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abstract

QCD at finite temperature and/or density is one of the most important topics
to study in hadron physics. The heavy-ion collision experiments in RHIC have
shown signs of the phase transition from the hadronic phase to the quark-gluon
plasma phase at high temperature regions. The superfluid state of the nuclear
matter or the color superconducting state of the quark matter is expected to be
realized at high density regions such as in neutron stars. The masses and the
widths of hadrons are expected to vary at temperature and/or density due to the
matter effect or the chiral symmetry restoration.

The main theme of this thesis is to obtain a holographic model which is appli-
cable to QCD at finite baryon density. Most holographic models used to analyze
finite-density systems do not include dynamical baryons. There are some attempts
to include dynamical baryons into the model, but the dynamics of the baryons and
that of theU(1)B gauge fields are not inclusively considered.

To resolve this problem, we propose a new mean-field approach, the holo-
graphic mean-field theory for fermion many-body systems. We introduce a non-
vanishing classical fermionic field in the gravity dual, which we call the holo-
graphic mean field. The holographic mean field reflects the dynamics of the
fermions in the bulk, and generates the expectation values of the bi-linear opera-
tors of the boundary fermions. This enables us to analyze finite-density systems
of baryons in the confinement phase. Our method provides a new bulk condition
which relates the chemical potential to the charge density in the GKP-Witten pre-
scription. We apply our approach to a holographic model including dynamical
baryons, which is originally proposed at zero density, and present the equation of
state for baryon many-body systems.
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Chapter 1

Introduction

Great efforts have been made to understand the dynamics of hadrons. Quantum
Chromodynamics (QCD) is the fundamental theory which describes the strong
interaction among quarks and gluons. QCD is a strong coupling gauge theory at
the low energy region, which prevents us from solving the dynamics of hadrons
analytically or perturbatively. This gives us a strong motivation to develop non-
perturbative methods to analyze low energy physics of QCD, such as the first
principle lattice QCD calculations or the effective model calculations.

Of these, the lattice QCD is a very powerful method, and it is used to calculate
the hadron mass spectra [1] and the nuclear force [2]. The lattice QCD is also
applied to analyze the finite-temperature system of hadrons, and the critical tem-
perature at which the phase transition from the hadronic phase to the quark-gluon
plasma phase occurs is estimated [3]. A disadvantage of the lattice QCD is that it
suffers from the sign problem [4] at finite baryon density. There are some attempts
to avoid this problem to analyze QCD at finite density [5], but it is still difficult to
reveal the QCD phase diagram clearly. In this sense, QCD at finite density is an
interesting subject in hadron physics.

Another method, the effective models are also widely used, and they some-
times provide deep insights about low energy physics of QCD. They suggest
that QCD at finite density has plenty of interesting physical phenomena: At low
temperature and high density region where quarks and gluons are deconfined,
the color super conducting phase, where quarks form Cooper pairs may be real-
ized [6]. This may affect cooling [7] or pulsar glitches [8] of neutron stars. At
intermediate density such as in the nuclear matter, the masses or the decay widths
of hadrons may change from those at vacuum [9]. This may affect the dilepton
production rate observed in heavy-ion collision experiments [10]. However, we
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have to keep in mind that the model results are not the results of QCD itself.
Comparing the results obtained in various approaches is thus indispensable.

Recently, motivated by the gauge/gravity duality [11, 12, 13], there have been
proposed some models to reformulate low energy QCD (a strong coupling gauge
theory) in terms of a string theory (a weak coupling gravity theory). Such mod-
els are called the holographic QCD, and some of them successfully describe the
meson mass spectra and the interactions among them [14, 15]. The holographic
QCD is also applied to analyze QCD at finite temperature and/or density, while it
is still developing.

In this thesis, we report our studies related to QCD at finite density:
In Chapter 2, we report our study on the QCD phase diagram using the Ginzburg-

Landau theory. We pay a special attention to the possible existence of the phase
where the bilinear quark (2-quark) condensate vanishes while the quartic quark
(4-quark) condensate exists. We construct a chiral model which has the same chi-
ral symmetry as in two-flavor QCD,S U(2)L × S U(2)R, and allows unorthodox
(→ S U(2)V × (Z2)A) as well as orthodox (→ S U(2)V) pattern of chiral symme-
try breaking. We study its phase diagram by applying one of the mean-field ap-
proaches, the Ginzburg-Landau theory. We also study the thermodynamic quanti-
ties and hadron mass spectra in the phases.

In Chapter 3, we review some previous studies about holographic models of
QCD.

In Chapter 4, we report our study on theρ − a1 mixing in dense baryonic
matter. We use a holographic model in the bottom-up approach and explore the
dispersion relation of theρ−a1 mixture at finite baryon density taking into account
the backreaction of the matter to the spacetime geometry.

Chapter 5 is the main part of this thesis. We propose a new mean-field ap-
proach, the holographic mean-field theory for QCD at finite baryon density. This
approach enables us to analyze finite-density systems of baryons in the confine-
ment phase. We apply our approach to a holographic model including dynamical
baryons, which is originally proposed at zero density, and present the equation of
state for baryon many-body systems.

We give a brief summary in Chapter 6.
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Chapter 2

Thermodynamics with unbroken
symmetry in two-flavor QCD

In this chapter, we report our study [16] on general features of thermodynamic
quantities and hadron mass spectra in a possible phase, where the chiralS U(2)L×
S U(2)R symmetry is spontaneously broken while its centerZ2 symmetry remains
unbroken. We construct anS U(2)L×S U(2)R chiral model, which allows unortho-
dox (→ S U(2)V × (Z2)A) as well as orthodox (→ S U(2)V) pattern of chiral sym-
metry breaking, and study its phase diagram by applying the Ginzburg-Landau
theory.

2.1 Unorthodox pattern of chiral symmetry break-
ing

Chiral symmetry breaking plays an important role in acquiring hadron masses.
The bilinear quark condensate⟨q̄q⟩ breaks chiral symmetryS U(Nf )L × S U(Nf )R

down to the diagonal subgroupS U(Nf )V. On the other hand, the quartic quark
condensates

⟨O1⟩ = ⟨q̄LλaγµqL · q̄Rλaγ
µqR⟩ , ⟨O2⟩ = ⟨q̄RλaqL · q̄LλaqR⟩ , (2.1)

( λa (a = 1,2, · · · ,N2
f − 1) are generators ofS U(Nf ) )

break chiral symmetry down toS U(Nf )V × (ZNf )A [17, 18, 19]. Although me-
son phenomenology with this breaking pattern seems to explain the reality rea-
sonably [17], this possibility is strictly ruled out in QCD both at zero and finite
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temperatures but at zero density since a different way of coupling of Nambu-
Goldstone bosons to pseudo-scalar density violates QCD inequalities for density-
density correlators [20]. However, this does not exclude the unorthodox pattern
in the presence of dense baryonic matter. There are several attempts which dy-
namically generate a similar breaking pattern in an O(2) scalar model [21] and in
N = 1 Super Yang-Mills theory [22]. It is of particular interest to explore general
features of thermodynamic quantities in the phase associated with this breaking
pattern, which was not studied.

2.2 A model for 2-quark and 4-quark states

We construct a chiral Lagrangian for 2- and 4-quark states under the following
pattern of symmetry breaking,

S U(Nf )L × S U(Nf )R → S U(Nf )V × (ZNf )A

→ S U(Nf )V . (2.2)

In this study, we will restrict ourselves to a two-flavor case.

