
Touch-and-Connect: A Connection Request Framework for Ad-hoc Networks
and the Pervasive Computing Environment

Yohei Iwasaki† Nobuo Kawaguchi‡ Yasuyoshi Inagaki†
† Graduate School of Engineering, Nagoya University
‡ Information Technology Center, Nagoya University

{iwasaki,kawaguti}@cogma.org

Abstract

The spread of short distance wireless communication
technology is making it possible for various information ap-
pliances to communicate through a network. However, to
connect and to use them, we must generally perform compli-
cated setup operations such as setting addresses or names.

In this paper, we propose a user-friendly connect-
ing management framework called “Touch-and-Connect”.
With this method, we can connect any networked devices
only by touching them. This system is designed so that it
can work without a server, and even if many individuals op-
erate it independently, no incorrect connections occur. And
we have exemplified the usefulness of this framework with
subject experiments.

1. Introduction

With advances in hardware technology, every device will
include a smart computer and be increasingly miniatur-
ized. Thus we will live in a pervasive computing environ-
ment, surrounded by information appliances of many sorts.
Weiser[1] presents a vision of an invisible computer system
that need not impinge on the user’s awareness, yet that ren-
ders assistance spontaneously. However, as yet it is difficult
for the computer system to recognize users’ various inten-
tions without any input from users. So it is very important
that users can communicate their desires to the system intu-
itively, without paying conscious attention to the complexi-
ties of the computer.

The spread of technologies such as Bluetooth and wire-
less Ethernet is making it possible for various devices to
communicate via wireless connections. These devices pro-
vide a rich array of services for users when they commu-
nicate, interact, and become integrated through a network.
However, in order to connect and integrate these devices,
we are generally required to perform complicated setup op-

erations. For example, when a user wants to connect two
small wireless networked devices, the user may have to se-
lect an address or name of the destination device in a small
display. This is cumbersome, especially if there are numer-
ous devices in the network.

In this paper, we propose theTouch-and-Connect Frame-
work, which enables users to connect various devices by
just touching them, instead of stepping through complicated
setup operations. In order to work in an ad-hoc network en-
vironment, this framework is designed so that it can work
without a server. Because the pervasive computing envi-
ronment involves many devices and users, this framework
includes a lock mechanism that prevents incorrect connec-
tions caused by the independent operations of users.

In Section 2, we propose the Touch-and-Connect Frame-
work, which is a user-friendly connecting management
framework for ad-hoc networks and the pervasive comput-
ing environment. In Section 3, we discuss the prototype
system of this framework and some applications. In Section
4, we evaluate the framework using subject experiments. In
Section 5, we show some related work, and compare them
with the proposed method. In Section 6, we indicate tasks
to be undertaken in the future. And Section 7 concludes this
paper.

2. Touch-and-Connect Framework

We propose a user-friendly connecting management
framework called the “Touch-and-Connect Framework”.
With this method, a user can request a connection between
any pair of devices by simply touching these two devices –
for example, by pushing a button on the devices.

2.1. Sample Scenario

Here is a sample scenario depicting the goal of this
framework.

Scenario: John loves music. While John was walking,
he ran into Mary, who was listening to music with



Messaging Service

Interface Management
(IMS)

Connecting
Interfaces

Messaging Service

Interface Management
(IMS)

Connecting
Interfaces

Network

Device Management
(DMS)

Connection-request

Figure 1. System architecture

her wireless portable music player and wireless head-
phones. John had his high-quality wireless head-
phones, so he wanted to listen to the music together
by connecting his headphones to her music player. All
he had to do was push two buttons. First he pushed a
button on her music player, and then pushed a button
on his headphones. This simple operation established
a connection between these two devices, and he was
able to enjoy the music.

In the above case, we generally need complicated setup op-
erations such as these: First, John tells Mary the name of
his headphone. Then she searches for this name on the net-
work member list displayed on her music player. If there
are many devices in the network, the member list is so large
that this search operation is cumbersome, and sometimes
other devices may have the same name.

But with the Touch-and-Connect Framework, John can
request the connection by simply pushing buttons, instead
of performing complicated setup operations.

2.2. System Architecture

Figure 1 shows a system architecture overview of the
Touch-and-Connect Framework. It consists of four modules
in each device:messaging service, device management ser-
vice (DMS), interface management service (IMS), andcon-
necting interface.

