# §15フェルミ分布とボーズ分布の応用

低温における理想フェルミ気体は,金属自由電子(伝導電子)のモデルや原 子核を構成する核子(中性子と陽子)などのモデルとなる.一方,理想ボゾン 気体は,低温での「ボーズ・アインシュタイン凝縮」の存在を示唆し,極低温 での<sup>4</sup>He の挙動を理解する上で重要である.また,光子気体から空洞輻射(黒 体輻射)を考える上でも重要である.この問題は次章(**§16**)で議論する.

## 15-1) 絶対0度におけるフェルミ分布

理想フェルミ気体を前提にすれば、前節の結果から、フェルミ粒子が「準位  $\varepsilon_{\epsilon}$ を占有する平均粒子数 $\bar{n}_{\epsilon}$ 」は、次のフェルミ分布関数で与えられる.

$$\overline{n}_{r} = \frac{e^{-(\varepsilon_{r} - \mu)/k_{B}T}}{1 + e^{-(\varepsilon_{r} - \mu)/k_{B}T}} = \frac{1}{e^{(\varepsilon_{r} - \mu)/k_{B}T} + 1}$$
§ 14-(24)

このフェルミ分布関数は、エネルギーを連続変数にすると、

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1} \tag{1}$$

である.この分布関数で T→0 の絶対 0 度の場合を考えよう.

まず,  $(\varepsilon - \mu) < 0$  の場合は, T→0 の時,  $(\varepsilon - \mu)/k_BT \rightarrow -\infty$ であり,  $e^{(\varepsilon - \mu)/k_BT} \rightarrow 0$ となる.  $\varepsilon$  が僅かであっても  $\mu$  よりも低ければ,

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1} \to 1$$
<sup>(2)</sup>

であり, ε<μ(T=0)であるエネルギー準位の平均占有数は1に漸近する(図 15-1-A). 即ち, ε<μ(T=0)であるエネルギー準位はフェルミ粒子に占有され ることを意味する(図 15-1-B).

一方, 
$$(\varepsilon - \mu) > 0$$
の場合は, T→0の時,  $(\varepsilon - \mu)/k_{B}T \rightarrow +\infty$ であり,  $e^{(\varepsilon - \mu)/k_{B}T} \rightarrow +\infty$ 

となるから、たとえ $\varepsilon$ の方が $\mu$ よりも僅かに高いとしても、

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon-\mu)/k_B T} + 1} \to 0$$
(3)

となる. 平均占有数は0に漸近する(図 15-1-A). 従って, ε>μ(T=0)を満足する エネルギー準位は、フェルミ粒子に全く占有されない (図 15-1-B).



図 15-1. A:絶対 0 度におけるフェルミ分布関数と,B:絶対 0 度でフェルミ粒子が 1 粒子エネルギー準位を占有する状態(8 個 のフェルミ粒子の場合の模式図).  $\mu(T=0) = \varepsilon_f$  はフェルミ・エネルギーと呼ばれる.

絶対 0 度におけるフェルミ分布関数は, 図 15-1-A に示すように,  $\varepsilon = \mu(T = 0)$ で ステップ状の変化を示し,

 $f(\varepsilon) = 1$  ( $\varepsilon < \mu$ ),  $f(\varepsilon) = 0$  ( $\varepsilon > \mu$ )

となる階段 (ステップ) 関数である.  $\mu(T=0)$ の値はフェルミ・エネルギー ( $\varepsilon_f$ ) と呼ばれる.  $\varepsilon = \mu(T=0) = \varepsilon_f$  より低い準位はフェルミ粒子によって全て占有さ れているが、 $\varepsilon = \mu(T = 0) = \varepsilon_f$  より高い準位は全く占有されておらず、粒子が存 在しない空準位となっている.この両者の境界に当るエネルギー値が、フェル ミ・エネルギー ( $\varepsilon_f$ )  $\varepsilon = \mu(T = 0) = \varepsilon_f$ に対応する.フェルミ・エネルギー (Fermi energy,  $\varepsilon_f$ ) はフェルミ準位 (Fermi level) とも呼ばれる.

多数のフェルミ粒子がある時,絶対零度では、一粒子エネルギー準位は、低 い方から順番に占められて行く.これにより、系全体のエネルギーを最小にす ることが出来る.その時、電子のようなフェルミ粒子の場合、パウリの排他原 理により、各一粒子エネルギー準位は最大 1 個のフェルミ粒子が占有するだけ である.図 15-1-B では、各横棒が「スピンを無視した場合の一粒子エネルギー 準位」を表す.スピンの自由度は「上向き」か「下向き」かの2つであるから、 各横棒の準位をスピンが異なる2個のフェルミ粒子が占有する形になる.最下 位の準位から、スピンの異なる2個の粒子が順番に占有して行き、全ての粒子 の占有が終わる最高のエネルギー準位が、ε=μ(T=0)=ε<sub>f</sub>である.これが、フェ ルミ粒子の絶対零度での化学ポテンシャルであり、同時に、これがフェルミ・ エネルギーである.フェルミ・エネルギーを温度に換算したものはフェルミ温 度(Fermi temperature)と呼ばれる.

$$\varepsilon_f = k_B T_f \tag{4}$$

このフェルミ粒子に,金属の自由電子(伝導電子)を当てはめると,図 15-1 が示す状況は,絶対零度における金属の自由電子の挙動をかなり良く説明でき る.金属は電気伝導性に優れていることがその特徴であるが,金属を加熱する と電子が飛び出してくる事実(熱電子)や金属の表面に紫外線を照射すると電子 が飛び出してくる事実(光電効果)が知られている.これは,金属をなす元素 単体の価電子が比較的自由な電子として金属中に存在することを示している. これをフェルミ分布から考える為には,絶対 0 度の場合だけではなく,これよ り高い有限の温度でのフェルミ分布がどうなるかについて考えねばならない.