2.2.1 Lagrangian

We introduce a 2-quark stateM in the fundamental and a 4-quark stateΣ in the
adjoint representation as1

Mi j ∼ q̄R, jqL,i ,

Σab ∼ q̄LτaγµqLq̄Rτbγ
µqR , (2.3)

where the flavor indices run (i, j) = 1,2 and (a,b, c) = 1,2, 3 and Pauli matrices
τa = 2Ta with tr[TaTb] = δab/2. TheM andΣ are expressed as

Mi j =
1
√

2

(
σδi j + iϕaτa

i j

)
,

Σab =
1
√

3
χδab+

1
√

2
ϵabcψc , (2.4)

whereσ andχ represent scalar fields andϕ andψ pseudoscalar fields, andϵi jk is
the total anti-symmetric tensor withϵ123 = 1. In general the fieldΣ contains an

1We considerΣ as any linear combination of ¯qq-q̄q andq̄q̄-qq type fields allowed by symme-
tries.
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isospin 2 state. One can take appropriate parameters in a Lagrangian in such a
way that this exotic particle is very heavy. Thus, we will consider only isospin 0
(χ) and 1 (ψ) states in this study. The fields transform underS U(2)L × S U(2)R as

M → g(2)
L M g(2)†

R , Σ→ g(3)
L Σg(3)†

R . (2.5)

whereg(2)
L,R is an element ofS U(2)L,R in the fundamental representation, andg(3)

L,R
in the adjoint representation. This transformation property implies that the field
M changes its sign under the centerZ2 of SU(2)L (or SU(2)R), whileΣ is invariant:

M → −M , Σ→ Σ . (2.6)

Up to the fourth order in fields one obtains a potential,

V(M,Σ) = −m2

2
Tr

[
MM†

]
+
λ2

4

(
Tr

[
MM†

])2

− m̄2

2
ΣabΣ

T
ba+

λ̄2
1

4
ΣabΣ

T
bcΣcdΣ

T
da+

λ̄2
2

4

(
ΣabΣ

T
ba

)2

+ 2g1ΣabTr
[
TaMTbM†

]
+ g2ΣabΣ

T
baTr

[
MM†

]
+ g3DetΣ + g4(DetM + h.c.). (2.7)

The last term violates theU(1)A symmetry. The coefficients of the quartic terms
are positive for this potential to be bounded. Other parametersgi can be both
positive and negative and will determine the topology of the phase structure. An
explicit chiral symmetry breaking can be introduced through, e.g.,

VSB(M,Σ) = −hσ − αh2χ , (2.8)

with constantsh andα. Note that a similar Lagrangian was considered for a
system with 2- and 4-quark states under the symmetry breaking pattern without
unbroken center symmetry in [26] where their 4-quark states are chiral singlet and
the potential does not include quartic terms in fields.
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2.2.2 Ginzburg-Landau effective potential

We first study possible phases derived from the effective potential (2.7) taking2

Mi j =
1
√

2
σδi j , Σab =

1
√

3
χδab . (2.9)

One can reduce Eq. (2.7) as well as an explicit breaking term to

V(σ, χ) = Aσ2 + Bχ2 + σ4 + χ4 − hσ

+Cσ2χ + Dχ3 + Fσ2χ2 . (2.10)

We will takeC = −1 without loss of generality in the following calculations.
We start with the potential forD = F = 0 andh = 0,

V = Aσ2 + Bχ2 + σ4 + χ4 − σ2χ . (2.11)

Phases from this potential can be classified by the coefficientsA andB. The ex-
pression of the phase boundaries is summarized in Appendix A. Here we discuss
the obtained phase structure shown in Figure 2.1. There are three distinct phases
characterized by two order parameters: Phase I represents the system where both
chiral symmetry and its center are spontaneously broken due to non-vanishing
expectation valuesχ0 andσ0. The center symmetry is restored whenσ0 be-
comes zero. However, chiral symmetry remains broken as long as one has non-
vanishingχ0, indicated by phase II. The chiral symmetry restoration takes place
underχ0 → 0 which corresponds to phase III. The phases II and III are separated
by a second-order line, while the broken phase I from II or from III is by both first-
and second-order lines. Accordingly, there exist two tricritical points (TCPs) and
one triple point. One of these TCP, TCP2 in Figure 2.1, is associated with the
centerZ2 symmetry restoration rather than the chiral transition.

Two phase transitions are characterized by susceptibilities of the correspond-
ing order parameters. We introduce a 2-by-2 matrix composed of the second
derivatives ofV as

Ĉ =

(
Cσσ Cσχ

Cχσ Cχχ

)
, (2.12)

2The potential (2.7) does not exclude a possibility of⟨ψ⟩ , 0 leading to pion condensation.
This corresponds to a further breaking of the symmetry down toU(1). This is favored in a limited
range of the parameters. In this study we will not consider this case but focus on the specific
symmetry breaking pattern (2.2) and their consequences on the hadronic observables. The pion
condensation is in fact unfavored when e.g.λ̄1 = 0 is taken.
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Figure 2.1: Phase diagram withD = F = 0 and h = 0. The solid and
dashed lines indicate first and second order phase boundaries, respectively. One
tricritical point, TCP1, is located at (A, B) = (0,1/4) and another, TCP2, at
(A, B) = (1/4,−1/8). The triple point represented byT is at (A, B) = (1/8,0).

with

Cσσ =
∂2V
∂σ2

, Cχχ =
∂2V
∂χ2

,

Cσχ = Cχσ =
∂2V
∂σ∂χ

, (2.13)

under the solutions of the gap equations,σ0 andχ0. A set of susceptibilities is
defined by the inverse of̂C [27];

χ̂ =
1

detĈ

(
Cχχ −Cσχ

−Cχσ Cσσ

)
. (2.14)

We identify the susceptibilities associated with 2-quark and 4-quark states as

χ2Q = χ̂11 , χ4Q = χ̂22 . (2.15)

The χ2Q is responsible to theZ2 symmetry and theχ4Q to the chiral symmetry
restoration.

We considerχ2Q andχ4Q around the TCP1 in Figure 2.1 where the potential
has zero curvature and thus detĈ = 0. When approaching the TCP1 from broken
phase I by tuningA andB asA→ Acritical = 0 andB = 1/4, these susceptibilities
diverge as

χ2Q ∼ t−1 , χ4Q ∼ t−2/3 , (2.16)

10



whereAcritical − A ∼ t with the reduced temperature or chemical potential, e.g.
t = |µ − µc|/µc. The gap equations determine the scaling of 2-quark and 4-quark
condensates as

σ2
0 ∼ t1/3 , χ0 ∼ t1/3 . (2.17)

Consequently, the quark number susceptibilityχq = −∂2V/∂µ2 exhibits a singu-
larity as

χq ∼ σ2
0 · χ2Q ∼ t−2/3 . (2.18)

This critical exponent is same as the one in the 3-d Ising model. The coincidence
can be understood due to the sameZ2 symmetries3.

The critical behavior near the TCP2 involves more: When theA is approached
as 1/4− t with B = −1/8 fixed,χ2Q andχ4Q diverge as

χ2Q ∼ t−1 , χ4Q ∼ t−1/2 , (2.19)

and onlyσ0 vanishes asσ2
0 ∼ t1/2. As a result, the quark number susceptibilityχq

diverges as
χq ∼ t−1/2 . (2.20)

Note that the critical exponent 1/2 is different from the one near the TCP1, which
may reflect different symmetries possessed by the system at TCP2, S U(2)V and the
centerZ2, from that at TCP1, S U(2)L × S U(2)R including its center (Z2)L × (Z2)R.
Those exponents at TCP1,2 are changed whenD , 0 (see below).

When the second-order phase transition separating phase I from II or from III
is approached from the broken phase with a fixedB, we have

χ2Q ∼ t−1 , χ4Q ∼
1
B
, (2.21)

whereB is a finite number, which thus gives no singularities inχ4Q. The 2-quark
condensate scales asσ2

0 ∼ t1 and the quark number susceptibilityχq is finite along
the second-order phase transition line:

χq ∼ σ2
0 · χ2Q ∼ t0 . (2.22)

Nevertheless,χq is enhanced toward the phase transition induced byχ2Q and be-
comes small above the phase transition. Such abrupt changes inχq indicate the

3The Z2 symmetry in the 3-d Ising system is not the center of two-flavor chiral group, but
emerges in the direction of a linear combination of quark number and scalar densities [28].
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phase transition, especially for a negativeB which is driven by the center symme-
try restoration rather than the chiral phase transition.

