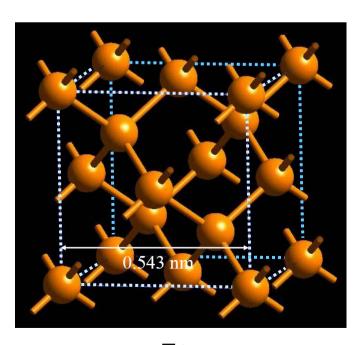
固体電子工学

平成18年前期 中間試験問題

平成18年6月5日

注意

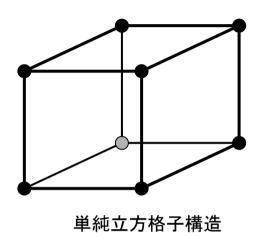
- 1. 本・ノートを参照しても良い。
- 2. 電卓を使用しても良い。
- 3. 試験問題を解くにあたって必要であれば次を用いよ。


電子の質量	m	9.11 x 10 ⁻³¹	kg
プランク定数	\hbar	1.05 x 10 ⁻³⁴	Js
ボルツマン定数	k_B	1.38 x 10 ⁻²³	JK ⁻¹
素電荷	e	1.60 x 10 ⁻¹⁹	C
真空の誘電率	ε_0	8.85 x 10 ⁻¹²	C/Vm
アボガドロ数	N_A	6.022×10^{23}	mol ⁻¹

シリコン Si は原子番号14、原子量28の原子である。

- 注)原子量: アボガドロ数 N_A 個の原子の重さ(g)。
- (1)シリコンの原子軌道を記せ。

(例: ボロン B の原子軌道は 1s² 2s² 2p¹)


- (2)シリコンが結晶を作ると、図1のようなダイヤモンド構造となる。このシリコン結晶における結合エネルギーについて、解説せよ。
- (3)シリコン結晶 1g には何個の原子が含まれているか。
- (4)LSI (大規模集積回路)で用いているシリコン・ウエハーは、厚さ 0.5mm、直径 30cm の円盤である。この重さを計算せよ。

3

図2 は単純立方格子と面心立方格子 fcc 構造を示したものである。それぞれの構造を剛体球モデルによって考えたとき、fcc 構造の場合、原子の占めている割合は、単純立方格子の場合の何倍になるか。

剛体球モデル:原子を半径 r の球として取り扱う。このとき半径 r はとりうる最大の半径とする。

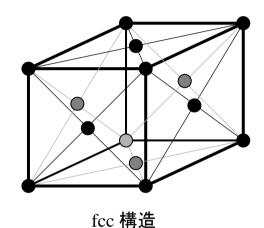
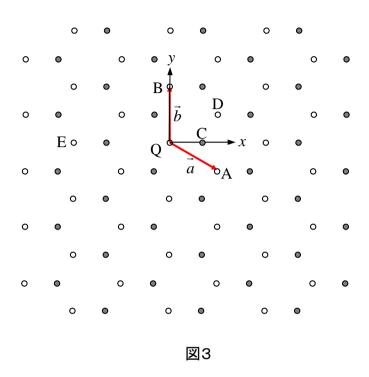



図2

価電子数 z、原子量 M の原子による結晶が密度(単位体積あたりの重さ) ρ をもつとする。

- (1) 単位体積あたりの電子数 nを与える式を記せ。
- (2) Li および Na の価電子を自由電子と考え、これら金属の室温(27°C)における電子 比熱を計算せよ。ただし密度はそれぞれ 0.534 g cm⁻³, 0.97 g cm⁻³ とする。
- 注) Li, Na の原子量はそれぞれ 7 と 23 である。

図3は二次元の三角格子を示したもので、QAD は正三角形をなし、C は Q, A, D から等距離に位置している。Q の位置を原点とし、QB の長さを a とする。すなわち、図3のように x 座標、y 座標をとると、点 Q は (0,0)、点 B は (0,a) となる。

- (1) 図3の格子ベクトル \vec{a} , \vec{b} をx, y 座標で表わせ。
- (2) \vec{a} , \vec{b} の逆格子ベクトルを求めよ。
- (3) O の位置は $\overrightarrow{r_{n,m}} = m\overrightarrow{a} + n\overrightarrow{b}$ (m, n は整数)と表わすことができる。 点 D, E の m, n を記せ。
- (4) 格子点 D, E を通る格子面のミラー指数を記せ。
- (5) 格子点 D, E を通る格子面の面間隔を求めよ。
- (6) C の位置を $\vec{\alpha a} + \vec{\beta b}$ と書いたときの α , β を求めよ。
- (7) O は電荷 +e の正イオン、● は電荷 -e の負イオンの場合について、 Mardelung 係数を与える式を記せ。
- (8) ○と が同一原子の場合について、構造因子を求めよ。