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On Approximation Algorithms for Coloring k-Colorable

Graphs
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SUMMARY Karger, Motwani and Sudan presented a graph
coloring algorithm based on semidefinite programming, which
colors any k-colorable graph with maximum degree ∆ using
Õ(∆1−2/k) colors. This algorithm leads to an algorithm for
k-colorable graph using Õ(n1−3/(k+1)) colors. This improved
Wigderson’s algorithm, which uses O(n1−1/(k−1)) colors, con-
taining as a subroutine an algorithm using (∆ + 1) colors for
graphs with maximum degree ∆. It is easy to imagine that an
algorithm which uses less colors in terms of ∆ leads to an al-
gorithm which uses less colors in terms of n. In this paper, we
consider this influence assuming that we have an algorithm which
uses Õ(∆1−x/k) colors for 2 < x < 3. Specifically, we will show
that the algorithms of Karger et al., of Blum and Karger and of
Halperin et al. can be improved under this assumption.
key words: graph coloring, approximation algorithms, NP-hard,
maximum degree

1. Introduction

A proper vertex coloring of a graph G = (V,E) is an
assignment of colors to its vertices such that no two ad-
jacent vertices receive the same color. Equivalently, a
k-coloring of G is a partition of its vertices into k inde-
pendent sets. It is well known [1], [2] that the problem
of properly coloring a k-colorable graph with k colors
is NP-hard, for any k ≥ 3.

Wigderson [3] gave a simple algorithm for coloring
k-colorable graphs with O(n1−1/(k−1)) colors. Blum
[4] improved the result to Õ(nak) colors, where a3 =
3/8, a4 = 3/5, a5 = 91/131, · · ·. Karger, Motwani
and Sudan [5] showed, using semidefinite programming,
that k-colorable graph with maximum degree ∆ can
be colored with Õ(∆1−2/k) colors. Combined with the
technique of Wigderson [3], Karger et al. [5] presented
an Õ(n1−3/(k+1))-coloring for k-colorable graph. Later,
Blum and Karger [6] obtained an Õ(n3/14)-coloring
for 3-colorable graph and most recently, Halperin,
Nathaniel and Zwick [7] provided an Õ(nbk)-coloring
for k ≥ 4, where b4 = 7/19, b5 = 97/207, · · ·.

The technique of Wigderson [3] leads to the inter-
est with the maximum degree ∆. For example, Wigder-
son [3] and Karger et al. [5] only used different algo-
rithms when the maximum degree is relatively small
and obtained the different results in terms of n. The
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algorithm of Wigderson [3] uses (∆ + 1)-coloring al-
gorithm for the graph with maximum degree ∆ and
colors the entire graph with O(n1−1/(k−1)) colors. On
the other hand, the algorithm of Karger et al. [5] uses
Õ(∆1−2/k)-coloring algorithm for the graph with max-
imum degree ∆ and leads to an Õ(n1−3/(k+1))-coloring
for the entire graph. Thus, we can easily deduce that
if we have an algorithm using less colors in terms of
∆, then we can derive an algorithm using less col-
ors in terms of n. In this paper, we assume that we
have an algorithm that colors any k-colorable graph
with maximum degree ∆ using Õ(∆1−x/k) colors where
2 < x < 3, then how we could improve the results for
k-colorable graph.

The rest of the paper is structured as follows. In
Sect. 2, we give some definitions. In Sect. 3, we show
the improvement over the algorithm of Karger et al. [5].
Sections 4 and 5 are for the improvement over the algo-
rithms of Blum and Karger [6] and Halperin et al. [7],
respectively. Finally, concluding remarks is in Sect. 6.

2. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will
be used throughout this paper. Given a graph G, let
V denote the vertices of G and E denote the edges of
G. We will use N(v) to denote the neighborhood of
a vertex v, d(v) to denote the degree of v and ∆ to
denote the maximum degree of the graph. That is, for
G = (V,E),

N(v) = {u|(v, u) ∈ E},
d(v) = |N(v)|,
∆ = max

v∈V
{d(v)}.

