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Chapter 1

Introduction

In current medical diagnosis, treatment, and surgery, medical imaging plays one of

the most important roles, since imaging devices such as Computed Tomography (CT),

Magnetic Resonance Imaging (MRI), and ultrasound diagnostics yield a great deal of

information about diseases and organs. However, radiologists have to analyze and

evaluate a number of medical images comprehensively in a short time, which is a large

burden. To lighten the burden, computer technology research has been used more often

to analyze medical images in recent years. This field of research is called computer-

aided detection/diagnosis (CAD) [1]. CAD is used to provide technical support to med-

ical staff during diagnosis and treatment. In the absence of a doctor, CAD allows for

the identification and possible emergency treatment of life-threatening symptoms. For

instance, some hospitals use CAD to support preventive medical check-ups in mammog-

raphy (diagnosis of breast cancer) [2], the detection of polyps in the colon [3], and lung

cancer from CT images [4]. Our research aims to develop a chest CAD system using CT

images. This dissertation introduces the approaches of automated segmentation of soli-

tary pulmonary nodules (SPN), segmentation of pulmonary blood vessels and matching

of segmented nodules.

This chapter introduces the main medical background of our research including

lung anatomy (Section 1.1), lung cancer (Section 1.2), lung nodules (Section 1.3).

Computer tomography (CT) is introduced in Section 1.4, including how lung tissue

and diseases are observed on CT images, the role of CT in diagnosis and treatment of
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Figure 1.1: Illustration of lung anatomy in 2D.

lung diseases. Then, we introduce the benefits and problems of CT during diagnosis

and treatment, which necessitate the development of a CAD system. The brief history

and current status of CAD system are introduced in Section 1.5. Finally, the general

structure of this dissertation is organized in Section 1.6.

1.1 Lung Anatomy

Figure 1.1 shows the illustration of lung anatomy in 2D. The lungs are a pair of large

organs in chest, comprised of the right and left lungs. The two lungs are separated by

a structure called the mediastinum (Fig. 1.1). The mediastinum contains the heart,

the trachea, the esophagus, and blood vessels. Each lung is made up of sections called

lobes; the right lung has three lobes, the left lung has two lobes and is smaller than right

lung. Each lung has two layers of pleura covering the lungs and lining the inside of the

chest. The lungs rest on the diaphragm: a wide, thin muscle that sits below the chest

cavity and above abdomen, separating the two (Fig. 1.1). During a breathing cycle, the

diaphragm contracts and relaxes, helping to fill and empty the lungs [5].
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1.2 Lung cancer

1.2 Lung cancer

1.2.1 Overview

Cancer (malignant tumors) is a generic term for a large group of diseases that can

affect any part of the body [8]. One defining feature of cancer is the rapid creation of

abnormal cells that grow beyond their usual boundaries, and can spread to other tissues

or organs. The spreading process is called metastasis, and when a cancer has reached

an advanced stage in which the malignant cells are attacking other organs, it is said that

the cancer tumors have metastasized. The tumor in new organ is called metastases or

metastasis cancer. The metastasis cancer always made up of cells similar to those of the

original tumor (primary cancer) [6].

Lung cancer is a cancer that forms in lung tissue [7]. Since lung cancer tends to

spread or metastasize very early in its course, it is a very life-threatening cancer and

one of the most difficult cancers to treat [9]. According to World Health Organization

(WHO) [8], lung cancer has been the most common cancer in the world for several

decades. By 2008, there were approximately 1.61 million new cases, representing 12.7%

of all new cancer cases. Lung cancer was also the most common cause of death from

cancer, with 1.38 million deaths (18.2% of the total). Furthermore，Lung cancer remains

a disease with a dismal prognosis. Although one-year all-stage survival is reported

to have increased from 32% in 1973 to 41% in 1994, the five-year survival rate has

remained unchanged at 14% [11, 15]. To find and treat lung cancer at an early stage

is very important. This can lead to more treatment options, less invasive surgery, and a

higher survival rate.

Cigarette smoking is the main cause of lung cancer [17]. Other causes for lung

cancer may include genetic and environmental factors, such as passive smoking [18,

19], asbestos fibers [20, 21], radon gas [22, 23], familial predisposition. However,

many lung cancer cases are not limited to a single cause, but a combination of factors.
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1.2.2 Types of lung cancer

Cancer usually develops in the lungs in one of two ways: either by developing in the

lungs or by spreading to the lungs. Cases that start in the lungs are categorized as

primary lung cancer, and case that spread to the lungs from another part of the body are

categorized as secondary lung cancer (the metastasis of cancer to the lungs). Primary

lung cancer can spread to any organ in body. The liver, adrenal glands, brain, and

bones are the most common sites for lung-cancer metastasis [9]. The lungs are also

a very common site for metastasis from tumors in other parts of the body, such as the

liver, kidneys and breast. In general, lung cancer mainly refers to primary lung cancer.

Primary lung cancer is divided into two main types: (1) non-small cell lung cancer

(NSCLC), and (2) small cell lung cancer (SCLC) [9].

1.2.3 Diagnosis of lung cancer

The majority lung cancer cases are diagnosed after a doctor requests testing for cancer

based on a patient’s medical history and the results of a physical examination. Lung

cancer is usually first observed through chest radiography or chest CT images, as tumor

nodules. To confirm the diagnosis, the tumor cells of nodules have to be examined

under a microscope. The tumor cells are suctioned into the syringe by a biopsy, which

is usually performed by bronchoscopy or CT-guided needle biopsy.

The details of diagnosis approaches of lung cancer are described as follows:

(1) Chest radiography [24]: Chest radiography is commonly called a chest X-ray. This

technology employs ionizing radiation in the form of X-rays to generate a 2D im-

age of the lungs. However, the sensitivity of standard chest radiography is too

low to locate small tumors. Moreover, some studies have shown that the chest ra-

diographys and sputum cytology do not effectively detect lung cancer in its early

stages [25].

(2) Chest CT scanning [26]: CT scanning is usually performed as the second step to

follow up an abnormal chest radiography to get more information about the extent
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and/or location of tumors. CT scanning utilizes a series of x-rays to create a 3-

dimensional view of the lungs. Since CT images are more sensitive than standard

radiograph in the detection small tumors, it currently being researched for use as

a screening tool for lung cancer.

(3) Bronchoscopy [27]: Bronchoscopy is a kind of endoscopic test, in which the lungs

are viewed through a thin, flexible, illuminated tube with a tiny camera on the tip.

When a tumor is discovered, the cell tissue can be obtained through the biopsy,

which is located inside the tip of bronchoscope. Tumors located in the central

areas of the lungs or in the larger airways are accessible via brochosopy.

(4) Needle biopsy[28]: If the tumors are located in the more peripheral of the lungs

and are beyond the reach of a bronchoscope, a needle biopsy through the chest

wall may be necessary. The biopsy is taken through a needle and inserted through

the chest wall and into the tumor. Cells are suctioned into a syringe and are

examined under a microscope.

1.2.4 Treatment of lung cancer

There are several different treatment options available for both primary and secondary

types of lung cancer. The treatment choices for a given individual depend on the type of

cancer (e.g., NSCLC, SCLC, metastasis), the location of the cancer, whether and where

the cancer has spread, its stage (cancers are given a staging from 1 to 4 with stage

4 being the most aggressive) and the overall health status of the patient. Treatment

for lung cancers can involve (1) surgical removal of the cancer, (2) chemotherapy, (3)

radiation therapy or (4) combinations of these treatments [29].
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1.3 Lung nodule

1.3.1 What is lung nodule?

A lung nodule, also referred to as a pulmonary nodule, is a mass of tissue located in the

lungs. In 1996, the Fleischner Society published a glossary of terms specifically for chest

CT [32] in which a lung nodule is defined as a “round opacity, at least moderately well

marginated and no greater than 3 cm in maximum diameter.” Lung nodules usually

need to be at least 1 cm in size before they can be seen on a chest radiograph. A lesion

should be considered as “nodule” if it satisfies the definition of nodule, which mainly

considers the “nodular” morphology.

1.3.2 Relation between lung nodule and lung cancer

Lung nodules are very common and can be found at a rate of 1 in 500 in chest radio-

graphs and 1 in 100 in CT scans of the chest [14]. Lung nodules can be either benign

or malignant. The benign nodules include granulomas (clumps of inflamed tissue) and

hamartomas (benign lung tumors). The most common causes of malignant lung nod-

ules include lung cancer and metastatic cancer to the lungs (secondary lung cancer).

However, lung nodules are less than a 40% [7] indicator for lung cancer and the major-

ity of patients who have lung nodules do not show any symptoms.

Although the majority (at least 60%) of lung nodules are benign (not cancerous),

early diagnosis of the cause of lung nodules is very important. This is because if lung

cancer is caught early and is still small, there is a greater chance that it can be cured.

The risk of a lung nodule being cancerous varies considerably depending on several

factors. For example, in people less than 35 years of age, there is a less than 1%

chance that a lung nodule will be cancerous, whereas it increases to more than 50%

in people over age 50. Other factors that raise or lower the risk that a lung nodule

indicates cancer include growth, size and shape of the nodule and the occupation and

smoking history of the patient.
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1.3.3 Types and shapes of lung nodules

In order to classify lung nodules depending on their locations, nodules are usually

categorized into three kinds of nodules: (1) Isolated Nodules (nodules that are lo-

cated inside the lungs, without any attachment), (2) Juxta-Pleural (nodules attached

to the chest wall), and (3) Juxta-Vascular (nodules that are attached to the vessels that

are inside the lung area). However, depending on the texture, lung nodules can be

classified to four types: (1) Solitary Nodules (nodules that completely surrounded by

the lung parenchyma and without associated pneumonia, atelectasis (lung collapse)

or lymphadenopathies [12]), (2) Subsolid Nodules (semi solid nodules that have solid

component within them that obscure the lung parenchyma), (3) Ground Glass Opacity

(GGO, hazy opacity within the lungs that is not associated with obscured underlying

bronchial structures or pulmonary vessels [13]), and (4) Cavitary nodule (nodule that

contains an air-filled necrotic region is termed cavitary).

The most nodules have diameters between 3-30mm. The nodules vary in shape

depending on type. Isolated nodules are usually spherical in shape (when viewed in

3D), and they are seen as circular objects in 2D cross sections. Attached nodules are

usually semi-spherical.

1.4 Computer Tomography (CT)

1.4.1 History of CT

CT scans are a noninvasive, painless medical procedure. An overview of CT technol-

ogy and its applications are presented in [30]. The first commercial CT scanner was

invented by Sir Godfrey Newbold Hounsfield in 1971. Within several decades, CT has

seen tremendous improvements [30, 31]. Current CT scanners consist of a radiation

source and a set of detectors. The radiation source circles around the patient’s body

and the detectors measure the attenuation of the radiation of body at different angles.

Then, computers are utilized to reconstruct slice images of the sections of the patient’s

7



Introduction

body from these measurements to provide a 3D view of body. These measurements also

determine the CT values of the tissues in a CT image called Hounsfield unit (H.U.).

The images generated by CT scans are commonly composed of a matrix of 512×512

pixels in each direction with an image resolution as high as 0.3 mm per pixel. Doctors

can obtain much more detailed information about tumors and organs from CT images

than from traditional radiography imaging, which can only show 3D body structures

as 2D images. Hence, CT images are being investigated as a screening tool for lung

cancer to instead radiograph in recent years.

1.4.2 Lungs on CT

Generally, doctors use three kinds of cross sections to observe human body from one

CT scan: axial , sagittal and coronal sections. We show examples of these three cross

sections from a 3D CT volume of the lung in Fig. 1.2. Figure 1.2(a) shows one axial

slice of a lung volume. From this slice we can observe the following components:

(1) Left and right lungs: Have large dark areas inside (air region).

(2) Trachea: A large spherical air region that located in the middle area of image.

Trachea vary in size along the CT slices of the thorax, and diminishes completely

when the trachea branches to the two bronchi.

(3) Rib bones: Elliipsodal regions with high intensity (CT value).