Near the second-order chiral transition between phase II and III, one obtains
from B ∼ t

χ2
0 ∼ t1 , χ4Q ∼ t−1 . (2.23)

Since chiral symmetry including the center symmetry prohibits the Yukawa-type
coupling ofχ to a fermion and an anti-fermion in the fundamental representa-
tion, the coupling ofχ to the baryon number current would be highly suppressed.
Therefore,χq shows less sensitivity around the chiral transition.4

Once smallh is turned on, chiral symmetry and its center are explicitly bro-
ken. Second-order phase boundaries are replaced with cross over and the two
TCPs with two critical points. The singularity inχq is now governed by theZ2

universality class of 3-d Ising systems. Thus, the scaling ofχq at the critical
points (CPs) will be given by

χq ∼ t−2/3 . (2.24)

A cubic term inχ modifies the previous phase structure shown in Figure 2.1.
The phase diagram from the potential,

V = Aσ2 + Bχ2 + σ4 + χ4 − σ2χ + Dχ3 , (2.25)

is classified by the following regions ofD: (i) −1 < D < 0 , (ii) D ≤ −1 , (iii)
0 < D < 1 and (iv) 1≤ D. One observes a deformation of the boundary lines
depending onD as in Figure 2.2. The phase transition line separating phase II
from phase III becomes of first order due to the presence ofDχ3. For any negative
D, (i) and (ii), a critical point CP1 appears as a remnant of TCP1 for D = 0. TCP2

remains on the phase diagram for−1 < D < 0, (i), which eventually coincides
with the triple point atD = −1, (ii). For positiveD, (iii) and (iv), the transition
line which separates phase I from phase II turns to be of first order everywhere.
The triple point approaches the TCP1 and coincides when a positiveD reaches
unity. The different order of phase transition between phase I and phase II for
−1 < D < 0 to that for 0< D < 1 can be understood as follows: ForD = 0
(see Figure2.1) the vacuum expectation value (VEV)χ0 is positive in phase I near
the phase boundary between phase I and II due to the existence of the−σ2χ term
in the potential. In phase II, on the other hand, when the positiveχ0 provides a
local minimum of the potential,−χ0 also does, and both coincide with the global

4As we will show below, the phase transition from phase II to phase III is of first order in a
more general parameter choice. Thus,χq exhibits a jump at the chiral phase transition point.
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Figure 2.2: Phase diagram for different values ofD underF = 0 andh = 0. The
solid and dashed lines indicate first and second order phase boundaries, respec-
tively.
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CP1 TCP1 TCP2

D < 0 2/3 — 1/2
D = 0 — 2/3 1/2
D > 0 — 1/2 —

Table 2.1: The critical exponents of the quark number susceptibility for vanishing
and non-vanishingD at two tricritical points and at the critical point (CP).

minima. These two vacua are physically equivalent, so that the phase transition
from phase I to phase II can be of second order. When we addDχ3 term with
negativeD to the potential, the local minimum corresponding to the positiveχ0

is only the global minimum in phase II. This can be smoothly connected to the
vacuum in phase I where the VEVχ0 is positive. On the other hand, whenD is
positive, the negativeχ0 gives the global minimum in phase II. Thus, there is a
mismatch ofχ0 along the phase boundary separating phase I from phase II, which
indicates a first-order transition.

D also affects the quark number susceptibilityχq. As in the case ofD =
0, theχq exhibits a more relevant increase toward theZ2 symmetry restoration
than at the chiral phase transition. The critical exponents ofχq is summarized
in Table 2.1. One finds that the two regions,D ≤ 0 and 0< D, corresponds to
different universality. The cubic term plays a similar role to an explicit symmetry
breaking term in the potential. This may be an origin for the appearance of a
critical point.

For−1 < D < 0, TCP2 for h = 0 becomes a critical point, CP2, for finite h.
When the value ofh is increased, the CP2 approaches the triple point and coincides
with it for a certain value ofh, h0. The topology of the phase diagram for larger
h ≥ h0 agrees with that forD ≤ −1. Similarly, the TCP1 in the 0< D < 1 phase
diagram becomes a critical point CP1 and disappears for a sufficiently largeh. On
the other hand, the CP1 stays in the phase diagram Figure 2.2 (i) and (ii) for any
value ofh. The scaling ofχq there will be given by

χq ∼ t−2/3 . (2.26)

We note that adding finiteF to the potential does not generate any essential
differences from the above result withF = 0.
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Figure 2.3: Schematic phase diagram mapped onto (T, µ) plane with a negative
D (left) and with a positiveD (right). The solid lines indicate first order phase
boundaries, and dashed lines correspond to cross over.

2.3 Hypothetical phase diagram and quark number
susceptibility

From the above observations one would expect phase diagrams mapped onto
(T, µ) plane. In the chiral limit a new phase where the center symmetry is un-
broken but chiral symmetry remains broken might appear in dense matter since
at µ = 0 this phase is strictly forbidden by the no-go theorem. With an explicit
breaking of chiral symmetry one would draw a phase diagram as in Figure 2.3.
The intermediate phase remains characterized by a small condensation|σ0| ≪ |χ0|.
One would expect a new critical point associated with the restoration of the center
symmetry, CP2, rather than that of chiral symmetry if dynamics prefers a nega-
tive coefficient of the cubit term inχ. Multiple critical points in principle can be
observed as singularities of the quark number susceptibility.

It has been suggested that a similar critical point in lower temperature could
appear in the QCD phase diagram based on the two-flavored Nambu–Jona-Lasinio
model with vector interaction [29] and a Ginzburg-Landau potential with the effect
of axial anomaly [30]. There the interplay between the chiral (2-quark) condensate
and BCS pairings plays an important role. In our framework without diquarks, the
critical point discussed in Figure 2.3 (left) is driven by the interplay between the
2-quark and 4-quark condensates, and is associated with restoration of the center
symmetry where anomalies have nothing to do with its appearance. Nevertheless,
the cross over in low temperatures may have a close connection to the quark-
hadron continuity [31] and it is an interesting issue to explore a possibility of

15



µ

σ
χ χB

0

0

µz2 µchiral

Figure 2.4: The behavior of the baryon number susceptibility as a function of
chemical potential assuming the phase diagram of Figure 2.3 (left). The conden-
sates and the susceptibility show a jump also atµz2 when the phase structure of
Figure 2.3 (right) is preferred.

dynamical center symmetry breaking in microscopic calculations. The present
potential (2.10) leads to a first-oder transition of chiral symmetry even with an
explicit breaking. This may be replaced with a cross over when one considers
higher order terms in fields and other symmetry breaking terms as well as in-
medium correlations to baryonic excitations, which is beyond the scope of this
paper.

Appearance of the above intermediate phase seems to have a similarity to the
notion of Quarkyonic Phase [24, 25], which is originally proposed as a phase of
dense matter in largeNc limit. The transition from hadronic to quarkyonic world
can be characterized by a rapid change in the net baryon number density. This
feature is driven by the restoration of center symmetry and is due to the fact that
the Yukawa coupling ofχ to baryons is not allowed by theZ2 invariance. Fig-
ure 2.4 shows an expected behavior of the quark (baryon) number susceptibility
which exhibits a maximum when across theZ2 cross over. This can be interpreted
as the realization of the quarkyonic transition inNc = 3 world. How farµz2 from
µchiral is depends crucially on its dynamical-model description.5

It should be noticed that the critical point in low density region, indicated by

5Thus, the present analysis does not exclude the possibility that both transitions take place
simultaneously and in such case enhancement ofχB is driven by chiral phase transition. The phase
with χ0 , 0 andσ0 = 0 does not seem to appear in the largeNc limit [19, 20, 21]. It would be
expected that including 1/Nc corrections induce a phase with unbroken center symmetry.
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T

χ

σ0

0

Tchiral

χ2Q

TCP1

Figure 2.5: A schematic behavior of the susceptibilityχ2Q near the CP1 as a func-
tion of temperature assuming the phase diagram of Figure 2.3 (left).

