IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 4 APRIL 1994

601

[PAPER Special Section on Discrete Mathematics and Its Applications ]

Designing Efficient Geometric Search Algorithms Using
Persistent Binary-Binary Search Trees

Xuehou TANT, Tomio HIRATATf and Yasuyoshi INAGAKIT!, Members

SUMMARY Persistent data structures, introduced by Sar-
nak and Tarjan, have been found especially useful in designing
geometric algorithms. In this paper, we present a persistent form
of binary-binary search tree, and then apply this data structure to
solve various geometric searching problems, such as, three dimen-
sional ray-shooting, hidden surface removal, polygonal point
enclosure searching and so on. In all applications, we are able
to either improve existing bounds or establish new bounds.
key words: computational geometry, persistent data structures,
persistent binary-binary search trees, ray-shooting

1. Introduction

Ordinary data structures are ephemeral in the sense
that an update (insertion or deletion) to the structure
destroys the old version, leaving only the new version
available for use. In contrast, a persistent structure
allows accesses to past versions. The structure is fully
persistent or partially persistent depending upon
whether any previously existing version can also be
updated or not. In other words, the persistent structure
embeds all versions of the ephemeral structure so that
access to any version can be effectively simulated.
Driscoll et al. [8] have given general techniques for
making an ephemeral data structure persistent, pro-
vided that each node of the ephemeral structure has
constant out-degree. Persistent data structures have
been found especially useful in designing geometric
algorithms [8], [21].

For higher dimensional problems, multi-layer
data structures, such as binary-binary search trees and
segment-segment trees [17], are often used.
Specifically, operations on multi-layer structures
include not only the node updates but also the sub-
structure updates. Thus, Driscoll et al’s technique
cannot be directly applied to making multi-layer data
structures persistent. However, for specific problems, it
is possible to develop some special forms of persistent
multi-layer structures. In this paper, we present a

Manuscript received September 13, 1993.

T The author is with the School of High-Technology for
Human Welfare, Tokai University, Numazu-shi, 410-03
Japan.

Tt The authors are with the Faculty of Engineering,
Nagoya University, Nagoya-shi, 464 Japan.

* A preliminary version of this paper can be found in the
Proceedings of the SIGAL International Symposium on
Algorithms (LNCS 450), August, 1990, Tokyo.

persistent form of binary-binary search tree and apply
it to solving various geometric searching problems. In
the following we briefly review the essentials of persist-
ent data structures.

1.1 Persistent Data Structures

Driscoll et al. [8] have given general techniques for
making an ephemeral data structure persistent, pro-
vided that each node of the ephemeral structure has
constant out-degree. Specifically, they add the partial
persistence to an ephemeral data structure through the
method of node copying. Each node of an ephemeral
structure is expanded to hold & extra pointer slots in
addition to the original ones. When a pointer change
made to a node v, if there is an empty slot in node v,
the new pointer is stored, along with a version stamp
indicating when the change occurred; otherwise, a
copy c¢(v) of v is created, which is filled with the
newest pointer values of v and thus has k& new empty
slots. Since the copy ¢(v) is required to store a pointer
in the latest parent of v, node copying can ripple
backwards through the structure. However, amortized
over a sequence of pointer changes, there are only
O (1) nodes copied per pointer change. If an update
operation (insertion or deletion) requires only O (1)
pointer changes, the partially persistent structure can
then be built with an amortized space cost of O (1) per
update. Simulation of an access to the ith version of
the structure is simply accomplished by following at
each node the appropriate pointer with the maximum
version stamp no greater than i.

A main difference between partially persistent
structures and fully persistent structures is that the
various versions of a partially persistent structure have
a natural linear ordering, whereas the versions of a
fully persistent structure are only partially ordered. To
build a fully persistent data structure, we first impose a
total ordering on its versions. The total ordering is
represented by a list, called the version list. When a
new version, say I, is created, it is inserted in the
version list immediately after its parent p(i); p(i) is
the version that is updated to obtain version i. Thus
for any version I, the descendants of i occur consecu-
tively in the version list, starting with {. The version
list is represented in Dietz and Sleator’s structure [6].



