物質科学を学ぶための解析力学の基礎事項

名古屋大学大学院·環境学研究科 名古屋大学理学部·地球惑星科学科

教授 川邊 岩夫

(2006年4月4日)

目 次

はじめに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	V
§1 Lagrange 関数と Lagrange の運動方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1)極座標系で表現した Newton の運動方程式 ・・・・・・・・・	1
2) Lagrange 関数と Lagrange の運動方程式 ・・・・・・・・・・	7
3) 正電荷を持つ核の廻りの電子の運動:Lagrange の方程式の応用・・	9
4) 一般化座標,運動の自由度,Lagrangeの運動方程式・・・・・・・	13
5) 座標変換に不変な Lagrange の運動方程式 ・・・・・・・・・	14
§ 2 微小振動と基準振動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
1) 連成振動系の微小振動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
2) 座標変数の一次変換と基準振動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
3) 直交する基準振動の変位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
4) 座標変換の意味・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
5) 多質点系の微小振動問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
5.1 多質点系微小振動の Lagrangian とその運動方程式・・・・・	26
5-2. 運動方程式の解法:固有方程式の固有値と固有ベクトル・・	29
5.3 固有ベクトルの直交性と規格化・・・・・・・・・・・・	31
5.4 微小振動の独立解と一般解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
5.5 Lagrangian の行列表現 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	38
§3 Hamilton 関数と Hamilton の運動方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41
1) 保存力場の一粒子系に対する Hamilton の運動方程式・・・・・・・	41
2) 一般化運動量と正準方程式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
§4 変分原理(Hamiltonの原理)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
1) 作用積分と変分原理: Euler-Lagrange 方程式の導出 ・・・・・・	45
2) Hamilton の正準方程式: Lagrangian から Hamiltonian へ ・・・・	48
3) Hamilton 関数 (Hamiltonian) の具体例 ・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	51
4) 循環座標と運動量の保存 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	52
5) Lagrangian の任意性と Hamiltonian ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	54
§5 電磁場での荷電粒子の運動とその Lagrangian と Hamiltonian・・・・	60
1) 電磁場における荷電粒子の運動とローレンツ力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
2) ベクトル解析の要約: grad, div, rot など・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61 66
4) 電磁ポテンシャル (φ, \mathbf{A}) とゲージ変換不変性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
4.1 Maxwell 方程式と電磁ポテンシャル (φ, \mathbf{A}) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	68
4.1 Maxwell 力性氏と电磁ホテンシャル(φ,A) 4.2 ベクトルポテンシャル A の任意性とゲージ変換・・・・・・	69
まる ・ン アルかノママアルカツ圧思比とソーマ多揆・・・・・	Uy

