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Inapproximability of the Minimum Biclique Edge Partition
Problem

Hideaki OTSUKI†a) and Tomio HIRATA††, Members

SUMMARY For a graph G, a biclique edge partition SBP(G) is a col-
lection of bicliques (complete bipartite subgraphs) Bi such that each edge
of G is contained in exactly one Bi. The Minimum Biclique Edge Partition
Problem (MBEPP) asks for SBP(G) with the minimum size. In this paper,
we show that for arbitrary small ε > 0, (6053/6052 − ε)-approximation of
MBEPP is NP-hard.
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1. Introduction

For a graph G, a biclique edge partition SBP(G) is a collec-
tion of bicliques (complete bipartite subgraphs) Bi such that
each edge of G is contained in exactly one Bi. The Min-
imum Biclique Edge Partition Problem (MBEPP) asks for
SBP(G) with the minimum size. It is known that MBEPP is
NP-hard [1].

The Minimum Biclique Cover Problem (MBCP) is a
graph covering problem that is NP-hard and its inapprox-
imability has been investigated. A biclique cover of a graph
G, SBC(G), is a collection of biclique subgraphs Bi such that
each edge of G is contained in some Bi. MBCP asks for
SBC(G) with the minimum size. Unless P = NP, MBCP
does not have O(n1/3)-approximation algorithm [2], where n
is the number of vertices of G.

While MBCP was studied well, MBEPP has not been
given attention. To the best of our knowledge, no lower
bound for approximation of MBEPP is known. In this pa-
per, we construct a gap preserving reduction [3] from Max
E2-SAT to MBEPP, and show for arbitrary small ε > 0,
(6053/6052 − ε)-approximation of MBEPP is NP-hard.

Note that “c-approximation of an optimization problem
is NP-hard” means that if there exists a polynomial-time al-
gorithm guaranteeing the output size within c times the size
of the optimal solution then P = NP.

2. Construction of an Instance of MBEPP

A Boolean expression ϕ is in the Conjunctive Normal Form
(CNF) if ϕ is a conjunction of clauses and each clause is
a disjunction of literals. For a given ϕ in CNF, the Max-
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imum Satisfiability Problem (MAX SAT) asks for an as-
signment that satisfies simultaneously the maximum num-
ber of clauses of ϕ. MAX 2-SAT is MAX SAT in which
each clause has at most two literals. MAX E2-SAT is MAX
2-SAT in which each clause has exactly two literals of differ-
ent variables. k-OCC-MAX 2-SAT (k-OCC-MAX E2-SAT)
is MAX 2-SAT (MAX E2-SAT) in which each variable oc-
curs exactly k times in the expression.

Let N be a positive integer, Berman and Karpinski [4]
showed inapproximability of 3-OCC-MAX 2-SAT as fol-
lows.

Theorem 2.1 ([5]): For any ε ∈ (0, 1/2), it is NP-hard to
decide whether an instance of 3-OCC-MAX 2-SAT with
2016N clauses has a truth assignment that satisfies at least
(2012 − ε)N clauses, or at most (2011 + ε)N.

In their proof, all clauses of an instance of 3-OCC-MAX 2-
SAT have exactly two literals [4]. So this theorem can be
applied to 3-OCC-MAX E2-SAT.

Let ϕ be an instance of 3-OCC-MAX E2-SAT and let
s(ϕ) be the maximum number of clauses that can be satisfied
simultaneously by an assignment. In this paper, we trans-
form ϕ into an instance G = (V, E) of MBEPP as follows.

Suppose ϕ has n variables xi (i = 1, . . . , n) and m
clauses c j ( j = 1, . . . ,m). For c j = α ∨ β, we call α (β)
as the first (second) literal of c j. Since each variable occurs
exactly three times in ϕ, 3n = 2m holds. For each variable
xi, we construct Gi as follows.
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Each Gi is a cycle graph C6 (Fig. 1 (a)). We denote by
Vx the set of vertices in these cycles, that is, Vx = {xd

i , x̄
d
i |1 ≤

i ≤ n, d = 1, 2, 3}. For each clause c j, we create two vertices
y j, z j and an edge e j = (y j, z j). Let Vc = {y j, z j|1 ≤ j ≤ m}.

