
Tree based Xcast Routing and Flooding based Group Forming for

Ad hoc Networks

Fumihito Kan∗ Nobuo Kawaguchi†

Abstract

Multicast is becoming increasingly important for applica-
tions such as IP telephony and video-conferencing because
of its ability to efficiently send data to a group of desti-
nations. However, it has the scalability issues for sup-
porting a very large number of distinct multicast groups.
To overcome these issues, Xcast has been proposed as
an alternative solution. In this paper, we consider the
situations in which a small number of nodes wish to com-
municate with each other in Ad hoc Networks. Taking
advantage of the ability of Xcast for supporting a large
number of small groups, we propose a new Xcast-like rout-
ing scheme named TXR along with a completely new
group membership administration scheme, FGF. With
these schemes the users can easily get/provide informa-
tion from/to other users efficiently even in a temporary or
an emergency situation in which neither network infras-
tructure is provided nor stable network topology guaran-
teed.

1 Introduction

In this paper, we propose a new scheme, Tree based
Xcast Routing (TXR), based on Xcast (Explicit Multi-
unicast)[1] which would work more efficiently than Ad
hoc multicast(e.g., MAODV[3], AMRIS[4], ODMRP[5],
Amroute[6]) when applied to a large number of small
groups rather than a small number of huge groups. With
this new scheme, users can easily get/provide informa-
tion from/to other people in Ad hoc Network. Like using
multicast, any one of members could send information
to the others, and the exactly same information will be
distributed efficiently to all other members joining the
group.

∗Graduate School of Information Science, Nagoya Univ.,
Japan

†Graduate School of Engineering, Nagoya Univ., Japan

When users wish to begin a group session in an Ad
hoc Network, they start their laptops with IPv4 addresses
auto configured or IPv6 link local addresses setup. We do
not assume any multihop protocol working on this Ad hoc
network though. Therefore each node could only com-
municate with its direct neighbors, but not any indirect
neighbor.

To communicate with other nodes including indirect
neighbors and to begin a group session, users start our
TXR application on their laptops. To be a source node
providing information to other users, the application first
performs our new membership administration algorithm,
FGF, and then uses TXR to send information to others.
To get information from a source node, the application
simply waits for session advertisements and joins the ses-
sion. We show these processes in more details in the fol-
lowing sections.

Since the format of information could be diverse (e.g.,
text, file, video etc.), this scheme could be used to many
applications. We introduce a couple of services which will
be contributed by our application in the later chapter.

This paper is organized into eight sections. In the next
section, we compare IP multicast[2] and Xcast broadly
and give several reasons to adapt Xcast instead of IP
multicast for the situation we assume. The third sec-
tion focuses on the main topic of this paper, our proposal
TXR along with FGF. In the fourth section, we presents
an example scenario. In fifth section, we introduce some
services which will be fairly contributed by our applica-
tion. And we conclude the paper with a summary and
future work.

2 Motivation

Multicast is becoming increasingly important for applica-
tions such as IP telephony and video-conferencing because
of its ability to efficiently send data to a group of desti-
nations. However, while traditional IP multicast schemes

1



are scalable for huge multicast groups (e.g., the audio and
video multicasting of a presentation to all employees in a
corporate intranet), they have scalability issues for a very
large number of distinct, especially temporary multicast
groups (e.g., videoconference involving 3 or 4 parties) be-
cause the number of addresses assigned for multicast is
limited and some efforts are required to create a new mul-
ticast group.

Xcast solving those issues and complementing the ex-
isting schemes is more suitable for a very large number of
small multicast sessions[1]. This is achieved by explicitly
encoding the list of destinations in the data packets and
keeping track of the destinations in the multicast channel
that it wants to send packets to, instead of using a multi-
cast group address as a logical identifier. More precisely,
the source encodes the list of destinations in the Xcast
header, puts the nearest one in the destination address,
and then sends the packet to a router. Each router along
the way parses the header, bundles up destinations which
have same next-hop, and forwards a packet with an ap-
propriate Xcast header to each of the next hops. When
there is only one destination left in the destination list,
the Xcast packet can be converted into a standard unicast
packet. Also, Xcast does not need for a special multicast
routing protocol such as PIM.

