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Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex
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Abstract: Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons
migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer,
forming an “inside-out” gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors,
ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retzius cells of the marginal
zone) to stop neuronal migration. This process is highly sensitive to various physical, chemical and biological agents as well as to
genetic mutations. Any disturbance of the normal process may result in neuronal migration disorder. Such neuronal migration disorder
is believed as major cause of both gross brain malformation and more special cerebral structural and functional abnormalities in
experimental animals and in humans. A number of instructive studies on nongenetic models (e.g. MAM- or irradiation-treated rodents)
and mutations (e.g. Reelin- or Tish-mutant animals) have established the foundation of cortex formation and provided a framework in
which to understand mutants of cortex development. The recent studies on several genetic model systems of neuronal migration
disorder provide further insight into the development pathways that underlie normal and abnormal neuronal migration.
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The cerebral cortex, which is by far the largest part of the
mammalian brain, is divided into distinct areas that were de-
fined originally in terms of their cytological differences and
were later discovered to serve different functions. All areas of
the cortex have a similar basic organization, with neurons ar-
ranged in six layers."” The layering is produced by variations
in the densities and sizes of cell bodies through the cortical
depth. All neuronal cells (with few exceptions) are generated
the surface of the embryonic cerebral ventricles at sites far
from their ultimate positions in the adult mammalian brain.>¥
Neuronal migration is necessary and an essential step in the
genesis of the nervous system, particularly in laminated brain
regions.*® By this migrating process many billions of newly
generated neural cells are addressed to their proper position
mainly in nuclear masses or in the cerebral and cerebellar cor-
texes. General or topical loss of control over this process is
generally called abnormal neuronal migration or neuronal
migration disorder. Neuronal migration disorder will result in
either cell death or improper positioning of functional cell

groups. This in turn will result in failing connections or
improper wiring (misconnection) responsible for functional
deficiencies and epilepsy. Abnormal migration had been
linked to congnitive deficits, mental retardation, and motor
disorders." This réview focuses on the normal cellular pro-
cesses of neuronal migration, disruptions in such processes
give rise to several disorders of brain development, and recent
advances in our understanding of the molecular mechanisms
of neuronal migration disorder.

Neuronal Migration in the Cerebral Cortex
Patterns of neuronal migration in the cerebral cortex

Neurons in the cerebral cortex are born in a region of
proliferating cells called the ventricular zone, which lines the
lateral ventricle of each telencephalic hemisphere. The ven-
tricular zone of the telencephalon provides the neuronal and
glial stem cells.?*1+161925 After completing their final mitotic
division, cortical neurons engage into a long migration with
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radial centrifugal fashion through the intermediated zone
(future white matter) toward the cortical plate where they settle
and differentiate.’® Neuronal migration in the neocotex takes
place for the greater part between the 8" and the 20" weeks of
gestation in humans,'® and between embryonic day 14 (E14)
and postnatal day 5 (P5) in rats.?" The migration of young
neurons is guided from an early stage by a system of
radial glial fibers that span the width of the thickening tele-
cephalon.'”?” Radial glias are bipolar cells with one short
process extended to the adjacent ventricular surface and a
second projecting to the pial surface. The perikarya of the radial
glial cells are in the ventricular and subventricular
zones. > 2422 Ag a rule, it has been suggested that neurons of
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Fig.1 Schemic representation of cortical development in three current
rodent models of neuronal migration disorder from embryonic day
(E) 12, 13, 15, postnatal day 0 (PO) to adult age.
Experiment rats for nongenetic models are treated on E14-15 with
methylazoxymethanol (MAM) or irradiation. Three models (tish
mutant rat, reeler and reeler-like mutant mouse and the prenatal
irradiation- or MAM-treated rat) show that neuronal migration dis-
orders can result from an abnormal neurogenesis (#ish), a failure of
preplate splitting (reeler) or a lesion of radial glia cells (X-ray,
MAM). WM: white matter, SH: subcortical band heterotopia, H:
heterotopia.