#### 15-2) 温度条件が 0<T<< T<sub>f</sub>である時のフェルミ分布

前章の図 14-1 では、  $(\varepsilon_r - \mu)/k_B T >> 1$  で  $f(\varepsilon_r) << 1$  となる古典領域 (classical regime) で、フェルミ分布関数、ボゾン分布関数、ボルツマン分布関 数の三つは収束し、三つの分布関数の相互の違いがなくなることを示した. こ の古典領域と絶対 0 度の間の領域ではどのような状況になっているかを考えた い. 即ち、絶対 0 度よりも僅かに高い温度( $0 < T << T_f$ )でフェルミ分布はどうなる かを考えたい. その為には、フェルミ・エネルギー、フェルミ温度、化学ポテ ンシャルの温度依存性などについてもう少し説明が必要となる.

### <フェルミ・エネルギー,フェルミ温度,化学ポテンシャルの値>

§14-4 で述べたように、体積 V の中に N 個の自由粒子があるとすると、エネ ルギー範囲(*ε*,*ε* + *dε*)に含まれる 1 粒子量子状態数は、

であるから,これにフェルミ粒子の平均占有数 $\bar{n}_r = \bar{n}(\varepsilon)$ を掛けた結果  $\bar{n}(\varepsilon) \cdot \Omega(\varepsilon) d\varepsilon$ が,エネルギー範囲 $(\varepsilon,\varepsilon + d\varepsilon)$ を占有するフェルミ粒子数になる. フェルミ粒子の平均占有数 $\bar{n}_r = \bar{n}(\varepsilon)$ は, §14-3-(24)で与えられる.

$$\overline{n}_{r} = \frac{e^{-(\varepsilon_{r} - \mu)/k_{B}T}}{1 + e^{-(\varepsilon_{r} - \mu)/k_{B}T}} = \frac{1}{e^{(\varepsilon_{r} - \mu)/k_{B}T} + 1}$$
 § 14-3-(24)

ここではエネルギー $\varepsilon$ を連続変数で考え, $\bar{n}_r = \bar{n}(\varepsilon)$ とするので, $\S$ 14-3-(24)は,

$$\overline{n}(\varepsilon) = \frac{1}{e^{(\varepsilon - \mu)/k_B T} + 1}$$
(5)

として使う.従って、以下のように、 $\bar{n}(\varepsilon) \cdot \Omega(\varepsilon)$ を (0-∞)の全エネルギー範囲 で積分した結果が全粒子数 N である.

$$N = \int_{\varepsilon=0}^{\infty} \overline{n}(\varepsilon) \cdot \Omega(\varepsilon) d\varepsilon = g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \cdot \int_{0}^{\infty} \frac{\varepsilon^{1/2}}{e^{(\varepsilon-\mu)/k_B T} + 1} \cdot d\varepsilon$$
(6)

これはエネルギー $\epsilon$ に関する定積分だから,エネルギー $\epsilon$ は(6)には残っていない. 結局,(6)は化学ポテンシャル $\mu \epsilon \mu(T,V,N)$ として定める積分方程式である.だ から,(T,V,N)の内の何れか一つ,例えば,Tが変化すれば,化学ポテンシャル  $\mu$ も変化することを示している.

まずは,絶対 0 度の場合を(6)から考え,フェルミ・エネルギーがどのように 表現されるかを見てみよう.絶対 0 度では, $\varepsilon = \mu(T=0) = \varepsilon_f$ より高いエネルギー 準位は全て空準位で,粒子は存在しないから,(6)での積分の上限である∞は  $\varepsilon_f = \mu(T=0)$ で置き換えることができる.図 15-1-A から判るように, $\varepsilon = (0, \varepsilon_f)$ の 範囲では,  $\bar{n}(\varepsilon) = 1$  だから,(6)は

$$N = \int_{\varepsilon=0}^{\varepsilon_f} \Omega(\varepsilon) d\varepsilon = g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \cdot \int_0^{\varepsilon_f} \varepsilon^{1/2} d\varepsilon$$
$$= g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \cdot \frac{2}{3} (\varepsilon_f)^{3/2}$$
(7)

となる.これをフェルミ・エネルギーについての表現に直せば,

$$\varepsilon_f = \left(\frac{\hbar^2}{2m}\right) \cdot \left(\frac{6\pi^2 N}{g \cdot V}\right)^{2/3} \tag{8}$$

となる.フェルミ・エネルギーは、フェルミ粒子の質量の逆数に比例し、かつ、 粒子密度 (N/V)の 2/3 乗に比例することが判る. フェルミ温度は、(4)の  $\varepsilon_f = k_B T_f$  で定義されるから,

$$T_f = \left(\frac{\hbar^2}{2m \cdot k_B}\right) \cdot \left(\frac{6\pi^2 N}{g \cdot V}\right)^{2/3} \tag{9}$$

である.後に議論するように、元素単体金属の電子のフェルミ・エネルギーと フェルミ温度は、概ね、 $\varepsilon_f \approx (1-10) eV$ 、 $T_f \approx (1-10) \times 10^4 K$ の範囲に入る. 金属の自由電子のフェルミ温度は*常温よりはるかに高温である*ことに注意.

積分方程式(6)を,  $\mu(T,V,N)$ についての簡単な表式に直すことは困難である. しかし,絶対 0 度よりも僅かに高い温度( $0 < T << T_f$ )であれば,化学ポテンシャル  $\mu$ は次のように近似出来る(この具体的な導出は**付録 10**を参照されたい).

$$\mu(T) \approx \varepsilon_f \cdot \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_f}\right)^2\right] \tag{10}$$

絶対 0 度では、 $\mu(T=0) = \varepsilon_f$  であるから、0<T<< T<sub>f</sub>の条件では、温度が上昇する につれて、化学ポテンシャル $\mu$ は減少する.



図 15-2. 近似式(10)によれば、0<T/T<sub>f</sub> <<1 で温度上昇と共に化 学ポテンシャル μ は減少する.