Separating these four modules facilitates the reusabil-
ity of modules and interoperability between various appli-
cations. For example, various connecting interfaces with
which a user indicates a device are developed with a com-
mon IMS (interface management service) module. That not
only achieves reusability of the IMS module, but also inter-
operability between various connecting interfaces (see Sec-
tion 2.6). Also, the messaging service facilitates message
communications between devices. This module is used not
only by the protocol of the IMS but also by the application
protocols for interaction between DMSs (device manage-
ment service).

Messaging Service: This service wraps various network

medias and protocols, such as IEEE 802.11b, IEEE 802.3,
IEEE 1394, Bluetooth, and RS-232C, and assigns unique
address for each object. It also provides message routing so
that devices in different kind of network can communicate
with each other. The DMS and the IMS use the messaging
service to communicate with other devices.

Connecting Interface: The connecting interface is the user
interface with which a user indicates devices directly. Typi-
cally it is two buttons on each devices, as described in Sec-
tion 2.3. However, other interfaces are also described in
Section 2.6.

Interface Management Service (IMS): The Interface
Management Service (IMS) is the core module in this
framework. This service implements the Touch-and-
Connect protocol described in Section 2.5. The IMS con-
trols the connecting interface and communicates with the
IMSs on the other devices.

Device Management Service (DMS): The Device Man-
agement Service (DMS) is the application layer of this
framework. DMS manages device specific functions. Its
implementation varies in each kind of device. The only
functions that the framework requires for DMS are these:

• DMS providesdevice information. The device infor-
mation is a data structure that represents the device’s
properties. It is described in detail in Section 2.4.

• When DMS receives aconnection-requestevent, it
executes appropriate action according to the event.
Connection-request events are invoked from the IMS
when a user requests a connection.

Typically, DMS also has the following functions. It is used
for managing connections between devices.

• DMS has link information, which is the model of con-
nections between devices. This is usually a list of
partner device addresses. When the DMS receives a
connection-request, this link information is modified.
For example, the new partner’s address can be added
to the list or removed from it. As it works like a tog-
gle switch, a user can use this framework not only to
connect devices, but also to disconnect.

• DMS has a server-side feature and/or a client-side fea-
ture.

– server-side feature: DMS makes the device’s spe-
cific functions public to other devices, and an
application protocol is defined to control these
functions.

– client-side feature: DMS controls other devices
with the application protocol. The target server
devices are determined by the link information.



P S

portable music player

push plug-button
to indicate the source device

Then P S

head phone

push socket-button
to indicate the destination device

Figure 2. Two-button interface

P SA P SB P SC P SD

SA B C DP S P S P S

P SA PB P SC P SD

Push plug-button on A

Push socket-button on B

Several seconds later

P SA P SB P SC P SD

button state

ENABLE

DISABLE

SUCCESS

P

S

Figure 3. Example sequence of button state

Connection-request: If a user requests a connection be-
tween two devices with connecting interfaces, a connection-
request event is transmitted from IMS to DMS in each de-
vice. The connection-request consists of the following pa-
rameters. (The source device means the first indicated de-
vice, and the destination device means the second indicated
device.)

• Device information of the partner device. (The part-
ner device is the destination device if the local node is
the source device, or vice versa.)

• Source Flag: local node is the source device or not.
This parameter is used when a resulting action is
changed with a connecting direction.

2.3. Two-button Interface and Lock Mechanism

The two-button interface is one of the connecting inter-
faces that let a user indicate devices directly. From here on
we will use this interface to explain the Touch-and-Connect
Framework, because this is the simplest and most typical
interface in this framework (other interfaces are treated in
Section 2.6.)

In this interface, each device has two buttons: a plug-
button (P) and a socket-button (S) as shown in Figure 2.
When a user wants to make a connection between device-A
(e.g. a portable music player) and device-B (e.g. a head-
phone), the user first pushes the plug-button on device-A to

video-player

speaker

volume-
controller

lightdisplay

* light and light is connectable

music-player

Figure 4. Connectability-relation example

indicate that it is the source device, then the socket-button
on device-B to indicate that it is the destination device. This
simple sequence of button pushing establishes the connec-
tion between the devices. The user can easily relate this
operation to inserting a plug into a socket.