In Ad hoc Networks, although during recent years
many multicast protocols have been designed specifically
for Mobile Ad hoc Networks(e.g., MAODV[3], AMRIS[4],
ODMRP[5], Amroute[6]), they may become less efficient
and more expensive to function as well, when applied to
use with small and sparsely distributed groups because of
their scalability issues mentioned above[7].

Therefore it seems more suitable to use Xcasting ap-
proaches instead of IP multicating ones when applied to
use with a huge number of small groups both in wired
networks and wireless ones. Yet the current Xcast only
supports wired networks. In this paper, we adapted the
basic concept of the current Xcast and added several new
features in it to make it work more efficiently on Ad hoc
Networks.

3 Group Forming and Tree
based Xcast Routing for Ad-
hoc Network

3.1 Broad Concepts

As we mentioned in the previous sections, it seems suit-
able to use Xcasting approaches when applied to use with
a huge number of small groups both in wired networks and
wireless ones. Yet the current Xcast only supports wired
networks. In this paper, we adapted the basic concept of
the current Xcast and added several new features in it to
make it work more efficiently on Ad hoc Networks. Al-
though we consider mainly building an application work-
ing on Ad hoc Network in this paper, the concept can be
also applied to lower layers.

The new scheme we propose consists of two main parts.
For the first part, Flooding based Group Forming (FGF)
is designed as an alternative solution against ”xcgroup”,
the current group membership administration scheme in
Xcast. This absolutely new scheme is more suitable than
”xcgroup” when applied to Ad hoc Networks, because of
its flexibility and independence of need to a central server.
For the second part, Tree based Xcast Routing (TXR) is
proposed for providing a Xcast-like routing scheme. Un-
like current Xcast routing, in TXR the source node con-
structs a Tree Table based on the network topology and
other nodes use the Tree Table to forward the packets.

In the next subsection, we explain FGF, and we de-
scribe TXR in the ”Tree based Xcast Routing” subsec-
tion. Note that to make the mechanism more clear we
gave two different names to member administration mech-
anism and routing mechanism respectively. However it
may be more suitable to consider FGF as a part of TXR
scheme. And we will define a common header format for
both of them.

3.2 Membership administration

To provide group session services, we must figure out how
to deal with membership administration at first. That is,
to provide information to other nodes, first the provider
must know who are joining the group and how to reach
them. In this subsection, we propose a new scheme named
FGF to solve the membership administration problem in
Ad hoc Emergency Networks.

In Xcast, the sender must know the addresses of the
other group members to which the packets should be
sent. In current Xcast implementation, a scheme called

2



”xcgroup” has been used to provide membership admin-
istration. In this scheme, every node contacts with a cen-
tral server to get membership information (e.i., the ad-
dresses of the other nodes which belong to same group ses-
sion). However, in an Ad hoc networks, it seems unsuit-
able to have a central server for membership administra-
tion. Firstly, since the server wouldn’t have a static name,
nodes in the network do not know the server address when
joining the network. Although the nodes could broadcast
the server searching packets, it seems inefficient that ev-
ery nodes broadcast packets to all of the other nodes in
the network to find a central server. Secondly, because
the network topology can change easily anytime, connec-
tivity with the server is not always guaranteed. Thirdly,
and the most important, to have a server locate in every
Ad hoc network is against the principle of this kind of
networks. Therefore we need a new scheme which may
efficiently control group membership without a central
server.

Aiming at solving the previous issues, we propose a
new scheme, Flooding based Group Forming (FGF). With
FGF, nodes in an Ad hoc networks can easily find and join
certain group sessions without the aid of group adminis-
tration servers. We explain the general concept here, and
will give a clear example later.