(4) Sternum: Similar to rib bone, only present in the top CT slices of the thorax.

(5) Mediastinum: The part in the thorax that contains the heart and is bound by the

sternum from the front and spinal cord from the back.

(6) A cross section of a vertebra.

(7) Fat and muscle.
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(a) Axial section (b) Sagittal section

(c) Coronal section

Figure 1.2: Three separated axial sections of a 3D CT volume. (a) shows an example of
an axial section, (b) shows an example of a sagittal section, and (3) shows an example
of a coronal section of one CT volume.

1.4.3 Lung nodules on CT

The appearance of lung nodules in CT images can be described as compact lesions with

relatively high contrast, circular shape and uniform density distribution. Compact nod-

ules were found to have a Gaussian gray level distribution [33]. The gray level values of

nodules in CT images are usually between -700 H.U. and 400 H.U., larger nodules often

show larger CT values than smaller ones. Pulmonary blood vessels running perpendic-

ular to the slices might appear to be circular in shape, and they usually have similar CT
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Figure 1.3: Illustrations of lung nodules on CT image. (a) shows a well-circumscribed
nodule, (b) shows two vascularized nodules, (c) shows a pleural tail type, and (d) shows
a juxtapleural nodule.

values to the nodules. Hence, in order to properly classify the nodules (especially the

vessel-attached nodules) and blood vessels from CT images is an important and chal-

lenging work for radiologists. Lung nodules can be divided into four classes depending

on their features in a CT as follows:

(1) Well-circumscribed: The nodule is located centrally in the lung, without significant

connections to vasculature (Fig. 1.3(a)).

(2) Vascularized: The nodule is located centrally in the lung, but has significant vas-

cularization (connect to neighboring vessels) (Fig. 1.3(b)).

(3) Pleural tail: The nodule is near the pleural surface, connected by a thin structure

(“pleural tail”) (Fig. 1.3(c)).

(4) Juxtapleural: A significant proportion of the nodule periphery is connected to the

pleural surface (Fig. 1.3(d)).

1.4.4 Role of CT in the diagnosis and treatment of

lung cancer (lung nodule)

Over the past several decades, CT scanning has become a key imaging modality for lung

diseases. This is because CT images are more sensitive than standard radiograph in the
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detection small tumors. At present, chest CT images are widely used to assist in both

diagnosis and treatment of lung cancer (lung nodule).

(a) Diagnosis:

For the diagnosis of lung cancer, CT images have been used mainly in the early

detection of lung nodules, the evaluation of lung nodules to determine whether

it is solitary and whether mediastinal metastases are present, also to evaluate the

mass by assessing its density [147]. Furthermore, the follow-up CT images are

usually used to observe the growth of lung nodules or the metastatic situation.

The navigation of lung nodules by using CT images is desirable for the further

diagnosis of lung nodule such as bronchoscopy and needle biopsy.

(b) Treatment:

Chest CT images also can be utilized to assist the treatment of lung diseases.

The information of lung cancer and the lung tissues around it that are observed

in CT images is important for conducting the therapy plan. Furthermore, the

follow-up CT images can be utilized to observe the the progress of chemotherapy

and radiation in secondary lung cancer cases. To navigate the position of lung

cancer by using CT images is also useful for several therapy approaches such as

bronchoscopy and surgery.

1.4.5 Benefits and problems

(a) Benefits:

CT images can provide very detail information about organs and diseases though

image slices in approximately 1mm of thickness. CT enables the radiologist to

observe human’s body through three different axial planes and a 3D view. Such

benefits enable radiologists to detect lung nodules much earlier than conventional

chest radiograph by using chest CT images.

(b) Problems:

The first problem of CT scan is the high risk due to radiation exposure. Secondly,
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high resolution image cause an dramatic increase of the number of image slices,

which rapidly increases the burden on radiologists, and causes high miss rates of

radiologists in detecting lung nodules at a early stage. To lighten such burden,

research in computer-aided detection/diagnosis (CAD) is predicted to develop

rapidly. CAD systems are desirable as a “second opinion” to assist radiologists to

improve the performance of detection and observation of diseases in screening

[48]

1.5 CAD system

1.5.1 Overview

The CAD system includes the procedures of computer-aided detection (CADe) and

computer-aided diagnosis (CADx). A CAD system is desired to detect conspicuous struc-

tures (CADe) and evaluate such structures (CADx) from medical images. Also, CAD

systems are expected to assist doctors in analyzing the effectiveness of treatment and

give opinions to the therapy planning.

CAD has been defined as diagnosis made by a physician who takes into account

the computer output based on the quantitative analysis of medical images [48]. This

concept is clearly distinct from automated computer diagnosis, which was firstly in-

troduced in the 1960’s [34, 35, 36], and developed in 1970’s [37, 38]. Automated

computer diagnosis was generally assumed to be a technology to replace radiologists in

detecting abnormalities. However, because of the limitation of the power of computers

and image processing techniques at the time, these early attempts were not successful.

Then, in the 1980’s, another definition which assumed that “the computer utilized by

radiologists, but not replace them” was emerged. This is because the computer cannot

and may not substitute the doctor, but rather plays a supporting role, doctors (generally

radiologists) are always responsible for the final interpretation of a medical images.

This concept is currently known as computer-aided detection/diagnosis (CAD). The ba-

sic concept of CAD is to provide a computer output as a “second opinion” to assist
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Figure 1.4: Illustration of the general framework of the CAD system.

radiologists in the interpretation of medical images by improving the accuracy and con-

sistency of radiological diagnosis and also by reducing the image reading time [48].

Since then, CAD has been developing quickly and widely, and has been extended to

various medical imaging modalities including mammograms, radiograph, CT and MR

[39, 40, 41, 42]. Recently, this research field has become one of the major research

topics in medical imaging and diagnostic radiology [43, 44, 45, 47].

1.5.2 General framework of CAD

Figure 1.4 illustrated the general framework of the CAD system. The basic technologies

involved in the CAD system are:

(1) Preprocessing : The preprocessing usually performs the reduction of image noise

or artifacts and the extraction of the regions of interest (ROIs).
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(2) Initial segmentation : The initial segmentation performs a rough segmentation

of the initial target regions (candidates) in the ROIs.

(3) Analysis of image features for candidates : The analysis of image features is im-

plemented for each candidate after the initial segmentation. The features include

compactness, size, location, average intensity (gray scale level value), and so on.

(4) Classification of each candidate: The classification of each candidate is applied

after the feature analysis. The candidates are classified into true positives (TPs,

the final target region) or false positives (FPs).

(5) Evaluation: The evaluation of classification results is implemented to observe the

performance of the CAD system. The receiver operation characteristic (ROC) anal-

ysis is usually utilized to conduct the evaluation.

1.5.3 Current status of CAD

CAD technology can be applied to a wide range of modalities and used for all parts

of the human body such as the skull, thorax, heart, abdomen and spine. However,

the majority of CAD schemes that have been developed so far include breast CAD on

mammograms, colon CAD on CT colonography (CTC), chest CAD on chest radiograph

and CT image. The details of these three kinds of CAD are described as follows.

1.5.3.1 Breast CAD system on mammogram

The breast CAD systems on mammogram are developed to aid radiologists in detecting

of mammory lesions that may indicate the presence of breast cancer. There are two

types of breast CAD systems based on mammograms: one is based on conventional

screen-film mammograms and another one is based on digital mammograms [2]. The

first type requires the scanning and digitization of films. These are then saved to

computer for further analysis. The second type uses full-field digital mammographic

(FFDM) technology. Although the FFDM is recognized as being superior to the con-
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ventional one, the results obtained in recent studies show that there is no difference in

accuracy between FFDM and the conventional methods [49, 50].

The first commercial CAD system for mammography was developed by R2 Technol-

ogy based on the technique from a research group at the University of Chicago (USA). A

number of commercial breast CAD systems on mammograms are currently available for

clinical use [51, 52]. Several researchers have reported that the accuracy of interpreta-

tion of screening mammograms with CAD systems is better than the accuracy without

CAD [53, 54]. However, a few studies also show that the performance of current com-

mercial breast CAD systems still need to be improved [55].

1.5.3.2 Colon CAD system on CTC

Colon CAD can be employed as a second reader to aid in detecting polyps and masses

from CT colongraphy (CTC). CTC is a non-invasive screening technique with promising

results for the detection of polyps and small tumors [56, 57]. However, three factors

limit the widespread use of the technique, especially for screening purposes: (1) the

need for colon cleansing, (2) the readers expertise required for interpreting examina-

tions, (3) and the unknown diagnostic performance when applied in a mass screening

program [60]. To deal with these drawbacks, Coin et al. reported their research on

computerized radiology of colon CTs [58] in 1983. In 1994, Vining et al. introduced

research on visual colonoscopy using CT images [59]. Since then, research on colon

CAD for polyp detection has been developing quickly [3, 61, 62]. Presently, commercial

colon CAD systems such as Ziosoft [63], GE [64], Siemens [65] are available for clinical

applications.

A colon CAD scheme typically consists of the (1) segmentation of colonic walls, (2)

the generation of intermediate polyp candidates, (3) the classification for the detection

of final candidates, and (4) the presentation of the polyp candidates. The remaining

tasks for the radiologist is the validation or rejection of the polyp candidates. Sosna

et al. reported that the performance of colon CAD ,especially in terms of sensitivity, is

comparable that of a human reader [68]. However, in order to confirm the performance

15



Introduction

of current colon CAD systems, further examination by larger databases, evaluated ret-

rospectively and prospectively is required.

1.5.3.3 Chest CAD system

The most important application of chest CAD systems is the ability to detect and char-

acterize lung nodule. A number of researches have devoted time to the construction

of CAD systems in the last two decades [69, 71, 72, 73, 75, 81, 114]. Since the chest

radiography is the most common image examination approach for lung diseases, many

chest CAD systems focused on detection of the lung nodules from chest radiograph

[39, 72, 74, 75]. However, CT image provides much more information about dis-

eases than conventional radiograph, and several researches show that CT image can

detect four times the number of malignant lung nodules and six times the number of

stage I malignant nodules than chest radiography [77, 78, 79], which strongly suggests

the use of CT scan over chest radiography for lung cancer screening. Construction of

chest CAD systems based on CT images has become the most popular topic in this field

[85, 88, 90, 117, 120].

The previous chest CAD systems developed for CT images focused mainly on the

automated detection of solitary pulmonary nodules (SPN). Recently, there has been

more work on the classification of malignant and benign SPNs [92]. Since the progress

of lung cancer is observed in relation to the change of shape and the number of pul-

monary blood vessels, the segmentation of pulmonary blood vessels is also crucial for a

chest CAD system. The doctors usually utilize the follow-up CT images of a patient to

observe the growth or the effectiveness of treatment in nodules. However, patient posi-

tion on the CT table as well as a patient’s heartbeat can make follow-up CT images hard

to read due to the deformations. This is particularly true in the case of secondary lung

cancer where hundreds of SPNs may occur, since finding of the corresponding nodules

from hundreds of SPNs on two follow-up CT images makes greatly burdens to physi-

cians. Therefore, the automated nodule matching method is also desired in chest CAD

systems.
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1.6 Organization of this thesis

Our research aims to develop a novel chest CAD system. This dissertation introduces

the two main focuses of our research: 1) Automated segmentation of lung nodules and

blood vessels; 2) Automated matching of segmented lung nodules. In this dissertation,

the proposed segmentation method aims to improve the performance of both lung nod-

ule and blood vessel segmentation by incorporating these two segmentation procedures.

The proposed nodule matching method aims to find all the corresponding nodules from

follow-up CT images. This dissertation is comprised of five chapters.

Chapter 1 introduced the background of our research. The main medical back-

ground including the diagnosis and treatment of lung cancer, lung nodule, and CT were

described. Then, we introduced the brief history, general framework and current status

of CAD system.

Chapter 2 introduces the main approaches involved in a chest CAD system. Then,

a related work review is described, which introduce the current segmentation methods

of lung nodules and pulmonary blood vessels, matching methods of lung nodules. The

purpose and basic idea of this dissertation will be presented following the discussion of

the disadvantages of current approaches.

