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disordered structures called “random lasers” by means of finite element method.

The excitation pumping for optically active materials, that is, population in-

version is modeled by negative value in imaginary part of relative permittivity.

Perfectly matched layer boundary condition is used to simulate light scatterings

in an open region. The amplifications of light waves emitted from disordered

systems are computed by changing frequency and population inversion of active

medium.

The dependence of properties of random lasing on the excitation pumping

of optically active materials are revealed for the first time. The effects of lo-

cation of active medium, lasing frequency, filling factor of dielectric cylinders,

the amount of positional disorder of cylinders, and the materials of cylinders on

lasing threshold are investigated precisely. Appropriate random systems for low-

threshold random lasing are investigated based on the results of the dependence.

xxi



xxii



CHAPTER 1

Introduction

1.1 Background

Light control with micro-nano optical structures are receiving much attention

because of their high potential for light confinements. “Laser device” is one of

the most active research topics to which micro-nano optical structures are applied.

Laser is usually composed of two basic elements: optically active medium that

gives light amplifications through stimulated emission and optical cavities that

confine light waves. Light waves are nonlinearly amplified by cavity confinements

that work as feedback mechanisms repeating light amplifications. Hence, the

cavities determine the properties of laser devices and are essential to laser action.

When light amplifications overpower losses in systems, the systems reach lasing

threshold and lase. The lasing threshold is strongly influenced by light trapping.

Lower-threshold laser devices can lase by lower excitation energy for the pumping

of optically active medium, that is, energy-saving laser devices.

Photonic crystals are nano periodic structures composed of dielectric or metal-

lic materials. Photonic crystals can prohibit light propagations in certain fre-

quency ranges called “photonic band gaps” [1, 2]. The band gaps occur from

Bragg’s reflections, that is, coherent multiple reflections by periodic structures.

Photonic crystals are applied to optical filters, optical fibers, waveguides, mir-

rors, etc. Laser devices in which photonic crystals are used as cavities, called

photonic crystal lasers, can lase even in a lower pumped state of optically active

material because of the extremely low group velocities at band edge frequencies

[3, 4, 5]. At such frequencies, light waves are localized in photonic crystals as

standing waves that work as feedback mechanisms repeating light amplifications.

Recently, photonic crystal cavities with extremely high quality factor are reported

[6, 7, 8, 9]. The quality-factors are dynamically controlled [7].

The properties of non-periodic optical structures are studied actively in re-

cent years. Such media with non-periodicities are called with the terms “random
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system” or “disordered structure” in the previous articles. Lasing phenomena

in disordered structures are called “random lasers.” Random lasing phenomena

were experimentally observed by Lawandy [10] in 1994. They experimented laser

action in random systems composed of laser dye and colloidal suspension of ti-

tanium dioxide particles. After the first observation of random lasing, random

lasers were discussed whether the light amplifying phenomena are lasing phenom-

ena or amplified spontaneous emission because the light amplifications occur in

disordered structures and there is no cavity-like structure [11]. Random lasers

have several unique lasing properties which conventional laser devices cannot

give. Actually, the modes of random laser are determined by random multiple

scatterings in disordered structures. Random lasing occurs from random multi-

ple scatterings and interference effects of scattered light waves. Hence, their laser

modes and lasing mechanisms are quite varied and complicated.

In order to investigate such complex lasing phenomena intensively, numerical

simulation using large scale computation models is inevitable and actually the

most powerful method. Finite difference time domain method (FDTD method)

are frequently used for the analyses of random lasers [12, 13, 14, 15]. In the above

numerical analyses, lasing frequency, lasing mechanisms, laser modes, localized

regimes of lasing states, and the effect of filling factor and system sizes for in-

tensity of electric field are investigated. Fixed pumping excitations of optically

active medium are assumed in the analyses of lasing states and light confinements

of non-excited and lasing states in disordered structures are compared with each

other.

In the first experimental report of random lasers by Lawandy, it is mentioned

that the threshold of random laser is “surprisingly low” [10]. However, because

of the above assumption of the fixed excitation, no numerical analysis investi-

gated lasing threshold of random lasers. Burin et al. presented theoretically that

lasing threshold becomes lower as random system size increases [16]. Chang et

al. investigated lasing threshold of one-dimensional random lasers consisting of

randomly positioned multi-layers [17]. But the lasing threshold of random lasers

and the dependency of lasing properties of random lasers on pumping excitations

of optical gain are not discussed sufficiently.

Hence, in the present dissertation, we present the dependence of lasing proper-

ties of random lasers on the excitation of active medium by means of finite element

method. The excitation of optically active medium, namely, population inver-
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sion density of active gain is modeled by giving a negative value to the imaginary

part of relative permittivity. We assume lasing phenomena in two-dimensional

disordered structures consisting of random arrangement of homogeneous dielec-

tric cylinders. Some appropriate random systems for having low-threshold laser

action are proposed.

1.2 Objective

The objective of this thesis is to give appropriate random systems having low-

threshold laser action for developing energy-saving random lasers by investigating

the dependencies of the arrangement of dielectric inclusions, their filling rate, and

optically active materials on lasing properties.

Numerical computations of lasing phenomena are indispensable for extensive

analyses of the lasing properties and finite element method is used for this pur-

pose. The dependence of the properties of random lasers on the excitation energy

of optically active medium is investigated by modeling population inversion den-

sity of active medium as a negative imaginary part of the relative permittivity.

Such approach with modeling of population inversion has been used in the anal-

yses of photonic crystal lasers. This approach is used, for the first time in this

study, to the analyses of random lasing. This approach enables us to investigate

the lasing threshold of random lasers directly. The analyses are focused on low-

threshold laser action, i.e., lasing phenomena oscillating in lower excited state of

optically active materials.

The following factors characterizing random systems are investigated in this

thesis.

• Influence of the location of active medium

• Influence of lasing frequency on lasing properties and lasing threshold

• Relation between the amplification of emitted light waves and electric field

intensity in random systems

• Effect of the filling factor of dielectric cylinders on lasing threshold of ran-

dom lasing

• Effect of the amount of positional disorder of dielectric cylinders on lasing

threshold

3



• Effect of rod materials

The influence of the location of active medium is first investigated. It is

expected to occur low-threshold laser action when light waves are localized in

optically active medium. Hence the investigation of the location of light local-

izations in disordered structures is important. Two types of random systems are

considered: one with optically active medium in interspaces among nonactive

dielectric cylinders and the other consisting of optically active cylinders within

nonactive medium. The light waves are amplified in interspaces among dielectric

cylinders in the former random systems, while in the latter random systems, light

waves are amplified in active cylinders. Simulations of lasing phenomena in both

random systems are given and the lasing thresholds of both types are compared.

Then, the influence of lasing frequency on lasing properties and lasing thresh-

old is investigated. It is supposed that transfer mean free path (TMFP) needs to

be shorter than the wavelength of light so that the random lasing is activated. In

order to find a state in which light waves are localized in the interspaces among

neighboring dielectric cylinders, the relation between wavelength and TMFP and

the relation between lasing properties and lasing frequencies are studied. Also

computed is the light amplifications for a wide frequency range with a fixed pop-

ulation inversion density of active medium.

The relation between the amplification of emitted light waves and electric field

intensity in random systems are investigated next. Although only the intensity of

electric field in random systems are computed and lasing phenomena are related

only to their divergent peaks in the previous studies [18, 12, 13], amplification

of light wave is essentially not an enhancement of electric field intensity but an

amplification of light wave. Therefore in the thesis, both the amplification and

the intensity are computed and compared with each other.

The effect of the filling factor of dielectric cylinders on lasing threshold of

random lasing is investigated next. The filling factor of dielectric cylinders is one

of the most important factor giving large influence on the intensity of multiple

scattering of light waves in disordered structures. However, relation between

lasing threshold of random laser and the filling factor of dielectric cylinders is not

studied yet. Therefore, lasing phenomena in disordered structures with various

filling factors of dielectric cylinders are simulated.

Then, the effect of the amount of positional disorder of dielectric cylinders
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on lasing threshold is studied. Laser action in periodic structures, i.e., photonic

crystal laser, can lase even in low excited state of optically active medium because

of extremely low group velocity at band edge frequencies. As mentioned in a

previous study by Lawandy [10], random laser can realize low-threshold laser

action. Therefore, the influence of the amount of disorder on lasing threshold of

random lasers are discussed.

Finally, the effect of rod materials is studied. Random lasings in disordered

structures consisting of metallic cylinders, called metallic random lasers, is stud-

ied. Noble metals reflect light perfectly on their surfaces because of the existence

of free electrons. Surface plasmon which is coherent electron oscillations work

to keep out light waves. Hence, it is expected that multiple scatterings are en-

hanced in disordered structures consisting of noble metals. Moreover, in the case

of random systems with optically active medium in interspaces among metallic

cylinders, all light waves are kept in active medium, and thus, lasing threshold

of metallic random lasers are expected to be extremely low. Lasing threshold of

metallic random lasers is studied.

In addition to the above studies on the characteristics of random lasing, we

also present simulations of random laser action in honeycomb structures includ-

ing random link removals as a new type of random laser devices. The honeycomb

structure proposed by Florescu et al. [19] is different from conventional ran-

dom systems consisting of cylinders. They investigated the effect of random link

removals on the band structures of honeycomb structures. A random lasing is

also expected to occur in such a honeycomb structure including random link re-

movals. Hence, random lasing properties and lasing threshold of this structure is

investigated as a related topic.

1.3 Overview of the thesis

This dissertation is organized as follows.

Chapter 2

Photonic crystals, random lasers, and basic formulations of numerical methods

are introduced.

In the introduction of photonic crystals, we describe the properties of elec-

tromagnetic waves in optical periodic structures as Bloch state, band structures
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(band gaps), and transmission spectrum. Several analysis methods based on

Maxwell’s equations and the properties of light waves in optical periodic struc-

tures are introduced in order to explain the origin of the properties of photonic

crystals. Several previous studies about advanced laser devices to which photonic

crystals are applied are also introduced.

Random lasers are also introduced in this chaper. Lasing mechanism, lasing

properties, previous studies, and applications are described. Detailed descriptions

of our analysis objects are given. Disordered optical structures analyzed in this

dissertation and the materials used to fabricate them are explaned. The math-

ematical modeling of the physical phenomena in random lasing is given using

Maxwell’s equations. Basic equations of electromagnetic scatterings in open re-

gions are derived from Maxwell’s equations. Optically active medium amplifying

light waves and the parameter which is proportional to the population inversion

density are introduced, and perfectly matched layer boundary condition for sim-

ulating electromagnetic scatterings in open regions is explained. Outline of the

numerical methods frequently used for the analysis of optical phenomena are also

shown.

Chapter 3

Random lasing in a disordered structure consisting of optically active cylinders

within non-active medium are simulated. The amplification of light waves flowing

out from the random systems, electric amplitude distributions of lasing states,

radiation directions, and lasing threshold are computed. Five samples with dif-

ferent rod arrangements are analyzed in order to confirm common physics and

average of lasing threshold.

Chapter 4

Simulated results of random lasing in random systems consisting of non-active

cylinders within active medium are presented.

In section 4.2, random lasing phenomena in the random system with optically

active medium in interspaces among dielectric cylinders are simulated. Five sam-

ples with different rod arrangements are analyzed in order to confirm common

physics and average of lasing threshold. The simulated results of random lasing

show that the random system is appropriate for lower threshold laser action be-

cause light waves are localized in interspaces filled with active medium. Lasing

6



threshold of random laser oscillating in the random systems are compared with

that oscillating in random systems consisting of active cylinders. It is shown that

the random systems with active medium in interspaces among nonactive cylinders

can activate lower-threshold laser action than the random systems consisting of

active cylinders do.

In section 4.3, the influence of lasing frequency on lasing threshold and types

of laser modes are discussed. Based on the result obtained in section 4.2, we

consider random systems with active medium in interspaces among nonactive

cylinders as the target of study. Amplification of light waves flowing out from

disordered systems for wide frequency range is computed, and the influence of

lasing frequency on lasing properties is investigated.

In section 4.4, the relation between light amplification and electric intensity

in random systems and the role of disordered structures are presented. Light

amplification is compared with electric intensity in random systems. Random

systems with active medium in interspaces among nonactive cylinders are as-

sumed because of low lasing threshold shown in 4.2. Some laser modes which are

different from “cavity modes” are newly found, and these modes are defined as

“non-cavity modes”. The similarity of electric amplitude distributions between

excited and non-excited states of active medium are evaluated by using normal-

ized mean square error. By this evaluation, lasing phenomena are distinguished

between cavity modes and non-cavity modes, and thus, disordered structures are

judged if they work as cavities or not. It is found that cavity modes tend to lase

in lower pumped states than non-cavity ones.

In section 4.5, the effect of filling factor of dielectric materials on lasing thresh-

old is investigated. Lasing phenomena in disordered structures with filling factors

10%, 20%, 30%, 40%, and 50% are simulated. Optically active medium are intro-

duced in interspaces among dielectric cylinders. It is found that optical structures

with higher filling factor are more appropriate for lower-threshold laser action be-

cause light confinements become strong as the filling factor of dielectric materials

increases. The results indicate that strong light confinement is important for

low-threshold laser action.

In section 4.6, transition from photonic crystal laser to random laser is simu-

lated. The amount of positional disorder is parameterized as the distance between

a grid point of fictitious triangular lattice and the center of a randomly distributed

rod. Lasing phenomena is sensitive for the disorder of dielectric structures. The
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laser action caused by random multiple scatterings occurs even if the amount of

positional disorder is quite small. Such laser action start to occur from higher

frequency range and spread for lower frequency range.

Chapter 5

Lasing phenomena and lasing threshold of random laser occurring in disordered

structures composed of metallic cylinders are investigated. Metals are expressed

by Drude-type relative permittivity derived from motion equation of electrons

and realize high reflectance on their surface. Extremely intensive multiple scat-

terings and strong light confinements in active medium are expected. Thresholds

of random lasers in metallic disordered structures are compared with those in

dielectric ones of same rod arrangements.

Extremely low threshold lasing phenomena are observed in the results of ran-

dom lasers in metallic disordered structures.

Chapter 6

Lasing phenomena in honeycomb structures including randomly positioned dan-

gling bonds are investigated. Such structures are appropriate for including op-

tically active medium and are fabricated actually in order to apply to optical

devices. Optically active medium is introduced into hexagonal hollows, and 100

dielectric links are randomly removed from the hexagonal structures. It is found

that random lasing occurs in the honeycomb structures including randomly po-

sitioned dangling bonds, but the threshold of laser action in the honeycomb

structures becomes higher than that in random systems consisting of nonactive

cylinder within active medium.

Chapter 7

Conclusions of the thesis are presented.
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CHAPTER 2

Fundamentals

2.1 Photonic crystals

Photonic crystals are periodic structures composed of dielectric materials. The

length of the periods are approximately equal to the wavelength of visible light

waves. Photonic crystals can be classified into one-, two-, and three-dimensional

crystals shown in Figs. 2.14(a), 2.14(b), and 2.14(c), respectively, based on their

periodicities. Photonic crystals can prohibit the propagations of light waves in

certain frequency ranges. The opaque frequency ranges and the property against

light propagations are called “photonic bandgaps”.

Photon energy-band structure of a periodic dielectric structure was theoreti-

cally proposed by Ohtaka [1] based on the similarity between a Helmholtz equa-

tion derived from Maxwell’s equations and the Schrödinger equation without

time dependent terms in 1979. In 1987, Yablonovitch proposed a possibility of

realizing a three-dimensional photonic bandgap [2]. Periodic dielectric structures

called photonic crystals prohibit the propagation of light waves in specific fre-

quency ranges. Such property of photonic crystals is called “photonic bandgap”.

Photonic badgaps occur from Bragg reflection of light waves, caused by periodic

dielectric structures. After the proposition by Yablonovitch, many researchers

study photonic crystals intensively.

(a) One dimensional structure. (b) Two dimensional structure. (c) Three dimensional structure.

Figure 2.1: Photonic crystals.
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2.1.1 Bloch state

The electric field E becomes Bloch state in optical periodic structures as follows

Ekn(r) = eikxukn(r), (2.1)

where r express positions in optical periodic structures, k is wavenumber, n is a

integer in order to make a distinction between eigenmodes having same wavenum-

ber k, and ukn(r) is a periodic function satisfying a following periodicity:

ukn(r+ a) = ukn(r),

where a is the lattice vector of optical periodic structures. We derive above Bloch

state.

The eigenfunction of the electric field is expressed by a Fourier integral form

as

E(r) =

∫
A(k)eik·rdk, (2.2)

where the integral domain is the whole wave-number space. In photonic crystals,

relative permittivity ε(r) becomes a periodic function and can be written by a

Fourier series expansion as follows:

E(r) =
∑
G

ξ(G)eiG·r. (2.3)

By substituting Eqs. (2.2) and (2.3) into the wave equation

∇× [∇× E(r)] =
ω2

c2
ε(r)E(r), (2.4)

we have the following equation:

∫
dk

{
k× [k×A(k)] +

ω2

c2

∑
G

ξ(G)A(k−G)

}
eik·r = 0. (2.5)

Because Eq. (2.5) holds for all r, we obtain

k× [k×A(k)] +
ω2

c2

∑
G

ξ(G)A(k−G) = 0.

Above equation indicates that the coefficient functionA(k) is related toA(k−G).

10



The solution of Eq. (2.4) can be expressed by the summation of the Fourier

coefficients as

Ek =
∑
G

A(k−G)ei(k−G)·r

=
∑
G

uk(r)e
ik·r,

where uk(r) is a periodic function defined as

uk(r) =
∑
G

A(k−G)e−iG·r

satisfying

uk(r+ ai) =
∑
G

A(k−G)e−iG·(r+ai)

= uk(r).

2.1.2 Dispersion relation and band gaps

Dispersion relations are the relations between circular frequency ω and wave

number k. In homogeneous dielectric medium whose relative permittivity εh is

constant, the dispersion relation becomes linear as

k =
ω

c

√
εh.

However, in photonic crystals, relative permittivity becomes position dependent

function as ε(r), and then, dispersion relation becomes nonlinear.

2.1.2.1 Band calculation for one-dimensional photonic crystal by us-

ing tight-binding approximation

In one-dimensional photonic crystals, namely, dielectric multilayer structures, the

Helmholtz equation derived from Maxwell’s equations for TM mode becomes

∂2E(x)

∂x2
+

ω2

c2
ε(x)E(x) = 0, (2.6)

where ε(x) satisfies

ε(x+ a) = ε(x),

11
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Figure 2.2: The band structure of a 2D photonic crystal consisting of dielectric

cylinders whose radius is R = 0.3a. Dielectric cylinders, whose permittivities are

4.0, are arranged on triangular lattices. This dispersion relation is computed by

plane wave expansion method.

where a is the periodic length of the multilayer structures. The partial spatial

derivative in Eq. (2.6) is discretized by using the central difference as

∂E(x)

∂x
=

E(x+ a/2)− E(x− a/2)

a
,

a a a a
x

y

dielectric layer

a

light wave

Figure 2.3: An image of a one-dimensional photonic crystal (multilayer structure).
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which leads to

∂2E(x)

∂x2
=
1

a

[
E(x+ a)− E(x)

a
− E(x)− E(x− a)

a

]

=
E(x+ a)− 2E(x) + E(x− a)

a2
. (2.7)

By substituting Eq. (2.7) into the Helmholtz equation (2.6), and using Bloch’s

theorem (2.1), we obtain an eigenvalue equation as[
exp(ika) + exp(−ika)− 2

a2
+

ω2

c2

]
E(x) = 0,

from which we have

ωa

2πc
= ± a

2π

√
2− exp

(
i ka
2π
2π

)− exp
(−i ka

2π
2π

)
a2

= ± 1

2π

√
2− exp

[
i2π

(
ka

2π

)]
− exp

[
−i2π

(
ka

2π

)]
,

where k is the wave number in the range −π
a
≤ k ≤ π

a
.
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Figure 2.4: A dispersion relation of a one-dimensional photonic crystal computed

by tight-binding approximation.
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2.1.2.2 Band calculation for two-dimensional triangular lattice by us-

ing tight-binding approximation

The lattice vectors of triangular lattice are defined as follows:

a1 = (a, 0) , a2 =
(

1
2
a,
√

3
2

a
)

, a3 =
(
−1

2
a,
√

3
2

a
)

,

a4 = (−a, 0) , a5 =
(
−1

2
a,−

√
3

2
a
)

, a6 =
(

1
2
a,−

√
3

2
a
)

,
(2.8)

where a is a lattice constant.

a1

a2a

a
a5 a

Γ

M

Figure 2.5: Triangular lattices.

The electric field at each lattice point, E(r + ai), is expressed by a Taylor

expansion as

E(r+ ai) = E(r) + (ai · ∇)E(r) + 1

2
(ai · ∇)2 E(r) (2.9)

= E(r) +

[
ai

x

∂

∂x
E(r) + ai

y

∂

∂y
E(r)

]

+
1

2

[
(ai

x)
2 ∂2

∂x2
E(r) + (ai

y)
2 ∂2

∂y2
E(r)

]
,

where ai
x and ai

y are the x and y components of ai, respectively. In Eq. (2.9), the

terms whose orders are larger than 3 are neglected because they are sufficiently

small. We sum up all the electric field at r+ ai (i = 1 · · · 6) as
6∑

i=1

E(r+ ai) = 6E(r) + 0 +
1

2

[
3a2 ∂2

∂x2
E(r) + 3a2 ∂2

∂y2
E(r)

]

= 6E(r) +
3a2

2
∇2E(r)

resulting in

∇2E(r) =
2

3a2

[
6∑

i=1

exp(ik · ai)− 6

]
E(r), (2.10)
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where the relation E(r + ai) = E(r) exp(ik · ai) derived from Bloch’s theorem is

used. We substitute Eq. (2.10) into the Helmholtz equation to have

∇2E(r) +
ω2

c2
E(r) =

2

3a2

[
6∑

i=1

exp(ik · ai)− 6 +
ω2

c2

3a2

2

]
E(r)

= 0

resulting in

6∑
i=1

exp(ik · ai)− 6 +
ω2

c2

3a2

2
= 0.

The dispersion relation of a triangular lattice, derived from tight-binding approx-

imation is finally becomes

ω2a2

c2
=
2

3

[
−

6∑
i=1

exp(ik · ai) + 6

]

=
2

3
× 6− 2

3

[
2 cos(kxa) + 2 cos

(
a

2
kx +

√
3a

2
ky

)

+ 2 cos

(
−a

2
kx +

√
3a

2
ky

)]

= 4− 4

3

[
cos(kxa) + cos

(
a

2
kx +

√
3a

2
ky

)
+ cos

(
−a

2
kx +

√
3a

2
ky

)]

= 4− 4

3

[
cos(kxa) + 2 cos

(√
3a

2
ky

)
cos

(a

2
kx

)]

= 4− 4

3
cos(kxa)− 8

3
cos

(√
3a

2
ky

)
cos

(a

2
kx

)
,

and

ωa

2πc
=

1

2π

√√√√4− 4

3
cos(kxa)− 8

3
cos

(√
3a

2
ky

)
cos

(a

2
kx

)
. (2.11)

We also try to derive the velocity of energy propagation of light waves, that

is, group velocity vg defined as

vg =

(
∂ω

∂kx

,
∂ω

∂ky

)
. (2.12)
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From Eq. (2.11), normalized frequency is derived as

ωn =
ωa

2πc

= ± 1

2π

√√√√4− 4

3
cos(kxa)− 8

3
cos

(√
3a

2
ky

)
cos

(a

2
kx

)

= ± 1

2π

√
4− 4

3
cos(2πkxn)− 8

3
cos

(√
3πkyn

)
cos (πkxn). (2.13)

The relation between kx and ky is derived from Eq. (2.13) as

cos

(√
3a

2
ky

)
=

3

8 cos
(

kxa
2

) [
4− 4

3
cos(kxa)− ω2a2

c2

]

=
3

8 cos
(

kxa
2

) [
4− 4

3
cos(kxa)− 4π2ω2

n

]
,

and

√
3a

2
ky = ± cos−1

{
3

8 cos
(

kxa
2

) [
4− 4

3
cos(kxa)− ω2a2

c2

]}

= ± cos−1

{
3

8 cos
(

kxa
2

) [
4− 4

3
cos(kxa)− 4π2ω2

n

]}
,

then,

√
3πkyn = ± cos−1

{
3

8 cos (πkxn)

[
4− 4

3
cos(2πkxn)− 4π2ω2

n

]}

where kxn and kyn are the x and y components of normalized wave vector denoted

as

kn = (kxn, kyn)

=

(
kxa

2π
,

kya

2π

)
.

The range of kxn becomes 0 ≤ kxn ≤ 2
3
based on the first Brillouin zone.
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The group velocity defined by Eq. (2.12) finally becomes as

∂ωn

∂kxn

= ± 1

4π
√
4− 4

3
cos(2πkxn)− 8

3
cos

(√
3πkyn

)
cos (πkxn)

×
[
8π

3
sin(2πkxn) +

8π

3
sin(πkxn) cos

(√
3πkyn

)]

= ± 1

4π
√
4− 4

3
cos(2πkxn)− 8

3
cos

(√
3πkyn

)
cos (πkxn)

×
[
8π

3
sin(2πkxn) +

8π

3
sin(πkxn)

× cos

(
cos−1

{
3

8 cos (πkxn)

(
4− 4

3
cos(2πkxn)− 4π2ω2

n

)})]

∂ωn

∂kyn

= ± 1

4π
√
4− 4

3
cos(2πkxn)− 8

3
cos

(√
3πkyn

)
cos (πkxn)

×
[
± 8π√

3
sin

(√
3πkyn

)
cos(πkxn)

]

= ± 1

4π
√
4− 4

3
cos(2πkxn)− 8

3
cos

(√
3πkyn

)
cos (πkxn)

×
[
± 8π√

3
sin

{
cos−1

[
3

8 cos (πkxn)

(
4− 4

3
cos(2πkxn)− 4π2ω2

n

)]}

× cos(πkxn)

]
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Figure 2.6: A dispersion relation and angular distribution of group velocity com-

puted by tight-binding approximation.
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2.1.2.3 Band calculation for two-dimensional honeycomb lattice by

using tight-binding approximation

In this subsubsection, we present dispersion relation of hexagonal lattice by means

of tight-binding approximation. Figure 2.7 shows A and B sites on hexagonal grid

point. The position of lattice points of A and B sites can not overlap each other

by parallel translation.

A B

B

B

A

A

1

(
a√

)
2

(
− a

2
√ a

2

)
(
− a

2
√ −a

2

)

Figure 2.7: Hexagonal lattice.