Basically, as the name Flooding based Group Forming
implies, the source node1, firstly floods a session adver-
tisement 2 (Instead of using multicast address as identi-
fier, we use text type group session name, which could be
”Food-Info” for example). As the session advertisement
floods the network, every nodes receives this advertise-
ment, and adds their addresses into the packet no mat-
ter whether they want to join the group or not. This
is because even if they are not joining the group they
construct the route between other nodes and the source
node. The nodes which wish to join the session group set
the Member Flag in the packet to ”1”, otherwise, leave
it unchanged. As the advertisement passes around the
network, the addresses in the packet grow up and eventu-
ally up to maximum which will be determined by network
topology, TTL(Time To Live), and other elements, and
then the last node sends the packet which contains all
of the addresses along the path back to the source node.
The source node receives the return packets and looks
them up to see who is joining the group. Besides TTL,

1The initiator, the node having information to send to oth-
ers

2The advertisement to inform others of the new group ses-
sion name

we define TIME OUT to be the alternative determination
of the timing to return the session advertisement. Also,
we define Sequence Number to avoid loop problem. Also,
to guarantee the uniqueness of the session name, we do
not allow any session with the name same as the existing
ones. We will explain the design of FGF in more details
and present a clear example in later chapters.

3.3 Tree based Xcast Routing

In this subsection we give a solution to deal with the
routing problem(e.g., how to reach the nodes joining the
group session), which is named Tree based Xcast Rout-
ing (TXR). By using our proposal nodes don’t have rout-
ing information (e.g., routing table) themselves. Routing
process is done by our tree based routing method.

After flooding session advertisement as described in
the previous subsection, the initial node gets the whole
tree structure of joining nodes. The initial node then
constructs a Tree Table based on the tree structure. And
the nodes sends the packets with the Tree Table inside the
headers. When other nodes receive the packets, they look
at the Tree Table to decide how to forward the packet to
other nodes.

Although we could define the tree structure as simpler
form (e.g., combinations of lists or a bitmap graph), we
want to curtail as much as possible the calculations oc-
curred on the nodes along the path which behave like
routers. To do so, we define our Tree Table which makes
the calculations occurred on the nodes trivial.

Now, we give an example for our Tree Table. Suppose
the tree structure to be Fig. 1.

Figure 1: Example for Tree Table

3



In Fig. 1 to make it easier to see we assign each node an
alphabet in depth-first order. And our Tree Table should
look like Fig. 2. To construct this Tree Table, first, we
arrange the addresses of all nodes in depth-first order and
assign each of them an ID number, A is 1, B is 2, and so
on.

In Fig. 1 A has three subsets which are {B}, {C to
J}, and {K to L}. Converting the subsets to ID number,
we get {2}, {3 to 10} and {11 to 12}. To make the table
smaller, we can represents them as {2 3 11 LAST3}. B is
a leaf, so we assign φ for it. C has only one subset which
can be represented as {4 11}. Likewise, the other nodes
can be represented by same concept. Therefore, our Tree
Table would look like Fig. 2.

Figure 2: Tree Table for the example

Now, we explain how a node calculates the Tree Table.
For example, after receiving the Tree Table, node D only
looks at its line which is {5 6 9 11}. With this information,
D knows that its subsets are {E}, {F,G,H}, and {I,J}, so
it modifies the Receiver Flag and sends three packets to
E, F and I respectively. This calculation is trivial enough.

Note that the receivers who get the Tree Table can also
use it to send packets without flooding an advertisement
themselves. Yet the tree structure represented by it may
not be the best structure for them.

3We define LAST as (the total nodes number + 1), which
is 12+1=13 in this example

3.4 TXR Header

Considering the previous requirements, our TXR header4

would look like Fig. 3. Note that this figure is just a
broad outline. We don’t specify concrete design for its
header here. Therefore the figure is not drawn in real
scale.

Figure 3: TXR Header

SESSION NAME. The name for a certain session
(e.g., Food-Info, Water-Info).

Flooding Flag. The flag to distinguish flooding mes-
sages(session advertisements) from ordinary TXR pack-
ets. ”1” is for flooding messages, ”0” otherwise.

TTL:Time To Live. This integer will be decreased as
the packet passes each node. In FGF mechanism, once it
reaches to zero, the last node has to send the packet back
to the source node.

Sequence Number. We define Sequence Number to
solve loop problem. This number is defined by the address
of the source node and a sequential number. If packets
with the same source addresses and sequential numbers
have arrived, we see this arose because they get there via
different routes. In this case, the receiver simply discards
the duplicated ones. If there has arrived a packet with
the same source address but a smaller sequential number
compared with the previous one, we see this arose from
delay.

Routing Tree Table. This block could be seen to
be one of the main parts in our source routing mecha-
nism. We represent the whole tree structure of the net-
work topology as Tree Table.

