情報デバイス工学特論

## 第3回

## CMOSFETの更に進んだ特性

## nMOSFET 基本直流特性



ソース・ドレインの内、<mark>電位の</mark> 低い方をソースと定義する

ソース・ドレインは構造上同じで あるが動作上では大きく異なる

線形領域 
$$V_{GS} - V_T > V_{DS}$$
  
 $I_D = \beta \left[ (V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$   
飽和領域  $V_{DS} > V_{GS} - V_T > 0$   
 $I_D = \frac{\beta}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$   
理想トランジスタ・モデル  
 $\beta = \frac{W \mu_n C_{ox}}{L}$   
 $V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2qN_A}\varepsilon_S (2\phi_F - V_{BS})}{C_{ox}}$ 

 $V_{FB} = \Phi_M - \chi - \phi_F - \frac{E_C - E_{Fi}}{q}$ 

#### $V_{GS} - V_T < 0$ でわずかながら電流が流れる



 $V_{GS} - V_T < 0$  サブスレッショルド電流

ゲート直下、ソースからドレインまで どこにも反転層が形成されていない状態





3-4

チャネルはソース、ドレインと導通していないので、 チャネルの電位(中央部)はソース・ドレイン電圧の 影響を受けず MOSキャパシタの式 ( $V_G$ ,  $V_B$  のみ) で決まる

 $V_{GS} - V_T < 0$  サブスレッショルド電流

ドレイン電流は伝導電子の拡散により決まる 動作は npn トランジスタ

npn コレクタ電流

$$I_{C} = A \frac{qD_{n}n_{i}^{2}}{W_{B}N_{A}} \left[ \exp\left(\frac{qV_{BE}}{k_{B}T}\right) - \exp\left(\frac{qV_{BC}}{k_{B}T}\right) \right]$$

|                | npn         | nMOS                                    |
|----------------|-------------|-----------------------------------------|
| $I_C$          | コレクタ電流      | ドレイン電流 I <sub>D</sub>                   |
| A              | 接合面積        | $W \cdot d$                             |
| W <sub>B</sub> | ベース幅        | L                                       |
| $N_A$          | ベース濃度       | 基板濃度 $N_A = n_i \exp(q \phi_F / k_B T)$ |
| $V_{BE}$       | ベース・エミッタ間電圧 | $\phi_{S} + V_{BS}$                     |
| $V_{BC}$       | ベース・コレクタ間電圧 | $\phi_{S} + V_{BD}$                     |

dの評価

$$n = n_i \exp\left(\frac{q}{k_B T}(\phi - \phi_F)\right)$$
  
$$\phi \cong \phi_S + \frac{d\phi}{dx}\Big|_{x=0} x = \phi_S + \frac{Q_S}{\varepsilon_S} x$$
$$\square \qquad d \cong \frac{\int_0^\infty n dx}{n(x=0)} = -\frac{k_B T \varepsilon_S}{q Q_S}$$

 $V_{GS} - V_T < 0$  サブスレッショルド電流

$$Q_{S} \cong -\sqrt{2qN_{A}\varepsilon_{S}\phi_{S}} , \qquad C_{S} = -\frac{\partial Q_{S}}{\partial \phi_{S}} \cong -\frac{Q_{S}}{2\phi_{S}} , \qquad D_{n} = \frac{k_{B}T}{q}\mu_{n} \quad E \exists V \subset I_{D} = \beta \frac{C_{S}}{C_{ox}} \left(\frac{k_{B}T}{q}\right)^{2} \exp\left(\frac{q}{k_{B}T}(\phi_{S} - 2\phi_{F} + V_{BS})\right) \left[1 - \exp\left(-\frac{qV_{DS}}{k_{B}T}\right)\right]$$

閾値付近を考え  $Q_s(\phi_s) \cong Q_s(2\phi_F) - C_s(\phi_s - 2\phi_F)$  と近似する

$$V_{GS} = V_{FB} + \phi_{S} + V_{BS} - \frac{Q_{S}}{C_{ox}} \cong V_{T0} + V_{BS} + \left(1 + \frac{C_{S}}{C_{ox}}\right) (\phi_{S} - 2\phi_{F})$$

