
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004
1029

PAPER Special Section on Discrete Mathematics and Its Applications

An Improved Algorithm for the Nearly Equitable Edge-Coloring
Problem

Xuzhen XIE†a), Takao ONO†, Nonmembers, Shin-ichi NAKANO††, and Tomio HIRATA†, Members

SUMMARY A nearly equitable edge-coloring of a multigraph is a col-
oring such that edges incident to each vertex are colored equitably in num-
ber. This problem was solved in O(kn2) time, where n and k are the numbers
of the edges and the colors, respectively. The running time was improved
to be O(n2/k + n|V |) later. We present a more efficient algorithm for this
problem that runs in O(n2/k) time.
key words: nearly equitable edge coloring, Euler circuit

1. Introduction

A nearly equitable edge-coloring of a multigraph G = (V, E)
is a coloring such that edges incident to each vertex are
colored equitably in number with given colors. Hilton and
Werra [1] solved this problem in O(kn2) time in 1982, where
n and k are the numbers of the edges and the colors, re-
spectively. Later in 1995, Nakano, Suzuki and Nishizeki [2]
presented a new algorithm that runs in O(n2/k + n|V |) time.
Using the idea of “balanced constraint” [2], Ono and Hi-
rata [3] transformed a restricted case of the Net Assignment
Problem into a Balanced m-edge Coloring Problem, where
m is the bound of the edges colored with any given color
for each vertex. They presented an algorithm for the Bal-
anced m-edge Coloring Problem of O(n2/k) time. Here, us-
ing Ono and Hirata’s technique, we present a more efficient
algorithm for the Nearly Equitable Edge-coloring Problem.
The new algoirthm also runs in O(n2/k) time and satisfies
“balanced constraint.”

The rest of the paper is structured as follows. In Sect. 2,
we give some definitions. In Sect. 3, we introduce the re-
sults of Hilton and Werra. Sections 4 and 5 are for the new
algorithm and the results we obtained. Finally, concluding
remarks is in Sect. 6.

2. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will be
used throughout this paper.

For a multigraph G, let V denote the vertices of G, E
denote the edges of G, and n denote the number of the edges.
We use dG(v) to denote the degree of a vertex v and Ci-edge

Manuscript received August 22, 2003.
Manuscript revised November 14, 2003.
Final manuscript received January 22, 2004.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464-8603 Japan.
††The author is with the Department of Computer Science,

Faculty of Engineering, Gunma University, Kiryu-shi, 376-8515
Japan.

a) E-mail: sharryx@hirata.nuee.nagoya-u.ac.jp

an edge with color Ci. dG(v,Ci) stands for the number of
Ci-edges incident to a vertex v in G, eG(Ci) stands for the
number of Ci-edges in G and GCiC j is the subgraph of G
induced by all the Ci-edges and C j-edges in G. We omit the
subscript G if it is clear from the context.

Given a multigraph G = (V, E) and a k-color set C =
{C1,C2, · · · ,Ck}, the Nearly Equitable Edge-coloring is an
edge-coloring of G with the k colors such that for any vertex
v ∈ V and diferent colors Ci,C j ∈ C, |d(v,Ci) − d(v,C j)| ≤ 2
[1].

3. O(kn2)-Time for Nearly Equitable Edge-Coloring

The Nearly Equitable Edge-coloring Problem was solved by
Hilton and Werra [1] in 1982. Using Euler circuit, they pre-
sented a simple algorithm of O(kn2) time with k colors. We
have a brief introduction of their algorithm in the following.

Assign the given multigraph G with the given k colors.
Whenever there exists v ∈ V and different colors Ci,C j ∈ C
such that |d(v,Ci) − d(v,C j)| > 2, add a new vertex w adja-
cent to all odd-degree vertices in GCiC j to form a new graph
G′CiC j

. For any connected component in G′CiC j
, traverse an

Euler circuit and assign colors Ci and C j alternately along
the way, and delete the edges adjacent to the new vertex w.

The multigraph G is nearly equitably edge-colored, that
is, for any v ∈ V and different colors Ci,C j ∈ C, |d(v,Ci) −
d(v,C j)| ≤ 2 when the algorithm stops. The running time of
the algorithm is proved to be O(kn2).