layer I, the giant Cajal-Retzius neurons and layer VIb, the lower
part of layer VI are laid down as a single neuronal network,
the primordial plexiform layer.?*3%35-3843 This primordial
plexiform layer is thought to provide a cytoskeleton for the
successive neuronal migration waves as these become sand-
wiched between the upper and the lower part of the lower part
of cerebral structure (Fig. 1). The six layers of the neocortex
are generated in an inside to outside sequence, e.g. layer III
neurons arriving before layer II neurons which means that later
migration waves have to pass earlier migration waves.*'*?

Fig. 2 Schema summarizing Reelin signaling pathway.

Reelin is expressed by Cajal-Retzius cell in cortical layer I and
binds the cadherin-related receptors (CNRs) and the VLDL recep-
tor or ApoE receptor-2, or both. CNR binding initiates phosphory-
lation of a Scr family kinase, possibly Fyn, which is considered to
phosphorylate mDab-1 associated with VLDLR/ApoER2. Reelin
binding to VLDLR and ApoER?2 also appears to result in phospho-
rylation of mDab-1 through kinase domains in the cytoplasmic re-
gion of the receptors. Activated mDab-1 is then though to interact
with CdkS5, Src, and Abl1 to regulate cyotskeletal remodeling, di-
rectly or indirectly.
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Stop of migration in the appropriate cerebral layer

Cell migration into the cortical plate must also stop at the
appropriate location. This choice point and determining this
point is essential for normal cerebral cortical development.
The process of the end of neuronal migration involves the de-
tachment from the radial glial fibers triggered by local signals
(Fig. 2),%235447) gome of them emitted by the Cajal-Retzius
cells of the marginal zone. ¥

Insights into the mechanisms governing how cells know
when to stop have begun to be elucidated through the analysis
of several mouse mutants. In particular, the characterization
of the Reeler mouse mutant provided the first insights into the
process of laminar organization. The Reeler mouse was first
identified as a postnatal behavioral defect,*¥ and the neuro-
pathological studies have showed that the cortical layering
pattern is just opposite from the normal inside to outside
migrating pattern.*>#849 It has been known that Reelin is pressed
by Cajal-Retzius cells in layer 131333 As one of extracellular
matrix molecule, Reelin plays a role to form a Reelin’s zone
to stop migration of the earliest generated neurons in the
cerebral cortex (detail description see below). However, Cajal-
Retzius cells in the Reeler mice were found to be remained at
the top of the undivided preplate, or superplate. These hetero-
topic Cajal-Retzius cells are thought to be the reason to form
the inverted cortical layering in the Reeler mutant mouse

(Fig. 1).

Neuronal Migration Disorder Induced by
Teratogenic, Physical and Biological Influences

The process of neuronal migration involves three main
steps: (a) commitment to a specific cortical layer, (b) migra-
tion proper and (c) stop of migration in the appropriate layer.
These three steps are under different control mechanisms. This
process also requires known receptors and ligands such as
astrotactin, and extracellular matrix molecules and their cell
surface receptors. Once these components are blocked, neu-
ronal migration will be prevented or become slow. It is not
surprising that migration can be disturbed by teratogenic, physi-
cal and biological influences that occur during the period of
migration.

The use of teratogenic (e.g. alcohol or cocaine),30325%11
physical (e.g. irradiation, heat)>*>? and biological (e.g. viral
infection)®® agents has provided animal models for studying
neuronal migration disorder. A large number of animal experi-
ments involving different species and different protocols of
exposure these agents to the potentially damaging effects on
the neuronal migration of the cerebral cortex have been carried
out. These nongenetic model have been generated by expo-
sure of pregnant females during the early period of migration
to irradiation or toxic substances such as the antimitotic agent
methylazoxymethanol (MAM),%%? cocaine!!® or ethanol. 52>
Whatever their respective mechanisms, all these influences will
lead neurons to differentiate in an abnormal heterotopic posi-

