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1  Preface 

 

1.1  Background 

One of the fascinating characteristics of human mind is the ability to imagine 

one's own future states and the mental states of others. Both future self and 

present (or future) other cannot be experienced directly and are accessible only 

through an act of imaginations. These kinds of representations are called detached 

representations which differ from perceptions which are cued representations, 

representations about something that is present here and now (Gärdenfors, 1995). 

They provide several advantages: if the organism carries a small-scale model of 

external reality and of its own possible actions within its head, it is able to play 

trial and error in its internal representation, without risking its life in the real 

world (Craik, 1943). It comes near to stating the obvious that our ability to 

understand the mental states of others is also an important when it comes to deal 

with fellows in social circumstances. This thesis is intended as an investigation of 

the emergence of the primitive functions of mind by focusing on (1) planning 

abilities, i.e., envisioning various actions and their consequences for getting from 

start to goal (Gulz, 1991) and (2) Theory of Mind (ToM), i.e., understanding of 

others as having intentional states such as beliefs and desires (Premack & 

Woodruff, 1978). 

     For a long time the issue of the nature and role of representation is one of 

the fundamental questions in philosophy. Thanks to the recent progress in 

psychology and neuroscience, researchers have attempted to approach this 

problem in a scientific manner. Recent functional neuroimaging experiments and 

studies of neurological and psychiatric patients have been producing lots of 

significant results for understanding our ability to maintain and manipulate mental 

representations. For example, the left and right parietal cortex has been considered 

to play an important role for imaging one’s own and another’s mental states, 

respectively (Allison et al., 2000; Ogawa et al., 2006; Wolpert et al., 1998). It has 



 

2 

 

also been suggested parietal regions predominantly associated with storage 

functions, while prefrontal areas are related to control processes, such as active 

maintenance (Levy & Goldman-Rakic, 2000; Oliveri et al., 2001; Shallice, 1988).  

     These studies are based on the analytic or reductionist approaches that 

attempt to break down complex systems into a specific part of the system (Fig. 

1.1). There is no longer any doubt about the fact that these approaches have been 

producing lots of valuable results. However, researchers are increasingly aware of 

their drawbacks. One important drawback in this approach is that the difficulty of 

analyzing a system grows exponentially as the complexity of the system increases 

(Evans, 2003). Several functions of mind emerge out of internal recursive 

interactions between components in the brain and brain-body-environment 

interactions. Since there are lots of parameters in its system, it is difficult to 

control them appropriately by the instruction just as scientists would wish (Miwa, 

1999). Valentino Braitenberg (1984) argued that if we wish to discover how some 

system works, it is often easier to do so by building successively more complex 

models, rather than by attempting to infer the mechanism from mere observation. 

In general, it might be easier to investigate the mechanisms of the target by 

synthetic methods than by analytic ones when it comes to complex systems. This 

is what Braitenberg (1984) refers to as the "law of uphill analysis and downhill 

invention," that the deductive reasoning of the inventor creates a much simpler 

(and correct) system than the inductive reasoning of the outside observer. That is 

to say, in induction one has to search for the way, whereas in deduction on follows 

a straightforward path (Fig. 1.1). 

 

Figure 1.1: Scientific approaches to the mind. 
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     The synthetic or constructive methods are the engineering approaches to the 

mechanism concerning information processing in the brain. They have been 

employed to construct models grounded on physiological evidence and some 

hypotheses, and to analyze the characteristics of the models (Arita et al., 1995). 

These models not only give informative suggestions to study on the brains, but 

also are applicable to development of new systems which have facilities for more 

intelligent and flexible information processing. Furthermore, a new science called 

Artificial Life (ALife) has been established recently which is considered to be an 

extension of the synthetic approaches. It is developing into a new type of 

discipline, based on computational construction as its main tool for exploring and 

producing a science of not only "life as it is" but also "life as it could be" (Langton, 

1987). Accordingly, it allows scientists to gain a more profound understanding 

about the fundamental aspects of life and intelligence than would be possible if 

their research focus was limited to natural systems only (Bisig and Pfeifer, 2008).  

 

1.2  The aim of our study 

This thesis investigates the emergence of the primitive functions of mind, 

focusing on the planning for future events and general mind reading ability, so 

called Theory of Mind (ToM), by using a computational model based on the ALife 

approach. The first goal is to define the conditions for the emergence of planning 

abilities. The second goal is to investigate the mechanism of the emergence of the 

ToM by modeling the brain at the functional level. 

 

1.2.1 Evolution of the planning abilities 

Human beings have behavioral flexibility based on a general faculty of planning 

for future events. It has been said that the prefrontal cortex, known to be critically 

involved in planning abilities, has been especially enlarged through the human 

evolution than other brain areas (Deacon, 1997). Large brains are extremely costly 

both to maintain and evolve. Therefore, in a niche where there is little to use 

planning abilities, it might have a relatively small impact on evolution of it. In 

chapter 2 we consider the question: what kinds of environment contribute to 
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emergence of the planning abilities?  

     Natural selection has been considered as one of the most widely held 

mechanisms to explain the emergence of living creatures' complex characteristics. 

Evolutionary psychology has been attempted to explain psychological traits such 

as emotion, cognition, and planning as adaptations as the functional products of 

natural selection or sexual selection. Recent studies have indicated that ecological 

problems, such as getting a resource from the environment and avoiding capture 

by a predator, drove the evolution of intelligence of human (Byrne, 1997; Darwin, 

1871; Hill, 1982; Potts, 1998; Tooby & DeVore, 1987). A different approach to the 

problem of the evolution of intelligence of human involves the consideration of 

the social aspect, such as the necessity of dealing continually with our fellow 

humans (Alexander, 1971, 1990; Dunbar, 1998; Humphrey, 1976).  

     Considering all of the above factors, this chapter explores the dynamics 

inherent in the mechanism of the evolutionary acquisition of the planning abilities, 

focusing on the benefits of the planning and the costs of it. The first goal of this 

chapter is to investigate the properties of the problems which drove the evolution 

of planning abilities. The second goal is to explore how the difference in a way of 

interacting with other individuals affects an evolution of the planning abilities.  

 

1.2.2 Emergence of a Theory of Mind 

In the third chapter, we discuss a more social aspect of human cognition: Theory 

of Mind (ToM). Its origins can be traced back in extant non-human primates; ToM 

probably has emerged as an adaptive response to increasingly complex primate 

social interaction (Brothers, 1990). It has also been suggested that social cognition, 

including ToM, could have emerged to make possible cheating detection, and, 

perhaps more important for ancestral human societies, to reinforce cooperation 

(Brune, 2006). In chapter 3 we consider the question: how does a cooperative 

behavior based on ToM emerge out of interactions among constituent components 

in the brain and between components and the external environment? 

     A limited number of attempts have so far been made at the constructive 

approach to ToM characterized by the use of computational models for simulating 

its autonomous acquisition. Among them, there are only a few studies which 

investigate the underlying mechanism of the acquisition of the recursion level in a 
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ToM (Nagata et al., 2010; Noble et al., 2010; Takano and Arita, 2006; Yokoyama 

and Omori, 2009). However, functions of ToM in these studies are procedurally 

defined a priori by the designers. We focus on the emergence of a ToM without 

defining it a priori by modeling the brain at the functional level. To do this, we use 

a Functional Parts Combination (FPC) model (Ogawa and Omori, 2002; Omori 

and Ogawa, 2001), which regards the brain at a functional level as composed of a 

set of functional parts and activation signals specifying selectively activated 

patterns.  

 

1.3 Description of the Thesis 

The brief description of the thesis is as follows. The second chapter describes the 

evolution of the planning ability. The third chapter discusses the emergence of the 

ToM by modeling the brain at the functional level. The fourth chapter summarizes 

the thesis. 
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2  Evolution of the Planning 

Abilities 

 

2.1 Introduction 

Future-directed behavior can be seen in many animals as well as humans. For 

example, some hibernators store food for the coming winter just like humans who 

start building a shelter already in summer preparing for cold winter. So what is the 

difference in future-directed behavior between animals and humans? It has been 

said that animal behavior is instinctive but human behavior is flexible. Mental 

time travel is one of the capacities that provide increased behavioral flexibility of 

humans. Mental time travel is a term to refer to the faculty that allows humans to 

mentally project themselves backward in time to relive, or forward to prelive, 

events (Suddendorf & Corballis, 1997). The crucial selective advantage that 

mental time travel provides is the flexibility in novel situations and the versatility 

to develop and adopt strategic long-term plans to suit goals (Suddendorf & 

Corballis, 1997). In this chapter, we focus on the mental time travel into the future, 

especially the evolutionary aspect of the planning ability. 