CP1 in Figure 2.3 (left), is different from a usually considered CP [32] in the sense
that the CP1 is not on the cross over line attached to theT = 0 axis. When we
take a path from the broken phase (bothσ0 andχ0 are large) to the symmetric
phase (bothσ0 andχ0 are small) passing near the CP1, theχ2Q may exhibit two
peaks; one is located near CP1 and another is on the cross over line. We show
a schematic behavior ofχ2Q as a function of temperature, together withσ0 and
χ0 in Figure 2.5. The appearance of two peaks inχ2Q reflects the fact thatσ0

becomes small across the CP1 and the cross over. The first decrease inσ0 near
CP1 is caused by a dropping ofχ0, while the second is by the chiral symmetry
restoration.

2.4 Hadron mass spectra and pion decay constant

In this section we derive meson mass spectra in a linear sigma model. The La-
grangian with the potential (2.7) is expressed in terms of the mesonic fields as

L =
1
2

(
∂µσ∂

µσ + ∂µϕ⃗ · ∂µϕ⃗
)

+
1
2

(
∂µχ∂

µχ + ∂µψ⃗ · ∂µψ⃗
)
−U(σ, ϕ, χ, ψ) , (2.27)
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with

U = −m2

2

(
σ2 + ϕ⃗ 2

)
+
λ2

4

(
σ2 + ϕ⃗ 2

)2

− m̄2

2

(
χ2 + ψ⃗ 2

)
+
λ̄2

1

4

[
1
3
χ4 +

2
3
χ2ψ⃗ 2 +

1
2

(
ψ⃗ 2

)2
]

+
λ̄2

2

4

(
χ2 + ψ⃗ 2

)2
− g

[
1

2
√

3
χ
(
3σ2 − ϕ⃗ 2

)
+
√

2σϕ⃗ · ψ⃗
]

+
g3√

3

(
1
3
χ3 +

1
2
χψ⃗ 2

)
, (2.28)

whereg1 ≡ −g (g > 0) andg2 = 0 were taken. In addition, we setg4 = 0 since the
g4-term generates only a shift inm2 for Nf = 2. We also set the explicit breaking
being zero.

The condensate of the mesonic fields in the phase where both chiral symmetry
and its centerZ2 are broken are determined from the coupled gap equations given
by

σ2
0 =

2
√

3g

(
λ̄2

3
χ2

0 − m̄2 +
g3√

3
χ0

)
χ0 ,

χ0 =
1
√

3g

(
λ2σ2

0 −m2
)
, (2.29)

with λ̄2 ≡ λ̄2
1 + 3λ̄2

2. Shifting the fields as

σ→ σ + σ0 , χ→ χ + χ0 , (2.30)

the potential reads

U =
1
2

m2
σσ

2 +
1
2

m2
ϕϕ⃗

2 +
1
2

m2
χχ

2 +
1
2

m2
ψψ⃗

2

−
√

3gσ0σχ −
√

2gσ0 ϕ⃗ · ψ⃗ + · · · , (2.31)

where ellipses stand for the terms including the fields more than three, and

m2
σ = 2λ2σ2

0 , m2
χ =

√
3

2
g
χ0
σ2

0 +
2
3
λ̄2χ2

0 +
1
√

3
g3χ0 ,

m2
ϕ =

4
√

3
gχ0 , m2

ψ =

√
3

2
g
χ0
σ2

0 , (2.32)
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The mass terms thus become

U(2) =
1
2

(σ , χ)

(
m2
σ −

√
3gσ0

−
√

3gσ0 m2
χ

) (
σ
χ

)
+

1
2

(ϕ⃗ , ψ⃗)

 m2
ϕ −

√
2gσ0

−
√

2gσ0 m2
ψ

 (ϕ⃗
ψ⃗

)
. (2.33)

Obviously, the determinant of the above mass matrix forϕ andψ is zero and thus
massless pseudo-scalar fields are a mixture of 2-quark and 4-quark states.

The mass eigenstates are introduced with a rotation matrix as(
S
S′

)
=

(
cosθ sinθ
− sinθ cosθ

) (
σ
χ

)
,(

P⃗
P⃗′

)
=

(
cosθ̄ sinθ̄
− sinθ̄ cosθ̄

) (
ϕ⃗

ψ⃗

)
, (2.34)

with the angles

tan(2θ) =
2
√

3gσ0

m2
χ −m2

σ

, tan
(
2θ̄

)
=

4
√

6σ0χ0

3σ2
0 − 8χ2

0

. (2.35)

The masses of scalar mesons are give by

m2
S = m2

σ cos2 θ +m2
χ sin2 θ −

√
3gσ0 sin(2θ) ,

m2
S′ = m2

χ cos2 θ +m2
σ sin2 θ +

√
3gσ0 sin(2θ) , (2.36)

and those of pseudo-scalar mesons by

mP = 0 , m2
P′ =

g(3σ2
0 + 8χ2

0)

2
√

3χ0

, (2.37)

with

cosθ̄ =

√
3σ0√

3σ2
0 + 8χ2

0

, sinθ̄ =
2
√

2χ0√
3σ2

0 + 8χ2
0

. (2.38)

The pion decay constant is read from the Noether current,JµA ∼ σ0∂
µϕ+4/

√
6χ0∂

µψ,
as

Fπ =

√
σ2

0 +
8
3
χ2

0 . (2.39)

19



Since we consider a system in the chiral limit, the massiveP′ state is decoupled
from the current andFπ′ = 0, as it should be. It should be noted that, when
|σ0| ≫ |χ0|, the NG boson is dominantly the 2-quark state. The 4-quark compo-
nent becomes more relevant for

√
3|σ0| <

√
8|χ0|, i.e. θ̄ > π/4.

When the couplingg3 is negative, which corresponds toD < 0 in the Ginzburg-
Landau potential given in section 2.2, the phase transition from phase I (σ0 , 0
andχ0 , 0) to phase II (σ0 = 0 andχ0 , 0) can be of second order. In such a
case, the restoration of the centerZ2 symmetry is characterized by vanishingσ0.
Approaching the restoration from broken phase, one finds the lowest scalar meson
mass degenerate with theP state, while the pion decay constant remains finite due
to χ0 , 0;

mS → mP = 0 , Fπ →
√

8
3
χ0 , (2.40)

with

χ0 =

√√
3m̄2

λ̄2
+

 √3g3

2λ̄2

2

−
√

3g3

2λ̄2
. (2.41)

The vanishingS-state mass corresponds to a divergence of the susceptibility
χ2Q, which is responsible to restoration of the center symmetry. The scalarS and
pseudo-scalarP states thus become the chiral partners on the phase boundary. In
theZ2 symmetric phase the meson masses are found from the potential (2.28) as

m2
σ = −m2 −

√
3gχ0 , m2

ϕ = −m2 +
g
√

3
χ0 ,

m2
χ =

2
3
λ̄2χ2

0 +
g3√

3
χ0 , m2

ψ = 0 . (2.42)

There is no mixing in this phase, tanθ = tanθ̄ = 0, so thatσ, ϕ, χ, ψ are the mass
eigenstates.6 This implies that the pure 4-quark stateψ is the massless NG boson
in theZ2 symmetric phase. Due to the broken chiral symmetry,σ andϕ states are

6When we approach the phase boundary from theZ2 symmetric phase to theZ2 broken phase,
m2
σ in Eq. (2.42) approaches zero, since−m2 =

√
3gχ0 is satisfied at the phase boundary. The

pseudoscalar massm2
ϕ approaches4√

3
gχ0 which coincides with the mass ofP′ in the Z2 broken

phase (see Eq. (2.37)).
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not degenerate in mass.7 The vector and axial-vector states neither degenerate in
mass [20], since both vector and axial-vector currents are invariant under theZ2

transformation but broken chiral symmetry does not dictate the same masses.
When|g3/g| ≪ 1, the chiral phase transition from phase II (σ0 = 0 andχ0 , 0)

to phase III (σ0 = 0 andχ0 = 0) will be of weak first-order. In this case,χ0 thenFπ

approach zero near the phase transition point. This is controlled by ¯mapproaching
zero, which corresponds toB approaching zero in the Ginzburg-Landau potential
discussed in section 2.2.2. The iso-spin 2 state will become very light near the
phase transition. This may suggest that, when theg3DetΣ term is small and the
chiral phase transition is of weak first-order, a light exotic states withI = 2 might
exist in dense baryonic matter. When there exists the non-negligibleg3DetΣ term,
on the other hand, such state never becomes light since the chiral phase transition
is of strong first-order.

