
334
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

LETTER

Refined Computations for Points of the Form 2kP Based on
Montgomery Trick∗

Daisuke ADACHI†a), Nonmember and Tomio HIRATA††b), Member

SUMMARY This paper focuses on algorithms for an efficient scalar
multiplication. It proposes two algorithms for computing points of the form
2kP in affine coordinates. One works for k = 2, and the other works for an
arbitrary natural number k. The efficiency of these algorithms is based on a
trade-off between a field inversion and several field multiplications. Mont-
gomery trick is used to implement this trade-off. Since a field inversion
is usually more expensive than 10 field multiplications, the proposed algo-
rithms are efficient in comparison with existing ones.
key words: scalar multiplication, elliptic curve arithmetic, Montgomery
trick, window method

1. Introduction

In recent years, elliptic curve cryptographic schemes have
become prevailed in commercial use, and they have been
built in tiny IC chips. This is because IC cards like smart
cards are used for credit cards, insurance certificates, com-
muter tickets and so on, in place of usual magnetic cards.
The execution time of elliptic curve cryptographic schemes
heavily depends on that of scalar multiplications. This mul-
tiplication takes a point P on an elliptic curve over a finite
field and computes a scalar multiple dP for some scalar d.

The 2w-ary method [3], [7] and the sliding window
method [5] are useful for a scalar multiplication. These
“window methods” usually use the signed binary representa-
tion of the scalar [8], [9], [14] and repeatedly compute points
of the form 2kP from point P on an elliptic curve. These
computations use two arithmetics on the elliptic curve; an
addition (P + Q) and a doubling (2P).

Here we focus on an elliptic curve defined over GF(p).
In affine coordinates, additions and doublings include inver-
sions over GF(p). However, a field inversion is much ex-
pensive than a field squaring or a field multiplication. For
example, Sakai and Sakurai [13] reported that the ratio of
computation time of a field inversion to a field multiplica-
tion is 25.0 for 160-bit p in their implementation. Therefore,

Manuscript received January 14, 2005.
Manuscript revised August 17, 2005.
Final manuscript received October 11, 2005.
†The author is with the Graduate School of Engineering, Na-

goya University, Nagoya-shi, 464-8603 Japan.
††The author is with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464-8603 Japan.
∗The preliminary version of this paper was appeared at

SCIS2005. This study is being granted by the 21st Century COE
program, Intelligent Media (Speech and Images) Integration for
Social Information Infrastructure (at Nagoya University).

a) E-mail: adachi@hirata.nuee.nagoya-u.ac.jp
b) E-mail: hirata@is.nagoya-u.ac.jp

DOI: 10.1093/ietfec/e89–a.1.334

reducing the number of field inversions is important for an
efficient scalar multiplication.

One method for reducing the number of field inversions
is direct computation for points on an elliptic curve. For ex-
ample, the direct computation for 2kP computes 2kP directly
from P, computing no intermediate points 2P, 4P, . . . , 2k−1P.
The concept of direct computation was firstly proposed by
Guajardo and Paar [6]. They gave algorithms for direct com-
putation of 4P, 8P and 16P on an elliptic curve defined over
GF(2n) in affine coordinates. In recent years, several algo-
rithms of direct computation for 2kP in affine coordinates
have been proposed [6], [11], [13]. Sakai and Sakurai [13]
proposed an efficient algorithm for 2kP on an elliptic curve
defined over GF(p). This algorithm works for arbitrary nat-
ural number k. This paper proposes new efficient algorithms
for computing 2kP based on “Montgomery trick.”

2. Preliminaries

2.1 Arithmetics over GF(p)

Additions and doublings are implemented by several kinds
of field arithmetics. Among these arithmetics, a field squar-
ing, a field multiplication and a field inversion are more ex-
pensive than other field arithmetics, such as a field addition
and a field subtraction. We intend to estimate the efficiency
of algorithms for computing points on an elliptic curve by
the number of the former three field arithmetics∗∗. More-
over, as in [2], [13], we will assume that the cost of a field
squaring is 80% as expensive as that of a field multiplica-
tion. By dropping “field,” we call these field arithmetics just
as squaring, multiplication and inversion.