     Our brains, which have high order functions such as planning, are 

energetically expensive. Although the human brain is only 2% of the body weight, 

it consumes about 20% of the total energy in the body (Clark & Sokkoloff, 1999). 

Furthermore, the prefrontal cortex, known to be critically involved in planning 

ability, accounts for nearly 30% of the cerebral cortical surface in humans 

(Brodmann, 1925). These facts raise the question of what are cognitive benefits to 

increased brain size. Natural selection has been considered as one of the most 

widely held mechanisms to explain the emergence of living creatures' complex 

characteristics. Evolutionary psychology has attempted to explain psychological 

traits as adaptations as the functional products of natural selection or sexual 

selection. Recent studies have indicated that ecological pressures drove the 

evolution of intelligence of human (Byrne, 1997; Darwin, 1871; Hill, 1982; 
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Osvath & Gärdenfors, 2005; Potts, 1998; Tooby & DeVore, 1987). They produce 

abilities to get a resource such as prey from the environment and to prevent the 

use from a predator as a resource (Geary, 2004). For example, with the global shift 

to cooler climate after 2.5 million years ago, much of southern and eastern Africa 

probably became more open and sparsely wooded, and it exposed the hominids to 

greater risk from predators and drove them into a cognitive niche (Tooby & 

DeVore, 1987).  

     Yet, it is difficult to explain why humans evolved such extraordinary 

cognitive competencies only by the ecological factors, considering that many 

other species hunt, occupy savanna habitats, endured the same climatic 

fluctuations, and so forth (Flinn et al, 2005). A different approach to the problem 

of the evolution of intelligence of human involves the consideration of the social 

aspect (Alexander, 1971, 1990; Brothers, 1990; Dunbar, 1998; Humphrey, 1976; 

Jolly, 1999). Alexander (1990) argued that it (evolution of the intellect) was rather 

the necessity of dealing continually with our fellow humans in social 

circumstances that became ever more complex and unpredictable as the human 

line evolved (pp. 4-7). Co-operating with other people is considered to be one of 

the most important factors to deal with our fellows in social circumstances. 

Furthermore, symbolic communication seems to be indispensable to co-operate 

smoothly with other individuals. Brinck & Gärdenfors (2003) traced the 

difference between the ways in which apes and humans co-operate due to 

differences in communicative abilities, claiming that there is a strong connection 

between the evolution of planning and symbolic communication. However, there 

is little known about the specific mechanisms that underlie it. 

     Considering all of the above factors, this chapter explores the dynamics 

inherent in the mechanism of the evolutionary acquisition of the planning abilities, 

focusing on the benefits of the planning and the costs of it. The first goal is to 

elucidate the environment which drove the evolution of planning ability. The 

second goal is to explore the dynamics inherent in the mechanism of evolution of 

the planning ability in the social circumstances. Our main method consists of a 

constructive approach which attempts to create not only a symbolic model of a 

living system, but also a symbolic living object (Moreno, 2002). Accordingly, our 

models are elaborated without direct and precise reference to empirical biological 

reality, and allow a new means of computational experimentation to enable us to 
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discover the universal principles of living systems (Moreno, 2002). Next section 

explains a planner, task, architecture, and fitness of each agent. Section 2.3 shows 

the basic experiments, and section 2.4 describes the evolutionary experiments. 

Section 2.5 summarizes the chapter. 

 

2.2 The Model 

2.2.1 Planner - Beam Search 

Gulz (1991) argued that an organism is planning its actions if it has a 

representation of a goal and a start situation and it is capable of generating a 

representation of partially ordered set of actions for itself for getting from start to 

goal. This criterion presupposes three distinct processes: (1) developing a plan, (2) 

remembering representations that have been developed, and (3) remembering the 

set of actions from start to goal. Some kinds of representational space in our mind 

such as a working memory make possible these processes. In the following model, 

we define the inherent planning parameter as an attribute value which corresponds 

to storage and processing capacity of the working memory system.  

    A beam search algorithm (Ney et al., 1992) is adopted as the planner of each 

agent. The beam search utilizes a heuristic value, h, to estimate the approximate 

steps from the focal state to the goal state, by which partial solutions are evaluated. 

It also uses a beam width, B, which specifies the number of states that are stored 

at each level of the breadth-first search. A BEAM is used to store the states that are 

to be expanded in the next loop of the algorithm. Also, a hash table is used to 

store states that have been visited.  

     At the process of the planning, initially, there is a start state in the BEAM 

and the hash table, respectively. Each time through the main loop of the algorithm, 

the planner expands states connected to the nodes in the BEAM, and adds the 

successor states to the SET, which stores all successors of the states in the BEAM 

at the current level, if they are not in the hash table, and then adds the best B 

states ordered by h from the SET to the BEAM. Note that if the high-priority states 

in the SET have the same heuristic value, some states are randomly chosen, and 

added to the BEAM. If the number of expansion reaches the inherent attribute 
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value of the agent (termed planning limit), planner runs through the main loop and 

then sub goal is determined by selecting a state with the best h in the hash table 

other than the start state. If all states in the hash table have the same h, sub goal is 

randomly chosen from states in the hash table. Finally, solution is obtained tracing 

the path from a sub goal to the start state.  

     Table 2.1 shows an example trace of the algorithm on the state space in Fig. 

2.1. As presented in Table 2.1, the more the number of times of expanding is, the 

deeper the search is. Also, agents who have long planning limit require large 

amounts of (1) storage capacity of the hash table and (2) processing power, such 

as attention control. 

 

 

 

 

 

Figure 2.1: An example of the state space. Boxes with alphabets represent distinct 

states. S represents the start state. The numbers in boxes represent h.  
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Table 2.1: An example trace of the beam search algorithm on the state space in 

Fig. 2.1 when the B = 3. Each superscript represents the value of corresponding h. 

Each row shows the trace of the search when the planning limit of the agents is 

different. For example, agents with a planning limit of 2 choose D
2
 as a sub goal. 

Also, agents with a planning limit of 3 choose D
2
 or F

2
 as a sub goal. 
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2.2.2 Task - Blocks World Problem 

Planning is important especially when it is necessary to perform actions in the 

proper sequence to solve problems. We adopted the blocks world problem as a 

minimal task to deal with such a situation. A blocks world consists of a table with 

the size T, l rectangular blocks labeled 𝑏𝑙 𝑙 = 1,⋯ , 𝐿 , and a grip. The size of the 

table represents the maximum number of blocks that can be placed on the table. 

Each space of the table is labeled as 𝑡𝑖 𝑖 = 1, ⋯ ,𝑇 . An agent is allowed to move 

a block to the top of another stack of blocks or to the empty space on the table by 

using a grip. A block can be moved only if there is no block on the top of it. In our 

model, if the table size is large, agents have many choices to move the block. 

Given the initial and target configurations of the blocks, the blocks world problem 

asks for a sequence of manipulation of the grip to achieve the target configuration 

with a smaller number of manipulations. In this study, we defined a target state as 

a configuration in which all blocks are stacked on a predetermined space in 
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descending order as shown in Fig. 2.2. We define the heuristic value h 

representing the attainment level of the goal state as follows (on(𝑏𝑙 , x) : block 𝑏𝑙  

is on x; ∧: logical symbol (and); ￢: logical symbol (not)). 

h = 5: on(𝑏1, 𝑡3) ∧ on(𝑏2, 𝑏1) ∧ on(𝑏3, 𝑏2) ∧ on(𝑏4, 𝑏3) ∧ on(𝑏5, 𝑏4) 

h = 4: on(𝑏1, 𝑡3) ∧ on(𝑏2, 𝑏1) ∧ on(𝑏3, 𝑏2) ∧ on(𝑏4, 𝑏3) ∧￢on(𝑏5, 𝑏4) 

h = 3: on(𝑏1, 𝑡3) ∧on(𝑏2, 𝑏1) ∧on(𝑏3, 𝑏2) ∧￢on(𝑏4, 𝑏3) 

h = 2: on(𝑏1, 𝑡3) ∧on(𝑏2, 𝑏1) ∧￢on(𝑏3, 𝑏2) 

h = 1: on(𝑏1, 𝑡3) ∧￢on(𝑏2, 𝑏1) 

h = 0: ￢on(𝑏1, 𝑡3) 
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Figure 2.2: A part of the state space of blocks world problem (T=3). "h" 

represents the heuristic value corresponding to the each configuration. 
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2.2.3 Architecture 

We constructed three models: basic model, nonshared model, and shared model. 