In two flavors, the system would prefer the parity doubling for baryons in the
Z2 symmetric phase where the VEVχ0 does not generate the baryon masses [20].
In the parity doubling scenario [33], all the baryons have their parity partners and
then each pair of parity partners has a degenerate mass. On the other hand, in the
naive scenario the lightest baryon does not have a parity partner, so that it becomes
massless in theZ2 symmetric phase. We list hadron mass spectra expected in phase
I and phase II in Table 2.2.

2.5 Discussions

We have discussed a new phase where chiral symmetry is spontaneously broken
while its center symmetry is restored. This might appear as an intermediate state
between chirally broken and restored phases in (T, µ) plane. The appearance of
the intermediate phase with unbrokenZ2 also suggests a new critical point asso-
ciated with the center symmetry in low temperatures. A tendency of the center
symmetry restoration is carried by the net baryon number density which shows
a rapid increase and this is reminiscent of the quarkyonic transition. TheU(1)A
symmetry remains broken and the heavyη mass can be controlled with a certain
anomaly coefficient.

7In reference [20] the degeneracy of the massive scalar and pseudoscalar mesons made of 4-
quarks carrying the same isospin for a general number of flavors was shown. In case ofNf = 2 the
U(1)A anomaly generates a mass difference between theσ state and the pseudoscalar meson with
I = 0 (η). In the present analysis, we did not include theI = 0 pseudoscalar and theI = 1 scalar
mesons from the beginning by assuming that they are very heavy.
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phase I:σ0 , 0 , χ0 , 0 phase II:σ0 = 0 , χ0 , 0

S U(2)V S U(2)V × (Z2)A

mS , 0 ,mP = 0 mS , mP , 0 ,mP′ = 0
mV , mA mV , mA

Fπ =

√
σ2

0 + (8/3)χ2
0 Fπ =

√
8/3χ0

mN+ , 0 (i) naive:


mN+ = 0(ground state)
mN′+ = mN′− , 0

(excited states)

(ii) mirror:

{
mN+ = mN− , 0

(all states)

Table 2.2: The mass spectra of mesons and baryons in different phases forNf = 2.
Baryons transform with the naive chirality assignment asψR,L → gR,LψR,L, while
with the mirror assignment asψ1R,L → gR,Lψ1R,L andψ2R,L → gL,Rψ2R,L with gR,L ∈
S U(2)R,L where two nucleonsψ1 andψ2 belong to the same chiral multiplets.

There are subtleties in baryon masses since the existence of the center sym-
metry does not immediately dictate the parity doubling for a general number of
flavors: Here we consider the case in massless three flavors. Theg3-term in (2.7)
now generatesχ8 contribution, while theg4-term doesσ3 one. It follows thatDχ3

is removed from (2.10) and another cubic termσ3 is added. Omitting the cubic
termσ3 results in the same phase diagram as Figure 2.1 with two TCPs. When the
cubic termσ3 is included, it is conceivable that phase II and phase III in Figure2.2
are separated by a second-order phase boundary, which will become a first-order
one when we take quantum fluctuations into account [34]. The topologies are ex-
pected to be quite similar to those shown in Figure 2.2, so that we expect a strong
enhancement of the quark number susceptibility at theZ3 restoration point. Dif-
ferently from the case forNf = 2, theΣab field is allowed to couple to the octet
baryon states as, e.g.̄BaΣabBb, and the baryon number current couples to theχ
state which becomes massless at the chiral restoration point. As a result, the quark
number susceptibility might show another peak at the chiral restoration. Hadron
masses in theZ3 symmetric phase are slightly different from those underZ2 invari-
ance: In the mesonic sector the party partners are degenerate and the degeneracy
does not generally occur in the baryonic sector [20]. Following Ref. [20], possible
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phase I:σ0 , 0 , χ0 , 0 phase II:σ0 = 0 , χ0 , 0

S U(Nf )V S U(Nf )V × (ZNf )A

mS , 0 ,mP = 0 mS = mP , 0, mP′ = 0
mV , mA mV , mA

mN+ , 0 (i) naive: mN+ , 0
(ii) mirror: mN+ = mN− , 0

Table 2.3: Same as in Table 2.2 but forNf = 3.

operators for the baryons are expressed as

B1
L = (qLqLqR)L , B2

L = (qLqRqR)L , B3
L = (qLqLqL)L ,

B1
R = (qRqRqL)R , B2

R = (qRqLqL)R , B3
R = (qRqRqR)R ,

(2.43)

where the color and flavor indices are omitted. For the octet baryons, the repre-
sentations under the chiral SU(3)L×SU(3)R of these baryonic fields are assigned
as

B1
L ∼ (3̄ , 3) , B2

L ∼ (3 , 3̄) , B3
L ∼ (8 , 1) ,

B1
R ∼ (3 , 3̄) , B2

R ∼ (3̄ , 3) , B3
R ∼ (1 , 8) . (2.44)

When theB3 is the lightest octet baryon, which we call the naive assignment,
it is still massive in theZ3 symmetric phase, since the Yukawa coupling of the
4-quark stateΣab is possible as, e.g.B̄aΣabBb. When the lightest baryons are
described by a combination ofB1 andB2, which we call the mirror assignment,
they are degenerate with each other in theZ3 symmetric phase. We summarize
these features in Table 2.3. The baryon masses crucially depend on a way of
chirality assignment. It would be an interesting issue to clarify this within a more
elaborated model.

The main assumption in this study is a dynamical breaking of chiral sym-
metryS U(Nf )L × S U(Nf )R down to a non-standardS U(Nf )V × (ZNf )A

although
this seems to be theoretically self-consistent. Calculations using the Swinger-
Dyson equations or Nambu–Jona-Lasinio type models with careful treatment of
the quartic operators may directly evaluate this reliability. Besides, anomalously
light NG bosons,m2

π ∼ O(m2
q), could lead to an s-wave pion condensation as

discussed in [35]. It is interesting to explore how this phase is embedded in the
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current analysis. A calculation using the Skyrme model shows a similar interme-
diate phase [23]. Although the above non-standard pattern of symmetry breaking
was not imposed in the Skyrme Lagrangian, the result could suggest an emergent
symmetry in dense medium. This intermediate phase would be an intriguing can-
didate of the quarkyonic phase if it could sustain in actual QCD at finite density
and would lead to a new landscape of dense baryonic matter.
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Chapter 3

Holographic models of QCD

In this chapter, we review some holographic models of QCD. There are two com-
plementary approaches in holographic QCD — the bottom-up approach and the
top-down approach. In the bottom-up approach, we start from QCD and attempt
to construct its 5d holographic dual by using the AdS/CFT dictionary. The ben-
efit of the bottom-up approach is that it is easier to bring in phenomenological
aspects of QCD. In Section 3.1, we review one of the bottom-up models, the hard
wall model [15]. In the top-down approach, we engineer a brane configuration
in string theory so as to make its holographic dual closer to QCD. The top-down
approach is more faithful to the AdS/CFT correspondence, and thus more reli-
able. In Section 3.2, we review one of the top-down models, the Sakai-Sugimoto
model (SS model) [14]. The SS model successfully describes low energy prop-
erties of QCD, especially the meson phenomenology. In Section 3.3, we review
some attempts to introduce baryons into the SS model.

