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PAPER

Fuzzy Entropy Based Fuzzy c-Means Clustering with Deterministic
and Simulated Annealing Methods

Makoto YASUDA†a), Nonmember and Takeshi FURUHASHI††b), Member

SUMMARY This article explains how to apply the deterministic an-
nealing (DA) and simulated annealing (SA) methods to fuzzy entropy based
fuzzy c-means clustering. By regularizing the fuzzy c-means method with
fuzzy entropy, a membership function similar to the Fermi-Dirac distribu-
tion function, well known in statistical mechanics, is obtained, and, while
optimizing its parameters by SA, the minimum of the Helmholtz free en-
ergy for fuzzy c-means clustering is searched by DA. Numerical experi-
ments are performed and the obtained results indicate that this combinato-
rial algorithm of SA and DA can represent various cluster shapes and divide
data more properly and stably than the standard single DA algorithm.
key words: fuzzy c-means clustering, fuzzy entropy, Fermi-Dirac distribu-
tion, deterministic annealing, simulated annealing

1. Introduction

Statistical mechanics investigates the macroscopic proper-
ties of a physical system consisting of several elements. Re-
cently, there has been great research interest in applying
statistical mechanical models or tools to information sci-
ence. Many engineering problems can be formulated as
optimization problems, and the simulated annealing (SA)
method [1], [2] is an efficient optimization technique for
such problems. SA is a stochastic relaxation method which,
by analogy with the annealing process of solids, treats a cost
function as the energy of a system and, as the (pseudo) tem-
perature is decreased, searches for a minimum randomly at
a high temperature and more deterministically at a low tem-
perature. SA is a global optimization technique for solving
combinatorial optimization problems as long as a cost func-
tion is definable and the cooling is performed sufficiently
slowly. SA, however, requires a very long time to find an
optimal solution because it searches stochastically at each
temperature and is practically an approximation algorithm.

The deterministic annealing (DA) method, on the other
hand, is a deterministic variant of SA [3], [4]. DA charac-
terizes the minimization problem of the cost function as the
minimization of the Helmholtz free energy, which depends
on the temperature, and tracks its minimum while decreas-
ing the temperature and thus it can deterministically opti-
mize the cost function at each temperature. Hence, DA is
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more efficient than SA but does not guarantee the optimal
solution. In addition, an effect of a cooling schedule on a
quality of DA’s solution is still not known. The DA method
is first applied to the Shannon entropy based fuzzy cluster-
ing and proved to be effective [3].

As for the fuzzy theory, there exists a strong rela-
tionship between the membership functions of the fuzzy
c-means (FCM) clustering [5] with the maximum entropy
or entropy regularization methods [6], [7] and the statistical
mechanical distribution functions. That is, FCM regularized
with the Shannon entropy gives a membership function sim-
ilar to the Maxwell-Boltzmann (or Gibbs) distribution func-
tion [3], [4], [6], and FCM regularized with the fuzzy en-
tropy [8] gives a membership function similar to the Fermi-
Dirac distribution function∗. These membership functions
are suitable for the annealing methods because they contain
a parameter corresponding to the system temperature. In the
present article, we focus on the Fermi-Dirac-like member-
ship function and propose a new fuzzy c-means clustering
algorithm using the DA and SA methods. As a complex-
ity of a system increases or in the real world, it is supposed
that, cluster boundaries are not so clear that fuzzy clustering
is more suitable than crisp clustering.

The advantage of using the Maxwell-Boltzmann-like
or Fermi-Dirac-like membership functions is that the fuzzy
c-means clustering can be interpreted and analyzed from a
statistical mechanical point of view [9]–[11]. Furthermore,
as compared to the Maxwell-Boltzmann-like membership
function, the Fermi-Dirac-like membership function has ex-
tra parameters αks∗∗, which, make it possible to represent
various cluster shapes according to their unsmoothnesses,
similar to former clustering methods based on the Gaussian
mixture [13], the degree of fuzzy entropy [14], and the con-
fusion degree [15], for example. αks strongly affect clus-
tering results and must be optimized under a normalization
constraint of FCM. On the other hand, although it is effi-
cient, the DA method does not give appropriate values of
αks by itself, and the DA clustering sometimes fails if αks
are assigned improperly.