2.2 Addition Formula on Affine Coordinates

Let p denote a prime. Ep : y2 ≡ x3+ax+b (mod p)(4a3+

27b2 � 0) is an elliptic curve defined over GF(p). Let P =
(xP, yP) and Q = (xQ, yQ) be points on Ep. The point P +
Q = (xP+Q, yP+Q), the result of addition, is derived from the
following formulae:

xP+Q = λ
2 − xP − xQ,

yP+Q = λ(xP − xP+Q) − yP.

Here, λ = yQ−yP

xQ−xP
if P � Q (addition), and λ =

3x2
P+a

2yP
if

∗∗We ignore field multiplication by small constant because it is
much cheaper than general field multiplication.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



LETTER
335

P = Q(doubling). An addition requires 1 squaring, 2 multi-
plications and 1 inversion, and a doubling requires 2 squar-
ings, 2 multiplications and 1 inversion.

2.3 Montgomery Trick

Montgomery trick [10] is a technique for simultaneous in-
versions. As a simple example, the inverses modulo p of
two numbers x, y can be calculated by the following way:

M = xy, I = M−1, x−1 = Iy, y−1 = Ix.

These formulae indicate that 2 inversions can be replaced
by 1 inversion and 3 multiplications. Similarly, the inverses
modulo p of m numbers x−1

1 , x−1
2 , . . . , x

−1
m ∈ GF(p) are cal-

culated as follows.

Step 1. Calculate
∏i

j=1 x j for each i = 2, 3, . . . , m
and store them.

Step 2. Calculate (
∏m

j=1 x j)−1.

Step 3. Calculate (
∏i

j=1 x j)−1 · ∏i−1
j=1 x j = x−1

i and

(
∏i

j=1 x j)−1 · xi = (
∏i−1

j=1 x j)−1

for each i = m, . . . , 3, 2.

In Step 1, (m − 1) multiplications are required, and
(2m − 2) multiplications are required in Step 3. Thus,
x−1

1 , x−1
2 , . . . , x−1

m ∈ GF(p) can be calculated by 1 inversion
and (3m − 3) multiplications. The above replacements are
effective if 1 inversion costs more than 3 multiplications.

3. New Efficient Algorithms

In this section, we will propose a new algorithm for com-
puting the quadruple point 4P from P which uses the Mont-
gomery trick. Moreover, we will modify the Sakai and
Sakurai’s algorithm for computing 2kP to introduce the
Montgomery trick.

3.1 Formulae for Quadrupling

The window method usually takes window length w from
the range of 2 ≤ w ≤ 6. Especially, when the size of aux-
iliary table in the window method must be decreased, and
when we use Straus’s trick for fast simultaneous scalar ex-
ponentiation [1] , w = 2 or w = 3 is adopted. Obviously,
the quadrupling repeatedly appears in the course of the win-
dow method with w = 2. Also, the quadrupling appears in
the case of w = 3 if the window method computes 22P first
and then computes 2(22Y) + vP, where v is the value of a
“window.”

3.1.1 Existing Algorithms

A straightforward computation of a quadruple point 4P is
to perform two successive doublings. In this computation,
4 squarings, 4 multiplications and 2 inversions are required.
Müller proposed an algorithm for direct computation of 4P
[11]. His algorithm requires 7 squarings, 14 multiplications

and 1 inversion. The Sakai and Sakurai’s algorithm for 2kP
can also compute 4P if k = 2 [13]. This algorithm requires
9 squarings, 9 multiplications and 1 inversion, and thus it
is efficient in comparison with the two successive doublings
if 1 inversion costs more than 9 multiplications under our
assumptions.