The subgraph of G induced by U ⊆ V is the graph
GU = (U,F ), where

F = {(u,w)|u ∈ U,w ∈ U, and (u,w) ∈ E}.

3. The Õ(n1−(x+t)/(k+1))-Coloring

3.1 The Karger-Motwani-Sudan Algorithm

Karger, Motwani and Sudan [5] introduced the notion
of vector colorings of a graph, which is closely related



XIE et al.: ON APPROXIMATION ALGORITHMS FOR COLORING K-COLORABLE GRAPHS
1047

to Lovász’s orthogonal representations and ϑ-function
[8], [9]:
Definition [5] Given a graph G = (V,E) on n vertices
and a real number k ≥ 1, a vector k-coloring of G is
an assignment of n-dimensional unit vectors vi to each
vertex i ∈ V , such that for any two adjacent vertices
i and j the dot product of their vectors satisfies the
inequality:

〈vi, vj〉 ≤ − 1
k − 1

. (1)

Karger, Motwani and Sudan [5] obtained the fol-
lowing results.
Theorem 1 [5] Any k-colorable graph on n vertices
with maximum degree ∆ can be colored, in probabilistic
polynomial time, using Õ(∆1−2/k) colors.
Theorem 2 [5] Any k-colorable graph on n vertices
can be colored, in probabilistic polynomial time, using
Õ(n1−3/(k+1)) colors.

3.2 The Õ(n1−(x+t)/(k+1))-Coloring

Corollary 3 Suppose we have an algorithm A that
colors any k-colorable graph with maximum degree ∆
using Õ(∆1−x/k) colors, where 2 < x < 3. Then we can
derive an algorithm B that colors any k-colorable graph
using Õ(nCk) colors, where Ck ≤ 1 − (x + t)/(k + 1),
for k ≥ 3 and t = 0.928.
Proof: We use induction on k.

k = 3. While ∆ ≥ nρ, let v be a vertex with
d(v) = ∆, 2-color the subgraph GN(v) induced by N(v),
set the colored vertices aside and repeat on the re-
maining graph using new colors. When ∆ ≤ nρ, we
apply algorithm A to color the remaining graph using
Õ(n(1−

x
3 )ρ) colors. If

1 − ρ =
(
1 − x

3

)
ρ, (2)

then the 3-colorable graph can be colored with
Õ(n1−

3
6−x ) colors.

Assume inductively that the claim is true for (k−
1)-colorable graph. That is, algorithm B colors any
(k− 1)-colorable graph using Õ(nCk−1) colors. Now we
will prove the inductive assertion of k.

While ∆ ≥ nρ, apply algorithm B on the subgraph
GN(v) induced by N(v) of a vertex with d(v) = ∆. Be-
cause GN(v) is (k− 1)-colorable, algorithm B produces
a coloring of GN(v) using Õ(|N(v)|Ck−1) colors, from
which an independent set of size Ω̃(|N(v)|1−Ck−1) ≥
Ω̃(n(1−Ck−1)ρ) is easily extracted. Giving the same
color to all the vertices in this independent set, we
set all the colored vertices aside and repeat on the re-
maining graph using new colors. When ∆ ≤ nρ, we
apply algorithm A to color the remaining graph us-
ing Õ(n(1−

x
k )ρ) colors. Then algorithm B colors any

k-colorable graphs using Õ(nCk) colors if the following
equations hold:

Ck =
(
1 − x

k

)
ρ, (3)(

1 − x

k

)
ρ = 1 − (1 − Ck−1)ρ. (4)

Solving the equations with respect to Ck, we obtain
the recurrence relation:

Ck =
1 − x

k

2 − x
k − Ck−1

. (5)

We can rewrite this relation as follows:

1
1 − Ck

= 1 +
(
1 − x

k

) 1
1 − Ck−1

, (6)

and for k = 3,

1
1 − C3

=
6 − x

3
. (7)

Thus

1
1 − Ck

=
k + 1
x + 1

+
3!
k!