602

The structure is able to determine, given two versions
i and j, whether i precedes or follows j in the version
list in O (1) worst-case time. It takes O (1) worst-case
time for an insertion. Navigation through the persis-
tent structure is then the same as in the partially persis-
tent case, except that versions are compared with
respect to their positions in the version list rather than
their numeric values. With a variant of node copying,
a fully persistent structure can be obtained with the
same bounds as in the partially persistent case. The
variant of node copying is called node splitting; when
a node runs out of slots for new pointers, it is split into
two, putting the first half of the pointers in one copy
and the remainder in the other. The node splitting
process can thus cascade through the structure.

When the persistence-addition techniques are
applied to a particular kind of search tree, the red-
black tree [11], considerable simplifications can be
made. In summary, Driscoll et al. [8] obtain a way to
build both partially and fully persistent search trees
with a worst-case logarithmic time per update or access
and a worst-case space of O (1) per update.

In the companion paper [21], partially persistent
search trees have been applied to give a simple imple-
mentation of efficient point location for planar sub-
division. Suppose that S is a planar subdivision of
size n. If we were to draw a vertical line through every
vertex of S, then S would be broken into a number of
vertical slabs. Within each slab, S looks like a series
of vertically ordered trapezoids. See Fig. 1. Consider
sweeping a vertical line through the plane from left to
right and store the edges of S intersected with the
sweep line in an active list. As the boundary from one
slab to the next is crossed, certain edges are deleted
from the sorted list and certain new ones are added.
Over the entire sweep, there will be O(#n) insertions
and deletions, one insertion and one deletion per edge
of S. In other words, a new version of the active list
is created when a vertex of the subdivision is reached.
The history of the active list gives all the data for
planar point location. The problem is then reduced to
storing and accessing all the versions of the active list
in a partially persistent search tree. Clearly, the space
requirement of the structure is O(n). Given a query
point p, we can locate the slab containing p in O (log

Fig.1 A planar subdivision.

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 4 APRIL 19%4

n) time, and then perform another binary search to
find p within the slab in O (log ») further time.

1.2 Overview of This Paper

We will first present our persistent binary-binary
search trees by examining a basic problem, called the
three-dimensional ray-shooting problem. Let g denote
an arbitrary point in the 3-dimensional space and S a
set of planar polygonal faces that do not intersect.
(The faces may be concave or even have holes.) The
ray-shooting problem requires reporting the face of S
which is first hit by the open z-ray emanating from ¢
in the positive z direction. Note that the problem we
considered is restricted to the rays parallel to the z axis.
Let N be the total number of edges of the faces in S,
and let K be the number of edge intersections of § in
the image (x, y)-plane. Obviously K is bounded
above by O(N?). We present a persistent form of
binary-binary search tree to solve this problem in
O (log N) query time and O (N + K) space. Our persis-
tent structure makes use of a partially persistent search
tree and a fully persistent search tree. An advantage of
our structure is that it is conceptually simple and
suitable for actual implementation.

Our structure also supports the stabbing search in
which we are requested to report all the faces intersect-
ing a query line segment in the z direction and the
topmost face search in which the face last hit by the
z-ray emanating from a query point is asked for. We
then apply these searching algorithms to solve other
geomctric problems such as hidden surface removal,
polygonal point enclosure searching and so on. In all
applications, we are able to either improve existing
bounds or establish new bounds.

Before closing this section, we make a comparison
of our data structure with other similar data structures.
First, we note that the solution for the ray-shooting
problem can be applied to the spatial subdivision
searching problem in which the polygonal faces of S
form a subdivision of three dimensional-space and we
are requested to find the polyhedron containing a
query point p. (After the face first hit by the ray
emanating from p in the z direction is found, the
polyhedron containing p can be easily reported in
constant time.) But, the known spatial subdivision
searching algorithms [5], [20] are not suitable for our
purpose. Combining the partial persistence-addition
technique [8] and the dynamic planar point-location
technique [18], [19], Preparata and Tamassia [20] give
an O(log? N) query time and O(N log? N) space
solution for the spatial subdivision searching problem.
Althougth their algorithm is space-efficient, the sub-
division must be convex. Thus, it cannot be simply
applied to the ray-shooting problem. Cole’s similar
lists method [5] has been applied to the spatial subdivi-
sions formed by »n planes in the space. Although



TAN et al: DESIGNING EFFICIENT GEOMETRIC ALGORITHMS

Cole’s similar lists method can be used to solve the
ray-shooting problem, a total z order of all faces is
required. (Note that making a set of faces in the space
acyclic is not an easy work [16].) Moreover, the similar
lists method cannot be applied to the stabbing search
problem and the topmost face search problem without
increasing ‘the query time. Finally, we note that
although our algorithm is not space-efficient for the
spatial subdivision searching problem, it attains the
optimal query time and is space-efficient for the other
problems (see Sect. 3).