The following two chapters are the main body of this dissertation. Chapter 3 intro-

duces an improved Hessian and level set-based methodology for segmentation of both

lung nodules and vessels. The main goal of a nodule segmentation method is to pro-

vide a low number of FPs per case as well as high sensitivity. Since the FPs mainly

occur in blood vessel regions in the initial nodule candidates detection processing. The

key-point is how to discriminate between nodules and blood vessels. To solve this prob-

lem, the proposed method incorporates the initial vessel regions and nodule candidates

into a fine segmentation procedure to obtain sufficient segmentation results. Chapter

4 introduces a novel methodology for the automated matching of segmented nodule

from follow-up chest CT images. The proposed method can address the matching of

temporally changed nodules, which is the challenging topic in this field.
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In chapter 5, we conclude this thesis on the development of a chest CAD system.

Several aspects and potential limitations of the proposed techniques are summarized.

Furthermore, various future works and promising research directions are discussed for

the further developments of chest CAD system.
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Chapter 2

Technique and related work of chest
CAD system

This chapter introduces the main techniques involved in development of a CAD system,

including segmentation, classification, registration. Related work in terms of nodule

segmentation, blood vessel segmentation, and nodule matching are also reviewed. The

purpose and basic principals of this dissertation are presented following the discussion

of the disadvantages of previous approaches.

2.1 General techniques

In this section, we introduce the general techniques of medical image analysis in the

development of CAD systems. The key concepts are medical image segmentation, clas-

sification, and registration.

2.1.1 Medical image segmentation

Medical image segmentation refers to techniques to partition an image into regions and

delineate the anatomical objects of interest in the image, discriminating each object

from other objects and from its background. Several computer vision techniques have

been applied to a range of medical imaging modalities to execute the segmentation.

The common approaches to medical image segmentation include but are not limited
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to classical image analysis techniques, deformable model fitting techniques, atlas-based

segmentation.

(1) Classical image analysis techniques: Standard image processing algorithms

such as thresholding, region growing, edge detection, morphological operators

and filters are the fundamental approaches to segment an image into several sep-

arate regions. Rogowska et al. provided a introduction of several medical image

segmentation methods using such standard imaging techniques [93]. Since such

fundamental image segmentation methods are sensitive to noise and are usually

insufficient for performing fine segmentation, these image analysis techniques are

commonly used in the preprocessing or initial segmentation.

(2) Deformable model fitting technique: Deformable model fitting is defined as

the problem of finding the optimal configuration of a parameterized shape model

that best describes the object of interest in an image. In contrast with rigid pat-

terns or template matching methods, deformable models allow the model to be

deformed to fit the evidence within the image, albeit within certain limits [94].

The deformable models such as active contours [95], active shape models [96],

active appearance models [97], and level sets [98] have been utilized to many

medical image segmentation. These techniques fit the model to the image data

via optimization methods using energy or cost functions that evaluate the quality

fit. Since the deformable model fitting techniques attempt to find boundaries of

regions, such techniques are often employed to execute the fine segmentation.

(3) Atlas-based segmentation: The atlas-based segmentation techniques attempt to

segment objective structure in a new image by drawing a correspondence between

this new image and a previously constructed atlas. The atlas is often the repre-

sentative or average of the variations in the anatomy [94]. A matching process

is performed to find the correspondence by similarity calculation. Various atlas-

based segmentation methods have been reported to segment organs from brain

MR images, chest and abdomen CT images, and so on. Such techniques have the
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advantage of being robust in the presence of disease [100].

2.1.2 Classification

The classification techniques are widely used in medical image analysis for classifying

foreground (regions of interest, e.g., lung nodules, colon polyps) and background re-

gions on medical imaging modalities. Classification-based techniques attempt to label

individual pixels or regions with labels for the anatomical structure of interest [94].

These techniques usually use a classifier to predict the membership of specific classes by

analyzing features of pixels, regions, or an entire image. The classifier was developed

using pattern recognition and machine learning techniques [101, 102]. However, such

technique requires experts to devise useful features and gather a sufficient amount of

data for training the classifier.

Another classification technique in terms of the graph cats-based segmentation [99].

The graph cuts classify each pixel within the image as either belonging to the fore-

ground representing the desired object or the background. This technique has good

performance on segmentation without requiring large amounts of labeled data to in-

duce the classifier. However, the graph cuts based method requires to define complex

cost functions, similar to the model-fitting techniques.

2.1.3 Registration

Image registration is a fundamental task in medical image processing used to match

multiple images taken, for example, at different times, with different sensors, or from

different subjects. Basically, image registration transforms different data sets into one

coordinate system, and provides basis for image comparison and information integra-

tion in many clinical applications. One of the images is referred to as the reference

image and the second image is referred to as the target. Image registration involves

spatially transforming the target image to align with the reference image.

Image registration algorithms can be classified into intensity-based and feature-

based [103]. Intensity-based methods compare intensity patterns in images via cor-
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relation metrics, while feature-based methods find correspondence between image fea-

tures such as points, lines, and contours. According to the transformation models for

transforming the target image space to the reference image space, image registration

algorithms can be classified into rigid (or linear) and non-rigid registrations. The rigid

registration model includes translation, rotation, scaling, and other affine transforms.

Rigid registration is global in nature and only can be used to compensate the inelastic

deformations. Non-rigid registration is capable of locally warping the target image to

align with the reference image, thus, can be used to compensate the elastic deforma-

tions.

Medical image registration is one of the most active research areas in medical image

analysis [104, 105, 106], which often involves non-rigid registration to deal with elastic

deformations. Rueckert et al. introduced a non-rigid deformation using cubic B-splines-

based free form deformation [107]. Mutual information was applied as a similarity

criterion in a hierarchical multi-resolution framework. Mattes et al. [108] utilized a

similar technique to perform the inter-modality registration. PET and CT chest scans

were registered in their report.

2.2 Purpose of our research

We aim to develop a chest CAD system for lung nodules, which includes the functions

such as automated lung nodule segmentation, pulmonary organs (e.g., blood vessel)

segmentation, automated lung nodule matching, and can analysis the malignancy, nod-

ule metastatic situation or therapy effect from the segmentation and matching results.

Figure 2.1 shows the illustration of the CAD system.

The works introduced in this dissertation focus on lung nodule segmentation, pul-

monary blood vessel segmentation and nodule matching.
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Figure 2.1: The illustration of the developing chest CAD system. A chest CT database
is constructed to storage the follow-up CT images of all the patients. All of the CT
images in the database are processed by the segmentation of nodules and organs, and
the automated matching of segmented nodules. When a new CT image of one patient
is generated, the automated segmentation of nodules and organs will be executed on it.
Then, automated nodule matching between the current CT image and the last CT image
in the database is performed, and the report of nodule growth can be obtained from the
matching results. By analyzing the nodule growth and other information recorded in the
database, the system can give several suggestions for the treatment, metastatic situation
and therapy planning.

2.3 Related work

This section reviews related works on lung nodule segmentation, pulmonary blood ves-

sel segmentation and nodule matching.
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2.3.1 Lung nodule segmentation

Due to clinical importance, the automatic detection of SPNs in chest CT images has be-

come a common research topic, the number of such articles has roughly doubled each

year in recent years. Lung nodule detection systems generally consist of some common

steps: (a) image preprocessing; (b) nodule candidate detection; (c) false positive reduc-

tion; (d) nodule characterization. The image preprocessing step usually performs a lung

area extraction scheme to restrict the processing area of nodule detection and performs

a smoothing procedure to reduce noise and image artifacts. So far, many methods have

been developed to generate nodule candidates, but there are always many false posi-

tives among these candidates. Thus, the second step focuses on the FP reduction. The

nodule characterization step mainly shows the likelihood of malignancy of a nodule.

Steps (b) and (c) of nodule detection systems will be covered below.

2.3.1.1 Nodule candidate detection method

Thresholding is the most common technique for initial nodule detection. Many meth-

ods reported attempt to identify initial nodule candidates directly from the input CT

images by use of a single thresholding process [82, 83, 84]. Armato et al. introduced

a multiple thresholding method to detect initial nodule candidates [85, 86]. Zhao et

al. also introduced a method that employs thresholding to indentify the initial nodule

candidates, and reported a sensitivity of 94.4% with 906 false positives per CT image

[87]. However, such thresholding techniques often cause a large numbers of FPs and

may miss low-contrast nodules.

Model-based methods are also reported for initial nodule candidate detection. Tak-

izawa et al. [91] utilized 3D geometrical models to identify nodules and other struc-

tures in lungs such as blood vessels and lung parenchyma. A template matching method

[81] using a nodular model based on intensity distribution is reported, which is feasible

for nodule detection. McCulloch et al. [89] developed a CAD system that consisted

of two subsystems. The first sub-system further consisted of a multi-stage modeling

architecture for the identification and classification of different regions, including nod-

24



2.3 Related work

ules, blood vessels, lung parenchyma, and scars, The second sub-system was a Bayesian

model selection architecture in which the alternative representations of the regions in-

side the lungs to determine the most probable model of the underlying data. Regions

for which the nodule model provided the highest probability among all models were

considered to be suspicious nodule candidates, and others were considered to be non-

nodule candidates.

The blob structure enhancement (BSE) filter are confirmed have good performance

for the initial nodule detection [47, 80, 111, 112, 113, 144], since the nodules often

show blob-like shapes. The application of a BSE filter as a preprocessing step would

be advantageous for the initial detection of nodules, since such filters are also sensitive

to the low-contrast nodules or those connected to blood vessels or airway walls. Most

of such enhancement filters are Hessian-based, and were firstly introduced by Lorenz et

al.[109] and Sato et al. [110]. Li et al. [80] developed a selective enhancement filter

for simultaneous enhancement of nodules and suppression of other normal anatomic

structures such as blood vessels and airway walls, which were the main sources of false

positives for nodule detection in CT. They reported a sensitivity of 93.4% (71/76) and

a false-positive rate of 4.2 per section. Paik et al. [113] also employed a BSE filter for

initial nodule detection based on the surface normal overlap. Their filter outputs a score

for each voxel that is proportional to the number of surface normals that pass through

the neighborhood of the voxel, and the score for blood vessels is generally lower than

that for nodules.

Other CAD schemes for detection of initial nodules includes shape index and curvedness-

based [114], weighted k-means clustering-based[88] and so on. Bae et al. [115] devel-

oped a CAD scheme for detection of nodules in three categories: isolated, juxtapleural,

and juxtavascular nodules.

For initial nodule identification, the definition of a criterion for determining whether

a true nodule is correctly identified and the performance level for initial nodule identifi-

cation because it is an important step of the entire CAD system [4]. The above described

methods may have good performance level for detecting SPNs in input CT images, but
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they often cause many FPs at normal pulmonary structures, such as the bifurcation parts

of blood vessels. Hence, FP reduction is required.

2.3.1.2 False positive (FP) reduction

Pattern recognition approaches that include feature analysis and classification are the

most common approaches for FP reduction [74, 86, 88, 90, 113, 114, 115, 120]. Fea-

tures as compactness, sphericity, average intensity value, 3D curvature, and texture are

often utilized to distinguish nodules from FPs, while rule-based classifiers, fuzzy classi-

fiers, neural networks, k-nearest-neighbour (kNN), support vector machine (SVM) and

Bayes classifiers are usually utilized to execute the classification.

Many research groups reported the utilization of rule-based classifier, which is sim-

plest to distinguish the actual nodules from FPs [113, 115]. However, the rules were

generally determined manually and empirically in existing CAD schemes, which leads

to tediousness, long design time and over-training. Li et al. [116] devised an automated

method based on the rule-based classifier, which can minimize the over-training .

Researches that perform FP reduction by artificial neural network (ANN) [117, 118]

or improved ANN based method [119] have been reported. These methods showed

better performance than the rule-based classifiers. Murphy et al, [114] proposed a kNN-

based method and detected 80% of annotated nodules at an average of 4.2 false positive

detections per scan when tested on 810 CT images. Hardie et al., [121] compared

a Gaussian Bayes linear classifier, a Fisher linear discriminant (FLD) classifier and a

quadratic classifier.

