LETTER Special Section on Discrete Mathematics and Its Applications

Inapproximability of the Edge-Contraction Problem*

Hideaki OTSUKI^{†a)} and Tomio HIRATA^{††}, Members

SUMMARY For a property π on graphs, the edge-contraction problem with respect to π is defined as a problem of finding a set of edges of minimum cardinality whose contraction results in a graph satisfying the property π . This paper gives a lower bound for the approximation ratio for the problem for any property π that is hereditary on contractions and determined by biconnected components.

key words: edge-contraction problem, NP-hard, approximation algorithm, approximability, connected vertex cover problem

1. Introduction

The vertex-deletion and edge-deletion problems are natural graph modification problems. The vertex (edge) deletion problem is defined as a problem of finding a set of vertices (edges) of minimum cardinality whose deletion results in a graph satisfying the class of graph property π . For these problems, NP-completeness and approximation hardness have been studied [4], [5].

The edge-contraction problem is also a natural graph modification problem, but, to the authors' knowledge, its approximation hardness is not known. For a property π , the edge-contraction problem (EC) with respect to π is defined as that of finding a set of edges of minimum cardinality whose contraction results in a graph satisfying the property π . If π is hereditary on contractions and determined by biconnected components, the corresponding EC is NPcomplete [1]. In [1], Asano and Hirata showed the NPcompleteness of EC using a reduction from the connected vertex cover problem (CVC). The vertex cover problem is hard to approximate within a ratio 7/6 [3], and it is easy to see that CVC has the same inapproximability as the vertex cover problem. However, the reduction in [1] does not conclude inapproximability of EC, since it does not have a gap preserving property [7].

Manuscript received August 22, 2005.

Final manuscript received December 10, 2005.

[†]The author is with the Department of Information and Telecommunicate Engineering, Nanzan University, Seto-shi, 489-0863 Japan.

^{††}The author is with the Graduate School of Engineering, Nagoya University, Nagoya-shi, 464-8603 Japan.

*A preliminary version has appeared in the proceedings of the 2005 Korean-Japan Joint Workshop on Algorithms and Computation held in Seoul in Aug. 2005 and 4th Forum on Information Technology Letters (2005). A part of this work is supported by 2005 Nanzan University Pache Research Subsidy I-A-2.

a) E-mail: otsuki@nanzan-u.ac.jp

DOI: 10.1093/ietfec/e89-a.5.1425

In this paper, we give a lower bound for the approximation ratio for EC by the following steps. We construct an instance of CVC from that of MAX E3-SAT so that the reduction have a gap preserving property. Further, we reduce a CVC instance to that of EC. Finally, we establish a lower bound for the approximation ratio for EC.

2. Construction of an Instance of the Connected Vertex Cover Problem

CVC is a variant of the vertex cover problem which requires the subgraph induced by a cover-set must be connected. In this section we give a gap preserving reduction from MAX E3-SAT to CVC. We show that CVC on a certain class of graphs is hard to approximate within a ratio 41/40.

2.1 Reduction from an Instance of MAX E3-SAT

MAX 3-SAT is the problem of finding a truth assignment which maximizes the number of satisfied clauses for a given 3-CNF ϕ , and is known to be NP-complete. If each clause has exactly three literals, the problem is called as MAX E3-SAT and is also NP-complete [3]. Under the assumption that $P \neq NP$, it is not possible to approximate MAX E3-SAT within a ratio less than 8/7 in polynomial time [3]. Here we construct a gap preserving reduction from an instance of MAX E3-SAT to that of CVC.

Let *n* be the number of variables, and *m* be the number of clauses. Let x_i (i = 1, 2, ..., n) be the variables, and C_j (j = 1, 2, ..., m) be the clauses. We assume that x_i appears t_i times in ϕ . From ϕ , we construct a graph G = (V, E) as follows.

For each variable x_i , we have a set of vertices $X_i = \{x_i^j, \bar{x}_i^j | j = 1, 2, ..., t_i\}$ and a set of edges $E(x_i) = \{x_i^j, \bar{x}_i^j | j, j' = 1, 2, ..., t_i\}$, which constructs a bipartite graph $K_{t_i,t_i} = G(x_i)$. We have vertices c_0 and d_0 , an edge $e_0 = \{c_0, d_0\}$ and $E_{0i} = \{\{c_0, x_i^j\}, \{c_0, \bar{x}_i^j\} | j = 1, 2, ..., t_i\}$. For each clause $C_j(1 \le j \le m)$, we have vertices c_j , d_j and an edge $e_j = \{c_j, d_j\}$. Edges between c_j and $G(x_i)$'s vertices correspond to the literals in C_j as follows. Let l_1, l_2, l_3 be the three literals in C_j . A literal l_1 is a variable x_i or its negation \bar{x}_i , that appears at the position in ϕ . If the literal is x_i , we add an edge $e_j^1 = \{x_i^l, c_j\}$, otherwise $e_j^1 = \{\bar{x}_i^l, c_j\}$. We add edges e_i^2, e_i^3 in the same way for the literals l_2, l_3 .