1) ポアソン括弧式と保存量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71	4
5)荷電粒子の運動に対するLとH・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73	2
6) Lagrangian の任意性と電磁場のゲージ変換 82 7) 連続の式と電荷保存則 84 8) 電磁気学の構成とその教科書 86 §6 ポアソン (Poisson) 括弧式と保存量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
7) 連続の式と電荷保存則 84 8) 電磁気学の構成とその教科書 86 §6 ポアソン (Poisson) 括弧式と保存量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
8) 電磁気学の構成とその教科書 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		*
\$6 ポアソン (Poisson) 括弧式と保存量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
1) ポアソン括弧式と保存量 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	科書 ・・・・・・・・・・・・ 86	8) '
 2)ポアソン括弧式を用いた保存量の表現・・・・・・・・・・・・91 2.1 Hと"交換可能な"物理量・・・・・・・・・・・・・91 2.2 エネルギー保存・・・・・・・・・・・・・・・92 2.3 中心力場における一粒子系における角運動量の保存・・・・・92 3)ポアソン括弧式の性質と正準共役変数・・・・・・・・・94 	:保存量・・・・・・・・・・・・ 89	§ 6 ポア
2.1 Hと"交換可能な"物理量・・・・・・・・・・・・ 91 2.2 エネルギー保存・・・・・・・・・・・・・ 92 2.3 中心力場における一粒子系における角運動量の保存・・・・ 92 3)ポアソン括弧式の性質と正準共役変数・・・・・・・・ 94		· ·
2.2 エネルギー保存・・・・・・・・・・・・・・ 92 2.3 中心力場における一粒子系における角運動量の保存・・・・・ 92 3) ポアソン括弧式の性質と正準共役変数 ・・・・・・・・・ 94	保存量の表現・・・・・・・・・・・ 91	2) オ
2.3 中心力場における一粒子系における角運動量の保存・・・・・ 92 3) ポアソン括弧式の性質と正準共役変数 ・・・・・・・ 94	物理量・・・・・・・・ 91	4
3) ポアソン括弧式の性質と正準共役変数 ・・・・・・・・ 94	• • • • • • • • • • • • • • • 92	4
	粒子系における角運動量の保存・・・・・ 92	4
§7 Lagrange の未定乗数法・・・・・・・・・・・・・・ 97	E準共役変数 ・・・・・・・・ 94	3) オ
		0
, , , , , , , , , , , , , , , , , , ,		, ,
2) 拘束条件が複数存在する場合の極値条件・・・・・・・・・ 99	場合の極値条件・・・・・・・・・・ 99	2) 指
§8 正準変数としてのエネルギーと時間・・・・・・・・・ 101	と時間・・・・・・・・・ 101	§8 正準
1)変分法の復習・・・・・・・・・・・・・・・・ 101	101	1)
, _ , _ , _ , , , , , , , , , , , , , ,		*
4) 量子力学のポアソン括弧式と正準共役の定義について・・・・・・ 10'	tと正準共役の定義について・・・・・・ 107	4) 量
§ 9 正準変換とその母関数・・・・・・・・・・・ 110		§ 9 正準
1) 正準変換・・・・・・・・・・・・・・・・・ 110	110	1) 正
2) 正準変換の母関数・・・・・・・・・・・・・・・ 111	111	2) I
§ 10 正準変換の母関数,熱力学法則,Schrödinger 方程式・・・・・・ 117	測,Schrödinger 方程式・・・・・・ 117	§ 10 正準
7 145 014	— , , , ,	, ,
2) 閉鎖系準静的無限小過程に対する熱力学の基本式・・・・・・・ 118	こ対する熱力学の基本式・・・・・・・ 118	2) 閉
3)独立変数の組み合わせを変更する Legendre 変換 ・・・・・・ 121	変更する Legendre 変換 ・・・・・・ 121	3) 独
4) 開放系準静的無限小変化に対する熱力学の基本則 ・・・・・・ 125	こ対する熱力学の基本則 ・・・・・・ 125	4)開
7 7770	· · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , ,
6) [エネルギー・時間] の次元を持つ母関数 W: 量子力学との関連・・ 13:	元を持つ母関数 W:量子力学との関連・・ 131	6) [
		-
, , , , , , , , , , , , , , , , , , ,		
2) Hamilton-Jacobi の方程式の意味すること・・・・・・・・ 136	この意味すること・・・・・・・・ 136	2) Ha
3) H が時間 t を陽に含まない場合の Hamilton-Jacobi の方程式・・・ 137	場合の Hamilton-Jacobi の方程式・・・ 137	3) H

4) 座標変数の相互分離・・・・・・・・・・・・・・・・・・	141
5) Hamilton-Jacobi の方程式の解法例・・・・・・・・・・・・	142
§ 12 正準変換とポアソン括弧式・・・・・・・・・・・・・・	148
1) ポアソン括弧式について復習・・・・・・・・・・・・	148
2) 正準変換で不変なポアソン括弧式・・・・・・・・・・・	150
2.1 ポアソン括弧式を用いた正準変数の定義と正準変換・・・・	150
2.2 正準変換で不変なポアソン括弧式・・・・・・・・・・	152
3) ポアソン括弧式を不変にする変換は正準変換・・・・・・・・	155
§13 正準変換の積分不変量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	157
1) 積分不変量:配位空間での閉曲線経路積分・・・・・・・・・	157
2) 積分不変量:位相空間における2次元積分・・・・・・・・・	158
§ 14 位相空間と Liouville の定理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	164
1) 位相空間と配位空間での軌跡と位相空間体積の時間変化・・・・・	164
2) 正準変換で不変な位相空間の体積積分・・・・・・・・・・	168
3) 正準方程式の行列表示と正準変換・・・・・・・・・・・	170
4)無限小正準変換と力学系の時間発展・・・・・・・・・・・	174
付録 質点系の力学の要点・・・・・・・・・・・・・・・・	176
参考図書・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	193