Besides, since many FPs in nodule detection are produced in the blood vessel regions,

some research has focused on FP reduction by removing the overlap between blood

vessel regions and nodule candidates [122, 123].

A study called “Automatic Nodule Detection 2009”(ANODE09) (van Ginneken et

al.[124]), which compared the performance of the several proposed CAD systems using

a common database and common evaluation protocol. The methods [90, 114, 117, 118]

were introduced in ANODE09 online CAD challenges for the detection of pulmonary
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nodules.

2.3.2 Pulmonary vessel segmentation

Segmentation of pulmonary blood vessels from chest CT image is required because of

its importance for clinical tasks such as the diagnosis of vascular diseases or the tumors

that are connected with blood vessels. The relation between the nodules and blood

vessels also provides very useful information for the diagnosis and treatment of lung

cancer. The segmentation and characterization of blood vessels is often a prerequisite

for diagnosis, treatment planning, and follow-up studies in clinical applications.

Region growing-based methods [125, 126] are conventional approaches of blood

vessel segmentation. Some blood vessel centerline segmentation methods were pro-

posed by using skeletonization techniques [127] or ridge extraction techniques [128].

Centerline extraction results can be used to reconstruct vessel trees. Mathematical mor-

phology scheme-based blood vessel extraction approaches have also been proposed

[129, 130]. They utilize the morphological operators that can keep the blood vessel

regions and eliminate unwanted regions. Some parametric deformable models such

as active contours (Snakes) [131, 132] and geometric deformable models (level-sets)

[133, 134] can also be used to extract blood vessels by following some shape features or

the intensity distribution of vessels. In recent years, Hessian-based LSE filters are being

widely utilized for the segmentation of blood vessels. Poli et al. introduced an algorithm

based on multiple oriented linear filters that is sensitive for the segmentation of blood

vessels with different orientations and thicknesss [135]. Sato et al [110] proposed a

multiple scales LSE filter that is based on the eigenvalues of the Hessian matrix, and

some similar research was introduced [136, 139].

2.3.3 Lung nodule matching

By utilizing of the sequential follow-up CT images, early changes in nodule size and

numbers can be assessed [146]. Hence, follow-up chest CT images are a well-established

means of evaluating lung disease progression or effectivity analysis of the treatment of
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metastatic lung cancer [147]. However, to identify subtle changes of lesions from two

different CT images is very difficult for radiologists. This is because thin-sectioned CT

images often generate a large number (typically 300-500) images of 1 mm sections,

and the lesion usually involve overlap with anatomic structures such as vessels, the

heart and the diaphragm. Especially, in the case of metastatic lung cancer, hundreds of

SPNs may occur. Furthermore, the different poses of a patient on the CT table as well

as the effects of heartbeats and respiratory motion usually causes the deformations on

follow-up CT images. Thus, the automatic matching of lung nodules from follow-up

CT images is required for a CAD system and also is useful for radiologists performing

follow-up screening.

The methods of nodule matching can be generally classified into two categories:

(a) Category 1: To find the matching nodule in current (past) scan of a mouse click-

specified nodule in past (current) scan [148, 150, 151], and (b) Category 2: To find all

the matching nodules specified by automatic segmentation in two scans [154, 155, 157,

159].

(a) Category 1:

The methods belong to Category 1 only focus on finding the matching nodule of

one specified nodule.

Sun et al. proposed a semi-rigid model for the registration of lung nodules [148].

Their method considers principal structures surrounding the nodule and allows

relative movements among the structures. A similarity metric, which evaluates

both the image correlation and the degree of elastic deformation amongst the

structures, is maximized by a two-layered optimization method, employing a sim-

ulated annealing framework.

Cheng et al. tested a matching program that is included in a commercial CAD

system (LungCARE VE31E, Siemens Medical Solutions [149]) to perform the nod-

ule matching [150]. The nodule matching operation begins with the computation

of approximate longitudinal (e.g., z-axis) global alignment between two serial
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sets of CT images. Refined alignment parameters are then calculated on the basis

of the cross-sectional area of the lungs and the position of the trachea. Surface

points of all surrounding objects are extracted and used to create a distance map.

Points in the follow-up set of CT images are superimposed onto the distance map

for the baseline set and then shifted in three directions to search for the optimal

correlation between the two sets.

Blaffert et al. compared several registration techniques for nodule matching [151].

(b) Category 2:

The methods belonging to Category 2 focus on the automatic matching of all

the nodules in two follow-up CT images. Kusanagi et al., proposed a method to

find pairs of corresponding nodules by representing nodule position as a relative

coordinate in the lung region [152]. Kubo et al. proposed a method to find

corresponding slice positions from two CT images for comparative readings of

CT images taken for mass screening [153]. They employed a template matching

process for matching the lungs, heart, aorta and blood vessels and find nodule

pairs in accordance with the relative position of each nodule in the lung region

and their distance.

Betke et al. used the rigid affine registration and the iterative closest-point (ICP)

algorithm to develop a global nodule registration system [154]. They utilized

anatomical landmarks such as the sternum, vertebrae and tracheal centroids for

initial global registration. Such initial alignment is then refined by an iterative

closest point (ICP) process. Hong et al. introduced a multi-step nodule regis-

tration method by iterative surface registration and smallest euclidean distances

[155]. Reeves et al. used a 3D rigid affine transformation for the registration

of small volumes of interest containing nodules whose localization and size were

predetermined using a 3D template matching method [156]. Since their empha-

sis was nodule growth rather than registration, quantitative results on registration

accuracy were not described. Some non-rigid registration-based methods are also
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introduced [157, 158]. The non-rigid registration has better performance than

rigid and semi-rigid registration for registration of lungs since they can address

the compensation of elastic deformation.

2.4 Disadvantages of previous methods

This section summarizes the main problems of current chest CAD systems. Particularly,

we will focus on the limitations of methods for lung structure segmentation and lung

nodule matching. The main limitations are discussed in the following paragraphs.

(a) Lung nodule segmentation:

The current available nodule segmentation methods suffer from the following

problems:

(1) Classification of nodules and blood vessels: This problem remains challeng-

ing. Due to the low contrast of the intensity between nodules and blood

vessels in CT images, detection of the nodules that connect with blood ves-

sels and the reduction of FPs around blood vessel bifurcations remain a main

problem in nodule detection methods.

(2) Selection of effective feature: The current learning-based FP reduction meth-

ods usually have good performance for reducing FPs. However, too many

different features were introduced for the learning phase. Finding reliable

features is still difficult. Usually, the incorrect reduction of actual nodules

(both attached and isolated types) is unavoidable due to unreliable feature

selection.

(b) Segmentation of pulmonary blood vessel:

The problems of current available pulmonary blood vessel segmentation methods

are shown following:

(1) Avoidance of disconnected segmentation on the small bifurcation point: The

pulmonary blood vessels show a complex tree structure that branches and be-
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comes smaller from the lung hilar toward the periphery of the lung. Discon-

nection point of the pulmonary vessels may occur in the CT data, particularly

on small bifurcation points. Hence, segmentation of the whole pulmonary

blood vessels trees is still challenging.

(2) Classification of the vessels and other structures: To avoid incorrect segmen-

tation of non-vessel structures such as the chest-wall, heart and nodules that

connect with blood vessels is still difficult.

(c) Nodule matching:

The methods belonging to Category 1: Usually run fast but difficult to handle the

elastic deformation due to breath or heartbeat. Also, if there are many SPNs in a

patient, matching them by the methods in Category 1 is time-consuming.

The methods belonging to Category 2: Matching accuracy depends on nodule

detection. If there are too many FPs detected, the actual SPNs in one CT im-

age may be incorrectly matched to the FPs in the second scan. Furthermore, due

to the growth of nodules and the effect of chemotherapy, merged/separated or

appeared/disappeared nodules may occur. To match such nodules remains chal-

lenging using previous methods.

2.5 Basic ideas in this dissertation

Figure 2.2 shows the illustration of the basic ideas and the disadvantages of previous

methods to be solved in this dissertation. We aim to improve the segmentation accu-

racy of both of SPNs and pulmonary blood vessels by segmenting them separately and

simultaneously. Also, segmentation of finely connected pulmonary vessel trees is impor-

tant. For the nodule matching, we propose a method that can automatically find all the

matching nodules from nodule segmentation results (belonging to Category 2). We aim

to deal with the two main limitations of the previous matching methods: 1) avoidance

of false matching, which might incorrectly match an actual nodule to a FP from two
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Figure 2.2: Illustration of the basic ideas and the disadvantages of previous methods to
be solved in this dissertation.

follow-up CT images, and 2) matching of the nodules with temporal changes.

The basic approaches and ideas in this dissertation focus on:

(1) Fine segmentation of both SPNs and pulmonary blood vessels:

We utilize Hessian matrix-based LSE and BSE filters across multiple scales to en-

hance the line-like and blob-like structures as the initial blood vessel regions and

nodule candidates, respectively. The conventional methods focus on employing

only BSE or LSE filters to execute the initial segmentation of nodules or blood

vessels. However, due to similar intensity, incorrect discriminations between nod-

ules and blood vessels may occur in the enhancement results. To obtain sufficient

segmentation results of both the blood vessels and the nodules, we will utilize

both BSE and LSE filters, and incorporate their enhancement results into a fine

segmentation process of both pulmonary nodules and blood vessels. Fine seg-

mentation is performed by a front surface propagation (FSP) procedure that is

based on the fast marching method (FMM) (extended from the level set method

[98]). The initial vessel regions and nodule candidates are incorporated into the

FSP procedure to make the front surface cover the blood vessels with suppressed
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nodules. Consequently, the regions covered by the front surface are considered ex-

tracted pulmonary blood vessels, whereas the nodule detection result is obtained

by removing the nodule candidates covered by the front surface.

(2) Automated matching of segmented nodules:

The rigid and non-rigid registrations can be utilized to compensate for the inelastic

and elastic deformations respectively of follow-up CT images. The corresponding

nodules are found based on similarity calculations between the nodules of two

different CT images. In order to reduce the false matching between actual nod-

ules and FPs, we will utilize the features including position, average intensity,

and diameter of nodule for the similarity calculation. This potentially has bet-

ter performance than the previous work [158], which only used the position of

nodule. Furthermore, by considering the temporal changes of nodules, such as

merger/separation and appearance/disappearance, we introduce three different

patterns of similarity calculation to compensate such temporal changes.

2.6 Main contributions

2.6.1 New approaches

This dissertation introduces a new approachfor the automatic segmentation of SPN and

pulmonary blood vessels, which can segment them finely and separately. Also, a new

approach for nodule matching is introduced. The new approach for nodule and vessel

segmentation that employs the Hessian-based enhancement filter and level set-based

front surface propagation is described in Chapter 3. Then, a nodule matching method

based on rigid, non-rigid registration techniques and a particular similarity measure-

ment procedure including three patterns of similarity calculation is described in Chapter

4.

(1) Segmentation of SPNs and blood vessels:

We originally introduce a Hessian and level set-based methodology for the seg-
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mentation of both SPNs and vessels. This is the first time for introducing a method

that incorporates the enhancement results of Hessian-based LSE and BSE filters

into a level set scheme to improve the segmentation performance of both pul-

monary nodules and blood vessels. The conventional methods focus on employing

only BSE or LSE filter to execute the initial segmentation of nodules or blood

vessels. However, due to similar intensity, incorrect discriminations of the nodules

and blood vessels may occur in the enhancement results The key-point is how to

discriminate the blood vessels and nodules. To deal with such problem, the pro-

posed method incorporated the initial vessel regions and nodule candidates into

the level set-based front surface propagation (FSP) procedure, and make the front

surface cover only the blood vessels with suppression of nodules by developing

a specified speed function. Consequently, both nodules and blood vessels can be

finely segmented.