The equation solved in this analysis is Helmholtz equation as follows:

∇2E(r) +
ω2

c2
E(r) = 0. (2.14)

The electric field on r can be expanded by the superpositions of the electric field

on rA and rB as

E(r) = CAEA(r) + CBEB(r)

= CA

∑
rA

EA(r− rA) exp(ik · rA) + CB

∑
rB

EB(r− rB) exp(ik · rB), (2.15)

where CA and CB are the coefficients of a linear combination. By substituting

expanded form (2.15) into Eq. (2.14), the Helmholz equation becomes as follows:

∇2E(r) +
ω2

c2
E(r)

= CA

∑
rA

exp(ik · rA)∇2EA(r− rA) + CB

∑
rB

exp(ik · rB)∇2EB(r− rB)

+
ω2

c2
CA

∑
rA

exp(ik · rA)EA(r− rA) +
ω2

c2
CB

∑
rB

exp(ik · rB)EB(r− rB). (2.16)
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By multiplying E∗
A(r− rAA) by both side of Eq. (2.16),

E∗
A(r− rAA)

[
∇2E(r) +

ω2

c2
E(r)

]

= CA

∑
rA

exp(ik · rA)
[
E∗

A(r− rAA)∇2EA(r− rA)
]

+ CB

∑
rB

exp(ik · rB)
[
E∗

A(r− rAA)∇2EB(r− rB)
]

+
ω2

c2
CA

∑
rA

exp(ik · rA) [E
∗
A(r− rAA)EA(r− rA)]

+
ω2

c2
CB

∑
rB

exp(ik · rB) [E
∗
A(r− rAA)EB(r− rB)]

= CA

∑
rA

exp(ik · rA)αδAA,A + CB

∑
rB

exp(ik · rB)βδAA,B

+
ω2

c2
CA

∑
rA

exp(ik · rA)γ +
ω2

c2
CB

∑
rB

exp(ik · rB)ζ

= CA exp(ik · rAA)α+ CB

3∑
j=1

exp[ik · (rBB + tj)]β

+
ω2

c2
CA exp(ik · rAA)ζ

= CA

[
exp(ik · rAA)α+

ω2

c2
exp(ik · rAA)ζ

]
+ CB

3∑
j=1

exp[ik · (rBB + tj)]β

= exp(ik · rAA)

{
CA

[
α+

ω2

c2
ζ

]
+ CB

3∑
j=1

exp(ik · tj)β

}
(2.17)
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By multiplying E∗
B(r− rBB) by both side of Eq. (2.16),

E∗
B(r− rBB)

[
∇2E(r) +

ω2

c2
E(r)

]

= CA

∑
rA

exp(ik · rA)
[
E∗

B(r− rBB)∇2EA(r− rA)
]

+ CB

∑
rB

exp(ik · rB)
[
E∗

B(r− rBB)∇2EB(r− rB)
]

+
ω2

c2
CA

∑
rA

exp(ik · rA) [E
∗
B(r− rBB)EA(r− rA)]

+
ω2

c2
CB

∑
rB

exp(ik · rB) [E
∗
B(r− rBB)EB(r− rB)]

= CA

∑
rA

exp(ik · rA)β
′δBB,A + CB

∑
rB

exp(ik · rB)α
′δBB,B

+
ω2

c2
CA

∑
rA

exp(ik · rA)ζ
′ +

ω2

c2
CB

∑
rB

exp(ik · rB)γ
′

= CA

3∑
j=1

exp[ik · (rBB − tj)]β
′ + CB exp(ik · rBB)α

′

+ 0 +
ω2

c2
CB exp(ik · rBB)ζ

′

= CA

3∑
j=1

exp[ik · (rBB − tj)]β
′ + CB

[
exp(ik · rBB)α

′ +
ω2

c2
exp(ik · rBB)ζ

′
]

= exp(ik · rBB)

{
CA

3∑
j=1

exp(−ik · tj)β
′ + CB

[
α′ +

ω2

c2
ζ ′
]}

(2.18)

Based on Eqs. (2.17) and (2.18), the following simultaneous equation is de-

rived as ⎡
⎣ α+ ω2

c2
ζ

∑3
j=1 exp(ik · tj)β[∑3

j=1 exp(ik · tj)
]∗

β′ α′ + ω2

c2
ζ ′

⎤
⎦[ CA

CB

]
= 0.

In order to obtain non-trivial solutions, the determinant of the above coeffi-

cient matrix becomes as follows:∣∣∣∣∣∣
α+ ω2

c2
ζ

∑3
j=1 exp(ik · tj)β[∑3

j=1 exp(ik · tj)
]∗

β′ α′ + ω2

c2
ζ ′

∣∣∣∣∣∣ = 0,
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resulting in

[
α+

ω2

c2
ζ

] [
α′ +

ω2

c2
ζ ′
]
−
[

3∑
j=1

exp(ik · tj)

]
β

[
3∑

j=1

exp(ik · tj)

]∗
β′

= ζζ ′
(

ω2

c2

)2

+ (α+ α′)
(

ω2

c2

)
+ αα′ −

∣∣∣∣∣
3∑

j=1

exp(ik · tj)

∣∣∣∣∣
2

ββ′

= 16π4ζζ ′
(

ω2

4π2c2

)2

+ 4π2 (α + α′)
(

ω2

4π2c2

)
+ αα′ −

∣∣∣∣∣
3∑

j=1

exp(ik · tj)

∣∣∣∣∣
2

ββ′

= 0.

The above equation is solved as

( ω

2πc

)2

=

2π2(α+ α′)±
√
[2π2 (α+ α′)]2 − 16π4ζζ ′

{
αα′ −

∣∣∣∑3
j=1 exp(ik · tj)

∣∣∣2 ββ′
}

16π4ζζ ′

=

(α+ α′)±
√
[(α + α′)]2 − 4ζζ ′

[
αα′ −

∣∣∣∑3
j=1 exp(ik · tj)

∣∣∣2 ββ′
]

8π2ζζ ′
.

Relations α = α′, β = β′, and ζ = ζ ′ = 1 are assumed because of the

symmetry of hexagonal lattice points on A and B sites. Then following relation

is derived as

( ω

2πc

)2

=

2α±
√
4α2 − 4

{
α2 −

∣∣∣∑3
j=1 exp(ik · tj)

∣∣∣2 β2

}
8π2

=
2α± β

∣∣∣∑3
j=1 exp(ik · tj)

∣∣∣
8π2

.

The dispersion relation of hexagonal lattice by using tight-binding approximation

is finally becomes as follows:

ωa

2πc
= a

√√√√2α± β
∣∣∣∑3

j=1 exp(ik · tj)
∣∣∣

8π2
.
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2.1.3 Transmission spectrum and uncoupled modes

A transmission spectrum for Γ−K direction is shown in Fig. 2.10(a). We observe

that transmittivity becomes zero within band gap frequencies.

Optical transmittance of photonic crystals have some opaque frequency ranges

corresponding not only to band gaps but also to frequency ranges in which un-

coupled modes exist. Uncoupled mode is not excited by incident waves that have

symmetric distribution of electric field with respect to their propagation direction

because uncoupled modes have anti-symmetric distributions of electric field.
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Figure 2.10: The transmission spectra of a 2D photonic crystal consisting of

dielectric cylinders whose radius R is R = 0.3a in the case of TM mode. Entire

structure has 14 period and dielectric cylinders, whose permittivities are 4.0, are

arranged on triangular lattices. This transmissivity is computed by plane wave

expansion method.

Such uncoupled modes are related to the sign of the linear combination of

eigenmodes. Reciprocal lattice vectors G1 and G2 oriented from Γ to Γ1 and Γ

to Γ2 in Fig. 2.11, respectively, are given as follows:

G1 =

(
−2π

a
,
2π√
3a

)T

, G2 =

(
−2π

a
,− 2π√

3a

)T

.

We assume that the light wave Aeik·x propagating along x axis. Then, the wave

vector of the assumed light waves k are written as

k = (kx, 0)
T .
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The wave vectors k1 and k2 shown in Fig. 2.11 are expressed with summations

of the wave vector and reciprocal lattice vectors as

k1 = k+G1 =

(
kx − 2π

a
,
2π√
3a

)T

,

k2 = k+G2 =

(
kx − 2π

a
,− 2π√

3a

)T

.

Above equilibrium state indicates |k1| = |k2|. The linear combination of eik1·x

and eik2·x also gives the eigenmode of the light waves in periodic structures. It is

written as

f(x) = Aeik1·x +Beik2·x.

Γ

Γ

Γ2 2

2

Figure 2.11: Reciprocal lattices and wave vectors.

The eigen mode f(x, y) satisfies the eigen equation of E-polarization as

1

ε(x, y)

{
∂2

∂2x
+

∂2

∂2y

}
f(x, y) = −ω2

c2
f(x, y). (2.19)

Here, we consider the symmetry of eigenmodes with respect to x axis. We replace

y with −y in Eq. (2.19) as

1

ε(x,−y)

{
∂2

∂2x
+

∂2

∂2(−y)

}
f(x,−y) = −ω2

c2
f(x,−y),

where ε(x,−y) and ∂2/∂(−y)2 satisfy the following relations:

ε(x,−y) = ε(x, y),
∂2

∂(−y)2
=

∂2

∂y2
.
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We can rewrite Eq. (2.19) as

1

ε(x, y)

{
∂2

∂2x
+

∂2

∂2y

}
f(x,−y) = −ω2

c2
f(x,−y). (2.20)

Equations (2.19) and (2.20) indicate that the two eigen modes f(x, y) and f(x,−y)

are fundamentally equal to each other. Hence, we can write the relation between

those eigen modes as

f(x, y) = αf(x,−y),

resulting in

f(x, y) = α2f(x, y),

where α is a constant coefficient and bocomes

α =

⎧⎨
⎩

+1

−1
.

The eigen modes satisfying the above equations are

f(x, y) =

⎧⎨
⎩

eik1·x + eik2·x

eik1·x − eik2·x
.

The lower eigen mode shown above becomes anti-symmetric with respect to x

axis and becomes an uncoupled mode.

2.1.4 Photonic crystal laser

Photonic crystals are actively applied to laser cavities. The group velocity of

light waves becomes extremely low at band edge frequencies in photonic crystals

and light waves are strongly localized. Therefore, the threshold of laser action in

photonic crystals becomes much lowerer than those of conventional laser devices.

In addition, the polarizaions of emitted light waves are perfectly controlled by

changing the geometry of the unit cell structure [20, 21].

Several advanced laser devices are developed as high Q factor cavities [6, 8, 9],

large area surface emitting lasers [22], high power lasers [23], blue-violet colored

lasers [24], and an inhibition and redistribution of spontaneous light emission

[25], etc.
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Figure 2.12: An image of a light confinement in a two-dimensional photonic

crystal at a band edge frequency.
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2.2 Random laser

Random lasing is laser action in disordered structures. Such lasing phenomena

in disordered structures are occurring from feedback mechanisms as Anderson

localization [26] and coherent backscattering caused by multiple scatterings and

interference effects of light waves. The random multiple scatterings caused by dis-

order of periodic structures, namely, fabrication errors are undesirable phenomena

in the case of photonic crystals because the scatterings worsen their ability due to

the periodic structures. Such undesirable scattering becomes a bottleneck in the

developments of photonic crystal devices. However, when considering random

lasers, the strong multiple scatterings lead to strong localizations and lead to the

oscillations of random lasing. In terms of positive utilization of random multiple

scatterings, random laser receives lots of attention as new optical devices that

are different from previous ones such as photonic crystals. Disordered structures

are rather easy to fabricate in low cost because it requires only simple fabrication

technologies. Thus, random laser has an advantage in its production cost.

dielectric rod

Figure 2.13: An image of random multiple scatterings and localizations in a

disordered structure.

Disordered structures are also classified into three types as one-, two-, and

three-dimensional ones, as shown in Fig. 2.14. It is difficult to cause random

lasing in three dimensional structures [27], because the Ioffe-Regel criterion kl < 1
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is not easily satisfied.

(a) One dimensional struc-

ture.

(b) Two dimensional struc-

ture.

(c) Three dimensional struc-

ture.

Figure 2.14: Disordered structures.

2.2.1 Lasing mechanisms

Lasing phenomena are caused by feedback mechanisms that repeat light ampli-

fications. Random lasers are generated based on the same principles as those of

normal lasers. However, the feedback mechanisms of random lasers are different

from those of conventional lasers. In disordered structures, light waves are ran-

domly scattered, and the scattered light waves interfere with each other. When

random multiple scatterings become sufficiently intensive, light waves are ran-

domly localized in disordered structures. The localization is a kind of so-called

Anderson localization [26] of electromagnetic waves.

Figure 2.15: A distribution of computed electric amplitude for a lasing state in

a disordered structure.
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Actually, light localization occurs in various and many spaces in disordered

structures as shown in Fig. 2.15. The localizations work as nano-cavities, and

the speckle patterns caused by the interference of multiply scattered light waves

are always observed in the distributions of their electric amplitude.

2.2.2 Anderson localization

2.2.2.1 Localization and diffusion

The migration probability of photon from grid point 0 to 1 P1 is expressed as

P1 =

⎧⎪⎨
⎪⎩

1 (|t| > W )

|t|/W (|t| < W )

,

where t is the matrix element of photon migration and W is averaged energy

interval of photon. The migration probability of photon from grid point 0 to 2

P2 becomes as

P2 =

⎧⎪⎨
⎪⎩

1 (|t| > W )

(|t|/W )2 (|t| < W )

,

and that from grid point 0 to n, Pn, can be expressed as follows:

Pn =

⎧⎪⎨
⎪⎩

1 (|t| > W )

(|t|/W )n (|t| < W )

.

When the grid point number n is infinite and random potential is sufficiently

strong |t| < W , the migration probability of photon Pn becomes 0. Such zero-

migration probability indicate that photon does not migrate and not be diffused,

that is, localization.

2.2.2.2 Scaling theory and metal-insulator transition

We consider d dimensional cube whose edge length is L. The conductance of the

cube is defined as G(L) depending on the edge length L.

The conductance of metals is proportional to conductivity of cube σ, cross

section of a cube Ld−2, and are inversely proportional to the length of a cube L.
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Hence the conductance of metals are expressed as

G(L) = σLd−1/L = σLd−2. (2.21)

When the edge length L becomes sufficiently long and the conductance of material

becomes smaller than the above G, electron are considered to be localized and a

metal shift to a insulator. We define normalized conductance as follows:

g(L) =
G(L)

e2/�
.

We consider g(L1) and g(2L1) which is the conductance of a cube whose edge

length is 2L1. When the edge length of a cube L is much longer than mean free

path and wavelength of light, g(2L1) depend only on g(L1). By universalizing

the above consideration, g(L2) becomes the function of g(L1) where L1 and L2

have the following relation as

L2 = νL1,

and g2 = g(L2) depend only on g1 = g(L1) and ν as

g2

g1

= f(g1, ν). (2.22)

We assume the coefficient ν as a continuous function. The following relation are

derived from Eq. (2.22) as

lim
ν→1

log(g2/g1)

log ν
= lim

L2→L1

log g2 − log g1

logL2 − logL1

=
d log g

d logL

∣∣∣∣
L=L1

,

resulting in

d log g

d logL
= β(g). (2.23)

When we assume a system whose conductance is sufficiently large, the system

is considered as metallic material. Hence, based on the assumption in Eq. (2.21),

the conductance g have to satisfy the following relation as

g ∝ Ld−2.. (2.24)

By substituting Eq. (2.24) into Eq. (2.23), we can derive the following equation

as

β(g) = d− 2 (g →∞).
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When the conductance g is small, the material is regarded as an insulator.

In such case, system size L is larger than localization length ξ . Hence, the

conductance g become smaller as the system size L becomes larger. Then, the

the conductance g is expressed as

g ∼= g0e
−αL/ξ. (2.25)

When the system size L is sufficiently small and the conductance is assumed to

become Eq. (2.25), the function β(g) becomes as follows:

β(g) = log

(
g

g0

)
(g → 0).

The above function negatively diverge when the conductance g is sufficiently

small.

We know the behavior of the function β(g) at the both limits g → 0 and

g → ∞. The function β(g) is assumed to change smoothly. Then we can plot

the approximate graph of β(g) in Fig. 2.16.

-3

-2

-1

 0

 1

 2

�(
g

)

gc g

d=1

-3

-2

-1

 0

 1

 2

�(
g

)

gc g

d=1
d=2

-3

-2

-1

 0

 1

 2

�(
g

)

gc g

d=1
d=2
d=3

-3

-2

-1

 0

 1

 2

�(
g

)

gc g
-3

-2

-1

 0

 1

 2

�(
g

)

gc g
-3

-2

-1

 0

 1

 2

�(
g

)

gc g
-3

-2

-1

 0

 1

 2

�(
g

)

gc g

Figure 2.16: β(g) versus g.

When the function β(g) is smaller than 0, that is,

log g

logL
= β(g) < 0,

32



log g and logL are different signs each other. Hence,

log g · logL = log(gL) < 0,

leading to

gL < 1.

The above inequality indicate that g decreases as L increases. Hence, when a

system size becomes sufficiently large, the system becomes an insulator. In the

case of low-dimensional systems as d = 1 and 2, β(g) is might be smaller than

0 and the systems with a large system size becomes an insulator. Such feature

do not depend on disorder potential g. On the other hand, in the case of three

dimensional systems d = 3, the sign of β(g) depend on g and switch at gc. When

g < gc, a large system becomes an insulator as low-dimensional cases. When

g > gc, a large system has metallic properties because g becomes large as L

increase. The metal-insulator transition occurs at g = gc in the case of three

dimensional systems.

2.2.3 Optical properties

Random lasers have unique properties other laser devices cannot realize due to

their unique lasing mechanisms. Random lasers can emit coherent light waves

for broad angles. In the experiments of three-dimensional random lasings, the

emissions for complete 4π solid angle were observed [28]. Random lasers possess

large number of laser modes in broad frequency ranges. A large number of laser

modes enable random lasing to emit brilliant colors. Lawandy et al. mentioned

that the excitation threshold energy for random lasing is surprisingly low [10],

that is, random lasers are energy-saving laser devices.

2.2.4 Previous studies and types of laser modes

From the first experimental observation of random lasers [10], light amplifying

phenomena in strongly scattering media have been actively discussed whether

the light amplifying phenomena are lasing phenomena or amplified spontaneous

emissions [11]. Feedback mechanisms to repeat amplification of light waves are in-

dispensable for lasing phenomena. However, it has not been thought that strongly

scattering media work as cavities to confine light waves because their structures

are disordered.
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(a) Electric amplitude

distribution of a lasing

state.
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(b) Polar plot of radiation di-

rection of a lasing state.

(c) A number of laser modes.

Figure 2.17: Lasing properties of random lasers.

Cao et al. found “laser spikings” in the intensity spectrum of the electric

field [29], namely, the electric intensity in random systems becomes extremely

intensive at some frequencies. They also showed the simulations [30] of “laser

spikings” and light confinements in disordered structures by means of FDTD

method.

Sebbah and Vanneste [12] presented simulations of laser action including

pumping of active medium expressed by four level rate equations. The effect

of frequency and filling factor on the electric field intensity in random systems

were investigated. The previous studies also revealed that there are two types

of laser modes: one is spatially extended modes and the other is localized mode.

The extended modes shown in Fig. 2.18(a) have spreading distributions of light

waves in disordered structures. In such extended states, the mode covers the

entire region of random systems and can lase even if the quality factor is not

high. Light waves in the state of extended modes can be amplified by optically

active medium in the entire region of random systems. On the other hand, lasing

phenomena in the state of localized mode shown in Fig. 2.18(b) are caused by

spatial confinement of light waves. Localized modes suffer from gain saturations

because they cover the smaller volume of active medium and reach the saturated

state of active medium immediately.

2.2.5 Applications

Random lasers are expected to be applied to laser displays because their lasing

properties such as broad band and broad angular emission are ideal for displays.

Suspensions of particles, that is one of random-laser materials, is proposed to
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(a) Extended mode.

(b) Localized mode.

Figure 2.18: Laser modes.

be applied to coating on surfaces, that is, random structures are applied to color

coating utilizing environment lighting [31].

The controlling of lasing frequency by tuning temperature is proposed [32,

33]. Those previous studies report that random lasings are strongly depend on

environment temperature. Thus, random lasers are expected to be applied to

thermal sensing.
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2.2.6 Disordered structure

In this subsection, entire random systems and disordered structures are explained.

2.2.6.1 Shape and composition

We analyze lasing phenomena in two-dimensional disordered structures consisting

of cylinders. Let us assume the cylinders are infinitely long in z direction and

stand parallel to each other, and the positions of cylinders axes be randomly

distributed. Also, light waves are assumed to propagate in xy plane.

Excitation pumping energy are given by excitation light for energizing the

active medium to a state of population inversion. Incident waves are trapped by

disordered structures, and optically active materials in excited state amplify light

waves non-linearly.

y

dielectric rod

excitation pumping

incident wave coherent wave

coherent wave

coherent wave

coherent wave
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Figure 2.19: An image of a random system and a random laser.
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2.2.6.2 Materials of cylinders

The cylinders are usually made of dielectric materials or metals.

Dielectric material Relative permittivity ε is used as the distribution of di-

electric material when calculating the corresponding electromagnetic field by us-

ing Maxwell’s equations [34]. In the simulations of random lasings, the dielectric

materials are positioned randomly. Hence, the relative permittivity ε becomes

position dependent function ε(r). If we consider dielectric meduim as dispersive

one, the relative permittivity depend not only on the positions but also on the

frequency, namely, ε = ε(r, ω).

Metal-Drude model The relative permittivities of metals are expressed as a

summation of a term for free electrons, εf , and a term derived from interband

transition, εib. The term caused by free electrons is expressed by Drude model

[35] derived from the equation of motion of free electrons, as

m
d2r

dt2
+mΓ

dr

dt
= −eE0 exp(−iωt), (2.26)

where r is a position of free electrons, m is the mass of free electrons, e is an

electric charge of free electron, E0 exp(−iωt) is the harmonic oscillating electric

field, and Γ is dumping coefficient. The solution of Eq. (2.26) becomes

r =
eE0 exp(−iωt)

m(ω2 + iΓω)
.

A dipole moment is given as p = −er. Polarization P is defined as dipole

moment in the unit volume and is written as

P = Np = −Ner,

where N is the number of free electrons in the unit volume. The electric displace-

ment D in metals becomes

D = ε0εE = ε0E+P.

Hence relative permittivity εf in metal becomes

εf =
D

ε0E
=

ε0E+P

ε0E
= 1− Ne2

ε0m(ω2 + iΓω)
= 1− ω2

p

ω(ω + iΓ)
,
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Figure 2.20: Reflectance on the surface between dissimilar materials.

where ωp =

√
Ne2

ε0m
called “plasma frequency”.

When the dumping coefficient Γ is sufficiently small, we can neglect Γ, thus,

relative permittivity εf in metal becomes

εf = 1− ω2
p

ω2
. (2.27)

Now, we consider reflections on the surface between dissimilar materials. In-

cident, reflected, and transmitted waves are written as

Ei(x) = Ei exp(ik1x),

Er(x) = Er exp(−ik1x),

Et(x) = Et exp(ik2x),

where k1 =
ω
c
η1 and k2 =

ω
c
η2 are wave numbers in the regions 1 and 2 shown

in Fig. 2.20, respectively. The electric fields in the regions 1 and 2, E1(x) and

E2(x), are expressed as

E1
z (x) = Ei(x) + Er(x) = Ei exp(ik1x) + Er exp(−ik1x)

E2
z (x) = Et(x) = Et exp(ik2x)

⎫⎬
⎭ (2.28)

and the magnetic fields in the regions 1 and 2 are

H1
y (x) = − ∂

∂x
E1

z (x)

H2
y (x) = − ∂

∂x
E2

z (x)

⎫⎬
⎭ (2.29)

The boundary conditions on the surface are

E1
z = E2

z (x), H1
y (x) = H2

y .
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Then, from Eqs. (2.28) and (2.29), we can derive following equations:

Ei exp(ik1x) + Er exp(−ik1x) = Et exp(ik2x),

ik1Ei exp(ik1x)− ik1Er exp(−ik1x) = ik2Et exp(ik2x).

Hence, the reflectance becomes

R =
|Er|
|Ei| =

|k1 − k2|
|k1 + k2| =

|η1 − η2|
|η1 + η2| .

If the material 1 and 2 are air and a metal whose relative permittivity is written

based on Drude model in Eq. (2.27), the above reflectance becomes 1, meaning

a complete reflection.

2.2.6.3 Modeling of optically active materials

Power absorbed by polarizations The work given by the electric field E is

written as

J ·E = (∇×H) · E− E · ∂D

∂t

= −∇ · (E×H)− μ0H · ∂H

∂t
− ε0E · ∂E

∂t
− μ0H · ∂M

∂t
− ε0E · ∂P

∂t
. (2.30)

The final term in Eq. (2.30), ε0E · ∂P
∂t
, express power absorbed by polarization

(dipoles) in the unit volume. When the harmonic oscillations of electric and

magnetic fields are assumed as

E = E0e
−iωt,

H = H0e
−iωt,

the above absorbed power PD are expressed as

PD =
1

2
Re

[
ε0E

∗ · ∂P

∂t

]
.

When the polarization P is also assumed to becomes harmonic oscillation with

the same frequency of the electric field ω, that is,

P = ε0χE0e
−iωt,

where χ is the complex electric susceptibility of a material, the above absorbed

power results in following form as

PD =
1

2
ωε0E · E∗χi,

=
1

2
ωε0|E|2χi, (2.31)

where χi is the imaginary part of the complex electric susceptibility χ = χr+ iχi.
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Induced transition and transition probability In this paragraph, interac-

tion between excited atoms and electromagnetic waves is considered. The energy

density of the electromagnetic waves are assumed to be distributed uniformly

over a frequency range near the transition frequency of atoms ν.

The induced transition probabilities of atoms from level 2 to level 1, W induced
21 ,

and from level 1 to level 2, W induced
12 , are assumed to be proportional to the energy

density ρ(ν) as

W induced
21 = B21ρ(ν)

W induced
12 = B12ρ(ν)

⎫⎬
⎭ (2.32)

where B21 and B12 are coefficients called Einstein B coefficients and the energy

density ρ(ν) in the state of thermal equilibrium is given based on black body

radiation and the Planck distribution low [36] as follows:

ρ(ν) =
8πn3hν3

c3

1

ehν/kT − 1
, (2.33)

where h is Planck constant, k is Boltzmann constant, T is temperature, and n is

the refractive index of active medium.

All the transition probability from level 2 to level 1 is expressed as the summa-

tion of the probabilities of induced transition and the transition of spontaneous

emission, B21ρ(ν) and A21, as

W21 = B21ρ(ν) + A21. (2.34)

All the transition probability from level 1 to level 2 becomes as follows:

W12 = W induced
12 = B12ρ(ν). (2.35)

In a state of thermal equilibrium, the numbers of atoms moving from level 2

to level 1 and those moving from level 1 to level 2 is equal to each other. Hence,

a following relation is introduced.

N2W21 = N1W12, (2.36)

where N1 and N2 are the numbers of atoms on levels 1 and 2, respectively. By

substituting Eqs. (2.34), (2.35) and (2.33) into Eq. (2.36), we have

N2 [B21ρ(ν) + A21] = N1 [B12ρ(ν)] ,
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resulting in

N2

{
B21

[
8πn3hν3

c3

1

ehν/kT − 1

]
+ A21

}
= N1

{
B12

[
8πn3hν3

c3

1

ehν/kT − 1

]}
.

(2.37)

The ratio between the numbers of atoms in levels 1 and 2 in the state of

thermal equilibrium are given by Boltzmann constant [36] as

N2

N1

= e−hν/kT . (2.38)

Based on comparison between Eqs. (2.37) and (2.38), we have

8πn3hν3

c3(ehν/kT − 1)
=

A21

B12ehν/kT −B21

.

In order to satisfy the above equation, the coefficients must have relations as

follows:

B12 = B21,

A21

B21

=
8πn3hν3

c3
.