(10)の近似式からすると0<T/T<sub>f</sub>≤1.1 ではµ≥0で、T/T<sub>f</sub>>1.1ではµ<0となる</li>
 (図 15-2).しかし、この近似式は、絶対0度よりも僅かに高い温度(0<T<<T<sub>f</sub>)

を前提にしていることに注意が必要である.また、元素単体金属の電子のフェルミ温度は、 $T_f \approx (1-10) \times 10^4 K$ であるから、常温T = 300 Kとの比は

$$\frac{T}{T_f} \approx \frac{300K}{(1-10) \times 10^4 K} = 0.03 - 0.003 \tag{11}$$

のオーダーである. だから、「絶対 0 度よりも僅かに高い温度 ( $0 < T << T_f$ )」に 該当する. これより、常温T = 300Kでの金属中の電子については、実質的には

$$\mu(T) \approx \varepsilon_f \tag{12}$$

と考えて良い. (11)の $T/T_f$ が充分に0に近いため、常温 T = 300Kであっても、  $T \approx 0 K$ の状況を想定して良い. 重要なのは T そのものではなく、 $T/T_f$ である.

# <0<T<< Tf におけるフェルミ分布関数:フェルミ縮退>

以上の結果に留意して、0<T<< Tf におけるフェルミ分布関数とフェルミ粒子



図 15-3. A:0<T<< T<sub>f</sub>におけるフェルミ分布関数,B:0<T<< T<sub>f</sub> でフェルミ粒子が1粒子エネルギー準位を占有する状態(フェルミ粒 子が8個である場合の模式図).

の1粒子準位の占有状態を模式的に描いた結果が,図15-3である.図15-1との 違いとともに、類似性にも注意.

絶対 0 度では  $\mu(T=0) = \varepsilon_f$  より僅かに下の準位にあったフェルミ粒子の一部 は,熱的励起により, $\mu(T=0) = \varepsilon_f$ より上の準位をしめる.その為, $\mu(T=0) = \varepsilon_f$ 直上の準位を占める粒子数は 0 から僅かに増加し,これに対応して, $\mu(T=0) = \varepsilon_f$ 直下の準位の占有数は 1 から僅かに小さくなる.結果として,絶対 0 度の時の ステップ関数は角が取れた形に変わる.この温度条件では,化学ポテンシャル  $\mu(T)$ は、 $\mu(T=0) = \varepsilon_f$ より僅かに低い位置にあり、 $\mu(T) < \mu(T=0) = \varepsilon_f$ である.

ただし,既に指摘したように 0<T<< T<sub>f</sub>の条件がある限り,(12)の $\mu(T) = \varepsilon_f \dot{m}$ 成立している.熱的励起でフェルミ・エネルギーより上位も準位を占めうる粒 子は,絶対 0度でフェルミ・エネルギー直下の準位を占めていた少数の粒子に 限定される.絶対 0度でフェルミ・エネルギーより下の準位を占有している多 数のフェルミ粒子は,すぐ上の準位が空準位ではないため,熱的には励起され 得ない.0<T<< T<sub>f</sub>では,フェルミ・レベル付近の少数の粒子は別として,大部 分のフェルミ粒子は絶対 0度での状況と同じで,「満杯に詰め込まれて,全く身 動き出来ない状態」,「熱的に励起されない状態」にある.このような理想フェ ルミ気体はフェルミ縮退を起こしていると表現される.T=0の状態は完全フ ェルミ縮退と呼ばれる.0<T<< T<sub>f</sub>での条件はもとより,T<T<sub>f</sub>の条件があれば フェルミ縮退を考えねばならない.フェルミ温度はフェルミ縮退を考えるべき かどうかを決める目安を与える.

一方,図 15-4 は、 $T_f < T$ におけるフェルミ分布関数とフェルミ粒子が1粒 子エネルギー準位を占有する状況を模式的に示したものでる。 $T_f < T$ の条件は

474

(10)から、 $\mu(T)/\epsilon_f < 0$  であり、これは  $\mu(T) < 0$  を意味する. 基底状態の 一粒子エネルギー準位エネルギーは $\epsilon \approx 0$  として良いから、全ての $\epsilon$ に対して、  $\epsilon - \mu > 0$  である. 従って、 $e^{(\epsilon - \mu)/k_BT} > 1$  であり、(1)の分布関数の値は、

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon-\mu)/k_B T} + 1} < 0.5$$
(13)

である.  $\varepsilon$ が増大すれば $e^{(\varepsilon-\mu)/k_BT} >> 1$ となり,  $f(\varepsilon) = \frac{1}{e^{(\varepsilon-\mu)/k_BT} + 1} \rightarrow 0$ となる.



図 15-4. A: T<sub>f</sub> <T におけるフェルミ分布関数, B: T<sub>f</sub> <T でフェル ミ粒子が1粒子エネルギー準位を占有する状態(フェルミ粒子が8個 である場合の模式図).

これは,図14.1に示した古典領域の状態を意味しており,フェルミ分布関数は ボルツマン分布関数に一致する.理想フェルミ分布関数が現実的に意味をもつ のは,既に述べたように,金属の伝導電子(自由電子)に対して応用された場 合のように,温度条件が0<T<< T<sub>f</sub>である時のフェルミ分布であり, T<sub>f</sub><T での フェルミ分布ではない.

### 15-3) 理想フェルミ気体のエネルギー, 圧力, 熱容量

0<T<< T<sub>f</sub>の温度条件では,理想フェルミ気体のエネルギーが温度の2乗に比例し,定積熱容量が温度の一次式となることは**付録 10**に記した.ここではその結果だけを議論するが,圧力についての議論を追加する.