2. Three-Dimensional Ray-Shooting Using a Pair
of Persistent Binary Search Trees

For a set S of planar polygonal faces and a query
point g, the three-dimensional ray-shooting problem
requires to find the element of S which is first inter-
sected with the open z-ray emanating from ¢ in the
positive z direction. Let us now give a simple solution
to this problem [7]. The edges are first projected onto
the (x, y) plane. We assume, without loss of general-
ity, that no edge is vertical in the (x, y) plane. We
define an interval in the (x, y) plane as the line
segment along a projected edge e that have the en-
dpoint(s) of e or the intersection (s) of projected edges
as its two endpoints and does not contain any intersec-
tion in its interior. We define a region as the area
bounded by a set of intervals. Thus, the projected
edges are intersected into infervals, which define a
planar graph G with O(N+K) regions (Fig. 2),
where K is the number of edge intersections in the (x,
y) plane. For each region, we maintain a list of faces
whose projections contain that region. In a region’s
face list, the faces are then sorted into the z order.
Given a query point g, we can perform a planar point
location on G to locate the region containing the
image of g in the (x, y) plane, then search the face list
of that region for the face immediately above g, and
thus obtain the face first hit by the z-ray emanating

>

Fig. 2 The projection of a set of polygonal faces.

603

from g. Obviously the query time is O(log N). If an
efficient planar point-location structure, such as Sarnak
and Tarjan’s [21], is used, the space requirement
becomes O((N+K)N).

By noticing that the face lists of adjacent regions
are similar, we can further reduce the space bound to O
(N+K). Let us now approach the problem with the
plane-sweep paradigm. A vertical line is swept
through the (x, y) plane from left to right. The
regions crossed by the sweep line are called the current
regions. For each current region R, we make a note of
the boundary intervals that are intersected with the
sweep line. These intervals are R’s upper and lower
current intervals, depending on whether the region is
below or above the intervals. (A concave region may
have several intersections with the sweep line.) A face
list is active if it is the face list of a current region.
During the sweep, the current regions with their face
lists are maintained in a data structure for ray-
shooting. A binary-binary search tree can be used for
this purpose; The current regions are vertically stored
in a balanced binary search tree, for instance, a red-
black tree; each node of this tree denotes a region,
whose face list again gets attached to a balanced binary
search tree over the z order of the faces. An example
of this binary-binary search tree is shown in Fig. 3. To
obtain the O (N + K) space bound, we give a way to
make this binary-binary search tree persistent.

When the sweep line is moved left-right through
the graph G, the current regions and their face lists
change. As a vertex v is passed, the regions to the left
of v are deleted from the set of current regions and
their face lists become inactive, the regions to the right
of v are inserted into the set of current regions and the
face lists of these newly started regions are created, and
the region above or below v changes its lower or upper
current interval. (It may happen that neither deletion
nor insertion occurs when a vertex is passed.) Note
that the change of the current regions is just the same
as that in the planar point location problem. Thus, the
first level search tree can be implemented as the par-
tially persistent search tree for planar point location
developed by Sarnak and Tarjan [21]. The operations
on the second level search trees are a sequence of face
list creations and cancels. Since region R’s face list
becomes inactive when region R is deleted from the set

Fig. 3 The binary-binary search tree for ray-shooting.



604

1
|

Fig.4 The order of regions’ face lists created.

of current regions, the remaining task is how to carry
out face list creations. A face list creation needs at first
glance up to O(N log N) time and O(N) space.
However, we can reduce the cost to O (log N) time and
O (1) space.