Γ(k − x + 1)
Γ(4 − x)

·
(

6 − x

3
− 4

x + 1

)
. (8)

It is obvious that for some t, the following inequality
holds:

k + 1
x + 1

≤ 1
1 − Ck

≤ k + 1
x + t

, (9)

which implies

1 − x + 1
k + 1

≤ Ck ≤ 1 − x + t

k + 1
. (10)

For k = 3, (10) is reduced to the following inequality:

1 − 3
6 − x

≤ 1 − x + t

4
. (11)

It can be rewritten as follows:

x2 + (t− 6)x + (12 − 6t) ≥ 0, (12)

which is true if the following one holds:

(t− 6)2 − 4(12 − 6t) ≥ 0. (13)

Thus we obtain that t ≤ −6 + 4
√

3 = 0.928.
Assume inductively that for k − 1 and t ≤ 0.928,

Ck−1 ≤ 1 − x + t

k
. (14)

We can obtain the following inequality from (5):

Ck ≤
1 − x

k

2 − x
k − (1 − x+t

k )

= 1 − x + t

k + t

≤ 1 − x + t

k + 1
(15)
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By induction on k, we conclude that Ck ≤ 1 − (x +
t)/(k + 1) for all k ≥ 3. ✷

We now discuss the behavior of Ck = Ck(x) as a
function of x. For x and x′ such that 2 < x < x′ < 3,
we can show directly from (7) that for k = 3,

1
1 − C3(x′)

=
6 − x′

3

<
6 − x

3

=
1

1 − C3(x)
. (16)

By induction on k, we can show the following inequal-
ity:

1
1 − Ck(x′)

= 1 +
(

1 − x′

k

)(
1

1 − Ck−1(x′)

)

< 1 +
(
1 − x

k

)( 1
1 − Ck−1(x′)

)

< 1 +
(
1 − x

k

)( 1
1 − Ck−1(x)

)

=
1

1 − Ck(x)
. (17)

We have shown that for all k ≥ 3, 1
1−Ck(x)

is a de-
creasing function of x, which implies that Ck is also a
decreasing function of x. Note that the algorithm pre-
sented by Karger et al. [5] is the case where x = 2.
(In this case, We can obtain that Ck = 1 − 3/(k + 1)
from (8).) Thus, if there were an algorithm that colors
any k-colorable graph with maximum degree ∆ using
Õ(∆1−x/k) colors, where 2 < x < 3, then we could de-
rive an algorithm using less colors than Karger et al. [5]
for any k-colorable graph.

4. The 3-Colorable Graph

4.1 The Blum-Karger Algorithm

Applying Blum’s algorithm (Theorem 13 of [4]) and
combining with Karger et al. [5] for 3-colorable graph,
Blum and Karger [6] provided the following results.
Lemma 4 [6] In any 3-colorable graph with average
degree exceeding 2nρ, we can make progress towards
an Õ(nα)-coloring where α = 3

5 (1 − ρ).
Theorem 5 [6] There is a polynomial time algorithm
to color any 3-colorable graph with Õ(n3/14) colors.

4.2 Combination of Blum’s Algorithm and Algorithm
A

We are given a 3-colorable graph. If its average de-
gree is at least 2nρ, we can color the graph using
Õ(nα) = Õ(n

3
5 (1−ρ)) colors based on Lemma 4. Other-

wise, the graph has at least n
2 vertices of degree less

than 4nρ. The subgraph induced by those vertices

clearly has maximum degree ∆ ≤ 4nρ, and we color
the subgraph by algorithm A using Õ(n(1−

x
3 )ρ) colors.

This coloring must contain an independent set of size
Ω̃(n1−(1−

x
3 )ρ). Then we can color the 3-colorable graph

using Õ(max{n(1− x
3 )ρ, n

3
5 (1−ρ)}) colors. Let ρ = 9

24−5x ,
we obtain the following result.
Corollary 6 There is an algorithm to color any 3-
colorable graph with Õ(nB3) = Õ(n

9−3x
24−5x ) colors.