Define

Cost =
∑

v∈V

∑

Ci∈C

∑

C j∈C
|d(v,Ci) − d(v,C j)|,

then

Cost ≤
∑

v∈V

∑

Ci∈C

∑

C j∈C
d(v,Ci)

=
∑

C j∈C
{
∑

v∈V

∑

Ci∈C
d(v,Ci)}

=
∑

C j∈C
2|E| = 2kn.

Cost decreases by at least 2 each time the Euler circuit is
traversed. Each Euler circuit costs O(|E|) = O(n) time, so
after at most kn traverses of Euler circuits, Cost must be 0
and the algorithm runs in O(kn2) time.

Euler circuit is normally used for edge-coloring [1]–
[5]. We also use it for our new algorithm in the following.

1030
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

4. A New Algorithm for Nearly Equitable Edge-
Coloring

4.1 Algorithm (G,C)

Ono and Hirata [3] presented an O(n2/k)-time algorithm
for the Balanced m-edge Coloring Problem. Here, we use
the same technique for the Nearly Equitable Edge-coloring
Problem.

Algorithm(G,C)
Input: a multigraph G = (V, E) with |E| = n and a
color set C with |C| = k
Output: a nearly equitable edge-coloring for G

1 Assign C1,C2, · · · ,Ck to n edges repeatedly, so that
each color class has �n/k� or
n/k� edges.

2 while there exists v ∈ V and different colors
Ci,C j ∈ C such that |d(v,Ci)−d(v,C j)| ≥ 3 do

3 for the vertex v, find α, β ∈ C with

d(v, α) = max{d(v,Ci) : Ci ∈ C},
d(v, β) = min{d(v,Ci) : Ci ∈ C}.

4 R(Gαβ, α, β, v).

To maintain the inequality |eG(α) − eG(β)| ≤ 1, we re-
color all connected components of Gαβ. For this purpose,
we swap α and β each time the odd connected component of
Gαβ is recolored.

R(Gαβ, α, β, v)
Input: a multigraph Gαβ with all edges colored
with colors α and β and a selected vertex v
Output: a nearly equitable edge-coloring for Gαβ

1 Let x← α and y← β.
2 for each connected component H in Gαβ do
3 R-C(H, x, y, v).
4 if H has odd number of edges then

 (in this case eH (x) = eH (y) + 1)
5 Swap x and y.

R-C(H, x, y, v)
Input: a connected component H with all edges
colored with colors x and y and a selected vertex v
Output: a nearly equitable edge-coloring for H,
satisfying eH(y) ≤ eH(x) ≤ eH(y) + 1

1 if H has odd-degree vertices then
2 Add a new vertex w adjacent to all the odd-

degree vertices to form a new graph H′.
3 Traverse an Euler circuit starting at the vertex

w and assign colors y and x (y comes first) to
the edges alternately along the way.

4 else
5 if v is a vertex of H then
6 Let v be the start vertex u.
7 else
8 if there exists a vertex r ∈ H with |d(r, x) −

d(r, y)| ≥ 2 then
9 Let r be the start vertex u.
10 else
11 Let u be an arbitrary vertex.
12 Traverse an Euler circuit starting at the vertex u

and assign colors x and y (x comes first) to the
edges alternately along the way.

5. Analysis of the Algorithm

5.1 Results of Ono and Hirata

Using the same proof as in [3], we can obtain the following
results.

Lemma 1 [3] The coloring after an invocation of
R-C(H, α, β, v) for a connected graph H =
(VH , EH) satisfies the following conditions:

a. If all vertices in H are even-degree and |EH | is even,
then d(s, α) = d(s, β) for any vertex s.

b. If all vertices in H are even-degree and |EH | is odd,
then d(u, α) = d(u, β) + 2 for the start vertex u and d(s, α) =
d(s, β) for any vertex s other then u.

c. If there are odd-degree vertices in H, then |d(s, α) −
d(s, β)| = 1 for any odd-degree vertex s and d(s, α) = d(s, β)
for any even-degree vertex s.

Lemma 2 [3] The coloring after an invocation of
R-C(H, α, β, v) satisfies the strict balance
condition, that is,

eH(β) ≤ eH(α) ≤ eH(β) + 1.