Accordingly, the objective of this article is to over-
come these problems and modify the fuzzy entropy based
DA method. We introduce SA into the DA clustering to op-
timize αks because, as pointed out above, both DA and SA

∗These are called the Maxwell-Boltzmann-like and the Fermi-
Dirac-like membership functions respectively in this article.
∗∗αk corresponds to a chemical potential in statistical mechan-

ics [12], and k denotes a data point.
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contain the parameter corresponding to the system tempera-
ture and can be naturally combined as DASA. This approach
tries to combine an optimality of SA with an effectiveness
of DA.

Nevertheless, this approach causes a few problems.

1. How should the initial values of αks be estimated under
the normalization constraint?

2. How should the initial annealing temperature be esti-
mated?

3. SA must optimize continuous αk [16], [17].
4. SA must optimize many αks [18].

Linear approximations of the Fermi-Dirac-like membership
function is useful in guessing the initial αks and the initial
annealing temperature of DA.

In order to perform SA in a continuous variable do-
main, since an appropriate value of αk is unknown, a nor-
mal distribution is assumed to generate a new solution in
the vicinity of the current αk.

In order to perform SA in a many-variables domain,
αks to be optimized should be selected according to a se-
lection rule to reduce a computational time. In an early an-
nealing stage, most αks are optimized. In a final annealing
stage, however, only αks of data that are located sufficiently
far from all cluster centers are optimized because their mem-
berships might be fuzzy. Distances between the data and the
cluster centers are measured by using linear approximations
of the Fermi-Dirac-like membership function.

Numerical experiments show that DASA clusters data
that are distributed in various shapes more properly and sta-
bly than the standard single fuzzy entropy based DA algo-
rithm.

2. Fuzzy Entropy Regularization of FCM

First, we introduce the fuzzy entropy into the FCM cluster-
ing.

Let X = {x1, . . . , xn} (xk = (x1
k , . . . , x

p
k ) ∈ Rp) be a

data set in the p-dimensional real space, which should be
divided into c clusters. In addition, let V = {v1, . . . , vc} (vi =

(v1
i , . . . , v

p
i )) be the centers of clusters, and let uik ∈ [0, 1]

(i = 1, . . . , c; k = 1, . . . , n) be the membership functions.
Furthermore, let

J =
n∑

k=1

c∑
i=1

(uik)mdik (m > 1) (1)

be the objective function of FCM, where dik = ‖xk − vi‖2. In
FCM, under the normalization constraint of

c∑
i=1

uik = 1 (∀k), (2)

the Lagrange function LFCM is given by

LFCM = J −
n∑

k=1

ηk

⎛⎜⎜⎜⎜⎜⎝
c∑

i=1

uik − 1

⎞⎟⎟⎟⎟⎟⎠ , (3)

where ηk is the Lagrange multiplier. In case of the FCM
regularized by the fuzzy entropy S FE , m is set to 1 and S FE

is introduced to LFCM as

L = LFCM − λS FE , (4)

where λ can be considered to play a role of the Lagrange
multiplier [19]. That is, the regularization parameter is re-
placed by λ [10]. This method approaches crisp or hard
clustering as λ decreases to +0. The fuzzy entropy can be
written as

S FE = −
n∑

k=1

c∑
i=1

{uik log uik + (1 − uik) log(1 − uik)}. (5)

Here, ∂L/∂uik = 0 yields the following membership func-
tion

uik =
1

eαk+βdik + 1
, (6)

where β = 1/λ defines the extent of the distribution [10],
and αk = −ηk/λ. Equation (6) is formally normalized as

uik =
1

eαk+βdik + 1

/ c∑
j=1

1

eαk+βd jk + 1
. (7)

∂L/∂vi = 0 gives

vi =

∑n
k=1 uik xk∑n

k=1 uik
. (8)

3. Deterministic Annealing

The membership function obtained in Eq. (6) resembles the
Fermi-Dirac distribution function

nl =
1

eα+βεl + 1
, (9)

where nl is an average number of particles that occupy en-
ergy levels εl. This similarity makes it possible to formulate
the preceding method as the DA clustering from the statisti-
cal mechanical viewpoint.

