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sidered. The aim of this survey is to show recent developments
of approximation algorithms for MAX SAT.
key words: MAX SAT, approximation algorithms, semidefinite
programming

1. Introduction

Maximum Satisfiability Problem (MAX SAT) is one of
the most natural optimization problems. It is known
to be NP-hard. Hence, approximation algorithms have
been considered. The aim of this survey is to show
recent developments of approximation algorithms for
MAX SAT. We will confine ourselves to approxima-
tion algorithms with theoretical performance guaran-
tees. For other approximation algorithms with no the-
oretical guarantees, such as local search, tabu search,
simulated annealing, etc., which often show high ap-
proximation performance in practice, the reader is re-
ferred to [9], [11], [17], [25].

As we shall see in this survey, algorithms with
better and better approximation ratios have been pro-
posed. Hence, it is natural to ask whether it is possi-
ble to further improve approximation properties. Since
MAX 3SAT is known to be MAX SNP-complete [23],
there is a limit for the approximation ratio under the
assumption that P �= NP. This comes from the theory
of probabilistically checkable proofs (PCP) [3]. This is a
principal motivation for researchers for challenging ap-
proximation algorithms with better and better approxi-
mation ratios approaching to this limit. H̊astad showed
that unless P = NPMAX 3SAT (and hence MAX SAT)
cannot be approximated in polynomial time within an
approximation ratio greater than 7/8 [16].

In Sect. 2, some definitions are given. Johnson’s
algorithm and a randomized algorithm using LP are
presented in Sect. 3. We also mention about a property
3/4 function and briefly review Yannakakis’s method
which uses a network flow algorithm. In Sect. 4, Goe-
mans and Williamson’s algorithm based on semidefinite
programming is presented. Their algorithm is orig-
inally for MAX 2SAT but it can be used for MAX
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SAT to improve the approximation ratio. We show, in
Sect. 5, that further improvement is possible by intro-
ducing perturbation to the solution of this algorithm.
In Sect. 6, more recent results are given and derandom-
ization is discussed.

2. Definitions

Definition 1 (Maximum Satisfiability Problem):
Given a set C = {C1, C2, . . . , Cm} of clauses with asso-
ciated positive weights w1, w2, . . . , wm, the Maximum
Satisfiability Problem (MAX SAT) is the problem to
find the Boolean assignment to the variables x1, x2, . . . ,
xn which maximizes the sum of the weights of the sat-
isfied clauses. The size of a clause C, i.e., the number
of the literals in C, is denoted by |C|. We denote by
Ck = {C ∈ C | |C| = k} the set of the clauses of size k.
X+

j (X
−
j ) denotes the set of indices of the positive (neg-

ative, respectively) literals in Cj ∈ C. The Maximum k-
Satisfiability Problem, MAX kSAT, is MAX SAT where
every clause has at most k literals.

For k ≥ 2, MAX kSAT is known to be NP-hard. More-
over, it is known to be MAX SNP-complete.

Definition 2 (Approximation Ratio): Let A be an
approximation algorithm for MAX SAT. We denote by
w(x) the weight of an assignment x, i.e., the sum of
the weights of the clauses satisfied by x. If there exists
a constant α such that for any MAX SAT instance I,

w(A(I)) ≥ αw(opt(I)),
then the approximation ratio of A is α, where A(I)
is the approximate solution produced by A for I and
opt(I) is the optimum solution to I. Polynomial time
algorithm with approximation ratio α is called an α-
approximation algorithm.

For randomized algorithm A, we define its approx-
imation ratio by

min
I

E[w(A(I))]
w(opt(I)) ,

where E[X ] is the expectation of the random vari-
able X .
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3. Johnson’s Algorithm and LP-Relaxation Al-
gorithm

3.1 Johnson’s Algorithm

Johnson’s algorithm for MAX SAT [18] is a simple ran-
domized algorithm: For each variable, choose its as-
signment with equal probability. It is clear that the as-
signment xJ produced by Johnson’s algorithm satisfies
a clause of size k with probability α1,k = 1 − 1/2k,
where we use suffix 1 to distinguish several approxima-
tion algorithms. Therefore, the expected weight of the
solution produced by Johnson’s algorithm is∑

k≥1

∑
Cj∈Ck

α1,kwj .