 $n=1+\frac{C_{S}}{C_{ox}}$  と置くと

 $V_{T0}$ は強反転の閾値  $V_T$ において  $V_{BS} = 0$  と置いたもの

$$I_D = \beta \left( n - 1 \right) \left( \frac{k_B T}{q} \right)^2 \exp \left( \frac{q}{nk_B T} \left( V_{GS} - V_{T0} \right) + \frac{n - 1}{n} \frac{q}{k_B T} V_{BS} \right) \left[ 1 - \exp \left( -\frac{q V_{DS}}{k_B T} \right) \right]$$

subthreshold 係数 電流が1桁変化するゲート電圧変化

$$s = n \frac{kT}{q} \ln(10)$$

リーク電流

drain

 $I_{OFF}$ 



## Shockley-Read-Hall (SRH) 再結合 <sup>3-8</sup>





f<sub>T</sub>:トラップに電子がある確率 電子減少率=正孔減少率

 $R = c_n n N_T (1 - f_T) - e_n N_T f_T$   $= c_p p N_T f_T - e_p N_T (1 - f_T)$   $f_T = \frac{\Box}{c_n n + e_p}$   $f_T = \frac{c_n n + e_p}{c_n n + c_p p + e_n + e_p}$  $R = N_T \frac{c_n c_p n p - e_n e_p}{c_n n + c_p p + e_n + e_p} \qquad \Box$ 

熱平衡では更に(詳細釣り合いの法則)  $N_T$ : トラップ密度  $C_n = \sigma_n V_{th}$  $c_n n N_T \left( 1 - f \left( E_T \right) \right) = e_n N_T f \left( E_T \right)$  $c_p = \sigma_p v_{th}$  $c_p p N_T f(E_T) = e_p N_T (1 - f(E_T))$  $f(E) = \frac{1}{\rho^{(E-E_F)/k_BT} + 1}$  $\sigma_n, \sigma_n$ : 散乱断面積  $v_{th}$ :熱速度 =  $\sqrt{3k_BT/m^*}$  $e_n = c_n n_i e^{(E_T - E_{Fi})/k_B T}$  $e_p = c_n n_i e^{-(E_T - E_{Fi})/k_B T}$  $np-n_i^2$ R = $\overline{\tau_p\left(n+n_ie^{(E_T-E_{Fi})/k_BT}\right)+\tau_n\left(p+n_ie^{-(E_T-E_{Fi})/k_BT}\right)}$  $\tau_p = (N_T c_p)^{-1} \sim 10^{-7} s$   $\tau_n = (N_T c_n)^{-1} \sim 10^{-7} s$ 

## SRH による リーク 電流(暗電流) <sup>3-9</sup>

OFF 領域 ゲート直下すべてに空乏層が形成

*n*, *p* ~ 0

$$R = -\frac{n_i N_T}{c_p^{-1} e^{(E_T - E_{Fi})/k_B T} + c_n^{-1} e^{-(E_T - E_{Fi})/k_B T}}$$

$$I_{OFF} = \int \frac{qn_i N_T}{c_p^{-1} e^{(E_T - E_{Fi})/k_B T} + c_n^{-1} e^{-(E_T - E_{Fi})/k_B T}} dV$$

 $c_n \sim c_p$ 

$$I_{OFF} = \int \frac{qcn_i N_T}{2\cosh\left[\left(E_T - E_{Fi}\right)/k_B T\right]} dV$$

**バンドギャップ中央**  $(E_{Fi})$  における トラップの寄与が最も大きい

深い準位 (deep level)



## 電界効果 (trap-assisted band-to-band tunneling) 3-10



$$R = N_{AT} \frac{np - n_i^2}{\frac{n + n_i e^{(E_T - E_{Fi})/k_B T}}{c_p \left(\chi_F + \Gamma_p^{Coul}\right)}} + \frac{p + n_i e^{-(E_T - E_{Fi})/k_B T}}{c_n \left(1 + \Gamma_n^{Dirac}\right)} + N_{DT} \frac{n + n_i e^{(E_T - E_{Fi})/k_B T}}{c_p \left(1 + \Gamma_p^{Dirac}\right)} + \frac{p + n_i e^{-(E_T - E_{Fi})/k_B T}}{c_n \left(\chi_F + \Gamma_n^{Coul}\right)}$$

## バンド間トンネル



## 電界小 : トラップを介したバンド間トンネル (trap-assisted band-to-band tunneling) 電界大 : バンド間トンネル (band-to-band tunneling) Si : 間接遷移 フォノン過程が伴う $R = -BF^{\sigma}e^{-F_0/F}$ $\sigma = 5/2$