In the basic model (top in Fig. 2.3), an agent observes the present state at first, and 

passes it to the planner. Then, the planner makes a plan. Next, the agent moves a 

block once by the gripper. We define an action step, 𝑎, as a movement of a block 

by a gripper. Action steps are repeated until the target configuration is achieved or 

the number of performed action steps exceeds the upper limit 𝑎𝑚𝑎𝑥 . 

 

 

(A) Basic model 

 

      (B) Nonshared model                   (C) Shared model  

Figure 2.3: Architecture of an agent (top: basic model; bottom left: nonshared 

model; bottom right: shared model). 
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     As to the nonshared and shared models, we assumed a situation in which 

two agents (agent A and agent B) participate in a collective task to reach the same 

goal. In the nonshared model (bottom left in Fig. 2.3), two agents interact by 

turn-taking: Agent A makes a plan, moves a block once by the gripper, and then 

agent B changes places with the partner A (makes a plan and moves a block once 

by the gripper). This cycle is repeated until the agents accomplish a goal, or 

exceeds an upper limit 𝑎𝑚𝑎𝑥 .  

     In contrast, in the shared model (bottom right in Fig. 2.3), both agents make 

plan at the same time, and a plan which has the better heuristic value is selected. 

In the case in which the heuristic values of both agents are the same, the plan with 

a shorter sequence of actions is selected. When the length of both sequences are 

the same, either one is randomly selected. After that, both agents move a block 

once by the gripper. This cycle is repeated until the agents accomplish a goal, or 

exceeds an upper limit 𝑎𝑚𝑎𝑥 . It is plausible to presume that information sharing 

during the plan selection process is based on symbolic communication.  

 

2.2.4 Fitness 

Each agent solves blocks world problem several times, and was evaluated by the 

fitness function F: 

 𝐹 =
1

𝑇𝑐𝑜𝑠𝑡
,            (2.1) 

 𝑇𝑐𝑜𝑠𝑡 = 𝑤𝑎 × 𝑎𝑐𝑜𝑠𝑡 + 𝑤𝑝 × 𝑝𝑐𝑜𝑠𝑡              𝑤𝑎 + 𝑤𝑝 = 1 ,           (2.2) 

 𝑎𝑐𝑜𝑠𝑡 =
𝑎−𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 −𝑎𝑚𝑖𝑛
,            (2.3) 

 𝑝𝑐𝑜𝑠𝑡 =
𝑝−𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥 −𝑝𝑚𝑖𝑛
,           (2.4) 

where 𝑎 is the average number of action steps that each agent performs to reach 

the target configuration among total trials of each agent, 𝑝 is the planning limit 

of each agent, and 𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥 ,  𝑝𝑚𝑖𝑛 , and 𝑝𝑚𝑎𝑥  are fixed numbers. Also, 𝑤𝑎  
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is the weight to the action cost (𝑎𝑐𝑜𝑠𝑡 ), and  𝑤𝑝  is the weight to the planning cost 

(𝑝𝑐𝑜𝑠𝑡 ). Equation (2.1) suggests that the greater the action steps or the planning 

limit is, the lower the fitness is. The balance between the cost of action and 

planning is determined by  𝑤𝑝  and 𝑤𝑎 . 

 

2.3 Basic Experiments 

2.3.1 Experimental Setup 

The experiments in this chapter focused on the two parameters controlling the 

difficulty of the problem, thereby investigating the conditions of the environment 

for the planning ability to evolve: The depth of the optimal solution (D) and the 

size of the table (T). The depth was defined as the shortest path from start to goal. 

Also, as the size of the table (as we mentioned before) becomes large, the number 

of optimal paths on the state space increases because agents have many choices 

when they move a block in the case the table size is large.  

     We conducted basic experiments (in which the planning limit of agents was 

not evolved but fixed) to find how obtained solution is influenced by the 

difference in planning limits, problem difficulty or collective manner. The 

experiments were conducted with 3 different D values varied by changing start 

configurations (goal configuration was fixed) while fixing T, and the ones with 4 

different T values while fixing D (both start and goal configurations were not 

changed) as shown in Table 2.2. 

 

Table 2.2: Experimental setup of the basic experiment. 

L (number of blocks) 5 

𝑎𝑚𝑎𝑥  (upper limit)  500 

B (beam width) 7 

Number of trial run 100 

T (table size) 4 3 4 5 6 

D (depth of the problem) 12 14 16 18 
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2.3.2 Results  

Fig. 2.4 shows the average action steps to solve the problem in various settings of 

the T, D and planning limit in the basic model. It is shown that the solution 

became worse (actions steps became larger) when T was smaller and D was higher. 

This is because the problem became more difficult to solve in those situations. 

This tendency was stronger when planning limit was smaller. Especially when the 

planning limit was the minimum, the agent took a random action because the 

planner explored the states with the same heuristic value next to the present state.  

 

Figure 2.4: Average action steps to solve a problem in various settings of the table 

size (T), the depth of the problem (D), and the planning limit in the basic model. 
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On the other hand, when the planning limit was high, the agent took a proper 

action toward the goal because the planner explored near-goal states far from the 

present state. Simulation showed the same tendency both in the nonshared and 

shared models. 

     Fig. 2.5 shows the action steps averaged over 100 trials of the task 

evaluation when varying the planning limits of two agents (top: nonshared model; 

bottom: shared model). The x and y axes correspond to the planning limit of agent 

A and that of agent B, and the z axis represents the average action step. We can 

find that the effects of the planning limits of both agents on the obtained solution 

were complementary. In other words, it was possible to decrease action steps 

when the planning limit of either one was long, even if that of the other was very 

short.     

     Fig. 2.6 shows the average action steps when two agents took the same 

planning limit. As shown in Fig. 2.6, the quality of the solution of the shared 

model was more improved than that of the nonshared and basic model for the 

following reason. At the process of the planning, intermediate states in the BEAM 

and sub goals are randomly chosen under some conditions, and it varied in plans. 

Since a plan with a shorter sequence of actions is selected if the heuristic value of 

both agents is the same in the shared model, agents in this model could behave 

more efficiently by comparing both plans.  

     Fig. 2.7 shows the fitness landscape using the data of the action steps in Fig. 

2.5 where 𝑤𝑝was 0.1 (top: nonshared model; bottom: shared model). The x and y 

axes correspond to the planning limit of agent A and that of agent B, and the z axis 

represents the fitness of agent B. In the nonshared model (Fig. 2.7 - top), agents 

who had the middle planning limit (in the range of about 20 to 40) could get the 

highest fitness when that of the other was long (in the range of about 40 to 100). 

On the other hand, in the shared model (Fig. 2.7 - bottom), agents who had 

extremely a short planning limit (in the range of about 1 to 10) could get the 

highest fitness when that of the other was long (in the range of about 40 to 100) 

for the following reason. In the shared model, agents who have extremely a short 

planning limit can decrease action step when that of the other was long because 

solutions by the agent who has the longer planning limit tend to be adopted in 

almost all trials. Therefore, they can get the highest fitness because of the low cost 

for planning. 
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(A) Nonshared model 

 

                        (B) Shared model 

 

Figure 2.5: Action steps averaged over 100 trials of the task evaluation when 

varying the planning limits of two agents where F=18 and T=3 (top: nonshared 

model; bottom: shared model). 
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Figure 2.6: Average action steps of 100 trials of the task evaluation when two 

agents took the same planning limit where F=18 and T=3. 
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(A) Nonshared model 

 
                        (B) Shared model 

Figure 2.7: Fitness landscape of the agent B where action steps were averaged 

over 100 trials of the task evaluation when varying the planning limits of two 

agents where F=18, T=3, and  𝑤𝑝=0.1 (top: nonshared model; bottom: shared 

model). 
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2.4 Evolutionary Experiments 

2.4.1 Experimental Setup 

We conducted simulations in which the planning limit of agents was evolved by 

using a genetic algorithm. A chromosome was represented by integer encoding, 

which determines the planning limit of each agent. We first created N individuals 

whose planning limits were randomly selected from 1 to 3. As to the basic model 

each agent solved blocks world problem H times.  As to the nonshared and 

shared model, every pair of agents solved the problem in a round robin manner. 

Then, action steps were averaged over those games, and agents were evaluated by 

the fitness function (2.1).  

     The offspring in the next generation were selected by the ranking selection 

as follows. The selection probability 𝑝𝑖  is defined by using the scaled fitness 𝑓𝑖
′ 

as: 

 𝑝𝑖 =
𝑓𝑖

′

 𝑓𝑗
′𝑁

𝑗=1

.            (2.5) 

Here, 𝑓𝑖
′ is defined as 

 𝑓𝑖
′ =  𝑁 − 𝑅𝑖 + 1 2,           (2.6) 

where 𝑅𝑖  is the fitness rank of individual 𝑖. Then, each gene of all offspring was 

mutated with a probability P. In the phase of mutation, a random integer digit 𝑚 

was generated from a uniform distribution between -M to +M, and added to the 

original genetic value.    
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Table 2.3: Experimental setup of the evolutionary experiment. 