Corollary 1 [3] Lemma 2 holds for R
(Gαβ, α, β, v) instead of

R-C(H, α, β, v).

Corollary 2 [3] At any time of the algorithm, the col-
oring satisfies “balanced constraint:”

|eH(α) − eH(β)| ≤ 1 for any colors α and β.

Lemma 3 [3] The running time of R
(Gαβ, α, β, v) is O(e(α) + e(β)).

Lemma 4 [3] e(α) = O(n/k) for any color α at any time
of the algorithm.

5.2 Our Results

Ono and Hirata [3] defined the excess Φ(s) for an vertex
s ∈ V as follows:

Φ(s) =
∑

Ci∈C:d(s,Ci)>m

(d(s,Ci) − m),

where m is the number of the connections between an FPGA
and a crossbar. They proved that the excess Φ, the summa-
tion of Φ(s) over all vertices s, must decrease by constant
when running their algorithm.

It seems that we can use the same proof to obtain the
same results if we could find a suitable m such as they did.
It is possible to find some m which makes Φ decrease, but it
is hard to insure a constant decrease. Thus we make the fol-
lowing definations, which also leads to a much more com-
plex proof in Sect. 5.3.

XIE et al.: AN IMPROVED ALGORITHM FOR THE NEARLY EQUITABLE EDGE-COLORING PROBLEM
1031

Omitting the subscript G, let d̄(s) =
d(s)/k� for a ver-
tex s ∈ V , we define the color sets as follows:

C1(s) = {Ci ∈ C|d(s,Ci) ≤ d̄(s) − 1},
C2(s) = {Ci ∈ C|d(s,Ci) = d̄(s)},
C3(s) = {Ci ∈ C|d(s,Ci) ≥ d̄(s) + 1}.
Define the cost of s as

Φ(s) =
∑

Ci∈C:d(s,Ci)≥d̄(s)+1

{d(s,Ci) − (d̄(s) + 1)}

+
∑

Ci∈C:d(s,Ci)≤d̄(s)−1

{(d̄(s) − 1) − d(s,Ci)}.

The cost Φ of the coloring is the summation of Φ(s) over all
vertices s, and it is bounded as follows:

Φ =
∑

s∈V
Φ(s)

<
∑

s∈V
{

∑

Ci∈C:d(s,Ci)≥d̄(s)+1

d(s,Ci)

+
∑

Ci∈C:d(s,Ci)≤d̄(s)−1

d̄(s)}

<
∑

s∈V
2d(s) = 4|E| = 4n.

Let ∆Φ(s) denote the difference of Φ(s) before and after the
invocation of R(Gαβ, α, β, v). In the following, d(s, α)
and d′(s, α) denote the numbers of α-edges before and after
the invocation of R, respectively.

For the special vertex v selected by Algorithm (G,C),

d(v, α) = max{d(v,Ci) : Ci ∈ C},
d(v, β) = min{d(v,Ci) : Ci ∈ C},

we note that d(v, α) ≥ d̄(v) + 1 and d(v, β) ≤ d̄(v).

Lemma 5 Assume that there exists a vertex v and
colors α, β such that d(v, α) ≥ d̄(v) + 1, d(v, β) ≤ d̄(v)
and d(v, α) − d(v, β) ≥ 3. Φ must decrease if we invoke
R(Gαβ, α, β, v).

In the following proof, dαβ(s) denotes the degree of
a vertex s in the subgraph Gαβ, that is, dαβ(s) = d(s, α) +
d(s, β).

5.3 Proof of Lemma 5

Let v be the special vertex selected by Algorithm (G,C), we
rewrite Lemma 1 [3] in the following way in 3 cases.

Lemma 1’ [3] The coloring after an invocation of
R-C(H, α, β, v) for a connected graph H =
(VH , EH) satisfies the following conditions:

a. For any even-degree vertex s not belonging to case
c, d′(s, α) = d′(s, β).

b. For any odd-degree vertex s, |d′(s, α) − d′(s, β)| = 1.

c. For the start vertex s when the connected compo-
nent H has odd number of edges and no odd-degree vertices,
d′(s, α) = d′(s, β) + 2.