3.1 The hard wall model

We construct a 5d dual of QCD in AdS5 space, whose metric is given by

ds2 =
1
z2

(−dz2 + dxµdxµ) , (3.1)

where we set the AdS radius to unity. We set a UV boundary atz= ϵ ∼ 0, where
a 4d theory, QCD lives, and an IR cutoff at z = zm, which corresponds to the
confining scale. Thus, the fifth direction is restricted to

ϵ ≤ z≤ zm . (3.2)
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4d (Operator) 5d (Field) (m5)2

q̄Lγ
µtaqL Aa

Lµ 0
q̄Rγ

µtaqR Aa
Rµ 0

q̄αRqβL (2/z) Xαβ −3

Table 3.1: Operators/Fields of the model.

This model is called the hard wall model, which is most widely used in the bottom-
up approach. In the bottom-up approach, we introduce a few bulk 5d fields corre-
sponding to 4d operators. As an example, we choose three fieldsAa

Lµ,A
a
Rµ andX

listed in Table 3.1.
The 5d massm5 of the fields are determined by the relation [12, 13] (∆ −

p)(∆ + p − 4) = m2
5, where∆ and p denote the dimension and the spin of the

corresponding operator, respectively. The 5d action is given by

S =
∫

d4xdz
√

g tr

[
|DX|2 + 3|X|2 − 1

4g2
5

(F2
L + F2

R)

]
, (3.3)

whereDµX = ∂µX− iALµX+ iXARµ,AL,R = Aa
Lµt

a andFµν = ∂µAν−∂νAµ− i[Aµ,Aν].
This action isS U(Nf )L × S U(Nf )R gauge invariant, which corresponds to the
global chiral symmetry in QCD.

Since the bulk fieldX corresponds to the 4d operator ¯qq, its behavior describes
chiral symmetry breaking in this model. We perform the mean-field approxima-
tion for X(x, z) by replacing it with the mean fieldX0(z) as

X(x, z)→ X0(z) . (3.4)

We impose that (2/z) X0(z) coincides with the quark mass matrixM at the UV
boundary as

2
ϵ

X0(ϵ) = M . (3.5)

The equation of motion forX0(z) is[
∂z

(
1
z3
∂z

)
+

3
z5

]
X0(z) = 0 , (3.6)

and its solution is written as

X0(z) =
1
2

Mz+
1
2
Σz3 . (3.7)
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By substituting the equation of motion, the on-shell action forX becomes

SX =

∫
d4x

(
1
z3

X0(z) ∂zX0(z)

)
z=ϵ

. (3.8)

Differentiating this with respect toM, we obtain

δSX

δM

∣∣∣∣∣
M=0,z=ϵ

= Σ , (3.9)

which tells us to interpretΣ as the chiral condensate:Σαβ = ⟨q̄αqβ⟩. Σ is deter-
mined by the IR condition onX. Instead of specifying this condition, we choose
Σ as an input parameter of the model. We assume that the quark masses are de-
generated,M = mq1 andΣ = σ1. Therefore, the free parameters of the model are
mq, σ, zm andg5. We focus on the two-flavor case and use the experimental values
of theρ meson mas, the pion mass and the pion decay constant to fixmq, σ, zm.

The 5d gauge couplingg5 is fixed by comparing the vector current two-point
function in this model with that of QCD. We introduce the vector fieldV as

V =
AL + AR

2
. (3.10)

In theVz = 0 gauge, the equation of motion for the transverse part of the vector
field is [

∂z

(
1
z
∂z

)
+

q2

z

]
Va
µ(q, z) = 0 , (3.11)

whereVa
µ(q, z) is the 4d Fourier transform ofVa

µ(x, z). The on-shell action for the
vector field is

SV = −
1

2g2
5

∫
d4x

(
1
z
Va
µ∂zV

µa

)
z=ϵ

. (3.12)

Let Va
0µ(q) be the Fourier transform of the source of the vector currentJa

µ = q̄γµtaq.
We impose

Va
µ(q, ϵ) = Va

0µ(q) , (3.13)

thusV(q, z), which is defined as

Va
µ(q, z) = V(q, z)Va

0µ(q) , (3.14)

is required to satisfy
V(q, ϵ) = 1 . (3.15)
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Differentiating the on-shell action twice with respect to the sourceVa
0µ(q), we

obtain the vector current two-point function as

i
∫

d4x eiqx⟨Ja
µ(x)Jb

ν (0)⟩ = δab(qµqν − q2gµν)ΠV(−q2) , (3.16)

ΠV(−q2) = − 1

g2
5(−q2)

∂zV(q, z)
z

∣∣∣∣∣
z=ϵ
, (3.17)

Asymptotic form ofV(q, z) for large−q2 is

V(q, z) = 1+
−q2z2

4
log(−q2z2) + · · · , (3.18)

which up to constant terms gives

ΠV(−q2) = − 1

2g2
5

log(−q2) . (3.19)

On the other hand, the leading contribution ofΠV in QCD comes from the quark
bubble,

ΠV(−q2) = − Nc

24π2
log(−q2) , (3.20)

whereNc denotes the number of colors. Comparing these two expressions, we
obtain

g2
5 =

12π2

Nc
. (3.21)

Now we see how the physical quantities are calculated in this model. We mode
expandVa

µ(x, z) by a complete set{ψ(n)
ρ (z)} as

Va
µ(x, z) =

∞∑
n=1

V(n)a
µ (x)ψ(n)

ρ (z) . (3.22)

Hereψ(n)
ρ (z) satisfies the differential equation∂z

(
1
z
∂z

)
+

m(n)
ρ

2

z

ψ(n)
ρ (z) = 0 , (3.23)

wherem(n)
ρ is the eigenvalue, andψ(n)

ρ satisfies the boundary conditions

ψ(n)
ρ (ϵ) = 0, ∂zψ

(n)
ρ (zm) = 0 . (3.24)
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The eigenfunctionψ(n)
ρ satisfies the following orthonormal condition:∫

dz
1
z
ψ(n)
ρ (z)ψ(m)

ρ (z) = δnm . (3.25)

The lowest eigenvalue corresponds to the mass square of theρmeson. Theρ decay
constant defined by⟨0| q̄γµtaq |ρb⟩ = Fρ δ

abϵµ for theρmeson with the polarization
ϵµ is obtained as

F2
ρ =

1

g2
5

ψ′(1)
ρ (ϵ)

ϵ

2

, (3.26)

which is the residue of the vector current two-point function.
Next, we consider the axial-vector sector. We introduce the axial-vector field

A as

A =
AL − AR

2
. (3.27)

The pion fieldπa(x, z) is defined as

X(x, z) = X0(z) ei 2πa(x,z)ta , (3.28)

and we definev(z) as

X0(z) =
1
2

v(z) =
1
2

(mqz+ σz3) , (3.29)

for later convenience. We work in theAz = 0 gauge, and divideAµ as

Aµ = A⊥µ + ∂µφ , (3.30)

where the transverse partA⊥µ satisfies∂µA⊥µ = 0. We mode expandAa
⊥µ by a

complete set{ψ(n)
a1 (z)} as

Aa
⊥µ(x, z) =

∞∑
n=1

A(n)a
⊥µ (x)ψ(n)

a1
(z) . (3.31)

Hereψ(n)
a1 (z) satisfies the differential equation∂z

(
1
z
∂z

)
+

m(n)
a1

2

z
−

g2
5 v2(z)

z3

ψ(n)
a1

(z) = 0 , (3.32)
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wherem(n)
a1 is the eigenvalue, andψ(n)

a1 satisfies the boundary conditions

ψ(n)
a1

(ϵ) = 0, ∂zψ
(n)
a1

(zm) = 0 , (3.33)