Now, let’s consider the following operation sequence.
(1) user-1 pushes plug-button on device-A
(2) user-2 pushes plug-button on device-C
(3) user-2 pushes socket-button on device-D
(4) user-1 pushes socket-button on device-B
In this case, because the system can’t recognize who pushed
the button, A – D, and C – B may be connected whereas
the users expect to connect A – B, and C – D. Inorder to
exclude these incorrect connections, this method uses the
following Lock mechanismthat enables the mutual exclu-
sion of users’ operations. Each button can show one of
three states: ENABLE, DISABLE, or SUCCESS. A user
can push the button only if it is in the ENABLE state, and af-
ter pushing the button the user must check that it changes to
the SUCCESS state, indicating the success of the operation.
By checking for the SUCCESS state, the user can make
sure of the success of the operation. During the connect-
ing operation, the plug-button on the other devices shows
the DISABLE state (i.e. they arelocked) in order to pre-
vent the other users from starting the connecting operations
that may result in unwanted connections. The sequence of
button states in this case is shown in Figure 3.

This method also has manual and automatic cancel func-
tion as follows. (1) After the plug-button is pushed, a user
can cancel the operation by pushing the same plug-button
again. Then the indication of a destination device is can-
celed, and the buttons return to their initial state. (2) When
a user pushes a plug-button and goes away without push-
ing a socket-button, it is not desirable for the devices to be
locked permanently. To avoid this, the operation is automat-
ically canceled after a set delay time.

The detailed protocol that accomplishes these functions
is described in Section 2.5.

2.4. Device Information

Each device has thedevice information. The device in-
formation consists ofaddrsss, device-type, group-ID, and



bidirectional-link: org.cogma.tnc.display, org.cogma.tnc.video-player

bidirectional-link: org.cogma.tnc.speaker, 
org.cogma.tnc.volume-controller

bidirectional-link: org.cogma.tnc.speaker, org.cogma.tnc.music-player

bidirectional-link: org.cogma.tnc.speaker, org.cogma.tnc.video-player

self-link: org.cogma.tnc.light

※ self-link means the link between the same type

Figure 5. Connectability-relation description

extension data. This is used to resolve a relation between
devices in IMS, and to select an appropriate action in DMS
when a user requests a connection.

Device-type and Connectability-relation: The proposed
method can be used for various kinds of devices. Each de-
vice has a “device-type” that represents the kind of device
it is. We consider some simple device-types here, for exam-
ple, light, video-player, music-player, display, speaker, and
volume-controller. The device-type is mainly used so that
the DMS can select an appropriate action or application pro-
tocol between two indicated devices when a user requests a
connection. For example, if a video-player connects to a
display, a movie transmission should be done between the
devices. And if a video-player connects to a speaker, a voice
transmission should be done.

We define theconnectability-relationthat is the rela-
tion between devices. The connectability-relation from
device-A to device-B means that an appropriate action is
defined corresponding to the connecting operation from
device-A to device-B. The connectability-relation is used
to show connectable devices to a user when the plug-
button is pushed, and to limit the number of locked devices.
The connectability-relation between two devices is decided
by the device-types of each device, so the connectability-
relation can be generalized as a relation between device-
types. Figure 4 shows an example of connectability-relation
definition as a directed graph.

By using the connectability-relation definition, only the
socket-buttons of connectable devices will change to the
ENABLE state, and only the minimum number of devices is
locked during the connecting operation. If the plug-button
of device-A is pushed, the system must lock all the devices
connectable to “devices connectable from device-A”. For
example, in the definition in Figure 4 , consider the case
that a user pushes the plug-button on a volume-controller.
Then the socket-buttons of the light and speaker that are
connectable from the volume-controller change to the EN-
ABLE state. And the plug-buttons of “video-player, music-
player, volume-controller, and light” which are connectable
to “light or speaker” are locked.

So that the system can decide the connectability-relation

between devices, each device has a settings file that de-
scribes the connectable relations between device-types. An
example of a settings file is shown in Figure 5. This figure
shows that the name of a device-type should include the do-
main name of the organization, like Java package naming,
in order to separate name-spaces and avoid name conflicts.

Group-ID: Consider the following security and usability
problems.

• After a user pushes the plug-button, another malicious
user may push the socket-button of another device be-
fore the first user, creating an unwanted connection.

• When many users attempt to connect simultaneously,
some users must wait for significant periods for the
locked device to be released, and may feel impatient.

In this framework, a user can create a private group that
devices can join, thus avoiding these problems. Only de-
vices belonging to the same group can be connected to, and
be locked. To implement the grouping, each device has a
group-ID, and devices that have the same group-ID are con-
sidered to belong the same group.

By default, a device belongs to “the public group”. If
a user wants devices to belong to a specific private group,
the user must set up a group-ID for each device. This setup
operation should also be simple and intuitive, so we design
a special device calledgroup changer. Each group changer
has its own setup-ID. If a user requests a connection from a
target device to the group changer, the target device’s group-
ID changes to the group changer’s setup-ID. This means the
user can set up the group-ID of the target device without ID
input operation.