It is obvious that the weight of the optimal solution is
at most∑

k≥1

∑
Cj∈Ck

wj .

Thus, the approximation ratio of this algorithm is at
least

min

∑
k≥1

∑
Cj∈Ck

α1,kwj∑
k≥1

∑
Cj∈Ck

wj
= min

k≥1

∑
Cj∈Ck

α1,kwj∑
Cj∈Ck

wj

= min
k≥1

α1,k =
1
2
.

We will discuss the derandomization of Johnson’s
algorithm in Sect. 6. With more sophisticated analysis,
it turns out that Johnson’s algorithm is 2/3 approxi-
mation algorithm [10].

We can generalize Johnson’s algorithm as follows:
For variable xi let pi be the probability that xi is set
to true. The probability that a clause Cj of size k is
satisfied by this random assignment is

1−
∏

i∈X+
j

(1− pi)
∏

i∈X−
j

pi.

Johnson’s algorithm is the case that all pi’s are 1/2.
Both Yannakakis’s algorithm and LP-relaxation algo-
rithm compute these probabilities to achieve better ap-
proximation ratio.

3.2 LP-Relaxation Algorithm

It is well known that linear programming problem
(LP) can be solved in polynomial time. Goemans
and Williamson proposed an approximation algorithm
with relaxation from MAX SAT instances into LP in-
stances [13]. Following is their algorithm.

Introduce 0-1 variables yi’s and zj’s for Boolean
variables xi’s and clauses Cj ’s, respectively, where 0
corresponds to false and 1 corresponds to true. We

define

cj(y) =
∑

i∈X+
j

yi +
∑

i∈X−
j

(1− yi)

for Cj . It is easy to see that cj(y) = 0 if and only if
Cj = false and cj(y) ≥ 1 if and only if Cj = true.
Thus, the following optimization problem is equivalent
to MAX SAT.

max
m∑

j=1

wjzj

s.t. zj ≤ cj(y) for all j,
yi, zj ∈ {0, 1}. (1)

Relaxing the conditions for yi’s and zj’s with 0 ≤
yi, zj ≤ 1, we obtain the following LP instance.

max
m∑

j=1

wjzj

s.t. zj ≤ cj(y) for all j,
0 ≤ yi, zj ≤ 1. (2)

We can solve this LP instance in polynomial time
to have an optimal solution y∗

1 , y
∗
2 , . . . , y

∗
n, z

∗
1 , z

∗
2 , . . . ,

z∗m. If we consider the value y∗
i as the probability that

the Boolean variable xi is set to true, the probability
that this random assignment xL satisfies clause Cj ∈ C
of size k is

Pr{Cj = 1}
= 1−

∏
i∈X+

j

(1− x∗
i )

∏
i∈X−

j

x∗
i

≥ 1−
[∑

i∈X+
j
(1− x∗

i ) +
∑

i∈X−
j

x∗
i

k

]k

= 1−
{

k − [∑i∈X+
j

x∗
i +

∑
i∈X−

j
(1− x∗

i )]

k

}k

≥ 1−
(
1− z∗j

k

)k

≥
[
1−

(
1− 1

k

)k
]

z∗j

= α2,kz∗j .

In the above equation, the first inequality is due to
the relation between arithmetic and geometric means,
the second inequality comes from the constraint that
zj ≤ cj(y), the last inequality comes from the con-
straint that zj ≤ 1. We obtain an approximate solution
to the original MAX SAT instance from this random as-
signment by the method of conditional probability [24].
The expectation of this random assignment E[w(xL)]
satisfies the following inequality:
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E[w(xL)] ≥
∑
k≥1

∑
Cj∈Ck

[
1−

(
1− 1

k

)k
]

wjz
∗
j

≥
∑
k≥1

∑
Cj∈Ck

(
1− 1

e

)
wjz

∗
j

=
(
1− 1

e

) m∑
j=1

wjz
∗
j .

