IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.5 MAY 2004

1029

| PAPER Special Section on Discrete Mathematics and Its Applications |

An Improved Algorithm for the Nearly Equitable Edge-Coloring

Problem

Xuzhen XIE™, Takao ONO', Nonmembers, Shin-ichi NAKANO', and Tomio HIRATA", Members

SUMMARY A nearly equitable edge-coloring of a multigraph is a col-
oring such that edges incident to each vertex are colored equitably in num-
ber. This problem was solved in O(kn?) time, where n and k are the numbers
of the edges and the colors, respectively. The running time was improved
to be O(n2/k + n|V|) later. We present a more efficient algorithm for this
problem that runs in O(n? k) time.

key words: nearly equitable edge coloring, Euler circuit

1. Introduction

A nearly equitable edge-coloring of a multigraph G = (V, E)
is a coloring such that edges incident to each vertex are
colored equitably in number with given colors. Hilton and
Werra [1] solved this problem in O(kn?) time in 1982, where
n and k are the numbers of the edges and the colors, re-
spectively. Later in 1995, Nakano, Suzuki and Nishizeki [2]
presented a new algorithm that runs in On?/k + n|V|) time.
Using the idea of “balanced constraint” [2], Ono and Hi-
rata [3] transformed a restricted case of the Net Assignment
Problem into a Balanced m-edge Coloring Problem, where
m is the bound of the edges colored with any given color
for each vertex. They presented an algorithm for the Bal-
anced m-edge Coloring Problem of O(n?/k) time. Here, us-
ing Ono and Hirata’s technique, we present a more efficient
algorithm for the Nearly Equitable Edge-coloring Problem.
The new algoirthm also runs in On?/k) time and satisfies
“balanced constraint.”

The rest of the paper is structured as follows. In Sect. 2,
we give some definitions. In Sect. 3, we introduce the re-
sults of Hilton and Werra. Sections 4 and 5 are for the new
algorithm and the results we obtained. Finally, concluding
remarks is in Sect. 6.

2. Preliminaries and Definitions

Let us introduce the graph-theoretic notation that will be
used throughout this paper.

For a multigraph G, let V denote the vertices of G, E
denote the edges of G, and n denote the number of the edges.
We use dg(v) to denote the degree of a vertex v and C;-edge

Manuscript received August 22, 2003.
Manuscript revised November 14, 2003.
Final manuscript received January 22, 2004.
"The authors are with the Graduate School of Information Sci-
ence, Nagoya University, Nagoya-shi, 464-8603 Japan.

"'The author is with the Department of Computer Science,
Faculty of Engineering, Gunma University, Kiryu-shi, 376-8515
Japan.

a) E-mail: sharryx @hirata.nuee.nagoya-u.ac.jp

an edge with color C;. dg(v, C;) stands for the number of
C;-edges incident to a vertex v in G, eg(C;) stands for the
number of Ci-edges in G and G¢,c; is the subgraph of G
induced by all the C;-edges and C-edges in G. We omit the
subscript G if it is clear from the context.

Given a multigraph G = (V, E) and a k-color set C =
{C1,Cy,- -+, Cy}, the Nearly Equitable Edge-coloring is an
edge-coloring of G with the & colors such that for any vertex
v € V and diferent colors C;, C; € C, |d(v,Ci) —d(v,Cj)| £ 2
[1].

3. O(kn*)-Time for Nearly Equitable Edge-Coloring

The Nearly Equitable Edge-coloring Problem was solved by
Hilton and Werra [1] in 1982. Using Euler circuit, they pre-
sented a simple algorithm of O(kn?) time with k colors. We
have a brief introduction of their algorithm in the following.

Assign the given multigraph G with the given k colors.
Whenever there exists v € V and different colors C;,C; € C
such that |d(v, C;) — d(v, C;)| > 2, add a new vertex w adja-
cent to all odd-degree vertices in G¢,c; to form a new graph
G’c,-c,f For any connected component in G’Cic/" traverse an
Euler circuit and assign colors C; and C; alternately along
the way, and delete the edges adjacent to the new vertex w.

The multigraph G is nearly equitably edge-colored, that
is, for any v € V and different colors C;, C; € C, |d(v, C;) -
d(v, C;)| < 2 when the algorithm stops. The running time of
the algorithm is proved to be O(kn?).

Define

Cost = Z Z Z ld(v, C;) — d(v, C))l,

veV CieC CjeC
then

Cost

IA

IPIPITEE

veV C;eC CjeC

D0 dw,c)

C;eC veV CieC

Z 2|E| = 2kn.