We can rewrite B3 as follows:

B3 =
3
5

(
1 − 9

24 − 5x

)
, (18)

thus B3 is decreasing with x. When 2 < x < 3, it
improves the result of Õ(n

3
14 )-coloring for 3-colorable

graph.

5. A Look at Algorithm Combined-Color of
Halperin et al.

5.1 Algorithm Combined-Color

By combining the coloring algorithms of Karger et
al. [5], the combinatorial coloring algorithms of Blum
[4], and an extension of a technique of Alon and Ka-
hale [10] for finding relatively large independent sets in
graphs, Halperin, Nathaniel and Zwick [7] obtained the
new results.
Lemma 7 [7] Let G = (V,E) be a k-colorable graph
on n vertices. Then, an independent set of G of
size Ω̃(nf(k)) can be found in polynomial time, where
f(k) = 3/(k + 1) for k ≥ 3.
Theorem 8 [7] Let G = (V,E) be a k-colorable
graph on n vertices that contains an independent set
of size at least n/k. Then, an independent set of G of
size Ω̃(nf(k)) can be found in polynomial time, where
f(k) = 3/(k + 1) for k ≥ 3.
Theorem 9 [7] Algorithm Combined-Color runs in
polynomial time and it colors any k-colorable graph
on n vertices using Õ(nαk) colors, where α2 = 0, α3 =
3/14, and αk = 1 − 6

k+4+3(1−2/k)/(1−αk−2)
, for k ≥ 4.

These results came from the following simple ob-
servation given by Blum [4]:
Lemma 10 [4] Let k ≥ 3 be an integer and 0 < α < 1.
If in any k-colorable graph G = (V,E) on n vertices
we can find, in polynomial time, at least one of the
following:

1. Two vertices u, v ∈ V that have the same color
under any valid k-coloring of G (Same Color),

2. An independent set I ⊆ V of size Ω̃(n1−α)
(Large Independent Set),
then, we can color every k-colorable graph, in polyno-
mial time, using Õ(nα) colors.
Theorem 11 [4] Let G = (V,E) be a k-colorable
graph on n vertices with minimum degree dmin in which
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no two vertices have more than s common neighbors.
Then, it is possible to construct, in polynomial time,
a collection T of Õ(n) subsets of V , such that at
least one T ∈ T satisfies the following two conditions:
(i) |T | ≥ Ω̃(d2

min

s ). (ii) T has an independent subset of
size at least ( 1

k−1 −O( 1
log n ))|T |.

5.2 Algorithm Combined-Color(x)

Using algorithm A, we can derive the following result
similar to Lemma 7 [7] for finding a relatively large
independent set in graphs.

Corollary 12 Let G = (V,E) be a k-colorable graph
on n vertices. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where 2 <
x < 3, t = 0.928 and f(k) = 1 − Ck ≥ (x + t)/(k + 1)
for k ≥ 3.

Proof: The proof is by induction on k.
k = 3. We use the result in Sect. 3. Apply the de-

rived algorithm B to color the 3-colorable graph using
Õ(nC3) = Õ(n1−

3
6−x ) colors, from which an indepen-

dent set of size Ω̃(n1−C3) = Ω̃(n
3

6−x ) ≥ Ω̃(n
x+0.928

4 ) is
extracted.

Assume inductively that for (k − 1)-colorable
graph, we can find an independent set of size
Ω̃(nf(k−1)) = Ω̃(n1−Ck−1) ≥ Ω̃(n

x+t
k ). Now for k-

colorable graph, we describe two ways of finding in-
dependent sets of G. Using the algorithm A to find an
independent set of size Ω̃( n

∆1−x/k ). Alternatively, apply
derived algorithm B on the subgraph GN(v) induced
by N(v) of a vertex v with d(v) = ∆. Because GN(v)

is (k − 1)-colorable, then we can find an independent
set of size Ω̃(∆f(k−1)). Taking the larger of these two
independent sets, we obtain an independent set of G of
size

Ω̃
(
max

{ n

∆1−x/k
,∆f(k−1)

})

≥ Ω̃

(
n

1

1+
1−x/k
f(k−1)

)
= Ω̃

(
nf(k)

)
.