Hence, the induced transition probabilities in Eq. (2.32) becomes

Winduce =
A21c

3

8πn3hν3
ρ(ν)

=
c3

8πn3hν3tspont

ρ(ν)

where tspont = 1/A21 is spontaneous emission lifetime.

When the spectral distribution function of the induced transition probability,

g(ν), is not uniform, the induced transition probability is written as the following

integral form.

Winduce =

∫
c3

8πn3hν3tspont

ρ(ν)g(ν)dν.

The energy of light wave of a solid color, whose frequency is ν, in unit interval of

frequency is expressed as

ρ(ν) = U0δ(ν
′ − ν),
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where U0 is the energy density of a solid colored light wave. Hence the induced

transition probability of a solid colored light wave whose frequency is ν becomes

Winduce =
c3U0

8πn3hν3tspont

g(ν)

=
λ2I0

8πn2hνtspont

g(ν) (2.39)

where I0 = cU0/n is the intensity of light waves.

Absorbed power density of light waves The power density of absorbed

light waves is written in Eq. (2.31) as

PD =
1

2
ωε0|E|2χi,

and the above absorbed power density must correspond to a following equation

including induced transition probability as

PD = (N1 −N2)Winducehν.

Based on the above relation and Eq. (2.39), the imaginary part of electric sus-

ceptibility becomes as

χi =
2

ωε0|E|2 (N1 −N2)Winducehν

=
2(N1 −N2)hν

ωε0|E|2
λ2I0

8πn2hνtspont

g(ν),

=
2(N1 −N2)

ωε0|E|2
λ2

8πn2tspont

c

n
ε
|E|2
2

g(ν),

=
(N1 −N2)

ωε0/ε

λ2

8πn2tspont

c

n
g(ν),

=
(N1 −N2)λ

2

16π2n2tspont

2πc

ω
g(ν),

=
(N1 −N2)λ

3

16π2n2tspont

g(ν). (2.40)

In the above derivations, we use following relations as

I0 =
c

n
ε
|E|2
2

n2 = ε/ε0

λ = 2πc/ω
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Equation (2.40) indicates that population inversion density of optically active

material, N2−N1(> 0), is proportional to a negative value in the imaginary part

of electric susceptibility. Hence, population inversion density of optically active

material can be modeled by a negative value in the imaginary part of relative

permittivity, −γ (γ > 0) [3, 4, 5]. γ is a parameter proportional to population

inversion density of optically active material. Hence, γ at which a laser action

occurs is interpreted as the threshold for the laser action [3, 4, 5].

θ

dipole

dielectric rod

y C

active 
material

Ω

Ω

Ω

Figure 2.21: An illustration of a random system.

When we assume a system whose interspace among dielectric rods are filled

with an optically active material, we set the imaginary part of relative permit-

tivity in the interspace among the rods to −γ. The relative permittivities in the

individual regions (Fig. 2.21) are given as follows:

ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 + i(−γ) x ∈ Ωact

4.0 x ∈ Ωrod

1.0 x ∈ Ωout

. (2.41)

Lasing threshold of GaAs/GaAlAs double-heterostructure injection

lasers We calculate lasing threshold of GaAs/GaAlAs double-heterostructure

injection lasers to compare that of random lasers. All parameters used in this

calculation are shown in reference [37]. The parameter γ including the imaginary

part of relative permittivity is related to gain coefficient σ by

γ =
λn

2π
σ, (2.42)

where λ is the wavelength of light in vaccum and n is the refractive index of

active medium by which light waves are amplified. The threshold gain coefficient
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of light waves in cavity is calculated as follows:

σ = − 1

L
lnR + αnΓn + αpΓp + αs, (2.43)

where R is the reflectance of the cavity mirror, L is the cavity length, αn express

the coefficient of loss mainly caused by free-electron absorptions in non-excited

neighboring n-type Ga1−xAlxAs, αp express that in non-excited neighboring p-

type Ga1−xAlxAs, and αs express the coefficient of loss occurring on incomplete

heterojunctions. Γp and Γn are power ratios of electric intensities within p- and

n-type Ga1−xAlxAs, respectively, and are expressed as follows:

Γp =

∫ −d/2

−∞ |E|2dz∫∞
−∞ |E|2dz

,

Γn =

∫∞
d/2
|E|2dz∫∞

−∞ |E|2dz
,

where d is the thickness of an active layer. The largest term expressing losses in

Eq. (2.43) is generally − 1
L
lnR in the case of semiconductor lasers whose layer

surface edges are not smoothed. The reflectance on the interface between GaAs

(n = 3.5) and air is assumed to be R = 0.31, and the cavity length is L = 500

[μm]. Then, the largest term in Eq. (2.43) becomes

− 1

L
lnR = 23.4 [cm−1]. (2.44)

When assuming the summation of other losses as 10cm−1, the gain coefficient

in Eq. (2.43) becomes σ = 33.4 cm−1. Using σ = 33.4 cm−1, n = 3.5, and

0.75μm < λ < 0.88μm that is the range of the lasing wavelength in Eq. (2.42)

yields the range of γ as

0.0013954 < γ < 0.0016373. (2.45)

The range given in Eq. (2.45) is a little smaller than that of random lasers com-

puted in the following parts of the presented dissertation. In other words, the

threshold of semiconductor lasers is smaller than that of random lasers. Such

unnatural result is caused by the huge difference between system sizes of semi-

conductor and random lasers. System sizes of laser devices, that is, cavity lengths

have large influence on lasing thresholds because they appear in the denominator

of the left hand side in Eq. (2.44). When the cavity length L is relatively large,

light path in active medium becomes larger. Hence light waves are more ampli-

fied and the thresholds of the larger systems become lower. When the lasing fre-

quency of GaAs/GaAlAs semiconductor laser for λ = 0.88μm is ωa/2πc = 0.225,
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which is the normalized lasing frequency of random lasers analysed in the present

studies, the radius of ramdom systems becomes as 80a = 15.84μm. The radius

is much smaller than the cavity length of GaAs/GaAlAs semiconductor laser:

L = 500μm.

2.2.6.4 Open region problem

We simulate laser action in dielectric structures caused by random scatterings

in open regions. Light waves radiated for open regions are assumed to reach at

infinite distance and never return.
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2.3 Basic equations of electromagnetic waves

2.3.1 Maxwell’s equations

The governing equations of electromagnetic waves are Maxwell’s equations [34],

as follows:

∇ ·D(x, t) = ρ(x, t),

∇ ·B(x, t) = 0,

∇× E(x, t) = − ∂

∂t
B(x, t), (2.46)

∇×H(x, t) = j(x, t) +
∂

∂t
D(x, t), (2.47)

where D, B, E, H, and j satisfy

D(x, t) = ε0εE(x, t), (2.48)

B(x, t) = μ0μH(x, t), (2.49)

and

j(x, t) = 0.

By substituting Eqs. (2.48) and (2.49) into Eqs. (2.46) and (2.47), we can derive

∇× E(x, t) = −μ0μ
∂

∂t
H(x, t), (2.50)

and

∇×H(x, t) = ε0ε
∂

∂t
E(x, t). (2.51)

2.3.2 Basic equations of electromagnetic scattering problem

In this study, we simulate laser action in dielectric structures consisting of ho-

mogeneous rods in the case of TM mode by using the node-base FEM. We use

perfectly matched layers (PMLs) [38] to simulate scatterings in open regions, and

employ an optimized absorbing function [39, 40, 41] that minimizes numerical re-

flections.

We show a model of a dielectric system as shown in Fig. 2.22(a). We assume

that dielectric rods are infinitely long in vertical direction (z-direction) and light
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waves propagate within xy-plane. Figure 2.22(b) exhibits the concept of a random

system from the top view. Dielectric rods are arranged randomly in the region

between the circler regions Cin and Cg, as shown in Fig. 2.22(b). An oscillating

dipole is assumed to exist at the center of the circle Cin as a light source. Radii

of Cin and Cg are denoted by Rin and Rg, respectively. We compute the fluxes of

Poynting vectors of out-flowing light waves on the circle Cout whose radius is Rout.

The unit outward normal vectors to Cin and Cout are denoted by nin and nout,

respectively. We define three regions: Ωact, Ωrod and Ωout, where Ωact is in the

interspace among the rods inside the circle Cout, Ωrod is the union of the regions

inside the rods, and Ωout is the region outside the circle Cout. The optically active

materials are assumed to be filled in the region Ωact.

y

����������	�
�

(a) A random structure model.

θ

dipole
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y

active 
material

Ω
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(b) An illustration of whole random system.

Figure 2.22: Concept of random media.

We assume an electric dipole oscillating with angular frequency ω at the

center of the entire region of the random system, x0, as a light source (Fig. 2.22).

Polarization Pd occurring from the oscillating electric dipole is written, as follows:

Pd(x, t) = Ddδ(x− x0) exp (−iωt),

where Dd is the polarization vector oriented from the negative charge to the

positive charge, δ(x) is Dirac’s delta function, and i is the imaginary unit. The

polarization Pd is included in the electric flux density D(x, t), as

D(x, t) = ε0ε(x)E(x, t) +Pd(x, t), (2.52)

where E(x, t) is the electric field, ε0 and ε(x) are the permittivity in vacuum and

the position-dependent relative permittivity, respectively.
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We assume that electric and magnetic fields are time-harmonic waves with the

same angular frequency as that of the dipole, and can be expressed as follows:

E(x, t) = E(x) exp(−iωt), (2.53)

H(x, t) = H(x) exp(−iωt), (2.54)

where H(x, t) is the magnetic field. Following two equations are derived by

substituting Eqs. (2.52), (2.53), and (2.54) into Maxwell’s equations.

∇× E(x) = iωμ0H(x),

∇×H(x) = −iω [ε0ε(x)E(x) +Ddδ(x− x0)] ,

resulting in

∇× [∇× E(x)]− ω2

c2
ε(x)E(x) =

ω2

ε0c2
Ddδ(x− x0), (2.55)

where c is the speed of light in vacuum and satisfies the relation c = 1/
√

μ0ε0

where μ0 is the magnetic permeability in vacuum.

We define total electric field E(x) as a sum of the scattering and incident

fields as follows:

E(x) = Es(x) + Ei(x), (2.56)

where, Ei(x) is the electric field in the region without scatterers, satisfying the

following equation:

∇× [∇× Ei(x)]− ω2

c2
εiEi(x) =

ω2

ε0c2
Ddδ(x− x0), (2.57)

where εi is the constant relative permittivity in Ωout (Fig. 2.22). By substituting

Eq. (2.56) into Eq. (2.55), we have

∇× [∇× Es(x)]− ω2

c2
ε(x)Es(x)

= −
{
∇× [∇× Ei(x)]− ω2

c2
ε(x)Ei(x)

}
+

ω2

ε0c2
Ddδ(x− x0). (2.58)

We substitute Eq. (2.57) to the right-hand side of Eq. (2.58) to have

∇× [∇× Es(x)]− ω2

c2
ε(x)Es(x) =

ω2

c2
[ε(x)− εi]Ei(x). (2.59)

When we assume TM mode, the incident field Ei(x) satisfying Eq. (2.57) can be

expressed by the 0th-order Hankel function of the first kind, H
(1)
0 , as follows:

Ei(x) =
ω2

ε0c2
Dd

i

4
H

(1)
0

(ω

c

√
εi |x− x0|

)
.

We solve Eq. (2.59) by using FEM formulated based on Galerkin’s method.

Finally, we are able to obtain the total electric field E(x) defined by Eq. (2.56).
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2.3.2.1 Computed physical quantities

We have to compute Poynting vectors to simulate light amplification occurring

in dielectric structures. Because of the assumption that electric and magnetic

waves are time-harmonic, we need to compute Poynting vectors in the following

time-averaged form:

〈S〉 = Re

(
E×H∗

2

)
,

where 〈S〉 is the time-average of Poynting vector S, Re(Z) means the real part of

complex vector Z, and H∗ denotes the complex conjugate of the magnetic field.

We define the amplification factor A by the ratio of the fluxes of the Poynting

vectors of light, flowing out from the dielectric system, between the excited state

(γ > 0) and non-excited state (γ = 0), as follows:

A =

∫
Cout
〈S〉 · n dl|γ≥0∫

Cout
〈S〉 · n dl |γ=0

. (2.60)

The light flux is calculated by a line integral of the Poynting vector along the

circle Cout in Fig. 2.22(b).

2.3.3 Conservation low of energy of light waves

θ

dipole

dielectric rod

y

active 
material

Ω

Ω

Ω

Figure 2.23: An illustration of the entire random system

When a system does not have gain, that is, γ = 0, the conservation low of the

energy of light waves must hold as follows:

∇ · S = −∂w

∂t
, (2.61)
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where S is Poynting vector and w is energy density. The left-hand side of Eq.

(2.61) indicates the energy flowing out from an arbitrary infinitesimal region, and

right-hand side the reduction rate of the energy density. When the light source

does not exist in a region, the energy flowing into the system and that flowing

out from the system becomes equal to each other.

We consider a region between two circles Cin and Cout. A light source is

located in Cin, and the region between Cin and Cout has no source. From the

energy balance between the energy flowing into the system and that flowing out

from the system, we observe∫
Cin

〈S〉 · nin dl

∣∣∣∣
γ=0

=

∫
Cout

〈S〉 · nout dl

∣∣∣∣
γ=0

,

where 〈S〉 is the time-average of S defined as

〈S〉 = Re

[
E×H∗

2

]
.
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2.4 Boundary condition

2.4.1 Perfectly matched layer boundary condition

The basic formulation for perfectly matched layer (PML) boundary condition

[38] in the case of TM mode is written in this subsection. The electric field are

assumed to have only z component as

E(x, t) = [0, 0, Ez]
T . (2.62)

We substitute Eq. (2.62) into Maxwell’s equation (2.50) and derive as

∇× E(x, t) + μ0μ
∂

∂t
H(x, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ez

∂y
− ∂Ey

∂z

∂Ex

∂z
− ∂Ez

∂x

∂Ey

∂x
− ∂Ex

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ0μ
∂Hx

∂t

μ0μ
∂Hy

∂t

μ0μ
∂Hz

∂t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Ez

∂y
+ μ0μ

∂Hx

∂t

−∂Ez

∂x
+ μ0μ

∂Hy

∂t

μ0μ
∂Hz

∂t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

from which we obtain

∂Ez

∂y
= −μ0μ

∂Hx

∂t
,

∂Ez

∂x
= μ0μ

∂Hy

∂t
.

In the same derivation process, we derive from Eq. (2.51)

∇×H(x, t)− ε0ε
∂

∂t
E(x, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hz

∂y
− ∂Hy

∂z

∂Hx

∂z
− ∂Hz

∂x

∂Hy

∂x
− ∂Hx

∂y
− ε0ε

∂Ez

∂t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0,
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from which we obtain

∂Hy

∂x
− ∂Hx

∂y
= ε0ε

∂Ez

∂t
.

We divide the z component of the electric field as

Ez = Ezx + Ezy,

where Ezx and Ezy have to satisfy following relations:

∂Ezx

∂x
�= 0,

∂Ezy

∂x
= 0,

∂Ezx

∂y
= 0,

∂Ezy

∂x
�= 0,

and

ε0ε
∂Ezx

∂t
=

∂Hy

∂x
, ε0ε

∂Ezy

∂t
= −∂Hx

∂y
, μ0μ

∂Hy

∂t
=

∂Ez

∂x
, μ0μ

∂Hx

∂t
= −∂Ez

∂y
.

Absorbing coefficients of the electric and magnetic fields in x and y directions

are now denoted by σx(x), σy(y), σ
∗
x(x), σ

∗
y(y). They are interpreted as the electric

and magnetic conductivities, σ and σ∗, for x and y directions. Above absorbing

coefficients are introduced as dumping terms of electromagnetic waves as

ε0ε
∂Ezx

∂t
+ σx(x)Ezx =

∂Hy

∂x

ε0ε
∂Ezy

∂t
+ σy(y)Ezy = −∂Hx

∂y

μ0μ
∂Hy

∂t
+ σ∗x(x)Hy =

∂Ez

∂x

μ0μ
∂Hx

∂t
+ σ∗y(y)Hx = −∂Ez

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.63)

where the conductivities have following relations based on impedance matching

condition on the boundary between scattering and PML regions as

σx

ε0

=
σ∗x
μ0

,
σy

ε0

=
σ∗y
μ0

. (2.64)

We assume the electric and magnetic fields are in harmonic oscillation, as

follows:

Hzx = Ĥzxe
−iωt, Hzy = Ĥzye

−iωt, Ex = Êxe
−iωt, Ey = Êye

−iωt, (2.65)

then, the time dependent terms in Eq. (2.63) become as

∂Ezx

∂t
= −iωÊzxe

−iωt,
∂Ezy

∂t
= −iωÊzye

−iωt

∂Hx

∂t
= −iωĤxe

−iωt,
∂Hy

∂t
= −iωĤye

−iωt

⎫⎪⎪⎬
⎪⎪⎭ . (2.66)
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By substituting Eqs. (2.65) and (2.66) into Eq. (2.63), following equations

are derived.

{−iωε0ε+ σx(x)} Êzx =
∂Ĥy

∂x
, {−iωε0ε+ σy(y)} Êzy = −∂Ĥx

∂y
,

{−iωμ0μ+ σ∗x(x)} Ĥy =
∂Êz

∂x
,
{−iωμ0μ+ σ∗y(y)

}
Ĥx = −∂Êz

∂y
,

from which we have

Êzx =
1

−iωε0ε+ σx(x)

∂Ĥy

∂x
,

Êzy = − 1

−iωε0ε+ σy(y)

∂Ĥx

∂y
,

∂Ĥy

∂x
=

∂

∂x

{
1

−iωμ0μ+ σ∗x(x)
∂Êz

∂x

}
,

∂Ĥx

∂y
=

∂

∂y

{
− 1

−iωμ0μ+ σ∗y(y)
∂Êz

∂y

}
.

The amplitude of the electric field Êz becomes

Êz = Êzx + Êzy,

=
1

−iωε0ε+ σx(x)

∂Ĥy

∂x
− 1

−iωε0ε+ σy(y)

∂Ĥx

∂y

=
1

−iωε0ε+ σx(x)

∂

∂x

{
1

−iωμ0μ+ σ∗x(x)
∂Êz

∂x

}

− 1

−iωε0ε+ σy(y)

∂

∂y

{
− 1

−iωμ0μ+ σ∗y(y)
∂Êz

∂y

}

=
1

iωε0ε− σx(x)

∂

∂x

{
1

iωμ0μ− σ∗x(x)
∂Êz

∂x

}

+
1

iωε0ε− σy(y)

∂

∂y

{
1

iωμ0μ− σ∗y(y)
∂Êz

∂y

}
,
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then, by multipling both sides by (iω)2, the above equation becomes

−ω2Êz =
iω

iωε0ε− σx(x)

∂

∂x

{
iω

iωμ0μ− σ∗x(x)
∂Êz

∂x

}

+
iω

iωε0ε− σy(y)

∂

∂y

{
iω

iωμ0μ− σ∗y(y)
∂Êz

∂y

}

=
1

ε0ε− 1
iω

σx(x)

∂

∂x

{
1

μ0μ− 1
iω

σ∗x(x)
∂Êz

∂x

}

+
1

ε0ε− 1
iω

σy(y)

∂

∂y

{
1

μ0μ− 1
iω

σ∗y(y)
∂Êz

∂y

}

=
1

ε0ε+
i
ω
σx(x)

∂

∂x

{
1

μ0μ+
i
ω
σ∗x(x)

∂Êz

∂x

}

+
1

ε0ε+
i
ω
σy(y)

∂

∂y

{
1

μ0μ+
i
ω
σ∗y(y)

∂Êz

∂y

}
.

The equation solved in PML region finally becomes, as follows:

ω2

c2
Êz +

1

ε+ i
ωε0

σx(x)

∂

∂x

{
1

μ+ i
ωμ0

σ∗x(x)
∂Êz

∂x

}

+
1

ε+ i
ωε0

σy(y)

∂

∂y

{
1

μ+ i
ωμ0

σ∗y(y)
∂Êz

∂y

}
= 0. (2.67)

Based on Eq. (2.64), we rewrite the absorbing coefficients as

σ̂x =
σx

ε0

=
σ∗x
μ0

, σ̂y =
σy

ε0

=
σ∗y
μ0

. (2.68)

The relative permittivity and permeability in PML region are as follows:

ε = μ = 1. (2.69)

By substituting Eqs. (2.68) and (2.69) into Eq. (2.67), we obtain the following

equation:

ω2

c2
Êz +

1

1 + i
ω
σ̂x(x)

∂

∂x

{
1

1 + i
ω
σ̂x(x)

∂Êz

∂x

}

+
1

1 + i
ω
σ̂y(y)

∂

∂y

{
1

1 + i
ω
σ̂y(y)

∂Êz

∂y

}
= 0.
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Absorbing function We use optimized absorbing functions for the Helmholtz

equation [39, 40, 41]. The functions are defined as

σx(x) =
c

a∗ − x
,

σy(y) =
c

b∗ − y
,

where a∗ and b∗ are the distance between outer edges of PML and the origin

(0,0). Above absorbing functions minimize reflected waves from outer edges of

PML.
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2.5 Other numerical method

In this section, we introduce several numerical methods frequently used for the

analysis of optical phenomena. Basic formulations and concepts of those numer-

ical methods are described.

2.5.1 Finite difference time domain method (FDTD method)

Finite difference time domain method (FDTD method) is one of the most popular

numerical method for the analyses of electromagnetic problem. The electric and

magnetic fields are discretized based on the Yee algorithm [42].

Let the electric field, magnetic field, electric displacement field, and magnetic

induction field be denoted by E, H, D, and B, respectively. These quantities

satisfy, under non-existence of sources, the following Maxwell’s equations (in SI

units):

∇ ·D(r, t) = 0, ∇ ·B(r, t) = 0, (2.70)

∇× E(r, t) = − ∂

∂t
B(r, t), ∇×H(r, t) =

∂

∂t
D(r, t). (2.71)

Also, we introduce the following relationships commonly used:

D(r, t) = ε(r)ε0E(r, t), B(r, t) = μ0H(r, t), (2.72)

where ε0 and μ0 are the permittivity and permeability of vacuum, respectively.

The speed of light in vacuum, denoted by c, then becomes as c = (ε0μ0)
−1/2.

By substituting Eq. (2.72) to Eq. (2.71), we can derive the following time-

dependent equations

ε(r)
∂E(r, t)

∂t
= ∇×H(r, t),

∂H(r, t)

∂t
= −∇× E(r, t). (2.73)

The time derivative terms in the left hand sides of Eq. (2.73) are discretized as

follows:

∂E(r, t)

∂t

∣∣∣∣
t=(n− 1

2
Δt)

=
E [r, nΔt]− E [r, (n− 1)Δt]

Δt
,

∂H(r, t)

∂t

∣∣∣∣
t=(nΔt)

=
H
[
r,
(
n+ 1

2

)
Δt
]−H

[
r,
(
n− 1

2

)
Δt
]

Δt
.
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Then, we substitute the above discretized terms into Eq. (2.73) and obtain the

following equations

ε(r)
E [r, nΔt]− E [r, (n− 1)Δt]

Δt
= ∇×H

[
r,

(
n− 1

2

)
Δt

]
,

H
[
r,
(
n+ 1

2

)
Δt
]−H

[
r,
(
n− 1

2

)
Δt
]

Δt
= −∇× E [r, nΔt] ,

which result in

E [r, nΔt] = E [r, (n− 1)Δt] +
Δt

ε(r)
∇×H

[
r,

(
n− 1

2

)
Δt

]
(2.74)

and

H

[
r,

(
n+

1

2

)
Δt

]
= H

[
r,

(
n− 1

2

)
Δt

]
−Δt [∇× E [r, nΔt]] . (2.75)

The components of the rotations of the electric and magnetic fields in Eqs.

(2.74) and (2.75) are spatially discretized based on the Yee grid shown in Fig.

2.24. The x component of Eq. (2.75) becomes[
∂

∂y
Ez [r, nΔt]− ∂

∂z
Ey [r, nΔt]

]

= − 1

Δt

{
Hx

[
r,

(
n+

1

2

)
Δt

]
−Hx

[
r,

(
n− 1

2

)
Δt

]}
(2.76)

Electric field

Magnetic field

y

Δ
Δy

Δ

Figure 2.24: The Yee grid.
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whose left and right hand sides are spatially discretized as

[
∂

∂y
Ez [r, nΔt]− ∂

∂z
Ey [r, nΔt]

]

=
Ez(x, y +Δy/2, z, t)− Ez(x, y −Δy/2, z, t)

Δy

− Ez(x, y, z +Δz/2, t)− Ez(x, y, z −Δz/2, t)

Δz

and

− 1

Δt

{
Hx

[
r,

(
n+

1

2

)
Δt

]
−Hx

[
r,

(
n− 1

2

)
Δt

]}

= −Hx(x, y, z, t+Δt/2)−Hx(x, y, z, t−Δt/2)

Δt
,

respectively. In the above discretizing processes, nΔt is simply denoted by t, and

(x, y, z) by r. The x component of the magnetic field at t +Δt/2 finally results

in

Hx(x, y, z, t+Δt/2) = Hx(x, y, z, t−Δt/2)

− Ez(x, y +Δy/2, z, t)− Ez(x, y −Δy/2, z, t)

Δy/Δt

+
Ey(x, y, z +Δz/2, t)− Ey(x, y, z −Δz/2, t)

Δz/Δt
.

The y and z components of the magnetic field at t+Δt/2 are also derived from

Eq. (2.75), as follows:

Hy(x, y, z, t+Δt/2) = Hy(x, y, z, t−Δt/2)

− Ex(x, y, z +Δz/2, t)− Ex(x, y, z −Δz/2, t)

Δy/Δt

+
Ez(x+Δx/2, y, z, t)− Ez(x−Δx/2, y, z, t)

Δz/Δt

and

Hz(x, y, z, t+Δt/2) = Hy(x, y, z, t−Δt/2)

− Ey(x+Δx/2, y, z, t)− Ey(x−Δx/2, y, z, t)

Δy/Δt

+
Ex(x, y +Δy/2, z, t)− Ex(x, y −Δy/2, z, t)

Δz/Δt
.
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Similarly from Eq. (2.74), we can derive the x, y, and z components of the

electric field at t+Δt/2 as

Ex(x, y, z, t+Δt/2) = Ex(x, y, z, t−Δt/2)

+
Hz(x, y +Δy/2, z, t)−Hz(x, y −Δy/2, z, t)

ε(x, y, z)Δy/Δt

− Hy(x, y, z +Δz/2, t)−Hy(x, y, z −Δz/2, t)

ε(x, y, z)Δz/Δt
,

Ey(x, y, z, t+Δt/2) = Ey(x, y, z, t−Δt/2)

+
Hx(x, y, z +Δz/2, t)−Hx(x, y, z −Δz/2, t)

ε(x, y, z)Δz/Δt

− Hz(x+Δx/2, y, z, t)−Hz(x−Δx/2, y, z, t)

ε(x, y, z)Δx/Δt
,

and

Ez(x, y, z, t+Δt/2) = Ez(x, y, z, t−Δt/2)

+
Hy(x+Δx/2, y, z, t)−Hy(x−Δx/2, y, z, t)

ε(x, y, z)Δx/Δt

− Hx(x, y +Δy/2, z, t)−Hx(x, y −Δy/2, z, t)

ε(x, y, z)Δy/Δt
.