From this construction, we define a graph G = (V, E) as

Manuscript revised November 4, 2005.

Fig.1 A CVC instance constructed from $\phi = (x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$.

$$V = \{c_0, d_0\} \cup \bigcup_{i=1}^n X_i \cup \bigcup_{j=1}^m \{c_j, d_j\}$$
$$E = \{e_0\} \cup \bigcup_{i=1}^n (E_{0i} \cup E(x_i)) \cup \bigcup_{j=1}^m \{e_j, e_j^1, e_j^2, e_j^3\}.$$

For example, when $\phi = (x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (\bar{x}_2 \lor \bar{x}_3 \lor x_4)$, *G* is illustrated as Fig. 1 (in which the edges in E_{0i} are omitted).

Let S_{cvc} be an optimal solution of CVC. We have the following lemma.

Lemma 1: If ϕ is satisfiable

 $|S_{cvc}| = 4m + 1.$

Proof. Let *S* be a solution of CVC and let $V(x_i) \equiv \{x_i^j | j = 1, 2, ..., t_i\}$, $V(\bar{x}_i) \equiv \{\bar{x}_i^j | j = 1, 2, ..., t_i\}$. In order to cover all edges of $G(x_i)$, we need

$$V(x_i) \subset S \tag{1}$$

or

 $V(\bar{x}_i) \subset S \tag{2}$

for each *i*. In order to cover e_0 , we need $c_0 \in S$ or $d_0 \in S$. As $\sum_{i=1}^{n} t_i = 3m$, in order to cover all edges of $G(x_i)$ and E_{0i} , we need at least 3m+1 vertices. For each $j(1 \le j \le m)$, we need $c_j \in S$ or $d_j \in S$ to cover e_j . Hence we need $|S| \ge 4m + 1$.

In order to prove Lemma 1, it is sufficient to show the existence of a solution *S* with |S| = 4m + 1. We construct *S* from ϕ as follows. If ϕ assigns TRUE to x_i , we set $V(x_i)$ into *S*. Otherwise we set $V(\bar{x}_i)$ into *S*. We also include all c_j (j = 1, 2, ..., m) to cover all e_j and e_j^i . Since ϕ is satisfiable, each clause has at least one literal which is TRUE and thus each c_j (j = 1, 2, ..., m) is connected with a vertex of $V(x_i)$ or $V(\bar{x}_i)$ in *S*. Now |S| = 3m + m, and all vertices in *S* are connected. Further, we choose c_0 in *S* so that *S* covers e_0 and $E_{0i}(i = 1, 2, ..., n)$. *S* induces a connected subgraph of *G*, and covers all of edges of *G*. *S* is optimal since |S| = 4m + 1.

We have another lemma.

Lemma 2: If no assignment satisfies more than $(1 - \epsilon)m$ clauses of ϕ ,

$$|S_{cvc}| \ge 4m + 1 + \epsilon m.$$

Proof. A solution *S* of CVC induces an assignment *A* of variables of ϕ as follows. If (1) holds and (2) does not, *A* gives x_i TRUE. If (2) holds and (1) does not, *A* gives x_i FALSE. If both (1) and (2) hold, *A* gives x_i either TRUE or FALSE. We say that this solution is consistent with the corresponding assignment *A*.

From the proof of Lemma 1, $|S| \ge 4m + 1$. Recall that *A* does not satisfy at least ϵm clauses. If *A* does not satisfy a clause C_j , in order to connect c_j with $S(Gx_i)$, *S* must include a vertex of $G(x_i)$ corresponding to a literal to which *A* assigns FALSE. So for any solution, in order to connect all c_j (j = 1, 2, ..., m) with $S(Gx_i)$, additional ϵm vertices of $S(Gx_i)$ must be included in *S* and thus we have $|S| \ge 4m + \epsilon m + 1$.

Now We have the following theorem.

Theorem 1: CVC for G constructed above is NP-hard to approximate within a ratio 41/40.