**付録 10** で議論したように,理想フェルミ気体のエネルギーは, 0<T<< T<sub>f</sub> の温 度条件では,

$$E(T) = E_0 + \frac{\pi^2}{6} \Omega(\mu_0) (k_B T)^2$$
(A10-28)

となり、絶対温度の2乗の比例する.また、絶対0度のエネルギー $E_0$ は、

$$E_{(T=0)} = E_0 = \frac{3}{5} N \varepsilon_f$$
 (A10-31)

であり、0ではないことにも注意. N は粒子数で、 $\varepsilon_f$ はフェルミ・エネルギー

$$\varepsilon_f = (\frac{\hbar^2}{2m}) \cdot (\frac{6\pi^2 N}{g \cdot V})^{2/3}$$
 §15-1(8)

となる.

このように、絶対0度のエネルギーは0ではなく、体積Vに依存している.

$$E_0 = \frac{3}{5} N \varepsilon_f = \frac{3}{5} N \cdot (\frac{\hbar^2}{2m}) \cdot (\frac{6\pi^2 N}{g})^{2/3} \cdot (V)^{-2/3}$$

だから,理想フェルミ気体は絶対0度においても圧力pを有する.

$$p = -\left(\frac{\partial E_0}{\partial V}\right) = \frac{2}{5}N \cdot \left(\frac{\hbar^2}{2m}\right) \cdot \left(\frac{6\pi^2 N}{g}\right)^{2/3} \cdot \left(V\right)^{-5/3}$$
$$= \frac{2}{5} \cdot \left(\frac{N}{V}\right) \cdot \varepsilon_f \tag{14}$$

この絶対0度の理想フェルミ気体の圧力がどの程度の値になるかを,(14)を金属

の自由電子に当てはめることで見積もってみよう. 必要な $(\frac{N}{V})$ と $\varepsilon_f$ のデータは Kittle<sup>49)</sup>に基づく. 単位の変換は以下の式に依る.

 $1 (eV/cm^3) = 1.602 \times 10^{-19} (J/cm^3) = 1.602 \times 10^{-19} \times 10(bar)$ 

1 bar=10<sup>6</sup> dyne/cm<sup>2</sup> は CGS 単位系での圧力単位である. SI 単位系での圧力の単位は、パスカル (Pa) で、1Pa=1(N/m<sup>2</sup>)、1bar=10<sup>5</sup>Pa、1 kbar=10<sup>8</sup>Pa=0.1GPa である. 厳密には、1 気圧=1.01325 bar = 101325 Pa であるが、1 bar は1 気圧(atm)として良い. 幾つかの金属自由電子の P(K=0) (bar)は以下の値となる.

| 金属 | (N/V)(個∕cm <sup>3</sup> )<br>電子濃度 | $\varepsilon_{f}$ (eV) | P(K=0) (bar)          |
|----|-----------------------------------|------------------------|-----------------------|
| Li | $4.70 	ext{x} 10^{22}$            | 4.72                   | 14.2 $x10^4$          |
| Na | $2.65 	ext{ x10}^{22}$            | 3.23                   | 5.59 x10 <sup>4</sup> |
| К  | $1.40 	ext{ x10}^{22}$            | 2.12                   | $1.90 \text{ x} 10^4$ |
| Cu | 8.45 x10 <sup>22</sup>            | 7.00                   | $37.9 	ext{ x10}^4$   |
| Ag | 5.85 x10 <sup>22</sup>            | 5.48                   | $20.5 	ext{ x10}^4$   |
| Au | $5.90 	ext{ x10}^{22}$            | 5.51                   | $20.9 	ext{ x10}^4$   |
| Be | $24.2 \times 10^{22}$             | 14.14                  | 219 x10 <sup>4</sup>  |
| Zn | 13.10 x10 <sup>22</sup>           | 9.30                   | $78.1 	ext{ x10}^4$   |
| Al | 18.06 x10 <sup>22</sup>           | 11.63                  | $135 	ext{ x10}^4$    |

P(K=0)の値は, 20kbar から 2Mbar の範囲に入る.非常に大きい圧力値である. 圧力の比較の為に,半径が 6400km である地球内部の圧力を考える.深度 100km で約 30kbar, 深度 1000km で約 400kbar, 深度 4000km で 2Mbar の圧力状態が実 現していると理解されているので, 20kbar から 2Mbar の縮退圧が如何に大きい かが判る. ある種の星では,その星の質量が大きい為に,星自体が自己重力 によって潰れてしまうことが考えられる.重力崩壊と呼ばれる.しかし,白色 矮星では縮退した電子気体の圧力によって重力崩壊に歯止めがかかっていると 考えられている.また,中性子星(パルサー)の重力崩壊も,中性子の縮退圧 により歯止めがかけられていると考えられている.白色矮星,中性子星の内部 におけるフェルミ粒子の縮退圧力の議論は, Rosser<sup>6)</sup>, Kittel and Kroemar<sup>46)</sup>, グ ライナー他<sup>60)</sup> などの教科書を参照されたい.

理想フェルミ気体の定積熱容量は、0<T<< Tf の温度条件では、

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = \frac{\pi^{2}}{3} \Omega(\mu_{0})(k_{B})^{2}T = \frac{\pi^{2}}{2} N \frac{(k_{B})^{2}T}{\varepsilon_{f}} = \frac{\pi^{2}}{2} N k_{B}(\frac{T}{T_{f}})$$
(A10-32)

である.極低温では理想フェルミ気体の定積熱容量は温度の一次式で与えられる.ボルツマン粒子での定積熱容量 $C_v = (3/2)k_BN$ と比べると、オーダーとして因子 $(T/T_f)$ だけ小さい.通常の金属の自由電子では $T_f \approx (1-10) \times 10^4 K$ だから、低温-常温での金属の熱容量に対する自由電子の寄与は小さく、金属の熱容量の殆どは原子の格子振動による.しかし、絶縁体化合物の結晶とは異なり、極低温では自由電子による熱容量への寄与は無視出来ない.低温での格子振動による結晶の熱容量は、Debye 理論により、絶対温度の3 乗に比例する(§12-2).従って、低温における金属の定積熱容量 $C_v(metal)$ は、フェルミ粒子としての自由電子と格子振動する金属原子の両方の寄与を考えて、

$$C_{V}(metal) = \gamma T + AT^{3}$$
<sup>(15)</sup>

478

と表現できる.γが自由電子の熱容量係数で,Aが格子振動の寄与を表現する係数である.実験データとの対応を調べる為に,(14)の両辺をTで割った式が使われる.