Extension Data: Extension data is information that de-
pends on the device-type. It represents, for example, the
object-ID (like a port number in TCP) for each application
protocol. It is included in the connection-request parame-
ters and is used by the DMS in order to bring about interac-
tions between devices.

2.5. Touch-and-Connect Protocol

The Interface Management Service (IMS) implements
the Touch-and-Connect Protocol. This protocol aims to
work in ad-hoc networks, which are constructed temporar-
ily on demand. It can work without a server, using broadcast
communications instead, and it deals with dynamic node
entry and departure.

Figure 6 shows a sequence diagram of this protocol. This
protocol has some time parameters: request-wait, cancel-
wait, and success-wait. Their default values are described
later. Each device has request-list and lock-list that decide
the state of buttons (or other connecting interfaces) and are
initially empty.



A BC
Request(A)

Plug-button
is pushed

Socket-button
is pushed

Cancel(A)

Reply(B)
Cancel(A)

Success(A)Connect to
B

Connect from
A

Source Device
(Requester)

Destination Device
（Replier）

A
Lock List

A
Lock List

A
Request List

A
Request List

Lock ListLock List

Request ListRequest List

A
Lock List

A
Lock List

A
Request List

A
Request List

Lock ListLock List

Request ListRequest List

plug-button: DISABLE

plug-button: ENABLE

socket-button: ENABLE

socket-button: DISABLE

plug-button: DISABLE

plug-button: ENABLE

socket-button: ENABLE

socket-button: DISABLE

Request(A)

P

S

S

P

P

S

S

P

P

S

request-wait

socket-button: SUCCESS

plug-button: SUCCESS

Figure 6. Protocol sequence

Request: When a user pushes the plug-button on a device,
the device (requester) broadcasts theRequestmessage. To
resolve connectability-relations, this message includes the
device information of the requester (except extension data).

When a device receives the Request message, and it is
from a device that is connectable to the receiver, the mes-
sage is added to the request-list of the receiver.

Lock: When a device receives the Request message, and it
is from a device that must lock the receiver, the message is
added to the lock-list of the receiver.

Reply: When a user pushes the socket-button on a de-
vice, the device (replier) sends theReplymessage to the
requester. The destination requester is the sender of the first
element of the request-list.

If the lock mechanism works well, the request-list has at
most one element. However there are cases in which the
request-list has more than two elements, including packet
loss and dynamic changes in network topology. If the
request-list has more than two elements, it is ambiguous
which element the replier replies to, and it may make an
incorrect connection.

Completion of the Operation: When a requester receives
the Reply message, the requester knows that it should con-
nect to this replier. In order to cancel requesting and lock-
ing, the requester broadcasts theCancelmessage. To sig-
nal the success of replying, the requester sends theSuccess
message to the replier.

When a device receives the Cancel message, it removes
the sender’s element from its request-list and lock-list.

Reply and Success messages include the device-
information of the sender. When a device receives a Reply
or Success message, the connection-request event including
that device information are invoked from IMS to DMS in
each device.

Manual Cancel: After the plug-button is pushed, a user
can manually cancel the operation by pushing the same
plug-button again. To accomplish this, when a user pushes
the same plug-button again after requesting, the requester
broadcasts the Cancel message.

Automatic Cancel: If a user pushes the plug-button and
goes away without pushing the socket-button, the devices
are locked permanently. To deal with this, if the cancel-wait
time is exceeded after requesting, the requester broadcasts
the Cancel message automatically.

Pushing Plug-buttons at the Same Time: When two or
more users push the plug-button on devices just at the same
time, two requests occur before locking. This is not desir-
able since having two items on the request-list can cause
incorrect connections. To deal with this, devices have a
priority order determined by their addresses, and only the
request from the highest priority device survives.

Accordingly, a requester waits for request-wait period af-
ter requesting, then the request becomes valid and the plug-
button becomes SUCCESS state. During this waiting pe-
riod, if the requester is locked by more prior devices, the
requester that has a lower priority broadcasts the Cancel
message automatically.

The State of Two Buttons: The states of the two buttons on
the device are decided by the request-list and the lock-list,
except in the case described in the next paragraph. If the
lock-list is empty, the plug-button is in the ENABLE state,
meaning that the device can begin to request. Otherwise
the plug-button is in the DISABLE state, meaning that the
device cannot begin to request. If the request-list is empty,
the socket-button is in the DISABLE state, meaning that the
device cannot reply to any requests. Otherwise the socket-
button is in the ENABLE state, meaning that the device can
reply to the request. When a button is in the DISABLE



state, pushing is ignored.
To show success in indicating the source device, the

plug-buttonof the requester is placed in the SUCCESS state
during the following period: after the request-wait time
passes after requesting, and until cancellation of the request
(i.e. broadcasting the Cancel message). To show success
in indicating the destination device, the socket-button of the
replier is placed in the SUCCESS state during the follow-
ing period: after receiving a Success message, and until the
success-wait time passes.