Similar to Corollary 3, we can prove that f(k) = 1 −
Ck ≥ x+t

k+1 as required. ✷

Based on the Lemma 3.3 [7] and Corollary 12, we
can obtain the following result, which is similar to The-
orem 8 [7]. Here we omit the proof, which is the same
as the one presented by Halperin et al. [7].

Corollary 13 Let G = (V,E) be a k-colorable graph
on n vertices that contains an independent set of size
at least n/k. Then, an independent set of G of size
Ω̃(nf(k)) can be found in polynomial time, where 2 <
x < 3, t = 0.928 and f(k) = 1 − Ck ≥ (x + t)/(k + 1)
for k ≥ 3.

Now we derive the following algorithm Combined-
Color(x) for k ≥ 4.

Algorithm Combined-Color(x) for k ≥ 4
1. Repeatedly remove from the graph G vertices

of degree less than nρ. Let U be the set of vertices
so removed and D be the average degree of GU , thus
D ≤ nρ.

2. If |U | ≥ n
2 , apply algorithm A to find

an independent set of GU of size Ω̃(n/D1−x/k) ≥
Ω̃(n1−(1−x/k)ρ). If 1 − (1 − x/k)ρ = 1 − Bk, then we
make progress of type 2.

3. Otherwise(|U | < n
2 ), let W = V −U . Note that

|W | ≥ n
2 and that the minimum degree dmin in GW

satisfies dmin ≥ nρ.
4. For every u, v ∈ W , consider the set S =

N(u) ∩ N(v). If |S| ≥ n1−β, then apply the color-
ing algorithm recursively on GS and (k − 2). If GS is
(k − 2)-colorable, then the algorithm produces a color-
ing of GS using Õ(|S|Bk−2) colors, from which an inde-
pendent set of size Ω̃(|S|1−Bk−2) ≥ Ω̃(n(1−Bk−2)(1−β))
is easily extracted. If (1−Bk−2)(1−β) = 1−Bk, then
we make progress of type 2. If the coloring returned by
the recursive call uses more than Õ(|S|Bk−2) colors, we
can infer that GS is not (k − 2)-colorable and thus, u
and v must be assigned the same color under any valid
k-coloring of G, then we make progress of type 1.

5. Otherwise we know that |S| < n1−β for every
u, v ∈ W . Also, we know that the minimum degree
dmin in GW satisfies dmin ≥ nρ.

6. We now apply Blum’s algorithm, with dmin ≥
nρ and s < n1−β, and obtain a collection T of Õ(n)
subsets of W such that at least one T ∈ T satisfies |T | ≥
Ω̃(d2

min

s ) ≥ Ω̃(n2ρ+β−1), and T contains an independent
set of size at least ( 1

k−1 −O( 1
logn ))|T |.

7. Now apply the result of Corollary 13 on GT ,
for each T ∈ T . In at least one of these runs we ob-
tain an independent set of size Ω̃(n(1−Ck−1)(2ρ+β−1)). If
(1 − Ck−1)(2ρ+β−1) = 1−Bk, then we make progress
of type 2.

Algorithm Combined-Color(x) colors any k-
colorable graph with Õ(nBk) colors if the following
equations hold.

1 −
(
1 − x

k

)
ρ = 1 −Bk, (19)

(1 −Bk−2)(1 − β) = 1 −Bk, (20)
(1 − Ck−1)(2ρ + β − 1) = 1 −Bk. (21)

Solving these equations with respect to Bk, we obtain
the recurrence relation:

Bk =
1 + 1−Ck−1

1−Bk−2

1 + (1 − Ck−1)( 2
1−x/k + 1

1−Bk−2
)
. (22)

We can rewrite this relation as follows:
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1
1 −Bk

=
1
2

{
2 +

(
1 − x

k

)

·
(

1
1 − Ck−1

+
1

1 −Bk−2

)}
(23)

and B2 = 0, B3 = (9 − 3x)/(24 − 5x). Note that B3 is
decreasing with x for 2 < x < 3.