The eigenfunctionψ(n)
a1 satisfies the following orthonormal condition∫

dz
1
z
ψ(n)

a1
(z)ψ(m)

a1
(z) = δnm . (3.34)

The lowest eigenvalue of the differential equation (3.32) with the boundary con-
ditions (3.33) corresponds to the mass square of thea1 meson. Thea1 decay
constant is obtained as

F2
a1
=

1

g2
5

ψ′(1)
a1 (ϵ)

ϵ

2

. (3.35)

The pion decay constant defined by⟨0| q̄γµγ5taq |πb⟩ = i fπ δabqµ is obtained as

f 2
π = −

1

g2
5

∂zA(0, z)
z

∣∣∣∣∣
z=ϵ
, (3.36)

which is the residue of the axial-vector current two-point function at themπ = 0
limit. A(0, z) is the solution of the differential equation[

∂z

(
1
z
∂z

)
−

g2
5 v2(z)

z3

]
A(0, z) = 0 , (3.37)

with the boundary conditions

A(0, ϵ) = 1, A′(0, zm) = 0 . (3.38)

The pion massmπ is obtained as the eigenvalue by solving the coupled differential
equations

∂z

(
1
z
∂z

)
φa +

g2
5 v2(z)

z3
(πa − φa) = 0 , (3.39)

−m2
π ∂zφ

a +
g2

5 v2(z)

z2
∂zπ

a = 0 , (3.40)

with the boundary conditions

φ(ϵ) = 0 , φ′(zm) = 0 , π(ϵ) = 0 . (3.41)
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Observable Experiment (MeV) Model (MeV)
ma1 1230± 40 1363√

Fρ 348± 2 329√
Fa1 — 486

gρππ 5.98± 0.01 4.48

Table 3.2: Results of the model for QCD observables. Experimental value are
taken from Ref. [36].

The meson interactions are read from the nonbilinear terms in the 5d action. For
example, theρ − π coupling is given by

gρππ = g5

∫
dzψρ(z)

(
φ′2(z)

g2
5z
+

v2(z)(π(z) − φ(z))2

z3

)
. (3.42)

Now we show the quantitative predictions of this model. We use the experi-
mental values of theρ meson mass (775.8 MeV), the pion mass (139.6 MeV) and
the pion decay constant (92.4 MeV) to fix the parameters as

zm = 1/(323MeV), (3.43)

mq = 2.29MeV, (3.44)

σ = (327MeV)3 , (3.45)

and takeNc = 3. The model predictions are summarized in Table 3.2. The results
for ma1 and

√
Fρ agree with the experimental values within 10%. However, this

model underestimatesgρππ by 30%. This may due to the fact that the 3-meson
amplitude is sensitive to theF3 term which is not included in the model.

3.2 The Sakai-Sugimoto model

The Sakai-Sugimoto model (SS model) [14] is a holographic model of 4d, largeNc

QCD with massless quarks. It gives a holographic description of the spontaneous
breaking of chiral symmetryU(Nf )L × U(Nf )R to the diagonal subgroupU(Nf )V.
The model predictions for the masses of the vector mesons and the pion charge
radius are reasonably close to the experimental values. In this section, we briefly
review the construction of the SS model and show its action.
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The SS model is formulated by placing probe D8-branes into the D4-brane
background. The D4-brane background consists ofNc D4-branes extended along
x0, · · · , x4 directions. Thex4 direction is compactified toS1 with the anti-periodic
boundary conditions for the fermions. The metric, dilatonϕ and the RR three-
form fieldC3 in the D4-brane background are given as

ds2 =

(U
R

)3/2

(ηµν + f (U)dτ2) +
( R
U

)3/2 (
dU2

f (U)
+ U2dΩ2

4

)
,

eϕ = gs

(U
R

)3/4

, F4 = dC3 =
2πNc

V4
ϵ4, f (U) = 1−

U3
KK

U3
. (3.46)

Herexµ (µ = 0,1, 2, 3) andτ are the directions along which the D4-brane is ex-
tended, andU corresponds the radial direction transverse to the D4-brane.ηµν is
diag(−,+,+,+). dΩ2

4, ϵ4 andV4 = 8π2/3 are the line element, the volume form
and the volume of a unitS4, respectively.R andUKK are constant parameters.
R is related to the string couplinggs and string lengthls asR3 = πgsNcl3s. From
the definition of the functionf (U), U is bounded below asU ≥ UKK . In order to
avoid a conical singularity atU = UKK , τ must be a periodic variable with

τ ∼ τ + 2π/MKK , MKK =
3
2

U1/2
KK

R3/2
, (3.47)

whereMKK is the cutoff scale of the theory. This D4-brane background yields a
holographic dual of 4d pure Yang-Mills theory at low energies,E ≪ MKK [37].
The Yang-Mills couplinggYM at MKK can be read off of the DBI action of the
D4-brane compactified on theS1 asg2

YM = 2πMKKgsls. The parametersR,UKK

andgs are expressed in terms ofMKK , ls and the ’t Hooft couplongλ = g2
YM Nc as

R3 =
1
2

λl2s
MKK

, UKK =
2
9
λMKK l2s , gs =

1
2π

λ

NcMKK ls
. (3.48)

This supergravity description is valid forλ ≫ 1.
In order to addNf flavors of quarks to the supergravity dual of the Yang-

Mills theory described by the background (3.46), we placeNf probe D8-branes
extended alongxµ(µ = 0,1,2,3), theS4 directions, and one of the directions in
the (U, τ) plane. Here we adopt the probe approximation, assumingNc ≫ Nf ,
and ignore the backreaction from the D8-branes to the D4-brane background. The
induced metric on the D8-brane embedded in the D4-background (3.46) withU =
U(τ) is given by

ds2
D8 =

(U
R

)3/2

ηµνdxµdxν +

[(U
R

)3/2

f (U) +
( R
U

)3/2 U′2

f (U)

]
dτ2 + U2dΩ2

4 , (3.49)
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whereU′ = (d/dτ)U. To describe the D8-brane, it is convenient to introduce new
coordinate (y, z) defined by

(y, z) = (r cos(MKKτ), r sin(MKKτ)) , (3.50)

where
U3 = U3

KK + UKK r2 . (3.51)

We consider the D8-brane placed aty = 0 and extended along thez direction.
Thus,

U3 = U3
KK + UKKz2 ≡ U3

z(z) , (3.52)

and (3.50) is written as

ds2
D8 =

(Uz

R

)3/2

ηµν dxµdxν +

(
R
Uz

)3/2 (
dU2

z

f (Uz)
+ U2

zdΩ2
4

)
. (3.53)

Next, we consider the gauge field on the probe D8-brane. The gauge field on
the D8-brane has nine components,Aµ(µ = 0,1,2,3), Az andAα (α = 5,6,7,8
are the coordinates on theS4). Since QCD does not have theS O(5) symmetry
corresponding to the rotation ofS4, we concentrate on theS O(5) singlet states.
Therefore, we here setAα = 0 and assume thatAµ andAz are independent of the
coordinate on theS4. The effective action on the D8-brane consists of two parts
— the DBI action and the Chern-Simons term. Let us first consider the DBI action
for theU(1)V gauge field, which is the subgroup of theU(Nf )V group. The DBI
action is given by

SDBI = −T
∫

d9x e−ϕ
√
− det(gMN + 2πα′FMN) , (3.54)

where

T =
2π

(2πls)9
, α′ = l2s . (3.55)

This action reduces to the 5d action as

SDBI = −T̃(2πα′)2

∫
d4x dz

[
R3

4Uz
F2
µν +

9
8

U3
z

UKK
F2
µz

]
+ O(F4) , (3.56)

where

T̃ =
2
3

R3/2U1/2
KK TV4

1
gs
. (3.57)
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Let us then consider the DBI action for theU(Nf )V gauge field. The leading terms
of the DBI action in this case are given by the non-Abelian generalization of (3.56)
as