3.1.2 Proposed Algorithm

We present a new algorithm for computing 4P which uses
the Montgomery trick. Our algorithm is mainly based on
the two successive doublings. As we have seen, the straight-
forward way requires two inverses (2yP)−1 and (2y2P)−1. If
we apply the Montgomery trick for computing these two
inverses, a product (2yP)(2y2P) is necessary. However, we
cannot compute 2y2P = 2λ1(xP − x2P) − 2yP without per-
forming inversions. Here we focus on the formula for y2P.
By multiplying this formula by 16y3

P, we obtain

16y3
Py2P = 2(3x2

P + a){12xPy
2
P − (3x2

P + a)2} − 16y4
P.

This formula indicates that 16y3
Py2P can be computed from

xP and yP. Thus, we modify the Montgomery trick to com-
pute a product (2yP)(16y3

Py2P) instead of (2yP)(2y2P). Defin-
ing E = (2yP)(16y3

Py2P) and I = E−1, we can obtain (2yP)−1

and (2y2P)−1 by

(2y2P)−1 = 16y4
PI, (2yP)−1 = (16y3

Py2P)I.

The remaining part of our quadrupling algorithm is iden-
tical to the two successive doublings. Namely, we
first calculate (2yP)−1 and (2y2P)−1, and then calculate
λ1, x2P, y2P, λ2, x4P, y4P in this order. We show the detailed
version of our quadrupling algorithm in the following.

Algorithm A: Quadrupling in affine coordinates.

INPUT: P = (xP, yP)
OUTPUT: 4P = (x4P, y4P)
Step 1. Precomputation

m = 3x2
P + a, s = xP(2yP)2, t = (2yP)4

Step 2. Computation of the inverses
e = 2m(3s − m2) − t, E = (2yP)e, I = E−1, (2yP)−1 =

eI, (2y2P)−1 = tI
Step 3. Computation of 4P
λ1 = m(2yP)−1,
x2P = λ

2
1 − 2xP, y2P = λ1(xP − x2P) − yP

λ2 = (3x2
2P + a)(2y2P)−1,

x4P = λ
2
2 − 2x2P, y4P = λ2(x2P − x4P) − y2P

We estimate the efficiency of our quadrupling algorithm.
Step 1 requires 3 squarings and 1 multiplication. Step 2 re-
quires 1 squaring, 4 multiplications and 1 inversion. Finally,
Step 3 requires 3 squarings and 4 multiplications. Therefore,
our quadrupling algorithm requires 7 squarings, 9 multipli-
cations and 1 inversion.

A summary of the efficiency for quadrupling is shown



336
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

Table 1 The efficiency of quadrupling.

two doublings 4 squarings, 4 multiplications and 2 inversions
Müller [11] 7 squarings, 14 multiplications and 1 inversion

Sakai and Sakurai (k = 2) [13] 9 squarings, 9 multiplications and 1 inversion
proposed quadrupling 7 squarings, 9 multiplications and 1 inversion

in Table 1. Our quadrupling algorithm is more efficient than
two successive doublings if one inversion is more expensive
than 7.4 multiplications.

3.2 Formulae for Computing 2kP

This section handles computation of a point 2kP from P for
arbitrary k. The sliding window method [5] is an extension
of the 2w-ary method, in which the window size is at most
w. This method performs Y ← 2iY + vP, where v is the
value of the current window, and i is the size of the cur-
rent window plus the interval between the current window
and its neighbor to the left. Therefore, the sliding window
method requires computation of 2kP for various k. Sakai
and Sakurai [13] proposed an efficient algorithm for direct
computation of 2kP.

