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Abstract
A new square root algorithm which is performed through iterative multiply-additions
is proposed. Although its converging ratio is linear, it is faster than widely used multi-

plicative methods, such as Newton-Raphson method, for practically available ROM sizes.
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1 Introduction

A multiply-adder, or a multiply-accumulator, has become standard hardware in digital
signal processors. Several microprocessors also have a multiply-adder in them [3]. Hence,
it is attractive to develop arithmetic algorithms suitable for a multiply-adder. Square
rooting is one of the basic arithmetic operations, so that it is defined in the IEEE Standard
for Floating Point Arithmetic [1]. In this contribution, we propose a new algorithm for
square rooting which is performed through iterative multiply-additions. We do not assume
that we use an existing multiply-adder in a current processor, but assume that we provide
a one which is suitable for the proposed algorithm.

Many algorithms have been proposed for square rooting [4]. Newton-Raphson method
and Goldschmidt’s algorithm are well-known multiplicative algorithms and are widely
used in current processors. They start with an initial approximation of the reciprocal of
the square root of an operand which is usually read from a ROM table. Then, they refine
the approximation by a series of multiplications, subtractions from a constant (comple-
mentations) and bit shifts. They have quadratic convergence. Namely, the number of

accurate bits of the approximation doubles at each iteration. Each iteration includes



three multiplications. Reducing one iteration reduces three multiplications, but causes a
huge increase of the required ROM size.

The algorithm to be proposed calculates v/ X in a completely different way from pre-
vious converging algorithms. It does not directly refine the initial approximation of the
square root, but refines the value (% - %) where K is an approximation to 2v/X. It has
linear convergence. Namely, the number of accurate bits of the calculated value increases
by a constant at each iteration. Each iteration includes only one multiply-addition. Af-
ter sufficient precision is achieved, one additional multiply-addition yields v/X. As the
number of iterations decreases, the required ROM size increases more gradually than the
previous quadratic converging methods. Hence, we can choose an adequate number of it-
erations according to the available ROM size. For example, IEEE double precision square
rooting can be carried out through 7 multiply-additions using a ROM of about 14K bits.

Note that the previous quadratic converging methods require three iterations, and hence

9 multiplications, even if this ROM size is available.

2 A New Algorithm

For any constant K which is near to 2v/ X, starting with an approximation Sy, the recur-

rence S; := S2 | + (2 — 25) leads S; to 1 — g Note that + — 25 is invariable. (This
recurrence can be derived from the continued fraction expansion of v X [2].)

Let the error of S;_; from 1 — g be €;,_;. Namely, let S;_; = (% — g) +¢€;—1. Then,
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Si=( - g) +(1- %)ei,l + €2_,. This implies the converging ratio is linear and its

coefficient is 1 — % Therefore, the closer K is to 2v/ X, the faster the convergence is.

X

It is efficient to adopt i — 77 as Sy, because this value is used in the recurrence.

Indeed, this value is a good initial approximation to % — */—KY as shown later.
The new algorithm is summarized as follows.
[Algorithm SQRT]
Step 1: Sy ::i—LXX
Step 2: for i :=1to k do S; := S;_1 x S;_1 + Sy
S’cepi&:Z:z%—KxS]c O

Here, K is an approximation to 24/ X, and is read from a table addressed with several
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w7, and must have full precision, i.e., the same

upper bits of X. L is an approximation to
precision as Z. It is also read from a table addressed with the same upper bits of X.

We deal with the mantissa part of a floating point number and assume that the operand
X isin the range 1 < X < 2. In the case where the exponent part of the original floating
point number is odd, we use K’ = /2K instead of K in Step 3. K’ must have full
precision. (We may adopt an additional multiplication by v/2 instead of keeping K’ in a
table.)

Each calculation in Steps 1 and 3 and in each iteration of Step 2 is one multiply-
addition. (k 4+ 2) multiply-additions are required in total.

When the tables are addressed with the m most significant bits of X, in order to

2vX

minimize the absolute value of the convergence coefficient 1 — ==, the table for K should

contain the value \/w—++v/w + 2=™ for the interval [w, w+2"™), where w = [1.2123 - - - Zp,].

We round this value at ¢-th binary place. Then, |1 — 2‘1/()7| < 27272 + 2:/%2 holds. Letting

¥| < 27™=1 (Note that m bits are stored for each K when t = m,

t be m, we get |1 —

since the integer part of K is always 10 in binary.) This means the number of accurate bits

VX
K
leo] = (1 — 2¢X)2 < 9=2m=4_ Therefore, the error ¢ of S, satisfies |e| < 27mk—k=2m=1,

The final error € of Z from /X satisfies |¢| < 2-™F=%=2m=2_ G, has to be calculated down

increases by (m+ 1) bits at each iteration. The initial error ¢y of Sy from % - satisfies

to the two more lower binary place than Z.

In summary, we can obtain v/ X with mk+k42m+2-bit accuracy through k iterations,
i.e., through k + 2 multiply-additions. The sizes of the tables for K, L and K’ are 2™ - m,
2™ . (p—1) and 2™ - (p + 1), respectively, where p is the precision of Z.

Here, we consider square rooting of an IEEE double precision (53-bits) number. Ta-
ble 1 compares the total required table size for the proposed method with that for Newton-
Raphson method, with respect to the number of multiply-additions or multiplications. (In
Newton-Raphson method, we assume the final multiplication is combined with the cal-
culations in the final iteration.) When the number of multiply-additions/multiplications
is 6, the proposed method requires 28.5K bits, while Newton-Raphson method requires
104K bits. We can reduce the ROM size to 14.1K and 7K bits by means of 7 and 8
multiply-additions, respectively. Note that even if a ROM of 28.5K bits is available,

Newton-Raphson method requires 9 multiplications.



Table 1: The required table size for double precision square rooting (bits)

No. of Mul./Mul.-add. 5 6 7 8 9
Proposed 116K | 28.5K | 14.1K | 7K | 3.5K
Newton-Raphson — 104K — — | 896

It seems easy to provide a multiply-adder which is suitable for the proposed algorithm

in current processors by slightly modifying their arithmetic unit.

3 Conclusion

We have proposed a new square rooting algorithm suitable for a multiply-adder, which
is faster than widely used multiplicative methods, such as Newton-Raphson method, for

several practically available ROM sizes.
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