By using the above time stepping method, we are able to calculate the time

domain data of electric and magnetic fields .

FDTD method is very efficient for the analysis of light waves in homogeneous

medium. However, in the analyses of light waves in heterogeneous medium,

staircasing error might occur. Yee grids used to discretize space in FDTD can

not fit curved shapes of dielectric materials exactly. Moreover, FDTD analyses

include peculiarity caused by direct-spatial discretization of Helmholtz equation

derived from Maxwell’s equations.

2.5.2 Plane wave expansion method (PWEM)

The plane wave expansion method is widely used to calculate band structures

of photonic crystals. In this subsection, we briefly review the formulation and

numerical procedure of the method [43, 44].

We consider the E-polarization (TM mode) of Maxwell’s equations (2.70) and

(2.71). Namely, we assume a state in which the horizontal components of the
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electric field (i.e. Ex and Ey) vanish and the vertical component Ez does not

depend on z. Then, Maxwell’s equations can be reduced to the following scalar

wave equation for Ez:

1

ε(r)

(
∂2

∂x2
+

∂2

∂y2

)
Ez(r, t) =

1

c2

∂2

∂t2
Ez(r, t). (2.77)

We assume the electric field is in a state of harmonic oscillation with the

angular frequency ω, i.e.,

Ez(r, t) = E0(r)e
−iωt. (2.78)

Substituting Eq. (2.78) into (2.77), we obtain the following two-dimensional

Helmholtz equation:

1

ε(r)
∇2E0(r) +

ω2

c2
E0(r) = 0. (2.79)

Let us find scalar values for ω, called eigenvalues, such that (2.79) holds for

non-trivial values of E0 (eigen functions).

In a photonic crystal, since ε(r) is periodic, we can expand the inverse of ε(r)

into the following Fourier series:

1

ε(r)
=
∑
G

κ(G)eiG·r, (2.80)

where

κ(G) =
1

S0

∫
S0

dr
1

ε(r)
e−iG·r. (2.81)

It is well known, correspondingly to structural periodicity, that the electric

field E0 in (2.79) can be written in the following Bloch form:

E0(r) = u(r)eik·r, (2.82)

where u(r) is a periodic function such that

u(r+ ai) = u(r)

and k = (kx, ky) is a wave vector chosen from the Brillouin zone of the photonic

crystal under consideration.

Similarly, we can expand u(r) as follows:

u(r) =
∑
G

ψGeiG·r, (2.83)

60



where G denotes the reciprocal lattice space spanned by the reciprocal lattice

vectors b1 and b2 that satisfy ai · bj = δij, where δij is Kronecker’s delta. The

summation over G is actually replaced with the double summations over integers

l1 and l2 such as G = l1b1 + l2b2. Also, ψG denotes the Fourier coefficients of u

corresponding to G or (l1, l2).

Equations (2.80) and (2.83) reduces (2.79) into the form

∑
G′

κ(G−G′)|k+G′|2ψG′ =
ω2

c2
ψG. (2.84)

In order to reduce the matrix in the left-hand side to a Hermite matrix, we

introduce a function defined by

ξG = |k+G|ψG

to Eq. (2.84) to yield the following eigenvalue equation:

∑
G′

κ(G−G′) |k+G| |k+G′| ξG′ =
ω2

c2
ξG. (2.85)

PWEM is very useful for the analysis of light waves in dielectric periodic

structures. However, it is difficult to analyze laser action in random systems by

PWEM. Additionally, PWEM is based on the Fourier series expansion. Then,

the results computed by PWEM include the effect of Gibbs phenomenon.

2.5.3 Boundary element method (BEM)

In this subsection, we present a brief derivation of the boundary integral equation

of the Helmholtz equation in the case of TM mode.

2.5.3.1 Exterior problem

The boundary integral equation is derived from the following weighted residual

form ∫
Ωout

ψ

[
∇2E(r) +

ω2

c2
εoutE(r) + f(r)

]
dΩ, (2.86)

where Ωout is the exterior domain (open region), εout is the relative permittivity

of the exterior domain, and ψ is an arbitrary weight function but here it is chosen
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as a particular solution called fundamental solution of the Helmholtz equation,

as follows:

∇2ψ +
ω2

c2
εoutψ = −δ(r− r′).

For a two-dimensional field, it is obtained as

ψ =
1

4i
H

(2)
0

(ω

c

√
εout |r− r′|

)
,

where i is the imaginary unit and H
(2)
0 is the Hankel function of the second kind

of order 0.

The integral in Eq. (2.86) in each region is formulated as∫
Ωout

ψ

[
∇2E(r) +

ω2

c2
εoutE(r) + f(r)

]
dΩ

=

∫
Ωout

[
ψ∇2E(r) +

ω2

c2
εoutE(r)ψ + ψf(r)

]
dΩ

=

∫
Ωout

{
∇ [ψ∇E(r)]− [∇ψ∇E(r)] +

ω2

c2
εoutE(r)ψ + ψf(r)

}
dΩ

=

∫
Ωout

{
∇ [ψ∇E(r)]−∇ψ∇E(r) +

ω2

c2
εoutE(r)ψ + ψf(r)

}
dΩ

=

∫
Ωout

(
∇ [ψ∇E(r)]− {∇[E(r)∇ψ]− E(r)∇2ψ

}
+

ω2

c2
εoutE(r)ψ + ψf(r)

)
dΩ

=

∫
Ωout

∇ [ψ∇E(r)− E(r)∇ψ] dΩ

+

∫
Ωout

E(r)

[
∇2ψ +

ω2

c2
εoutψ + ψf(r)

]
dΩ

=

∫
Γ

n · [ψ∇E(r)− E(r)∇ψ] dΓ

+

∫
Ωout

E(r) [−δ(r− r′)] dΩ +

∫
Ωout

ψf(r) dΩ

=

∫
Γ

[
∂E(r)

∂n
ψ − ∂ψ

∂n
E(r)

]
dΓ− CiE(r

′) +
∫

Ωout

ψf(r) dΩ

where Γ denotes the boundary and Ci is a constant depending on the location of

source point r′ as

Ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 r′ ∈ Ωout

1/2 r′ ∈ Γi

0 r′ /∈ Ωout,Γi

. (2.87)
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Figure 2.25: Region.

The boundary integral equation for the Helmholtz equation finally becomes

as

CiE(r
′) +

∫
Γ

[
∂ψ

∂n
E(r)− ∂E(r)

∂n
ψ

]
dΓ−

∫
Ωout

ψf(r) dΩ = 0.

Boundary element method can simulate open region problem exactly. The

number of unknown quantities in boundary element analysis is much smaller than

those in other numerical methods. However, we have to solve linear equations

with density matrices in boundary element analysis. Some numerical approaches

are proposed in order to reduce computational cost as fast multipole method and

wavelet BEM. But they are difficult and complex.

63



2.6 Finite element method (FEM)

Finite element method is one of the most powerful numerical methods for elec-

tromagnetic analyses. Let ψ(r) be an approximate solution of the Helmholtz

equation derived from Maxwell’s equations, then it satisfies

∇2ψ(r) +
ω2

c2
ε(r)ψ(r) + f(r) = RΩ,

where RΩ is error originated from the approximate solution ψ(r). A weak form is

derived from the weighted residual form making an integral of the weighted error

RΩ for the whole domain Ω zero, as∫
Ω

W

[
∇2ψ(r) +

ω2

c2
ε(r)ψ(r) + f(r)

]
dΩ = 0. (2.88)

Integrating the left-hand side of Eq. (2.88) once yield the following weak form:∫
Ω

{
∇W · ∇ψ(r)− ω2

c2
ε(r)ψ(r)W −Wf(r)

}
dΩ =

∫
Γ

W
∂ψ(r)

∂n
dΓ. (2.89)

In order to evaluate the domain and boundary integrals of Eq. (2.89), we divide

them into simple geometries, called elements, and the integrals are evaluated as

sums of the integrals for these elements, as

∑
e

∫
Ωe

{
∇W · ∇ψ(r)− ω2

c2
εeψ(r)W −Wf(r)

}
dΩ =

∑
l

∫
Γl

W
∂ψ(r)

∂n
dΓ.

(2.90)

Then, the solution ψ(r) is assumed to be approximated as a linear combination

of basis functions called shape functions and ψi the values of ψ at discrete points

defining the element shapes, as follows:

ψ(r) =
n∑

j=1

Njψj. (2.91)

We now choose one of the basis functions, Ni, as the weight of the weak form.

Using W = Ni and Eq.(2.91) in Eq.(2.90) gives

∑
j

∑
e

(∫
Ωe

∇Ni · ∇Nj dΩ

)
ψj −

(
ω2

c2

)∑
j

∑
e

(∫
Ωe

ε(r)NiNj dΩ

)
ψj

−
∑

j

∑
e

∫
Ωe

Nif(r) dΩ =
∑

l

∫
Γl

Ni
∂ψ(r)

∂n
dΓ. (2.92)
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After evaluating the domain and boundary integrals in some way, analytically or

numerically, we obtain a system of linear algebraic equations in the form

[K] {ψ} −
(

ω2

c2

)
[M ] {ψ} = {f} .

Finite element method is one of the most powerful method for the analysis

of light waves in heterogeneous random systems. The matrices in linear equa-

tions solved in finite element analysis becomes sparse and such a linear equations

can be solved very fast by using multi-frontal method and iterative methods.

Finite element meshing can discretize analytical domains exactly and well-fit to

boundaries between two different dielectric materials. Then, staircasing errors

never occurs in finite element analysis. Finite element method can analyze the

behavior of light waves in unperiodic structures.

We use finite element method to analyze lasing phenomena in disordered

structures with the above reasons.

2.6.1 Weak form

The differential equation that should be solve for analysys region is shown as

follows:

1

γx

1

∂x

(
1

γx

∂Ez

∂x

)
+

1

γy

1

∂y

(
1

γy

∂Ez

∂y

)
+

ω2

c2
ε(x)Ez = 0,

where Ez is the electric field without time dependency, γx and γy satisfy

γx =

⎧⎪⎨
⎪⎩

1 (|x| < a)

1 + i
ω
σx(|x|) (a ≤ |x| < a∗ : PML)

,

γy =

⎧⎪⎨
⎪⎩

1 (|y| < b)

1 + i
ω
σy(|y|) (b ≤ |y| < b∗ : PML)

,

then, the absorbing functions σx(x) and σy(y) are defined as

σx(x) =
c

a∗ − x
, σy(y) =

c

b∗ − y
.
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Figure 2.26: Concept of an analytical region .

The equation is rewritten by multiplying both sides of the equation by γxγy

as

γy
1

∂x

(
1

γx

∂Ez

∂x

)
+ γx

1

∂y

(
1

γy

∂Ez

∂y

)
+

ω2

c2
ε(x)γxγyEz

=
1

∂x

(
γy

γx

∂Ez

∂x

)
+

1

∂y

(
γx

γy

∂Ez

∂y

)
+

ω2

c2
ε(x)γxγyEz

= 0.

Based on wighted residual method, integral equation is derived as

∫
Ω

{
1

∂x

(
γy

γx

∂Ez

∂x

)
+

1

∂y

(
γx

γy

∂Ez

∂y

)
+

ω2

c2
ε(x)γxγyEz

}
WdΩ

=

∫
Ω

{
1

∂x

(
γy

γx

∂Ez

∂x

)
W +

1

∂y

(
γx

γy

∂Ez

∂y

)
W +

ω2

c2
ε(x)γxγyEzW

}
dΩ

= 0, (2.93)

where W is weight function and Ω is the analysis region including PML. The first
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and second terms in the integrand of Eq. (2.93) are modified as

1

∂x

(
γy

γx

∂Ez

∂x

)
W =

1

∂x

(
γy

γx

∂Ez

∂x
W

)
− γy

γx

∂Ez

∂x

∂W

∂x
,

1

∂y

(
γx

γy

∂Ez

∂y

)
W =

1

∂y

(
γx

γy

∂Ez

∂y
W

)
− γx

γy

∂Ez

∂y

∂W

∂y
,

Then, Eq. (2.93) becomes as

∫
Ω

{
1

∂x

(
γy

γx

∂Ez

∂x

)
W +

1

∂y

(
γx

γy

∂Ez

∂y

)
W +

ω2

c2
ε(x)γxγyEzW

}
dΩ

=

∫
Ω

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
Ω

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ

= 0. (2.94)

We classify the analysis region into two parts: a region in which light waves

scatter, and PML region. Then, Eq.(2.94) is modified as

∫
Ω

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
Ω

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ

=

∫
Ωscattering+ΩPML

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)

+
ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
Ωscattering+ΩPML

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ

=

∫
Ωscattering

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
Ωscattering

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ

+

∫
ΩPML

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
ΩPML

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ
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=

∫
Ωscattering

{
∇ · (∇EzW )−∇Ez · ∇W +

ω2

c2
ε(x)EzW

}
dΩ

+

∫
ΩPML

{
1

∂x

(
γy

γx

∂Ez

∂x
W

)
+

1

∂y

(
γx

γy

∂Ez

∂y
W

)
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

+

∫
ΩPML

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y

}
dΩ

=

∫
Γin

(∇Ez · nΓin)WdΓ +

∫
Ωscattering

{
−∇Ez · ∇W +

ω2

c2
ε(x)EzW

}
dΩ

+

∫
Γout

{(
γy

γx

∂Ez

∂x
W

)
nΓout

x +

(
γx

γy

∂Ez

∂y
W

)
nΓout

y

}
dΓ

+

∫
Γin

{(
γy

γx

∂Ez

∂x
W

)
(−nΓin

x ) +

(
γx

γy

∂Ez

∂y
W

)
(−nΓin

y )

}
dΓ

+

∫
ΩPML

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y
+

ω2

c2
ε(x)γxγyEzW

}
dΩ,

= 0, (2.95)

where Γin is the boundary between Ωscattering and ΩPML, Γout is the outer boundary

of ΩPML, nΓin = (nΓin
x , nΓin

y ) and nΓout = (nΓout
x , nΓout

y ) are unit outward normal

vectors to the boundaries Γin and Γout, respectively.

Because the absorbing coefficients γx and γy are continuous across the bound-

ary between the scattering region and PML region and γx = γy = 1 in the

scattering region, γx/γy = γy/γx = 1 on Γin. Therefore, we find the boundary

integrals for Γin in Eq. (2.95) vanish, as∫
Γin

(∇Ez · nΓin)WdΓ +

∫
Γin

{(
γy

γx

∂Ez

∂x
W

)
(−nΓin

x ) +

(
γx

γy

∂Ez

∂y
W

)
(−nΓin

y )

}
dΓ

=

∫
Γin

(∇Ez · nΓin)WdΓ−
∫

Γin

{(
∂Ez

∂x
W

)
nΓin

x +

(
∂Ez

∂y
W

)
nΓin

y

}
dΓ

= 0 (2.96)

Using Eq. (2.96), we have the following weak form:∫
Γout

{(
γy

γx

∂Ez

∂x
W

)
nΓout

x +

(
γx

γy

∂Ez

∂y
W

)
nΓout

y

}
dΓ

+

∫
Ωscattering

{
−∇Ez · ∇W +

ω2

c2
ε(x)EzW

}
dΩ

+

∫
ΩPML

{
−γy

γx

∂Ez

∂x

∂W

∂x
− γx

γy

∂Ez

∂y

∂W

∂y
+

ω2

c2
ε(x)γxγyEzW

}
dΩ

= 0 (2.97)
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The boundary Γout is divided into four parts, Γx
out, Γ

y
out, Γ

−x
out, and Γ−y

out as

shown in Fig. 2.26. On these boundaries, x and y becomes as follows:

x = a∗ on Γx
out,

y = b∗ on Γx
out,

x = −a∗ on Γ−x
out,

y = −b∗ on Γ−y
out.

Also, the outward normal vector nΓout and the absorbing coefficients
γy

γx
and γy

γx

become as

nΓout = (nΓout
x , nΓout

y ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1, 0) on Γx
out

(0, 1) on Γy
out

(−1, 0) on Γ−x
out

(0,−1) on Γ−y
out

,

and

γy

γx

=
ω(a∗ − x) [ω(b∗ − y) + ic]

ω(b∗ − y) [ω(a∗ − x) + ic]

∣∣∣∣
x=a∗

= 0 on Γx
out and Γ

−x
out,

γx

γy

=
ω(b∗ − y) [ω(a∗ − x) + ic]

ω(a∗ − x) [ω(b∗ − y) + ic]

∣∣∣∣
y=b∗

= 0 on Γy
out and Γ

−y
out.

Using these relationships, the first term of Eq. (2.97) becomes as follows:

∫
Γout

{(
γy

γx

∂Ez

∂x
W

)
nΓout

x +

(
γx

γy

∂Ez

∂y
W

)
nΓout

y

}
dΓ

=

∫
Γx

out

{(
0
∂Ez

∂x
W

)
1 +

(
γx

γy

∂Ez

∂y
W

)
0

}
dΓ

+

∫
Γy

out

{(
γy

γx

∂Ez

∂x
W

)
0 +

(
0
∂Ez

∂y
W

)
1

}
dΓ

+

∫
Γ−x

out

{(
0
∂Ez

∂x
W

)
(−1) +

(
γx

γy

∂Ez

∂y
W

)
0

}
dΓ

+

∫
Γ−y

out

{(
γy

γx

∂Ez

∂x
W

)
0 +

(
0
∂Ez

∂y
W

)
(−1)

}
dΓ

= 0. (2.98)

Therefore, the weak form including PML boundary condition finally becomes
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as follows:∫
Ωscattering

{
∇Ez · ∇W − ω2

c2
ε(x)EzW

}
dΩ

+

∫
ΩPML

{
γy

γx

∂Ez

∂x

∂W

∂x
+

γx

γy

∂Ez

∂y

∂W

∂y
− ω2

c2
ε(x)γxγyEzW

}
dΩ

= 0.
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CHAPTER 3

Random lasing in disordered structures

consisting of optically active cylinders

3.1 Introduction

Random lasers can be caused by light localizations in disordered structures,

caused by multiple scattering and interferences of scattered light waves. Light

localizations are expected to work as feedback mechanisms. When light waves

localized in optically active materials, light waves are amplified repeatedly, and

such repeated amplification of light waves lead to laser actions. Hence, it is

important to localize light waves in optically active materials to oscillate laser

actions. The properties of laser actions are strongly depend on the location of

light localization and optically active materials.

In this section, we present simulations of laser actions in two-dimensional ran-

dom systems by using FEM. We compare laser actions in two different random

systems: optically active materials among nonactive rods, and optically active

rods in nonactive media. Electric amplitude distributions and radiative direc-

tions are also investigated to comprehend the properties of random laser actions.

Thresholds of laser actions in two different random systems are also investigated.
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3.2 Analysis models

Fig.3.1(a) shows a top view of two-dimensional disordered structure analyzed in

this chapter. The disordered structure consist of dielectric rods assumed to be

infinitely long in z-direction (longitudinal direction). We arrange the rods of

homogeneous dielectric material randomly, whose radii of cross sections are a,

in a circular domain whose radius is 40a. The number of the rods is 480 and

the filling factor of the rods in the circular domain is 30%, and the width of the

domain surrounded by PML is 88a.

Analysis models are created by the following procedure. First, the cross sec-

tion radius of the rod is chosen as the characteristic length. The normalized radii

of the rods then become 1, and the origin of the coordinates are assumed to be

at the center of the square domain.

PML Layer

y

(a) 2D disordered dielectric system. (b) Dielectric rod divided by meshes.

Figure 3.1: Analysis model.

The positions of ith rods, (xi, yi), are determined as, (xi, yi) = (80R1 −
40, 80R2 − 40), where R1 and R2 are random numbers in the range [0,1] pro-

duced by using drand function implemented in Fortran90. If ith rod overlaps

with other rods numbered from 1 to i− 1, or if the ith rod is not included at all

within the circler region whose radius is 40a, we try to generate the position of

ith rod again with another random number.

We show an obtained finite element model in the neighborhood of a rod in

3.1(b). The average element size is approximately a/10, and in the smallest case,

λ/18 where λ denotes the wavelength. We discretize the regions close to the circles
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Cin and Cout with finer mesh whose element size is approximately a/30, and λ/54

in the smallest case to improve the computational accuracy of the amplification

factor defined in Eq. (2.60). The amplification factor requires the conjugate

magnetic field H∗ calculated with ∇ × E∗ based on Maxwell’s equations. The

rotation of the electric field ∇ × E are computed by partial differentiations of

the basis functions in elements which are close to the circles Cin and Cout. The

partial differentiations reduce the computational accuracy of the amplification

factor. The analysis model analyzed in this chapter has 833130 nodal points and

1661658 elements.

3.2.1 Optically active materials

θ

dipole

dielectric rod

y

active 
material

Ω

Ω

Ω

Figure 3.2: An concept of entire random system.

For a random system consisting of optically active rods in nonactive media,

−γ are given to dielectric constants of rods as,

ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 x ∈ Ωact

4.0 + i(−γ) x ∈ Ωrod

1.0 x ∈ Ωout

. (3.1)

3.3 Results

Simulated results are shown in this subsection. We assume a oscillating dipole

as a light source located at the center of the random system (x0, y0) = (0, 0). We

compute the amplification factor for the ranges of 0.21 ≤ ωa/2πc ≤ 0.27 and

0 ≤ γ ≤ 0.03. Above range of normalized frequency ωa/2πc corresponds to the
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wavelength range 481 [nm] ≤ λ ≤ 619 [nm], and the radius of the whole random

system is 40a = 5.2 [μm] when the radii of cross-subsection of dielectric rods are

a = 130 [nm].

Figure 3.3: Amplification factor in the case of giving γ in rods.

We classify the types of laser mode by using the distribution of the number

of nodes on the electric amplitude. First, we count the numbers of nodes whose

electric amplitudes are included in each range determined by dividing the differ-

ence between maximum and minimum absolute values of nodal values to 50 parts.

Next, we plot the number of nodes as a function of the electric amplitude. We

classify a laser mode as a localized one when the number of node reduce decrease

monotonically as the electric amplitude increases, and classify it as a extended

one when the change of the number of node has a peak.

We simulate laser actions in a disordered structure consisting of optically ac-

tive rods in non-active media. In these numerical simulations, we give a negative

value −γ to the imaginary part to the relative permittivity in the rod region Ωrod

in Fig. 3.2. We assume homogeneous excitations of optically active rods, namely

constant γ, also in this analysis.

Figure 3.3 shows the result of laser actions in a disordered structure assumed

to comprise optically active rods. The amplification factors are plotted with

a log-scale. The numbers of computation points are 501 and 201 for 0.225 ≤
ωa/2πc ≤ 0.240 and 0.0 ≤ γ ≤ 0.03. There are some round peaks. The number

of round peaks increase for 0.24 < ωa/2πc.

Figure 3.4 shows the electric amplitudes and radiative angular distributions
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(a) Electric intensity distribution
(ωa/2πc = 0.22689, γ = 0.02685).

(b) Electric intensity distribution
(ωa/2πc = 0.22872, γ = 0.01110).
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(c) Radiation direction
(ωa/2πc = 0.22689, γ = 0.02685).
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(d) Radiation direction
(ωa/2πc = 0.22872, γ = 0.01110).

Figure 3.4: Electric intensity distributions and radiative directions of extended modes.

of extended laser modes, and Fig. 3.5 shows those of localized ones.

We show two results for electric amplitude distributions and radiative angular

distribution of extended modes in Fig. 3.5. The results for electric amplitude

normalized by the maximum amplitude of the dipole radiation are plotted in color

maps in 3.5(a). The result for the angular distribution of radiations shown in

3.5(b) is plotted in polar coordinates. The angular coordinate corresponds to the

radiative angle θ defined in Fig. 3.2, and the radial coordinate to δ〈S〉, defined
as follows:

δ〈S〉 =
∫

Cθ
〈S〉 · n dl|γ>0∫

Cout
〈S〉 · n dl |γ>0

. (3.2)
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(a) Electric intensity distribution
(ωa/2πc = 0.22968, γ = 0.006150).
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(b) Radiation direction
(ωa/2πc = 0.22968, γ = 0.006150).

Figure 3.5: Electric intensity distribution and radiative direction of a localized mode.

The denominator of δ〈S〉 is a line integral of the normal component of Poynting
vector along the circle Cout and the numerator is one along Cθ that is one of the

edges of the elements in θ direction coinciding with Cout. In this example, Cout

is uniformly divided into segments and Cθ equals 80πa/8667.

Although electric amplitudes may be expected to become high within rods

because the rods are optically active, light waves are localized actually in the

interspaces among the active rods as shown in Figs. 3.4(a), 3.4(b). In view of

the electric amplitude distributions, light waves may leak into active rods and

be amplified by excited active rods. Such a characteristic of light localizations is

commonly observed in the results of lasing phenomena in five random systems

with different rod arrangements.
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3.3.1 Lasing threshold

We investigate lasing threshold, namely, minimum γ at which sharp peaks of am-

plification factors are observed. The average, minimum, maximum of minimum

γ in five samples are shown in Table 3.1.

Table 3.1: Average, minimum, and maximum values of minimum γ.

Average Minimum Maximum

0.004560 0.003300 0.005700

3.4 Conclusion

In this chapter, laser actions in a disordered structure consisting of active rods

in non-active media, are simulated numerically. The amplification factors are

computed by using FEM with changing frequency and the parameter γ expressing

the degree of excitation of optically active materials. Random systems consisting

of active rods are not appropriate for lower threshold laser action because light

waves are localized in interspaces among active rods.
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CHAPTER 4

Random lasing in disordered structures with

optically active materials in interspace among

dielectric cylinders

4.1 Introduction

This chapter shows laser action and the threshold of random laser in random

systems with optically active materials in interspace among dielectric cylinders.

The objective of this chapter is showing the threshold of laser action in random

systems with active gain in interspaces among dielectric cylinders by investigating

the properties of random lasing.

In section 4.2, we simulate random lasing in the random systems and in-

vestigate lasing threshold to compare lasing threshold in the random systems

consisting of optically active cylinders in chapter 3. We compare lasing threshold

of random lasers in random systems with active gain in interspaces among dielec-

tric cylinders with that of random lasers consisting of optically active cylinders

shown in chapter 3.

In section 4.3, we investigate the effect of lasing frequency on lasing properties

of random lasers. The above effects are investigated by analyzing the laser ac-

tion in two-dimensional random systems whose interspace among dielectric rods

are filled with active medium by means of finite element method. Electric am-

plitude distributions of lasing states, which emerge as sharp peaks of the above

amplification factor, are investigated to figure out the types of laser modes. In

order to investigate lasing frequency, we calculate the amplification factor for a

certain range of the frequency. We compute amplification factors with changing

frequency and population inversion density of active medium to investigate the

dependence of laser action on the population inversion. We classify laser modes

into three types and investigate the relation between laser modes, frequency and

excitation of active medium.
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In section 4.4, both the amplification factor and intensity of electric field

in random systems are computed by using a finite element method in order to

compare our study in section 4.2 with the previous studies in which only the

intensities of electric field are computed by using FDTD. The relation between

the amplification of light waves flowing out from random structures and inten-

sity of electric field in the random structures are investigated. Moreover, the

distributions of electric field amplitudes of lasing states and unexcited states at

lasing frequencies are compared. We evaluate similarities between those distri-

butions objectively by using normalized mean square error (NMSE). The above

similarity of those distributions indicate the role of disordered structures. The

dependence of the similarity on population inversion density of active medium

are newly revealed.