3.1 Formulation of Fuzzy Clustering with DA

The grand partition function for particles governed by the
Fermi-Dirac distribution function or the Fermi-Dirac statis-
tics takes the form

Ξ =
∏

l

(1 + e−α−βεl ), (10)

where β = 1/(kBT ) (kB is the Boltzmann constant) [12].
The relationship F = −(1/β)(logΞ − α∂ logΞ/∂α) gives the
Helmholtz free energy

F = −1
β

⎧⎪⎪⎨⎪⎪⎩
∑

l

log(1 + e−α−βεl ) + αN

⎫⎪⎪⎬⎪⎪⎭ , (11)
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where N is the total number of particles [12].
Similarly, in the FCM clustering regularized with the

fuzzy entropy, in which data can belong to any cluster, the
grand partition function can be written as

ΞFE =

n∏
k=1

c∏
i=1

(1 + e−αk−βdik ), (12)

which, from the relationship FFE = −(1/β)(logΞFE −
αk∂ logΞFE/∂αk), gives the Helmholtz free energy

FFE = −1
β

n∑
k=1

⎧⎪⎪⎨⎪⎪⎩
c∑

i=1

log(1 + e−αk−βdik ) + αk

⎫⎪⎪⎬⎪⎪⎭ . (13)

The inverse of β can be considered to represents the system
or computational temperature T .

According to the principle of minimal free energy
in statistical mechanics, the minimum Helmholtz free en-
ergy determines the distribution at thermal equilibrium [12].
Thus, formulating the DA clustering as a minimization of
Eq. (13) leads to ∂FFE/∂vi = 0 at the current temperature,
and again gives Eq. (8). Desirable cluster centers are ob-
tained by calculating Eqs. (6) and (8) repeatedly.

3.2 Correspondences between Fermi-Dirac Statistics and
Fuzzy Entropy Based Fuzzy Clustering

Correspondences between the FCM clustering regularized
with the fuzzy entropy (FC) and the Fermi-Dirac statistics
(FD) are summarized as follows:

• Constraints: (a) Constraint whereby the sum of all
particles occupying the energy level εl is fixed, that is,∑

l nl = N in FD corresponds with the normalization
constraint in FC, and l corresponds to the cluster num-
ber i. In addition, the fact that data can belong to mul-
tiple clusters leads to the summation on k. (b) There
is no constraint in FC that corresponds to

∑
l εlnl = E

in FD. Nevertheless,
∑n

k=1
∑c

i=1 uikdik must instead be
minimized in FC.
• Distribution Function: nl/N, the ratio of particles that

occupy the energy level εl, corresponds to uik. In FD,
particles cannot be distinguished from each other. In
FC, however, data are distinguishable, and for that rea-
son, uik gives the probability of data belonging to mul-
tiple clusters.
• Entropy: The entropy S for FD equals −∂F/∂T . Sim-

ilarly, the fuzzy entropy S FE equals −∂FFE/∂T in FC.
• Energy: The relationships E = F + TS and Jm=1 =

FFE + TS FE hold in FD and FC, respectively.

In the DA clustering, cluster distributions that mini-
mize FFE are searched at a given temperature. At a higher
temperature, membership functions are widely distributed
and clusters to which a datum belongs are fuzzy. By reduc-
ing the temperature according to the annealing schedule, DA
achieves thermal equilibrium, which minimizes FFE . At ab-
solute zero, fuzzy clustering becomes crisp clustering. The
extent of distribution, or fuzziness, can be measured by the
fuzzy entropy S FE .

3.3 Linear Approximation of Fermi-Dirac Distribution
Function

The Fermi-Dirac distribution function can be approximated
by linear functions. That is, as shown in Fig. 1, the Fermi-
Dirac distribution function of the form:

f (x) =
1

eα+βx2
+ 1

(14)

is approximated by the linear functions

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.0

(
x ≤ −α − 1

κ

)

− κ
2

x − α
2
+

1
2

(−α − 1
κ

≤ x ≤ −α + 1
κ

)
,

0.0

(−α + 1
κ

≤ x

)

(15)

where κ =
√−αβ. g(x) satisfies g(

√−α/β) = 0.5 and re-
quires that α be negative. In the same way, the Fermi-Dirac-
like membership function can be approximated by linear
functions.