$$C_{\nu}(metal)/T = \gamma + AT^2 \tag{16}$$

実験データから $C_v(metal)/T$ を作り、これを $T^2$ に対してプロットして、実験デー タ $C_v(metal)$ から $\gamma$ とAを同時決めることが出来る.多くの金属の極低温の熱容 量測定結果は、(16)式を満たすことが知られている<sup>49)</sup>.その例を図 15-5 に示す. 図 12-1 と図 12-2 に示したデータから温度が0Kから5Kに入るものをプロット した結果である.これらのデータは図 12-1 に述べたように一昔前に報告された 値であるが、 $\gamma = 0.5(mJ/mol/K^2)$ であることが判る.



図 15-5. 銀に対する  $C_v/T$  vs.  $T^2 \mathcal{T} u \rightarrow b$ . 直線勾配は格子振動に依る係数Aを与え, T = 0 での切片が電子熱容量係数  $\gamma \doteq 0.5 (mJ/mol/K^2)$ を与える. 図 12-1 と図 12-2 に示したものから  $0 \sim 5 \text{ K}$  のデータだけを示している. 現在では,高精度データから  $\gamma = 0.645 (mJ/mol/K^2)$ とされているが<sup>49)</sup>, ここに示したデータもほぼ同一の  $\gamma$ を与える.

現在受け入れられている γ (Ag)=0.645(mJ/mol/K<sup>2</sup>)<sup>49)</sup>と比べてもほぼ一致する値 である.

### 15-4) 金属からの熱電子の放出

金属内部の伝導電子は、金属を高温に加熱すると、その一部が金属の表面から外部に飛び出してくことが知られている.この現象は熱電子放出 (thermoeletronic emission)と呼ばれ、放出される電子は熱電子(thermoelectron) と呼ばれる.金属を陰極として適当な電位与え、飛び出してくる電子を全て陽 極に集める時、観測される電流は次のようになる.

$$i = AT^2 \exp(-\phi_w / k_B T) \tag{17}$$

 $\phi_w$ は仕事関数 (work function) で、A は比例定数である. (17)は Richardson の式



図 15-6. 金属内部の自由電子が外界(真空)に飛び出てくる為には、 $\phi_w$ のエネルギーを得る必要がある. 外界側と金属内部ではエネルギー=0の取り方が異なるので注意が必要である(本文を参照のこと).

と呼ばれている. 高温に加熱しない限り,電子が外に出てくることは無く, 通常の状態では,金属の伝導電子は金属内部にある.金属内部の伝導電子を自 由に動ける電子と考え,自由電子(free electrons)と呼ぶ. Sommerfeld による自由 電子理論である.そして,これらを縮退した電子気体(理想フェルミ気体)と 見なす.このような気体が,「井戸」の形をした外側より W だけ低いポテンシ ャル・エネルギーで特徴付けられる「容器」に入っていると考える(図 15-6).  $\phi_w$ は仕事関数, $\mu_0 = \varepsilon_f$ はフェルミ準位で, $W = \phi_w + \mu_0$ の関係にある.通常は, 外界の真空のエネルギー準位を0に採用し,真空準位 $\varepsilon_{(Vacuum)} = 0$ と記す.しかし, この外界の0準位はこれまで議論してきた金属内部エネルギー=0の基準とは 一致しない.この二つのエネルギー=0の基準の差が $W = \phi_w + \mu_0$ になっている (図 15-6).

自由電子を収容する井戸型ポテンシャルの底は、外界の真空準位 $\epsilon_{(Vacuum)} = 0$ か ら測ると、 $-W = -(\phi_w + \mu_0)$ にある.電子は、近似的に、フェルミ・エネルギー の準位まで満たされているから、このようなフェルミ・エネルギーの準位近傍 を占める電子が $\phi_w$ だけ熱的に励起されれば、真空準位 $\epsilon_{(Vacuum)} = 0$ に達し、外界に 放出される. (17)の Richardson の式の因子  $\exp(-\phi_w / k_B T)$ はこのことを示してい る. Richardson の式の導出については、他のテキスト<sup>2, 5, 24, 60)</sup>、を参照され たい.

自由電子理論では、井戸型ポテンシャル(図 15-6)の底はフラットと考えて いる.しかし、金属は結晶構造を持ち、その金属元素の正イオンが規則的な結 晶格子を作っている.従って、ポテンシャル(図 15-6)の底は、実際はフラッ ットではなく、結晶構造の周期性と矛盾しない周期的ポテンシャルが実現して

481

いるはずである. 周期的ポテンシャルを Schrödinger 方程式と組み合わせると, 電子の存在が許されないエネルギー範囲も生じる(Kittel<sup>49)</sup>の第7章). 図 15-6 の自由電子の考え方が良く当てはまるのは, I 族 (アルカリ金属), II 族 (アル カリ土類金属), III 族の典型元素金属である. しかし, 遷移金属には良いモデ ルとは言えない<sup>74)</sup>. 金属を含む固体の電子構造の問題は, Kittel<sup>49</sup>, Cox, P. A.<sup>74)</sup> や藤森<sup>75)</sup>の著書を参照するのが良い. 15-5) 絶対零度での理想ボーズ気体:ボーズ・アインシュタイン凝縮

量子論によれば、§10-2-2 で既に述べた通り、箱の中の理想気体原子のよう な非局在の同一粒子の何れか一つを他から区別することはできない、そして、 結果として、各粒子は、「フェルミ粒子」か「ボーズ粒子」のどちらかに区分さ れる. その粒子のスピン量子数が半整数値(1/2,3/2,5/2,....)である場合が「フ ェルミ粒子」で、粒子のスピン量子数が整数値(0,1,2,....)である場合が「ボー ズ粒子」である.