C;eC

Cost decreases by at least 2 each time the Euler circuit is
traversed. Each Euler circuit costs O(|E|) = O(n) time, so
after at most kn traverses of Euler circuits, Cost must be 0
and the algorithm runs in O(kn?) time.

Euler circuit is normally used for edge-coloring [1]-
[5]. We also use it for our new algorithm in the following.

1030

4. A New Algorithm for Nearly Equitable Edge-
Coloring

4.1 Algorithm (G, C)

Ono and Hirata [3] presented an O(n?/k)-time algorithm
for the Balanced m-edge Coloring Problem. Here, we use
the same technique for the Nearly Equitable Edge-coloring
Problem.

Algorithm(G, C)
Input: a multigraph G = (V, E) with |E| = n and a
color set C with |C| = k
Output: a nearly equitable edge-coloring for G

1 Assign Cy,Cy, -+, Ci to n edges repeatedly, so that
each color class has [n/k] or |n/k] edges.

2 while there exists v € V and different colors
C;,C; € Csuchthat |d(v, C))-d(v,C})| > 3do

3 for the vertex v, find @, 8 € C with

d(v, @) = max{d(v,C;) : C; € C},
d(v,B) = min{d(v,C;) : C; € C}.

4 RECOLOR(G o5, @, B, V).

To maintain the inequality |eg(a) — eg(B)] < 1, we re-
color all connected components of G.g. For this purpose,
we swap « and 8 each time the odd connected component of
G, is recolored.

RECOLOR(G o, @, B, 1)
Input: a multigraph G, with all edges colored
with colors @ and $ and a selected vertex v
Output: a nearly equitable edge-coloring for G

1 Letx«— aandy « .

2 for each connected component H in G5 do

3 REcoLorR-CoMPONENT(H, X, Y, V).

4 if H has odd number of edges then

> (in this case ey (x) = ey(y) + 1)
5 Swap x and y.

RecoLor-CoMPONENT(H, X, Y,)

Input: a connected component H with all edges
colored with colors x and y and a selected vertex v
Output: a nearly equitable edge-coloring for H,
satistying ey (y) < ey(x) < ey(y) + 1

if H has odd-degree vertices then

s

2 Add a new vertex w adjacent to all the odd-
degree vertices to form a new graph H'.
3 Traverse an Euler circuit starting at the vertex

w and assign colors y and x (y comes first) to
the edges alternately along the way.

4 else

5 if v is a vertex of H then

6 Let v be the start vertex u.

7 else

8 if there exists a vertex r € H with |d(r, x) —
d(r,y)| > 2 then

9 Let r be the start vertex u.

10 else

11 Let u be an arbitrary vertex.

12 Traverse an Euler circuit starting at the vertex u

and assign colors x and y (x comes first) to the
edges alternately along the way.

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.5 MAY 2004

5. Analysis of the Algorithm
5.1 Results of Ono and Hirata

Using the same proof as in [3], we can obtain the following
results.

Lemma 1 [3] The coloring after an invocation of
RecoLor-CoMPONENT(H, @, 8, v) for a connected graph H =
(Vy, Ep) satisfies the following conditions:

a. If all vertices in H are even-degree and |Ep] is even,
then d(s, @) = d(s, B) for any vertex s.

b. If all vertices in H are even-degree and |Ey| is odd,
then d(u, @) = d(u, 8) + 2 for the start vertex u and d(s, @) =
d(s,B) for any vertex s other then u.

c. If there are odd-degree vertices in H, then |d(s, @) —
d(s,B)| = 1 for any odd-degree vertex s and d(s, @) = d(s,3)
for any even-degree vertex s.

Lemma 2 [3] The coloring after an invocation of
REecoLor-CoMPONENT(H, a, B, v) satisfies the strict balance
condition, that is,

eg(B) < egy(a) <ey(B) +1.

Corollary 1 [3] Lemma 2 holds for REcoLor
(Gop» ., B,0) instead of
RecoLor-ComMPONENT(H, @, 3,).

Corollary 2 [3] At any time of the algorithm, the col-
oring satisfies “balanced constraint:”
leg(a@) — ex(B)| < 1 for any colors a and S.

Lemma 3 [3] The running time of REcoLor
(Gap» @, B,0) is O(e(a) + e(B)).

Lemma 4 [3] e(a) = O(n/k) for any color « at any time
of the algorithm.

5.2 Our Results

Ono and Hirata [3] defined the excess ®(s) for an vertex
s € V as follows:

D(s) = Z

CieC:d(s,Ci)>m

(d(s, C;) —m),

where m is the number of the connections between an FPGA
and a crossbar. They proved that the excess @, the summa-
tion of ®(s) over all vertices s, must decrease by constant
when running their algorithm.

