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A. Appendix A 

 

 

APPLICABILITY OF RBSM METHOD IN SMALL MESH 

SPECIMENS 

 

A.1. Introduction 

 

  In this study, specimen mesh sizes are relatively small. That is 5-10 mm meshes in the 

concrete cover thickness and 15-40 mm meshes on the other areas of the specimen. The 

relatively small meshes enable to observe crack propagation precisely in the concrete 

cover. 

  The applicability of the RBSM analytical method for small mesh size is calibrated 

and the proposed modifiers for the concrete properties parameters are given for the 

analysis as shown in Table A.1. The calibration of the RBSM model is conducted for 

several testes and the analytical results are verified against the test results. Table A.1 

shows parameter modifiers using in the analysis. In which, parameters for tensile 

behavior of normal springs are modified since the tensile behavior strongly depends on 

contact surface area of rigid body. So, the smaller mesh size will result larger contact 

surface area. Parameters for compressive behavior of normal springs and for shear 

behavior of shear springs are not modified. 
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Table A.1. Parameter modifiers in the analysis 

Parameter Modifier Analytical value 

GF (N/mm) 0.505 0.505*GF 

ft (MPa) 0.850 0.850*ft 

f'c (MPa) 1.000 1.000*f
’
c 

Ec (MPa) 1.000 1.000*Ec 

 

A.2. “Direct” tension test 

  The experiment was carried out by Cornelissen et al. (1986) to test a concrete 

specimen with double notches as shown in Figure A.1. The purpose to calibrate the 

analytical model in this specimen is that the tension behavior of concrete is dominant in 

the case of corrosion induced expansion (Lundgren, 2002; Nguyen et al., 2006). This 

calibration is to verify the proposed modified parameters as mentioned above.  

  The specimen was simulated with the 5mm meshes around the notches and 15 mm in 

the other areas as shown in Figure A.2. The concrete properties parameters used in the 

analysis are determined from the parameter modifiers in Table A.1. The analytical 

results including the relationship of average displacement of the 35mm- gauges and the 

tension stress σ (MPa) and the 3D deformation of the specimen were compared with the 

test results as shown in Figure A.3. The analytical results appear reasonable agreement 

for tensile strength and post peak behavior Crack patterns are also understood from the 

deformation, because the deformation is occurred by the separation between rigid 

bodies in RBSM. The reasonable crack patterns and propagation behavior are simulated.  
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Figure A.1. Outline of "direct" tension test 

 

 

Figure A.2. RBSM modeling of "direct" tension specimen 
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Gf (N/mm) 0.103 0.052
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f'c (MPa) 50 50.00

Ec (MPa) 3.93E+04 3.93E+04
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Figure A.3. Analytical results of "direct" tension specimen 
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specimen is to verify the crack propagation under the bending behavior of concrete 

because a specimen tends to be bent in the case of rebar corrosion induced expansion 

(Nguyen et al., 2006). This calibration is to verify the proposed modified parameters as 

mentioned above. 

  The specimen was simulated with 5 mm meshes around the pre-crack and 10 mm in 

the other areas as shown in Figure A.5. The parameters used in the analysis are shown 

in Figure A.4. The relationship between the load and the CMOD (Crack Mouth 

Opening Displacement) obtained from the analysis is compared with the test results in 

Figure A.6. The 3D deformation of the beam showing crack patterns at small and large 

CMOD values is also shown in Figure A.6. The analytical results appear well 

agreement with the test results in both pre-peak and post-peak regimes. Especially, the 

applicability to large CMOD value, which is larger than 1 mm, is confirmed. 

 

 

Figure A.4. Set-up of pre-cracked three point bending specimen 
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Figure A.5. Meshing of pre-cracked 3- point bending test 

 

Figure A.6. Analytical results of pre-cracked three point bending test 
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A.4. Cylinder compression test 

  Although compressive behavior does not directly occur in the case of corrosion 

induced expansion specimen, the shear behavior can be verified in the compression test 

since the shear behavior is dominant in meso-level for compression failure. This 

validation is to verify the assumed shear parameters as mentioned in the concrete model. 

  Watanabe and Niwa (2004) carried out a compression test for a φ100*200 mm 

cylinder concrete with concrete properties used in the analysis as shown in Figure A.7. 

The specimen is modeled with a unique 10 mm mesh size as shown Figure A.8. The 

stress-strain relationship obtained from the analysis is compared with the test results as 

shown in Figure A.9. Again, the analytical results reasonably agree with the test results. 

  The above verifications against the various specimen tests show the applicability of 

the RBSM analytical model in concrete structural analysis for small mesh size less than 

10 mm. 

 

 

Figure A.7. Set-up of cylinder compression test 
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Ec (MPa) 2.62E+04 2.62E+4
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Figure A.8. RSBM modeling of compression cylinder 

 

 

Figure A.9. Analytical results of cylinder compression specimen 
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B. Appendix B 

 

 

EXPERIMENTAL RESULTS 

 

B.1. Introduction 

  In appendix B, the experimental results of the specimen series conducted in this study 

are presented. 