In Fig. 2, Δx = x−xnew denotes a reduction in the extent
of distribution with decreasing the temperature from T to
Tnew (T > Tnew). The extent of distribution also narrows
with increasing α. αnew (α < αnew), which satisfies g(0.5)α−
g(0.5)αnew = Δx, is obtained as

αnew = −
{√−α + √−αβnew

(
1√
β
− 1√
βnew

)}2

, (16)

where β = 1/T and βnew = 1/Tnew. Thus, taking T to be
the temperature at which the previous DA was executed and
Tnew to be the next temperature, the covariance of αk’s dis-
tribution is estimated as

Δα = αnew − α, (17)

by assuming its normal distribution.

Fig. 1 The Fermi-Dirac distribution function f (x) and its linear
approximation functions g(x).
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Fig. 2 Decreasing of extent of the Fermi-Dirac distribution function
from x to xnew with decreasing the temperature from T to Tnew.

3.4 Initial Estimation of αk and Annealing Temperature

Before executing DA, it is very important to estimate the
initial values of αks and the initial annealing temperature in
advance.

From Fig. 1, the distances between a data point and
cluster centers are averaged as

Lk =
1
c

c∑
i=1

‖xk − vi‖, (18)

and this gives

αk = −β(Lk)2. (19)

With given initial clusters distributed widely enough,
Eq. (19) overestimates αk, so that αk must be adjusted by
decreasing its value gradually.

Furthermore, Fig. 1 gives the width of the Fermi-Dirac
distribution function as wide as 2(−α + 1)/(

√−αβ), which
must be equal to or smaller than that of the data distribution
width (= 2R). This condition leads to

2
−α + 1√−αβ = 2R. (20)

As a result, the initial value of βlow or the initial annealing
temperature Thigh is roughly determined as

βlow 	 4
R2

(
Thigh 	 R2

4

)
. (21)

4. Simulated Annealing

The cost or objective function for SA is

E(αk) = Jm=1 + K
n∑

k=1

⎛⎜⎜⎜⎜⎜⎝
c∑

i=1

uik − 1

⎞⎟⎟⎟⎟⎟⎠
2

, (22)

where K is a constant large enough to satisfy the normaliza-
tion constraint.

In order to optimize each αk by SA, its neighbor αnew
k (a

displacement from the current αk) is generated as a normal
distribution with a mean of 0 and a covariance of Δαk, as
defined in Eq. (17).

The SA’s initial temperature T0(= 1/β0) is determined
such that the acceptance probability becomes

e−β0{E(αk)−E(αnew
k )} = 0.5 (E(αk) − E(αnew

k ) ≥ 0). (23)

By selecting αks to be optimized from data that locate far
from all cluster centers, the computational time of SA can
be shortened. After annealing has done to some extent,
the boundary of the transition region can be easily obtained
with the linear approximations of the membership func-
tion. Thus, from Fig. 1, data that have distances greater than√−αk/β from each cluster center are selected at the final SA
stage.

4.1 Simulated Annealing Algorithm

The SA algorithm is stated as follows:
1 Initialization: Calculate an initial temperature T0 from

Eq. (23). Set a current temperature T to T0. Set an
iteration count t to 1. Calculate a covariance Δαk for
each αk by Eq. (17).

2 Select αks to be optimized, if necessary.
3 Calculate neighbors of current αks.
4 Apply the Metropolis algorithm [20] to the selected αks

using Eq. (22) as the cost function and calculating uik

without the normalization constraint by Eq. (6).
5 If tS Amax < t is satisfied, then return. Otherwise, de-

crease the temperature as T = T0/ log(t+1), increment
t, and go back to 2.

5. Combinatorial Algorithm of Deterministic and Sim-
ulated Annealing

The SA algorithms is combined with the DA algorithm as
follows:

1 Initialization for DASA: Set a threshold of the con-
vergence test δ1. Set maximum iteration counts max1

and max2, and an iteration count tS A = 1 for the SA
algorithm. In addition, set a maximum iteration count
max3 for DASA.

2 Initialization for DA: Set a rate at which the temper-
ature is lowered Trate, and set a threshold for the con-
vergence test δ2. Calculate the initial temperature Thigh

by Eq. (21) and set the current temperature T = Thigh.
Place c clusters randomly, and estimate initial αks by
Eq. (19). After that, adjust the estimated initial αks to
satisfy the normalization constraint Eq. (2). Also set an
iteration count of the DA algorithm tDA to 1.