(2) Nodule matching:

This dissertation originally introduces an automatic nodule matching method that

can match the nodules with temporal changes such as merger/separation and

appearance/disappearance. We consider three patterns of similarity measure-

ment for the matching of normal nodules, merged/separated nodules and ap-

peared/ disappeared nodules, respectively. Also, this method can avoid the incor-

rect matching of actual nodules and FPs. By utilizing features of average intensity

and diameter of nodule for the similarity measure, although two nodule candi-

dates locating close in CT images, they will not be considered as corresponding

nodules if there features are totally different. Furthermore, the propose nodule

matching method has good performance on compensation of both inelastic and

elastic deformations. A roughly global registration, the affine registration, and

the non-rigid registration are used for the compensation of such deformations be-

tween two CT images.
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Chapter 3

Automated segmentations of lung
nodules and pulmonary blood vessels
from 3D chest CT images

This chapter introduces an automated segmentation method for both solitary pulmonary

nodules (SPNs) and pulmonary blood vessels. The proposed method combines Hessian-

based BSE, LSE filters and the Level set-based FSP procedure for segmenting nodules

and blood vessels finely and separately.

3.1 Purpose

Figure 3.1 summaries the main problems in the segmentation of SPNs and pulmonary

blood vessels as well as the solutions in our method. The main purpose of this method

is to improve the segmentation accuracy of both SPNs and pulmonary blood vessels by

discerning between them, especially the vessel-attached nodules and vessel bifurcation

points. For the segmentation of lung nodules, we focus on:

(1) Segmentation of blood vessel-attached nodules.

(2) Reduction of the FPs generated in blood vessel regions.

For the segmentation of pulmonary blood vessels, we focus on:
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Figure 3.1: The problems in the nodule matching and the solutions of the proposed
method

(1) Segmentation of the whole blood vessel trees.

(2) Separation of the blood vessels from the other structures, especially the nodules.

Figure 3.2 shows the volume rendering results of a chest CT image. There are hun-

dreds of SPNs in this patient, including many vessel-attached nodules. Some vessel-

attached nodules are marked with white arrows in Fig. 3.2(b). To distinguish such

nodules from the blood vessels is challenging. The FPs of a nodule segmentation method

are mainly generated in the blood vessel regions, especially the bifurcation points. Fig-

ure 3.3 shows examples of a vessel attached nodule (Fig. 3.3 (a)) and a blood vessel

bifurcation point (Fig. 3.3 (b)). Since they have very similar features such as shapeand

intensity in CT images, reducing the FPs in blood vessels is challenging. Also, obtain-

ing sufficient blood vessel segmentation results, the discrimination of blood vessels and
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Figure 3.2: Volume rendering of a chest CT image. There are hundreds of lung nodules
generated in the lungs of this patient. We mark the different nodules with different col-
ors. The nodules pointed with white narrows are the vessel-attached ones. To separate
such nodules from blood vessels is difficult.

Figure 3.3: Examples of a vessel-attached nodule and blood vessel bifurcation point.

nodules is required.

As shown in Fig. 3.2, in order to handle the above problems and to achieve our

purpose, the proposed method segments the initial regions of SPNs and blood vessels

by employing Hessian-based BSE, LSE filters, which are confirmed have good perfor-

mance for enhancing nodular and vascular structures, respectively [47, 80, 113]. Then,
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we utilize Level set-based front surface propagation (FSP) procedures to perform fine

segmentation. The Level set-based FSP procedure is confirmed as a sufficient tool for

the segmentation of vascular structures [133, 134]. We incorporate the initial vessel

regions and nodule candidates into the FSP procedure to make the front surface only

cover the blood vessels with the suppression of nodules. Consequently, the regions cov-

ered by the front surface are considered extracted pulmonary blood vessels, whereas

nodule detection results are obtained by removing the nodule candidates covered by

the front surface.

Conventional segmentation methods focus on employing only BSE to execute the

initial segmentation of nodules. Then, machine learning-based pattern recognition

methods are usually utilized for reducing FPs. However, finding reliable features is

still difficult, since many blood vessel bifurcations show similar features with nodules

(see Fig.4.1). Usually, the incorrect reduction of actual nodules (both attached type and

isolated type) is unavoidable due to their unreliable feature selection. The proposed

method focus on the elimination of blood vessel regions from nodule candidates to exe-

cute FP reduction. This method originally incorporates the enhancement results of LSE

and BSE filters into a Level set scheme to improve the segmentation performance of

both pulmonary nodules and blood vessels.

3.2 Methods

3.2.1 Overview

Figure 3.4 shows the flowchart of our proposed methods, which consist of three main

procedures to segment both the pulmonary blood vessels and the nodules from the input

3D chest CT images: (1) preprocessing that includes the smoothing and extraction of the

target processing region, (2) enhancement of the initial blood vessel regions and nodule

candidates based on local intensity structure analysis, (3) fine segmentation of the blood

vessel trees and nodules by a FSP procedure. Step (3) is the main procedure of the

proposed method. We originally introduce a level set-based FSP scheme to propagate
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Figure 3.4: Flowchart of the proposed method

the front surface to cover the blood vessel region while suppressing the nodules. When

a nodule candidate is covered by the front surface, we consider this candidate a FP and

reduce it. However, some bifurcation regions of blood vessels are also suppressed by

the propagated front surface because of the incorrect enhancement of the BSE filter. A

correction process is performed to modify the front surface to include such bifurcation

regions that can significantly improve the segmentation results of both pulmonary blood

vessels and nodules. The details of each step are introduced below.
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(a) Axial slice of input chest CT image (a) Segmentation results of target
processing region Itarget

Figure 3.5: Extraction of a processing target region Itarget. (a) shows an axial slice of
a chest CT image. (b) shows the segmentation results of the target processing region
Itarget (blue regions).

3.2.2 Preprocessing

The preprocessing procedure consists of a smoothing process and the segmentation of

the target process region. A median filter of a 3× 3× 3 voxel mask is utilized to remove

the image noise in the input 3D chest CT images. Target processing region Itarget indicate

lung regions without airways, which is the target region for performing the proposed

segmentation method. First, we segment the lung regions Ilung from smoothed 3D CT

images by employing a lung area extraction method that was introduced by Kitasaka

et al. [141]. Ilung mainly includes pulmonary blood vessels, nodules, and airways.

Then Itarget is obtained by removing airways Iairways from Ilung (Fig. 3.5). Iairways is

segmented by performing a region growing-based airway extraction method [142] and

a morphological dilation operation that is utilized to approximate the marginal region

of the bronchus. The Iairways is removed because the bronchus usually runs along the

pulmonary blood vessel and is attached to it. Since the intensity contrast between the

blood vessels and the marginal regions of bronchus is low, incorrect segmentation of the

blood vessels usually occurs at the marginal regions of the bronchus.
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3.2.3 Local intensity structures analysis

A pulmonary blood vessel segment usually shows a line-like shape, but an SPN typi-

cally shows a blob-like shape on CT images. We enhance the voxels that belong to line

and blob structures respectively by investigating the profile computed from a Hessian

matrix at every voxel in a local region in Itarget. The Hessian matrix is computed from

second-order partial derivatives, which are highly sensitive to noise. To address noise

elimination, Sato et al. [111] introduced 3D multi-scale enhancement filters based on

differentiation, which were defined as convolution with derivatives of Gaussians. By

adjusting the standard deviation σ of the Gaussian distribution, the enhancement fil-

ters can emphasize structures of different sizes. However, Gaussian smoothing usually

changes the intensity of vessel bifurcation so that it resembles a blob structure, which

leads to incorrect enhancements at such bifurcation regions. The smoothing procedure

may also enlarge the target structure [143]. To avoid smoothing, we apply an optimum

surface fitting (OSF) that is robust to the image noise instead of Gaussian kernel con-

volution. In input image F = {fi,j,k}, a hypersurface is produced to approximate the CT

value on a local region (cubic region whose edge length is hi) that indicates neighbor-

hoods N(i, j, k) of an interested voxel (i, j, k). A quadratic polynomial of three variables

ϕ(x, y, z; a)

ϕ(x, y, z; a) = a1x
2 + a2y

2 + a3z
2 (3.1)

+ a4xy + a5yz + a6zx + a7x + a8y + a9z + a10

is utilized to indicate the hypersurface. a is a coefficient vector represented as a =

(a1, ..., a10). Then minimum mean square error ϵi,j,k between F and ϕ is given as

ϵi,j,k =
∑

p,q,r∈N(i,j,k)

{fi,j,k − ϕ(p, q, r; a)}2, (3.2)

where (p, q, r) indicates the coordinate of a voxel in local region N(i, j, k). fi,j,k indicates

the CT value at (i, j, k). Thus, optimum a that minimizes ϵi,j,k can be obtained by solving
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Figure 3.6: Eigenvalue distribution of the Hessian matrix during local intensity structure
analysis [145]. (a) shows eigenvalues of the Hessian matrix on a branch of blood ves-
sels, (b) shows eigenvalues of a Hessian matrix on a nodule and (c) shows eigenvalues
on a vessel bifurcation.

the following simultaneous functions:

∂ϵi,j,k

∂am

= −2
∂ϕ

∂am

∑
p,q,r∈N(i,j,k)

{fi,j,k − ϕ(p, q, r; a)} = 0, (3.3)

where m = 1, 2, ..., 10. Then, a Hessian matrix H is obtained by consisting of second-

order partial differential coefficients of ϕ at (i, j, k), shown as

H =


∂2ϕ
∂x2 |(i,j,k)

∂2ϕ
∂x∂y

|(i,j,k)
∂2ϕ
∂x∂z

|(i,j,k)

∂2ϕ
∂y∂x

|(i,j,k)
∂2ϕ
∂y2 |(i,j,k)

∂2ϕ
∂y∂z

|(i,j,k)

∂2ϕ
∂z∂x

|(i,j,k)
∂2ϕ
∂z∂y

|(i,j,k)
∂2ϕ
∂z2 |(i,j,k)

 . (3.4)

If the eigenvalues of H at voxel (i, j, k) satisfy the condition of λ3
∼= λ2 ≪ λ1

∼=

0, then this voxel generally belongs to a line structure such as blood vessel segment

(Fig. 3.6(a)). Following this feature, Krissian et al. [138] proposed a model-based

detection method of tubular structures, which defined a vessel detector by combining

the two highest eigenvalues (λ1, λ2). Sato et al. [110, 111] proposed a LSE filter that

incorporates all three eigenvalues as
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Sline(i, j, k) =

{
| λ3 | ·ψ(λ2; λ3) · ω(λ1; λ2), λ3 ≤ λ2 < 0

0, otherwise
(3.5)

where | λ3 | is utilized to control the magnitude of Sline. ψ(λ2; λ3) and ω(λ1; λ2) are

weight functions written as

ψ(λ2; λ3) =

{
(λ2

λ3
)µ, if λ3 ≤ λ2 < 0

0, otherwise
(3.6)

and

ω(λ1; λ2) =


(1 + λ1

|λ2|)
µ, if λ2 ≤ λ1 < 0

(1 − α λ1

|λ2|)
µ, if |λ2|

α
> λ1 > 0

0, otherwise

(3.7)

µ and α are parameters, ψ(λ2; λ3) differentiates line-like structure from sheet-like struc-

ture. ω(λ1; λ2) differentiates line-like structures from both sheet-like and blob-like struc-

tures, since its output value is close to 1 only at line-like structure. The output value of

Sline(i, j, k) shows the likelihood of the lineness of voxel (i, j, k). Frangi et al. introduced

a similar LSE filter [136], and Descoteaux et al. incorporated this filter into a geometric

flow for segmenting vasculature [137].

However, the eigenvalues at vessel bifurcation points show the relation of λ3 < λ2 <

λ1 ≈ 0 (Fig. 3.6(c))[145], the above conventional LSE filters may output low values

that are close to the one at a nodule. This usually causes the discontinuity of the blood

vessel tree at a bifurcation. To separate vessel bifurcations and nodules, we modified

the LSE filter in Eq. (3.5) as

LSE(i, j, k) =


| λ3/ (λ1 + 1) | ·ψ(λ2; λ3) · ω(λ1; λ2),

λ3 ≤ λ2 < 0

0, otherwise.