DESTINATION N5. The destination blocks. The
number of destinations will be determined by network
topology, TTL and TIME OUT. We define TIME OUT

4Note that although we gave two different names to mem-
ber administration mechanism and routing mechanism respec-
tively, FGF can be considered as part of TXR scheme. And
we define a common header format for both of them.

5An integer

4



in the end of this subsection, because it does not appear
in the TXR header.

M:Member Flag. This bit denotes whether the desti-
nation is a member of the session or just a node along
the path. If the bit is set to be ”1”, the destination is
a member of the session group, and the packets will be
received by the Xcast application running on the node.
Otherwise it’s only a node we need to route the packet to
other nodes.

R:Receiver Flag. This bit denotes whether the node
has probably received the packet. For those who has prob-
ably received the packet the sender sets its corresponding
bit to ”0” from ”1”. We use the word ”probably” here
because the sender does not really know if the receiver ac-
tually received the packet (e.g., the packet could be lost
during the transmission).

This header format can apply to both IPv4 and IPv6.
Note that with IPv6 we could define DESTINATION as
112 bits instead of 128. Because in an Ad hoc networks
all nodes can use link local addresses, which are defined
as FE80:..., we can omit FE80 to make the packet shorter.
The extra bits can be used for other sakes.

Also, we define TIME OUT to be the alternative de-
termination of the timing to return the session advertise-
ment. To minimize network traffic the nodes not joining
the session do not send back the advertisements even if
TTL is exhausted. However, if the last node does not send
back the advertisement, all of the joining nodes along the
path will be overlooked. Also, any advertisement packets
send by a node could be lost during the transmission, and
therefore causes overlooking problem. We define TIME
OUT to overcome these problems. After sending an ad-
vertisement, each node starts its timer and waits for the
returning advertisement packet. If no packet returns be-
fore the timer exceeds, considering no more nodes joining
the session or the packet has been lost during the trans-
mission, the node sends the advertisement back to the
source node. We define TIME OUT as:

2d(TTL + 1) where d could be changed (e.g., 10msec)

4 An Example Scenario

Let us present a conceivable scenario in this section. Sup-
pose a severe earthquake struck an area, and network in-
frastructure has been severely damaged. Yet people in
the area still could connect to Ad hoc network with their
laptops. The laptops can use auto configured addresses in
IPv4, or link local addresses in IPv6. We do not assume
any multihop protocol working on this Ad hoc network.

Therefore any node could only communicate with their
direct neighbors, but not any indirect neighbors.

To communicate with other nodes including indirect
neighbors, users start our TXR application on their lap-
tops. To provide information to other users, the applica-
tion performs FGF algorithm periodically to get member
information, and then uses TXR to send information to
others. To get information from an initiator, the appli-
cation simply waits for session advertisements and joins
the session. We show these processes in more details in
the following paragraphs.

In this example, suppose that user on node A wants
to create a new group session named ”Food-Info”, and
provides information concerned with foods to other nodes
(Fig. 4). Here we assume that node A though G can
only communicate with the direct neighbors connected
by lines. And the colored nodes are the nodes which are
interested in joining the session. To simplify the issue, we
also assume TTL to be 3.

Figure 4: An example

4.1 FGF

To be an initiator sending information to other members,
the user on node A starts our TXR application. And
node A must know who are going to join the session. To
do so, once the application starts, it performs the FGF
algorithm as following. Note that in Fig. 5, we omitted
some details in header such as TTL, which is set to be
3 in this example, and Routing Information(Routing tree
table), which has no value yet at this point. In Fig. 5, the
blocks in packet headers denote SESSION NAME, DES-
TINATIONS along with their Member Flags and Receiver
Flags.

5



Figure 5: Flooding based Group Forming

(0). Suppose that all nodes in this network whether
want to join sessions or are willing to forward the packets.
They start our application waiting for session advertise-
ments.

(1). To create a session(e.g., ”Food-Info”) and pro-
vide information to others, node A floods a session adver-
tisement. Trying to find the nodes interested in joining
”Food-Info” session, at first node A sends three identi-
cal packets with ”Food-Info” as SESSION NAME to B,
C and D respectively. This packet does not carry any
payload. The Member Flag for A is set to 1, because
obviously node A is one of the members of the session.