Fig. 3 An example of a typical heterotopica (arrowhead) located bellow the cerebral cortex (cc) of a 1-week-old mouse irradiated on embryonic day 13

(E13), which corresponds to E15 in the rat.!!¥

Heterotopia is separated from the cerebral cortex by a band of fibers of corpus callosum (cf). cp: choroids, 1v: lateral ventricle. Hematoxylin and eosin

stain. Scale bar = 280 pum.
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An example of anti-Midkine (MK)-immunoreactive radial glial fibers in the mouse brain mantle on embryonic day 17.
a: radial glial fibers are straight and perpendicular to the pial surface in the control mouse. b: Radial glial fibers are crumpled and no longer regularly
distributed to the pial surface in the mouse irradiated on embryonic day 13. Arrowheads indicate the place of ectopic masses. Scale bar = 125 um.

An example of anti-bromodeoxyuridine (BrdU)-labeled young neu-
rons migrated along disturbed pathways in a 1-week-old mouse
irradiated on embryonic day 13.

Some of these neurons could not move far from the place of their
origin around the lateral cerebral ventricle and remained in the lower
inappropriate layer (arrows) or near the ventricle to form hetero-
topic cell mass (arrowheads). Scale bar = 110 um.

tion. Absence, interruption or excessive migration will lead
neurons to differentiate respectively in a subcortical (i.e. along
the ventricle), intracortical (i.e. in the white matter or in an
inappropriate layer) or extracortical (i.e. in the submeningeal
space) position. Pregnant mice subjected to X-irradiation at a
single dose of 1.5 Gy on embryonic day 13 which is the radio-
sensitive stage produced offspring with neuronal heterotopia
located in enlarged lateral ventricles of the cerebral hemi-
spheres (Fig. 3).5%576" Midkine (MK) immunocytochemical
staining®-%% was carries out to confirm a course corresponded
to the distribution of the radial glial fibers (neuronal pathway).
These MK-staining fibers radially traversed the distance be-
tween the ventricular zone and the pial surface. They were
straight and perpendicular to the pial surface, oriented in the
direction of neuronal migration in the normal brain (Fig. 4a).
However, in the brain of the irradiated mice, MK-staining radial
glial fibers (examination from 6 hr after irradiation) were
crumpled and no longer regularly distributed to the pial surface
(Fig. 4b). It is well know that radial glial cells play a role as
guides for migrating neurons.*>” When a large number of
young neurons migrated along such a disturbed pathway, some
of them could not move far from the place of their origin around
the lateral cerebral ventricle and remained in the lower inap-
propriate layer or near the ventricle to form heterotopic cell
mass (Fig. 5).

Neuronal Migration in Neurological Mutant Mice
Studies on neurological mutant murine with brain malfor-
mation®® provide a new approach to the discovery of genetic
loci that contribute to neuronal migration in developing brain.
Classical studies of mutants, Reeler, Scrambler, Yatari, have
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been assumed to be models for neuronal migration in cerebral
cortex. In Reeler mutant mice, the cortical layering appears
inverted.*’® In other words, the first cells of definitive cortex
to migrate out of the ventricular zone end up residing in the
superficial cortical plate and subsequent cells migrate to and
stop in progressively deeper positions. This migration pattern
is opposite of the normal inside to outside development of the
cerebral cortex. The affected gene in Reeler mice was found
to encode for a large extracellular matrix protein named
Reelin.***3717 Reelin has homology to F-spondin and con-
tains epidermal growth factor-like repeats similar to those of
tenascin C, tenascin X, restrictin, and the integrin § chain.?»
Reelin is expressed by Cajal-Retzius cells and is found extra-
cellularly in the molecular layer (layer I).32%**9 These data
suggest that Reelin is required for the normal inside to outside
positioning of cells as they migrate from the ventricular
zone.””” This was the first component of a signaling pathway
guiding cells to the correct location in the cortex.