The sum
∑m

j=1 wjz
∗
j is an optimal value of the re-

laxed linear programming (2) and thus it is no less than
the optimal value of the original MAX SAT. Therefore,
we conclude that this algorithm is 1 − 1/e ≈ 0.632-
approximation algorithm.

It is easy to see that Johnson’s algorithm has bet-
ter performance ratio when a clause gets larger. On the
other hand, LP-relaxation algorithm is good for small
clauses. Thus, if we combine these algorithms, perfor-
mance ratio will be better. In the following, we show
that the algorithm, which solves a given MAX SAT in-
stance by Johnson’s algorithm and LP-relaxation algo-
rithm and outputs a better one, is 0.75-approximation
algorithm.

Let us denote by xJ and xL the solutions of John-
son’s and LP-relaxation algorithms, respectively. Their
weights satisfy the following inequalities:

w(xJ ) ≥
∑
k≥1

∑
Cj∈Ck

(
1− 1

2k

)
wj ,

w(xL) ≥
∑
k≥1

∑
Cj∈Ck

[
1−

(
1− 1

k

)k
]

wjz
∗
j ,

where z∗j ’s come from the optimal solution of the re-
laxed LP instance. The sum of these weights is thus:

w(xJ) + w(xL)

≥
∑
k≥1

∑
Cj∈Ck

(
1− 1

2k

)
wj

+
∑
k≥1

∑
Cj∈Ck

[
1−

(
1− 1

k

)k
]

wjz
∗
j

≥
∑
k≥1

{(
1− 1

2k

)
+

[
1−

(
1− 1

k

)k
]}

×
∑

Cj∈Ck

wjz
∗
j ,

where we used the constraint that z∗j ≤ 1. We can see
that for any integer k ≥ 1,(

1− 1
2k

)
+

[
1−

(
1− 1

k

)k
]
≥ 3
2
,

thus
E[w(xj)] + E[w(xL)]

2
≥ 3
4

∑
j

wjz
∗
j .

This implies that the algorithm which chooses a better
solution of xJ and xL is 3/4-approximation.

In this algorithm we considered that x∗
i is the prob-

ability that the Boolean variable xi is set to true. How-
ever, this is not the only interpretation of x∗

i , that is,
tuning the probability with a bit care leads to the better
approximation ratio. Goemans and Williamson defined
property 3/4[13] and proved that the general algorithm
described in Sect. 3.1 is 3/4-approximation algorithm if
we set pi = f(y∗

i ) for f(t) with property 3/4. Examples
of f(t) with property 3/4 shown in [13] are:

1− 4−t ≤ f1(t) ≤ 4t−1,

f2(t) = α+ (1− 2α)t
(
2− 3

3
√
4
≤ α ≤ 1

4

)
,

f3(t) =



3t/4 + 1/4 if 0 ≤ t ≤ 1/3,
1/2 if 1/3 < t ≤ 2/3,
3t/4 if 2/3 < t ≤ 1

Note that using f2(t) for α = 1/4, the probabil-
ity that xi is set to true is the average of Johnson’s
algorithm and the plain LP-relaxation algorithm.

3.3 Another 3/4-Approximation Algorithm by Yan-
nakakis

Yannakakis proposed another 3/4-approximation algo-
rithm [26]. This algorithm uses a very different ap-
proach, that is, it exploits maximum flow on a graph
to determine pi, the probability for variable xi to be
true. Since this algorithm is complicated, we restrict
our attention on the case where the input instance is
MAX 2SAT instance. For general MAX SAT instances,
the reader is referred to [4], [26].

We consider MAX 2SAT instance I. We construct
a directed graph G = (V,E) as follows: all the liter-
als x1, x2, . . . , xn, x̄1, x̄2, . . . , x̄n are the vertices of G.
G also includes a source vertex s and a sink vertex t,
corresponding to Boolean true and false, respectively.
For each clause C = xi of size 1, add two edges s → xi,
x̄i → t into E, whose weights are half of the weight of
C. For each clause C = xi ∨ xj of size 2, we add two
edges x̄i → xj , x̄j → xi into E, whose weights are half
of the weight of C.