 $B = 4 \times 10^{14} \text{ cm}^{-1/2} \text{V}^{-5/2} \text{s}^{-1}$ 

 $F_0 = 1.9 \text{ x} 10^7 \text{ V/cm}$ 

G. A. M. Hurkx, et al., *IEEE Trans. Electron Devices* vol. 39, p. 331, 1992



#### その他の電子ー正孔再結合過程



 $a_p \sim 0.3 \times 10^{-31} \text{ cm}^{-75}$  $a_p \sim 1.8 \times 10^{-31} \text{ cm}^{-6}/\text{s}$ 

ホットエレクトロン効果



高エネルギーの電子

→ ゲート酸化膜へのキャリヤ注入

Impact ionization

□→ 閾値シフト 絶縁破壊 ドレイン-ソース間 breakdown



### Impact Ionization

エネルギーのバランス

電子が電界により加速されてエネルギーを得る

電子が散乱(フォノン)によりエネルギーを失う

電界が強くなると、電子のエネルギーが $E_g$ (バンドギャップ エネルギー)を超え、impact ionization が起こる

| 伝導電子1個 | $\Rightarrow$ | 伝導電子2個+正孔1個 |
|--------|---------------|-------------|
| 正孔1個   | $\Box$        | 伝導電子1個+正孔2個 |



 $\alpha_n, \alpha_p$ : impact ionization 係数

$$\alpha_n = a_n e^{-b_n/E} \quad \alpha_p = a_p e^{-b_p/E}$$



| F(V/cm)                   | $<2.4x10^{5}$        | $\longleftrightarrow$         | $5.3 \times 10^5 <$          |
|---------------------------|----------------------|-------------------------------|------------------------------|
| $a_n$ (cm <sup>-1</sup> ) | $2.6 \times 10^{6}$  | 6.2 <b>x</b> 10 <sup>5</sup>  | 5.0 <b>x</b> 10 <sup>5</sup> |
| $b_n$ (V/cm)              | $1.43 \times 10^{6}$ | $1.08 \times 10^{6}$          | 9.9 <b>x</b> 10 <sup>6</sup> |
| $a_p$ (cm <sup>-1</sup> ) | 2.0>                 | 5.6 <b>x</b> 10 <sup>5</sup>  |                              |
| $b_p$ (V/cm)              | 1.97                 | 1.32 <b>x</b> 10 <sup>6</sup> |                              |

## ホットエレクトロン注入

DAHC Drain Avalanche Hot Carrier injection



CHE Channel Hot Electron injection



SHE Substrate Hot Electron injection



SGHE Secondary Generated Hot Electron injection



## 耐圧(Breakdown Voltage)





飽和速度を起こす電界

 $E_C \sim 10^4 \text{ V/cm}$  電子 ~ 5 x 10<sup>4</sup> V/cm 正孔

電子の方が飽和速度に達しやすい

# 速度飽和を考慮したドレイン電流の式 3-19

$$\mu_n(E) = \frac{\mu_{n0}}{1 + \frac{\mu_{n0}}{v_{sat}}} \left( \begin{array}{cc} \mu_n(E) = \mu_{n0} & E \not h \\ v = \mu_n(E)E = v_{sat} & E \not L \end{array} \right)$$

$$I_n = W \mu_n C_{ox} \left( V_{GS} - V_T - V \right) \frac{dV}{dy} \qquad \Longrightarrow \qquad I_n = W \frac{\mu_{n0}}{1 + \frac{\mu_{n0}}{v_{sat}}} C_{ox} \left( V_{GS} - V_T - V \right) \frac{dV}{dy}$$

飽和領域の電流は  $\frac{\partial I_D}{\partial V_{DS}} = 0$  (最大値)から決まる  $V_{Dsat} = \frac{V_{GS} - V_T}{\frac{1}{2} + \frac{1}{2}\sqrt{1 + 2\frac{\mu_{n0}}{v_{ext}L}(V_{GS} - V_T)}} \cong \frac{V_{GS} - V_T}{1 + \frac{\mu_{n0}}{v_{sat}L}(V_{GS} - V_T)}$ 

$$I_D = \frac{1}{2} \frac{W \mu_{n0} C_{ox}}{L} V_{Dsat}^2$$

寄生素子



寄生抵抗



$$V_{DS} = V'_{DS} + I_D \left( R_S + R_D \right)$$
  
 $V_{GS} = V'_{GS} + I_D R_S$   
↑  
本来のトランジスタにかかる電圧





3-22 測定データから寄生抵抗を求める方法

飽和領域を用いる方法 F.J.G. Sanchez, et al., IEEE Trans. Electron Devices, vol. 49, p. 82, 2002