Continuously Resend: To deal with dynamic node entries
and departures and packet loss, each Request message has
a expire time. While the request is valid, the Request mes-
sage is broadcast repeatedly atmessage-repeating-interval.
Cancel messages are also broadcast several times. In order
to reduce network traffic, as the total number of valid re-
quests increases, the message-repeating-interval increases
automatically.

Default Values of the Time Parameters: The followings
are default values of the time parameters: request-wait =
3000 ms, cancel-wait = 30000 ms, success-wait = 2000 ms.

2.6. Other Connecting Interfaces

The most typical connecting interface in the Touch-and-
Connect Framework is two buttons on each device, as de-
scribed in Section 2.3. However, other interfaces are also
available, including one-button interface, and laser pointer
interface. We show only the one-button interface here, be-
cause of a page limit.

The Touch-and-Connect Framework has interoperability
between connecting interfaces so that a user can use two
different interfaces to indicate two devices, because these
interfaces use the same Touch-and-Connect protocol in Sec-
tion 2.5. For example, first, a user uses the two-button in-
terface to indicate a source device, then the user can use the
one-button interface to indicate a destination device.

One-button Interface: This interface is only one button
on each device. In order to represent the state of the con-
ventional two buttons with only one button, the button has
the five states in Table 1. Firstly, in order to indicate the
source device, a user pushes the button only while it is in
the SOURCE-ENABLE state, and checks that it changes
to the SOURCE-SUCCESS state. Then in order to indi-
cate the destination device, the user pushes the button in the
DESTINATION-ENABLE state, and checks that it changes
to the DESTINATION-SUCCESS state. Table 1 shows the
basic behavior rules of the one-button interface. However,
in the third rule, the button is in the DISABLE state dur-
ing the following period: after a device becomes able to re-
ply, until the change-mode-wait time (1000 ms by default)
passes. Then the button changes to the DESTINATION-
ENABLE state as per the rules in the Table. This is to

deal with the case in which user-A and user-B begin con-
necting operations almost simultaneously. First, user-A
pushes a button in the SOURCE-ENABLE state. Imme-
diately after that, user-B accidentally pushes a button in the
DESTINATION-ENABLE state because the button was just
in the SOURCE-ENABLE state. This can produce an un-
wanted connection.

Compared with the two-button interface, the one-button
interface has the advantage that it can be implemented with
lower parts’ cost and smaller size. However, this has the dis-
advantage that it may cause incorrect connections, because
some users may not be able to recognize that a button state
was changed in the change-mode-wait period.

3. Implementation

We implement a prototype system of this framework to
work in the following environment.

Programming and runtime environment: Personal Java
1.1.3, and intent 1.2 (high-performance java runtime
environment for embedded systems)

Network environment: IPv4 over wireless Ethernet
(IEEE802.11b)

Host computer: LAMB-EM-01 (small Linux PC for em-
bedded systems, 486SX 66MHz CPU, 16Mbytes
RAM), and ordinary Windows notebook PC

We have currently implemented a two-button interface
and a one-button interface in connecting interfaces. The
state of a button is represented by the color of the but-
ton. In the two-button interface, black (no color) means
the DISABLE state, green means the ENABLE state, and
red means the SUCCESS state. In the one-button in-
terface, green means SOURCE, red means DESTINA-
TION, plain lighting means ENABLE, and blinking means
SUCCESS. For example, plain lighting of green means
the SOURCE-ENABLE state, and blinking red means the
DESTINATION-SUCCESS state.

3.1. Applications

We have created some software emulator devices and
real hardware devices, for example, a volume-controller,
light, desk-fan, relay-switch, and group changer. These de-
vices have two-button or one-button interfaces such as Fig-
ure 7. (Some two-button interfaces on hardware devices in
the figure are still an old one/two-button version instead of
the plug/socket-button version.)