For each j (= 1, . . . ,m), we add edges as follows. We
connect a vertex of Vx and a vertex of Vc by these edges. Let
xi be a variable and suppose it appears in three clauses c j1 ,
c j2 , c j3 . For d = 1, 2, 3, if the occurrence of xi is the first
literal of c jd , we connect y jd to either xd

i (if the literal is xi)
or x̄d

i (if the literal is x̄i) by an edge. If the occurrence of xi

is the second literal of c jd , we connect z jd to either xd
i (if the

literal is xi) or x̄d
i (if the literal is x̄i) by an edge. We denote

by eyj (ez j ) the added edge incident to y j (z j).
Note that if xi occurs all positive (all negative) in ϕ,
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Fig. 1 (a) Gi and its vertices. (b) Gi with nonadjacent degree-three ver-
tices. (c) Gi with contiguous degree-three vertices.

the degree-three vertices appearing in Gi are not adjacent
each other (Fig. 1 (b)). Otherwise, the degree-three vertices
appear contiguously in Gi (Fig. 1 (c)). We summarize the
construction of G as follows.

V(G) = Vx ∪ Vc

E(G) =
n⋃

i=1

E(Gi) ∪
m⋃

j=1

E(Gc j).

The following lemma holds.

Lemma 2.2: All biclique subgraphs of G are star graphs
K1,s (s ≥ 1).

Proof : G is constructed by cycle graphs C6 connected
each other by a path graph P4. Thus, G has no Ks,t (s ≥ 2,
t ≥ 2) as a subgraph. �

3. Inapproximability of MBEPP

In the sequel, we use “biclique” and “star graph” inter-
changeably. For a star graph K1,s (s ≥ 2), the vertex of
degree s is called its center. For each i, we define six star
graphs (K1,2) as follows.
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We denote two sets of graphs as follows.

ST
i = {S 1
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2
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3
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i = {S̄ 1

i , S̄
2
i , S̄

3
i }.

Each Gi (i = 1, . . . , n) can be partitioned into the three
bicliques of ST

i or into the three bicliques of SF
i .

We denote by S (G) the size of an optimal solution of
MBEPP for G. We give the following lemma.

Lemma 3.1: If s(ϕ) > (1 − ε)m then S (G) < (3 + ε)m.

Proof : Let π be an assignment that satisfies more than
(1 − ε)m clauses of ϕ. We show that π induces a solution,
SOL′(G), of MBEPP that satisfies |SOL′(G)| < (3 + ε)m.

Let SOL′(G) be an empty set. For each xi, if π assigns

TRUE (FALSE) to xi, we add ST
i (SF

i ) to SOL′(G). Note
that all edges of Gi have been partitioned by these 3n (= 2m)
bicliques.

Let c j be an arbitrary clause of ϕ. If the assignment π
satisfies c j, there is at least one star graph K1,2 in SOL′(G)
whose center is adjacent to y j or z j. W.l.o.g., we assume
that y j is adjacent to the center of this K1,2. We replace this
star graph K1,2 in SOL′(G) with a star graph K1,3 by adding
eyj . This manipulation does not increase |SOL′(G)|. Fur-
thermore, we add to SOL′(G) a star graph K1,2 consisting
of e j and ez j .

If the assignment π does not satisfy c j, we add two star
graphs toSOL′(G); K1,2 consisting of e j and eyj , and K1,1 (=
ez j ). The number of K1,1 in SOL′(G) is less than εm because
of the assumption. In SOL′(G), we have 2m star graphs,
K1,2 or K1,3, whose centers are in Vx, and m star graphs,
K1,2, that have an edge e j. Thus, we have |SOL′(G)| < 2m+
(1 − ε)m + 2εm = (3 + ε)m. �

Lemma 3.2: If s(ϕ) ≤ (1 − ε)m then S (G) ≥ (3 + ε)m.

Proof : We assume SOL(G) is a solution of MBEPP and
|SOL(G)| < (3 + ε)m. We will show that there is an assign-
ment that satisfies more than (1 − ε)m clauses of ϕ. We
construct a solution SOL′(G) that satisfies |SOL′(G)| ≤
|SOL(G)| and then we show SOL′(G) induces an assign-
ment that satisfies more than (1 − ε)m clauses of ϕ.

Let SOL′(G) be an empty set. We denote by SC(G)
the set of all bicliques in SOL(G) that have an edge e j ( j =
1, . . . ,m). Then |SC(G)| = m. We add all bicliques inSC(G)
to SOL′(G).