 

2.4.2 Results 

We conducted evolutionary experiments using parameters of Table 2.3 where  𝑤𝑝  

was 0.1, 0.3, and 0.4. Fig. 2.8 shows the difference in transition of the fitness, 

action steps, and the average planning limit among individuals between basic 

model, nonshared model, and shared model when  𝑤𝑝=0.1. Top row (A), middle 

row (B) and bottom row (C) show the results of the easiest task (D=12, T=4), an 

intermediate task (D=16, T=4), and the most difficult task (D=18, T=3), 

respectively. We can find that the action steps decreased and the planning limit 

increased through the course of evolution. Also, long planning limits were 

emerged when the difficulty of the problem was intermediate (Fig. 2.8 - (B)) or 

high (Fig. 2.8 - (C)) because agents could minimize action steps as a reward for 

increasing the planning limit. On the other hand, long planning limits were not so 

emerged when the difficulty of the problem was low (Fig. 2.8 - (A)) because 

action steps only slightly changed even if the planning limit increased. Simulation 

L (number of blocks) 5 

B (beam width) 7 

𝑎𝑚𝑎𝑥   500 

𝑎𝑚𝑖𝑛   11 

𝑝𝑚𝑎𝑥   200 

𝑝𝑚𝑖𝑛   0 

H (repeat number of times) 5 

N (population size) 20 

P (mutation rate) 0.5 

M (mutation range) 5 

generation 300 

Number of trial run 10 

T (table size) 4 3 4 5 6 

D (depth of the problem) 12 14 16 18 
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also showed the same tendency when  𝑤𝑝=0.3 and 0.4 as shown in Fig. 2.9 which 

represents the results of the average planning limits between 200 to 300 

generations in the basic model, nonshared model, and shared model when the 

difficulty of the given problem was changed.  

     Fig. 2.10 shows the transition of the distribution of the planning limits in 

the population on a certain trial of the basic, nonshared, and shared models when 

the difficulty of the problem was high. As shown in Fig. 2.10, agents who had 

even the short planning limit (in the range of 10 to 29) could exist in the collective 

(nonshared and shared) models. Also, the average planning limit in the collective 

models was less than that in the basic model when the difficulty of the problem 

was intermediate (left in Fig. 2.8 - (B)) or high (left in Fig. 2.8 - (C)). This is 

because the effects of the planning limit of both agents on the obtained solution 

were complementary, and it was possible to decrease action steps when the 

planning limit of either one was long, even if that of the other was short (Fig. 2.7). 

Therefore, in a case in which agents who had a long planning limit occupied a 

major part of population, agents who had a short planning limit could enter the 

population because they could get relatively great fitness because of the low cost 

for planning. This situation was equivalent to the tragedy of the commons (Hardin, 

1968). It explains the reason why the planning ability was difficult to emerge in 

the collective situation. The reason why difference in planning limits of the most 

difficult task between the basic and collective (nonshared and shared) model was 

smaller than that of the intermediate task is that the merit of the planning limit 

would slightly weaken the force of free rider problem. 

     The notable point is that planning ability equally evolved both in the shared 

and nonshared model even though the free rider problem tends to be more serious 

in the shared model as shown in Fig. 2.7. This may be because the optimization of 

the planning limit proceeded for the following reasons. First, sharing information 

improved a quality of the solution. Second, planning of the shared model have a 

greater tendency to have a positive effect on the solution than that of the 

nonshared model when the own planning limit is longer than other agent. As a 

result, planning of the shared model equally evolved to that of the nonshared 

model, and fitness of the shared model was higher than that of nonshared model. 

 

 



 

24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Difference in transition of the fitness, action steps, and planning limits 

between the basic model, the nonshared model, and the shared model when the 

difficulty of the given problem was changed (wp=0.1). 
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(B) Difficulty: intermediate (D=16, T=4) 
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Figure 2.9: Average planning limits between 200 to 300 generation in the basic 

model, the nonshared model, and the shared model when the difficulty of the given 

problem was changed. 
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Figure 2.10: Transition of the distribution of the planning limit in the population 

on a certain trial. 

 

 

 

 

0%

50%

100%

1 51 101 151 201 251d
is

tr
ib

u
ti

o
n

 o
f 

p
la

n
n

in
g 

lim
it

s

generation

50~59
40~49
30~39
20~29
10~19
1~9

0%

50%

100%

1 51 101 151 201 251d
is

tr
ib

u
ti

o
n

 o
f 

p
la

n
n

in
g 

lim
it

s

generation

50~59
40~49
30~39
20~29
10~19
1~9

0%

50%

100%

1 51 101 151 201 251d
is

tr
ib

u
ti

o
n

 o
f 

p
la

n
n

in
g 

lim
it

s

generation

50~59
40~49
30~39
20~29
10~19
1~9

(A) Basic model (D=18, T=3, wp=0.1) 

(B) Nonshared model (D=18, T=3, wp=0.1) 

(C) Shared model (D=18, T=3, wp=0.1) 



 

27 

 

2.5 Conclusion and Discussion 

In this chapter, we investigated the mechanism of the evolution of the planning 

abilities by focusing on the benefits and the costs of the planning. Table 2.4 

summarizes the results of the evolutionary experiments in the basic model, 

nonshared model and shared model, where the difficulty of the problem was 

changed. The size of the circles corresponds to the relative length of the evolved 

planning limits, action steps and merit of the sharing information in several 

settings. As shown in Table 2.4, simulation clarified that the longer planning limit 

emerged as the given problem became difficult to solve both in independent and 

collective situations. So what does the difficulty of the problem mean in the 

evolution of the human intelligence? It has been said that ice sheets started to 

grow in the northern parts of the world, and Africa experienced deforestation and 

expanding savannas. These conditions in savannah might force the hominid to use 

a wide variety of food sources which were more transient and scattered than the 

predominantly vegetarian food sources (Bickerton, 2002).  It might work as a 

selective pressure for more efficient feeding, and thus an increasing need for 

sophisticated tool use by planning might be selected (Byrne, 1997). Yet, if the 

individuals face more difficult problems such as making complicated stone tools, 

making a tent, farming, or stock raising, working together seems to be important 

to accomplish a goal efficiently.  

 Table 2.4: Conceptual diagram of the evolution of the planning abilities given by 

the results of the evolutionary experiments. 
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     The simulation results indicated that when the problem was difficult, 

planning ability was difficult to evolve in the collective situation because there 

was a conflict between personal and collective interest (Table 2.4). So, how could 

hominids climb the steep cost gradient? The results also clarified that planning 

ability equally evolved both in the situations where individuals shared information 

and did not share information even though the free rider problem tended to be 

more serious in the former situation. Also, fitness of the situation where 

individuals share information was higher than that of individuals did not share 

information because of improving a quality of the solution.  Considering all of 

the above factors, we can present the following scenario as: (1) First, a selective 

pressure for more efficient feeding in savannah made the use of prospective 

cognition that is the skill to plan for future events and needs, beneficial; (2) As the 

problem became more difficult, increasing need for collectively work would be 

selected, however; a cost of thinking might be serious at the same time; (3) The 

select of symbolic communication might be favored because it was an efficient 

way of solving problems. This result implied that there is a connection between 

evolution of the planning and symbolic communication.    
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3  Emergence of a Theory of 

Mind 

 

3.1 Introduction 

Cooperative behaviors are one of the fundamental processes which form societies 

in animals. We will use the term cooperation as: cooperation is a type of 

interaction involving two or more agents who are (1) trying to achieve one or more 

common purposes, and (2) making proper coordination between their behaviors 

(Namatame, 2004). It is found everywhere in the nature. For example, there are 

division of labors in insect societies such as ants and bees. However, the action 

decision processes of each individual are very simple and instinctive. On the other 

hand, there are complex and dynamic action decision processes in cooperation of 

humans: interactively determining own behavior in accordance with the estimated 

intention of others. In general understanding of others as having intentional states 

such as beliefs and desires is called Theory of Mind (ToM) (Premack and 

Woodruff, 1978). The aim of this chapter is twofold. The first is to investigate how 

cooperative behaviors based on ToM emerge through autonomous developmental 

and evolutionary processes by modeling the brain at the functional level. The 

second is to apply our model as a framework for the mind system of human-like 

robots with the capacity of estimating. 