The Sakai and Sakurai’s algorithm

INPUT: P = (xP, yP)
OUTPUT: 2kP = (x2k P, y2k P)
Step 1. Computation of A1, B1, C1

A1 = xP, B1 = 3xP
2 + a, C1 = −yP

Step 2. Computation of Ai, Bi, Ci (i = 2, 3, . . . , k)
Ai = B2

i−1 − 8Ai−1C2
i−1

Bi = 3A2
i + 16i−1a(

∏i−1
j=1 C j)4

Ci = −8C4
i−1 − Bi−1(Ai − 4Ai−1C2

i−1)
Step 3. Computation of 2kP

Dk = 12AkC2
k − B2

k

x2k P =
B2

k−8AkC2
k(

2k
∏k

j=1 C j

)2

y2k P =
8C4

k−BkDk(
2k
∏k

j=1 C j

)3

As we have noted, this algorithm does not compute in-
termediate points 2P, 4P, . . . , 2k−1P in an explicit form.
These intermediate points are stored in three terms,
Ai+1, Ci+1, 2i∏i

j=1 C j. From these three terms, we can in-
duce 2iP = (x2iP, y2iP) (1 ≤ i ≤ k − 1) by

x2iP = Ai+1/

2i
i∏

j=1

C j


2

and

y2iP = −Ci+1/

2i
i∏

j=1

C j


3

.

The Sakai and Sakurai’s algorithm requires only 1 inversion
in Step 3. In addition, 4k + 1 squarings and 4k + 1 multipli-
cations are required. We consider the following variant.

A variant of the Sakai and Sakurai’s algorithm

INPUT: P = (xP, yP)
OUTPUT: 2kP = (x2k P, y2k P)
Step 1. Compute 2k−1P by the Sakai and Sakurai’s algo-

rithm.
Step 2. Compute 2kP by one doubling.

This variant obviously requires two inversions. We mod-
ify this variant using the Montgomery trick and other tech-
niques.

(1) Applying the Montgomery Trick.

The variant of the Sakai–Sakurai’s algorithm requires two
inverses, (2k−1∏k−1

j=1 C j)−1 and (y2k−1P)−1.
Here we set

Dk−1 = 12Ak−1C2
k−1 − B2

k−1, (1)
X2k−1 P = B2

k−1 − 8Ak−1C2
k−1, (2)

Y2k−1 P = 8C4
k−1 − Bk−1Dk−1, (3)

Z2k−1 P = 2k−1
k−1∏

j=1

C j. (4)

From (4) and the Sakai and Sakurai’s algorithm, the follow-
ing equations are satisfied†;

x2k−1P = X2k−1 P/Z
2
2k−1 P, (5)

y2k−1 P = Y2k−1P/Z
3
2k−1 P. (6)

Therefore, the following equations are induced.

2k−1
k−1∏

j=1

C j


−1

= Z−1
2k−1 P

(2y2k−1 P)−1 = (2Y2k−1P)−1Z3
2k−1 P

If both Z2k−1P and 2Y2k−1 PZ−3
2k−1P

are known, we can com-

pute (2k−1∏k−1
j=1 C j)−1 and (2y2k−1 P)−1 by applying the Mont-

gomery trick. However, we cannot compute 2Y2k−1 PZ−3
2k−1P

without performing inversions. So we modify the Mont-
gomery trick for computing a product E = (Z2k−1 P)(2Y2k−1 P).
Also, letting I = E−1. Then, two inverses (2k−1∏k−1

j=1 C j)−1

and (2y2k−1 P)−1 are calculated as follows;

2k−1
k−1∏

j=1

C j


−1

= 2Y2k−1 PI,

(2y2k−1 P)−1 = Z4
2k−1PI. (7)

†These equations are equivalent to the definition of Jacobian
coordinates (weighted projective coordinates).



LETTER
337

Table 2 The efficiency of computing 2kP.

Sakai-Sakurai [13] 4k + 1 squarings, 4k + 1 multiplications and 1 inversion
proposed algorithm 4k − 1 squarings, 4k + 2 multiplications and 1 inversion

It is obvious that only one inversion is necessary for cal-
culating (2k−1∏k−1

j=1 C j)−1 and (2y2k−1P)−1. We compute
2k−1P = (x2k−1 P, y2k−1P) from (5) and (6).

(2) Modified formula for computing λ.