Next, we remove all edges of bicliques in SC(G) from
G. If there are singletons in the resulted graph, we remove
all of them. Let G′ be the resulted graph. G′ consists of n
connected components. Each of the connected components
is Gi possibly with its incident edges. Note that for all j (=
1 . . . ,m), at least one edge ey j or ez j remains in G′.

For each i (= 1, . . . , n), we denote by G′i a connected
component of G′ whose C6 subgraph is Gi. We denote by
A the set of all G′i that has no contiguous degree-three ver-
tices, and we denote by B the set of all G′i that has some
contiguous degree-three vertices.

It is clear that each G′i ∈ A cannot be partitioned into
less than three bicliques. For each G′i ∈ A, we add three
bicliques as shown in Fig. 2 (a), to SOL′(G) as follows. If
some of xd

i (d ∈ {1, 2, 3}) are the degree-three vertices, we
add three bicliques (star graphs) whose centers are xd

i to
SOL′(G). Otherwise, we add three bicliques (star graphs)
whose centers are x̄d

i to SOL′(G).
It is clear that each G′i ∈ B cannot be partitioned into

less than four bicliques. For each G′i ∈ B, we add four
bicliques as follows. If there are three degree-three vertices
in G′i , we denote these contiguous vertices by v1, v2, v3 in
this order as shown in Fig. 1 (c). We add to SOL′(G) four
bicliques; one star graph K1,1 that is an edge connecting v2

and a vertex of e j, two star graphs K1,3 whose center vertices
are v1 and v3 and one star graph K1,2 for the remaining part
(Fig. 2 (b)).
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Fig. 2 (a) Gi partitioned into three bicliques. (b) Gi partitioned into four
bicliques.

If there are only two degree-three veritices in G′i , we
denote these two contiguous vertices by v1 and v2. Then we
add to SOL′(G) four bicliques; one star graph K1,1 that is
an edge connecting v2 and a vertex in e j, one star graph K1,3

whose center vertex is v1 and two star graphs K1,2 for the
remaining part.
SOL′(G) has the same subset SC(G) of SOL(G), and

the remaining part is partitioned into the optimal number of
bicliques. So it is clear that SOL′(G) is a biclique partition
of G and |SOL′(G)| ≤ |SOL(G)| holds.

Let |B| = ε′m, then |A| = n − ε′m and

|SOL′(G)| = |SC(G)| + 3|A| + 4|B| = (3 + ε′)m.

From the assumption |SOL(G)| < (3 + ε)m, we have (3 +
ε′)m < (3 + ε)m, and |B| < εm holds.

We induce an assignment π′ from SOL′(G) as follows.
For each G′i ∈ A, if some of xd

i (x̄d
i ) are degree-three ver-

tices, we assign TRUE (FALSE) to xi. If there is no degree-
three vertex in G′i , we assign FALSE to xi. For each G′i ∈ B,
if the degree-three vertex v1 is xd

i (x̄d
i ) for some d ∈ {1, 2, 3},

we assign TRUE (FALSE) to xi.
Note that under this assignment π′ the literals associat-

ing degree-three vertices denoted by v2 are FALSE and the
other literals are TRUE. Therefore, if c j is not satisfied by
π′, at least one endpoint of e j must be adjacent to v2 in some
G′i ∈ B. The number of vertices denoted by v2 in G is ex-
actly the size of B. Since |B| < εm, the number of clauses
not satisfied by π′ is less than εm, and thus π′ satisfies more
than (1 − ε)m clauses in ϕ. �

Theorem 3.3: (6053/6052 − ε)-approximation of MBEPP
is NP-hard, for arbitrary small ε > 0.

Proof : From Theorem 2.1, it is NP-hard to decide whether
s(ϕ) > (2016N − 4N − εN) or s(ϕ) ≤ (2016N − 5N + εN).
Let m = 2016N, ε1m = (4 + ε)N, ε2m = (5 − ε)N. From
Lemma 3.1, if s(ϕ) > (1 − ε1)m then S (G) < (3 + ε1)m =
3 · 2016N + (4 + ε)N. From Lemma 3.2, if s(ϕ) ≤ (1 − ε2)m
then S (G) ≥ (3+ε2)m = 3 ·2016N+ (5−ε)N. Therefore, for
any ε, it is NP hard to decide whether S (G) < (6052 + ε)N
or S (G) ≥ (6053 − ε)N. �
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