Next, we propose appropriate random systems with optically active materials

in interspaces among dielectric cylinders for low-threshold random lasing. As the

factors composing random systems, filling factor of dielectric cylinders and the

amount of positional disorder of dielectric cylinders are considered.

In section 4.5, the effect of the filling factor of dielectric cylinders on lasing

threshold is investigated and appropriate filling factor for low-threshold random

lasing is presented. Lasing phenomena in disordered structures with filling fac-

tors of dielectric cylinders 10%, 20%, 30%, 40%, and 50% are analyzed. Light

amplifications in disordered structures, namely, the amplification of Poynting vec-

tors of the light emitted from two-dimensional random media , are computed in

wide frequency range. Amplification of light is computed by changing both fre-

quency and excitation parameter in each frequency range in which random laser

occurs. The spacial distributions of the electric field amplitude of lasing state

are investigated. Light waves tend to be confined in smaller volume as the filling

factor of dielectric cylinders increases. The threshold of laser action occurring in

a disordered structure with each filling factor is investigated.

In section 4.6, appropriate amount of positional disorder for low-threshold

random lasing is presented. The dependence of the lasing threshold on the

amount of positional disorder in photonic crystal structures is newly studied.

A two-dimensional model of a photonic crystal consisting of dielectric cylinders

arranged on a triangular lattice within a circular region is considered. The cylin-

ders are assumed to be homogeneous and infinitely long. Positional disorder of

the cylinders is introduced to the photonic crystals. The population inversion
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density of the optically active medium is modeled by the negative imaginary part

of dielectric constant. The ratio between radiative power of electromagnetic field

without amplification and that with amplification is computed as a function of

the frequency and the imaginary part of the dielectric constant, and the thresh-

old of the imaginary part, namely population inversion density for laser action is

obtained. These analyses are carried out for various amounts of disorder. The

variation of the lasing threshold from photonic-crystal laser to random laser is

revealed by systematic computations with numerical method of reliable accuracy

for the first time. Moreover, a novel phenomenon, that the lasing threshold have

a minimum against the amount of disorder, is found. In order to investigate the

properties of the lasing states within the circular system, the distributions of the

electric field amplitudes of the states are also calculated.
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4.2 Random lasing

4.2.1 Introduction

This section present simulated lasing phenomena in random systems with op-

tically active medium in interspaces among dielectric cylinders. Random lasers

are lasing phenomena caused by multiple scattering and interference effects in

disordered structures. Light waves are localized various and complex regimes in

disordered structures because of such lasing mechanisms. It is necessary for low

threshold laser action to localized light waves in optically active medium because

light localizations work as feedback mechanisms in order to amplify light waves

repeatedly. Hence, it is important to investigate the tendency of light localiza-

tions in disordered structures. Amplification of radiation power is computed as

the function of frequency and the negative imaginary part of relative permittiv-

ity by using FEM. Lasing states emerging as the sharp peaks of the surface of

amplification factor are observed in lower excited state of active medium than

observed lasing states in chapter 3 because light waves tend to be localized in

interspaces among dielectric cylinders. It is revealed that random systems with

active medium within the interspaces is more appropriate for lower threshold

laser action than random systems consisting of optically active cylinders.

4.2.2 Analysis model

The analysis model computed in this section is the same as the one explained in

subsection 3.2.

4.2.2.1 Optically active materials

We compare the properties of random laser action of two different types of random

systems. For a random system in which optically active materials are filled in

the interspaces among nonactive rods, we give a negative value −γ(γ > 0) of the

imaginary part of the dielectric constant of that region, as follows:

ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 + i(−γ) x ∈ Ωact

4.0 x ∈ Ωrod

1.0 x ∈ Ωout

. (4.1)
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4.2.3 Results

Figure 4.1: Amplification factor in the case of giving γ in interspace among rods.

We analyze the laser action in a disordered structure whose interspaces among

non-active rods are filled with optically active materials. In this analysis, we give

the parameter γ, which is proportional to the population inversion density, to the

dielectric constants in the interspaces among the rods, namely in the region Ωact

in Fig. 3.2. We assume that the optically active materials are excited homoge-

neously and the parameter γ in all interspaces between the rods is constant.

Figure 4.1 shows the simulated laser action. We plot the amplification factor

A as a function of normalized frequency ωa/2πc and γ, where z-axis values are

plotted on the logarithmic scale. The numbers of computation points are 501 for

0.225 ≤ ωa
2πc
≤ 0.240 and 201 for 0.0 ≤ γ ≤ 0.03. The bottom plane in Fig. 4.1

shows the position (ωa/2πc, γ) of each laser action. We observe a large number

of laser action over a broad frequency range, especially in the small γ range. This

result can be interpreted so that a lot of low-threshold laser action occur in the

disordered structure. In the highly excited state of optically active materials,

namely, in large γ range, the number of laser action relatively decrease.

We observe the high electric amplitudes in interspaces among dielectric rods

in Figs. 4.2(a) and 4.2(b) which show the electric amplitude distributions of steep

peaks marked M and T in Fig. 4.1. How to see Figs. 4.2(c) and 4.2(d) is the same

as how to see Figs. 3.4(c), 3.4(d) and 3.5(b). Such distributions of the electric

amplitude of lasing states with localizations in the interspaces are natural because

the interspaces filled with optically active materials. Figures. 4.2(c) and 4.2(d)
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(a) Electric amplitude distribution
(ωa/2πc = 0.22734, γ = 0.008250).

(b) Electric amplitude distribution
(ωa/2πc = 0.23058, γ = 0.003600).
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(c) Radiation direction
(ωa/2πc = 0.22734, γ = 0.008250).
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(d) Radiation direction
(ωa/2πc = 0.23058, γ = 0.003600).

Figure 4.2: Electric amplitude distributions and radiation directions of extended

modes.

show the broad angular emissions of extended laser modes. Radiation directions

are strongly depend on the locations of localizations. We find it difficult to control

radiation directions of random laser action.

We also show the distribution of the amplitude of electric field and the vari-

ation of the radiation power of localized modes defined by Eq. (3.2) in Fig. 4.3.

Light waves become intensive in the interspaces also in the localized case. By

comparing the radiation power distributions of localized modes with those of ex-

tended modes, we find that the localized laser modes tend to emit the light waves

into the space within a narrow angle.

Characteristics of light localizations and radiation directions are common in

five samples with different rod arrangements.
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(a) Electric amplitude distribution
(ωa/2πc = 0.22515, γ = 0.01710).

(b) Electric amplitude distribution
(ωa/2πc = 0.22503, γ = 0.01860).
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(c) Radiation direction
(ωa/2πc = 0.22515, γ = 0.01710).
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(d) Radiation direction
(ωa/2πc = 0.22503, γ = 0.01860).

Figure 4.3: Electric amplitude distributions and radiation directions of localized

modes.

4.2.3.1 Lasing threshold

We investigate lasing threshold, namely, minimum γ at which sharp peaks of am-

plification factors are observed. The average, minimum, maximum of minimum

γ in five samples are shown in Table 4.1.

Table 4.1: Average, minimum, and maximum values of minimum γ.

Average Minimum Maximum

0.001663 0.00120 0.00255

Based on the comparison between results shown in Tables 3.1 and 4.1, the

lasing threshold of laser action in random systems with active medium in inter-

spaces among dielectric rods tend to becomes lower than that in random systems
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consisting of optically active rods.

4.2.4 Conclusion

In this section, laser action in a disordered structure whose interspaces among

dielectric rods are filled with active medium are simulated. The amplification

factors are computed with changing the frequency and the parameter γ expressing

the degree of excitation of optically active materials. The properties of laser

action in two different disordered structures, shown in this section and chapter

3, have been compared, and we obtained the following lasing properties:

• Both of extended and localized modes provoke laser action.

• Most of the lasing phenomena are caused by extended modes.

• Lasing phenomena caused by extended modes emit light waves into the

spaces in broader angles than those caused by localized modes do.

• Thresholds of laser action in disordered structures with optically active

materials in interspaces among non-active rods become lower than those

consisting of active rods in non-active media.
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4.3 Frequency dependence of the properties of random

laser action

4.3.1 Introduction

Random lasers can emit coherent light within broad frequency ranges for broad

angle. This random lasers’ ability is not realized by conventional laser devices.

Random lasers are expected to be applied to display applications, thermal sens-

ing, etc. [28]. Random lasers are triggered by random multiple scattering and

interference effect. The laser modes of random lasers are classified into local-

ized and extended modes [28]. The intermediate condition between localized and

extended modes are called transition mode [45]. Since the lasing properties of

random lasers are influenced by such laser modes, investigating the relation be-

tween laser modes, frequency and excitation of active medium are important.

However, no discussion on the relations of such laser modes against frequency

and excitation of active medium is found in the previous studies.

In chapter 3 and section 4.2, we presented simulations of lasing phenomena in

two-dimensional random systems by using FEM. We compared lasing phenomena

in two different random systems: optically active materials among nonactive rods,

and optically active rods in nonactive media. Based on the results obtained there,

the first system was found to be more advantageous in reducing the threshold

of laser action because the light waves become localized in the interspace among

the rods.

In this section, we present an investigation on laser action for a wide frequency

range in the case of TM mode and seek lasing frequencies. We also present a study

on spatial maps of the electric amplitude and laser mode distributions in each

lasing frequency.

87



4.3.2 Analysis model

We assume a system whose interspace among dielectric rods are filled with an

optically active material, and set the imaginary part of relative permittivity in

interspace among rods to −γ. The relative permittivities in individual regions

are given as follows:

ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 + i(−γ) x ∈ Ωact

4.0 x ∈ Ωrod

1.0 x ∈ Ωout

, (4.2)

where Ωact is the region of interspaces among dielectric cylinders, Ωrod is the

region in cylinders, and Ωout is the open region.

Figure 4.4: An analysis model.

Parameter Value

Number of rod 480

Radius of rods, a 1

Filling factor, f 0.3 (30%)

Rin 1.5a

Rg 40a

Rout 41a

Width of PML 3a

Width of physical domain 90a

Mean free path, l a
(√

2π√
3f
− 2
)

Position of center, (x0, y0) (0, 0)

Table 4.2: Parameters in geometry

Figure 4.4 shows the present analysis model. The number of dielectric rods

illustrated by the solid circles in Fig. 4.4 is 480 and the filling factor of the

dielectric rods is 30%. The radii of the cross sections of the rods are assumed

to be the same, and the radius a is used as the characteristic length. The size

of the analysis models is normalized by the characteristic length. The circles

Cg and Cout surrounding the dielectric structure are illustrated by broken lines.

The radius of Cg is 40a, while that of Cout is 41a. The center positions of the

dielectric rods are determined based on pseudo random numbers generated by

drand Fortran function.
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4.3.3 Results

We calculate amplification factor defined in Eq. (2.60) for frequency range 0.1 ≤
ωa/2πc ≤ 0.4 with fixed population inversion densities, γ = 0.001, 0.002, and

0.005.
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Figure 4.5: Laser action for 0.1 ≤ ωa/2πc ≤ 0.4 (fine mesh).

Figure 4.5 shows the results of lasing phenomena in the disordered structure.

For the state corresponding to γ = 0.001, the amplification factor values are

smaller than 101 and large divergent peaks of the amplification factor are not

observed. For higher excited states of optically active material, γ = 0.002 and

0.005, the amplification factor values exceed 102 and diverge. We observe three

lasing frequencies within the ranges 0.121 ≤ ωa/2πc ≤ 0.136, 0.225 ≤ ωa/2πc ≤
0.255, and 0.345 ≤ ωa/2πc ≤ 0.375, especially, for the results with γ = 0.002.

4.3.3.1 Laser action

We simulate laser action by changing both the frequency ωa/2πc and the pop-

ulation inversion density γ. The amplification factor values are plotted as the

function of (ωa/2πc, γ). We seek divergent peaks of amplification factor, which

are interpreted as lasing phenomena, by sweeping the surface of the amplification
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factor.

Random lasing phenomena in the lower frequency range Figure 4.6

shows the results of the lasing phenomena obtained for the lower frequency range

0.121 ≤ ωa/2πc ≤ 0.136 that corresponds to 0.179 ≤ kl/2π ≤ 0.201 where

k and l are wave number and transfer mean free path (TMFP). TMFP is the

length of the one step of random walk, that is, the average distance between

neighboring dielectric cylinders. In general, random laser action occurs when

a half of the wavelength is close to the length of TMFP, namely kl/2π ≈ 0.5.

However, TMFP is much smaller than a half of the wavelength of light waves in

the frequency range. The number of random lasing phenomena oscillating in the

frequency range is 47.

Figure 4.6: Laser action in the range of 0.121 ≤ ωa/2πc ≤ 0.136 (coarse mesh).

To understand the mechanisms causing the laser action in the low frequency

range, 0.121 ≤ ωa/2πc ≤ 0.136, we investigate electric amplitude distributions

(EADs) of some lasing phenomena. Figures 4.7 and 4.8 show EADs of the ex-

tended and localized modes, respectively. In dielectric structures, light waves are

intensively localized in large vacant spaces created by disordered distribution of

the dielectric rods, especially in extended modes. Moreover, for EADs of different

lasing modes shown in Fig. 4.7, we observe that the light waves become intense

within some common vacant spaces between rods. Such a characteristic of light

localization may lead to a smaller number of lasing phenomena. Namely, light

waves cannot be localized in interspaces between rods except for large vacant

spaces because the wave length of the light wave is longer than TMFP.
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(a) (ωa/2πc, γ) =
(0.13480, 0.00510).

(b) (ωa/2πc, γ) =
(0.13360, 0.00630).

(c) (ωa/2πc, γ) =
(0.13518, 0.00675).

Figure 4.7: Electric amplitude distributions of extended modes in frequency range

0.121 ≤ ωa/2πc ≤ 0.136.

(a) (ωa/2πc, γ) =
(0.12404, 0.00165).

(b) (ωa/2πc, γ) =
(0.12704, 0.00420).

(c) (ωa/2πc, γ) =
(0.12126, 0.00495).

Figure 4.8: Electric amplitude distributions of localized modes in frequency range

0.121 ≤ ωa/2πc ≤ 0.136.

Random lasing phenomena in range 0.225 ≤ ωa/2πc ≤ 0.255 Figure 4.9

shows the result of lasing phenomena for frequency range 0.225 ≤ ωa/2πc ≤ 0.255

which corresponds to 0.332 ≤ kl/2π ≤ 0.376. The numbers of the divergent

peaks of the amplification factor A are 120 and 138 in Figs. 4.9(a) and 4.9(b),

respectively. In comparison with Fig. 4.6, it remarkably increases in the frequency

range 0.225 ≤ ωa/2πc ≤ 0.255 that is equal to 0.332 ≤ kl/2π ≤ 0.377. A half of

the wavelength in the above frequency range is a little longer than TMFP, say,

for kl/2π = 0.500, the half-wavelength is equal to TMFP.

Figures 4.10 and 4.11 show the results of EADs for the extended and localized

modes in frequency range 0.225 ≤ ωa/2πc ≤ 0.255, respectively. The light

waves are localized not only in the large vacant spaces but also in the narrow
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(a) 0.225 ≤ ωa/2πc ≤ 0.240.

(b) 0.240 ≤ ωa/2πc ≤ 0.255.

Figure 4.9: Laser action for 0.225 ≤ ωa/2πc ≤ 0.255 (coarse mesh).

interspaces between the rods. Some light waves permeate through the surfaces

of the dielectric rods and are localized in them. We can naturally consider that

the light waves, whose half-wavelength is a little longer than TMFP, oscillate in

the disordered structure.

Random lasing phenomena in the higher frequency range Figure 4.12

shows the result of the lasing phenomena for frequency range 0.345 ≤ ωa/2πc ≤
0.375. A fine meshed model are used to analyze light waves of high frequencies.

The result is computed only for the range 0.00 ≤ γ ≤ 0.01 due to the large

computation cost.

Figure 4.13 shows the electric amplitude distributions in the state of extended

modes for frequency range 0.345 ≤ ωa/2πc ≤ 0.375. A half-wavelength of light

is approximately equal to TMFP in this frequency range, and hence, we observe
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(a) (ωa/2πc, γ) =
(0.23076, 0.0033000).

(b) (ωa/2πc, γ) =
(0.24188, 0.0025500).

(c) (ωa/2πc, γ) =
(0.25316, 0.0027000).

Figure 4.10: Electric amplitude distributions of extended modes in frequency

range 0.225 ≤ ωa/2πc ≤ 0.255 (coarse mesh).

(a) (ωa/2πc, γ) =
(0.22798, 0.0033000).

(b) (ωa/2πc, γ) =
(0.23434, 0.028500).

(c) (ωa/2πc, γ) =
(0.24224, 0.028500).

Figure 4.11: Electric amplitude distributions of localized modes in frequency

range 0.225 ≤ ωa/2πc ≤ 0.255 (coarse mesh).

fine interference patterns caused by random light scatterings. Light waves spread

spatially in the dielectric structure.

4.3.3.2 Distribution of laser modes

In this subsubsection, we show the results of the distribution of laser modes

classified into localized, extended and transition modes.

Classification of laser mode types Each nodal value EI can be normalized

by the maximum and minimum nodal values, max{EI} and min{EI}, as

En
I =

EI −min{EI}
max{EI} −min{EI} . (4.3)
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(a) 0.345 ≤ ωa/2πc ≤ 0.360.

(b) 0.360 ≤ ωa/2πc ≤ 0.375.

Figure 4.12: Laser action in the range of 0.345 ≤ ωa/2πc ≤ 0.375 (fine mesh).

(a) (ωa/2πc, γ) =
(0.34838, 0.0019500).

(b) (ωa/2πc, γ) =
(0.35486, 0.0019500).

(c) (ωa/2πc, γ) =
(0.36162, 0.0019500).

Figure 4.13: Electric amplitude distributions of extended modes in frequency

range 0.345 ≤ ωa/2πc ≤ 0.375 (fine mesh).

Then, the data of normalized nodal values En
I are binarized with the threshold

En
I = 0.1. Binarized images are shown in Fig. 4.15. The electric amplitudes are
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(a) Localized mode (6.10%).(b) Transition mode (13.0%).(c) Extended mode (28.1%).

Figure 4.14: Original images of electric amplitude distributions.

(a) Localized mode (6.10%).(b) Transition mode (13.0%).(c) Extended mode (28.1%).

Figure 4.15: Binarized images of electric amplitude distributions.

interpolated linearly within each element, and the points at which the interpo-

lated electric amplitude corresponds to the threshold are found.

In the circle Cout, we calculate the total area of the regions in which normalized

nodal values are higher than the threshold. The laser modes are determined as

localized ones when this total area is smaller than 10% of the area of Cout, while

they are determined as extended ones when the total area is larger than 25% of

the area of Cout. When the total area is larger than 10% and smaller than 25%

of the are of Cout, the laser modes are determined as transition modes.

Results We investigate the distribution of laser mode, i.e., localized and ex-

tended modes, for population inversion density γ and amplification factor. We

classify the types of laser modes using the ratio between the area in which light

waves exist in Cout, and the area of Cout. An intermediate state between a lo-

calized and an extended modes is classified as a transition mode. To find the

common tendency of distributions, we analyze five different models, with the

same 30% filling factor but with different random arrangements, for frequency
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Figure 4.16: Laser mode types in frequency range 0.121 ≤ ωa/2πc ≤ 0.136.

ranges 0.121 ≤ ωa/2πc ≤ 0.136 and 0.225 ≤ ωa/2πc ≤ 0.255, and three models

for frequency range 0.345 ≤ ωa/2πc ≤ 0.375.

Figure 4.16(a) shows the distribution of the laser modes detected in the result

shown in Fig. 4.6 for frequency range 0.121 ≤ ωa/2πc ≤ 0.136. Figure 4.16(b)

shows that of the models with five different rod arrangements. Laser modes

of the lower threshold lasing phenomena occurring in the range γ < 0.003 are

localized and correspond to transition modes. The lasing phenomena having

larger amplification factors A > 104 tend to be of extended and transition modes.
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Figure 4.17: Laser mode types for frequency range 0.225 ≤ ωa/2πc ≤ 0.255.

Figure 4.17(a) shows the distribution of the laser mode for frequency range

0.225 ≤ ωa/2πc ≤ 0.255, obtained from the result shown in Fig. 4.9. Also, Fig.

4.17(b) shows a distribution obtained from the five different random arrangement

models. We observe a common tendency in the results shown in Figs. 4.17(a)
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and 4.17(b). The lowest threshold laser action is in transition mode that is in-

termediate state between localized and extended modes. The laser modes having

higher amplification factor values belong to extended modes. In extended modes,

the light waves spread spatially in the random systems and are amplified by the

large amount of the optically active material. Hence, the amplification factors

of extended mode become large, and the number of localized modes is obviously

few.
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Figure 4.18: Laser mode types for frequency range 0.345 ≤ ωa/2πc ≤ 0.375.

Figure 4.18(a) shows the distribution of the laser mode of the dielectric struc-

ture shown in Fig. 4.4 for frequency range 0.345 ≤ ωa/2πc ≤ 0.375 corresponding

to 0.510 ≤ kl/2π ≤ 0.554. Most of the laser modes are extended ones, and lo-

calized modes disappear in the ranges of this frequency and γ. In this frequency

range, TMFP approximately equals a half-wavelength of light: kl/2π ≈ 0.5. In

such cases, light waves are localized as standing waves in the interspaces between

neighboring rods. Such standing waves exist broadly in random systems.
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4.3.3.3 Lasing threshold

We investigate lasing threshold, namely, minimum γ at which sharp peaks of

amplification factors are observed. The average, minimum, maximum of mini-

mum γ in five samples are shown in Table 4.3. In the lower frequency ranges

0.121 ≤ ωa/2πc ≤ 0.136, average of lasing frequency is highest. Lasing threshold

in 0.225 ≤ ωa/2πc ≤ 0.255 tends to become lowest.

Table 4.3: Average, minimum, and maximum values of minimum γ in each lasing

frequency ranges.

Lasing frequency range Average Minimum Maximum

0.121 ≤ ωa/2πc ≤ 0.136 (5 samples) 0.002747 0.00045 0.00330

0.225 ≤ ωa/2πc ≤ 0.255 (5 samples) 0.001663 0.00120 0.00255

0.345 ≤ ωa/2πc ≤ 0.375 (3 samples) 0.001680 0.00150 0.00210

4.3.4 Conclusion

In this section, we investigated the dependence of lasing properties on frequencies.

We simulated laser action for frequency range 0.1 ≤ ωa/2πc ≤ 0.4. Three lasing

frequency ranges have been observed and laser action in each lasing frequency

have been simulated by using FEM. The following results have been obtained.

• The number of lasing phenomena in the higher frequency range is much

more than that of the lower frequency range.

• Light waves are localized in large vacant interspaces among rods in the

lower frequency range. In the case of the higher frequency, light waves exist

as standing waves not only in the large interspace but also in the small

interspace among neighboring rods, and spread spatially in the disordered

structures.

• In the case of the lower frequency, both localized and extended modes are

observed, however, as the frequency increases, the localized one disappear

and most laser modes become the extended ones.

• Lasing threshold tends to become lowest in 0.225 ≤ ωa/2πc ≤ 0.255.
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4.4 Dependency of laser action on electric field intensity

in randomly distributed dielectric cylinders

4.4.1 Introduction

After the first experimental observation of a random lasing phenomenon by

Lawandy in 1994 [10], many researchers have discussed whether the light am-

plifying phenomena are lasing phenomena or amplified spontaneous emissions

(ASEs) [11] because disordered structures do not seem to work based on any

feedback mechanisms. Wiersma and Cao et al. observed extreme enhancements

of the electric intensity in disordered structures, called laser spikings, in their ex-

perimental studies [46, 30]. Sebbah and Vanneste et al. simulated laser spikings

by using FDTD [12, 47]. Above experimental and numerical studies concluded

that the light amplifying phenomena are lasing ones. In addition, Sebbah et

al. compared the distributions of electric field amplitude in the non-excited and

excited states of active medium and concluded that dielectric random structures

work as cavities to confine light waves [12]. Most previous studies of random laser

by using numerical simulations show the results of spectrum of electric intensity,

computed by FDTD, in dielectric random structures.

In our previous study, we simulate lasing phenomena in disordered structures

by computing the amplification of light waves emitted from random systems by

using a finite element method [48]. The dependences of lasing properties are

revealed by modeling population inversion density of active medium as negative

imaginary part of relative permittivity [3, 4, 5].

In this section, both the amplification factor and intensity of electric field in

random systems are computed by using a finite element method in order to com-

pare our previous study with the previous studies in which only the intensities of

electric field are computed by using FDTD. The relation between the amplifica-

tion of light waves flowing out from random structures and intensity of electric

field in the random structures are investigated.

4.4.1.1 Definitions of amplification factor and intensity of electric field

We compute Poynting vector of light waves flowing out from dielectric struc-

tures in time-averaged form because of the assumption of time-harmonic waves

of electric and magnetic fields.
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Figure 4.19: An concept of entire random system.

The time-averaged form of Poynting vector S is as follows:

〈S〉 = Re

(
E×H∗

2

)
, (4.4)

where H∗ is the conjugate of the magnetic field. The amplification factor com-

puted in this simulations is defined as

A =

∫
Cout
〈S〉 · nout dl|γ>0∫

Cout
〈S〉 · nout dl |γ=0

, (4.5)

where nout is a normal-unit-outward vector against the circle Cout surrounding

dielectric structures. The amplification factor defined as the ratio of radiative

powers between non-excited and excited states of active medium in Eq. (4.5)

shows the light amplification occurring from the excitation of active medium and

light confinement in dielectric disordered structures.

The intensity of electric field in dielectric disordered structures is defined as

EI =

∑
e

∫
Ωact+Ωrod

|E(x)|2dS∑
e

∫
Ωact+Ωrod

|Ei(x)|2dS
. (4.6)

The value EI gives the ratio of electric field intensities in the case of no-scatter

within non-excited medium and in the case of scatters within excited active

medium. The intensity of electric field interpolated by linear basis function is

integrated in each element, and summation of the integrated intensity in each

element in two regions, Ωact and Ωrod, is computed.
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4.4.2 Analysis models

(a) Analysis model (sample 1). (b) Element in a dielectric rod. (c) Element in PML.

Figure 4.20: Analysis model and finite element mesh.

Parameter Value

Number of rod 480

Radius of rods, a 1 : characteristic length

Filling factor, f 0.3 (30%)

Radius of Cin, Rin 1.5a

Radius of Cg, Rg 40a

Radius of Cout, Rout 41a

Width of PML 3a

Width of physical domain 90a

Mean free path, l a

(√
2π/

√
3f − 2

)
Position of center, (x0, y0) (0, 0)

Table 4.4: Parameters in geometry
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We analyze lasing phenomena occurring in two-dimensional disordered sys-

tems consisting of dielectric cylinders. Interspace among the cylinders in the

systems is assumed to be filled with active medium. Fig. 4.20(a) shows one of

the two-dimensional disordered systems. The number of dielectric cylinders ex-

pressed as black circles in Fig. 4.20(a) is 480 and filling factor of the dielectric

cylinders is 30%.

We list parameters to create analysis models in Table 4.4. Figures 4.20(b)

and 4.20(c) show finite element meshing in a cylinder and PML, respectively.