Next, we will compute 2kP = (x2k P, y2k P) by one doubling.
From (5) and (7), we induce the modified formula for λ as
follows†:

λ = (3x2
2k−1 P + a)/2y2k−1 P

= (3x2
2k−1 P + a) · Z3

2k−1P · (2Y2k−1P)−1

= (3x2
2k−1 P + a) · Z4

2k−1P · I
= (3X2

2k−1 P + aZ4
2k−1P)I

= (3X2
2k−1 P + 2 · aZ4

2k−2P · 8C4
k−1)I. (8)

The induced formula (8) contains two terms; 8C4
k−1 and

aZ4
2k−2P

. These terms have been already calculated because
8C4

k−1 appears in (3), and aZ4
2k−2 P

appears in the formula for
Bk−1

††. Therefore, if the values of 8C4
k−1 and aZ4

2k−2P
are

stored, we can calculate λ from (8). Finally, we compute
(x2k P, y2k P) using x2k−1P, y2k−1P and λ.

(3) Summarizing the proposed algorithm

We summarize the variant of the Sakai and Sakurai’s algo-
rithm with the Montgomery trick in the following.

Algorithm B: Computing 2kP in affine coordinates.

INPUT: P = (xP, yP)
OUTPUT: 2kP = (x2k P, y2k P)
Step 1. Computation of Ak−1, Bk−1, Ck−1 by

the Sakai and Sakurai’s algorithm
Step 2. Computation of X2k−1 P, Y2k−1P, Z2k−1 P by (1) ∼ (4)

(Also storing aZ4
2k−2 P

and 8C4
k−1)

Step 3. Computation of (x2k−1P, y2k−1 P)
E = 2Y2k−1PZ2k−1 P, I = E−1

Z−1
2k−1 P
= 2Y2k−1PI

x2k−1P = X2k−1 PZ−2
2k−1P

y2k−1 P = Y2k−1PZ−3
2k−1 P

Step 4. Computation of (x2k P, y2k P)
λ = (3X2

2k−1 P
+ 2 · aZ4

2k−2P
· 8C4

k−1)I
x2k P = λ

2 − 2x2k−1P

y2k P = λ(x2k−1 P − x2k P) − y2k−1P

Here we estimate the efficiency of the variant of the
Sakai and Sakurai’s algorithm. Step 1 requires 4k− 7 squar-
ings and 3k − 6 multiplications. Step 2 requires 3 squarings
and k multiplications. Step 3 requires 1 squaring, 5 multi-
plications and 1 inversion. Finally, step 4 requires 2 squar-
ings and 3 multiplications. Therefore, our algorithm for 2kP

Table 3 Average time of field arithmetics (µsec).

add subtract multiply square invert

0.103 0.092 1.209 0.970 37.417

Table 4 Average execution time of the sliding window method (msec).

w 2 3 4 5 6

Case 1 10.629 10.088 9.749 9.557 9.477
Case 2 6.918 5.754 5.051 4.624 4.381
Case 3 6.854 5.714 5.022 4.599 4.358

C3/C1 0.644 0.566 0.515 0.481 0.469
C3/C2 0.990 0.993 0.994 0.995 0.995

Table 5 Average execution time of the 2w-ary method (msec).

w 2 3 4 5 6

Case 1 10.717 10.334 9.996 9.803 9.766
Case 2 8.185 6.601 5.674 5.144 4.888
Case 3 7.897 6.540 5.630 5.109 4.856

C3/C1 0.737 0.633 0.563 0.521 0.497
C3/C2 0.965 0.991 0.992 0.993 0.993

requires 4k−1 squarings, 4k+2 multiplications and 1 inver-
sion.

We summarize the efficiency of the computation of 2kP
in Table 2. In comparison with the Sakai–Sakurai’s algo-
rithm, our variant algorithm saves 2 squarings and requires
1 additional multiplication. Namely, our variant algorithm
saves 0.6 multiplications.