The results of Halperin et al. [7] can also be rewrit-
ten as follows:

1
1 − αk

=
1
2

{
2 +

(
1 − 2

k

)

·
(

1
1 − (1 − 3/k)

+
1

1 − αk−2

)}
, (24)

and α2 = 0, α3 = 3/14.
We consider the behavior of Bk = Bk(x) as a func-

tion of x. In Sects. 3 and 4, we have shown that both
Ck−1 and B3 are decreasing with x and Ck−1 < 1−3/k,
B3 < α3. Similar to the discussion in Sect. 3, we can
show that for all k ≥ 4, 1

1−Bk(x)
is a decreasing function

of x. This implies that Bk is also a decreasing function
of x. Note that the results of Halperin et al. [7] corre-
spond to the case where x = 2. Thus, for 2 < x < 3
and k ≥ 4, we could color any k-colorable graph with
less colors than Halperin et al. [7].

By Corollary 3, let Ck = 1 − (x + t)/(k + 1), we
can rewrite (23) as follows:

1
1 −Bk

=
1
2

{
1+

k+t

x+t
+
(
1− x

k

) 1
1−Bk−2

}
. (25)

It can be proved that for 2 < x < 3, t = 0.928 and
k ≥ 4, the following equation holds:

1
1 −Bk

=
k + t− 1
x + t

+
x(3 − t)
k(x + t)

+ βk, (26)

where βk satisfies the following recurrence relation:

βk =
x(2 − x)(3 − t)
2k(k − 2)(x + t)

+
k − x

2k
βk−2

≤ 1
2
βk−2.

We can obtain that

Bk = 1 − x + t

k + t− 1
+ O

(
1
k2

)
. (27)

6. Concluding Remarks

If there were an algorithm that colors any k-colorable
graph with maximum degree ∆ using Õ(∆1−x/k) colors
where 2 < x < 3 and k ≥ 3, we have derived some
improved results for k-colorable graph. The remaining
interesting problem is how to find such an algorithm.
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for 3-colorable graphs,” Inf. Process. Lett., vol.61, pp.49–
53, 1997.

[7] E. Halperin, R. Nathaniel, and U. Zwick, “Coloring k-
colorable graphs using small palettes,” Proc. Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp.319–326, 2001.

[8] L. Lovász, “On the Shannon capacity of a graph,” IEEE
Trans. Inf. Theory, vol.IT-25, pp.1–7, 1979.

[9] M. Grotschel, L. Lovász, and A. Schrijver, Geometric Algo-
rithms and Combinatorial Optimization, Second corrected
ed., Springer Verlag, 1993.

[10] N. Alon and N. Kahale, “Approximating the indepen-
dence number via the ϑ-function,” Math. Program., vol.80,
pp.253–264, 1998.

Xuzhen Xie received B.E. from East
China University of Science and Technol-
ogy in 1995. She is currently a master stu-
dent in Department of Electronics, Grad-
uate School of Engineering, Nagoya Uni-
versity. Her research interests include ap-
proximation algorithms.

Takao Ono received B.E., M.E. and
Ph.D. from Nagoya University in 1993,
1995 and 1999, respectively. He is cur-
rently a Research Associate in Depart-
ment of Information Electronics, Gradu-
ate School of Engineering, Nagoya Uni-
versity. His research interests include ap-
proximation algorithms.



XIE et al.: ON APPROXIMATION ALGORITHMS FOR COLORING K-COLORABLE GRAPHS
1051

Tomio Hirata received B.S., M.S.
and Ph.D. in Computer Science, all from
Tohoku University in 1976, 1978, and
1981, respectively. He is currently a Pro-
fessor in Department of Information Elec-
tronics, Graduate School of Engineering,
Nagoya University. His research interests
include graph algorithms and approxima-
tion algorithms.