We say that two edges a → b and b̄ → ā are corre-
sponding to each other, where we consider that ¯̄a = a
and s̄ = t. If each pair of corresponding edges has the
same weight, we say that the graph is symmetric. Also,
if a flow f satisfies f(e) = f(e′) for any corresponding
edges e and e′, f is called a symmetric flow. From the
above construction, graph G is clearly symmetric. Also
we can invert this construction, i.e., we can construct
MAX 2SAT instance from any symmetric graph.

In a symmetric graph G, for any flow f we can
construct a symmetric flow f̃ with the same value: Just
assign f̃(e) = f̃(ē) = (f(e) + f(ē))/2 for every edge e
in G, where ē is a corresponding edge of e. Let f be
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a symmetric flow on G whose value is v(f). Because
the graph G and flow f are symmetric, the residual
graph [26] N of G with respect to the flow f is also
symmetric, so that there is a MAX 2SAT instance I ′

corresponding to N . We have an important lemma [26]:

Lemma 1: For any Boolean assignment x and for any
symmetric flow f ,

wI(x) = wI′(x) + v(f),

where wI(x) denotes the value of x on I.
Let f be a maximum symmetric flow. Because

f is a maximum flow, there are no paths from s to t
with positive capacity in N . Thus we divide the set of
vertices V into three sets as follows: P , a set of any
vertices reachable from s in N ; P ′, a set of any vertices
from which t is reachable in N ; and Q, a set of vertices
neither reachable from s nor from which t is reachable
in N . Note that there is no complementing pair of
vertices in both P and P ′. This is because if both x
and x̄ ∈ P , then there is a path from s to t, namely,
s → x → t by the symmetry of N . This contradicts the
maximality of f . We note also that P ′ = {x̄ | x ∈ P}.
Therefore, a MAX 2SAT instance I ′ constructed from
the residual graph N includes no complementing pair
of unit clauses. We consider the assignment that each
variable in P is set to true with probability 3/4 and
each variable in Q is set to true with probability 1/2.
Any clause containing a literal in P is satisfied with the
probability at least 3/4. Any clause a ∨ b, where both
a and b ∈ Q, is satisfied with the probability 1− (1/2) ·
(1/2) = 3/4. Note that if there exists a clause ā ∨ b
in I′ for ā ∈ P ′, then b must be in P . Thus, this
random assignment satisfies every clause in I ′ with the
probability at least 3/4, which implies that it is 3/4-
approximate solution to I ′. By Lemma 1, it is also
3/4-approximate solution to I.

As we have seen in Sect. 3.1, Johnson’s algorithm
achieves 3/4-approximation if the input instance has
no unit clauses. Thus instead of assigning true to the
literals in P with probability 3/4, we could have set
every literal in P to true, because such an assignment
leaves no unit clauses.

4. SDP-Relaxation Algorithm

Goemans and Williamson proposed an approximation
algorithm for MAX 2SAT which relaxes MAX 2SAT
instances into semidefinite programming (SDP) in-
stances [14]. SDP is the problem asking an n × n ma-
trix X = (xij) optimizing a linear combination of xij

subject to the linear constraints of xij and the con-
straint that X is symmetric and positive semidefinite.
It is known that SDP can be solved within additional
error ε in polynomial time [1], that is, we can compute a
solution in polynomial time to within any desired preci-
sion. Goemans-Williamson’s SDP-relaxation algorithm

for MAX 2 SAT is generalized for the case of MAX
SAT [7], [14], [21], [22]. In the following we describe an
SDP-relaxation algorithm for MAX SAT and analyze
its approximation ratio.