We first discuss how ∆Φ(s) changes for any vertex
s � v for the three cases. For such vertices in case c, they are
selected by R-C(H, x, y, v) with |d(s, α) −
d(s, β)| ≥ 2 before the invocation. If |d(s, α)− d(s, β)| = 2, it
is easy to see that ∆Φ(s) = 0 for Φ(s) does not change after
the invocation. So for case c, we only need to discuss on the
vertices where s � v and |d(s, α) − d(s, β)| ≥ 4. After that,
we show how ∆Φ(v) changes for the special vertex v. In the
end, we conclude the response of Φ of the coloring over all
vertices.

In the following proof, we suppose by symmetry that
d(s, α) ≥ d(s, β) before the invocation and d′(s, α) ≥ d′(s, β)
after the invocation. During the discussions for any vertex
s � v, we ommit (s) for all the notations corresponding with
s, such as C1(s), dαβ(s), d̄(s), · · · , etc.

1. if α ∈ C1 and β ∈ C1

a. dαβ ≤ 2d̄ − 2 and d′(s, α) = d′(s, β) ≤ d̄ − 1, thus

∆Φ = {(d̄ − 1) − d′(s, α) + (d̄ − 1) − d′(s, β)}
−{(d̄ − 1) − d(s, α) + (d̄ − 1) − d(s, β)}

= 0.

b. dαβ ≤ 2d̄ − 3 for s is odd-degree and d′(s, β) <
d′(s, α) ≤ d̄ − 1, thus ∆Φ = 0 same as case a.

c. d(s, α) ≤ d̄ − 1 and d(s, β) ≤ d̄ − 5 for d(s, α) −
d(s, β) ≥ 4, then dαβ ≤ 2d̄−6 and d′(s, β) < d′(s, α) ≤ d̄−2,
thus ∆Φ = 0 same as case a.

2. if α ∈ C2 and β ∈ C1

a. dαβ ≤ 2d̄ − 2 for s is even-degree and d′(s, α) =
d′(s, β) ≤ d̄ − 1, thus

∆Φ = {(d̄ − 1) − d′(s, α) + (d̄ − 1) − d′(s, β)}
−{(d̄ − 1) − d(s, β)}

= d̄ − 1 − d(s, α) = −1 < 0.

b. dαβ ≤ 2d̄ − 1.
If dαβ = 2d̄ − 1, then d′(s, α) = d(s, α) = d̄ and

d′(s, β) = d(s, β) = d̄ − 1, thus ∆Φ = 0 for Φ does not
change after the invocation.

If dαβ ≤ 2d̄ − 3, then d′(s, β) < d′(s, α) ≤ d̄ − 1, thus
we obtain that ∆Φ = d̄ − 1 − d(s, α) = −1 < 0 same as case
a.

c. dαβ ≤ 2d̄ − 4 for d(s, α) − d(s, β) ≥ 4, thus d′(s, β) <
d′(s, α) ≤ d̄ − 1 and ∆Φ = d̄ − 1 − d(s, α) = −1 < 0 same as
case a.

3. if α ∈ C3 and β ∈ C1

a. If dαβ ≤ 2d̄ − 2, then d′(s, α) = d′(s, β) ≤ d̄ − 1, thus

∆Φ = {(d̄ − 1) − d′(s, α) + (d̄ − 1) − d′(s, β)}
−{d(s, α) − (d̄ + 1) + (d̄ − 1) − d(s, β)}

1032
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

= 2(d̄ − d(s, α)) < 0.

If dαβ = 2d̄, then d′(s, α) = d′(s, β) = d̄, thus

∆Φ = 0 − {d(s, α) − (d̄ + 1) + (d̄ − 1) − d(s, β)}
= d(s, β) + 2 − d(s, α) ≤ 0.

If dαβ ≥ 2d̄ + 2, then d′(s, α) = d′(s, β) ≥ d̄ + 1, thus

∆Φ = {d′(s, α) − (d̄ + 1) + d′(s, β) − (d̄ + 1)}
−{d(s, α) − (d̄ + 1) + (d̄ − 1) − d(s, β)}

= 2(d(s, β) − d̄) < 0.

b. If dαβ ≤ 2d̄ − 3, then d′(s, β) < d′(s, α) ≤ d̄ − 1, thus
∆Φ = 2(d̄ − d(s, α)) < 0.