フェルミ粒子では、同一の1粒子量子状態(r)を占める粒子数には、

ることは出来ない.一方,ボーズ粒子は,

$$n_r = 0, 1, 2, \dots, \infty$$
 § 14 (3)

の全ての非負整数を取ることが出来る.任意の一粒子状態を占めるボーズ粒子の粒子数には制限がない. §14 で議論したように,「1粒子エネルギー準位 $\varepsilon_r$ を 占有する平均粒子数 $\bar{n}_r$ 」を与える粒子分布関数のことを,フェルミ分布関数, ボゾン分布関数と呼び,まとめて,  $f(\varepsilon_r)$ と表現する.

$$f(\varepsilon_r) = \frac{e^{-(\varepsilon_r - \mu)/k_B T}}{1 \pm e^{-(\varepsilon_r - \mu)/k_B T}} = \frac{1}{e^{(\varepsilon_r - \mu)/k_B T} \pm 1}$$
 § 14 (30)

+はフェルミ分布関数,-はボゾン分布関数である.それぞれ,単に,フェルミ 分布とボーズ分布とも言う.絶対0度近辺に於ける理想フェルミ気体の挙動は, 前節に述べたが,ここでは理想ボーズ気体の絶対0度付近に於ける挙動を考え る. ボーズ粒子は、§14(2),(3)によりフェルミ粒子とは異なり、任意の一粒子状態を占めるボーズ粒子の粒子数には制限がない.従って、粒子間の相互作用を持たない理想ボーズ気体が絶対0度にある時を考えると、全てのボーズ粒子はエネルギーの最も低い一粒子状態を占めるはずである(図15-7).



図 15-7. 絶対 0 度における 7 個のボーズ粒子からなる理想ボーズ気体. T=0K では、全ての粒子が 1 粒子基底状態を占める. T<sub>b</sub>はボーズ・アインシュタイン凝縮温度(全粒子が励起状態を占め始める温度)を意味し、T<T<sub>b</sub>は、励起状態の粒子数は少なく、大部分の粒子は基底状態にある 0 度近傍の温度条件を意味する.

絶対 0 度に近い条件では、ボーズ粒子は1粒子基底状態を占めるように挙動す るが、ごく一部は熱的励起により、励起状態も占めるに違いない(図 15-7 での T<T<sub>b</sub>の状態).

さらに、ボーズ粒子に対する §14 (30)は粒子数を表すから、一般に、

$$f(\varepsilon_r) = \frac{e^{-(\varepsilon_r - \mu)/k_BT}}{1 - e^{-(\varepsilon_r - \mu)/k_BT}} = \frac{1}{e^{(\varepsilon_r - \mu)/k_BT} - 1} \ge 0$$

でなければならない.これは分母の引き算が負にならないこと,

$$e^{(\varepsilon_r - \mu)/k_B T} - 1 > 0 \tag{1}$$

を意味し,その為には,

$$\varepsilon_r > \mu$$
 (2)

でなければならない.従って,理想ボーズ気体の化学ポテンシャルは,最低の 1粒子基底エネルギーよりも小さくなければならない.

ー方, エネルギー=0の基準は, 最低の1粒子基底エネルギーに取るのが通常の考え方であるから, われわれもこの基準を採用する. この基準と(2)から, 理想ボーズ気体の化学ポテンシャルは負の値を取らねばならない. 図 15-7のT = 0K の場合は,  $\mu$  (化学ポテンシャル) は限りなく 0 に近い負の値となり, 実質的に $\mu$  = 0 として良い. T<T<sub>b</sub>の場合は,  $\mu$ は僅かに負の値をとるが近似的には $\mu \approx 0$ として良い. この理由は次節で述べる.

理想ボーズ気体は,T→0の極限で一粒子基底状態に"落ち込み",エネルギ ーも運動量も0である状態を占めることになる.この状況はボーズ・アインシ ユタイン凝縮と呼ばれる. §15-3 で述べたように,理想フェルミ気体は,以下 のように,正の絶対0度のエネルギーを持ち,体積Vに依存した:

$$E_0 = \frac{3}{5} N \varepsilon_f = \frac{3}{5} N \cdot (\frac{\hbar^2}{2m}) \cdot (\frac{6\pi^2 N}{g})^{2/3} \cdot (V)^{-2/3}.$$

これと比べると、理想ボーズ気体は理想フェルミ気体と全く異なる挙動を示す.

地表の大気中には 5.24 ppm (体積分率)の He が含まれている. その 99.99986% が<sup>4</sup>He で,残りの 0.00014%が<sup>3</sup>He であるから,大気 He は <sup>4</sup>He と考えて良い. 理想ボーズ気体の具体例である <sup>4</sup>He の場合,大気圧下での T→0の過程では, 4.21K で液化が起こる. この液化は<sup>4</sup>He 粒子間の相互作用により生じていると理 解すべきであり,理想気体の挙動とは対応しない. その為,理想ボーズ気体の 挙動そのものを直接的に見ることはできない. しかし,幾つかの事実(§15-7) から,<sup>4</sup>He ではボーズ・アインシュタイン凝縮が生じていると考えられている.