It seems that we can use the same proof to obtain the
same results if we could find a suitable m such as they did.
It is possible to find some m which makes ® decrease, but it
is hard to insure a constant decrease. Thus we make the fol-
lowing definations, which also leads to a much more com-
plex proof in Sect. 5.3.

XIE et al.: AN IMPROVED ALGORITHM FOR THE NEARLY EQUITABLE EDGE-COLORING PROBLEM

Omitting the subscript G, let d(s) = |d(s)/k] for a ver-
tex s € V, we define the color sets as follows:

Ci(s) = {Ci € Cld(s, C;) < d(s) — 1},

Ca(s) = {C; € Cld(s,C;) = d(s)},

Cs(s) = {C; € Cld(s, C;) = d(s) + 1).

Define the cost of s as

D(s) = Z

CieCid(5,C)>d(s)+1

py

CieC:d(s,Ci)<d(s)-1

{d(s, Cp) = (d(s) + D)}
{(d(s) = 1) = d(s,C).

The cost @ of the coloring is the summation of ®(s) over all
vertices s, and it is bounded as follows:

D = Z(D(s)

seV

DI DY
seV C,eC:d(s,C,-)Z(j(s)-H
D SR)
CieC:d(s,C)<d(s)-1
< Z 2d(s) = 4|E| = 4n.
seV

Let A®(s) denote the difference of ®(s) before and after the
invocation of RECOLOR(G g, @, B, v). In the following, d(s, @)
and d’(s, @) denote the numbers of a-edges before and after
the invocation of REcOLOR, respectively.

For the special vertex v selected by Algorithm (G, C),

d(s, Cy)

d(v, @) = max{d(v,C;) : C; € C},
d(v,3) = min{d(v,C;) : C; € C},

we note that d(v, @) > d(v) + 1 and d(v, 8) < d(v).

Lemma 5 Assume that there exists a vertex v and
colors @, B such that d(v,@) > d@) + 1, d©,8) < d(v)
and d(v,@) — d(v,8) > 3. ® must decrease if we invoke
RECOLOR(G o, @, B, V).

In the following proof, dus(s) denotes the degree of
a vertex s in the subgraph G.g, that is, dog(s) = d(s,a) +
d(s,).

5.3 Proof of Lemma 5

Let v be the special vertex selected by Algorithm (G, C), we
rewrite Lemma 1 [3] in the following way in 3 cases.

Lemma 1’ [3] The coloring after an invocation of
RecoLor-CompoNeNT(H, @, 8, v) for a connected graph H =
(Vy, Ep) satisfies the following conditions:

a. For any even-degree vertex s not belonging to case
c,d (s,a) =d'(s,p).

b. For any odd-degree vertex s, |d’(s, @) — d'(s,8)| = 1.

1031

c. For the start vertex s when the connected compo-
nent H has odd number of edges and no odd-degree vertices,
d'(s,a) =d'(s,B) + 2.

We first discuss how A®(s) changes for any vertex
s # v for the three cases. For such vertices in case c, they are
selected by RecorLor-ComPoNENT(H, x, y,v) with |d(s, @) —
d(s, B)| = 2 before the invocation. If |d(s, @) — d(s, B)| = 2, it
is easy to see that AD(s) = 0 for ®(s) does not change after
the invocation. So for case ¢, we only need to discuss on the
vertices where s # v and |d(s, @) — d(s,B)| = 4. After that,
we show how A®(v) changes for the special vertex v. In the
end, we conclude the response of @ of the coloring over all
vertices.

In the following proof, we suppose by symmetry that
d(s, @) > d(s, B) before the invocation and d’(s, @) > d’(s,8)
after the invocation. During the discussions for any vertex
s # v, we ommit (s) for all the notations corresponding with
s, such as C(s), dap(s),d(s), - - -, etc.

1. ifa € Cy and_,8€01 B
a.dop <2d-2and d'(s,a) = d'(s,5) <d - 1, thus

AD = {(d-1)—d'(s,0) +(d—1)-d'(5,8)}
—{d-1)—d(s,a)+(d—-1)—d(s,p)
= 0.

b. dys < 2d - 3 for s is odd-degree and d'(s,3) <
d'(s,a) <d -1, thus A® = 0 same as case a.

c. d(s,a) < d—-1andd(s,8) < d -5 for d(s,a) -
d(s,5) > 4,thend,p <2d—6and d’'(s,B) <d'(s,) <d -2,
thus A® = 0 same as case a.