If 2d̄ − 1 ≤ dαβ ≤ 2d̄ + 1, then d̄ ≤ d′(s, α) ≤ d̄ + 1 and
d̄ − 1 ≤ d′(s, β) ≤ d̄, thus ∆Φ = d(s, β) + 2 − d(s, α) ≤ 0.

If dαβ ≥ 2d̄ + 3, then d′(s, α) > d′(s, β) ≥ d̄ + 1, thus
∆Φ = 2(d(s, β) − d̄) < 0.

c. If dαβ ≤ 2d̄ − 4, then d′(s, β) < d′(s, α) ≤ d̄ − 1 and
∆Φ = 2(d̄ − d(s, α)) < 0.

If dαβ = 2d̄ − 2, then d′(s, α) = d̄ and d′(s, β) = d̄ − 2,
thus

∆Φ = {(d̄ − 1) − d′(s, β)}
−{d(s, α) − (d̄ + 1) + (d̄ − 1) − d(s, β)}

= d(s, β) + 3 − d(s, α).

If dαβ = 2d̄, then d′(s, α) = d̄ + 1 and d′(s, β) = d̄ − 1,
thus ∆Φ = d(s, β) + 2 − d(s, α).

If dαβ = 2d̄ + 2, then d′(s, α) = d̄ + 2 and d′(s, β) = d̄,
thus we also get that ∆Φ = d(s, β) + 3 − d(s, α).

For d(s, α) − d(s, β) ≥ 4, ∆Φ < 0 for the forward three
cases of dαβ = 2d̄ ∓ 2 and dαβ = 2d̄.

If dαβ ≥ 2d̄ + 4, then d′(s, α) > d′(s, β) ≥ d̄ + 1, thus
∆Φ = 2(d(s, β) − d̄) < 0.

4. if α ∈ C2 and β ∈ C2

a. d′(s, α) = d′(s, β) = d̄, thus

∆Φ = 0 − 0 = 0.

For dαβ = 2d̄, no such case for b and c.

5. if α ∈ C3 and β ∈ C2

a. dαβ ≥ 2d̄ + 2 for s is even-degree and d′(s, α) =
d′(s, β) ≥ d̄ + 1, thus

∆Φ = {d′(s, α) − (d̄ + 1) + d′(s, β) − (d̄ + 1)}
−{d(s, α) − (d̄ + 1)}

= d(s, β) − (d̄ + 1) = −1 < 0.

b. dαβ ≥ 2d̄ + 1.
If dαβ = 2d̄ + 1, then d′(s, α) = d(s, α) = d̄ + 1 and

d′(s, β) = d(s, β) = d̄, thus ∆Φ = 0 for Φ does not change
after the invocation.

If dαβ ≥ 2d̄ + 3, then d′(s, α) > d′(s, β) ≥ d̄ + 1, thus
∆Φ = d(s, β) − (d̄ + 1) = −1 < 0.

c. dαβ ≥ 2d̄ + 4 for d(s, α) − d(s, β) ≥ 4, thus d′(s, α) >

d′(s, β) ≥ d̄ + 1 and ∆Φ = d(s, β) − (d̄ + 1) = −1 < 0.

6. if α ∈ C3 and β ∈ C3

a. dαβ ≥ 2d̄ + 2 and d′(s, α) = d′(s, β) ≥ d̄ + 1, thus

∆Φ = {d′(s, α) − (d̄ + 1) + d′(s, β) − (d̄ + 1)}
−{d(s, α) − (d̄ + 1) + d(s, β) − (d̄ + 1)}

= 0.

b. dαβ ≥ 2d̄ + 3 for s is odd-degree and d′(s, α) >
d′(s, β) ≥ d̄ + 1, thus ∆Φ = 0 same as case a.

c. d(s, β) ≥ d̄ + 1 and d(s, α) ≥ d̄ + 5 for d(s, α) −
d(s, β) ≥ 4, then dαβ ≥ 2d̄+6 and d′(s, α) > d′(s, β) ≥ d̄+2,
thus ∆Φ = 0 same as case a.

We proved that for any vertex s � v, ∆Φ(s) never in-
crease. For the special vertex v, it is possible for cases 3 and
5 for d(v, α) ≥ d̄(v) + 1 and d(v, β) ≤ d̄(v).