Because Reelin is an extracellular matrix molecule, a re-
ceptor for Reelin would be required for signaling to the mi-
grating cells. Reelin signaling pathway was summarized in
Fig. 2. Reelin has been found to bind to cadherin related re-
ceptor (CNRs),™ at least two members of the LDL receptor
family,””” and o3B1-integrin.” Binding of Reelin to o3B1-
integrin functions as a stop signal; however, the downstream
components within the cell that regulate the migration stop
are not known. Upon contact with Reelin, the CNRs initiates
phosphorylation of the cytoplasmic second messenger mDabl,
possibly through a CNR-associated tyrosine kinase Fyn™ or
through the LDL receptor.”®”” The scrambler and Yotari mu-
tant mice have been identified as mutations in the mDabl
gene.'® Scramber, Yotari, and mDab1-/- all show a Reeler phe-
notype further supporting the notion that they lie the same
pathway. Phosphorylated mDab1 can interact with a variety
of proteins including the SH2 domain of Src.” Src has been
shown to interact with actin and affect cytoskeletal remodel-
ing.%2 Src-deficient cells exhibit strong adhesion to surfaces
and low migration capacity.’® Therefore, these data tie Reelin
signaling pathway to cell migration and enable neurons to be
targeted to the appropriate layer of the cortex. mDabl1 also
activates the proto-oncogene c-Ab1. Once activated, c-Abl can
phosphorylate CdkS5, a process that is enhanced by Cable, thus
activating Cdk5.3¥ CdkS5 and p35 (another activator of Cdk5)
have also been implicated in directing neurons to the appro-
priate location within the cerebral cortex.®#” Both are highly
expressed in the developing central nervous system and mice
engineered to be homozygous mutant for CdkS5 or p35 also
show a cortical defect similar, although not identical, to the
Reeler phenotype.® Nikolic et al have shown co-localization
of Cdk5, p53, Rac and Pak-1 in neurons.®® They suggest that a
Rac-dependent hyperphosphorylation of Pak-1 results in a
dynamic down-regulation of actin polymerization and enhance-

ment of new focal complex formation during cell migration
and process outgrowth.?® Activation of Pak has also been shown
to result in a loss of stress fibers and focal adhesions.®” These
data indicate that the Rac family of GTPases along with Scr
family members can regulate cytoskeletal remodeling and
therefore transduce guidance signals from the cell membrane
to the cytoskeleton.

Human Migration Disorders and
, Cortical Malformation

The genes mutated in several human disorders of neuronal
migration also provided a basis for linking the cytoskeleton to
neuronal migration. In man, more than 25 syndromes with
neuronal migration disorders have been described.* Neuronal
migration disorders primarily affect development of the cere-
bral cortex, but the extent and nature of the cortical malforma-
tion varies greatly.*” Table 1 summarized genetics of neuronal
migration, characteristics of the pathologic alterations and
underlying defect in some of these syndromes both in mutant
rodent models and humans. It can provide important insights
into the histogenesis of the cerebral cortex and the molecular
etiology for the cerebral malformations.