2.ifeeCrandBeCy

a. dyp < 2d - 2 for s is even-degree and d'(s,a) =
d'(s,B) <d -1, thus

AD ={d-1)-d(s,a)+(d-1)-d(s,B)}

—{(d - 1) - d(s,B)}
=d-1-d(s,a)=-1<0.

b. dyp < 207—_ 1.

If dog = 2d — 1, then d'(s, @)
d'(s,B) = d(s,8) = d — 1, thus AD
change after the invocation.

If dyg < 2d - 3, then d'(s,B) < d'(s,@) < d — 1, thus
we obtain that A® = d — 1 — d(s, @) = —1 < 0 same as case
a.

d(s,a) = d and
0 for ® does not

C. dop < 2d — 4 for d(s,a) —d(s,p) > 4, thus d'(s, B) <
d(s,a) <d-1land A® =d-1-d(s,a) = —1 <0 same as
case a.

3.ifeeCs;andB € Cy
a. Ifdys <2d -2, thend'(s,a) = d'(s,) < d — 1, thus

AD = {d-1)-d(s,a)+(d—-1)—d(s,0)}
—{d(s,a@) = (d+ 1)+ (d - 1) —d(s, 8)}

1032

= 2(d - d(s,a)) < 0.
If d,g = 2d, then d'(s, @) = d'(s, 8) = d, thus

AD = 0—{d(s,a) = (d+ 1)+ (d~-1)-d(s,p)}
=d(s,f)+2—-d(s,a) <0.

If dos > 2d + 2, then d’(s,@) = d'(s,8) > d + 1, thus

AD = {d'(s,@) - d+ 1) +d'(s,8) - (d + 1)}
—{d(s,@) = (d+ 1)+ (d - 1) - d(s,)}
= 2(d(s,f) - d) < 0.

b. If dop < 2d -3, thend'(s,8) < d'(s,@) <d — 1, thus
AD =2(d - d(s, @) < 0.

If2d -1 <d,; <2d+1,thend <d'(s,a) <d + 1 and
d—1<d(s,p) <d, thus A® = d(s,8) + 2 — d(s,a) < 0.

If dys > 2d + 3, then d'(s, @) > d'(s,8) > d + 1, thus
AD = 2(d(s,B) — d) < 0.

c. Ifdyg < 2d — 4, thend'(s,B) < d'(s,) < d— 1 and
AD =2(d — d(s,a)) < 0.

Ifdys = 2d -2, thend’'(s,a) =d and d’(s,8) = d - 2,
thus

AD = {d-1)-d'(s.8))
—{d(s,@) = (d+ 1)+ (d—-1)—-d(s,B)}
=d(s,B) +3 —-d(s,a).

Ifdy = 2d, then d’(s,a) =d + 1 and d’(s,8) = d — 1,
thus A® = d(s,8) + 2 — d(s, a).

Ifdys = 2d + 2, then d’(s,a) = d + 2 and d’(s,8) = d,
thus we also get that A® = d(s,8) + 3 — d(s, a).

For d(s,a) — d(s,B) = 4, AD < 0 for the forward three
cases of dys = 2d ¥ 2 and d,5 = 2d.

If dop > 2d + 4, then d'(s, @) > d'(s,8) > d + 1, thus
AD = 2(d(s,B) — d) < 0.

4. ifaecCrandB e C; B
a. d'(s,a) =d'(s,8) = d, thus

AD=0-0=0.

For d,z = 2d, no such case for b and c.

S.ifeeCiandB e
a. dag > 2d + 2 for s is even-degree and d’(s, @) =
d'(s,8) = d + 1, thus

AD = {d'(s,a) — (c? +1)+d'(s,8) - (c? + 1)}
—{d(s,a) = (d + 1)}
—d(s,p) @+ 1)=-1<0.

b. dop 2 2d + 1.

If da,B =2d + 1, then d/(S,Cl’) =d(s,a) = d+1 and
d'(s,B) = d(s,) = d, thus A® = 0 for ® does not change
after the invocation.

If dop > 2d + 3, then d'(s, @) > d’(s,8) = d + 1, thus
AD =d(s,f)-(d+1)=-1<0.

C.dop > 2d + 4 for d(s, @) — d(s, 8) > 4, thus d’(s, @) >

IEICE TRANS. FUNDAMENTALS, VOL.E87-A, NO.5 MAY 2004

d(s,)>d+1and A® = d(s,8)— (d+1) = -1 <0.