(3.8)

Since the absolute value of λ1 at both the line-like structure and the bifurcation point

is much lower than the absolute value of λ3; that at a blob structure is closer to the

absolute value of λ3, this new LSE filter outputs higher enhancement values at vessel
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(a) (b)

(c) (d)

Figure 3.7: Results of line structure enhancement filters. (a) The volume of the original
synthetic image (b) One slice of the original synthetic images, (c) The result of previous
LSE filter [111] and (d) The result of the newly proposed LSE filter.

bifurcations than the value at the nodules. Figure 3.7 shows the comparison results

of performing this new LSE filter and the previous one introduced in Eq. (3.5) to an

artificial image, which includes various sizes of line structures, blob structures, junction

structures, and blob structures attached to line structures. The results show that the

proposed LSE filter outputs a relatively-lower value (Fig. 3.7(d)) at the blob structure

(especially at the center region) than the previous one (Fig. 3.7(c)).

If the eigenvalues of a voxel satisfy the conditions of λ3
∼= λ2

∼= λ1 ≪ 0, generally,
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this voxel belongs to a blob structure such as nodules (Fig. 3.6 (b)). Following this

feature, Sato et al. [111] and Li et al. [80] introduced two BSE filters using | λ3 | as the

magnitude function of the output value. Oda et al. [144] proposed another BSE filter

that used | λ1 | as the magnitude function of output value as

BSE(i, j, k) =

{
(λ1)2

λ̂
, if 0 > λ1, λ2, λ3,

0, otherwise
(3.9)

where λ̂ =| λ1 + λ2 + λ3 | /3. BSE filter in Eq. 3.9 only outputs high values in

the case of [λ1 ≪ 0 and λ1 ≈ λ̂]. Therefore they can be utilized to enhance blob-like

structures. The output value of BSE(i, j, k) indicates the likelihood of the blobness of

voxel (i, j, k). The use of | λ1 | prevents the false enhancement of structures [144], such

as blood vessels. In this paper, we utilized the BSE filter shown in Eq. 3.9 to enhance

the blob-like structures in input CT image.

We utilize both the new LSE and BSE filters across multiple scales as

MS LSE(i, j, k) = max
ri

γLSEri
(i, j, k) (3.10)

and

MS BSE(i, j, k) = max
ri

γBSEri
(i, j, k) (3.11)

to enhance the blood vessels and nodules of different sizes. We assume that the ra-

dius of the local region (hi/2mm) corresponds to the radius of the objective structure,

the scale ri is set to hi/2. Therefore, the calculation of the enhancement filter across

multiple scales is equivalent to calculating the Hessian matrix on different sizes of local

regions. Parameter γ is a normalization coefficient, which is utilized to control the aver-

age enhancement response of multiple scales. LSEri
(i, j, k) and BSEri

(i, j, k) indicate

the filter output values at voxel (i, j, k) when the scale is ri. When voxel (i, j, k) obtains

the maximum enhancement value at the ri scale, this scale must be the optimum scale

for it.

We apply MS LSE(i, j, k) and MS BSE(i, j, k) filters to the voxels in Itarget whose
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CT values range from Vl to Vh. Initial pulmonary blood vessels Ilse and nodule candi-

dates Ibse are obtained as the region whose enhancement value of MS LSE(i, j, k) or

MS BSE(i, j, k) is larger than 0. Due to the similar intensity of the blood vessels and

the nodules, the incorrect enhancement of both MS LSE and MS BSE filters may oc-

cur. This causes the initial pulmonary blood vessels Ilse to be discontinued and includes

non-vessel regions such as nodules, while nodule candidates Ibse may include many FPs

that are mainly produced at the blood vessels.

3.2.4 Fine segmentation of pulmonary blood vessel

and nodules

3.2.4.1 Front surface propagation (FSP)

We utilize an FSP procedure based on FMM [98] to perform fine segmentation. FMM

is a numerical technique for tracking the interfaces and shapes, which extended from

level − sets. FMM propagates an initial front surface (Γ) outwards with speed function

V (i, j, k) > 0 that depends on the image itself. Thus, FMM can describe the evolution

of the front surface as a function of arrival time T (i, j, k) at voxel point (i, j, k) on the

surface as

| ∇T | V = 1, T = 0 on Γ. (3.12)

The front surface is propagated based on arrival time T (i, j, k). The FMM procedure can

segment a desired object by defining an initial front surface inside it and constructing a

speed function that follows its features.

We segment the pulmonary blood vessel trees with suppressed nodule extraction by

incorporating initial segmentation results Ilse and Ibse into the FMM scheme. A region

inside the pulmonary blood vessel is defined as the initial front surface. Then we con-

struct a speed function that becomes fast at initial pulmonary blood vessels Ilse and slow

at nodule candidates Ibse to propagate the front surface. Consequently, the regions cov-

ered by the front surface can be considered segmented pulmonary blood vessels. The

nodule segmentation result is obtained by removing the nodule candidates covered by

46



3.2 Methods

(a) Slice containing the carina (b) Region of I1

(c) Region of I2 (d) Region of Ihilar

Figure 3.8: Segmentation of initial front surface Ihilar. (a) shows an axial slice of a
chest CT image that contains a carina. The starting point of the region growing is the
centerline point of ascending aorta, (b) shows the segmentation results of region I1, (c)
shows region I2 and (d) shows region Ithick utilized as the initial front surface.

the front surface.

3.2.4.2 Initialization of front surface

We segment the thick vessel near the lung hilar (Ihilar) as the initial front surface of

the FMM. The segmentation of Ihilar consists of three procedures. First, we utilize a
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region growing method with a spherical structure element whose radius is 5 [mm] to

segment region I1 (Fig. 3.8(b)). The starting point of the region growing is selected as

the centerline point of the ascending aorta on the axial slice, which contains the carina

(Fig. 3.8(a)). The approach for finding this centerline point is introduced by Feuerstein

et al. [140]. Second, a logical disjunction process is performed between I1 and Itarget to

get region I2 (Fig. 3.8(c)), contains Ihilar and some chest wall-attached nodules. Third,

we select the largest connected component from the right and left lung regions as the

Ihilar region (Fig. 3.8(d)).

3.2.4.3 Construction of speed function

We utilize the following speed function,

F (i, j, k) = Fline blob(i, j, k) × Fmargin(i, j, k), (3.13)

to propagate the front surface. F (i, j, k) represents the propagation speed at voxel

(i, j, k). In Eq. (3.13), function Fline blob (i, j, k) shows a speed that is based on the

likelihood of lineness and blobness at voxel (i, j, k). Fline blob(i, j, k) is constructed by

incorporating initial blood vessels Ilse and nodule candidates Ibse as

Fline blob = et1·f(i,j,k), (3.14)

where

f(i, j, k) = L(i, j, k) − κB(i, j, k) (3.15)

t1 is a parameter that is utilized to normalize the value of f(i, j, k). L(i, j, k) denotes

the enhancement value of the MS LSE filter, and B(i, j, k) denotes the enhancement

value of MS BSE at voxel (i, j, k). κ is a normalization coefficient that is defined as

κ = L̂/B̂, where L̂ and B̂ are the average enhancement values of the voxels belonging to

Ilse and Ibse, respectively. The function f(i, j, k) combines the output values of MS LSE

and MS BSE filters at a voxel (i, j, k). Although this voxel may be enhanced by both

MS LSE and MS BSE filters, f generally outputs a large value at the line-like region,

48



3.2 Methods

while outputing low values at the blob-like region. Hence, Fline blob is configured to

perform fast propagation on line-like regions and slow propagation on blob-like regions,

enabling the front surface to cover the blood vessels by suppressing the coverage on the

nodules. Function Fmargin, which is introduced to terminate the propagation at the

marginal regions of the blood vesselsand is represented as

Fmargin(i, j, k) = e(−t2·|∇I(i,j,k)|), (3.16)

where ∇I(i, j, k) denotes the gradient at voxel (i, j, k). A parameter t2 is utilized to

normalize the value of ∇I(i, j, k). The intensity around the centerline of the blood ves-

sel changes slowly but decreases rapidly near the marginal regions in CT images. By

investigating the ∇I(i, j, k) of each voxel, we construct function Fmargin to output small

values around the marginal region so that the surface propagation can be terminated.

The front surface is propagated by speed function F (i, j, k) to perform the fine segmen-

tation of the pulmonary blood vessels and nodules. We consider that the region covered

by the front surface belongs to the blood vessel region. When a nodule candidate in Ibse

is covered by the front surface, this is an FP of nodule detection, and we remove it from

the nodule candidates.

3.2.4.4 Correction of front surface

However, some vessel bifurcations show similar intensity distributions to a nodule,

which lead to the incorrect enhancement of the MS BSE filter at such bifurcations.

These bifurcations may also be enhanced by the MS LSE filter since they are part of

the blood vessels. Whether front surface propagation terminates at such regions de-

pends on the enhancement values of the MS LSE and MS BSE filters. The incorrect

termination of propagation occurs when MS BSE outputs much higher enhancement

values. A correction procedure of front surface is required to reduce such incorrect

termination.

Due to the incorporation of Ilse and Ibse, the incorrectly terminated front surface

usually shows an irregular shape and the voxels around it show a high rate of blood
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vessels (A(i) in Fig. 3.9). The front surface that is correctly terminated at an actual

nodule usually shows a regular sphere shape and only a few voxels around it belong

to blood vessels (B(i) in Fig. 3.9). Following such features as shape and neighborhood

profile, we perform nodule checking processing to check the terminated front surface and

modify the incorrectly terminated one. The details of this nodule checking processing are

described below.

Nodule checking processing

Input: Terminated front surfaces

Output: Modified front surfaces

Procedure:

1. Select all terminated front surfaces Si(i = 1, 2, ..., m) that stop at the nodule candi-

dates (A(ii) and B(ii) in Fig. 3.9). m is the number of selected front surfaces.

2. Extract volume region Bi, which consists of connected voxels that are surrounded

by Si and belong to the nodule candidates in Ibse (A(iii) and B(iii) in Fig. 3.9).

The extraction process is performed by executing a region growing scheme

3. Calculate centroid G of each Bi (A(iii) and B(iii) in Fig. 3.9). Search for Bi whose

centroid G is outside of it or whose intensity of G is lower than the average in-

tensity. Consider such Bi a non-nodule and eliminate its corresponding nodule

candidate from Ibse.

4. Apply a neighborhood profile checking procedure to the remaining Bi, which means

calculating the ratio of the blood vessel voxels in spherical region Ω around each

remaining Bi. From Fig. 3.6(b), we find that the eigenvalues of the Hessian matrix

around the marginal region of nodules become line-likely, so the output value of

the MS BSE filter at such region becomes low and the front surfaces usually

cover such regions incorrectly (Fig. 3.9(B(i))). To avoid such regions, spherical
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Figure 3.9: Illustration of nodule checking processing. Front surface that terminates at
blood vessel regions usually shows an irregular shape (A(i) in Fig. 3.9), whereas the
one terminated at nodules shows a regular spherical shape (B(i) in Fig. 3.9). During
nodule checking processing, we first select whole front surfaces Si that stopped at nodule
candidates (A(ii) and B(ii) in Fig. 3.9).Volume region of Bi is extracted using region
growing from Si, and the centroid G of Bi is found (A(iii) and B(iii) in Fig. 3.9). Add
each Bi that is considered a non-nodule into front surface (Fig. 3.9(A(v)). For that
considered a nodule, restore the nodule candidates that correspond to Bi (B(v) in Fig.
3.9).

region Ω is located between 2r and 3r from G of each Bi ((A(iv)) and B(iv) in Fig.

3.9), and r is the radius of Bi.