Lissencephaly represents a broad class of neuronal
migration disorders. It can be described as a brain with a mac-
roscopically smooth cortical surface in which a more or less
layered cortex can be observed on microscopical examination.
It occurs as an isolated abnormality (isolated lissencephaly
sequence) or in association with dysmorphic facial appearance
in patients with Miller-Dieker lissencephaly.”” These abnor-
malities have been attributed to defects in neuronal migration.””
A hemizygous chromosomal deletion at band 17p13.3 led to
identification of lissencephaly-1 (LIS-1) as the causative gene
in this anomaly. The LIS-1 gene codes for the LIS1 protein,
which contains eight WD-40 repeats of the type found in G-
protein B subunits. It is a regulatory subunit of brain intra-
cellular Platelet-Activating-Factor acetyllhydrolase (PAF-
AHI1B1),°» a G-protein-like trimer that regulates cellular levels
of the lipid messenger PAF.*® The importance of PAFAH1B1
in the developing brain is supported by the high-level ex-
pression of mRNA transcripts for all three subunits during
neuronal migratory epochs in cerebrum. The LIS-1 gene
product is prominent in Cajal-Retzius cells and ventricular
neuroepithelium in developing human cortex.®® How the
absence of the LIS-1 gene product affects PAF-AH1B1
function, PAF signaling in the cell, and ultimately neuronal
migration remains to be understood. In addition, LIS-1 may
have ad yet unidentified interactions in the cell, as suggested
by the ability of the WD-40 repeat segments of LIS-1 to inter-
act with the cytoskeketon. The normal gene product of LIS1 is
widely distributed in the grey and white matter of the brain
and spinal cord in controls. It has been found both in neurons
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Table 1 Genes implicated in neuronal migration disorder
Mutation Symbol Chromosome Position Description Source (No. of references)
Mice
Reeler rl 5 8.0cM Migration arrest in early development with subsequent failure of cortical plate formation. Reeler 32, 108, 109.
encodes a large ECM molecule produced by Cajal Retzius cells in the molecular layer.
Scrambler scr 4 49.7cM  Phenotype is identical to that of reeler. Scrambler is a mutation in a disabled gene that encodes 110, 111.
a phosphoprotein that binds nonreceptor tyrosine kinases.
Yotari yot 4 49.7cM Allele of scrambler. 112, 113.
Disabled mdabl 4 49.7 cM Allele of scrambler. 113.
Lissencephaly Lis! ND ND Failure of forebrain neuronal migration via deletion of th ebeta subunit of platelet activating 109.
factor acetylhydrolase (PAFAH1B1, also known as Lis1)
Zellweger PEXI1, PEX2 ND ND Failure of forebrain neuronal migration via defective peroxisomal biogenesis. 106, 107.
Rats
Double cortex  tish ND ND Cortical neurons are seen in a bilateral heterotopia that is prominent below the frontal and 116.
parietal neocortex; heterotopoas rare beneath the temporal cortex.
Humans
MD syndrome  LIS1 17 17p13.3 A class of spontaneous and inherited disorders (MD) with failure of migration in forebrain, fewer 117.
gyri, and smoother gyri in cerebral cortex. In a murine model, the mechanism involves the deletion
of the beta-subunit of platelet activating factor acetyldehydrogenase (PAFAH1B1).
Lessencephaly LIS Subset of MD with failure of migration in forebrain. Individuals that express the gene have a 118.
smooth brain, i.e. fewer gyri in the cerebral cortex.
X-Linked xLIS X Xq22.3-q23 Males show lissencephalic phenotype. Females have a double cortex phenotype with disorganized 97, 98, 99.
Lessencephaly forebrain gray matter and an extra layer of cells located underneath the white matter.

The defective gene encodes the doublecortin protein. Doublecortin is homologous to the amino
terminus of a predicted protein kinase, which suggests a role for signal transduction.

Zellweger At least 10 genes ND ND

syndrome proposed
Bilateral BPNH X Xq28
Periventricular
Nodular band
Heterotopias
Microencephaly ND 1 1925

Failure of cortical migration, neuronal laminae do not form. In two murine models, the molecular mechanism  117.
involves defects in the PEX2 or PEXS genes, both genes required for neuronal peroxisomal biogenesis.
Forebrain neurons form heterotopias in the subependymal zone. The cellular mechanism is unknown.

101, 102, 119.

A class of disorders resulting in reduced brain size due to smaller neuronal lamina. The pattern of lamination is

normal; the thickness of the layers is reduced. (Nor involving head structures.) One subgroup of families has been mapped.

ECM: extracellular matrix, EGF:epithelial growth factor, ND: not determined, MD: miller-Dieker.

and in glial cells.” Prenatal diagnosis of the chromosome band
17p 13.3 deletion is now possible using Fluorescent In Situ
Hybridization (FISH) and Fragment Restriction Length Poly-
morphism (FRLP) techniques after chorionic villus biopsy
sampling.