6. if € C3and B € C; i
a.dyg>2d+2and d'(s,a) = d'(s,) > d + 1, thus

AD = {d'(s,a)—(d+1)+d'(s,0) — (d + 1)}
—{d(s,a@) = (d + 1)+ d(s,8) — (d + 1)}
= 0.

b. dys > 2d + 3 for s is odd-degree and d'(s, @) >
d(s,p) = d + 1, thus A® = 0 same as case a.

c. d(s,8) = d+1and d(s,a) > d + 5 for d(s,a) -
d(s,B) > 4,thend,p > 2d+6and d'(s,a) > d'(s,8) > d+2,
thus A® = 0 same as case a.

We proved that for any vertex s # v, AD(s) never in-
crease. For the special vertex v, it is possible for cases 3 and
5 for d(v, @) > d(v) + 1 and d(v, B) < d(v).

3.ifa e C3(v) and B € C1(v)

b. A®(v) < 0 for d(v, @) — d(v,8) > 3.

aand c. d,a) — d(v,B) = 4 for d.s(v) is even, thus
AD(v) < 0.

5. if @ € C3(v) and B € C1(v)

b. d(v, 8) = d(v) and d(v, @) — d(v, 8) > 3, then dop(v) 2
2d(v) + 3. Thus A®(v) < 0 same as any vertex s # v we have
shown.

aand c. A®(v) < 0 same as any vertex s # v we have
shown.

5.4 Result for Running Time

We have proved Lemma 5 in all cases, that is, in the course
of the algorithm, the value of ® must decrease by at least 1
when we invoke RecoLor. Thus after at most 4n invocations
of ReEcoLor, ® must be 0. Now we obtain the main theorem.

Theorem 1 Algorithm (G, C) solves the Nearly Equi-
table Edge-coloring Problem in O(n?/k) time for any multi-
graph G, where n and k are the numbers of the edges and the
colors, respectively.

Proof: From lemmas 3 and 4, REcOLOR(G o5, @, 3, V)
takes O(n/k) time, thus we conclude that the running time
of our algorithm is O(n x n/k) = O(n*/k).]

6. Concluding Remarks

We use the same technique of Ono and Hirata [3] and
present a new algorithm that nearly equitably colors any
multigraph G with n edges using k colors. It runs in O(n?/k)
time, which slightly improves the result of O(n?/k + n|V|)
time [2].

XIE et al.: AN IMPROVED ALGORITHM FOR THE NEARLY EQUITABLE EDGE-COLORING PROBLEM

Acknowledgment

The first author thanks the supportment by the COE pro-
gram, Intelligent Media Integration in Nagoya University.

References

[1] A.J.W. Hilton and D. de Werra, “Sufficient conditions for balanced
and for equitable edge-coloring of graphs,” O.R. Working paper 82/3,
Dépt. of Math., Ecole Polytechnique Fédérate de Lausanne, Switzer-
land, 1982.

[2] S. Nakano, Y. Suzuki, and T. Nishizeki, “An algorithm for the
nearly equitable edge-coloring of graphs,” IEICE Trans. Inf. & Syst.
(Japanese Edition), vol.J78-D-I, no.5, pp.437—444, May 1995.

[3] T.Ono and T. Hirata, “An improved algorithm for the net assignment
problem,” IEICE Trans. Fundamentals, vol.E84-A, no.5, pp.1161-
1165, May 2001.

[4] D.S. Hochbaum, T. Nishizeki, and D.B. Shmoys, “A better than ‘best
possible’ algorithm to edge color multigraphs,” J. Algorithms, vol.7,
no.1, pp.79-104, 1986.

[5] T. Nishizeki and K. Kashiwagi, “On the 1.1 edge-coloring of multi-
graphs,” SIAM J. Disc. Math., vol.3, no.3, pp.391-410, 1990.

Xuzhen Xie received B.E. from East China
University of Science and Technology in 1995
and MLE. from Nagoya University in 2003. She
is currently a doctor student in the Graduate
School of Information Science, Nagoya Univer-
sity. Her research interests include approxima-
tion algorithms.

Takao Ono received B.E., M.E. and Ph.D.
from Nagoya University in 1993, 1995 and
1999, respectively. He is currently a Research
Associate in the Graduate School of Informa-
tion Science, Nagoya University. His research
interests include approximation algorithms.

Shin-ichi Nakano received B.E., M.E. and
Ph.D. from Tohoku University in 1985, 1987
and 1992, respectively. He is currently an Asso-
ciate Professor in the Department of Computer
Science, Faculty of Engineering, Gunma Uni-
versity. His research interests include graph al-
gorithms and approximation algorithms.

1033

Tomio Hirata received B.S., M.S. and Ph.D.
in Computer Science, all from Tohoku Univer-
sity in 1976, 1978, and 1981, respectively. He
is currently a Professor in the Graduate School
of Information Science, Nagoya University. His
research interests include graph algorithms and
approximation algorithms.