#### 15-6) ボーズ・アインシュタイン凝縮の温度

§14-4 で議論したように、体積 V の内部にある1 個の粒子のエネルギーがエ ネルギー区間( $\epsilon, \epsilon + d\epsilon$ )にある時、この区間に入る状態数は

である.ただし,内部自由度の縮退による因子 g を含めている.この状態数に 粒子の平均占有数  $f(\varepsilon)$ を掛けたものが,エネルギー区間  $(\varepsilon, \varepsilon + d\varepsilon)$ に存在する粒 子数を与える.ここでは理想ボーズ気体を考えているから, $f(\varepsilon)$ はボゾン分布 関数を使う.従って,エネルギー区間  $(\varepsilon, \varepsilon + d\varepsilon)$ にあるボーズ粒子数  $n(\varepsilon)d\varepsilon$ は

$$n(\varepsilon)d\varepsilon = \Omega(\varepsilon)f(\varepsilon)d\varepsilon$$

$$=g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \cdot \frac{\varepsilon^{1/2}}{\left[\exp\{(\varepsilon - \mu)/k_B T\} - 1\right]} \cdot d\varepsilon$$
(3)

である.この式を $\varepsilon=0 \sim \varepsilon=\infty$  まで積分した結果は全ボーズ粒子数Nである.

$$N = g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_{\varepsilon=0}^{\infty} \frac{\varepsilon^{1/2}}{\left[\exp\{(\varepsilon - \mu)/k_B T\} - 1\right]} \cdot d\varepsilon$$
(4)

これは,理想ボーズ気体の全粒子数Nが,(V,µ,T)の関数として与えられること を意味する.この関係は,µが(V,T,N)の関数として与えられると解釈すること も出来る.しかしながら,(4)は高温では適切な結果を与えるが,以下に述べる ように極低温では注意を要する. 絶対零度付近では,殆ど全てのボース粒子は一粒子基底状態にある(図 15-7). エネルギー=0の基準は一粒子基底状態に取るので,(4)式は一粒子基底状態 (ε=0)の粒子数をカウントしないことに注意が必要である.(4)は一粒子励 起状態を取る粒子数のみをカウントしている.即ち,

N: 全ボース粒子数

- N<sub>0</sub>:一粒子基底状態にあるボース粒子数
- N<sub>a</sub>:一粒子励起状態にあるボース粒子数

と表記すると,

$$N = N_0 + N_{ex} \tag{5}$$

であり,極低温においては,(4)は,全粒子数Nではなく,一粒子励起状態にあるボース粒子数N<sub>a</sub>を与える式である.

$$N_{ex} = g \cdot \frac{V}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_{\varepsilon=0}^{\infty} \frac{\varepsilon^{1/2}}{\left[\exp\{(\varepsilon - \mu)/k_B T\} - 1\right]} \cdot d\varepsilon$$
(6)

一粒子基底状態にあるボース粒子数N<sub>0</sub>は、(5)と(6)から、

$$N_0 = N - N_{ex} \tag{7}$$

である.  $\epsilon = 0$ では, (4)の  $\epsilon$  に関する被積分関数は0であり,大部分の粒子が  $\epsilon$ =0の基底状態を占める極低温状態では,このような  $\epsilon = 0$ の粒子数はカウント されない.カウントされるのは  $\epsilon > 0$ の励起状態にある粒子である.だから,(4) ではなく(6)として扱う必要がある.ただし,基底状態の粒子が少ない高温では  $N_0 = N - N_{ex} \approx 0, N \approx N_{ex}$ となるので,(4)は(6)と同じように成立する.

絶対零度においては、全てのボーズ粒子はε=0である基底状態を占めようと するから、ボーズ分布関数は、

$$f(\varepsilon) = \frac{1}{\exp\{(\varepsilon - \mu)/k_B T\} - 1} \rightarrow \frac{1}{\exp\{-\mu/k_B T\} - 1} \approx N$$
(8)

を意味する. 故に, この近似式で分母と分子を逆にすれば

$$\exp(-\mu/k_{\rm B}T) \approx 1 + 1/N \tag{9}$$

である.この両辺の自然対数をとると,

$$(-\mu/k_B T) \approx \ln(1+1/N) \approx 1/N \approx 0 \tag{10}$$

である. N をマクロスコピックな粒子数と考えれば,絶対零度では,化学ポテン シャル  $\mu$  は負ではあるが,限りなく0に近く, $\mu$  = 0 と考えて良い.図 15-7 の 左図に示した化学ポテンシャル  $\mu$  は(10)の関係を示している.

次に,図 15-7 の右図の状況を(6)を用いて考えてみる.(6)でµ≈0と近似すると,

$$N_{ex} = \frac{gV}{4\pi^2} \cdot \left(\frac{2m}{\hbar^2}\right)^{3/2} \int_{\varepsilon=0}^{\infty} \frac{\varepsilon^{1/2}}{\{\exp(\varepsilon/k_B T) - 1\}} \cdot d\varepsilon$$

である.ここで $x = \varepsilon/k_BT$ の変数変換を行うと,

$$N_{ex} = \frac{gV}{4\pi^2} \cdot \left(\frac{2mk_BT}{\hbar^2}\right)^{3/2} \int_{\varepsilon=0}^{\infty} \frac{x^{1/2}}{(e^x - 1)} dx$$
(11)

となるが、ここに現れる定積分は、ガンマ関数 $\Gamma(3/2) = \frac{\sqrt{\pi}}{2}$ とツェータ関数  $\xi(3/2) = 2.612$ の積になることが知られているので<sup>2,17)</sup>、

$$\int_{e^{-0}}^{\infty} \frac{x^{1/2}}{(e^x - 1)} dx = \Gamma(3/2) \cdot \zeta(3/2) = \frac{\sqrt{\pi}}{2} \times 2.612.$$
(12)

である.従って (11)は,

$$N_{ex} = 2.612 \cdot gV (\frac{mk_B T}{2\pi\hbar^2})^{3/2}$$
(13)

となり、絶対零度付近での励起状態の粒子数N<sub>ex</sub>が得られる.