5. Consider Bi, whose ratio of vessel region inside Ω is larger than ρ, a non-nodule,

and eliminate the corresponding nodule candidate of such Bi from Ibse. Consider

Bi whose ratio of vessel region inside Ω is lower than ρ, an actual nodule, and
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Table 3.1: Acquisition Parameters of chest CT images
Dataset 1 Dataset 2

Image size (voxels) 512 × 512 512 × 512
Number of slices 185 − 728 103 − 350
Pixel spacing (mm) 0.523 − 0.684 0.508 − 0.762
Slice spacing (mm) 1.25 1.25 − 2.5
Slice thickness (mm) 2.5 1.25 − 2.5
Tube voltage (kV) 120 − 140 120 − 140
Tube current (mA) 100 − 320 30 − 75

modify its marginal regions (Fig. 3.9(B(v))).

6. Add each Bi that is recognized as a non-nodule to the blood vessels (Fig. 3.9(A(v))).

Restart the propagation by the modified front surface.

The procedure described above is applied iteratively until no new modification of

the front surface occurs.

3.2.4.5 Final segmentation

We obtain the final segmentation results after the nodule checking processing is stopped.

The regions covered by the front surface are considered the final segmentation results

of the pulmonary blood vessel. The modified nodules are considered the final nodule

regions.

3.3 Experiments

The performance of the proposed method was evaluated by comparing the results with

the ground truth data of both the nodules and the blood vessels. To verify the effective-

ness of the OSF procedure for local intensity analysis, we compared the performance

of the proposed method (OSF+FSP) to that of the Gaussian kernel convolution (GKC)-

based method (GKC+FSP) on the same datasets. To verify the effectiveness of the

proposed method on the segmentation of the pulmonary blood vessel, we compared it
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to a blood vessel segmentation method based on the MS LSE filter and region grow-

ing (LSE+RG). We also compared the performance of the proposed method to a nodule

detection method based on the MS BSE filter and the reduction of a small connect-

ing component (BSE+RSCC) to verify the effectiveness of the proposed method on the

segmentation of the pulmonary nodules.

The proposed method was applied to two datasets of 3D chest CT images. The first

dataset includes 20 cases of standard-dose CT images that were randomly chosen from

our local database. The second dataset includes 20 cases of low-dose CT images that

were randomly chosen from a public database: LIDC. The specifications of these CT im-

ages are shown in Table 3.1. We used the first dataset for determining the parameters of

our proposed method and validation for the segmentation of both pulmonary SPNs and

blood vessels. The second dataset is only used for validating the segmentation of SPNs

by using determined parameters. A total of 416 and 55 SPNs with diameters from about

3.0 mm to 27 mm were manually identified by physicians from these two datasets. To

verify the performance of the proposed method on pulmonary blood vessels segmenta-

tion in terms of the sensitivity of segmented vessels, we manually segmented 10 sets of

pulmonary blood vessels (validated by physicians) from dataset 1 as the ground truth.

To obtain the ground truth data of the whole datasets is extremely exhausting and time

consuming.

While testing the proposed method on dataset 1, we set the range of CT values in

the local intensity analysis as Vl = −700 H.U., Vh = 400 H.U. ( mentioned in Section

3.2.3), since most of the blood vessels and nodules can be observed among this intensity

range on standard-dose CT images. We set the parameters α and µ to 0.25 and 0.5, as

suggested in Sato et al. ([111]). The threshold Tstop and ρ were set to 15000 and

0.3, which was determined experimentally ( we discuss them in Sections 3.4.1 and

3.4.2). To determine the normalization coefficient γ of MS LSE and MS BSE filters,

we applied the unnormalized filters to the CT images in dataset 1. Multiple scales

were set as [1.25, 2.5, ... 10 mm]. The blue curves in Fig. 3.10 show the average

responses of the unnormalized filters, the one in Fig. 3.10(a) was approximated to
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(a) Normalization factor γ of MS LSE filter

(b) Normalization factor γ of MS BSE filter

Figure 3.10: Average response of MS LSE and MS BSE filters. Blue curves show
the average response without normalization on single scale arranged 1.0 mm to 8.0 mm
with step of 1.0 mm, and red ones show the curve by normalization. Normalization
factor γ of MS LSE and MS BSE filters is r2

i and r
3/2
i , respectively.

y = 530x2, and the one in Fig. 3.10(b) was approximated to y = 843x1.5 by curve

fitting. Hence, we set the normalization coefficient γ of the MS LSE and MS BSE

filters to r2
i and r

3/2
i , respectively. The red curves in Fig. 3.10 denotes the average

enhancement responses of the normalized MS LSE and MS BSE filters. To verify

our assumption that the scale (radius of local region: h/2 mm) corresponds with the

radius of objective structure, we investigated the average responses of BSE and LSE

filters at the center of the structures in Fig. 3.7. The results are shown in Fig. 3.11.
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(a)

(b)

Figure 3.11: Illustration of normalized responses of LSE and BSE filters on different
scales (the radius of local region) at the center of different structures in Fig. 3.7. The
largest responses of both BSE and LSE filters are obtained when the scale is approxi-
mate to the radius of objective structures. (a) shows the responses of LSE filter at line
structures with different radii (1.25, 2.5, 5, 10mm), and (b) shows the responses of the
BSE filter at blob structures with different radii (2.5, 5, 7.5, 10mm).

The responses of both BSE and LSE filters obtain the largest values while the radius

of the local region approximates to the radius of structure, which confirmed that our

assumption was correct. Hence, the configuration of multiple scales depends on the

size of the enhancement target. In our experiments, the smallest scale and interval

were set equivalent to the slice spacing (1.25 mm) of the input CT images in dataset 1.

We segmented the blood vessels of diameter less than 12 mm, since usually no vessel
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Figure 3.12: An example of gradient distribution calculated from one CT image.

has a larger diameter except for the thick vessels near the hilar, which are extracted as

the initial front surface in the fine segmentation procedure. Thus, we set the multiple

scales of MS LSE as [1.25, 2.5, ... 6.25 mm]. In order to enhance the nodules of

the diameters from about 3.0 to 30 mm, multiple scales of MS BSE were set as [1.25,

2.5, ... 15 mm]. According to Fig. 3.10, the largest output value of filters is close

to 1000. To normalize the output value of Eq. (3.15) between 0 and 100, we set the

parameter t1 (in Eq. (3.14)) as t1 = 10−1. Figure 3.12 shows the gradient ∇I(i, j, k)

that is calculated from the input CT image, which shows the largest value is close to

10000. In order to normalize the output value of Eq. ((3.16)), we set the normalization

parameter t2 (in Eq. (3.16)) to t2 = 10−3. After the experiments by using dataset 1, we

tested the proposed method with determined parameters by using dataset 2. For each

input low-dose CT image, we interpolated its slice spacing to 1.25 mm by using B-spline

interpolation. Due to the lower intensity, the lower threshold of intensity value Vl was

set to −800 H.U..

The performance of the proposed method was evaluated by comparing the results

with the ground truth data of both the nodules and the blood vessels. To verify the

effectiveness of the OSF procedure for local intensity analysis, we compared the perfor-
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Table 3.2: Pulmonary blood vessel segmentation results of 10 CT images using proposed
method

Case 1 2 3 4 5 6 7 8 9 10 Avg.

Num. of
branches 1756 1869 1964 1895 2125 2046 1896 2154 2216 1562 1692

Extraction
rate (%) 95.9 96.0 94.7 93.7 96.2 91.7 89.7 88.9 87.9 95.3 93.0

mance of the proposed method (OSF+FSP) to that of the Gaussian kernel convolution

(GKC)-based method (GKC+FSP) on the same datasets. To verify the effectiveness of

the proposed method on the segmentation of the pulmonary blood vessel, we compared

it to a blood vessel segmentation method based on the MS LSE filter and region grow-

ing method (LSE+RG). We also compared the performance of the proposed method to

a nodule detection method based on the MS BSE filter and the reduction of a small

connecting component (BSE+RSCC) to verify the effectiveness of the proposed method

on the segmentation of the pulmonary nodules.

3.4 Results

3.4.1 Validation of pulmonary blood vessel segmentation

We evaluated the performance of the proposed method on pulmonary blood vessel seg-

mentation by ten CT images obtained from dataset 1. We evaluated the extraction rate

by the number of vessel branches. The centerline voxels of the ground truth data were

detected and used to construct a tree structure of the true pulmonary blood vessels.

For each blood vessel branch, if its centerline voxels of ground truth were covered by

segmented blood vessels larger than 80%, we considered this branch to be successfully

extracted. The different setting of Tstop brings different segmentation results of both

blood vessels and SPNs. Figure 3.13 shows the iterations of the FSP procedure with

different settings of Tstop on a CT image. The regions of blood vessel are shown in red,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.13: Illustration of the iterations of the FSP procedure with different settings
of Tstop , while (a) Tstop = 0, (b) Tstop = 10, (c) Tstop = 100, (d) Tstop = 1500, (e)
Tstop=15000, and (d) Tstop=20000. The regions of blood vessel are shown in red, and
the candidates of SPNs are shown in green. With the growing of Tstop, the regions of
the blood vessel are propagated and the FPs of SPNs are reduced. (e) shows the final
segmentation result.
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Figure 3.14: Illustration of the change sensitivity of segmented pulmonary blood vessels
with the different settings of Tstop. When setting the Tstop to 15,000, we obtained most
sensible results.

and the candidates of SPNs are shown in green. With the growing of Tstop, the regions

of the blood vessel are propagated as well as the FPs of SPNs are reduced (Fig. 3.13).

We set the Tstop based on the sensitivity of segmented blood vessels. Since the extrac-

tion rate of segmented blood vessel grows few whereas the FP rate grows rapidly, while

setting the Tstop larger than 15000 (Fig. 3.14), we set Tstop=15000 in the experiments.

Table 3.2 shows the evaluation results of the pulmonary blood vessels segmented on ten

CT images by setting the Tstop to 15000. The proposed method was able to extract blood

vessel regions at 93%. Figure 3.13(e) shows an example of segmentation results. These

results confirmed that the proposed method can segment blood vessels and nodules

finely and separately.

3.4.2 Validation of pulmonary nodule segmentation

The performance of the proposed method on the segmentation of nodules was evalu-

ated by using both dataset 1 and dataset 2. The evaluation results are given as detection
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Table 3.3: TP rate and number of FPs on 20 standard-dose CT images using our pro-
posed nodule detection method

Case 1 2 3 4 5 6 7 8 9 10 Avg.

Num. of
nodules 15 19 19 22 23 22 33 61 83 107 40.4

Num. of FPs before
fine segmentation 304 368 283 310 315 320 325 354 375 390 334

TP rate (%) 93.3 100 94.7 100 100 95.4 84.8 91.8 84.3 82.2 92.7

Num. of FPs after
fine segmentation 7 8 11 9 11 6 8 10 12 15 9.7

Case 11 12 13 14 15 16 17 18 19 20 Avg.

Num. of
nodules 2 2 2 2 2 4 3 4 3 2 2.6

Num. of FPs before
fine segmentation 320 287 295 354 263 278 324 282 298 315 302

TP rate (%) 100 100 100 100 100 100 100 75 100 100 97.5

Num. of FPs after
fine segmentation 10 12 8 11 10 7 9 12 9 11 9.9

rate (TP rate) and the number of FPs. Since a different setting of parameter ρ (in the

neighborhood profile checking procedure of nodule checking processing) brings differ-

ent detection results, we changed ρ from 0 to 0.8 with intervals of 0.1 to investigate

the sensitivity of the proposed method by using standard-dose CT images. The FROC

curve is shown in Fig. 3.15. When ρ was set to zero, we obtained the least number of

FPs by 5.1/case, because almost all of the nodule candidates that were input into the

neighborhood profile checking procedure were considered non-nodules. However, the

detection rate was very low (72%), because all of the actual nodules connected to the

blood vessels were incorrectly considered non-nodules. Both the detection rate and the

number of FPs increased to accompany the growth of ρ. From the FROC curve shown

in Fig. 3.15, the best results were obtained when ρ = 0.3. In this case, we obtained
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Table 3.4: TP rate and number of FPs on 20 low-dose CT images using proposed nodule
detection method

Case 1 2 3 4 5 6 7 8 9 10 Avg.