The volume-controller has up and down buttons to con-
trol other devices. By connecting the volume-controller to
the target device (light, desk-fan, or relay-switch), a user
can control the brightness of the light, wind velocity of the
desk-fan, and ON/OFF of the relay-switch. By connecting



Table 1. Behavior rules of the one-button interface (the higher rule has higher priority)

Condition Button State (and its meaning) Behavior when but-
ton is pushed

successful request(during my request is
valid)

SOURCE-SUCCESS(success at indicating
the source device)

cancel

successful reply(during a few seconds after
receiving the Success message)

DESTINATION-SUCCESS(successat indi-
cating the destination device)

can reply(request-list isn’t empty) DESTINATION-ENABLE (ready to indi-
cate the destination device)

reply

locked(lock-list isn’t empty) DISABLE (cannot push)
default(otherwise) SOURCE-ENABLE (ready to indicate the

source device)
request

Light Desk fanVolume controller Relay switch

Volume controller 
（one button interface）

Volume controller
(software emulator)

Light
(software emulator)

Group changer
(software emulator)

Connecting interface

Visualization of 
connections

Figure 7. Implemented devices

two of these target devices, a change of the volume-value
(for example, brightness of light) can be linked between
these two devices. That is, when the volume-value of one
increases, the volume-value of the other also increases. And
a user can easily set up the group-ID by connecting any
devices to the group changers. Controlling these devices
demonstrates the usefulness of this framework.

We have also implemented some extensions in the DMS,
which accomplishes the visualization of connections. The
visualization software in Figure 7 represents the devices in
the network and the connections between them.

4. Evaluation

The connecting management framework should have the
usability and deal with the environment that there are many
devices in the network and many users use them. We have
evaluated these properties of the proposed method by the
following experiments.

4.1. Experiment 1

We have evaluated usability of the proposed method by
measuring operation time and subjective evaluation by a
questionnaire. Subjects were six computer science univer-
sity students. We compared the following three interfaces,
which were a conventional name selection interface and
two connecting interfaces of the Touch-and-Connect frame-
work. Figure 8 shows a experiment system.

Name selection interface: This is a conventional interface
to request a connection. When a user wants to con-
nect devices, operates as follow. First the user pushes
a search button in the source device, then all device
names are listed in a member list box. Then the user
selects the destination device name on the member list,
and pushes a connect button.

We assumed that the member list box could show four
members at once, and there were 24 members in the



Two-button 
interface

One-button 
interface

Experiment System

Task indication 
icon

Name selection 
interface

Member list box

Search button

Connect button

Name

Figure 8. Experiment system

0

1000

2000

3000

4000

5000

6000

Name selection Two-button One-button

m
s

Figure 9. Average operation time

network. The list box has a scroll bar, and its members
are sorted by dictionary order.

Two-button interface: This is the most typical connecting
interface in the Touch-and-Connect framework, men-
tioned in Section 2.3.

One-button interface: This is another connecting inter-
face in the Touch-and-Connect framework, mentioned
in Section 2.6.

First, we measured the operation time of each interface.
The experiment system in Figure 8 works on a notebook
PC with a touch-panel display, and there are 12 software-
emulator devices in the display. The system randomly indi-
cates two of these devices as a task by task indication icons.
A user connects these two devices by touching the display
with a pen. The connection direction (which is the source
device) is not cared. We assigned 30 tasks continuously and
measure the each operation time, which is from the indica-
tion of the task to the completion of the operation.

Figure 9 shows the average operation time for each in-
terface. This implies operation simplicity of the proposed
method. The two interfaces of Touch-and-Connect frame-
work only need a half of a operation time for the conven-
tional name selection interface. It seems that because of
change-mode-wait period (see Section 2.6), the one-button

1

1.5

2

2.5

3

3.5

4

4.5

5

Name selection Two-button One-button

sc
or

e Simplicity

Understandability

Comfort

Figure 10. Subjective evaluation of usability

interface needs about 0.8 second longer than the two-button
interface.

Then, we required subjects to use this system with an-
other subject simultaneously. Finally, we take subjective
evaluation of each subject by a questionnaire. Contents of
the questionnaire are score (1–5) of simplicity, understand-
ability, and comfort. The simplicity means the operation is
less cumbersome. The understandability means it is easy to
learn the interface. And the comfort means a user doesn’t
feel impatient while using the interface.

Figure 10 shows the average score of all subjects for each
interface. This implies that the proposed method has higher
simplicity and comfort as compared with the conventional
name selection interface.

The result of the evaluation exemplified the usability of
the proposed method.

4.2. Experiment 2

We have evaluated that the lock mechanism of the pro-
posed method prevents the incorrect connections caused by
the independent operations of users. Subjects were eight
computer science university students, which fell into two
groups. Accordingly, each group had four subjects.