線形領域を用いる方法

H. Katto, IEEE Electron Device Lett. vol. 18, p. 408, 1997











寄生容量

 $C_{GC}$  (フリンジ容量  $C_{GSO}$ ,  $C_{GDO}$  を除く)の成分



 $C_{GD} = \frac{2}{3} WLC_{ox} \left[ 1 - \left(\frac{1}{2 - X}\right)^2 \right] \qquad X = \frac{V_{DS}}{V_{GS} - V_T}$ 

スケーリング

電界=一定

| 物理量    | 記号             | factor                   | 問題                     |
|--------|----------------|--------------------------|------------------------|
| 長さ     | $t_{ox}, L, W$ | 1/K                      |                        |
| 電圧     | V              | 1/K                      | Subthreshold<br>係数縮小不可 |
| 基板濃度   | $N_A$          | K                        |                        |
| 素子電流   | Ι              | 1/K                      |                        |
| 素子容量   | С              | 1/ <i>K</i>              |                        |
| 素子遅延時間 | $t_d$          | 1/K                      |                        |
| 素子消費電力 | $P_d$          | 1/ <i>K</i> <sup>2</sup> |                        |
| 抵抗     | R              | K                        | 時定数                    |
| 電流密度   | j              | K                        | electro-<br>migration  |





|               | 1970            | 1980                | 1990   | 2000                |
|---------------|-----------------|---------------------|--------|---------------------|
| 素子数/チップ       | 10 <sup>3</sup> | 5 x 10 <sup>4</sup> | 106    | 5 x 10 <sup>7</sup> |
| ゲート遅延 (ns)    | 25              | 1                   | 0.05   | 0.01                |
| 電源電圧 (V)      | 12              | 5                   | 3.55-5 | 0.9-1.8             |
| チャンネル長 (μm)   | 10              | 5                   | 1      | 0.25                |
| $t_{ox}$ (nm) | 120             | 50                  | 15     | 5                   |

#### 短チャネル効果



#### 狭チャネル効果



## LDD (lightly doped drain)



ドレイン側の電界緩和 □ ホットエレクトロン効果の緩和 GIDL低減



 $n^{-}$ 











## ポケット (Halo)



#### ソース・ドレインの近くに p<sup>+</sup> を入れること により ショート・チャンネル効果を抑制



ゲート酸化膜を通した伝導



ゲート電流



A. Gupta, et al. IEEE Electron Device Lett. vol.18, p. 580, 1997

High-k ゲート絶縁膜



| dielectric | permitivity | band gap (eV) | Ec barrier |
|------------|-------------|---------------|------------|
| SiO2       | 3.9         | 9             | 3.5        |
| Si3N4      | 7           | 5.3           | 2.4        |
| Al2O3      | 9           | 8.8           | 2.8        |
| TiO2       | 80          | 3.5           | 0          |
| Ta2O5      | 26          | 4.4           | 0.3        |
| Y2O3       | 15          | 6             | 2.3        |
| La2O3      | 30          | 6             | 2.3        |
| HfO2       | 25          | 6             | 1.5        |
| ZrO2       | 25          | 5.8           | 1.4        |
| ZrSiO4     | 15          | 6             | 1.5        |
| HfSiO4     | 15          | 6             |            |

S. H. Lo et al., IEEE Electron Device Lett. Vol. 18, No. 5, p. 209, 1997



ゲート材料



### SOI (silicon on insulator)



$$D < W_{max}$$
=最大空乏層幅

 $D > W_{max}$ 

完全空乏型 Fully-depleted

部分空乏型 Partially-depleted

利点:寄生容量の低減 欠点:基板浮遊効果 発熱

熱伝導率 (W/Km) Si 140 SiO<sub>2</sub> 1.1



完全空乏型

- ・理想的な subthreshold 係数
- ・閾値を基板濃度で設定できない
   (ゲート材料の仕事関数で設定)

部分空乏型

- ・閾値を基板濃度で設定可能
- ・基板浮遊効果が大きくなる

### SOI 基板浮遊効果



### SOI Dynamic Pass Gate Leakage



ひずみ Si



http://www.miraipj.jp/ja/result/030704/06.pdf

3次元チャネル構造

#### 平面積が同じままでチャネル幅 Wをかせぐ ゲート電位の影響を大きくする(サブスレッショルド係数)

Double-gate FIN-FET



日立 UC Berkeley Surrounding gate



東芝

縦型構造の問題点 LDD構造が困難