     A specific type of cells called mirror neurons have been found in the 

premotor cortex of monkeys, an area that is possibly homologous to the Broca area 

in humans (Gallese and Goldman, 1998). These neurons fire both while monkeys 

or human act and while they observe the same action performed by another. It has 

been suggested that mirror neurons might be part of, or a precursor to, a more 

general mind-reading ability. In addition to this, the discovery of mirror neurons 

has an impact on the scientist's views on the brain. When scientists referred to the 

premotor cortex in the past, they assumed that each function of the brain was 

handled under a paradigm of functional localization. However, to have reaction 
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characteristics such like a mirror neuron system, it has to integrate visual and 

motor information at least, complex functions that remained unexplained by earlier 

paradigms.  

     By the subsequent investigations, it is now widely accepted to regard the 

brain as a whole system integrating the multiple component parts. The Functional 

Parts Combination (FPC) model (Ogawa and Omori, 2002; Omori and Ogawa, 

2001), which will be explained later, is a general model of the brain at the 

functional level which describes such a system. We began a study on how ToM 

has been shaped through the autonomous developmental process, assuming a 

functional model of the brain as an FPC model. A limited number of attempts have 

so far been made at the constructive approach to ToM characterized by the use of 

computational models for simulating its autonomous acquisition. Among them, 

there are only a few studies which investigate the underlying mechanism of 

acquisition of the recursion level in a ToM (Nagata et al., 2010; Noble et al., 2010; 

Takano and Arita, 2006; Yokoyama and Omori, 2009). However, functions of 

ToM in these studies are procedurally defined a priori by the designers.  

     We focus on the emergence of a ToM without defining it a priori by 

adopting an FPC model. In this chapter, we propose a computational framework 

for investigating the emergence of a ToM based on adaptation in both evolutionary 

and individual-learning time scales. As a first step, this chapter also reports on the 

results of the computer simulation which demonstrates an acquisition of the 

activated patterns of the functional parts for processing ToM through learning. 

Next section shows three hypotheses postulated in our research for investigating 

the emergence of ToM.  

     Section 3.3 explains a functional model of the brain and Section 3.4 

illustrates a task and an intention estimation model. Section 3.5 and 3.6 shows the 

experiments and Section 3.7 summarizes the chapter. 

 

3.2 Three Hypotheses for Investigating the 

Emergence of Theory of Mind 

For our purposes mentioned above, we introduce following three hypotheses.  
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     The first hypothesis is that brain is a complex system composed of multiple 

functional modules and dynamically searches a combination of the modules 

depending on the task (FPC model). Recent studies in the neuroscience have been 

elucidated that each cerebral cortical area has a different role and is selectively 

activated depending on the task (Liu et al., 1996; Toga and Maziotta, 2000). These 

facts imply that each brain areas is assigned a different function, and there is a 

system which combines a set of appropriate functional parts depending of the task. 

Meanwhile, when someone is confronted with the unprecedented tasks, multiple 

areas in the brain are activated simultaneously, and after a while a set of modules 

corresponding to the task is settled gradually. Therefore, a combination of the 

modules assumes processes based on the some kind of search. Omori and Ogawa 

(2002) conducted agent-based simulations based on the FPC model and showed 

that the agent using it acquires learning strategies suitable for the multiple tasks of 

navigation problem. If the task is dynamic such as social interactions supposing in 

this chapter, behaving swiftly depending on others would be critical because 

behavioral strategies of the agent often change depending on one's own behavior.  

     The second hypothesis is that humans modulate our cognitive state 

dynamically depending on recognition of interactive agents. This view has much in 

common with the conflict monitoring hypothesis (Botvinick et al., 2004) where the 

anterior cingulate cortex (ACC) is believed to be the area which detects the 

occurrence of conflicts in information processing, and thus triggers strategic 

adjustments in cognitive control. Takahashi et al. (2008) proposed a computational 

model, based on the conflict monitoring hypothesis, which consists of change 

detection and state space switching evoked by the change of environmental nature. 

In order to realize a smooth cooperative behavior, we adopted the attention system 

of the Takahashi et al. (2008) in order to dynamically modulate the cognitive state 

in the FPC model. 

     The third hypothesis is a simulation-theory (Gallese and Goldman, 1998; 

Gordon, 1995) which assumes that human can understand other minds of others by 

means of a simulation process such that we use our own mental mechanisms to 

read the mind of others. The alternative hypothesis, often-quoted, is a 

theory-theory (Carruthers, 1996) which assumes that humans attribute mental 

states to others using theoretical considerations involving a set of concepts (beliefs, 

desires, and so forth) and principles about how these concepts interact.  Although 
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both hypotheses can be consistent with the view that the neural basis of 

understanding other minds is localized in the frontal cortex (Toga, 2000), we 

constructed a computational model under the simulation-theory. The main reason 

is that the discovery of mirror neurons accords well with simulation-theory. In 

addition, Gordon (1995) suggests inferiority of the theory-theory from the 

perspective of 'economy storage': It would be extravagant if we had to store in 

memory theoretical considerations on the numerous relationships between stimuli 

and mental states, mental states and other mental states, and mental states and 

behavior. On the other hand, simulation-theory does not need such effort because 

other people's mental states are represented merely by adopting own perspective. 

From a developer's perspective, this problem is considered to be critical; i.e., 

effective and efficient model creation reduces development costs of virtual training 

systems (Harbers, 2009).  

 

3.3 Functional Model of the Brain  

We propose a functional model of the brain based on above hypotheses (Fig. 3.1). 

There are modules  𝑀𝑖  in the brain, which constitute a module network. A set of 

modules in the network are activated by a set of activation signals 𝐴 which is 

represented as a vector of binary values 0 and 1: 𝐴 =  𝑎0, ⋯ , 𝑎𝑖 ,⋯ ,𝑎𝑘−1 , where 

𝑘  is the number of modules, and 𝑎𝑖  is an activation signal for module 𝑀𝑖 . Also, 

some links in the network are deactivated by a set of link-deactivation signals D 

which is represented as a vector of binary values 0 and 1: 

𝐷 =  𝑑0, ⋯ ,𝑑𝑖 ,⋯ ,𝑑𝑚−1 ,  where 𝑚  is the number of links, and 𝑑𝑖  is a 

link-deactivation signal for link 𝑙𝑖 . In the sub-network, parallel computation is 

controlled based on the simple parallel control flow paradigm (Trealeven et al., 

1982) as follows.  

– The execution starts from the sensory input.  

– All data are transferred indirectly between modules via updatable memory 

cells which are initialized before each sensory input.  

– In a case that all input links receive a control token the activated modules 

begin its computation while the non activated modules do not execute it.  
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– Then activated modules output tokens at all output links. However, the 

modules whose input links are not connected do not output tokens, regardless 

of whether or not the modules are activated.  

 

 

Figure 3.1: Functional model of the brain. 

 

     The brain searches for a set of activation and link-deactivation signals: 

Solution = (A, D) responding to the current task (or social situation). The searching 

system alternates between the two modes: searching for a new Solution and 

switching among the acquired Solutions, evoked by the change of environmental 

nature (Takahashi et al., 2008) (Fig. 3.2). In both modes, the evaluation of the 

pattern activated at each period is updated per unit time:  

                  Ep+1 = αe･reward + (1－αe)･Ep,                  (3.1) 

where αe is a parameter which coordinates the update rate and reward is an 

evaluation of the present partial network. The threshold is also updated per unit 

time:  

                 Tp+1 = αt･T_max + (1－αt)･Tp,                    (3.2) 

 

  

reward

attention system

activated pattern
(partial network)

modulemodule network

acquisition 
by learning

environmentsensory
input

action
output

activation signals               
link-deactivation signals

0M

1M

3M

4M

2M
iM

5M

kM

7M

1kM

acquisition 
by evolution

Situations

acquisition 
by evolution

Situations 



 

34 

 

 

Figure 3.2: Algorithm of the searching system. 

where αt is a parameter which coordinates the update rate and T_max corresponds 

to a threshold value of the model. In searching mode, it searches for a new Solution 

for the current (social) situation. When a solution which forms a new partial 

network containing sensory input and action output is obtained, it is registered in 

the Situations. The system changes into switching mode when the evaluation keeps 

lower than a threshold for a certain period of time. In switching mode, an adequate 

Solution continues to be used while the evaluation is stable. However, if there are 

no suited solutions in the Situations for the current environment, which means that 

it is a novel environment, the system returns into searching mode. The sensitivity 

to change of the environmental nature is regulated by T_max in the expression 

(3.2). In order to prevent the frequent mode change, Tp is set to T_min after the 

mode change. 