We will first give a general construction of our
data structure and then make it precise. Observe that
between the face lists of two adjacent regions R and R,
there exists only one difference. That is, the face list of
R’ can be obtained by modifying the face list of R with
an insertion or a deletion of the face bounded by the
interval between R and R’, depending on whether the
face’s projection contains region R or not. Suppose
that we encounter a vertex v during the sweep. For the
newly started regions at v, i.e., the regions to the right
of v, we can iteratively use the face list of a region to
build the face list of adjacent region. Let Ry denote the
unbounded region of the graph G. Clearly, Ry’s face
list is empty. All other regions’ face lists can be then
obtained from a sequence of updates on Ry’s face list.
Figure 4 shows such an example. Numbers attached to
regions show the order of regions’ face lists created.
(The places where a face list is created are marked with
a vertical dashed line.) Arrows between regions define
a binary relation a: R;aR; means that region R;’s face
list is obtained by updating region R;s face list.
Observe that relation ¢ gives a partial order on the set
of created face lists. This observation suggests that the
sequence of face list creations can be implemented in a
fully persistent structure.

Let the ith face list in the sequence of creations
have list number i. Since a face list creation contains
a face list insertion or deletion, the ith face list is just
the ith version of the fully persistent search tree. To set
up a one-to-one relation between the regions and their
face lists’ numbers, we save list number i, or exactly,
the number of the corresponding version of the fully
persistent search tree, in the nodes of the partially
persistent search tree (first level tree) that denote the
corresponding region. Thus, a face list can be created
in O(log N) time and O (1) space.

Let us now make our data structure into details.

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 4 APRIL 1994

Recall that a region in the partially persistent search
tree is represented by its upper intervals, a concave
region may be represented by more than one interval in
the same version of the partially persistent search tree
(see Fig. 1). In this case, a current region may have
several intersections with the sweep line. But it does
not affect the planar point location algorithm, because
we only need to find the interval immediately above
the query point (and the region containing the query
point can then be easily determined). See also [21].

For the construction of the fully persistent search
tree, we first note that the unbounded region R, is
concave and even has holes. Due to the representation
of concave regions in the partially persistent search
tree, a concave region may have several face lists
although all of them have the same content (see Fig. 4
for examples). When encountering a vertex v during
the sweep, we perform a binary search in the current
version of the partially persistent search tree to find the
interval and thus the region above v. Then the face list
of the found region can be employed to create the face
lists of the regions to the right of v.

In summary, the first and second level search trees

are implemented as a partially and fully persistent
search trees, respectively. By the aid of face lists’
numbers, we can easily set up the connection between
these two different persistent structures. That is, a
number of face list corresponds a version of the fully
persistent search tree, and is stored in the nodes of the
partially persistent tree that represent the correspond-
ing region. From the size of the graph G, we conclude:
Theorem 1: Given a set S of polygonal face in the
space, it is possible to preprocess it in O ((N + K)log
N) time and O (N + K) space, so that the ray-shooting
query can be answered in O (log N) time, where N is
the total number of edges and K the number of edge
intersections in the image plane.
Proof: First, all the edges of .S are projected onto the
(x, y) plane. These projected edges are intersected
into intervals, which define a planar graph G. The
planar graph G can be simply constructed in O ((N
+ K)log N) time or even O (N log N+ K) time and
O(N+K) space [4], [14]. Then we sweep a vertical
line through the plane, and build a partially persistent
search tree for the planar graph G and a fully persistent
search tree for all of the regions’ face lists. The upper
intervals of a region are stored in some nodes of the
partially persistent search tree, which hold a pointer to
the face list(s) of the corresponding regions, i.e., the
corresponding version number of the fully persistent
tree. At each sweep step, we need O (log »n) time and
O (1) space to update the persistent data structure.
Thus, it requires O((N+K)log N) time and O(N
-+ K) space to build the persistent structure.

Given a query point p, we first perform a planar
point location on G to find the region contain the
image of p in the (x, y) plane. Then using the version



TAN et al: DESIGNING EFFICIENT GEOMETRIC ALGORITHMS

number found in the partially persistent search tree, we
perform a binary search on the fully persistent search
tree to find the face immediately above p. Clearly, the
query time is O(log N). This completes the proof.
]

We end this section with several remarks about the
generality of our structure. Our data structure also
supports the fopmost face search in which the face last
hit by the z-ray emanating from a query point is asked
for and the stabbing search in which the queries are of
the following form: given a line segment (a, b) paral-
lel to the z axis, report all faces segment (a, b) inter-
sects. By noticing that these two kinds of searches can
be performed in any version of the fully persistent
search tree, we can respectively solve them in O (log
N) and O(log N+1t¢) query time where 7 is the num-
ber of reported polyhedra.