Num. of
nodules 5 1 6 2 1 1 1 4 1 1 2.3

Num. of FPs before
fine segmentation 226 336 238 293 407 371 339 348 406 493 346

TP rate (%) 100 100 83.3 100 100 100 100 75 0 100 85.8

Num. of FPs after
fine segmentation 7 3 12 13 11 15 14 12 6 10 10.3

Case 11 12 13 14 15 16 17 18 19 20 Avg.

Num. of
nodules 1 2 2 5 11 2 2 2 2 3 3.2

Num. of FPs before
fine segmentation 278 228 311 467 128 235 407 276 244 390 296

TP rate (%) 100 100 100 80 90.1 100 100 75 100 100 97.1

Num. of FPs after
fine segmentation 5 9 12 6 14 18 9 8 15 11 10.7

a 95% average TP rate with approximately 9.8 FPs/case. We also tested the proposed

method by using dataset 2, with the same setting of parameter ρ. The results show

that proposed method can extract about 91.5% nodules with 10.5 FPs/case from the

low-dose CT images. The details of these results are shown in Table 3.3 and Table 3.4.

Figure 3.16 shows examples of nodules that are connected to the blood vessels.

The proposed method can recognize such nodules separated from blood vessels and

segment them (Fig. 3.16(c)). Among the 40 experimental CT images, the one with the

largest number of nodules includes 107 nodules, and the least includes two nodules.

The diameters of most nodules range from 3.0 and 5.0 mm; only 71 nodules are larger

than 10 mm. Among the 471 nodules, the number of blood vessel-attached nodules is

131, the others are isolated nodules and pleura-attached nodules. The results in Table
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Figure 3.15: FROC curve for nodule detection with parameter of ρ.

Table 3.5: Comparison of proposed method to conventional methods

Pulmonary blood vessels Nodules
Method Extraction rate TP rate Num. of FP

OSF+FSP (Proposed) 93.0 95.1 9.8
GKC+FSP 91.6 95.2 16.2
LSE+RG 65.6 - -
BSE+RSCC - 95.2 46.8

3.3 and Table 3.4 show that the performance of the proposed method is stable, and

confirm that our method is feasible for nodule segmentation from both standard-dose

and low-dose CT images. By observing the segmentation results, we found that all of

the 65 larger nodules, the isolated nodules were correctly segmented. Only one pleura-

attached nodule in No. 9 case of low-dose CT image was miss-segmented, since this

nodule was excluded from our extracted lung region.
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(a) Original image

(b) Ground truth of nodules

(c) Segmentation results

Figure 3.16: Examples of segmentation results of nodules connected to blood vessels.
(a) shows original CT images, (b) shows true nodule regions painted in green. (c) shows
segmentation results. Segmented nodules are shown in green; blood vessel regions are
shown in red.

3.4.3 Comparison with conventional methods

Table 3.5 summarizes the comparison results of the proposed and conventional methods

by using the stadndard-CT images obtained from dataset 1. The proposed method em-

ployed the OSF procedure for intensity structure analysis that was utilized to enhance

the blood vessels and the nodules as the initial segmentation results. The conventional

method for the intensity structure analysis was based on GKC. To compare the perfor-

mance of OSF with GKC, we also applied a segmentation method consisting of GKC and
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FSP on the same data set. The results in Table 3.5 show that the GKC+FSP method

segmented blood vessel regions at 91.6%, which is similar to the proposed method.

However, GKS+FSP method detected about 95% nodules correctly with 16.2 FPs/case,

which produced 65.3% more FPs than the proposed method.

The proposed method incorporated the MS LSE and MS BSE filters to improve

the segmentation performance of both the blood vessels and the nodules. The conven-

tional segmentation methods of blood vessels or nodules usually only employs MS LSE

or MS BSE filters to segment blood vessels or nodules. To verify the effectiveness of

the proposed method that uses both filters, we also tested a pulmonary blood vessel

segmentation method (LSE+RG) and a nodule detection method (BSE+RSCC) for sev-

eral cases. Table 3.5 shows that the best performance was achieved by the proposed

method.

3.5 Discussion

This paper proposed and evaluated an automatic segmentation method for both pul-

monary blood vessels and nodules. We utilized the MS LSE and MS BSE filters to

enhance line-like and blob-like structures as the initial blood vessels and nodules, re-

spectively. In the local intensity analysis of the enhancement filter, the OSF procedure

was utilized instead of the GKC procedure, because the GKC procedure usually causes

undesired enhancement due to the smoothing process. The results of these initial seg-

mentations were incorporated in fine segmentation, which significantly improved the

segmentation performance of both the blood vessels and the nodules.

From the results in Tables 3.2, 3.3, 3.4 and 3.5, we confirmed that the proposed

method is feasible for the segmentation of pulmonary blood vessels and nodules.

3.5.1 Effectiveness of optimum surface fitting

As mentioned in Section 3.2.3, we employed OSF instead of GKC for local intensity

structure analysis to avoid the incorrect enhancement caused by smoothing. The com-

64



3.5 Discussion

Figure 3.17: Comparison of BSE filter based on Gaussian kernel and surface fitting.
(a) shows a chest CT slice with nodules painted in green. (b) shows the enhancement
result of BSE filter based on surface fitting, and (c) shows the result of BSE filter
based on a Gaussian kernel. Regions inside blue circles show incorrect enhancement at
blood vessel regions

parison results of OSF and GKC-based methods show that the OSF-based method has

better nodule detection performance. The reason is that Gaussian smoothing usually

changes the intensity distribution of some blood vessel regions (particularly the bifurca-

tion and thick vessels) to be much more blob-likely. The MS BSE filter enhances such

regions incorrectly (Fig. 3.17), which leads to FPs of the nodules and the shortage of

blood vessels. Such a shortage of blood vessels usually shows small spheres; since we

evaluated the segmentation results of pulmonary blood vessels by the number of blood

vessel branches, the evaluation results of the method that consists of GKC and FSP has

no large difference from the proposed method (Table 3.5).

3.5.2 Effectiveness of fine segmentation for

pulmonary blood vessel segmentation

As shown in Table 3.5, the proposed method achieved better results than the conven-

tional methods on the segmentation of pulmonary blood vessels. The proposed method
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(a) (b)

(c) (d)

Figure 3.18: Illustration of blood vessel segmentation: (a) shows axial slice of input
chest CT image, (b) shows the enhancement result of MS LSE filter, (c) shows the
segmentation result by region growing from initial blood vessels. Due to discontinuity,
whole vessel tree cannot be segmented entirely (blue circles). Some nodules connected
with vessels are incorrectly segmented (green circles). (d) shows the segmentation
result of the proposed method.

utilized a new MS LSE filter that has better performance for separating the vessel

bifurcations and SPNs than the conventional one [111], especially while the largest

eigenvalue λ1 of Hessian matrix at the bifurcation point is close to 0. However, this

new filter still has low sensitivity at several vessel bifurcations, which leads to the dis-

66



3.5 Discussion

continuity of initial pulmonary blood vessels Ilse (Fig. 3.18(b)). The Ilse also includes

several nodule regions because of the incorrect enhancement of the MS LSE filter (Fig.

3.18(b)). Thus, if perform the LSE+RG method on Ilse to address the fine segmentation

of blood vessels, segmenting the whole vessel tree is difficult, and the nodules that are

connected with blood vessels will be segmented incorrectly (Fig. 3.18(c)). The results

shown in Table 3.5 also indicate that the LSE+RG method was insufficient for the seg-

mentation of pulmonary blood vessels. We improve the segmentation performance by

incorporating initial pulmonary blood vessels Ilse and nodule candidates Ibse, a speed

function that performs fast propagation at Ilse, and performs slow propagation at Ibse to

propagate the front surface. Consequently, the nodules connected to the blood vessels

were suppressed in the proposed fine segmentation of blood vessel (Fig. 3.18(d)). Fig.

3.18(d) also shows that our FSP scheme can avoid the discontinuity of blood vessels

and segment the whole pulmonary blood vessel tree. The reason is that at the discon-

tinuity points of initial blood vessels Ilse, although the speed of surface propagation

becomes slower, the front surface will still be propagated to cover such regions unless

it belongs to the nodule candidates in Ibse or the function Fmargin (Eq.(3.16)) outputs a

small value.

3.5.3 Effectiveness of fine segmentation for

pulmonary nodule detection

The results in Tables 3.3, 3.4 and 3.5 show that the fine segmentation procedure has

good performance for FP reduction. The nodule candidates that were obtained by

MS BSE filter included around 300 FPs/cases (Tables 3.3, 3.4). After fine segmen-

tation, the number of FPs was reduced significantly. This also proved that the FPs were

mostly produced in the blood vessel regions. When the TP rate is around 95%, the

number of FPs of the BSE+RSCC method is 46.8/cases, which is insufficient as a nod-

ule detection method. Augmentation of the threshold in RSCC may lead to fewer FPs,

but usually the TP rate will also be significantly reduced.

The common approach reducing FPs for nodule detection is to classify nodules and
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(a) (b) (c)

Figure 3.19: Illustration of nodule segmentation: (a) shows axial slice of input chest CT
image, (b) shows nodule candidates obtained by MS LSE filter. The FP indicated by
the arrow shows a regular sphere region. (c) shows a front surface terminating at the
FP and indicates an irregular shape.

FPs by utilizing several geometric features [[74, 86, 120]]. However, the FPs included

in the nodule candidates often show regular spherical shapes as well as the actual nod-

ules (Fig. 3.19(b)), which complicates classification. As mentioned earlier in Section

3.2.4.4, in our FSP procedure, the front surface that terminats at such FPs shows ir-

regular shape (Fig. 3.19(c)), and the neighborhood profile of such FPs differs from

that of an actual nodule. By investigating these two profiles, we executed a nodule

checking procedure during fine segmentation, which can help classify the actual nodules

and FPs and achieve gratifying results. In addition, only the nodule candidates that are

connected to the blood vessels will be input into the nodule checking procedure, which

guarantees that all the isolated nodules and pleura-attached nodules will be segmented

correctly.

3.5.4 Limitations

Although the proposed segmentation method in this chapter provided good perfor-

mance in the segmentation of both lung nodules and blood vessels, this method still

has some limitations as follows:
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(a) (b)

Figure 3.20: Examples of FPs that occurred in the mediastinum region. The region
marked by green shows two examples of the FPs.

(1) The performance of nodule detection depends on the pulmonary vessel segmen-

tation results, and vice versa. The proposed method aims to improve the segmen-

tation performance of both SPNs and vessels by incorporating the information of

their initial segmentation results into the fine segmentation. A FSP procedure

executed the fine segmentation that can segment SPNs and blood vessels by sep-

arating them. However, if the segmentation of blood vessels fails, the accuracy of

nodule segmentation will worsen.

(2) The proposed method cannot reduce the FPs that are generated in other organs

such as bones, chest walls or cardiac area. The proposed method focuses on dis-

criminating the nodules and blood vessels to improve segmentation performance.

Most FP that occurs at blood vessel regions can be removed. However, several FPs

may occur in bone, chest wall and mediastinum region (Fig. 3.20). The proposed

method cannot reduce such FPs.

(3) Several incorrect discriminations between nodules and vessels still occurred. The

proposed method failed to reduce several FPs in vessel bifurcations that were

strongly enhanced by the BSE filter.
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3.6 Conclusion

This chapter presented a novel segmentation method of pulmonary blood vessels and

nodules. The initial segmentation results were obtained by enhancement filters that are

based on local intensity analysis. Then we combined the initial segmentation results of

the blood vessels and nodules into an FSP procedure to perform fine segmentation,

which can improve the segmentation results significantly. The experimental results

showed that the proposed method can simultaneously segment both the pulmonary

blood vessels and the nodules finely. Also, the experimental results proved that the

performance of the proposed method is better than the compared conventional meth-

ods, which confirmed the effectiveness of this method. Future work includes (a) the

reduction of FPs at non-vessel regions of the nodule detection method, (b) evaluation

through a large number of cases, and (c) the application of the proposed method to

actual CAD systems.
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