(2-1). Node B receives the packet, and decides to join
the session. So B adds its address and sets its Member
Flag to ”1”. Since the packet comes from A, node B does
not forward the same packet to A. Node B forwards the
packet to the other neighbor, C.

(2-2). Node C receives the packet from A, and takes
the same action as B. Node C tries to send the packet
to neighbors except A. If at this point no packet comes
from node B or node C, C forwards the packet to B,
C and F. Otherwise, if C receives a packet with same
Sequence Number from B after receiving it from A, C
simply discards the duplicated packet and sends nothing
back to B. As B waits for the advertisement back from C,
the TIME OUT in B expires eventually. So B sends the
advertisement back to the initiator A.

(2-3). Node D receives the packet, but decides not
to join the session. So D adds its address and sets its
Member Flag to 0, and forwards the packet to node C.
Different from B, D does not start its Timer to wait for

return packet, because not being a member D won’t send
the advertisement back to A in any case.

(3). Node C forwards the packet to node E and F,
and starts its Timer waiting for return packet. Joining
the session, node E modifies the packet and sends it back
to node A, because node E is a LEAF. Deciding not to
join the session, F adds its address in the packet and
sets Member Flag to 0. After modifying the packet, F
forwards two identical packets to G and H.

(4-1). To join the session, node G adds its address in
the packet and sets Member Flag to 1. Because TTL is 3
in this example, node G has to send back the packet to
initial node A along the path, G, F, C and A.

(4-2). Deciding not to join the session, node H sim-
ply discards the advertisement and does nothing because
TTL has expired.

(5). Finally, the packet got back to node A, and A
knows that B, C, E and G want to join the session. And
by examining the DESTINATIONS, node A knows the
whole tree structure for this session which can be used in
the stage of source routing.

(6). To accommodate the mobility of Ad hoc networks,
node A floods the session advertisement at regular in-
tervals, and gets updated tree structure for the current
network topology.

4.2 TXR

After performing FGF, node A knows the members who
are joining the ”Food-Info” session. Also, by receiving
returned advertisement packets node A knows the whole
tree structure which looks like Fig. 6.

Figure 6: Tree Structure

Knowing the tree structure, node A creates the Tree
Table in our style, which looks like Fig. 7.

Now, all node A has to do is sending TXR packets
with the Tree Table to its direct neighbors. And the nodes
along the path will transfer the packets to its destinations

6



Figure 7: Tree Table in the TXR header

properly by using the Tree Table. As we mentioned be-
fore, with our Tree Table the calculations in every nodes
will be trivial. We show how the packet passes through
the network in the following (Fig. 8).

Figure 8: Delivery of TXR packets

(1). Trying to send packets to B, C, E and G, node A
creates two packets with same payloads and slightly dif-
ferent headers, which look like Fig. 9 respectively. Except
the Receiver Flag, the packets are almost same.

(2-1). Looking at the Tree Table, node B knows that
B itself is the last destination, so B simply receives the
packet without forwarding to others.

(2-2). Receiving the packet from A, node C examines
the Tree Table and knows it has two subsets which are
{E} and {F,G}. So it creates two packets, one for node
E, one for node F, with different Sending Flags.

Figure 9: TXR Header

(3-1). As node B, node E simply receives the packet
from node C.

(3-2.). Not being the member in the session, node F
doesn’t transfer the packet to its application. Still node
F is responsible for transferring the packet to the final
destination G.

(4). As node B and E, node G simply receives the
packet from node F.

(*). Each receiver could be a source node as well with
the Tree Table in the headers.

5 Services Using TXR

In this section we introduce some services in which the
features of our proposing application displays its ability
to the full.

Users with cell phones implemented our application can
talk to multiple persons joining the same group in the
area simultaneously, probably without any charge. One
of the members initiates the session by sending session
advertisement. Other members receive the advertisement
and join the group. In this case, there must be some kinds
of member authentication mechanisms to guarantee the
joining members are welcome. The easiest way to do this
is probably the authentication by other nodes which have
already joined the group. That is, without permission by
the initiator or other members any node can not join the
group.