In applying our data structure to the spatial sub-
division searching problem, one drawback of our
algorithm is that is requires O (N + K) space. (Note
that K=.02(N? in the worst case.) To reduce the
complexity of K, we can find a good projection plane,
e.g., by a number of random choices. (In many cases,
it is even possible to make K be linear to or slightly
greater than N.) Furthermore, there is an interesting
and important class of spatial subdivisions such that
the number of intersections between the projections of
the edges on the (x, y) plane is subquadratic. Let S
be a subdivision of 3-space into » convex regions (e.g.,
the Voronoi diagram of » points in 3-space). It is well
known that the complexity of S is §(n?) [9]. The
intersections of these 8 (n?) edges in the projection (x,
y) plane are trivially bounded by O(n*). A careful
study shows that the complexity of the projected image
of S is 6 (n®) [12]. Thus, for a spatial subdivision with
n convex regions, our data structure immediately leads
to an O(log n) query time and O (»*) space solution.
For comparison, if we use Preparata and Tamassia’s
algorithm [17], then we can obtain the O(log®n)
query time and O(n®log? n) space solution for the
same problem.

3. Applications

This section presents applications of the data structure
developed in Sect.2 to problems that can be formu-
lated in terms of ray-shooting, or that relate to such
problems; in all cases we are able to improve existing
bounds or establish new bounds.

3.1 Translating a Set of Faces or Polyhedra in Three
Dimensions

Given a set of faces or polyhedra in three dimensions.
The translation problem requires moving them in a
given direction, one at a time, without collisions
occurring between them. To solve this problem, we are

605

required to perform a sequence of ray-shooting queries
(see [15]). As an immediate consequence of Theorem
1, we obtain:
Theorem 2: The translation problem for a set of faces
or polyhedra in three dimensions can be solved in O
((N+K)log N) time and O(N + K) space, where N
is the total number of edges and K the number of edge
intersections in the image plane.

This result improves Nurmi’s result of O ((N 4+ K)
log N) time and space [15].

3.2 Hidden Surface Removal

Given an environment of nonintersecting opaque poly-
hedra in three dimensions, we wish to compute the
image visible from a given viewpoint. To produce a
realistic image of the environment, we first project all
the environment’s edges onto the image plane. Sup-
pose that the image plane is the (x, y) plane. This
establishes a line segment subdivision of the (x, y)
plane. Each region of this subdivision is covered by
some of the environment’s faces. The Aidden surface
removal problem is the task of reporting the topmost
face for each region of the subdivision. Remember that
the persistent structure developed in Sect. 2 supports
queries not only about the z neighbors of a point but
also about the topmost face in the z direction. After
finding the topmost faces for every region, we have to
remove all the subdivision segments whose two inci-
dent regions have common topmost faces and all the
vertices that are in the interior of an edge or a region.
See [13] for details. These yield:

Theorem 3: The hidden surface removal problem can
be solved in O((N+K)log N) time and O(N+K)
space, where N is the total number of the
environment’s edges and K the number of edge inter-
sections in the image plane.

Although the same resource bounds have been
obtained by Schmitt et al. [22], their algorithm requires
various complicated data structures. In [13] McKenna
showed that the hidden surface removal problem can
be solved in O (N?) time, which is an improvement to
the O ((N+ K)log K) bound in cases where K =0Q (N?).
The drawback of his algorithm is that it requires
2 (N?) space. For recent results on ray shooting
and hidden surface removal, see [1].

3.3 Polygonal Point Enclosure Searching

The polygonal point enclosure search problem 1is:
given a set of N simple polygons, each with a bounded
number of edges, and a query point in the plane,
determine all the polygons enclosing the point.

The N polygons consist of O(N) edges. The
collection of edges defines a planar graph G. Each
region of the graph G is overlapped by some of the
original polygons. Our intention is to precompute for



606

each region the list of overlapping polygons. Assume
that each polygon has a pre-defined z-coordinate. We
can thus build a persistent binary-binary search tree for
the graph . Having located the region containing a
given point in the partially persistent search tree, we
report all the covering faces of that region in the
corresponding version of the fully persistent search
tree. This yields:
Theorem 4: Given a set of N simple polygons in the
plane, each with a bounded number of edges, there
exists a data structure such that the ¢ polygons that
contain a given point can be reporied in O (log N +1)
time, using O (N + K) space where K is the number of
edge intersections.