3. if α ∈ C3(v) and β ∈ C1(v)
b. ∆Φ(v) < 0 for d(v, α) − d(v, β) ≥ 3.
a and c. d(v, α) − d(v, β) ≥ 4 for dαβ(v) is even, thus

∆Φ(v) < 0.

5. if α ∈ C3(v) and β ∈ C2(v)
b. d(v, β) = d̄(v) and d(v, α) − d(v, β) ≥ 3, then dαβ(v) ≥

2d̄(v)+3. Thus ∆Φ(v) < 0 same as any vertex s � v we have
shown.

a and c. ∆Φ(v) < 0 same as any vertex s � v we have
shown.

5.4 Result for Running Time

We have proved Lemma 5 in all cases, that is, in the course
of the algorithm, the value of Φ must decrease by at least 1
when we invoke R. Thus after at most 4n invocations
of R, Φmust be 0. Now we obtain the main theorem.

Theorem 1 Algorithm (G,C) solves the Nearly Equi-
table Edge-coloring Problem in O(n2/k) time for any multi-
graph G, where n and k are the numbers of the edges and the
colors, respectively.

Proof: From lemmas 3 and 4, R(Gαβ, α, β, v)
takes O(n/k) time, thus we conclude that the running time
of our algorithm is O(n × n/k) = O(n2/k). �

6. Concluding Remarks

We use the same technique of Ono and Hirata [3] and
present a new algorithm that nearly equitably colors any
multigraph G with n edges using k colors. It runs in O(n2/k)
time, which slightly improves the result of O(n2/k + n|V |)
time [2].

XIE et al.: AN IMPROVED ALGORITHM FOR THE NEARLY EQUITABLE EDGE-COLORING PROBLEM
1033

Acknowledgment

The first author thanks the supportment by the COE pro-
gram, Intelligent Media Integration in Nagoya University.

References

[1] A.J.W. Hilton and D. de Werra, “Sufficient conditions for balanced
and for equitable edge-coloring of graphs,” O.R. Working paper 82/3,
Dépt. of Math., École Polytechnique Fédérate de Lausanne, Switzer-
land, 1982.

[2] S. Nakano, Y. Suzuki, and T. Nishizeki, “An algorithm for the
nearly equitable edge-coloring of graphs,” IEICE Trans. Inf. & Syst.
(Japanese Edition), vol.J78-D-I, no.5, pp.437–444, May 1995.

[3] T. Ono and T. Hirata, “An improved algorithm for the net assignment
problem,” IEICE Trans. Fundamentals, vol.E84-A, no.5, pp.1161–
1165, May 2001.

[4] D.S. Hochbaum, T. Nishizeki, and D.B. Shmoys, “A better than ‘best
possible’ algorithm to edge color multigraphs,” J. Algorithms, vol.7,
no.1, pp.79–104, 1986.

[5] T. Nishizeki and K. Kashiwagi, “On the 1.1 edge-coloring of multi-
graphs,” SIAM J. Disc. Math., vol.3, no.3, pp.391–410, 1990.

Xuzhen Xie received B.E. from East China
University of Science and Technology in 1995
and M.E. from Nagoya University in 2003. She
is currently a doctor student in the Graduate
School of Information Science, Nagoya Univer-
sity. Her research interests include approxima-
tion algorithms.

Takao Ono received B.E., M.E. and Ph.D.
from Nagoya University in 1993, 1995 and
1999, respectively. He is currently a Research
Associate in the Graduate School of Informa-
tion Science, Nagoya University. His research
interests include approximation algorithms.

Shin-ichi Nakano received B.E., M.E. and
Ph.D. from Tohoku University in 1985, 1987
and 1992, respectively. He is currently an Asso-
ciate Professor in the Department of Computer
Science, Faculty of Engineering, Gunma Uni-
versity. His research interests include graph al-
gorithms and approximation algorithms.

Tomio Hirata received B.S., M.S. and Ph.D.
in Computer Science, all from Tohoku Univer-
sity in 1976, 1978, and 1981, respectively. He
is currently a Professor in the Graduate School
of Information Science, Nagoya University. His
research interests include graph algorithms and
approximation algorithms.