The numbers of nodes and elements are 985092 and 1956502. The edge lengths

of the elements in the cylinders are approximately a/13 and λ/27 in the worst

case, where λ is the shortest wavelength investigated in the present analysis.

Regions on the circle Cout are discretized by smaller elements whose edge lengths

are approximately 1/8 times of those of elements mentioned above because the

reduction of computational accuracy is caused by the rotation of the electric field,

∇ × E, needed for the calculation of H∗ including the time-averaged Poynting

vector in Eq. (4.4).

4.4.3 Results

We consider an oscillating dipole as a light source located at x0 = (0, 0), and

compute the amplification factor for the ranges 0.225 ≤ ωa/2πc ≤ 0.240 and

0.00 ≤ γ ≤ 0.02. The frequency range is 0.332 ≤ kl/2π ≤ 0.355 where k

and l are the wavenumber and mean free path, respectively. When the radii of

the cross section of the cylinders are a = 130[nm], the above frequency range

correspond to visible wavelength range, 481[nm]∼619[nm], and the radius of the
whole disordered structure is 40a = 5.2[μm]. The numbers of computation points

are taken 751 and 141 for ωa/2πc and γ axes, respectively. It took approximately

30 seconds for a computation for each set of the values of ωa/2πc and γ.

4.4.3.1 Amplification factor and electric field intensity

Figures 4.21 and 4.22 show the amplification factor defined by Eq. (4.5) and the

intensity of electric field defined by Eq. (4.6). The amplification factor and the

intensity have peaks on ωa/2πc-γ plane. We observe that low-threshold lasings

occur at the frequencies at which the intensity becomes high in non-excited state

of active material (γ = 0).
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Figure 4.21: Laser oscillation in a disordered system (sample 1).

Figure 4.22: Electric intensity in a disordered system (sample 1).

4.4.3.2 Cavity modes and non-cavity modes

Based on the obtained results of the amplification factor and the electric field

intensity, we pay attention to the frequencies at which the electric field intensi-

ties become high in non-excited state of the active material, that is, γ = 0. We

investigate electric amplitude distributions in the state of the highest three inten-

sities of the electric field without excitation of active material and those of lasing

states at the same frequencies in the lowest excited state. Figure 4.23 shows the

results of the distributions. Figures 4.23(a), 4.23(b) and 4.23(c) show the elec-

tric amplitude distributions without the excitation of active material, while Figs.

4.23(d), 4.23(e) and 4.23(f) show those of lasing states, that is, excited states.

The values plotted in Fig. 4.23 are the electric field amplitudes normalized by the
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(a) ωa/2πc = 0.23272,

γ = 0.0000.

(b) ωa/2πc = 0.22786,

γ = 0.0000.

(c) ωa/2πc = 0.23718,

γ = 0.0000.

(d) ωa/2πc = 0.23272,

γ = 0.0017143.

(e) ωa/2πc = 0.22786,

γ = 0.0025714

(f) ωa/2πc = 0.23718,

γ = 0.0027143.

Figure 4.23: Electric amplitude distribution of cavity-modes (sample 1).

maximum value of the incident field. In Fig. 4.23, the values of ωa/2πc and γ are

written in five significant figures. Comparing the electric amplitude distributions

between the non-excited and lasing states, we observe the localization patterns of

the two states at the same frequencies are similar to each other. Such similarities

have already been mentioned in the previous study [12] and are interpreted that

dielectric disordered structures work as cavities. The lasing modes shown in Figs.

4.23(d), 4.23(e), and 4.23(f) are called “cavity modes”.

On the other hand, we find the existence of “non-cavity modes” that have

different patterns of light localizations in lasing states from that of non-excited

states of active medium. In non-cavity modes, the disordered structures do not

work as cavities. Although we find no similarity between two distributions of

electric field amplitude in Figs. 4.24(a) and 4.24(d), we find some common pat-

terns of the distributions in the right sides of Figs. 4.24(b) and 4.24(e), and in

the regions around the center of Figs. 4.24(c) and 4.24(f).
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(a) ωa/2πc = 0.23602,

γ = 0.0000.

(b) ωa/2πc = 0.23352,

γ = 0.0000.

(c) ωa/2πc = 0.22686,

γ = 0.0000.

(d) ωa/2πc = 0.23602,

γ = 0.0022857.

(e) ωa/2πc = 0.23352,

γ = 0.0025714.

(f) ωa/2πc = 0.22686,

γ = 0.0030000.

Figure 4.24: Electric amplitude distribution of non-cavity-modes (sample 1).

4.4.3.3 Evaluation of the similarities between distribution regimes

We have to evaluate the similarities of the distribution patterns between non-

excited (γ = 0) and lasing states (γ > 0) in order to decide whether random

structures work as cavities or not. We use normalized mean square error (NMSE)

for this purpose. NMSE is a numerical method to evaluate similarities between

images. NMSE is defines as the square sum of the differences of pixel values

of two images. The summation is normalized by the square sum of the pixel

values of the original image. A smaller value of NMSE indicates a high similarity

between the two images. We use NMSE defined by treating the nodal values as

the pixel values, as follows:

NMSE =

N∑
j=1

(∣∣Ej
n

∣∣
γ>0

− ∣∣Ej
n

∣∣
γ=0

)2

N∑
j=1

∣∣∣Ej
n

∣∣∣2
γ=0

, (4.7)

where j denotes a node number, N is the total number of nodes, and Ej
n is the

nodal values of the electric amplitudes normalized to be in the range 0 ≤ |Ej
n| ≤ 1.

In Table 4.5, we give the values of NMSE of the distributions shown in Figs. 4.23
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and 4.24. The NMSE values for cavity modes are much smaller than those of

non-cavity modes and reflect the similarity between the distributions well.

Table 4.5: NMSE of laser mode in Figs. 4.23 and 4.24 (sample 1).

Figure No. Normalized Frequency NMSE

4.23(a), 4.23(d) 0.23272 0.025714

4.23(b), 4.23(e) 0.22786 0.036990

4.23(c), 4.23(f) 0.23718 0.056546

4.24(a), 4.24(d) 0.23602 0.59442

4.24(b), 4.24(e) 0.23352 0.39460

4.24(c), 4.24(f) 0.22686 0.34264

4.4.3.4 Distribution of cavity and non-cavity modes against popula-

tion inversion density γ

In this subsubsection, we investigate the distribution of laser modes evaluated

by NMSE against frequency and population inversion density γ. We classify the

values of NMSEs of laser modes at the interval of 0.1 except for the range NMSE

> 0.4 because we consider that laser modes whose NMSEs exceed 0.4 do not work

as cavities. We additionally investigate the distributions of four models whose

rod arrangements are different from each other to confirm the general tendency

of the distributions. The distributions of classified laser modes of one and five

samples are shown in Figs. 4.25(a) and 4.25(b), respectively.

The laser modes whose NMSEs are relatively small are cavity modes. We ob-

serve a tendency that laser modes corresponding to cavity modes are distributed

in smaller range of population inversion density γ. The same tendency is also ob-

served in the result of five models shown in Fig. 4.25(b). However, in the higher

range of population inversion density γ, only the non-cavity modes occur. These

results of the laser mode distributions indicate that lasing phenomena caused by

cavity modes, namely, lasing phenomena caused by Anderson localizations [26],

can occur in the state of lower pumping of active material. The reason why the

existence of non-cavity modes has not been mentioned in the previous study [12]

can be considered that only the state of lower pumping of active material has

been investigated and non-cavity modes did not appear. The existence of non-
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Figure 4.25: Distribution of laser mode with five ranges of NMSE.

cavity modes are discovered by our present study in which the dependences of

lasing phenomena on both the frequency and population inversion density γ are

investigated.

107



4.4.4 Conclusion

In the present study, the dependence of amplification of light waves flowing out

from random systems on the electric field intensity in the systems is investigated

by using FEM.

Lasing frequencies and population inversion densities of peaks observed in the

results of amplification factor correspond to those of the electric field intensities in

the random systems. Low-threshold lasing phenomena occur at the frequencies at

which the intensities become to be in the state of no pumping of active material.

Two types of laser modes, cavity and non-cavity modes, are observed. The cavity

modes appear only in the low excited states of the active material, but the non-

cavity modes are observed also in the higher excited states. Above tendency

concerning the distribution of laser modes are also observed in the results for

the five random structures whose rod arrangements are different from each other,

and can be considered as a general tendency.
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4.5 The effect of filling factor for lasing phenomena in

dielectric random media

4.5.1 Introduction

In the random lasers, dielectric random media work as cavities in which light

waves are confined [12, 49], thus, lasing phenomena are triggered also when the

optically active material is in a low excited state [10]. Hence, lasing properties

strongly depend on the structures of random media. Random scatterings are

expected to become intensive as the filling factor of dielectric materials increases,

and the strong scatterings lead to random lasing. Therefore, the filling factor

of dielectric materials in random media is one of the important factors for laser

action.

In the mean time, the amount of optically active materials in random systems

is also an important factor for laser oscillations. In chapter 3 and section 4.2,

we presented the analyses of lasing phenomena occurring in two different two-

dimensional random media (2D-RM): one with optically active materials among

nonactive dielectric rods and the other with optically active rods in nonactive me-

dia. We found that the first one can lase under a lower pumping than that of the

second one, because light waves are localized in the interspace among dielectric

rods. In the first random system, rate of the amount of optically active materi-

als obviously reduces as the filling factor of dielectric rods increases. Therefore,

the strength of scatterings in random media has a trade-off relationship with the

amount of optically active materials.

We focus on the effect of filling factor of dielectric materials on random laser

action and lasing threshold. Sebbah et al. investigated the relation between the

filling factors and electric field intensity in random systems by means of the finite

difference time domain method [12]. Chang et al. studied the influence of filling

factor for localization length and decay length in one-dimensional systems [17].

Ramiro et al. investigated experimentally the transmittance and reflectance of

optical crystals of various filling factors [50]. However, the dependence of lasing

threshold on filling factor of dielectric materials has not been investigated so far.

In this study, we simulate numerically the laser action in two dimensional

dielectric random media whose filling factor of dielectric rods is in the range be-

tween 10% and 50% to investigate appropriate filling factors for laser oscillation.
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Positional disorder of dielectric rods is considered in this study. The case of light

propagation for perpendicular direction against the cylinders, and one of the two

polarizations, that is TM mode, are considered. Similar situations assumed here

can be realized experimentally. Although the lasing along the cylinders and that

in TE mode would also be interests of analysis, they are intractable due to its

large computational cost and are material subjects in the future. We compute

the flux of Poynting vector of light waves emitted from a random system with

changing population inversion density, of optically active materials, modeled by

negative imaginary part of relative permittivity. We employ perfectly matched

layer (PML) [38] to treat scatterings of open regions with finite domains.

4.5.2 Analysis models

We analyze laser action in 2D-RM consisting of homogeneous dielectric rods by

using finite element method (FEM). Dielectric rods are assumed to be infinitely

long in z-direction and light waves are assumed to propagate within xy-plane.

Also, we assume TM mode, i.e., the electric field has only z component. Figure

4.26(a) illustrates, from top view, the concept of random media. An oscillating

electric polarization along the z axis is located at the center of whole random

structure as a light source. We define three different circles: Cin, Cg, and Cout,

as shown in the figure. The light source is placed in Cin, all of dielectric rods are

placed in Cg, and the flux of Poynting vector is computed on Cout. nin and nout

are unit outward normal vectors to the circles Cin and Cout. Interspace between

dielectric rods inside the circle Cout is denoted by Ωact. Active materials are

filled in the region Ωact. Regions in dielectric rods and outside the circle Cout are

denoted by Ωrod and Ωout. Rin, Rg and Rout are the radii of the circles Cin, Cg

and Cout, respectively.
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(a) Concept of two-dimensional

random system.

(b) Filling Factor=0.1 (10%),

The number of rods is 160.

(c) Filling Factor=0.2 (20%),

The number of rods is 320.

(d) Filling Factor=0.3 (30%),

The number of rods is 480.

(e) Filling Factor=0.4 (40%),

The number of rods is 640.

(f) Filling Factor=0.5 (50%),

The number of rods is 800.

Figure 4.26: Analysis models of each filling factor.

Table 4.6: Parameter of geometry

Parameter Figure value

Radius of rods a 1

Radius of Cin Rin 1.5a

Radius of Cg Rg 40a

Radius of Cout Rout 41a

Filling factor f 0.1, 0.2, 0.3, 0.4, 0.5

Mean free path l a

(√
2π/

√
3f − 2

)
Position of center (x0, y0) (0, 0)

Width of PML 3a

Width of physical domain 90a
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Dielectric rods are assumed to be homogeneous and randomly distributed

within the circle Cg. The center positions of rods, (xr, yr), are given as follows:[
xr

yr

]
=

[
2Rg × ρx −Rg

2Rg × ρy −Rg

]
, (4.8)

where Rg is the radius of the circle Cg, ρx and ρy are the pseudo random numbers

generated by drand Fortran function with standard uniform distribution on the

open interval (0, 1). If the rod area overlaps above the areas of other rods whose

center positions had already been determined, or, if the whole region of a rod is

not included within the circle Cg, we have to generate the center position again.

Filling factors of dielectric rods in each models are 10%, 20%, 30%, 40%,

and 50%. Make analysis models with filling factor greater than 60% is difficult,

because disordered distribution of dielectric rods needs some amount of space.

Figure 4.26 shows analysis models created for the above filling factors. Solid

circles represent dielectric rods, and two large outermost circles of dotted lines

correspond to Cg and Cout. The physical domain is surrounded by PML [38] to

prevent numerical reflections on the internal square-shaped boundary. We use an

optimized absorbing function that minimizes the numerical reflection [41].

In our computations, the radius of the rods, a, is treated as the characteristic

length. All the lengths are normalized by a. The light source is located at the

center of the dielectric media, x0 = (0, 0). All parameters used to make analysis

models are shown in Table 1.

(a) Mesh size : 0.08a. (b) Mesh size : 0.05a. (c) Mesh size in PML.

Figure 4.27: Finite element meshing in physical and PML regions.

Figure 4.27 shows the finite element meshes of the analysis models. We use

two types of mesh consisting of different sizes as shown in Figs. 4.27(a) and

4.27(b). Blue circles in Figs. 4.27(a) and 4.27(b) are the dielectric rods. Element
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sizes are approximately 0.08a (� a/13) for the mesh shown in Fig. 4.27(a) and

0.05a (� a/20) for that in Fig. 4.27(b). Figure 4.27(c) shows the elements of PML

area. By employing the square elements for PML area, the integrals including the

absorbing function can be evaluated easily by using Gauss-Legendre quadrature

formula.

In Table 4.7, we show the numbers of nodes and elements of each analysis

model shown in Fig. 4.26.

Table 4.7: The number of nodes (NN) and elements (NE)

of the models shown in Fig. 4.26.

Filling Factor NN NE

10% (Element Size:0.08a) 986525 1959368

10% (Element Size:0.05a) 1848712 3683742

20% (Element Size:0.08a) 972203 1930724

20% (Element Size:0.05a) 1908413 3803144

30% (Element Size:0.08a) 985092 1956502

30% (Element Size:0.05a) 1976566 3939450

40% (Element Size:0.08a) 1008494 2003306

40% (Element Size:0.05a) 2069769 4125856

50% (Element Size:0.08a) 1042334 2070986

50% (Element Size:0.05a) 2157910 4302138

4.5.3 Result

4.5.3.1 Lasing frequency

To investigate lasing frequency, we compute the amplification factors of light

waves emitted from dielectric structures of the filling factors 10%, 20%, 30%,

40%, and 50%, with the fixed population inversion densities γ = 0.001, 0.002,

and 0.005.

Figure 4.28 shows the computational results for amplification factor in the

frequency range 0.1 ≤ ωa/2πc ≤ 0.4 with γ = 0.001, γ = 0.002 and 0.005. We

observe divergent peaks of amplification factor in the results for the filling factors

of 20%, 30%, 40%, and 50%.
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Figure 4.28: Laser action in the range of 0.1 ≤ ωa/2πc ≤ 0.4, (finite elements:

0.05a).

Lasing phenomena observed in the results for the filling factors of 40% and

50% are remarkable in the ranges of 0.230 ≤ ωa/2πc ≤ 0.245 and 0.235 ≤
ωa/2πc ≤ 0.250, respectively. Lasing frequency becomes wider as the population

inversion density γ increases. In the frequency range 0.225 ≤ ωa/2πc ≤ 0.255,

laser action does not occur, even in the higher excited state γ = 0.005, in the

dielectric structure with the filling factor of 10%.

Table 4.8: Filling factor and lasing frequency.

Filling Factor Frequency Range

20% 0.225 ≤ ωa/2πc ≤ 0.255

30% 0.225 ≤ ωa/2πc ≤ 0.255

40% 0.230 ≤ ωa/2πc ≤ 0.245

50% 0.235 ≤ ωa/2πc ≤ 0.250
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4.5.3.2 Lasing threshold

(a) 0.225 ≤ ωa/2πc ≤ 0.240. (b) 0.240 ≤ ωa/2πc ≤ 0.255.

Figure 4.29: Laser action in disordered structure of filling factor: 20% (finite

elements : 0.08a ).

(a) 0.225 ≤ ωa/2πc ≤ 0.240. (b) 0.240 ≤ ωa/2πc ≤ 0.255.

Figure 4.30: Laser action in disordered structure of filling factor: 30% (finite

elements : 0.08a ).

(a) Filling factor 40%. (b) Filling factor 50%.

Figure 4.31: Laser action in disordered structure of filling factors : 40% and 50%

(finite elements : 0.08a ).

In this section, we pay attention to the effect of filling factor for lasing thresh-

old. As stated in the previous sections, the population inversion density of opti-

cally active materials is proportional to the parameter γ defined in Eq. (2.41).

Therefore, the parameter γ represents the lasing threshold of each lasing phe-
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nomenon. Based on the results in Fig. 4.28, the lasing frequency ranges of each

dielectric structures are determined. We show them in Table 4.8.

We compute the amplification factor, defined by Eq. (2.60), by changing not

only the frequency but also the population inversion density γ. We found that

laser action did not occur in dielectric structures with filling factor 10% from the

results shown in Fig. 4.28.

Figures 4.29, 4.30, 4.31(a), and 4.31(b) are the results of laser action in dielec-

tric structures whose filling factors are 20%, 30%, 40%, and 50%, respectively.

These results show the relation between frequency, lasing threshold γ, and am-

plification factor whose divergent peaks are interpreted as lasing phenomena.

We investigate the lasing threshold represented by γ and the electric am-

plitude distribution (EAD) of lasing states. The thresholds of laser action,

γ = 8.7500×10−4, in the dielectric structures with filling factors 40% and 50% are

lower than the threshold γ = 1.7500×10−3 in the structure with the filling factor

30%. We plot EADs of lasing states with the lowest four thresholds, occurring

in the dielectric structures, normalized by the incident electric field amplitude

on the circle Cout, that is,
|En|

|En
i |Cout

. The positions of each lasing phenomenon,

(ωa/2πc, γ), are shown in five significant figures.

Figure 4.32 illustrates the EADs of lasing states in a structure with filling

factor 20%. The electric fields are spatially extended and cover the entire system.

Figure 4.33 illustrates the EADs of lasing states occurring in a dielectric structure

with filling factor 30%. The electric fields are found to become intensive in the

interspace among the dielectric rods, namely, the electric field amplitude becomes

large in the optically active material. Figures 4.34 and 4.35 illustrate the EADs

of lasing states occurring in the dielectric structures with filling factors 40% and

50%, respectively. The electric fields also become intensive in the interspace

among dielectric rods in the results for the filling factors of 40% and 50%. From

the results shown in Figs. 4.32, 4.33, 4.34, and 4.35, we find that light waves

are diffused for the filling factors of 20% and 30%, while they are localized for

those of 40% and 50%. Such localizations in dielectric structures with higher

filling factors might be generated by strong multiple scatterings, and cause the

lower-threshold laser action.

We analyze five samples for each filling factor to confirm the tendency in the

lasing thresholds. The square symbols in Fig. 4.36 represent the average of the
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(a) 20%, ωa/2πc = 0.22642,

γ = 2.7500× 10−3.

(b) 20%, ωa/2πc = 0.23874,

γ = 3.1250× 10−3.

(c) 20%, ωa/2πc = 0.25036,

γ = 3.1250× 10−3.

Figure 4.32: EADs of lasing states in a structure with filling factors 20%.

(a) 30%, ωa/2πc = 0.23272,

γ = 1.7500× 10−3.

(b) 30%, ωa/2πc = 0.24296,

γ = 1.8750× 10−3.

(c) 30%, ωa/2πc = 0.24542,

γ = 2.0000× 10−3.

Figure 4.33: EADs of lasing states in a structure with filling factors 30%.

(a) 40%, ωa/2πc = 0.23622,

γ = 8.7500× 10−4.

(b) 40%, ωa/2πc = 0.23786,

γ = 1.1250× 10−3.

(c) 40%, ωa/2πc = 0.23892,

γ = 1.7500× 10−3.

Figure 4.34: EADs of lasing states in a structure with filling factors 40%.

(a) 50%, ωa/2πc = 0.24442,

γ = 8.7500× 10−4.

(b) 50%, ωa/2πc = 0.24724,

γ = 1.1250× 10−3.

(c) 50%, ωa/2πc = 0.24182,

γ = 1.2500× 10−3.

Figure 4.35: EADs of lasing states in a structure with filling factors 50%.
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Figure 4.36: Lasing threshold versus filling factor.

smallest values of γ at which the lasing phenomena occurr for five models with

the different filling factors, and the vertical bars on the square symbols show the

ranges of γ of five models. We observe a reduction in the lasing threshold against

the increase in the filling factor. A higher filling factor is found to be appropriate

for lower-threshold laser generation. We do not found any big difference in the

results of five different rod arrangements for each filling factor with respect to

lasing frequency and EAD.

4.5.4 Conclusions

In this section, we investigated the appropriate filling factor for lower-threshold

laser action by modeling the population inversion density of optically active ma-

terial with a negative imaginary part of relative permittivity. Lasing threshold

becomes lower as filling factor increases. We confirmed this tendency by ana-

lyzing five different models. The strength of scattering has been found to be

more important than the amount of optically active materials to make the lasing

threshold lower.

118



4.6 Transition from photonic-crystal laser to random laser

4.6.1 Introduction

Both the lasing phenomena in random systems [10, 11, 28, 51, 12, 14, 18, 13,

47, 15, 29, 30, 52, 53] and those in photonic crystals [1, 2, 54, 55, 56], have

hopeful properties that the conventional laser devices cannot give. Photonic

crystals are widely used in various optical devices for controlling light waves

because of their noticeable abilities caused by their periodic structures. It is

known that low-threshold laser action can be realiezed in photonic crystals [3, 4, 5]

due to the extremely low group velocities at band edge frequencies. Random

lasers occur from multiple scatterings and interference effects, causing Anderson

localizations[26], in disordered structures, thus their laser modes take various and

complex forms. Lawandy et al. mentioned that the lasing threshold of random

lasers was extremely low [10].

In sections 4.2, 4.3, 4.5, and chapter 3, we discussed lasing threshold of random

lasers. The effects of positions of active medium [48] and filling factor of dielectric

cylinders [57] on the lasing threshold were investigated and appropriate dielectric

structures for lower threshold laser action were proposed.

Photonic crystals including small amounts of disorders have been investigated

actively. There are many numerical and experimental studies on the effects of

disorders on the optical properties of photonic crystals, such as band structures

[58, 59, 60], light localizations [58, 61, 62], transmissions [60, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72], and reflectance[73]. These previous studies treated various

types of disorders, for example, in size [64, 70, 72, 74, 75, 76], positions [18,

12, 13, 47, 65, 68, 71, 74, 77, 78, 79], shapes of dielectric material [58, 80, 81],

refractive indices [66, 70, 75], surface roughness [82, 83, 84, 79, 68, 65, 78], and

fabrication errors[85, 86]. Additionally, we can also find a paper showing the

effects of disorder on lasing phenomena in dielectric structures. Kwan et al. [87]

studied the effect of position and size-disorder on the emission spectra, and the

lasing frequency at the highest intensity emission with a fixed pumping rate.

However, no studies are found on the influence of disorder on lasing threshold.

In this section, we present an investigation on the transition from photonic-

crystal laser to random laser as a new research topic to realize lower thresh-

old laser action. We simulate lasing phenomena numerically to investigate the
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changes of lasing thresholds under the influence of disorders in two-dimensional

dielectric structures. Disorder of dielectric structures is treated by giving posi-

tional disorders of dielectric cylinders. The amount of disorder is parameterized

with the length between the grid points corresponding to the centers of fictitious

rods distributed periodically and the centers of randomly distributed rods. We

reveal the change of lasing threshold against the amount of disorder and find an

appropriate one for lower-threshold laser action.

4.6.2 Analysis model

We show a model of a dielectric system in Fig. 4.37(a). Dielectric rods are

assumed to be infinitely long in vertical direction (z-direction) and light waves

propagate within xy-plane. Figure 4.37(b) shows the concept of a random system

from the top view. Dielectric rods are arranged randomly in the region between

circles Cin and Cg, as shown in Fig. 4.37(b). An oscillating dipole is assumed

to exist at the center of the circle Cin as a light source. Radii of Cin and Cg are

denoted by Rin and Rg, respectively. We compute the fluxes of Poynting vectors of

out-flowing light waves on the circle Cout whose radius is Rout. The unit outward

normal vectors to Cin and Cout are denoted by nin and nout, respectively. We

define three regions: Ωact, Ωrod and Ωout, where Ωact is in the iterspace between

the rods inside the circle Cout, Ωrod is the union of the regions inside the rods,

and Ωout is the region outside the circle Cout. The optically active materials are

assumed to be filled in the region Ωact.

y

����������	�
�

(a) A random structure model.

θ

dipole

dielectric rod

y C

active 
material

n

Ω

Ω

Ω

(b) An illustration of whole random system.

Figure 4.37: Concept of random media.
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4.6.2.1 Model parameters

Table 4.9: Model parameters.

Parameter Denotation Value

Radius of rods a 1 : characteristic length

Filling factor f 0.3 (30%)

Radius of Cin Rin 1.5a

Radius of Cg Rg 39a

Radius of Cout Rout 40a

TMFP l a

(√
2π/

√
3f − 2

)
Periodic length l + 2a

Position of center (x0, y0) (0, 0)

Width of PML 3a

Width of whole model 93a

The number of rod 432

In Table 4.9 is shown the parameters used to create the analysis models.

The radii of the cross sections of the rods are assumed to be the same, and the

radius, a, is treated as the characteristic length. The size of the analysis models

is normalized by a. We create the analysis model of the periodic structure,

corresponding to |Δxr|max = 0, of triangular lattice, by giving the TMFP, denoted

by l, and the periodic length of the periodic structure. The values of the TMFP

and the periodic length are given as l = 1.47735a and 3.47735a, respectively. The

coordinate values of the rod’s center are specified in single precision numbers.

4.6.2.2 Disordered systems

A parameter used to control disorder of the rod arrangement is defined in Fig.

4.38. The circles drawn by broken lines illustrate fictitious rods of a periodic

structure. The centers of these circles are used as the datum points to control

the rods arranged in disorder. Centers of the circles are denoted by xp. A

circle drawn by a solid line illustrates a rod arranged in disorder, whose center is

denoted by xr.
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Δ

Figure 4.38: Parameterization of disorder by Δxr.