This result improves Edelsbrunner et al.’s result of
O (log N+1t) query time and O(NK) space [10].

3.4 Polygon Intersection Reporting

Let P denote a set of simple polygons in the plane,
each with a bounded number of edges. The polygon
intersection problem requires to report all pairs of
polygons which have at least one point in common.

It is obvious that the problem can be reduced to

two sub-problems [2]: The line segment intersection
problem and the batched polygonal point enclosure
search problem. The first subproblem is already solved
by Chazelle and Edelsbrunner [4]. Their algorithm
runs in O(N log N+ K) time and O(N +K) space,
where K is the number of edge intersections. The
second can be solved by applying Theorem 4. We
conclude:
Theorem 5: All T intersections among N simple
polygons can be reported in O((N+K)log N+ T)
time and O (N + K) space, where K is the number of
edge intersections.

A challenging open problem is to determine
whether this problem can be solved in optimal time
O (N log N+ T), analogous to the optimal time for
computing line segment intersections [4].

4, Conclusions

We have presented a persistent form of binary-binary
search tree by considering the ray-shooting problem.
For a set of polygonal faces with a total of N edges in
the space and K edge intersections in the image plane,
our structure supports a ray-shooting query with O (log
N) time, and requires O (N +K) space and O (N
+ K)log N) preprocessing time to build. The data
structure also gives new better solutions for various
geometric searching problems. Besides these applica-
tions, we believe that the data structure is general
enough to serve as a stepping-stone for other geometric
problems as well.

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 4 APRIL 1994

Acknowledgement

We would like to thank Dr. Takeshi Tokuyama of
IBM Tokyo Research Laboratory for his valuable
comments and discussions.

References

[1] Agarwal, P. K. and Matousek, J., “Ray shooting and
parametric search,” in Proceedings, 24th Annu. ACM
Symp. Theory of Computing, pp. 517-526, 1992.

[2] Bentley, J. L. and Wood, D., “An optimal worst-case

. algorithm for reporting intersections of rectangles,” IEEE
Trans. Comput. vol. C-29, pp. 571-577, 1980.

[3] Chazelle, B., “How to search in history,” Inform. Conirol
vol. 64, pp. 77-99, 1985.

[4] Chazelle, B. and Edelsbrunner, H., “An optimal algo-
rithm for intersecting line segments in the plane,” in
Proceedings, 29th Annu. IEEE Symp. Found. of
Comput. Sci., pp. 590-600, 1988.

[5] Cole, R., “Searching and storing similar lists,” J. Algo-
rithms, vol. 7, pp. 202-220, 1986.

[6] Dietz, P. and Sleator, D. D., “Two algorithms for
maintaining order in a list,” in Proceedings, 19th Annu.
ACM Symp. Theory of Computing, pp. 365-372, 1987.

[7] Dobkin, D. and Lipton, R. J., “Multidimensional search
problems,” SIAM J. Comput., vol. 5, pp. 181-186, 1976.

[8] Driscoll, J. R., Sarnak, N., Sleator, D. D. and Tarjan, R.
E., “Making data structures persistent,” J. Comput. Sys.
Sci., vol. 38, pp. 86-124, 1989.

[9] Edelsbrunner, H., Algorithms in Combinatorial Geome-
try, Springer-Verlag, 1987.

[10] Edelsbrunner, H., Maurer, H. A. and Kirkpatrick, D. G.,
“Polygonal intersection searching,” Inform. Process.
Lert., vol. 14, pp. 74-77, 1982.

[11] Guibas, L. J. and Sedgewick, R., “A dichromatic frame-
work for balanced trees,” in Proceedings, 19th Annu.
IEEE Symp. Found. of Comput. Sci., pp. 8-21, 1978.