Proof. From Lemma 1, Lemma 2 and $\epsilon = 1/8, m \ge 1$

$$\frac{4m+1+\epsilon m}{4m+1} = 1 + \frac{\epsilon}{4+\frac{1}{m}} \ge 1 + \frac{1}{40} = \frac{41}{40}.$$

3. Inapproximability of the Edge-Contraction Problem

From *G* of the previous section, we construct an instance of the edge-contraction problem as follows. Let G(2) be the graph obtained from *G* by introducing a new vertex in the middle of each edge of *G*. That is, we replace each edge of *G* with a path of length 2. We denote by A(2) the set of newly introduced vertices. Let *M* be a graph with the minimum number of vertices that violates π . Since π is determined by biconnected components, *M* is biconnected. Let M - ebe the graph obtained by deleting an edge *e* from *M*. We construct G_1 from G(2) as follows. For every pair *a* and *a'* of vertices in A(2) which are adjacent to a common vertex in V(G), we attach, to *a* and *a'*, $k_1 + 1$ copies of M - e through the node of e, where k_1 is an integer defined in the following proposition. Further, we denote by S_{ec} an optimal solution of the edge-contraction problem of G_1 .

Proposition 1 (Asano and Hirata [1]): There is a subset *S* of $E(G_1)$ with $|S| \le k_1$ such that the contraction G_1/S satisfies π if and only if *G* has a connected vertex cover of size $\le k$, where $k_1 = k + |E(G)| - 1$.

We denote S_{cvc} as an optimal solution of CVC in case that ϕ has a satisfiable assignment, and denote S'_{cvc} otherwise. From the proposition, the size of the optimal solution of EC is $|S_{cvc}| + |E(G)| - 1$ if ϕ is satisfiable, and it is at least $|S'_{cvc}| + |E(G)| - 1$ if ϕ is unsatisfiable. So it is NP-hard for EC with respect to the property π to approximate within a ratio

$$r_{ec} = \frac{|S'_{cvc}| + |E(G)| - 1}{|S_{cvc}| + |E(G)| - 1}.$$

From an instance of CVC which is reduced from an instance of MAX E3-SAT, we have

$$|E(G)| = m + 3m + 6m + 1 + \sum_{i=1}^{n} t_i^2 = 10m + 1 + \sum_{i=1}^{n} t_i^2$$

Further, if the number of appearance of all variables in ϕ is constant(= *l*), $\sum_{i=1}^{n} t_i^2 = nl^2 = 3ml$. We use ϵ_l instead of ϵ in this case. By Lemma 1 and Lemma 2, |S| = 4m + 1, $|S'| \ge 4m + 1 + \epsilon_l m$. We conclude

$$r_{ec} = 1 + \frac{\epsilon_l}{14 + 3l + 1/m} > 1 + \frac{\epsilon_l}{15 + 3l}$$

Now we have the following theorem.

Theorem 2: There is a constant r so that r-approximation of the edge-contraction problem of G(2) is NP-hard.

Papadimitriou and Yannakakis [6] showed that in case of l = 29, $\epsilon_l = 1/(8 \cdot 43) = 0.0029069767$. Hence we have $r = \epsilon_l/102 = 1.00002849977$.

Replacing all edges in M with a path of length 2, we can make G_1 bipartite. Since π is hereditary on contraction,

Proposition 1 still holds. In this case, we need π to be "determined by 3-connected components". We omit details. See Corollary 4 of [1]. We have another theorem.

Theorem 3: There is a constant *r* so that *r*-approximation of the edge-contraction problem for π , restricted to bipartite graphs is NP-hard, where π is hereditary on contractions, and determined by 3-connected components.

4. Conclusions

We have shown that when a graph property π is hereditary on contractions and determined by biconnected components, the edge-contraction problem with respect to π is hard to approximate within a ratio $1 + \epsilon_l/(15 + 3l)$, where *l* is the number of appearance of each variable in MAX-E3 SAT, and ϵ_l is a ratio with which the approximation of MAX-E3 SAT is NP-hard. Furthermore, we have the same result for bipartite graphs when π is hereditary on contractions and determined by 3-connected components. Our future work is to seek a larger lower bound of the approximation ratio for EC with respect to π and inapproximability results of EC with respect to properties other than π considered here.

References

- T. Asano and T. Hirata, "Edge-contraction problems," J. Comput. Syst. Sci., vol.26, pp.197–208, 1983.
- [2] M.R. Garey and D.S. Johnson, "The rectilinear Steiner tree problem is NP-complete," SIAM J. Appl. Math., vol.32, pp.826–834, 1977.
- [3] J. Håstad, "Some optimal inapproximability results," J. ACM, vol.48, pp.798–859, 2001.
- [4] P.G. Kolaitis and M.N. Thakur, "Approximation properties of NP minimization classes," J. Comput. Syst. Sci., vol.50, pp.391–411, 1995.
- [5] C. Lund and M. Yannakakis, "The approximation of maximum subgraph problems," Proc. 20th Int. Colloquium on Automata, Languages and Programming, vol.700, pp.40–51, 1993.
- [6] C.H. Papadimitriou and M. Yannakakis, "Optimization, approximation, and complexity classes," J. Comput. Syst. Sci., vol.43, pp.425– 440, 1991.
- [7] V.V. Vazirani, Approximation Algorithms, Springer Verlag, 2001.