The disordered position xr is determined by a sum of xp and a random vector

Δxr, as follows:

xr(n,m) = xp(n,m) + Δxr, (4.9)

where n and m are latiice-point numbers and (n,m) �= (0, 0). xp are defined as

xp(n,m) = nr1 +mr2, (4.10)

where r1 and r2 are lattice vectors defined as

r1 = [ 3.47735a×
√
3/2, 3.47735a× 1/2 ]T, (4.11)

r2 = [ 0.0, 3.47735a ]T, (4.12)

where 3.47735a is the periodic length.

We restrict the length of the random vector Δxr as

0 ≤ |Δxr| ≤ |Δxr|max, (4.13)

where |Δxr|max is the maximum length of the random vector. The amounts

of disorders in dielectric structures are evaluated with |Δxr|max. In the case

|Δxr|max = 0, a dielectric structure becomes periodic. In Fig. 4.38, LH, the

distance between the edge of the hexagonal lattice and the center of the rod
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(a) |Δxr|max = 0. (b) |Δxr|max = a/16. (c) |Δxr|max = a/8.

(d) |Δxr|max = a/4. (e) |Δxr|max = a/2. (f) |Δxr|max = 3a/4.

(g) |Δxr|max = a. (h) |Δxr|max = 5a/4. (i) |Δxr|max = 3a/2.

(j) |Δxr|max = 2a. (k) |Δxr|max = 4a.

Figure 4.39: Analysis models.
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(c) |Δxr|max = a/8.
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(d) |Δxr|max = a/4.
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(f) |Δxr|max = 3a/4.
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(h) |Δxr|max = 5a/4.
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(j) |Δxr|max = 2a.
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(k) |Δxr|max = 4a.

Figure 4.40: Analysis models and radial distribution functions (RDFs).

periodically distributed and included in the lattice, is equal to 1.73867a, a half

of the periodic length. Therefore, when LH < |Δxr|max, the center of the rod
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distributed randomly is located within the adjacent hexagonal lattice. When

|Δxr|max is smaller than LH − a = 0.73867a, the entire region of the rod is

included in each lattices.

We analyze lasing phenomena in dielectric structures for various |Δxr|max.

The analysis models for these values are shown in Fig. 4.40 with radial distribu-

tion functions. Radial distribution functions describe the change of the density

of dielectric cylinders as the function of the distance from the center of dielectric

structures. The functions express how dielectric structures are disordered.

4.6.3 Results

4.6.3.1 Lasing frequency

Figure 4.41 shows the result of laser action in the periodic structure.
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Figure 4.41: Amplification factor versus normalized frequency ωa/2πc for

γ = 0.002.

We compute the amplification factor for the frequency range 0.1 ≤ ωa/2πc ≤
0.3 with fixed population inversion density γ = 0.002 to investigate lasing fre-

quencies of the periodic structure corresponding to |Δxr|max = 0. We also show

the band structure of the periodic structure, computed by the plane wave expan-

sion method, in Fig. 4.42. In the result shown in Fig. 4.41, we cannot achieve

sufficient computational accuracy in red-colored frequency ranges corresponding

to band gaps in Fig. 4.42.

125



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

�
a/

2�
c

� KM M
Wave Vector

k=( 3�/4a, �3�/4a )

Figure 4.42: Dispersion relation of light waves in the periodic structure.

We observe laser action in the frequency range colored blue in Fig. 4.41,

0.222 ≤ ωa/2πc ≤ 0.240. We observe this frequency range, in which laser action

occurs, corresponds to that of fourth-lowest band in Fig. 4.42. We show in Fig.

4.43 the electric field intensity distributions corresponding to the wave vector,

k = (3π/4a,
√
3π/4a), of each band in Fig. 4.42. Figure 4.43(a) shows the unit

cell of the periodic structure. We find in the distribution of the fourth-lowest band

shown in Fig. 4.43(e), the electric field intensity in interspace among dielectric

rods becomes high, i.e., the electric field becomes intensive within an optically

active material. The laser action in Fig. 4.41 is thought to be caused by such

light localization in an optically active material.

4.6.3.2 Laser action

We compute the amplification factors A defined by Eq. (2.60) for the ranges of

0.222 ≤ ωa/2πc ≤ 0.240 and 0.000 ≤ γ ≤ 0.021, corresponding to the fourth

lowest band. Figure 4.45 shows the laser action in the dielectric structures for

each value of the disorder index |Δxr|max. We calculate the amplification factors

for 127,041 grid points for ωa/2πc and γ, by dividing ωa/2πc and γ directions

uniformly into 900 an 140 intervals, respectively, and seek the steep peaks of the

surface of amplification factor A.
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(a) The unit cell of the periodic structure. (b) Electric intensity distribution of lowest

frequency band.

(c) Electric intensity distribution of 2nd low-

est frequency band.

(d) Electric intensity distribution of 3rd low-

est frequency band.

(e) Electric intensity distribution of 4th low-

est frequency band.

(f) Electric intensity distribution of 5th low-

est frequency band.

Figure 4.43: Electric intensity distributions in the unit cell of the periodic struc-

ture.

Figure 4.44(a) shows the distribution of the amplification factor correspond-

ing to the combinations of ωa/2πc and γ. From this result, we find specific

combinations of the values of ωa/2πc and γ at which lasing phenomena occur in

the periodic structure. Excitation within the fourth lowest band in the disper-

sion relation occurs as the surface of the amplification factor A and the lasing

phenomena occur at their peaks. Figure 4.44(b) shows a laser action occurring at

band-edge frequency. This laser action occurs at the smallest value of γ among

the results of the periodic structure. Therefore, this laser action is considered to
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(a) |Δxr|max/a = 0(periodic structure). (b) A peak at the bottom edge frequency
ωa/2πc = 0.22196531 of the 4th band for
|Δxr|max/a = 0 (periodic structure).

(c) |Δxr|max/a = 1/16. (d) |Δxr|max/a = 1/8.

(e) |Δxr|max/a = 1/4. (f) |Δxr|max/a = 1/2.

Figure 4.44: Amplification factor A versus normalized frequency ωa/2πc and γ

for each |Δxr|max.

be the lowest threshold one. The value of the amplification factor of this laser

action is greater than 104.

In Figs. 4.44(c) to 4.45(f), we observe that surface of amplification factor

reflects the effect of disorder on laser action. The lasing phenomena caused

by random light scatterings noticeably emerge as the disorder of the structure

increases. Such lasing phenomena are found more in higher frequency range

0.23 ≤ ωa/2πc ≤ 0.24, in the results for small amounts of disorder, |Δxr|max =

a/16, a/8, and a/4, shown in Figs. 4.44(c), 4.44(d), and 4.44(e), respectively.

Lasing phenomena occurring in the periodic structure are also found even in the

results of small amounts of disorder. However, in the case of higher disorder, i.e.

a/2 ≤ |Δxr|max, lasing phenomena caused by random light scatterings become
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noticeable also in the lower frequency range, and lasing phenomena found in the

periodic structure disappear.

(a) |Δxr|max/a = 3/4. (b) |Δxr|max/a = 1.

(c) |Δxr|max/a = 5/4. (d) |Δxr|max/a = 3/2.

(e) |Δxr|max/a = 2. (f) |Δxr|max/a = 4.

Figure 4.45: Amplification factor A versus normalized frequency ωa/2πc and γ

for each |Δxr|max.

4.6.3.3 Lasing threshold

Parameter γ, interpreted as the imaginary part of relative permittivity, is propor-

tional to population inversion density of optically active material. Hence, steep

peaks of the amplification factors in the region with small γ are interpreted as oc-

currences of low-threshold laser generation. To find how lasing threshold changes

in accordance with the increase of the disorder index |Δxr|max, we investigate the

smallest value of γ at which laser action occurs. To seek the more precise values

of ωa/2πc and γ at which the lowest-threshold laser action occurs, we scan the
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neighborhood of the amplification peak using finer numerical steps.
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Figure 4.46: Relation between disorder index |Δxr|max and the average value of

lowest lasing thresholds γ with error bar.

Average values of the lowest thresholds for different disorder index values

are plotted in Fig. 4.46 with error bars showing the ranges of γ. We analyze 10

different types of rod arrangement for each disorder index other than |Δxr|max = 0

to check the lasing threshold tendency. We find two types of lowest-threshold laser

modes: those with tight confinement and spacial extension of light wave.

The threshold of the tightly confined mode, plotted by red squares and line in

Fig. 4.46, rises as the disorder index increases. Such laser modes finally disappear

when a/2 ≤ |Δxr|max.

We show next the electric amplitude distributions (EADs) of tightly confined

laser mode in Fig. 4.47. The angular distributions of group velocities of light

waves in a periodic array are computed with tight-binding approximation and

are shown in Fig. 4.48. From the comparison between the results shown in

Figs. 4.47 and 4.48, we confirm that such tightly confined modes occur from the

periodic array structure of dielectric rods. We observe that light wave confinement

becomes weak as the disorder index increases, particularly in Fig. 4.47(d). Such

leakage of light is considered to lead to the rise in the lasing threshold of the laser

action with the tight confinement of light wave.
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(a) |Δxr|max/a = 0.00,
`

ωa
2πc

, γ
´

= (0.22196531, 0.0004965).

(b) |Δxr|max/a = 0.0625,
`

ωa
2πc

, γ
´

= (0.2221812, 0.0007350).

(c) |Δxr|max/a = 0.125,
`

ωa
2πc

, γ
´

= (0.2223220, 0.001140).

(d) |Δxr|max/a = 0.250,
`

ωa
2πc

, γ
´

= (0.2222716, 0.002490).

Figure 4.47: Electric amplitude distributions of lasing states with tight confine-

ment (sample 1).

(a) ωa/2πc = 0.3650. (b) ωa/2πc = 0.3675.

Figure 4.48: Polar plots of the group velocity of tight-binding model.

We also show the lowest threshold lasing phenomena with spacial extension of

light wave in Fig. 4.46. Blue triangles and line in the Figures show the dependence

of the threshold of the lasing phenomena with spatial extension on the disorder

index. As this index increases, the threshold rises in |Δxr|max/a < 0.250, then

decreases in 0.250 < |Δxr|max/a < 1.00. In Fig. 4.46, the average threshold of
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(a) |Δxr|max/a = 0,
`

ωa
2πc

, γ
´

= (0.2310212, 0.001380).

(b) |Δxr|max/a = 1/16,
`

ωa
2πc

, γ
´

= (0.2309824, 0.001380).

(c) |Δxr|max/a = 1/8,
`

ωa
2πc

, γ
´

= (0.2308372, 0.001470).

(d) |Δxr|max/a = 1/4,
`

ωa
2πc

, γ
´

= (0.2300848, 0.001995).

(e) |Δxr|max/a = 1/2,
`

ωa
2πc

, γ
´

= (0.2297800, 0.001785).

(f) |Δxr|max/a = 3/4,
`

ωa
2πc

, γ
´

= (0.2280060, 0.001515).

(g) |Δxr|max/a = 1,
`

ωa
2πc

, γ
´

= (0.2238840, 0.001080).

(h) |Δxr|max/a = 5/4,
`

ωa
2πc

, γ
´

= (0.2276240, 0.001575).

(i) |Δxr|max/a = 3/2,
`

ωa
2πc

, γ
´

= (0.2226504, 0.001740).

(j) |Δxr|max/a = 2,
`

ωa
2πc

, γ
´

= (0.2299456, 0.001515).

(k) |Δxr|max/a = 4,
`

ωa
2πc

, γ
´

= (0.2321304, 0.002430).

Figure 4.49: Electric amplitude distributions for laser modes with spatial exten-

sion (sample 1).
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10 different rods arrangements rises again in 1.00 < |Δxr|max/a. The average

threshold becomes minimum at |Δxr|max/a = 1.00.

We show in Fig. 4.49 the EADs of the spatially extended modes. We observe

in Figs. 4.49(a), 4.49(b), 4.49(c), and 4.49(d) the collapse of the localization

forms from that of the periodic structure as the disorder index increases. Lasing

threshold of the laser action with spatial extension is found to decrease in 0.250 <

|Δxr|max/a < 1.00. In view of the EADs shown in Figs. 4.49(e) and 4.49(g), such

decrease of lasing threshold is caused by increase in multiple scatterings.

We observe the average of lasing threshold becomes locally minimum at

|Δxr|max/a = 1.00, and another increase of the lasing threshold for 1.00 <

|Δxr|max/a in Fig. 4.46. When shifting the positions of the rods using the

random numbers, there is a possibility that the shifted rod may overlaps for

0.73867 ≤ |Δxr|max/a. In such a case, the random number value is discarded

and a regenerated random number is used to determine the shifted position of

the rod. Therefore, the average of the random numbers employed to generate

the random arrangement of the rods may differ from 0.5 of the admissible shift

range.
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Figure 4.50: Average values of |Δxr|
|Δxr|max

for each |Δxr|max.

Figure 4.50 shows the averages of |Δxr|
|Δxr|max

of all samples analyzed in the present

study. The average becomes 0.5 theoretically if all the generated random num-
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bers are used to rearrange the rods because the distributions of |Δxr| are given
by random numbers of a uniform distribution between 0 and 1. In the range

0.73867 ≤ |Δxr|max/a ≤ 2.00, the effect of discard of some random numbers are

observed clearly. The average values tend to decrease as |Δxr|max increases.

The serious influence occurs when the average of |Δxr| corresponds to 0.73867a.
Considering the average of the random number m = 0.5, its dispersion ρ = 1/12,

and the standard deviation σ =
√
1/12, we find that the influence of discarding

some of the random numbers occurs for

(m− σ)|Δxr|max < 0.73867a < (m+ σ)|Δxr|max, (4.14)

resulting in

0.93660 < |Δxr|max/a < 3.49544. (4.15)

This range agrees well with the results shown in Fig. 4.50. Hence, the local

minimum of the lasing threshold observed in Fig. 4.46 may be the result of the

employment of non-uniform random numbers to avoid the overlapping to the rods

when shifting them from the hexagonal grids.

4.6.4 Conclusion

Investigations of lasing phenomena and lasing thresholds of disordered structures

are presented based on FE analyses by changing the disorder index. The threshold

of the laser action in the periodic structure is extremely low because of the zero-

group velocity at the band edge frequency. However, the lasing phenomena are

sensitive to the degrees of disorder, and the threshold of the photonic crystal laser

rises by the effect of a small amount of disorder. As the disorder increases, lasing

phenomena shift from photonic crystal lasers to random ones, and the threshold

of laser action once rises, then it decreases. However, a further increase in the

disorder causes the rise of the lasing threshold again.
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4.7 Conclusions

In this chapter, we present the simulated results of lasing phenomena in random

systems with optically active materials in interspaces among dielectric cylinders.

We list knowledges revealed in our studies shown in this chapter on low-threshold

random lasing.

• Light waves in disordered structures tend to be localized in interspaces

among dielectric cylinders. Hence, random systems with optically active

medium in the interspaces are appropriate for low-threshold laser action.

• In lower lasing frequency range, 0.121 ≤ ωa/2πc ≤ 0.136, averaged las-

ing threshold of five samples tend to become larger than other two lasing

frequency ranges.

• In lasing frequency range 0.225 ≤ ωa/2πc ≤ 0.255, averaged lasing thresh-

old of random lasing in five samples becomes minimum.

• The peaks of rising of electric intensity in disordered structures well-correspond

to the peaks of amplification factor.

• It is generally referred that random lasers occur even the cavity-quality fac-

tor of dielectric structures is low. However, light confinement by disordered

structures is quite important for low threshold laser action. In section 4.4,

we reveal that cavity modes tend to oscillate laser action in lower excited

states.

• The lasing threshold of random lasers becomes lower as filling factor in-

creases. In section 4.5, the results of electric amplitude distributions show

that light confinement becomes strong as filling factor increases. The above

two results indicate that strong light confinement is important for low-

threshold random lasing.

• Lasing threshold becomes lowest in the case of periodic structures, namely,

photonic crystal lasers. In the case of random lasers, averaged lasing thresh-

old of ten samples becomes minimum at intermediate structures between

periodic and sufficiently disordered structures.
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CHAPTER 5

Laser action in disordered structures consisting

of metallic cylinders

5.1 Introduction

Random lasers [10, 88, 12, 28] are lasing phenomena in disordered structures

usually composed of dielectric materials. Such lasing phenomena occur from

random multiple scatterings and interference effect of scattered light in disordered

structures. Hence, the quality factor of disordered structures are not important

for random lasing but multiple scatterings are most important. It is well known

that metals highly reflect light waves whose frequencies are lower than plasma

frequency on their surfaces because of existence of “surface plasmon”.

Surface plasmon is coherent oscillations of electrons and can be excited by

light waves near the surface of metals. The coherent oscillations of electrons

cause polarizations and the relative permittivity of metals are written as Drude

model [35]. Because of the existence of electrons, metals have high reflectance

explained in paragraph 2.2.6.2. The excited states of surface plasmon are called

“surface plasmon polariton”.

In our previous studies, we investigate threshold of random lasers by means

of finite element analysis. We now consider that metal is an ideal material for

lower threshold random lasing because of their high reflectance on their surfaces.

We find several previous studies about metallic random lasers. Kang observed

random lasing enhanced by resonant surface plasmon in gold nanoshell/water

solution [89]. He showed the relation between pump power and signal intensity.

Lawandy reported the increase of surface enhanced scattering [90]. However, no

discussions are found on the threshold of metallic random lasers.

In this chapter, we investigate lasing phenomena in disordered structures con-

sisting of metallic cylinders. The population inversion density of optically active

medium is modeled by negative imaginary part of relative permittivity. We newly
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investigate the properties of metallic random laser by using finite element method

accelerated by multi-frontal method. The thresholds of metallic random lasers

are compared with those of dielectric ones computed in previous section 4.6. The

thresholds of metallic random lasers become much lower than those of dielectric

ones.

5.2 Analysis model

We show one of the samples analyzed in this study in Fig. 5.1(a). The geometry

is the same one analyzed in our previous study in section 4.6 and is created by

disordered index |Δxr|max /a = 1 that means the maximum distance between

the center of each cylinder and each fictitious grid point of triangular lattice

is equal to a that is radii of cylinders. Such disordered structures created by

|Δxr|max /a = 1 tend to lase in lowest pumping in the case of dielectric disordered

structures. Finite element meshing is shown in Fig. 5.1(b). The distance between

nodes are approximately a/33 deserving λ/60 in the worst case.

(a) An analysis model (sample 1). (b) Finite element meshing in a
cylinder.

Figure 5.1: An analysis model and finite element meshing.

Optically active material are modeled by negative imaginary part of relative

permittivity −γ. Metallic cylinders are expressed by Drude model. Relative

permittivities in each region are given as follows:

ε(x) =

⎧⎪⎪⎨
⎪⎪⎩

1.0 + i(−γ) x ∈ Ωact

1− ω2
p

ω2 x ∈ Ωcylinder

1.0 x ∈ Ωout

, (5.1)
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where Ωact is the interspace among metallic cylinders, Ωcylinder is the region in

metallic cylinders, and Ωout is open region which is outside of random systems.

We assume silver as a material of cylinders and a plasma frequency used in this

analysis is ωp = 1.37 × 1016 [s−1]. The radii of cylinders are assumed to be 100

[nm]. Then, normalized plasma frequency becomes 0.72731.

We analyze 10 samples to confirm the average threshold of random lasers.

The numbers of nodes and elements in each sample are listed in Table 5.1.

Table 5.1: The number of nodes (NN) and elements (NE)of each models.

Sample No. NN NE

1 4454591 8895500

2 4443507 8873332

3 4449018 8884354

4 4456037 8898392

5 4435885 8858088

6 4440466 8867250

7 4431171 8848660

8 4445639 8877596

9 4437645 8861608

10 4437439 8861196
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5.3 Result

Figure 5.2: Metallic disordered structure (sample 1).

Figure 5.3: Dielectric disordered structure (sample 1).

We compute amplification factor defined in Eq. (2.60) by changing frequency

and population inversion density for the ranges 0.250 ≤ ωa/2πc ≤ 0.275 and

0.00 ≤ γ ≤ 0.005. The results of computed amplification factor of light waves

emitted from a disordered structure consisting of metallic cylinders are shown in
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Fig. 5.2. Figure 5.3 shows computed amplification factors in the case of dielectric

cylinders.

0.0000

0.0005

0.0010

0.0015

0.0020

γ
Dielectric Random Lasing

Metallic Random Lasing

Figure 5.4: Lasing thresholds of ran-

dom lasing in metallic and dielectric

disordered structures.

Metal Dielectric

Average 0.000210 0.001263

Minimum 0.000150 0.000750

Maximum 0.000300 0.001800

Table 5.2: Average, minimum and max-

imum values of γ.

We can clearly observe that lasing phenomena in a metallic disordered struc-

ture start to occur at smaller values of γ than those in a dielectric one. The

threshold of random lasing in a metallic disordered structure becomes extremely

low. The average, minimum and maximum values of γ are shown in Fig. 5.4 and

Table 5.2.

Figure 5.5 shows electric amplitude distributions of lasing states occurring at

lowest four γ. It seems that light waves strongly confined in interspaces among

metallic cylinders but do not penetrate into cylinders.

Figures 5.6(a) and 5.6(b) show the dependence of lasing threshold on lasing

frequency and relative permittivity. The values of γ, normalized frequency, rela-

tive permittivity of metallic cylinders at which laser action occurs in Fig 5.2 are

plotted. It is difficult to characterize the dependence of lasing threshold on lasing

frequency and relative permittivity.

141



(a) (ωa/2πc, γ) =
(0.2659292, 0.000150).

(b) (ωa/2πc, γ) =
(0.2713668, 0.000160).

(c) (ωa/2πc, γ) =
(0.2707160, 0.000175).

(d) (ωa/2πc, γ) =
(0.2548204, 0.000205).

Figure 5.5: Electric amplitude distributions of lasing states in a metallic disor-

dered structure (sample 1).

5.4 Conclusion

Random lasing phenomea in disordered structures consisting of metallic cylinders

are precisely simulated by using finite element method. The lasing threshold of

metallic random lasers are newly revealed by the comparison with the threshold of

random lasers in dielectric disordered structures. The lasing threshold of metallic

random lasers becomes much smaller than that of dielectric random lasers.
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CHAPTER 6

Laser action in honeycomb photonic crystals

with random dangling bonds

6.1 Introduction

Laser devices in which photonic crystals [1, 2] are used as cavities, namely, pho-

tonic crystal lasers can lase even in the state of low excitation pumping of active

materials because of extremely low group velocity at band edge frequency. On the

other hand, lasing phenomena in disordered structures, called “random lasers”

[12, 28], can lase in broad band frequencies and emit coherent light waves for

broad angle. Such unique lasing phenomena in disordered structures can be

realized by using feedback mechanisms as Anderson localization and coherent

backscatterings caused by random multiple scattering and interference effect of

light waves. Most of random lasing investigated in previous studies occur in

disordered structures composed of dielectric rods in the case of two-dimensions,

or dielectric particles in the case of three-dimensions. Light-trapping disordered

structures contain various types of disorder as positional disorder, size disorder,

disorder of relative permittivity, shape disorder and so on. Florescu et al. in-

vestigated the effect of random rink removal in honeycomb structures on band

structures [19]. Such honeycomb structures including random link removals is a

new type of disordered structures and are different from structures investigated

in previous studies. Random lasing phenomena might occur in such honeycomb

structures, however, no studies about the random lasing are found. Hence, we

analyse random lasing phenomena in honeycomb structures including random

link removals in the case of TM mode by using finite element method. We also

analyze lasing phenomena in ordinary honeycomb structures and those with no

dielectric rinks.
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6.2 Analysis models

An ordinary honeycomb structure analyzed in this study is shown in Fig. 6.1. The

honeycomb structure posses 10 periods (10a) from the center of entire structure

to outside of the structures. The number of hexagonal hollows and dielectric

link possibly removed are 331 and 930. The shape of removed dielectric link is

rectangle shown in Fig. 6.1 as a colored rectangle. We determine the distance

between the center of hexagonal hollows and dielectric rinks as LH = 0.36228a,

that is, the filling factor of dielectric materials in a colored triangle in Fig. 6.1

equals to 30%. The angle between x axis and a vector oriented from the center of

the entire stiructure to outside of the structure is defined as θ. Parameters needed

in order to create analysis models are listed in Table 4.2. We define hexagonal

hollow regions, regions in dielectric links, and outside of honeycomb structures

as Ωact, Ωd, and Ωout, respectively. PML boundary condition [38] is implemented

for the analyses of light scattering in open region. We use optimized absorbing

function for Helmholtz equation [41] to minimize spurious reflections.

Cout

Lall

a

LH

Γ

M

K

z

x

y

Ωact

Ωd

nout
Ωout

θ

LPML

Rout

Figure 6.1: A honeycomb structure.

An analysis model including random link removals is shown in Fig. 6.2(a).

We analyze 5 analysis modes with different arrangements of removed links to

confirm common properties and phenomena. The number of removed links is 100

tentatively.
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Table 6.1: Parameter of geometry

Parameter Meaning Value

a Periodic length (characteristic length) 1

f Filling factor of dielectric material 0.3

Rout Radius of the circlr Cout 11a

LH Distance between the center of hexagonal hollow a
√

3
16
(1− f)

and a dielectric link = 0.36228a

Lall Width of entire analytical region 26a

LPML Width of PML a

Removed links are determined by two integers (IH and IL) satisfying 1 ≤
IH ≤ 331 and 1 ≤ IL ≤ 6. First, the integer IH = 1 is given to a hexagonal

hollow on far left in top stair in Fig. 6.1. Next, we give integers from far left

hexagonal hollow to far right one with increasing the integers. Then, the integer

11 is given to far right hexagonal hollow. After that, the integer 12 is given to far

left hexagonal hollow in second top stair and integers is given to each hexagonal

hollow in second top stair by the same rules. We repeat the above procedure for

each stair, and finally, the integer IH = 331 is given to a hexagonal hollow on far

right in bottom stair.

The other integer IL is given to links surrounding each hexagonal hollow in a

clockwise fashion, starting with the upper right hand link.

We can determine randomly removed dielectric links by two-integers (IH, IL)

as shown above. However, we have to determine the integers again if the de-

termined links have been already removed. Additionally, we do not remove out-

ermost links because all hexagonal hollows are assumed to be filled with active

materials. In the above cases, we determine IH and IL again and do not count

the above outermost links as removed links. If there are independent dielec-

tric structures which do not link an entire honeycomb structure, we remove the

independent ones. The integers IH and IL are determined as follows:

[IH, IL] = [ Int (331 ∗RH + 1) , Int (6 ∗RL + 1) ] (6.1)

where RH and RL are real numbers generated by the intrinsic function“drand”in
Fortran language with standard uniform distribution on the open interval (0, 1).

We have to generate those real numbers again if IH = 332 or IL = 7.
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(a) A honeycomb structure with 100 re-

moved dielectric links (sample 1).

(b) A honeycomb structure with no dielec-

tric link.

Figure 6.2: A honeycomb structure with removed dielectric links

Figure 6.3: Finite elements.

We need to analyze lasing phenomena in more than one structure because

we need to investigate common phenomena in disordered structures. Different

sequences of numbers, RH and RL, can be generated by changing seed given to

rand function, that is, different arrangements of removed links. In this analyses,

we analyze five samples having different arrangements of removed links with each

other.