First we arithmetize a MAX SAT instance by intro-
ducing new variables, y1, y2, . . . , yn for Boolean vari-
ables x1, x2, . . . , xn and z1, z2, . . . , zm for clauses C1,
C2, . . . , Cm ∈ C. Further more, we introduce a special
variable y0. The value of each yi (i = 0, 1, . . . , n)
is −1 or 1, while zj ∈ {0, 1}. The special variable y0

stands for “which value means Boolean true,” that is,
for i = 1, 2, . . . , n, yi = y0 if and only if xi = true.
For a clause Cj = x1 ∨ x2 ∨ . . . ∨ xk, we construct a
quadratic function cj(y) of yi’s as follows:

cj(y) =
1
k


 k∑

i=1

1 + y0yi

2
+

∑
1≤i<j≤k

1− yiyj

2


 ,

where if xi appears as a negative literal in Cj , then we
replace every occurrence of yi with −yi. It is not hard
to see that cj(y) = 0 if and only if Cj = false and
that cj(y) ≥ 1 if and only if Cj = true. The following
optimization problem is thus equivalent to the original
MAX SAT.

max
m∑

j=1

wjzj

s.t. zj ≤ cj(y) for all j,
zj ∈ {0, 1},
yi ∈ {−1, 1}. (3)

We relax yi’s by (n + 1)-dimensional unit vec-
tors vi’s and replace the product yiyj with inner prod-
uct vi · vj of the corresponding vectors. We also relax
the constraints for zj with zj ≤ 1. With this relaxation
we obtain the following problem:

max
m∑

j=1

wjzj

s.t. zj ≤ c′j(v0,v1, . . . ,vn) for all j,
zj ≤ 1,
‖vi‖ = 1, (4)

where c′j(v0,v1, . . . ,vn) is a relaxed version of cj(y),
that is,

c′j(v0,v1, . . . ,vn)

=
1
k


 k∑

i=1

1 + v0 · vi

2
+

∑
1≤i<j≤k

1− vi · vj

2


 .

Let us denote by yij the inner product vi · vj , this
problem is rewritten as:
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max
m∑

j=1

wjzj

s.t. zj ≤ cj(Y ) for all j,
zj ≤ 1,
yii = 1,
Y = (yij) is symmetric
and positive semidefinite, (5)

where

cj(Y ) =
1
k


 k∑

i=1

1 + y0i

2
+

∑
1≤i<j≤k

1− yij

2


 .

This problem is an SDP problem. Therefore we can find
a semi-optimal solution Ỹ , z̃1, z̃2, . . . , z̃m within addi-
tional error ε in polynomial time in n, m and log 1/ε [1].
We calculate ṽi’s by the Cholesky-decomposition of Ỹ .
Now we have to “round” ṽi’s to obtain an approximate
solution to original MAX SAT. To do this, we choose
a random unit vector r and set ỹi = 1 if r · ṽi > 0,
ỹi = −1 otherwise. Finally x̃i = true if and only if
ỹi = ỹ0. We denote by x̃ the approximate solution
obtained by the algorithm.

In the analysis we need two quantities:

α = min
0<θ≤π

θ/π

(1− cos θ)/2 ,

αk =
{
4k/(k + 1)2 if k is odd
4/(k + 2) if k is even .

The value of α is the approximation ratio of
Goemans-Williamson’s algorithm for MAX 2SAT and
is estimated at 0.878 [14], and the value of αk is chosen
to ensure that αkcj(y) ≤ 1 for any clause Cj of size k.
Let us define a function

Cj(x) =
{
1 if Cj is satisfied by x
0 otherwise.

By the definition of αk, the following inequality holds
for arbitrary y = (y0, y1, . . . , yn):

αkcj(y) ≤ Cj(x),

where xi = true if and only if yi = y0.
Thus we can bound the probability that Cj = x1∨

x2 . . . ∨ xk is satisfied from below as follows:

Pr{Cj is satisfied}
= E[Cj(x̃)]
≥ E[αkcj(ỹ)]

= αk
1
k

{
k∑

i=1

E

[
1 + ỹ0ỹi

2

]

+
∑

1≤i<j≤k

E

[
1− ỹiỹj

2

]}

≥ αk
1
k




k∑
i=1

α
1 + ỹ0i

2
+

∑
1≤i<j≤k

α
1 − ỹij

2




= ααkcj(Ỹ )
≥ ααk z̃j.

Thus, for any clause Cj the probability that Cj is sat-
isfied by x̃i’s is at least α3,k z̃j = ααkz̃j . Therefore
the expected weight of this approximate solution xS =
(x̃1, x̃2, . . . , x̃n) is at least

m∑
j=1

wj Pr{Cj = 1} ≥
∑
k≥1

α3,k

∑
Cj∈Ck

wj z̃j.