     From the viewpoint of emergence, it is essential to discuss how to construct 

this functional structure in a self-organizing fashion. The module network and 

constituent modules can be acquired by evolution (e.g. Genetic Network 
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Programming (Hirasawa et al., 2001) and Genetic Programming (Koza, 1992), 

respectively). The set of activation and link-deactivation signals can be acquired by 

learning (e.g. Tabu Search (Glover and Laguna, 1997) or Simulated Annealing 

(Kirkpatrick et al., 1983)). 

 

3.4 Task and Intention Estimation Model  

As a first step, this chapter focused on the emergence of activation signals for 

forming ToM sub-networks with a specific recursion level to achieve cooperative 

behavior in a hunter task. The discussion on the emergence of modules network 

and the constituent modules is outside the scope of this chapter and we assumed 

that they had been acquired.   

3.4.1 Hunter Task     

There are two hunters and two prey in a 20×20 a two-dimensional grid folded to a 

torus (Fig. 3.3). Each hunter moves one cell per step to the left, right, up or down, 

or stays in the current cell according to its own strategy, while each prey moves 

one cell per step stochastically (right; 40 %, up; 20 %, or stop; 40 %). When 

starting the task, all 4 agents are randomly located in the grid, and each hunter 

selects the closer prey as an initial target. Each episode ends when each hunter 

captures the different prey or the number of time steps exceeds the upper 

limit 𝑠𝑡𝑒𝑝𝑚𝑎𝑥 .  

     The task is solved several times using the current Solution in each period. 

Averaged time steps to solve the task, which is used to evaluate the solution:  

                     reward = 100 / step.                         (3.3) 

The reward is shared between cooperators, and then Ep (expression (3.1)) and Tp 

(expression (3.2)) are updated.  
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Figure 3.3: Hunter task. 

 

3.4.2 Intention Estimation Model   

The agents require an intention estimation of the other for solving the hunter task 

efficiently, in the sense that agents have to estimate the prey that the other agent 

tries to capture and chase the prey different from others'. As an intention 

estimation model, we assumed that humans estimate the intention of others by 

simulating it based on their own action-selection process as if they were in the 

same situation (simulation-theory). More formally, the intention of each agent is 

assumed to be determined by the three variables: goal G, state s and action a 

(Yokoyama and Omori, 2009). If the agents identify two of its three variables, the 

remaining one can be estimated through the acquired own experience and 

knowledge expressed as a joint probability distribution: P (a, s, G). For example, 

the intention of others G can be estimated by using the conditional probability 

distribution: P (G| s, a). In a similar way, the state s and action a of the others can 

be estimated by using P (s| a, G) and P (a| s, G), respectively. However, in a 

condition where agents mutually estimate the intentions of others, the cooperation 

performance is unsatisfactory (Nagata et al., 2010). Therefore, agents might have 

to flexibly change own action decision strategies depending on others. 

Considering the above factors, we constructed the following strategies based on a 

Dennett's intentional stance (Dennett, 1987) (Fig. 3.4):  

(1) Agent at level 0 takes action 𝑎𝑠 based on own state 𝑠𝑠 and goal 𝐺𝑠 without 

considering behavior of others: 

hunter agent

prey agent

right (40%), up(20%), 
or stays(40%)

left, right, up or 
down, or stays
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                                𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑃(𝑎|𝑠𝑠 ,𝐺𝑠).                   (3.4) 

(2) Agent at level 1 estimates the intention of others 𝐺𝑜  based on other's state so 

and action ao, by assuming that others would be at level 0:  

                             𝐺𝑜 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐺𝑃(𝐺|𝑠𝑜 ,𝑎𝑜),                    (3.5) 

and takes action based on it: 

                               𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑃 𝑎 𝑠𝑠 ,𝐺𝑠 ,                    (3.6) 

where Gs satisfies a cooperated condition. For this task Gs ≠ Go (i.e. own goal 

differs from estimated other's goal) is simply a condition of cooperation. 

(3) Agent at level 2 estimates the own intention which is estimated by others 𝐺 𝑠 

by assuming that others would be at level 1: 

                              𝐺 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝐺𝑃(𝐺|𝑠𝑠 ,𝑎𝑠),                    (3.7) 

and takes action based on it: 

                              𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑃 𝑎 𝑠𝑠 ,𝐺 𝑠 .                    (3.8) 

 

 

Figure 3.4: Higher-order estimation of other's intention in terms of intentional 

stance developed by Dennett (1987): Agents at level 0 decide their behavior 

without considering behavior of others; Agents at level 1 assume others as level 0 

and decide their optimal behavior; Agents at level 2 assume others as level 1 and 

decide their optimal behavior. 

 

level 0 level 1 level 2
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3.5  Experiment 

3.5.1 Module Network and Function of Each Module 

We constructed module network and the constituent modules based on a FPC 

model as shown in Fig. 3.5.  

 

Figure 3.5: The module network used for the experiments. 

 

By combining these modules, above three strategies could be possible (for the 

sake of simplicity, we defined the link-deactivation signals as described in Fig. 3.5, 

where d0 = d2, and d0≠d1). The functions of each module are described as follows.  

– M0 (state recognition): Own state ss(t) and action as(t) at the time t are 

recognized. The state is defined as relative coordinates between self and two 

preys. 

– M1 (state recognition): Other's state so(t) and action ao(t) at the time t are 

recognized. The state is defined as relative coordinates between others and 

two preys. 
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– M2 (working memory): Own state ss(t - 1) and action as(t - 1) at the time (t - 

1) are stored. 

– M3 (working memory): Other's state so(t - 1) and action ao(t - 1) at the time (t 

- 1) are stored. 

– M4 (likelihood estimation): Likelihood that others' goal (or own goal that 

would be estimated by others) would be G is estimated as follows:  

  𝑙 𝐺, 𝑡 = 𝑃 𝐺 𝑠,𝑎 =
exp(𝛽𝑄(𝐺(𝑡)|𝑠(𝑡 − 1),𝑎(𝑡 − 1)))

 exp(𝛽𝑄(𝐺(𝑡)′|𝑠(𝑡 − 1),𝑎(𝑡 − 1)))𝐺′
,         (3.9) 

where β  is a parameter called the temperature and Q represents an 

evaluation value which is acquired by reinforcement learning. Likelihood is 

estimated for all possible goals. 

– M5 (likelihood history): In order to make estimation of intention stable, the 

likelihood l (G, t) is stored in a likelihood history: 

                   𝑚𝑙 𝐺, 𝑡 =  𝑙 𝐺, 𝑡 ,⋯ , 𝑙 𝐺, 𝑡 − 𝐻 + 1  ,                (3.10) 

where H is the length of the history.  

– M6 (cumulative log likelihood): Cumulative log likelihood L (G, t| m) (i.e. 

likelihood that other's or own goal would be G at time t under the condition in 

which agents have the likelihood history m) is calculated for all possible 

goals: 

                  L (G, t| m) = Σl∈m(G, t) log l (G, t).                  (3.11) 

– M7 (intention estimation): Others' or own goal G is estimated:  

                             𝑔 𝐺, 𝑡|𝑚 =
exp(𝛽𝐿(𝐺, 𝑡|𝑚))

 exp(𝛽𝐿(𝐺 ′ , 𝑡|𝑚))𝐺′
 .                                 (3.12) 

– M8 (intention formation): A hunter judges whether the estimated others' goal 

Go and own goal Gs satisfy a cooperated condition. For this task, Gs ≠Go (i.e. 

own goal differs from estimated other's goal) is simply a condition of 

cooperation: 

(1) Own or others' goal is formed to satisfy the cooperated condition.  
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(2) If the link form M8 to M8 is not deactivated, return to (1) just once. 

– M9 (action selection): Action as is selected:  

                  𝑎𝑠 = 𝑃 𝑎 𝑠,𝐺 
exp(𝛽𝑄(𝑎(𝑡)|𝑠(𝑡),𝐺(𝑡)))

 exp(𝛽𝑄(𝑎(𝑡)′|𝑠(𝑡),𝐺(𝑡)))𝑎(𝑡)′
.                   (3.13) 

– M10 (action-selection function): It is the one based on soft-max reinforcement 

learning. 

– M11 (Q-Table): It is an evaluation value acquired by reinforcement learning. 

Before we conducted experiments, each agent had acquired a different 

Q-Table on its own by the soft-max reinforcement learning in the setting 

where there were a hunter and a prey (temperature parameter β=1). 

 

3.5.2  Experimental Setup 

We conducted simulations using the hunter task solved by a pair of agents with the 

module networks. Each agent searches for a set of activation and link-deactivation 

signals: Solution = (A, D) responding to the current task (or social situation) on the 

basis of tabu search (Glover, 1997).  

     First, N agents were created, each with a randomly generated initial 

solution: 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛0 =  𝐴0,𝐷0 . Each agent solved the hunter task N - 1 times, 

each with a different agent in a round robin manner. Table 3.1 shows the 

experimental setup of the experiments. The results obtained were averaged over a 

time period for each agent.  