[12] Hirata, T., Matousek, J., Tan, X. and Tokuyama, T.,
“Complexity of projected images of convex subdivisions,”
Proc. 4th Canadian Conference on Computational geom-
etry, pp. 121-126, 1992. ‘

[13] McKenna, M., “Worst case optimal hidden surface
removal,” ACM Trans. Graphics, vol. 6, pp. 19-28, 1987.

[14] Nivergelt, J. and Preparata, F. P., “Plane sweep algo-
rithms for intersecting geometric figures,” Comm. ACM,
vol. 25, pp. 739-747, 1982.

[15] Nurmi, O., “On translating a set of objects in 2- and
3-dimensional space,” Comput. Vision Graphics Image
Process., vol. 36, pp. 42-52, 1986.

[16] Paterson, M. S. and Yao, F. F., “Binary partitions with
applications to hidden-surface removal and solid model-
ling,” Proc. 5th ACM Symposium on Computational
Geometry, pp. 23-32, 1989

[17] Preparata, F. P. and Shamos, M. I, Computational
Geometry, Springer-Verlag, 1985.

[18] Preparata, F. P. and Tamassia, R., “Fully dynamic tech-
niques for point location and transitive closure in planar
structures,” in Proceedings, 2%h Annu. IEEE Symp.
Found. of Comput. Sci., pp. 558-567, 1988.

[19] Preparata, F. P. and Tamassia, R., “Fully dynamic point
location in a monotone subdivision,” SIAM J. Comput.,
vol. 18, pp. 811-830, 1989.

[20] Preparata, F. P. and Tamassia, R., “Efficient spatial point



TAN et al: DESIGNING EFFICIENT GEOMETRIC ALGORITHMS

location,” in Algorithms and Data Structures
(WADS’89), Lect. Notes in Comput. Sci. vol. 382, pp. 3
-11, Springer-Verlag, 1989.

[21] Sarnak, N. and Tarjan, R. E., “Planar point location
using persistent search trees,” Comm. ACM, vol. 29, pp.
669-679, 1986.

[22] Schmitt, A., Miiller, H. and Leister, W., “Ray tracing
algorithms—theory and practice, Proc. NATO Advanced
Study Inst. Theoret. Found. Comput. Graphics and
CAD, pp. 997-1029, Springer-Verlag, 1987.

Xuehou Tan was born in Jiangsu,
China in 1962. He received the B.S.
degree in 1982 and the M.S. degree in
1985 from Nanjing University, and the
Ph.D. degree in 1991 from Nagoya Uni-
versity. He is currently an Assistant
Professor in the School of High-
Technology for Human Welfare, Tokai
University. From 1985 to 1987 he was a
Research Associate of the Computer Sci-
ence Department, Nanjing University.
From 1992 to 1993, he was a visiting scientist with the University
of Montreal and McGill University. His current research inter-
ests are in computational geometry and VLSI theory.

Tomio Hirata received the B.S.
degree in electrical engineering, and the
M.S. and Ph.D. degrees in Computer
Science, all from Tohoku University in
1976, 1978, and 1981, respectively. He is
currently a Professor in the Electronics
Department, Nagoya University. From
1981 to 1986 he was an Assistant Profes-
sor of Computer Science Department,
Toyohashi University of Technology.
His research interests include graph algo-
rithms, data structures, and geometric algorithms.

607

Yasuyoshi Inagaki was born in
Nagoya, Japan in 1939. He received the
B.Sc. degree in 1962, the M.Sc. degree in
1964, and the Dr. of Engineering degree
in 1967 from Nagoya University. He was
an Assistant Professor from 1970 to 1976
at the Department of Electrical Engineer-
ing and Information Engineering,
Nagoya University, and a Full Professor
from 1977 to 1980 at the Department of
Electronics, Mie University. Since 1980,
he has been a Full Professor at the Department of Electrical
Engineering and Information Engineering, Nagoya University.
His current research interests are in the area of algebraic theory
of software specification, verification, and implementation,
automata and languages theory, design and analysis of algo-
rithms, and fundamental theory of artificial intelligence. He
received the 1966 Inada Award from the Institute of Electrical
Communication Engineers of Japan. Dr. Inagaki is a member of
IEEE, ACM, EATCS, the Institute of Electrical Engineers of
Japan, the Information Processing Society of Japan, Japan
Society for Software Science and Technology, Japanese Society
for Artifitial Intelligence, the Operations Research Society of
Japan. ‘