Suppose some users with their own cell phones or lap-
tops want to arrange to meet at somewhere in a town.
In a crowded place it might be hard to find each other.
Of course, they could call each other. However with our
application users can talk to multiple persons simultane-

7



ously, like transceivers.

Our proposal perfectly contributes to this case because
there could be large number of groups composed of small
number of members in a crowded place.

Also, any store can be initiators providing information
or advertisements to anyone in the area. For example, a
Chinese restaurant called ”Shanghai” can send a session
advertisement named ”restaurant-chinese-shanghai”, and
anyone interested in receiving the information can join the
group and receive information from the restaurant such as
the location of the restaurant, today’s special menu, etc.
In addition, the customers can share their opinions and
advice for the restaurant. In places where there locate
many stores, our application can fairly contribute to the
service. To support large number of customers the stores
could establish multiple session with same information.

6 Summary and Future works

In this paper, we proposed a new Xcast-like routing
scheme named TXR along with a completely new group
membership administration mechanism, FGF. With these
schemes users can easily, efficiently get/provide informa-
tion from/to other users efficiently even in a temporary
network or an emergency situations.

We introduced a broad design for TXR which contains
FGF mechanism as well, so that both membership admin-
istration function and source routing function are packed
into a single format. The nodes except the source node
do not have routing information themselves. Instead, the
source node sends the packets with specially designed tree
tables which help other nodes route the packets. Addi-
tionally, with our special tree tables the calculation re-
quired for each node will be trivial.

We presented TXR along with FGF for application
layer in this paper. However, the concept can be applied
to lower layers. We will define TXR routing protocol in
the near future.

In this paper, we proposed that the initiator should
flood the session advertisement at regular intervals. How-
ever, we expect to find a way to avoid unnecessary flood-
ing. Therefore, the initiator floods the session advertise-
ment only once. We could use the ordinary TXR pack-
ets to accommodate the changes of network topology and
membership without flooding.

Receivers who have received the Tree Table can also use
it to send packets. However the tree structure represented
by it may not be the best structure for them. We expect
to find some ways to solve these problems.

References

[1] Explicit Multicast (Xcast) Basic Specification, Inter-
net Draft, draft-ooms-xcast-basic-spec-09.txt, (De-
cember 2005), work in progress.

[2] S. Deering, Host Extensions for IP Multicasting,
RFC 1112, (August 1989).

[3] T. Kunz and E. Cheng, Multicasting in Ad-Hoc Net-
works: Comparing MAODV and ODMRP

[4] C. Wu, Y. Tay and C. Toh, Ad hoc multicast
routing protocol utilizing increasing id-numbers (am-
ris) functional specification, Intenet Draft, draft-ietf-
manet-amris-spec-00.txt, (November 1998).

[5] S. Lee, W. Su and M. Gerla, On-demand multicast
routing protocol(ODMRP), Internet Draft, draft-ietf-
manet-odmrp-02.txt, (June 1999), work in progress.

[6] E. Bommaiah, A. McAuley and R. Talpade, Am-
route: ad hoc multicast routing protocol, Internet
Draft, draft-talpade-manetamroute-00.txt, (Febru-
ary 1999), work in progress.

[7] L.Ji and M.Corson, Explicit Multicasting for Mobile
Ad Hoc Networks, (2003).

[8] J.J. Garcia-Luna-Aceves and E. Madruga, A multi-
cast routing protocol for ad-hoc networks, in: Pro-
ceedings of IEEE INFOCOM’99, (March 1999), pp.
784-792.

[9] J. Jercheva, Y. Hu, D.Maltz and D. Johnson, A sim-
ple protocol for multicast and broadcast in mobile ad
hoc networks, Internet Draft, draftietf-manet-simple-
mbcast-01.txt, (July 2002), work in progress.

[10] L. Ji and M. Corson, Light-weight adaptive multicast,
in: Proceedings of IEEE GLOBECOM’98 (Novem-
ber 1998). work in progress.

[11] T. Ozaki, J. Kim and T. Suda, Bandwidth-efficient
multicast routing protocol for ad hoc networks, in:
Proceedings of IEEE ICCCN’99, (October1999).

[12] E. Royer and C. Perkins, Multicast using ad hoc on-
demand distance vector routing, in: Proceedings of
ACM/IEEE MOBICOM’99, (1999).

8