4. Application to Scalar Multiplication

The window method repeatedly computes points of the form
2kP, where k is sliding width to the next window. We con-
sider the following three cases in implementation of com-
puting 2kP. In Case 1, only doublings are used. In Case 2,
the Sakai and Sakurai’s algorithm is applied for the compu-
tations of the form 2kP. Similarly, In Case 3, Algorithm A
(for k = 2) and Algorithm B (for k ≥ 3) are applied for 2kP.

For the three cases, we perform the following experi-
ment. P is a random point on the elliptic curve, and d is a
random scalar. We measure the execution time for comput-
ing a dP for 10,000 times and calculate the average. This
experiment is performed on a PC which has Pentium III
700 MHz processor and uses an elliptic curve “NIST P-192”
[12] defined over GF(p), where p is a 192 bit prime. Ta-
ble 3 shows the average execution time of field arithmetics
on GF(p). From this table, the ratio of a squaring to a mul-
tiplication is observed as 0.802, which verifies our assump-

†From (4), aZ4
2k−1P

= a(2k−1∏k−1
j=1 C j)4

= 16C4
k−1 · a(2k−2∏k−2

j=1 C j)4

= 2 · 8C4
k−1 · aZ4

2k−2P
.

††From (4), 16k−2a(
∏k−2

j=1 C j)4 = a(2k−2∏k−2
j=1 C j)4 = aZ4

2k−2P
.



338
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.1 JANUARY 2006

Table 6 The average number of multiplications, squarings and inversions.

Sliding window, w = 2 Sliding window, w = 3 Sliding window, w = 4 Sliding window, w = 5
Mul Sqr Inv Mul Sqr Inv Mul Sqr Inv Mul Sqr Inv

Case 1 255.48 383.32 255.48 241.93 385.14 240.93 243.85 388.61 231.85 258.93 393.66 225.93
Case 2 893.77 894.02 128.13 862.87 863.12 97.85 853.82 846.07 79.59 861.03 837.28 67.71
Case 3 925.61 765.89 128.13 910.80 767.27 97.85 892.11 769.47 79.59 892.89 773.57 67.71

Sliding window, w = 6 2w-ary, w = 2 2w-ary, w = 3 2w-ary, w = 4
Mul Sqr Inv Mul Sqr Inv Mul Sqr Inv Mul Sqr Inv

Case 1 295.88 402.73 221.88 255.48 383.32 255.48 251.49 385.32 245.49 264.08 389.32 236.08
Case 2 891.99 836.24 59.53 920.48 922.14 160.48 881.49 879.15 119.49 875.08 855.74 95.08
Case 3 919.26 781.70 59.53 920.48 732.14 160.48 944.49 753.15 119.49 922.08 761.74 95.08

2w-ary, w = 5 2w-ary, w = 6
Mul Sqr Inv Mul Sqr Inv

Case 1 307.97 399.32 228.97 403.34 419.32 223.34
Case 2 908.95 848.95 79.30 992.34 853.00 68.34
Case 3 946.61 772.95 79.30 1023.34 791.00 68.34

tion in 2.1.
We first show the experimental results of the sliding

window method in Table 4. For every window length w, we
use “width-w NAF” [14] to represent d. In this table, Case 3
has the least average execution time among the three cases.

We next show the experimental results of the 2w-ary
method in Table 5. To avoid increasing the value of “win-
dows,” we use “width-2 NAF” [14] for the representation of
d. Again, Case 3 has the least average execution time among
the three cases.

One remarkable feature is that the improvement of ex-
ecution time of Case 3 to Case 2 is relatively large (3.5%)
when w = 2. This is because Algorithm A is always applied
when w = 2, while Algorithm B is always applied when
w ≥ 3. From Table 1 and Table 2, we can see that Algo-
rithm A reduces two squarings comparing to the Sakai and
Sakurai’s algorithm, while Algorithm B reduces two squar-
ings but requires one extra multiplication. Therefore, the
improvement of execution time is larger when w = 2.

On the other hand, in the case of the sliding window
method, the improvement of execution time of Case 3 to
Case 2 is small when w = 2. This is because both Algorithm
A and Algorithm B are applied when w = 2†.