3 Calculate uik by Eq. (7) and vi by Eq. (8).
4 Convergence test for DA: Compare the difference be-

tween the current cost (objective) value Jm=1 and that
obtained at the previous iteration Ĵm=1. If ‖Jm=1 −
Ĵm=1‖/Jm=1 < δ2 ·T/Thigh is satisfied, then goto 5. Oth-
erwise, increment tDA, and go back to 3.
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5 Execution of SA: Set tS Amax = max1, and execute the
SA algorithm, and add a number of times of iterations
to tS A.

6 Convergence test for DASA: Compare the difference
between the current cost (objective) value J̄m=1 and
that obtained at the previous iteration ˆ̄Jm=1. If ‖J̄m=1 −
ˆ̄Jm=1‖/J̄m=1 < δ1 or max3 < tDA is satisfied, then goto

7. Otherwise, decrease the temperature as T = T ∗Trate,
and go back to 3.

7 Execution of final SA: Set tS Amax = max2, execute the
SA algorithm, add a number of times of iterations to
tS A, and then stop.

6. Experiments

To demonstrate the effectiveness of the proposed algorithm,
numerical experiments were carried out. DASA’s results
were compared with those of single DA.

We set δ1 = 0.01, δ2 = 0.5, Trate = 0.8, max1 = 500,
max2 = 20000, and max3 = 10†. We also set R in Eq. (20) to
350.0 for experimental data 1∼3, and 250.0 for experimental
data 4.

In Experiment 1, 11,479 data points were generated as
ten equally sized normal distributions. Figure 3 shows a
fuzzy clustering result by DASA. Single DA similarly clus-
ters these data.

In Experiment 2-1, three differently sized normal dis-
tributions consisting of 2,249 data points shown in Fig. 4
were used. Figure 4 (0) shows the initial clusters obtained
by the initial estimation of αks and the annealing temper-
ature. Figures 4 (1)∼(6a) show a fuzzy clustering process
of DASA. At the high temperature in Fig. 4 (1), as de-
scribed in Sect. 3.2, the Fermi-Dirac-like membership func-
tions were widely distributed and clusters to which data be-
long were fuzzy. However, with decreasing temperature
(from Fig. 4 (2) to Fig. 4 (5)), the distribution became less
and less fuzzy. After executing DA and SA alternately,
the clusters in Fig. 4 (6a) were obtained. Then, data to be
optimized by SA were selected by the criterion stated in

Fig. 3 Experimental result 1. (Fuzzy clustering result obtained by
DASA. Black circles indicate centers of clusters.)

Sect. 4, and SA was executed. The final result of DASA
in Fig. 4 (6b) shows that data were desirably clustered (The
DASA algorithm without the data selection rule gives a sim-
ilar result). In contrast, because of the randomness of the ini-
tial cluster positions and the difficulty of good estimation of
the initial αks, single DA becomes unstable, and sometimes
gives satisfactory results, as shown in Fig. 4 (6c), and some-
times not, as shown in Fig. 4 (6d). By comparing Figs. 4 (6b)
to 4 (6c), it is found that, due to the optimization of αks by
SA, the resultant cluster shapes of DASA are far less smooth
than those of single DA. These rough membership functions
are suitable to represent various fuzzy sets [15].

Changes of the costs of DASA (Jm=1 for the DA stage
and Eq. (22) for the SA stage††, respectively) are plotted as
a function of iteration in Fig. 5, and the both costs decrease
with increasing iteration. In this experiment, the total itera-
tion of the SA stage tS A was approximately 3,615, while that
of the DA stage (tDA in the combinatorial DASA algorithm)
was only 8. Accordingly, the amount of simulation time of
DASA was mostly consumed in the SA stage.

In Table 1, computational times of final SA with or
without the data selection rule is compared†††. It is con-
firmed that the time reduction effect is achieved by this
method.