 

B.2. Specimen series 150*150-C30 

B.2.1. Surface crack propagation 
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Figure B.1. Surface crack width propagation of 150*150-C30 
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B.2.2. Surface crack pattern 

Corrosion amount: 445 mg/cm2

Surface crack width: 0.94 mm, 0.93 mm
 

Figure B.2. Typical notation on crack patterns 
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Figure B.3. Surface crack patterns of 150*150-C30 

  



 

188 

 

 

B.2.3. Internal crack pattern 
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Figure B.4. Internal crack patterns of 150*150-C30 
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B.2.4. Actual rebar corroded sectional pattern 

 

26 mg/cm2 175mg/cm2 445 mg/cm2 915 mg/cm2

 

Figure B.5. Actual rebar corroded sectional pattern of 150*150-C30 

 

B.3. Specimen series 150*150-C7.5 

B.3.1. Internal crack pattern 

 

105 mg/cm2 199 mg/cm2

393 mg/cm2 682 mg/cm2

 

Figure B.6. Internal crack pattern of 150*150-C7.5 
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B.3.2. Actual rebar corroded sectional pattern 

 

105 mg/cm2 199 mg/cm2
393 mg/cm2 682 mg/cm2

 

Figure B.7. Actual rebar corroded sectional pattern of 150*150-C7.5 

 

 

B.4. Specimen series 150*150-C15 

B.4.1. Surface crack propagation 
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Figure B.8. Surface crack width propagation of 150*150-C15 
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B.4.2. Surface crack pattern 
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Figure B.9. Surface crack patterns of 150*150-C15 
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B.4.3. Internal crack pattern 
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Figure B.10. Internal crack patterns of 150*150-C15 

 

B.4.4. Actual rebar corroded sectional pattern 
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Figure B.11. Actual rebar corroded sectional pattern of 150*150-C15 
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B.5. Specimen series 150*150-C45 

B.5.1. Surface crack propagation 
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Figure B.12. Surface crack width propagation of 150*150-C45 

B.5.2. Surface crack pattern 
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Figure B.13. Surface crack patterns of 150*150-C45 
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B.5.3. Internal crack pattern 
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Figure B.14. Internal crack patterns of 150*150-C45 

 

B.5.4. Actual rebar corroded sectional pattern 
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Figure B.15. Actual rebar corroded sectional pattern of 150*150-C45 
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B.6. Specimen series 150*150-D10 

B.6.1. Surface crack propagation 
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Figure B.16. Surface crack width propagation of 150*150-D10 

B.6.2. Surface crack pattern 
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Figure B.17. Surface crack patterns of 150*150-D10 
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B.6.3. Internal crack pattern 
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Figure B.18. Internal crack patterns of 150*150-D10 

 

B.6.4. Actual rebar corroded sectional pattern 
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Figure B.19. Actual rebar corroded sectional pattern of 150*150-D10 
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B.7. Specimen series 150*150-D25 

B.7.1. Surface crack propagation 
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Figure B.20. Surface crack width propagation of 150*150-D25 

B.7.2. Surface crack pattern 
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Figure B.21. Surface crack patterns of 150*150-D25 
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B.7.3. Internal crack pattern 
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Figure B.22. Internal crack patterns of 150*150-D25 

 

B.7.4. Actual rebar corroded sectional pattern 
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Figure B.23. Actual rebar corroded sectional pattern of 150*150-D25 
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B.8. Specimen series 300*150-C30 

B.8.1. Surface crack propagation 
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Figure B.24. Surface crack width propagation of 300*150-C25 

 

B.8.2. Surface crack pattern 
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Figure B.25. Surface crack patterns of 300*150-C30 
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B.8.3. Internal crack pattern 
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Figure B.26. Internal crack patterns of 300*150-C30 

 

B.8.4. Actual rebar corroded sectional pattern 
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Figure B.27. Actual rebar corroded sectional pattern of 300*150-C30 

 



 

201 

 

B.9. Specimen series 250*250-C30 

B.9.1. Surface crack propagation 
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Figure B.28. Surface crack width propagation of 250*250-C30 

 

B.9.2. Surface crack pattern 
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Figure B.29. Surface crack pattern of 250*250-C30 
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B.9.3. Internal crack pattern 
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Figure B.30. Internal crack pattern of 250*250-C30 

B.9.4. Actual rebar corroded sectional pattern 
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Figure B.31. Actual rebar corroded sectional pattern of 250*250-C30 

 

B.10. Specimen series 400*400-C30 

B.10.1. Surface crack propagation 
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Figure B.32. Surface crack width propagation of 400*400-C30 



 

203 

 

B.10.2. Surface crack pattern 
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Figure B.33. Surface crack pattern of 400*400-C30 
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B.10.3. Internal crack pattern 

 

Figure B.34. Internal crack pattern of 400*400-C30 

 

B.10.4. Actual rebar corroded sectional pattern 
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Figure B.35. Actual rebar corroded sectional pattern of 400*400-C30 
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B.11. Specimen series 600*400-C30 

B.11.1. Surface crack propagation 
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Figure B.36. Surface crack width propagation of 600*400-C30 

B.11.2. Surface crack pattern 
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Figure B.37. Surface crack pattern of 600*400-C30 
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B.11.3. Internal crack pattern 
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Figure B.38. Internal crack pattern of 600*400-C30 

 

B.11.4. Actual rebar corroded sectional pattern 
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Figure B.39. Actual rebar corroded sectional pattern of 600*400-C30 

 

 