Table 6 shows the average number of field multipli-
cations, squarings and inversions per one scalar multipli-
cation. For example, in the case of the sliding window
method (w = 2), Case 3 has 128.13(= 894.02 − 765.89)
less squarings and 31.84(= 925.61− 893.77) more multipli-
cations than Case 2. From Table 3, the effect of these re-
duced squarings and increased multiplications is estimated
as 128.13 ∗ 0.970 − 31.84 ∗ 1.209 = 85.80 (µsec). We can
expect the improvement of the execution time of the scalar
multiplication by this amount. However, from Table 4, ac-
tual improvement is 64(= 6918 − 6854) (µsec). It is con-
sidered that this discrepancy is brought by the field opera-
tions which we ignore in this paper (multiplication by small
constant, addition, subtraction, etc). Similar discrepancy is
observed for other window length w and the 2w-ary method.

†Width-w NAF always has sliding width more than w.

5. Conclusion

This paper has presented two algorithms for computing
points of the form 2kP which use the Montgomery trick. The
one only works for k = 2, and the other works for an arbi-
trary natural number k. We have shown that the proposed
algorithms are more efficient in comparison with existing
algorithms.

References

[1] R.M. Avanzi, “On multi-exponentiation in cryptography,” IACR
Cryptology ePrint Archive, 2002, Available at, http://eprint.iacr.org/
2002/154.ps.gz

[2] M. Ciet, M. Joye, K. Lauter, and P.L. Montgomery, “Trad-
ing inversions for multiplications in elliptic curve cryptogra-
phy,” IACR Cryptology ePrint Archive, 2003, Available at,
http://eprint.iacr.org/2003/257.ps.gz

[3] H. Cohen, A Course in Computational Algebraic Number Theory,
Graduate Texts in Math., no.138, Springer-Verlag, Berlin, 1993.

[4] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve ex-
ponentiation using mixed coordinates,” Advances in Cryptology–
ASIACRYPT’98, LNCS, vol.1514, pp.51–65, Springer-Verlag,
1998.

[5] D.M. Gordon, “A survey of fast exponentiation methods,” J. Algo-
rithms, vol.27, pp.129–146, 1998.

[6] J. Guajardo and C. Paar, “Efficient algorithms for elliptic curve cryp-
tosystems,” Advances in Cryptology—Crypto’97, LNCS, vol.1294,
pp.342–356, Springer-Verlag, 1997.

[7] D.E. Knuth, The Art of Computer Programming, vol.2, Seminumer-
ical Algorithms, 3rd ed., Addison-Wesley, Reading, MA, 1997.

[8] K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems by
using a signed binary window method,” Advances in Cryptology—
Crypto’92, LNCS, vol.740, pp.345–357, Springer-Verlag, 1993.

[9] F. Morain and J. Olivos, “Speeding up the computations on an ellip-
tic curve using addition-subtraction chains,” Theoretical Informatics
and Applications, vol.24, no.6, pp.531–544, 1990.

[10] P.L. Montgomery, “Speeding the Pollard and elliptic curve methods
of factorization,” Math. Comput., vol.48, pp.243–264, 1987.

[11] V. Müller, “Efficient algorithms for multiplication on elliptic
curves,” Proc. GI-Arbeitskonferenz Chipkarten 1998, TU München,
1998.

[12] NIST, Recommended elliptic curves for federal government



LETTER
339

use, 1999, Available at, http://csrc.nist.gov/encryption/dss/ecdsa/
NISTReCur.pdf

[13] Y. Sakai and K. Sakurai, “Efficient scalar multiplications on elliptic
curves with direct computations of several doublings,” IEICE Trans.

Fundamentals, vol.E84-A, no.1, pp.120–129, Jan. 2001.
[14] J.A. Solinas, “Efficient arithmetic on Koblitz curves,” Des. Codes

Cryptogr., vol.19, pp.195–249, 2000.