Another group of disorders with this general class of
neuronal migration disorder is X-linked.”” The first X-linked
malformation syndrome is X-linked LIS. In X-LIS, hemizy-
gous males have lissencephaly and heterozygous females have
subcortical band heterotopia that is also known.as a double
cortex (DC) syndrome. The clinical presentation in affected
males is similar to that with classical lissencephaly and
chromosome 17p13.3 deletion: profound mental retardation,
epilepsy with multiple seizure types, feeding problem and a
shortened life span. The female carriers have mental retarda-
tion, behavior problems and epilepsy. Linkage of DC/X-LIS
to Xq21-24 was first demonstrated.””*® Subsequent positional
cloning identified a novel gene named Doublecortin.*®*
Doublecortin is a microtubule-associated protein which is ex-
pressed widely by migrating neurons.'® It is often possible to
predict this gene mutation from careful review of brain imag-
ing studies: mutations of frontal gradient of lissencephaly,
whereas mutations of X-LIS are associated with a frontal to
occipital gradient.'® The second X-linked malformation syn-

drome is bilateral periventricular nodular heterotopoa (BPNH)
that consists of BPNH in females and prenatal lethality or a
more severe phenotype in males. In this disorder, large neu-
ronal masses of well-differentiated cortical neurons fill the adult
subependymal zone. The syndrome is located at Xq28!0!-109
the corresponding gene was identified as Filamin 1 (FLN1),
which encodes an actin-cross-linking phosphoprotein which
is required for movements of many cell types.'®

Zellweger syndrome is a second broad class of cortical
malformation, causing death within approximately six months
of life.”® Like lissencephaly, Zellweger patients have charac-
teristic gryal abnormalities in the cerebral cortex, which show
a stereotypic medial pachygyria (reduced number of gyri, but
they are abnormally large) and lateral polymicrogyria (excess
number of small gyri). This syndrome is a genetically hetero-
geneous disorder that may arise from defects on at least 10
different genes.' Recently, animal models for a human of
Zellweger syndrome have provided by targeted deletion in mice
of genes encoding the PEX?2 35-kDa peroxisomal membrane
protein'® and the PEXS5 peroxisomal protein import recep-
tor.19”
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Conclusion

Neuronal cell migration is a key event during cortical de-
velopment. After their final mitosis, neurons migrate from the
ventricular zone through the cell-sparse intermediate zone into
the cortical plate. After entering the cortical plate, neuronal
cells migrate through the established neuronal lamina and settle
onto the outermost layer, forming an “inside-out” gradient of
maturation, a process which is essential to cortical neuronal
lamination. The process of neuronal cell migration is highly
sensitive to various physical, chemical and biological agents
as well as to genetic mutations. Disturbance of neuronal mi-
grating pathway (radial glial fiber) or extracellular factors or
correct settling of Cajal-Retzius cells is considered for all types
of neuronal migration. Arrested or excessive migration will
lead neurons to differentiate in a hetertopic position. Such
neuronal migration disorder is believed as major cause of both
gross brain malformation and more special cerebral structural
and functional abnormalities in experimental animals and
humans. A number of instructive studies on nongenetic mod-
els (e.g. MAM- or irradiation-treated rodents) and mutations
(e.g. reelin- or tish-mutant animals) have established the foun-
dation of cortex formation and provided a framework in which
to understand mutants of cortex development. However,
knowledge to understand the making of our brain is still very
limited. For instance, how many receptors and ligands involve
neuronal migration processes? how many genes regulate
genetic disorders of neuronal migration? what are genetic
mechanisms that act at the beginning of migration, during the
onging process of migration and in several discrete steps at
the completion of migration? It is clear that further research is
needed to gain deeper insight into the genetic and molecular
mechanisms underlying normal and abnormal neuronal
migration.
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