In Experiment 2-2, in order to examine the effective-
ness of SA introduced in DASA, Experiment 2 was con-
ducted ten times, as shown in Table 2, where ratio listed in
the second row is the ratio of data optimized at the SA stage.
That is,

ratio =
number of αk s selected randomly from S αk

number of S αk

,

(24)

where S αk is the set of αks selected in the SA algorithm.
“UP” means to increase ratio as 1.0 − 1.0/n, where n is
the number of executions of the SA stage, and “DOWN”
means to decrease ratio as 1.0/n. The results are judged as
“Success” or “Failure” from a human viewpoint††††. From
Table 2, it is concluded that DASA always clusters the data
properly if ratio is large enough (0.6 < ratio), whereas, as
listed in the last column, single DA succeeds by 50%.

In Experiments 3 and 4, two elliptic distributions con-
sisting of 2,024 data points, and two horseshoe-shaped dis-
tributions consisting of 1,380 data points were used, respec-
tively. Figures 6 and 7 show DASA’s clustering results. It is
found that DASA can cluster these data properly. In Experi-
ment 3, the percentage of success of DASA is 90%, whereas
that of single DA is 50%. In Experiment 4, the percentage
of success of DASA is 80%, whereas that of single DA is
40%.

†These parameters have not been optimized for experimental
data.
††K was set to 1 × 1015 in Eq. (22).
†††Executions were conducted on an AMD Athlon(tm) 64 × 2

Dual Core Processor.
††††No close case was observed in this experiment.
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Fig. 4 Experimental result 2-1. (Fuzzy clustering result obtained by DASA and single DA. “Experi-
mental Data” are given data distributions. “Selected Data” are data selected for final SA by the selection
rule. (1)∼(6a) and (6b) are results using DASA. (6c) and (6d) are results using single DA (success and
failure, respectively). Data plotted on the xy plane show the cross sections of uik at 0.2 and 0.8.)



1238
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.6 JUNE 2009

Fig. 5 Experimental result 2-1. (Change in the cost of DASA as a
function of iteration counts of DA and SA. Jm=1 for the DA stage and

Jm=1 + K
∑n

k=1

(∑c
i=1 uik − 1

)2
for the SA stage against tDA + tS A.)

Table 1 Experimental result 2-2. (Comparison of computational times
[sec] of final SA with/without data selection) (average of 10 trials).

without data selection 0.856
with data selection 0.781

Table 2 Experimental result 2-2. (Comparison of numbers of successes
and failures of fuzzy clustering using DASA for ratio = 0.3, 0.6, 1.0, 1.0−
1.0/n (UP), 1.0/n (DOWN) and single DA. (n is the number of execution
times of the SA stage).)

DASA
DA

ratio 0.3 0.6 1.0 UP DOWN
Success 6 9 10 6 7 5
Failure 4 1 0 4 3 5

Fig. 6 Experimental result 3. (Fuzzy clustering result of elliptic distri-
butions obtained using DASA. Data plotted on the xy plane show the cross
sections of uik at 0.2 and 0.8. Black circles indicate centers of clusters.)

These experimental results demonstrate the advantage
of DASA over single DA. Nevertheless, DASA suffers from
two disadvantages. First, it takes so long to execute SA re-
peatedly that, instead of Eq. (6) or (7), it might be better
to use its linear approximation functions as the membership
function. Second, since αks differ from each other, it is dif-
ficult to interpolate them.

Fig. 7 Experimental result 4. (Fuzzy clustering result of horseshoe-
shaped distributions obtained using DASA. Data plotted on the xy plane
show the cross sections of uik at 0.2 and 0.8. Black circles indicate centers
of clusters.)

7. Conclusions

In the present article, by combining the deterministic and
simulated annealing methods, we proposed a new statisti-
cal mechanical fuzzy c-means clustering algorithm (DASA).
Numerical experiments showed the effectiveness and the
stability of DASA.

However, as stated at the end of Sect. 6, DASA has
problems to be considered. In addition, a major problem
of the fuzzy c-means methodologies is that they do not give
a number of clusters by themselves. Thus, a method such as
[11], which can determine the number of clusters automati-
cally, should be combined with DASA.

Future research will include experiments and examina-
tions of the properties of DASA, especially on the adjust-
ment of its parameters, its annealing scheduling problem,
and its applications.

This work was supported by a Grant-in-Aid for Scien-
tific Research (19500201).
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