Although this algorithm achieves good approxima-
tion ratio for the clauses of size 1 and 2, its approxima-
tion ratio for MAX SAT is 0 because the quantity α3,k

tends to 0 as k tends to infinity.
To improve the approximation ratio let us consider

the combination of three algorithms again: Johnson’s,
LP-relaxation, and SDP-relaxation [14]. The actual al-
gorithm runs these three algorithms on a given instance
and outputs the best solution, but we analyze the algo-
rithm which randomly chooses one of three algorithms
and runs it on a given instance. In order to determine
the probabilities for each algorithm to be chosen which
maximize the approximation ratio of this algorithm, it
is necessary to solve the following linear programming
problem:

max a
s.t. a ≤ p1α1,k + p2α2,k + p3α3,k

for k = 1, 2, . . . ,
p1, p2, p3 ≥ 0,
p1 + p2 + p3 = 1,

where α1,k = 1−1/2k, α2,k = 1−(1−1/k)k, and α3,k =
ααk. The optimal value of a is the approximation ratio,
and in this case it is 0.75899 . . ..

We note that for MAX 2SAT, the result of Goe-
mans and Williamson was improved by Feige and Goe-
mans [12], in which they used a stronger semidefinite
programming than the one considered in [14]. The
achieved approximation ratio α is 0.931. But we can-
not substitute our α with this ratio, since they used a
non-uniform rounding scheme.

5. SDP-Relaxation Algorithm with Perturba-
tion

In the previous section we described an SDP-relaxation
algorithm for MAX SAT. In this section we introduce
perturbation to make more improvement. Perturbation
to improve approximation ratio is first introduced by
Andersson and Engebretsen [2]. They improved the ap-
proximation ratio for Set Splitting Problem and Max-
imum Not-All-Equal SAT Problem. We use this tech-
nique to the approximation algorithm for MAX SAT
and improve the approximation ratio [22].

Perturbation is a technique that for a probabilis-
tic assignment x = (x1, x2, . . . , xn), we alter the value
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of each variable with suitable small probability p. In-
tuitively, perturbation is effective for algorithms which
achieve good approximation for small clauses but are
poor for large clauses, e.g., SDP-relaxation algorithm,
because large clauses can be satisfied easily by random
assignment.

We shall estimate the effect of perturbation. Fix
a clause C of size k, which is assumed, without loss
of generality, to be of the form x1 ∨ x2 ∨ . . . ∨ xk, a
random assignment x = (x1, x2, . . . , xn), and proba-
bility of perturbation p < 1/2. Suppose that x satis-
fies C with probability β. We consider two cases: If
C is satisfied, without loss of generality we can as-
sume that x1 = x2 = . . . = xi = true and that
xi+1 = xi+2 = . . . = xk = false. In this case, per-
turbed random assignment x′ does not satisfy C when
x1, x2, . . . , xi is perturbed to be 0 and the other vari-
ables are not perturbed. Thus the probability that C
is not satisfied by x′ is pi(1 − p)k−i. Therefore, C is
satisfied by x′ assuming C is satisfied by x is at least

min
i≥1

[
1− pi(1− p)k−i

]
= 1− p(1− p)k−1.

Let us consider another case where C is not satisfied by
x. This implies that x1 = x2 = . . . = xk = false. Thus
C is satisfied by x′ if at least one variable is altered
by perturbation. Therefore the probability that C is
satisfied by x′ assuming C is not satisfied by x is

1− (1− p)k.

Because these two cases occur with probability β and
1−β, respectively, the overall probability perturbk(β, p)
that C is satisfied by x′ is

perturbk(β, p)
≥ β

[
1− p(1− p)k−1

]
+ (1− β)

[
1− (1− p)k

]
=

[
1− (1− p)k

]
+ β(1− 2p)(1− p)k−1.

Note that if α < β then perturbk(α, p) ≤ perturbk(β, p)
for any p < 1/2. Also note that assuming α < 1 and
β < 1, perturbk(αβ, p) ≥ perturbk(α, p)β.