 

Table 3.1: Experimental setup. 

history size: H 5 T_max 2 

temperature parameter: 𝛽 1 T_min -1 

𝑠𝑡𝑒𝑝𝑚𝑎𝑥  500 αe (in searching mode) 0.02 

𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥  10 αe (in switching mode) 0.005 

𝑝𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥  1000 αt (in searching mode) 0.02 

tabu tenure 7 αt (in switching mode) 0.005 

neighbor size: n 13 population size: N 8 
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3.5.3  Results 

Fig. 3.6-(A) shows the transition of Solutionp, reward, Ep and Tp of a hunter during 

learning (7 rounds). In the following account, we call the focal hunter 'Ken'. Fig. 

3.6-(B) shows the transition of those of Ken's 7 different partners each round. The 

each bar above Fig. 3.6-(A) and Fig. 3.6-(B) represent the activated patterns of 

Solutionp and those in the Situations. We have found the emergence and adaptive 

switching of partial networks for processing higher-order estimation of other’s 

intention in terms of intentional stance developed by Dennett (1987) as shown in 

Fig. 3.7, which shows the observed networks for processing recursion levels of 

ToM. In Fig. 3.7, the left networks show the activated patterns of the Ken, 

whereas the right networks show those of the Ken's partners. 

     At the 1st period in the 1st round, the reward was very low (Fig. 3.6).  Fig. 

3.7-(A) shows the activated patterns of Ken and his partner at that time. This 

means that there was no output in the Ken's network while the activated pattern 

for level 0 ToM was already included in his partner’s network. The reward 

increased suddenly at around 400th period, when the activated pattern of the Ken 

became like Fig. 3.7-(B), in other words, he acquired the network for level 0 ToM. 

However, the reward was not that high because an agent at level 0 continues to 

chase a specific prey obstinately even if own goal falls on the other’s goal. 

     In the 2nd round, Ken and his new partner behaved using level 0 ToM at 

first as shown in Fig. 3.7-(C). The reward increased at around 1050th period in 

parallel with the activation of Ken's M4 (Fig. 3.7-(D)). It is because by then Ken 

had acquired the activated pattern for level 1 ToM.  

     Between 3th and 5th rounds the reward remained stable thanks to the 

adaptive interactions between the levels of ToM. However, it decreased in the 

early stage in the 6th round. At that time Ken and his new partner behaved 

competitively using level 0 ToM. After that, Ep of the partner became less than Tp, 

and the reward increased. This is because the partner shifted into switching mode 

and reused the adequate activated patterns for the current environment.  

     Next, we compared the performance with those without the attention system 

to evaluate the introduction of the mechanism for switching among the kept 

Solutions in Situations. Fig. 3.8 shows the transition of the average rewards of N 

agents with and without the attention system, averaged over 10 trials. It is shown 
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that the rewards with the system in the early stage of each round were clearly 

higher than those without it. This indicates that the appropriate partial-network 

could be swiftly acquired by using the attention system even when interacting a 

new partner. 

 

 

(A) A certain hunter (named 'Ken') 

 

 

(B) Ken's partners which changed per 1000 periods 

 

Figure 3.6: The transition of the Solutionp (black lines), reward (pink line), Ep (blue 

line) and Tp (red line). 
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         (A) period 1                         (B) period 400 

 

 
         (C) period 1001                      (D) period 1053 

 

Figure 3.7: The emerged partial networks for processing ToM. 

 

Figure 3.8: The transition of the average rewards of N agents with and 

without the attention system, averaged over 10 trials. 

 

with attention 
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3.6  Additional Experiment 

The result of computer simulation in the previous section showed the acquisition 

of the effective procedures depending on the interactive agents through learning 

of the partial networks for processing ToM. In this section, we added some 

modules and link-deactivation signals into the module network into the previous 

section in order to make agents behave more flexibly.  

3.6.1 Module Network and Function of Each Module 

We added some modules for active strategy, called level 2* ToM (Yokoyama and 

Omori, 2009) into those in the previous section. Agents at level 2* assume others 

as level 1 and decide their optimal behavior which informs others the own 

intention explicitly (Fig. 3.9). Explicit action is decided by maximizing the 

difference in the probability between the own goal 𝐺𝑠 and the rest ones 𝐺𝑠!: 

                    𝑎𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎(𝑃 𝐺𝑠 𝑠𝑠 ,𝑎𝑠 − 𝑃 𝐺𝑠! 𝑠𝑠 ,𝑎𝑠 ).            (3.14) 

 

Figure 3.9: Active strategy in which agents assume others as level 1 and decide 

their optimal behavior which informs others the own intention explicitly. 

 

     We constructed module network and the constituent modules based on a 

FPC model as shown in Fig. 3.10. The functions of each module are described as 

follows (as to the modules other than M5 and M11, we reused the same functions in 

the previous section): 

– M5 (likelihood estimation*): Likelihood difference is estimated as follows:  
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 𝑑 𝐺, 𝑡 

=
exp  𝛽  𝑄 𝐺𝑖 𝑡  𝑠 𝑡 − 1 , 𝑎 𝑡 − 1  − 𝑄 𝐺𝑖! 𝑡  𝑠 𝑡 − 1 , 𝑎 𝑡 − 1    

 exp  𝛽  𝑄 𝐺𝑖 𝑡  𝑠 𝑡 − 1 , 𝑎′ 𝑡 − 1  − 𝑄 𝐺𝑖! 𝑡  𝑠 𝑡 − 1 , 𝑎′ 𝑡 − 1    𝑎 ′

,  3.15  

where Gi! represents the goal other than Gi. Likelihood difference is estimated 

for all possible goals. 

– M11 (action selection*): Action as is explicitly selected by selecting actions 

that maximize the difference in the probability between the own goal and 

other than own goal:  

   𝑎𝑠 =
exp(𝛽(𝑄 𝐺𝑠(𝑡) 𝑠𝑠(𝑡),𝑎𝑠(𝑡) − 𝑄 𝐺𝑠!(𝑡) 𝑠𝑠(𝑡),𝑎𝑠(𝑡) ))

 exp(𝛽(𝑄 𝐺𝑠(𝑡) 𝑠𝑠(𝑡),𝑎′𝑠(𝑡) − 𝑄 𝐺𝑠!(𝑡) 𝑠𝑠(𝑡),𝑎′𝑠(𝑡) ))𝑎 ′
.  (3.16) 

 

 

Figure 3.10: The module network used for the experiments. 
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3.6.2  Experimental Setup 

We conducted simulations using the hunter task solved by a pair of agents using 

the module networks without attention system because there were no differences 

between the module networks with and without attention system with respect to the 

basic behavior of the FPC model. The process for searching for a new Solution is 

the same as the previous section. Table 3.2 shows the experimental setup of the 

experiments. 

Table 3.2: Experimental setup. 

history size: H 5 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑚𝑎𝑥  10 

temperature (expression 3.9 and 3.13): 𝛽 1/3 𝑝𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥  1000 

temperature (expression 3.12): 𝛽 2 tabu tenure 7 

temperature (expression 3.15 and 3.16): 𝛽 1 neighbor size: n 23 

𝑠𝑡𝑒𝑝𝑚𝑎𝑥  150 population size: N 8 

 

3.6.3  Results 

Fig. 3.11-(A) shows the transition of the activation signals, the link-deactivation 

signal, and the reward of a hunter (named Ken) during learning (7 rounds). Fig. 3. 

11-(B) shows the transition of those of Ken's 7 different partners each round. In 

both figures, the red line represents the reward, the black lines represent the 

activation and link-deactivation signals. Fig. 3.12 shows the observed networks 

for processing recursion levels of ToM (left: Ken, right: partners). 

 

 

 

 

 

 

 

 



 

47 

 

 

 

(A) A certain hunter (named 'Ken') 

 

 

(B) Ken's partners which changed per 1000 periods 

 

Figure 3.11: The transition of the activation signals, the link-deactivation signals, 

and the reward during the learning (7 rounds). 
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           (A) period 1                      (B) period 900 

 

           (C) period 990                    (D) period 1001 

 

           (E) period 2001                  (F) period 2309 

 

           (G) period 3001                  (H) period 3184 

 

Figure 3.12: The emerged partial networks for processing ToM. 
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     At the 1st period in the 1st round, the reward was very low because there 

were no outputs in both hunters' network (Fig. 3. 12-(A)). The reward slightly 

increased at the 900th period in parallel with that Ken acquired the network for 

level 0 and level 2* ToM (Fig. 3. 12-(B)). Subsequently, the reward slightly 

increased at 990th period. By then, the partner acquired the network for level 0 

and level 2* ToM as shown in Fig. 3. 12-(C). At the 1001th period in the 2st round, 

Ken behaved using level 0 ToM and his new partner behaved level 2* ToM as 

shown in Fig. 3. 12-(D). The reward remained comparatively stable during this 

round. 