この(13)の結果を用いて、全ボース粒子数Nが励起状態のボース粒子数Nerに

等しくなる温度 $T_b$ を定義する.即ち、(13)で $N_{ex} \rightarrow N$ 、T $\rightarrow T_b$ とした結果から $T_b$ を定める.

$$N = 2.612 \cdot gV (\frac{mk_B T_b}{2\pi\hbar^2})^{3/2}$$
(14)

を, T<sub>b</sub>を与える式に書き直せば,

$$T_{b} = \frac{2\pi\hbar^{2}}{mk_{B}} \left(\frac{N}{2.612 \cdot gV}\right)^{2/3} = \frac{3.31\hbar^{2}}{mk_{B}} \left(\frac{N}{gV}\right)^{2/3}$$
(15)

となる.このように定義される温度は何を意味するのだろうか? 温度が下降 する場合を考えれば,温度*T*<sub>b</sub>より低温になると基底状態の全粒子数*N*<sub>0</sub>が無視出 来なくなる.即ち,ボーズ・アインシュタイン凝縮が起こる.温度が上昇する 場合で考えると,*T*<sub>b</sub>以下では基底状態に落ち込んだ粒子数*N*<sub>0</sub>を無視できないが, *T*<sub>b</sub>以上の温度になるとこのような基底状態にある粒子数*N*<sub>0</sub>を考える必要は無く なる.その意味で,温度*T*<sub>b</sub>はボーズ・アインシュタイン**凝縮温度**と呼ばれる. ボーズ・アインシュタイン凝縮の**臨界温度**と呼ぶ場合もある.

(13)と(14)の比をとれば、 $\frac{N_{ex}}{N} = (\frac{T}{T_b})^{3/2}$ となるから、

$$N_{ex} = N(\frac{T}{T_b})^{3/2}$$
(16)

である. さらに, (5)の  $N = N_0 + N_{ex}$  関係から,

$$N_0 = N[1 - (\frac{T}{T_b})^{3/2}]$$
(17)

である.これより、 $0 < T < T_b$ の範囲では、 $N_0/N$ は1から0の範囲で変化する.

#### 15-7) 極低温における<sup>4</sup>Heの挙動

既に述べたように,一気圧の下で,Heは4.21K以下で液化するので,これより低温では理想ボゾン気体としての挙動は示さない.しかし,以下の事実から, 実質的に<sup>4</sup>He である 液体 He はボーズ・アインシュタイン凝縮の状態となって いると理解されている.

1) He 以外の希ガスも含めて通常の元素単体は,極低温で結晶となるが,He だけが例外で,大気圧下の極低温で結晶ではなく液体であることが特異である. 図 15-8 は低圧・極低温での相平衡図の概略を示す.



図 15-8. He の相平衡図. 絶対 0 度付近でも, 25 気圧以下 では結晶固体とはならない.

液体/気体の境界線は,臨界点(5.2 K, 2.26 atm)から(0 K, 0 atm)の方向に向かう. この境界線は1気圧の等圧線と4.21K で交差する. 大気圧下ではこの温

度で液化が起こる. この液体/気体の境界線は, λ 点 (2.17K, 0.051 atm) で He(I) と He(II)の液相間の転移(液体の凝集状態の変化)が起こる. λ 点は気体と二つ の液相が共存する 3 重点である. もうーの三重点(1.743 K, 29.9 atm) があり, そ こでは一つの固相二つの液相が共存する. 一成分系で異なる三つの相が共存す る点が 3 重点で, Gibbs の phase rule から自由度は 0 となり, 外部変数の温度と 圧力が固定される. この二つの 3 重点をむすぶ二つの液相共存線が λ 線で, こ の線上で He(I) と He(II)の液相が共存する.

2) 液体 <sup>4</sup>He は 2.17K で熱容量の不連続(λ 点と呼ばれる) を示し(図 15-9),



図 15-9. 液体 <sup>4</sup>He のモル定積熱容量の温度変化. 熱容量は R で 規格化されている. T=2.17 K で, 鋭いピークを示し, ギリシ ャ文字の " $\lambda$ " に似た変化パターンを示すので,  $\lambda$ 型転移と呼 ばれる.

2.17K より低温の液体 <sup>4</sup>He(II)と 2.17K より高温の液体 <sup>4</sup>He(I)では,凝集状態が明 らかに異なっている.

**3)** 2.17K より低温の液体 <sup>4</sup>He(II)は,実質的に粘性抵抗が0の液体であり,超 流動性がある.液体 <sup>4</sup>He(I)にはこのような特異性はない.

液体 <sup>4</sup>He(II)の方が, ボーズ・アインシュタイン凝縮に結びつく凝集状態に あると考えられている. ボーズ・アインシュタイン凝縮に対する考え方自体は, 液体 <sup>4</sup>He(II)の問題を離れて,大きな問題に繋がっている. それは超伝導に対す る BCS 理論である.

1911 年,オランダ・ライデン大学のカメリン・オネスは,4.18K で水銀(Hg) の電気抵抗が0となる超伝導状態が生じることを示した.それ以後,他の元素 単体金属でも、20K 以下の低温でそのような超伝導状態が確認されたが、その 超伝導状態が何故生じるかは誰も説明することは出来なかった.1957 年, Bardeen, Cooper, Schrieffer の3名は、「格子振動のフォノンを媒介とする電子間 の引力によりクーパー対と呼ばれる電子対が作られ、この電子対がボーズ・ア インシュタイン凝縮を起こした状態が超伝導状態である」との考え方を提唱し た.この3名の頭文字から BCS 理論と呼ばれている<sup>88)</sup>.

BCS 理論の提唱から約 30 年後の 1986 年, ベドノルツとミューラーは,本来 は絶縁体である銅酸化物において高温超伝導を発見し,大フィーバーとなった. 高温とは,液体窒素温度 77 K より高い温度で超伝導が実現することを言う.そ の後も,化合物の高温超伝導物質は様々なものが発見されている.しかし,高 温超伝導には BCS 理論とは異なる機構が考えられているが,問題はまだ解決さ れてはいない<sup>88)</sup>.

492