
φ(w̄+k,m(ω))∗ · al,m(r)

∣∣∣∣∣∣∣∣ . (15)

The local signal mixture is a monaural signal that in-
cludes acoustical transfer functions among the virtual sound
sources and one of the microphones. Finally, the estimated
3D sound field representation Ω̂ = {r̂k, ŝk(t)}k=1,···,K is ob-
tained.

4. Experimental Evaluation

4.1 Experimental Setup

Figures 3 and 4 show the experimental setup for the acous-
tic systems. Six 6-element arrays and a 12-element array

Fig. 3 Experimental setup. Seven microphone arrays surrounding six
loudspeakers in a linear arrangement. One array is a 2D boundary array
and located on the floor. The other six are linear arrays, located at a height
of 140 cm. The black one in Arrays 1 to 6 indicates the first microphone of
the array. The origin in this experimental setup is the center of Array 7.

Fig. 4 Experimental setup of six loudspeakers. All loudspeakers are lo-
cated at a height of 140 cm. Origin is same as Fig. 3.

are arranged to surround the six loudspeakers. All 48 sen-
sors are omni-directional microphones (SONY ECM-77B).
Six loudspeakers (BOSE ACOUSTMASS) are arranged in
a linear form. Six source signals played at the loudspeak-
ers are recorded at the 48 distant microphones in a syn-
chronous manner with a sampling frequency of 40 kHz. The
background noise level was 16.6 dB (A), and the reverbera-
tion time T60, which was calculated by Schroeder integra-
tion [22], was 138 msec. As for the test signals, we recorded
speech, popular music (Music 1: Winter games), and classi-
cal music (Music 2: Jupiter), as listed in Table 1. Duration
of all test signals is 15 sec. Other conditions are listed in
Table 2.
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Table 1 Collection list with organizational sound sources.

Speech Music1: Winter games Music2: Jupiter
(JNAS) (D. Foster) (G. Holst)

s1 Female speech1 Bass Strings1
s2 Male speech1 Brass Strings2
s3 Female speech2 Drums Percussions
s4 Male speech2 Piano Timpani
s5 Female speech3 Strings Brass1
s6 Male speech3 Orchestra Hit Brass2

Table 2 Parameters of SLP audio system.

Sampling frequency, Fs 40 kHz
Number of microphone arrays, L 7
Number of microphones, M 48
Number of sources, N 6
Length of STFT, D 2048 pt (51.2 msec)
Frame shift of STFT 512 pt (12.8 msec)
Window function Hamming
Number of virtual sources, Q 2, 3, · · ·, 20
Number of clusters, K 2, 3, · · ·, 20

In this study, we assume a binaural system based on
the HRTF as a sound reproduction system. The obtained
virtual sources are convolved with HRTFs on the appro-
priate direction. The measured HRTFs were used after in-
terpolation [23] to add a spatial impression and to the es-
timated local signal mixtures. Spatial impressions such
as sound source distance and direction are added by the
HRTFs. Other spatial impressions such as reverberation are
given by the estimated local signal mixtures. They include
the average acoustic transfer function in the environment be-
cause we used the projection back method [15] that gener-
ates the projected matrix by using acoustic transfer func-
tions among virtual sources and one of the microphones.
The HRTFs were measured with a head-and-torso simula-
tor (B&K 4128) and these data can be downloaded at [24].

4.2 Evaluation Results

Objective and subjective tests were conducted to evaluate
the performances of representing the sound field.

4.2.1 Objective Results

The number of virtual sources Q influences sound qual-
ity and transinformation. As Q decreases, sound quality is
worsened.

The sound quality was evaluated by comparing refer-
ence signal refS Q(t) to the signal obtained by reducing-order
filter yS Q(t):

refS Q(t) =
N∑

n=1

sn(t), (16)

yS Q(t) = IFFT

⎡⎢⎢⎢⎢⎢⎢⎣
Q∑

q=1

wq(ω)X(ω)

⎤⎥⎥⎥⎥⎥⎥⎦ . (17)

The cepstrum distance was used for measuring the similarity
between them:

Fig. 5 Results of evaluating sound quality with cepstrum distance.

Dcep = E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√√√ D∑

k=1

[cyS Q (k) − crefS Q
(k)]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (18)

where cyS Q (k) is the k-th order cepstrum of yS Q(t) and
crefS Q (k) is the k-th order cepstrum of refS Q(t). Since the cep-
strum distance is one of the methods for measuring sound
quality, lower Dcep gives us good sound quality. Therefore,
we employ this distance as a criterion of deciding the pa-
rameter Q.

Figure 5 shows the results of evaluating sound qual-
ity with cepstrum distance. There is no difference in the
cepstrum distance when the number of virtual sources Q is
more than six. This result corresponds to the number of real
sources. Therefore, condition Q = 6 is used in the following
evaluation.