     At the 2001th period in the 3rd round, Ken and his new partner behaved 

using level 0 ToM at first (Fig. 3. 12-(E)). After that, there was a remarkable 

increase in the reward at around 2309th period. At that time, Ken had acquired the 

network for level 0 ToM, whereas his partner acquired the network for level 1 

ToM (Fig. 3. 12-(F)). Since then the reward remained stable, however; it 

decreased when the partner changed at the 3001th period because Ken and his 

new partner behaved competitively using level 0 and level 2* ToM, respectively 

(Fig. 3. 12-(G)). Then, the reward increased at around 3184th period. It is because 

by then the partner had acquired the network that was functionally similar to level 

3 ToM: estimating the goal of others by assuming that others would be at level 2*, 

and explicitly takes action based on it (Fig. 3. 12-(H)). In the subsequent periods, 

the reward remained stable thanks to the adaptive interactions between the levels 

of ToM. 

 

3.7  Conclusion and Discussion 

We proposed a computational framework for investigating the emergence of ToM 

as an adaptation on different time scales based on three fundamental hypotheses 

concerning human brains and cognition. As a first step, this chapter focused on the 

emergence of ToM to achieve cooperative behavior in a population of agents. The 

simulation demonstrated a scenario for bootstrapping ToM as the emergence of 

the partial-networks of functional parts in the brain model based on the 

interactions between the levels of ToM. It also showed that appropriate behaviors 

suited for others interacting for the first time can be swiftly acquired simply by 
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reusing the acquired partial-networks. These results imply that efficient social 

behaviors were attained not only by the individual cognitive components but also 

the appropriate combinations of these modules, which has much in common with 

the neuroscientific facts about autism (Happe, 2006). The next step would be to 

investigate the acquisition of not only the activation signals but also the 

connections between modules.   

     It also showed that before an agent acquired activated patterns for level 1 

ToM, the partner usually behaved using level 0 ToM. We presume that it (the 

other behaves using level 0 ToM) is one of the important factors for emergence of 

the level 1 ToM because it makes agent estimate other’s goal to some extent by 

using own action selection strategies. This property suggests that the behavior 

using level 1 ToM further leads to the emergence of level 2 ToM. However, there 

were only a few cases where a partial network for implementing level 2 ToM 

emerged in the experiments despite both hunters behaved using level 1 ToM for 

some time. It might be due to the fact that the number of possible combinations of 

the activated patterns for level 2 ToM is fewer than those of level 0 ToM. This fact 

might indicate the difficulty of the emergence of level 2 ToM. 

     Furthermore, the simulations showed the emergence of the several 

strategies based on ToM other than the definition of the Dennett's intentional 

stance such as the extension of active strategy, called level 2* ToM, in which 

agents lead the intention of others to one's own direction by informing own goal 

explicitly to others. Fig. 3.13 shows the conceivable definition of the recursion 

levels of ToM by using the module network adopted in the chapter 3.6. In Fig. 

3.13, recursion levels are arranged in ascending order. Rectangular cells represent 

strategies where agents estimate the intention of others by assuming that others 

would be at the right overhead strategy. Dark blue rectangular cells mean the 

possible strategies considering the role division between two agents. Light bule 

rectangular cells represent those considering cooperation among more than three 

agents. As shown in Fig. 3.13, the depth of recursion level stops when the agent at 

an odd level takes action explicitly in the case of cooperation between two agents 

for the following reason. The explicit action conducted by the agent at the odd 

level is not transferred to the agent at the next even level (right below in Fig. 3.13) 

because agents at the even level estimates the intention of others based on own 

behaviors, independently of those conducted by others. On the other hand, there 
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might be some cases that explicit action taken by the agent at the odd level is 

effective if there are more than three agents. For example, the agent A (at the odd 

level N) might assume another agent B as even level N-1 and the other agent C as 

odd level N-2, and decide own optimal behavior which informs the other agent C 

the own intention explicitly (Fig. 3.14). 

     The next step would be to investigate the effectiveness of these active 

strategies. The situations where agents cannot estimate correctly which preys 

others aim at supposed to be advantageous to these strategies (Yokoyama and 

Omori, 2009). These strategies also assumed to be adaptive in the situations where 

each of two players chooses whether to hunt highly valued prey together and 

share the proceeds or defect to hunt meager prey of small value, such as a 

Stag-Hunt game (Yoshida et al., 2008). It might be interesting to discuss the 

emergence of the cooperative behavior and deception based on the acquisition of 

the ToM. 

 

      

 

 

 

 

Figure 3.13: Conceivable definition of the recursion levels of ToM by using the 

module network adopted in the experiments. 
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     We believe that the proposed method would contribute to clarify the origin 

of ToM. It would also be interesting to discuss the feasibility of the acquisition of 

ToM in humanoid robots. When applying this model to embodied agents in the 

real world, there should be a series of challenges they would face, as the 

functional model of the brain presented in this paper is specialized for the 

acquisition of ToM for a simple cooperative task in an abstract environment. 

 

 

Figure 3.14: Cooperation among three agents. 
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4  Conclusion 
 

 

This thesis describes the constructive approach for investigating the emergence of 

the primitive functions of mind, focusing on the planning for future events and 

general mind reading ability (Theory of Mind: ToM). 

     In the second chapter, we discussed the question: what kinds of problems 

contribute to the emergence of the planning ability? To response to this question, 

we constructed a blocks world problem as a minimal task which needs ability to 

think logically, and encoded an inherent planning parameter into the genome. The 

result of computer simulation showed a general tendency that planning ability 

emerges when the problem is difficult to solve. When taking social relationships 

especially in the collective situation into account, planning ability was difficult to 

evolve in the case that the problem was difficult because there was a conflict 

between personal and collective interests. Also, the simulation results indicated 

that sharing information facilitates evolution of the planning ability although the 

free rider problem tended to be more serious than the situation where agents do 

not share information. It implies that there is a strong connection between 

evolution of the planning ability and symbolic communication. It has been 

claimed that difference in the ecology of the early hominids and the other apes is 

important but neglected factor in the discussions of the evolution of language 

(Bickerton, 2002). Our results showed one of the ecologically based answers to 

why humans are the only animals who have developed a symbolic communication. 

What remains to be done is to clarify the mechanism of the co-evolutionary 

dynamics of the planning and symbolic communications in the situation where 

two kinds of groups, sharing and no sharing information, coexist in the same 

population. 

     In the third chapter, we modeled a human communication based on the 

mind-reading as follows: (1) humans estimate the intention of others from his/her 

behavior by simulating it based on their own action decision process as if they 

were in the same situation (Gallese & Goldman, 1998); (2) humans interactively 

determine own behaviors in accordance with the estimated intention of others. 

Unlike the static environment where certain rules that agents have to learn were 
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permanent, these processes are too dynamic to be explained by the traditional 

action learning methods through a trial and error because it is necessary to cope 

promptly with the change of the intention of others in its dynamic environment. 

This thesis attempted to demonstrate the emergence of role division in a short time 

scale in these complex and dynamic social situations. To do this, we used a 

Functional Parts Combination (FPC) model (Omori and Ogawa, 2001), which 

regards the brain at a functional level as composed of a set of functional parts and 

activation signals specifying selectively activated patterns. We conducted 

computer simulations in which the activation signals were learned using a hunter 

task as a problem to be solved by the agents. The simulation demonstrated a 

scenario for bootstrapping ToM as the emergence of the partial-networks of 

functional parts in the brain based on the interactions between the recursive levels 

of intentionality in ToM. It also showed that appropriate behaviors suited for 

others interacting for the first time could be swiftly acquired simply by reusing the 

acquired partial-networks. The next step would be to consider the more complex 

environment: real world. When applying this model to embodied agents in the real 

world, there should be a series of challenges they would face. One important 

problem that comes to mind is a notorious symbol grounding problem (Harnard, 

1990), i.e., how symbols get their meaning, or how the connection between 

symbols and the environment can be established. Another problem is that agents 

cannot adapt various situations. To solve this problem, it would be necessary both 

to add the functional parts responding to the several situations and to increase the 

particle size of themselves for flexible behavior. However, it might generate a new 

problem: (1) it is difficult to understand how complex structures and behaviors 

emerge from them; (2) how efficiently combinations of the lots of modules search, 

in other words; frame problem (McCarthy and Hayes, 1969). 
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