Finite element meshing of an analysis model is shown in Fig. 6.3. The distance

between two nodes are approximately a/40 where a is the periodic length of

ordinary honeycomb model. The numbers of nodes and elements in each analysis

model shown in Table 6.2.
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Table 6.2: The numbers of nodes and elements.

Model Figure No. Node Element

ordinary honeycomb structure 6.1 1042498 2073954

honeycomb structures with random link removals 6.2(a) 1050868 2090694

honeycomb structures with no dielectric link 6.2(b) 884917 1758792

6.3 Results

6.3.1 Lasing frequencies
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Figure 6.4: Spectrum of the amplification factor in the range 0.1 ≤ ωa/2πc ≤ 1.0

for γ = 0.002, 0.005, and 0.010. The number of computation points are 10001 for

ωa/2πc axis.

We investigate lasing frequencies in the ordinary honeycomb structure, hon-

eycomb structures with random link removals, and honeycomb structures with

no dielectric link. The amplification factors are computed for the frequency range
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0.1 ≤ ωa/2πc ≤ 1.0, with fixed population inversion density γ = 0.002, 0.005 and

0.010. Those results are shown in Fig. 6.4.

In the result of the ordinary honeycomb structure, we observe that the ampli-

fication factor becomes relatively large in the range 0.790 ≤ ωa/2πc ≤ 0.820 with

γ = 0.002. The band structure of the ordinary honeycomb structure computed by

plane wave expansion method are shown in Fig. 6.5 with electric intensity distri-

butions of 3rd, 4th and 5th lowest frequency bands at wave vector k = (π/3a, 0).

Figure 6.5: The band structure of the honeycomb structure and the distributions

of electric field intensity, in a unit cell, of 3rd, 4th, and 5th lowest bands on wave

vector k = (π/3a, 0).

Based on the comparison between lasing frequency and the band structure of

the ordinary honeycomb structure, shown in Fig. 6.4 and Fig. 6.5, 5th lowest

frequency band becomes band edges near the frequency ωa/2πc = 0.80 for the

directions M− Γ and Γ−K. In this simulation, honeycomb structures whose

hexagonal hollows are filled with active materials are assumed and the intensity

of electric field in the hexagonal hollows becomes high in 5th lowest frequency

band. Hence the 5th lowest frequency band are considered to be excited near the

frequency ωa/2πc = 0.80 and oscillate laser action.
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(a) Real part. (b) Imaginary part. (c) Structure.

Figure 6.6: Anti-symmetrical electric field distributions of 4th band on wave

vector k = (π/3a, 0) with respect to the Γ-K direction. The number of expanded

plane waves is 10201.

In the state of no light amplification γ = 0, the energy of light transfer-

ring is conserved as explained in section 2.3.3. However, in the frequency range

0.648 ≤ ωa/2πc ≤ 0.680, the energy is not conserved. Such collapse of our sim-

ulation is caused by an uncoupled mode of 4th lowest frequency band. Such an

uncoupled mode has anti-symmetric distribution shown in Fig. 6.6 with respect

to the propagating direction Γ−K and cannot be excited in periodic structures

having symmetric distribution of dielectric materials. For propagation for Γ− L

where L is a point between K and M, the distribution of electric fields becomes

un-symmetric with respect to the propagating direction and light propagations

for Γ− L cannot not excited in periodic structures as well. The reason why light

propagations for Γ−M direction are not observed in the computations are con-

sidered that nodes are not well-ordered for Γ − M and cannot express Γ − M

direction strictly in finite element meshing.

In the result of a honeycomb structure with random link removals, noticeable

amplifications of light are not observed in the state of γ = 0.002. However, in

the state of γ = 0.005, light waves are strogny amplified in the ranges 0.625 ≤
ωa/2πc ≤ 0.695 and 0.800 ≤ ωa/2πc ≤ 0.835.

Amplification factors in the result of honeycomb structure with no dielectric

links have several peaks but they are relatively small.

Based on the above results of the amplification factor for large frequency

range, we investigate lasing phenomena in the ordinary honeycomb structure for

the range 0.790 ≤ ωa/2πc ≤ 0.820 and those in honeycomb structures with ran-

dom link removals for the range 0.625 ≤ ωa/2πc ≤ 0.695 and 0.800 ≤ ωa/2πc ≤
0.835 in detail.
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6.3.2 The analysis for laser action in the ordinary honeycomb struc-

ture

Firstly, we analyze lasing phenomena in the ordinary honeycomb structure. Op-

tically active materials are assumed to be excited homogeneously and the param-

eter γ is constant in the region Ωact.

Figure 6.7: Amplification factor computed in the honeycomb model for the range

0.790 ≤ ωa/2πc ≤ 0.820 and 0.00 ≤ γ ≤ 0.03. The numbers of computation

points are 501 and 201 for ωa/2πc and γ axes, respectively.

We plot the result of computed amplification factors as a functions of ωa/2πc

and γ in Fig. 6.7. The number of peaks of amplification factor is 43 and the

peaks are interpreted as oscillation of lasing phenomena. The minimum value of

γ at which laser action occurs is γ = 0.00150.

In Figs. 6.8 and 6.9, we show the distributions of the electric field amplitude

and radiation directions of lasing states occurring in the state of lowest two

excitation pumping, that is, smallest two γ at which laser action occurs. In Fig.

6.8, the amplitude of the electric field on each node normalized by the amplitude

of incident field on the circle Cout, |E| / |Ei|Cout
, are plotted. In Fig. 6.9, radiation

angle θ is plotted in angle and following value Aθ is plotted in radius as

Aθ =

∫
Cθ

out
〈S〉 · nθ

out dl
/

Lθ
out∫

Cout
〈S〉 · nout dl

/
2πRout

, (6.2)

where Cθ
out is a edge located on the circle Cout for θ direction from the center

of the entire structure, Lθ
out is the length of the edge, nθ

out is the outward unit
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(a) (ωa/2πc, γ) = (0.79612, 0.00150). (b) (ωa/2πc, γ) = (0.80554, 0.00165).

Figure 6.8: Electric amplitude distributions of lasing states of lowest two thresh-

olds in honeycomb structures in the range 0.790 ≤ ωa/2πc ≤ 0.820.
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(a) (ωa/2πc, γ) = (0.79612, 0.00150).
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(b) (ωa/2πc, γ) = (0.80554, 0.00165).

Figure 6.9: Polar plots of radiation directions of lasing states of lowest two thresh-

olds in honeycomb structures in the range 0.790 ≤ ωa/2πc ≤ 0.820.

normal vector on the edge, and 2πRout is the length of the circumference of Cout.

In short, Aθ is the ratio between radiation power of light waves through the edge

Cθ
out and that through the entire circle Cout.

We can observe that the electric field becomes intensive in hexagonal hollows

in both electric amplitude distributions. Above distributions well correspond

to the distribution of electric intensity in the 5th lowest frequency band. In

the results of radiation directions, we confirm intensive radiations for specific

directions.
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6.3.3 The analysis for laser action in the honeycomb structure with

random link removals

Next, we analyze laser action in the honeycomb structure with random link re-

movals. The way to understand results is same as those in previous subsection.

Figure 6.10: Amplification factor, for the range 0.625 ≤ ωa/2πc ≤ 0.695, com-

puted in the honeycomb structure with random dangling bonds. The numbers of

computation points are 1001 and 201 for ωa/2πc and γ axes, respectively.

Figure 6.11: Amplification factor, for the range 0.800 ≤ ωa/2πc ≤ 0.835, com-

puted in the honeycomb structure with random dangling bonds. The numbers of

computation points are 501 and 201 for ωa/2πc and γ axes, respectively.

Figures 6.10 and 6.11 show the results of computed amplification factors of

light waves emitting from the honeycomb structure with random link removals.
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We observe random lasing even if the number of removed links is only 100 in 930.

The value of the parameter γ.

The minimum value of γ at which lasing peak occurs indicate population

inversion density of lasing state, namely, lasing threshold. The values are γ =

0.00645 in the frequency range 0.625 ≤ ωa/2πc ≤ 0.695 and γ = 0.00510 in

the frequency range 0.800 ≤ ωa/2πc ≤ 0.835. We analyze five models with

different arrangement of removed links. Average, minimum, and maximum of

lasing thresholds in five models are shown in Table 6.3. These values shown

in Table 6.3 are relatively higher than those of lasing phenomena in disordered

structures consisting of dielectric cylinders ( 0.001 ≤ γ ≤ 0.003 )[49].

Table 6.3: Average, minimum, and maximum values of minimum γ in five models.

Lasing frequency range Average Minimum Maximum

0.625 ≤ ωa/2πc ≤ 0.695 0.00585 0.00450 0.00735

0.800 ≤ ωa/2πc ≤ 0.835 0.00534 0.00510 0.00555

We show the electric amplitude distributions and the radiation directions of

lasing states of lowest two γ in the range of 0.625 ≤ ωa/2πc ≤ 0.695 in Figs.

6.12 and 6.13, respectively. In this frequency range, electric amplitude becomes

high in hexagonal hollows. This distribution of the electric amplitude is similar

to the distribution of electric intensity of 5th lowest frequency band. We also

plot the the electric amplitude distributions and the radiation directions of lasing

states of lowest two γ in the range 0.800 ≤ ωa/2πc ≤ 0.835 in Figs. 6.14 and

6.15. The distributions of electric amplitude is unique. Light waves localized in

dielectric links and such distribution correspond to the distribution of electric

intensity of 4th lowest frequency ranges shown in Fig. 6.5. Those common

regimes of light localizations indicate that the effect of optical properties in the

ordinary honeycomb structure appear in the results of structures with random

link removals. Such regimes are commonly observed in other four structures with

different arrangements of removed dielectric links.
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(a) (ωa/2πc, γ) = (0.63501, 0.00645). (b) (ωa/2πc, γ) = (0.64306, 0.00645).

Figure 6.12: Electric amplitude distributions of lasing states of lowest two thresh-

olds in the honeycomb structure with random dangling bonds in the range

0.625 ≤ ωa/2πc ≤ 0.695.
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(a) (ωa/2πc, γ) = (0.63501, 0.00645).
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(b) (ωa/2πc, γ) = (0.64306, 0.00645).

Figure 6.13: Polar plots of radiation directions of lasing states of lowest two

thresholds in the honeycomb structure with random dangling bonds in the range

0.625 ≤ ωa/2πc ≤ 0.695.

6.4 Considerations for lasing threshold and three-dimensional

analysis

The lasing thresholds of random lasing occurring in honeycomb structure with

random link removals tend to becomes higher than those in disordered structures

consisting of dielectric cylinders, mentioned above. One of the reason why we

consider is that the disorder occurring from removals of dielectric links is not

sufficient. In other word, the number of removed links is not sufficient. In previous
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(a) (ωa/2πc, γ) = (0.81708, 0.00510). (b) (ωa/2πc, γ) = (0.80707, 0.00660).

Figure 6.14: Electric amplitude distributions of lasing states of lowest two thresh-

olds in the honeycomb structure with random dangling bonds in the range

0.800 ≤ ωa/2πc ≤ 0.835.
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(a) (ωa/2πc, γ) = (0.81708, 0.00510).
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(b) (ωa/2πc, γ) = (0.80707, 0.00660).

Figure 6.15: Polar plots of radiation directions of lasing states of lowest two

thresholds in the honeycomb structure with random dangling bonds in the range

0.800 ≤ ωa/2πc ≤ 0.835.

section 4.6, we revealed that lasing threshold once rise as the amount of disorder

increases. The results of the simulations of lasing phenomena in honeycomb

structures with random link removals show that the effect of optical properties in

the ordinary honeycomb structure remain in the results of disordered structures.

Another reason is that continuous random scatterings in active materials are

interrupted by dielectric links because hexagonal hollows in which active materials

are filled do not connect with each other. in contrast, in the case of random

systems, consisting of dielectric cylinders, whose interspace among cylinders are
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filled with active materials, continuous scatterings in active materials are easy to

occurs.

However, the higher lasing threshold cased by the issues mentioned above

possibly bring to lower one by increasing the number of removed links.

In the present study, we simulate lasing phenomena in two-dimensional sys-

tems assumed infinitely long for z direction. However, in practical devices, the

systems are finite for z direction. When we include the finiteness for z direction

in our simulation, namely, three-dimensional simulations, lasing threshold might

rise because of radiation modes for z direction. The three-dimensional analyses

are our future works.

6.5 Conclusions

In the present study, we analyze lasing phenomena in honeycomb structures with

random link removals by using finite element method. The amplification of light

waves emitted from the honeycomb structures is computed. Based on the results

of distributions of the electric amplitude and radiation directions, random lasing

occurs in the honeycomb structures. However lasing threshold of random lasing in

the honeycomb structures is higher than that in disordered structures consisting

of cylinders.
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CHAPTER 7

Conclusions

In the present study, appropriate disordered structures for lower threshold laser

action are presented by means of finite element method. Lasing properties of

random lasers in two-dimensional random systems consisting of homogeneous

cylinders are investigated. The population inversion density of optically active

medium is modeled by giving a negative value to the imaginary part of the relative

permittivity. By using this modeling, the dependence of the properties of random

lasers on the excitation of active medium and the threshold of random lasers are

investigated. In order to achieve lower threshold random lasing, the following

results are obtained.

1. Light waves in two-dimensional disordered structures tend to be localized

in interspaces among cylinders. For this reason, it is desirable that optically

active medium fill the interspaces among cylinders in order to realize lower

threshold random lasing.

2. The distribution of localized, extended, and transition modes are strongly

influenced by lasing frequency. In the lower frequency 0.121 ≤ ωa/2πc ≤
0.136, the average of lasing threshold are higher than other two higher

frequency ranges investigated in this study. Averaged lasing threshold of

some random systems becomes lowest in the range 0.225 ≤ ωa/2πc ≤ 0.255.

3. The relation between light amplification and the intensity of electric field

in random systems are investigated and found that their peaks correspond

well to each other. The similarities between the distributions of electric

field amplitudes of non-excited and lasing states are evaluated by NMSE.

Lasing phenomena in lower excited states of active medium tend to occur

from laser modes with low value of NMSE. It is found that cavity modes

tend to oscillate low-threshold lasing phenomena.

4. Appropriate filling factor for low-threshold laser action are investigated and
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found that light confinement becomes strong as the filling factor of dielectric

cylinders increases. Disordered structures with higher filling factor are more

appropriate for lower threshold laser action.

5. The relation between the amount of positional disorder of cylinders and las-

ing threshold of random lasing are newly unveled. Lasing threshold of laser

action in periodic dielectric structures becomes lowest because of extremely

low-group velocity. In the case of random lasing, lasing threshold tends to

have a minimum in the transition from photonic-crystal lasers to random

lasers.

6. Metals are ideal materials for lower-threshold random lasing because metals

enable disordered structures to occur extremely intensive multiple scatter-

ings, which activate lasing phenomena even in extremely low excitation

state of active medium.

7. Lasing phenomena in honeycomb structures with random link removals are

simulated and found that the threshold of laser action in the honeycomb

structures is higher than that of the random systems consisting of dielectric

rods within active medium. The simulated result has shown that continuous

scatterings in active medium are necessary for lower threshold laser action.
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Appendix

A.1 Band structure of photonic crystals

A.1.1 Photonic crystal models

We consider four types of two-dimensional PC model which includes infinitely

long rods in the vertical direction, say, z-direction. In each model, the shapes

of rods across a horizontal plane (xy-plane) are round, hexagonal, or square.

Triangular lattice photonic crystals are expected to make wider bandgaps than

those of square lattice [91]. Hence, we arrange the rods to form triangular lattices

as illustrated in Fig. A.1. In this figure, ε1, ε2, and ε3 denote the dielectric

constants of the cavity, rod, and matrix, respectively; a1 and a2 represent the

lattice vectors and S0 is the area of the unit lattice (cell). For simplicity, we

assume a1 and a2 have the same length a. The dielectric constant ε(r) has the

periodicity such as

ε(r+ ai) = ε(r) (A.1)

for i = 1 and 2. Also, α and β are parameters to determine the size of rods; in

the case of the round type, for example, α and β express the interior and exterior

radii of each rod, respectively. Note that the ratio α/β(< 1) denotes the thinness

of rods.

From the symmetry of each structure, the first Brillouin zone is determined

as the triangular wedge ΓKM as shown in Fig. A.1.

In contrast to the dual periodic model, we call the round, hexagonal, and

square models as the single periodic models.

A.1.1.1 Numerical procedure

For a given wave vector k in Brillouin zone, we solve the eigenvalue equation

(2.85) numerically to obtain a set of eigen frequencies ω(k). To this end, we need

to evaluate the coefficients κ(G) and truncate the infinite summation over κ(G)

to a finite one.

In order to evaluate κ(G), we divide smallest width of the part of high di-

electric constant into more than 35 parts in band calculations of single periodic
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(a) Round model. (b) Hexagonal model.

(c) Square model. (d) Dual periodic model comprises solid and
hollow round rods.

Figure A.1: Photonic crystal models with hollow rods.

structures, and 30 parts in the calculations of dual periodic structures. Specifi-

cally, we divide x and y directions of the unit lattice into 1200 for single periodic

structure, and 1800 for dual periodic structure, respectively. When we plot all

the eigen frequencies thus computed against the wave vector k, we can observe

some frequency regions (bands) where none of eigen frequencies exist for any k

in Brillouin zone. This indicates that any light waves that belong to the regions

are not allowed to propagate through the PC in any directions. Such frequency

regions are called photonic bandgaps.

A.1.2 Numerical results

We investigate how the cross-sectional geometries of rods influence the position

of bandgaps in frequency. To see the result clearly, we used bandgap map [91], in

which we plot all the computed eigen frequencies for all the wave vectors against

a certain geometrical parameter (e.g. normalized size of rod).

First, we show the results of round, hexagonal, and square models in sub-

sections A.1.2.1 and A.1.2.2. Then we mention the results of the dual periodic

model in subsection A.1.3.
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In the following calculations, we use a = 140 [nm], ε1 = ε3 = 1.0 (air), and

ε2 = 5.76 (diamond) unless otherwise stated. Also, the number of vectors G in

Eq. (2.85) is set to 7569 and 10201 (i.e. −43 ≤ l1, l2 ≤ 43 and −50 ≤ l1, l2 ≤ 50)

in band calculation of single and dual periodic structures, respectively.

A.1.2.1 Solid rods — Influence of rod’s size on bandgap

We computed the dispersion relations for solid rods (i.e. α = 0) in order to

compare bandgaps with those for the following hollow rods (α �= 0).
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(a) Dispersion relation of solid round
model : β

a/2 = 0.60.
(b) Round model.

(c) Hexagonal model. (d) Square model.

Figure A.2: Bandgap maps of three models with solid rods.

In order to find the dependency of bandgaps on β, we repeated calculation

by changing the values of β from 0 to a/2 for the round and hexagonal models

and from 0 to
√
3a/4 for the square model. In Fig. A.2(a), the dispersion

relation of solid round model for a typical case: β/(a/2) = 0.6. We observe

bandgaps for normalized frequency range 0.276 ≤ ωa/(2πc) ≤ 0.389, 0.540 ≤
ωa/(2πc) ≤ 0.648 and 0.818 ≤ ωa/(2πc) ≤ 0.884. By plotting the side views
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of dispersion relation diagram in K → Γ → M direction for various values of

β/(a/2) simultaneously to a single diagram, we obtain a diagram as shown in Fig.

A.2(b). Obviously we can see the parameter ranges corresponding to bandgaps

as the regions numbered as 1, 2, 3, and 4, at a glance, in the figure.

The bandgap maps of the three models with solid rods are shown in Fig.

A.2, in which white areas correspond to two dimensional photonic bandgaps. In

any models (or shapes of rods), the position of each bandgap becomes lower in

frequency as the rod’s size increases. However, only in the square model, the

bandgap in high frequency regime is quite small. We guess that the differences

between the case of square and other shaped rods are caused by the symmetry

of the rod’s shape for the direction Γ − M and Γ − K. Round and hexagonal

shaped rods can make reflective surfaces to the incident light for each direction.

Moreover, round shaped rods can make it for all directions in x-y plane. Square

shape rods can make it only for Γ−K direction, however, can not make for Γ−M
direction.

In Table A.1, we tabulate the ranges of the lowest three bandgaps observed

in Fig. A.2 and also the parameters β/(a/2) that correspond to the widest

bandgaps.

Table A.1: Normalized frequency ranges (column ‘range’) of the lowest three

bandgaps and the normalized rod’s sizes (column ‘max’) that give the widest

bandgaps in the case of solid rods.

Bandgap No. Round Hexagonal Square

range max range max range max

1 0.23 – 0.57 0.38 0.28 – 0.57 0.36 0.34 – 0.58 0.34

2 0.39 – 0.68 0.65 0.49 – 0.69 0.60 0.59 – 0.74 0.58

3 0.60 – 0.89 0.65 0.74 – 0.92 0.61 0.90 – 0.97 0.59
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(a) Round rod (β/(a/2) = 0.65).

(b) Hexagonal rod (β/(a/2) = 0.60). (c) Square rod (β/(a/2) = 0.58).

Figure A.3: Bandgap maps of hollow rods.

Table A.2: Normalized frequency ranges (‘range’) of the lowest three bandgaps

of the hollow rods and the normalized rod thinness (‘max’) that correspond to

the widest bandgaps.

Bandgap No. Round Hexagonal Square

range max range max range max

1 0.28 – 0.39 0.0 0.31 – 0.43 0.0 0.35 – 0.41 0.0

2 0.50 – 0.84 0.24 0.57 – 0.87 0.12 0.62 – 0.88 0.16

3 left 0.75 – 0.85 0.0 0.86 – 0.92 0.0 0.94 – 0.96 0.0

3 right 0.72 – 0.99 0.55 0.82 – 0.99 0.64 0.88 – 1.00 0.64

4 0.72 – 0.99 0.12 N/A N/A 1.12 – —
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A.1.2.2 Hollow rods — Influence of rod’s thinness on bandgap

We computed the bandgaps for hollow rods (i.e. α �= 0). In this case, we

investigated the influence of thinness α/β to the bandgap.

The total width of bandgaps becomes largest in each crystal structures if

β = 0.65, 0.60, and 0.58, respectively.

Hence, we varied α for a fixed value of β, where β = 0.65, 0.60, and 0.58 were

used for the round, hexagonal, and square shape, respectively.

Figure A.3 plots the bandgap maps versus α/β. In contrast to Fig. A.2 for

solid rods, the fourth bandgap is newly obtained in the round model. In addition,

we observe that the third bandgaps are split into two parts, though it is not clear

in the square model. We consider that this reappearance of the bandgap on the

way of thinning the rod is caused by weakening of the reflection on the rod’s

surface and its enhancement effect on the inner surface of the hollow portions.

Table A.2 summarizes the observed bandgaps for the hollow rods.

A.1.3 Dual periodic model

We investigated the bandgaps of the dual periodic model [92, 93] shown in Fig.

A.1(d). In the following calculations, the radii of the solid rods was fixed to

0.65× a/4 and we set a = 280 [nm]. The rod size 0.65× a/4 gives largest width

bandgaps of round shape model in Table A.1.

A.1.3.1 Solid rods only

First, we considered all the rods were solid (i.e. α = 0) and calculated by varying

only β. Figure. A.4 shows the result, from which we observe that the bandgap

which lies around (ωa/2πc, β/(a/4) = (1.0, 0.3) remarkably increases as β/(a/4)

increases from 0.0 to 0.22. Moreover, at β/(a/4) = 0.65, which is the same case

as the single periodic structure, we observe the largest total bandgap width for

areas labeled as No.4, 5, and 7.
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A.1.3.2 Solid and hollow rods

We calculated the bandgaps for solid and hollow rods by changing α while fixing

β/(a/4) to 0.22 and 0.65. No.2 bandgap which is the largest one in Fig. A.4,

having the largest width for β = 0.22× a/4.

In Fig. A.5(a) is shown the bandgap map for the smaller rod: β/(a/4) = 0.22.

Most of the bandgaps were smaller than the previous ones in Fig. A.4, and the

positions of bandgaps are not sensitive to β. Note that we could not obtain the

results for β/(a/4) � 0.70 because it took too much computation time to solve

(2.85) for the parameters.

The result for the larger rod (β/(a/4) = 0.65) is shown in Fig. A.5(b).

Similarly to other PC models with hollow rods, we observe the reappearance of

bandgaps. The bandgap reappearance is also observed in lower frequency regime

in Fig. A.5(b). This phenomenon is considered to be natural because hollow rods

are arranged to make a longer period and the longer period tends to give a lower

frequency.

From comparison of the results between smaller and larger rods, we find the

size of hollow portion does not have a significant effect for the reappearance of

bandgaps in the case of small rod.

Let us also compare the results shown in Fig. A.3(a) and Fig. A.5(b). If α =

0, the round model shown in Fig. A.1(a) and the dual periodic round model shown

in Fig. A.1(d) become the same. The position of bandgaps shown in Fig. A.3(a)

rises gradually in accordance with the increase in β, while it is steady in Fig.

A.5(b). We can conjecture that these different behaviors of bandgap appearance

are caused by the difference of the filling fraction of higher dielectric material;

the decrease of the filling fraction causes the rise of the bandgap position. In

the dual periodic structure, the effect of the increase in the hollow portions of

the rods is small against the entire filling fraction. This consideration does not

conflict with the result of the solid rods in which we observe the drops of the

position of bandgaps as the size of rods increases.
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Figure A.4: Solid rods only : α = 0.

Table A.3: Normalized frequency

ranges (‘range’) of the labeled

seven bandgaps of the dual peri-

odic structures and the normalized

rod thinness (‘max’) that corre-

spond to the widest bandgaps.

Bandgap No. range max

1 0.44 – 0.59 0.00

2 0.87 – 1.11 0.22

3 1.27 – 1.40 0.08

4 0.58 – 0.77 0.65

5 1.10 – 1.33 0.65

6 1.43 – 1.59 0.37

7 1.69 – 1.85 0.65

(a) Solid and hollow rods : β/(a/4) =
0.22.

(b) Solid and hollow rods : β/(a/4) =
0.65.

Figure A.5: Bandgap maps for the dual periodic model.

A.1.4 Concluding remarks

In this study, we have investigated the bandgaps of two-dimensional photonic

crystals consisting of solid and hollow rods through numerical calculations based

on the plane-wave expansion method. We considered four models of photonic

crystals : round, hexagonal, square, and double periodic models as shown in Fig.
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A.1, and calculated the bandgaps for given parameters (α and β) that define the

geometryf of each models. From the results, we obtained the following remarks:

• Rod shapes and sizes affect the width of bandgaps. The symmetry of the

rod shape is important to make the bandgap width wider.

• Hollowing the rods causes the reappearance of bandgaps in the bandgap

map. This phenomenon can also be found in the result of dual periodic

structures.

• The bandgap behaviors depend on the filling fraction of crystal structure.

The smaller filling fraction raises the bandgap position. However, in the

dual periodic structure, the effect of hollowing the rods against the filling

fraction of the unit cell is small, and we observed steady bandgap positions.
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Lopez, and I. Simonsen. Design of one-dimensional random surfaces with
specified scattering properties. Appl. Phys. Lett., 81:798, 2002.

176



[84] E. R. Méndez, T. A. Leskova, A. A. Maradudin, and J. Muñoz-Lopez. De-
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