Let us consider an SDP-relaxation algorithm with
perturbation. The random assignment given by this
algorithm satisfies a clause C of size k with probability
at least perturbk(a3,kz̃j , p) ≥ perturbk(α3,k, p)z̃j. Thus
the approximation ratio of this algorithm is obtained
from the following optimization problem:

max a
s.t. a ≤ perturbk(α3,k, p) for all k.

The optimum value is 0.7359 at p = 0.1884, implying
that this algorithm is 0.7359-approximation.

As in the previous section, we consider the com-
bination of three algorithms, Johnson’s, LP-relaxation,
and SDP-relaxation, but this time with perturbation.
We denote by Ai (i = 1, 2, 3) these algorithms in this

order. In the actual algorithm, we first run these al-
gorithms and then perturb each solution, and finally
output the solution which shows the best performance.
We analyze, however, the following approximation al-
gorithm for the technical reason. It probabilistically
chooses Ai and the probability of perturbation, then
runs the chosen algorithm Ai on a given instance, and
perturbs the obtained solution with the chosen pertur-
bation probability. We denote by pi,q the probability
to choose the solution of Ai and perturbation probabil-
ity q. To obtain the probabilities pi,q which gives the
best approximation ratio of this algorithm, we need to
solve the following linear programming problem.

max a

s.t. a ≤
∑

0≤q≤1/2

3∑
i=1

pi,qperturbk(αi,k, q),

∑
i,p

pi,q = 1,

pi,q ≥ 0.
The optimal solution to this programming is a ≈

0.7685, p1,0 = 0.4104, p2,0 = 0.4143, p3,0.037 = 0.1753.
Thus, the algorithm which outputs the best of the three
solutions, one produced by Johnson’s algorithm, one by
LP-relaxation algorithm, and one by SDP-relaxation
algorithm perturbed with probability 0.037 is 0.7685-
approximation algorithm.

6. Further Discussion

We will discuss derandomization of the algorithms.
Because all the presented algorithms are probabilis-
tic ones, derandomization is necessary to obtain a de-
terministic algorithm, or to establish the theoretical
bound.

Johnson’s algorithm, LP-relaxation algorithm and
Yannakakis’s algorithm are all considered as the special
cases of the random assignment algorithm. Therefore
these algorithms are derandomized by the same way.
Derandomized algorithms sequentially determine the
assignment of the variables based on the conditional
probability [24]: Assume that the assignments to the
variables x1, x2, . . . , xi−1 have been determined. Now
we need to determine the assignment of xi. Let E1 (E0)
denotes the expected weight of the assignment in which
x1, x2, . . . , xi−1 have been given and xi is set to true
(false, respectively). We assign true to xi if E1 > E0,
otherwise we assign false to xi. It is easy to see that
the conditional expectations in this course can not de-
crease. Thus we have the deterministic approximation
algorithms with desired approximation ratios.

There is a complicated way of derandomization of
SDP-relaxation algorithm [20]. This derandomization
requires a sequence of numerical integration and thus
the obtained deterministic algorithm takes very long
time to run on small instance. We note that this de-
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randomization can be applied to the SDP-relaxation
algorithm with perturbation.

We conclude this paper by mentioning the recent
results about approximability of MAX SAT. As a neg-
ative result, H̊astad showed that if P �= NP, no poly-
nomial time algorithm can achieve approximation ratio
of 7/8+ε. That is, there are no (7/8+ε)-approximation
algorithm for MAX SAT if P �= NP.

As positive results, Karloff and Zwick proposed
a 7/8-approximation algorithm for MAX 3SAT [19].
Zwick extended this result to MAX 3 CSP [27], a prob-
lem to find, for a given set of arbitrary Boolean func-
tions at most three literals, the assignment to the
variables which maximizes the sum of the weights of
the satisfied functions. For general MAX SAT, 0.770-
approximation algorithm is known [5]. Recently two
algorithms were reported: 0.7846-approximation algo-
rithm for MAX SAT given by Asano andWilliamson [8],
and 0.8721-approximation algorithm for MAX 4SAT
given by Helperin and Zwick [15].

For recent results including above ones, the reader
is referred to [6].
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