Experiment system was the same as the experiment 1,
except that a task indicating interval (after that a subject
completes a task, until the system indicates a next task to the
subject) is random under exponent distribution with mean
10000 ms. There were four network connected notebook
PC terminals, and each subject used each terminal. We re-
quired the four subjects to use this experiment system si-
multaneously. A subject was apart from other subjects and
couldn’t see other subjects’ operations.

We counted incorrect connections during ten minutes.
We compared two interfaces, which were the two-button in-
terface of the Touch-and-Connect framework (same as ex-
periment 1) and the following no-lock interface.



Table 2. The count of incorrect connections
and failure tasks during 10 minutes.

Interface Two-button No-lock
Group group1 group2 group1 group2

Count of Incorrect
Connections

2 3 244 295

Count of Failure
Tasks

2 4 70 65

Count of Total
Tasks

163 168 123 142

Failure Task Ratio 1.2% 2.4% 56.9% 45.8%

No-lock interface: This is the most trivial interface for re-
questing connections by buttons. Each device has one
button without any status indicators. The first pushing
means the source device, the second pushing means the
destination device, and the connection between these
two devices is initiated. Then the system returns to
initial state, so the third pushing means the source de-
vice again. The implementation of the no-lock inter-
face is based on the one-button interface of the Touch-
and-Connect framework, however no lock mechanism
(namely the lock-list is always empty), no button state,
no manual cancel operation, and no change-mode-wait
period (see 2.6).

Table 2 shows the count of incorrect connections and
failure tasks for each interface and each group. A task fails
if at least one incorrect connection occurs during the task
— after the task is indicated, until a next task is indicated.
If an incorrect connection between two subjects occurs, the
both tasks fails. The failure task ratio equals the count of
failure tasks divided by the count of total tasks.

The result implies that incorrect connections frequently
occur without the lock mechanism, and the lock mechanism
of the proposed method almost prevents these incorrect con-
nections.

5. Related Work

The following works are related to this research.
Universal Plug and Play[2], Jini[3], HAVi[4], and

ECHONET[5] are technical specifications to connect net-
worked appliances. With these specifications, a device
opens its specific functions to the network, and interacts
with other devices. But user interfaces for managing con-
nections are not seriously considered. When users want to
connect the devices, typically they are required to perform
setup operations such as setting addresses or names.

In STONE[6] or AMIDEN[7] architecture, when a user
wants to integrate devices, he inputs a service type. Then

the system searches for appropriate devices automatically,
using device-types required by the service type. In the
Follow-me application[8], the system determines the lo-
cations of users with supersonic sensors, and the display
which is the closest to the user is selected automatically as
a workspace. However, in an environment where there are
numerous devices, automatic device selection is sometimes
inflexible. Accordingly, users will want direct device indi-
cation methods like Touch-and-Connect.

Pick-and-Drop[9] is a direct manipulation technique for
multi-computer environments. In Pick-and-Drop, users can
request data translations over the computers directly by
pointing at two GUI objects on different computers with a
pen. Touch-and-Connect can be used for the same purpose
as Pick-and-Drop with context-menus including GUI con-
necting interface. Pick-and-Drop requires a central manage-
ment server, and users have to carry a special device with a
unique ID such as a pen. Not so with Touch-and-Connect.

In FUI (Fingerprint User Interface)[10], a user can use
his finger to input data for storage (called finger-memo). A
user can request data translations over computers, as with
Pick-and-Drop, where a user uses his finger instead of a pen.
FUI can also be used for requesting a connection between
devices as with Touch-and-Connect. FUI uses fingerprints
as a unique user ID so that many users can use the system
simultaneously. The Touch-and-Connect Framework uses a
lock mechanism instead of unique user ID. It involves wait-
ing time due to locks, and has some security problems, but
it can be implemented at lower cost than fingerprint recog-
nition. The Touch-and-Connect Framework doesn’t require
a central management server whereas FUI requires a man-
agement server in the network.

Resurrecting Duckling[11][12] is a security model for
information appliances in ad-hoc wireless networks. When
a user purchases a device, he teaches the device that he
is its owner. By this means the device is prevented from
communicating with other users’ devices. This operation
is called imprinting. The group-ID setup operation with a
group changer (see Section 2.4) can be regarded as an im-
printing operation. Like Resurrecting Duckling, the group
changer can be extended to have secret information such as
an encryption key. This secret information is safely sent to
a device using public-key encryption when the device joins
to the group.

6. Future Tasks

The following are unsolved problems and tasks for the
future.