Since the number of clusters K corresponds to the num-
ber of divisions of the acoustic field, the degree of mixing
with each other is low for the large K. A low degree of
mixture produces good performance of division into each
sound signal. The number of clusters K influences sound
localization and the sound localization is improved as K in-
creases. Sound localization performance was obtained by
calculating the difference between reference signal refLQ(t)
and local signal mixtures yLQ(t):

refLQ(t) =
N∑

n=1

h(rn, r(R)) ∗ sn(t), (19)

yLQ(t) =
K∑

k=1

h(r̂k, r(R)) ∗ ŝk(t), (20)

where rn is the position information and r̂k is the estimated
position information. The sound localization is achieved
by the interaural time difference (ITD) and level difference
(ILD), however, it is difficult to calculate the ITD for mul-
tiple sound sources. Therefore, we calculate the ILD and
employ this distance as a criterion for deciding parameter
K. The ILD is calculated as an inter-channel level differ-
ence (ICLD).

ICLDx = 10 log10

∑N
t xR(t)2∑N
t xL(t)2

[dB], (21)

where xR(t) and xL(t) are transduced signals with sound
equipment such as headphones. R and L denote right and
left channel, respectively. The difference between the refer-
ence signal and local signal mixtures was calculated using
an ICLD:
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Fig. 6 Results of evaluating sound localization with inter-channel level
difference.

DICLD = E
(∣∣∣ICLDrefLQ − ICLDyLQ

∣∣∣) [dB]. (22)

Figure 6 shows the results of evaluating sound local-
ization with ICLD. The best performance was obtained for
K = 16. Therefore, subjective tests were conducted under
conditions where Q = 6 and K = 16.

4.2.2 Subjective Results

For Q = 6 and K = 16, subjective tests were performed
using the XAB method, which is the standard method for
evaluating the sound quality of an audio signal with very
low degradation [25]. Three stimuli of X, A, and B were
presented to the subjects. These stimuli were made from
three test signals: speech, popular music and classic mu-
sic. These test signals were divided into three parts, each
with a duration of 5 sec. Seven locations of sound sources
were assumed on the center of microphone array. Thus the
sets of stimuli were 63 (9 signals × 7 locations). In our ex-
periments, stimulus X was the reference signal (Eq. (19)).
Either A or B was the same signal as X, and the other was
the comparison signal (Eq. (20)). However, subjects did not
know which signals were reference or comparison. Subjects
evaluated the degradations between X and A, and between
X and B. Answers about the degradations of sound quality
and sound localization were required every set of X-A-B.
The evaluation grades are shown in Table 3. The obtained
grade was converted to subjective difference grade (SDG):

SDG = Gev −Gref , (23)

where Gev is a grade between the comparison and reference
signals, and Gref is a grade between both reference signals.
SDG ranged from -4 to 0, and each grade is also shown in
Table 4.

Eleven subjects (ten males and one female) examined
the sound quality and sound localization, respectively. The
evaluated signals at the seven listening points, Loc 1 to 7
shown in Fig. 3, were generated. The duration of every stim-
ulus was 5 sec. Stimuli were presented by intra-concha ear-
phones (Etymotic research ER-4B).

Figures 7 and 8 show the sound quality and sound
localization, respectively. Figures 7 (b) and 8 (b) indicate
that good representation of the sound field was obtained by
source information Ω. The average SDG of sound quality
and sound localization was -0.22 and -0.23, respectively.
There is less difference between the reference and compari-
son signal.

Table 3 Grades and qualities of XAB test.

Grade Quality
5 Inaudible
4 Audible, but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

Table 4 Grades and qualities of subjective difference grade.

SDG Quality
0 Inaudible

-1 Audible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

Fig. 7 Results of subjective test for sound quality for Q = 6 and K = 16.
Loc 1 to 7 are listening positions shown in Fig. 3.

The results confirmed that the proposed decomposing
method as well as 3D sound field representation based on
virtual sound sources is effective for an SLP audio system.
Subjective experiments were conducted in the case of Q = 6
and K = 16 which were decided by objective measures Dcep

and DICLD, respectively. It suggests that smaller Dcep and
DICLD are one of the effective criteria for deciding Q and K,
however, more investigation is needed in future works.
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Fig. 8 Results of subjective test for sound localization for Q = 6 and
K = 16. Loc 1 to 7 are listening positions shown in Fig. 3.

5. Summary and Future Works

In this paper, we proposed and evaluated a new spatial au-
dio scheme: a selective listening point audio system. In the
system, a 3D acoustic field is represented by a set of sig-
nal sources with their locations and associated signals. We
developed a method to decompose the multichannel signals
recorded at distant positions into this representation based
on BSS technologies.

For evaluation, the proposed method was applied to
decompose the signals captured through 48 distant micro-
phones into a set of virtual signals. Subjective evaluation
showed the effectiveness of the proposed method, revealing
that the spatial impression of the resultant spatial sound is
as high as the natural reference sounds. The number of lo-
cal signal mixtures is more influential than the number of
virtual sources. However, when the number of local signal
mixtures is higher than that of the real sound sources, there
is no significant difference in the spatial impression of the
sound. These results suggest an important insight into infor-
mation reduction achieved in the proposed system, which is
one of our most crucial future works.

Many other issues need further study, including the

optimal array arrangement and performance under more
reverberant and/or noisy conditions. Among these prob-
lems, dealing with a non-stationary sound field, e.g., moving
sources, is one of the most important.

A demonstration of SLP audio can be downloaded
from:
http://www.sp.m.is.nagoya-u.ac.jp/˜niwa/slpademo-e.html
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