Extendability and Flexibility: Idealy a connecting man-
agement framework should be extendable. Currently, the
connectability-relation and an application protocol between
two device-types is defined beforehand. It is desirable that



two devices that don’t know each other beforehand can in-
teract and cooperate. The mobile code approach is suitable
for designing such an extendable framework [13][14]. We
have already developed a mobile agent system for ad-hoc
network environments [15], so we will design a more flexi-
ble connecting management framework employing this sys-
tem.

Hidden Terminal Problem: Currently we assume a closed
network in which each node can communicate with all
other nodes. But in wide-area wireless ad-hoc networks we
should consider the hidden terminal problem. Near the edge
of the coverage area, the request-list may have more than
two elements, causing an incorrect connection. To solve
this problem, the locked area should be twice the size of
the requested area. However, this is difficult to achieve un-
less the wireless communication module can measure the
distance to the source node. If the requester locks all the
devices within two-hops, it may cause a broadcast storm by
message routing, and the locked range may be too wide.
Currently we have no reasonable solutions.

7. Conclusion

In this paper, we have proposed a user-friendly connect-
ing management framework called the “Touch-and-Connect
Framework”. With this framework, a user can request a con-
nection between any devices by directly touching these two
devices without any complicated setup operations. It uses
a lock mechanism for smooth functionality in the pervasive
computing environment where there are many devices and
many users. Its protocol doesn’t assume any central man-
agement servers, so it works even in an ad-hoc network en-
vironment.

We have also demonstrated the feasibility of this frame-
work with the implementation of a prototype system and
some applications, and have exemplified the usefulness with
subject experiments.

References

[1] Mark Weiser, “The computer for the 21st Century,” Sci-
entific American, Vol.265, No.3, pp.94–104, 1999.

[2] Microsoft Corporation, “Understanding Uni-
versal Plug and Play : A White paper,”
http://www.upnp.org/resources/

[3] Jim Waldo, “The Jini architecture for network-centric
computing,” Communications of the ACM, Vol.42, No.7,
pp. 76–82, 1999.

[4] HAVi - Home Audio / Video Interoperability,
http://www.havi.org/

[5] ECHONET (Energy Conservation
and Homecare Network) Consortium,
http://www.echonet.gr.jp/english/index.htm

[6] Y.Sawahata, K.Sugita, M. Minami, H. Morikawa, and
T. Aoyama, “A Design and Evaluation of Connection
Setup and Management Mechanism for Network Ser-
vice Synthesizer,” Multimedia, Distributed, Cooperative
and Mobile Symposium (DICOMO 2001), pp.103-108,
2001. (Japanese)

[7] M.Minoh and T.Kamae, “Networked Appliances and
Their Peer to Peer Architecture AMIDEN,” IEEE Com-
munications Magazine, Vol.39, No.10, pp. 80–84, 2001.

[8] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward
and Paul Webster, “The Anatomy of Context-Aware Ap-
plication,” Proceedings of the fifth annual ACM/IEEE
international conference on Mobile computing and net-
working (MOBICOM’99), pp. 59–68, 1999.

[9] Jun Rekimoto, “Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments,” Pro-
ceedings of the 10th annual ACM symposium on User
interface software and technology (UIST’97), pp. 31–39,
1997.

[10] Atsushi Sugiura and Yoshiyuki Koseki, “A User In-
terface Using Fingerprint Recognition: Holding Com-
mands and Data Objects on Fingers,” Proceedings of the
11th annual ACM symposium on User interface software
and technology (UIST’98), pp.71–79, 1998.

[11] Frank Stajano and Ross Anderson, “The Resurrect-
ing Duckling: Security Issues for Ad-hoc Wireless Net-
works,” Proceedings of 3rd AT&T Software Symposium,
1999.

[12] Frank Stajano, “The Resurrecting Duckling - what
next?,” Proceedings of the 8 th International Workshop
on Security Protocols, 2000.

[13] Kari Kangas and Juha Roning, “Using code mobil-
ity to create ubiquitous and active augmented reality
in mobile computing,” Proceedings of the fifth annual
ACM/IEEE international conference on Mobile comput-
ing and networking (MOBICOM’99), pp.48–58, 1999.

[14] W. Keith Edwards, Mark W. Newman, Jana Sedivy,
and Shahram Izadi, “Challenge: recombinant computing
and the speakeasy approach,” Proceedings of the eighth
annual international conference on Mobile computing
and networking (MOBICOM 2002), pp.279–286, 2002.

[15] cogma (COoporative Gadgets for Mobile Appliances),
http://www.cogma.org/ (Japanese)