SDBI = −T̃(2πα′)2

∫
d4x dz tr

[
R3

4Uz
F2
µν +

9
8

U3
z

UKK
F2
µz

]
, (3.58)

whereFMN = ∂MAN − ∂NAM − [AM,AN] is the field strength of theU(Nf ) gauge
field AM (M = 0,1,2,3, z) on the D8-brane. Note that (3.58) is often expressed as

SDBI = −κ
∫

d4x dz tr

[
1
2

K−1/3F2
µν + KF2

µz

]
, (3.59)

with

κ =
λNc

216π3
, K(z) = 1+ z2 , (3.60)

by using the fact that we can set

MKK = 1 , l2s =
9
2λ

, (3.61)

without loss of generality. The Chern-Simons term is written as

SCS =
i Nc

24π2

∫
ω5 (A) , (3.62)

whereω5(A) is the Chern-Simons five-form written in terms of the five-dimensional
differential formA = Aµ dxµ + Az dzas

ω5 (A) = tr

(
AF2 − 1

2
A3F +

1
10

A5

)
. (3.63)

The 5d Yang-Mills+Chern-Simons actionS = SDBI + SCS is the action of the SS
model, and it is the low energy effective theory for mesons.

3.3 Baryons in holographic QCD

The success of the SS model in describing the meson phenomenology provides us
with a strong motivation to extend it to the baryon sector. The pioneering works
are presented by Nawaet al. [38], Honget al. (HRYY model) [39] and by Hata
et al. [40]. In Ref. [40], they find an instanton solution of the static limit of the 5d
Yang-Mills theory which carries a unit baryon number, and quantize it to obtain

34



the baryon mass spectra. This approach is applied to study the static properties
of baryons [41] and the nuclear force [42]. In this section, we review the HRYY
model, which is more tractable in treating many-body physics. In Chapter 5, we
will use this model to study baryon many-body systems.

In the context of the AdS/CFT correspondence, a baryon is realized as a
baryon vertex [43, 44], which consists of a D-brane wrapped on a compact sub-
space and theNc fundamental strings connecting the flavor brane and the D-brane.
In the SS model, a D4-brane wrapped onS4 corresponds to a baryon vertex, which
is realized as an instanton in the gauge theory on the D8-brane. There areNc fun-
damental strings connecting the D4-brane with the D8-brane. Since each end
point of the fundamental strings carries a unit charge (quark charge) with respect
to theU(1) gauge field on the D8-brane, a D4-brane wrapped onS4 looks like an
object with chargeNc.

Using the fact that the size of the instanton is very small in the large ’t Hooft
coupling limit, we treat it as a point-like field in 5d space. We introduce a 5d Dirac
spinorB for the spin 1/2 baryon. We write down an action in 5d space, whose
metric is give by

ds2
5d = H(w) (dw2 + ηµνdxµdxν) , (3.64)

whereηµν is diag(−,+,+,+). The non-compact 5d part of the induced metric on
the D8-brane (3.53) is transformed to the conformally flat metric (3.64) by the
coordinate transformation

w = ±
∫ U

UKK

dU′
R3/2√

U′3 − U3
KK

, (3.65)

with

H(w) =

(
U(w)

R

)3/2

. (3.66)

Note that the boundaries are located atw = ±wmax, where

wmax =

∫ ∞

UKK

dU
R3/2√

U3 − U3
KK

=
1

MKK

3
2

∫ ∞

1
dŨ

1
√

Ũ3 − 1

(
Ũ =

U
UKK

)
≃ 3.64

MKK
< ∞ . (3.67)
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The action for the baryon is written as

SB =

∫
d4x

∫
dw
√−g

(
i B̄ eM

A Γ
ADMB−mb(w)B̄B

)
. (3.68)

wheremb(w) is the 5d mass of the baryon. Thew dependence ofmb(w) reflects
the curvature of the original geometry.gMN (M,N = 0,1,2,3,5) is the metric of
(3.64), and the vielbeineA

M is

eA
M =

√
H(w) δA

M , (3.69)

which satisfies
gMN = eA

MeB
N ηAB , (3.70)

whereηAB = diag(−,+,+,+,+). ΓM are written in terms of the 4d Dirac matrices
asΓµ = γµ (µ = 0,1, 2,3) andiΓw = γ5. The covariant derivative is given by

DM = ∂M +
i
4
ωAB

M ΓAB− i AM ,

ΓAB =
1
2i

[ΓA,ΓB] , (3.71)

whereωAB
M denote the spin connection. The non-vanishing components of the spin

connection are

ω5A
M = −ωA5

M = −
H′(w)
2H(w)

δA
M . (3.72)

By redefining the baryon field and its 5d mass as

H(w) B→ B , (3.73)√
H(w) m5(w)→ m5(w) , (3.74)

the action (3.68) reduces to the form

SB =

∫
d4x

∫
dw

[
i B̄ΓM(∂M − i AM)B−m5(w) B̄B

]
. (3.75)

The 5d massmb(w) should be identified as the energy of a D4-brane wrapped on
S4 localized at the positionw. From the DBI action of the D4-brane, this energy
is found to be

m(0)
B

(
U(w)
UKK

)
, (3.76)
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wherem(0)
B is the energy of a D4-brane wrapped onS4 located atw = 0

m(0)
B =

λNc

27π
MKK . (3.77)

In addition, there is a correction to the instanton mass from the Coulomb repulsion
among the charges of theNc fundamental strings as

me
0 =

1
3

m(0)
B (MKK ρbaryon)

2 =

√
2 · 37 · π2

5

3λ
m(0)

B , (3.78)

whereρbaryondenotes the size of the instanton

ρ2
baryon=

√
2 · 37 · π2

5

M2
KK λ

. (3.79)

This Coulomb repulsion prevents an instanton from shrinking to zero-size. We
use

mb(w) = m(0)
B

(
U(w)
UKK

)
+

√
2 · 37 · π2

5

3λ
m(0)

B

= MKK

λNc

27π

(
U(w)
UKK

)
+

√
2
15

Nc

 , (3.80)

in the following calculations.
Next, we see how the baryon mass of this model is obtained. We mode expand

the 5d Dirac fieldB(x,w) by fR,L(w) as

B(x,w) = fR(w)ψR(x) + fL(w)ψL(x) . (3.81)

We can always takefR,L(w) to be real functions by being absorbed the phase fac-
tors byψR,L(w). fR,L(w) satisfy the differential equations

−∂w fR+mb(w) fR = mB fL , (3.82)

∂w fL +mb(w) fL = mB fR , (3.83)

wheremB is the eigenvalue of the equations. In holographic models, the infinite
tower of baryons are interpreted as Kaluza-Klein states associated with the fifth
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direction. B(x,w) is expanded by the complete set{ f (n)
R,L}, where eachf (n)

R,L corre-
sponds to the baryon innth excited state. In this section, however, we neglect the
heavier modes, or the baryons in the excited states. We thus leavefR,L(w) and fo-
cus on the baryon in the ground state. Note thatψR,L in (3.81) are the components
of 4d Dirac spinorψ, which are defined as

ψR =
1+ γ5

2
ψ , ψL =

1− γ5

2
ψ . (3.84)

Substituting the expansion (3.81) into the 5d baryon action (3.75), the kinetic
term and the mass term are written as

i B̄ΓM∂M B = − fR∂w fL (ψ̄RψL) + fL∂w fR (̄ψLψR)

+ f 2
R (ψ̄Riγµ∂µψR) + f 2

L (ψ̄Liγµ∂µψL) , (3.85)

and
mb(w) B̄B= mb(w) fR fL (ψ̄RψL + ψ̄LψR) , (3.86)

respectively. The parity transformation forψ(x,w) is

ψ(x, t)→ γ0ψ(−x, t) , (3.87)

or
ψR,L(x, t)→ γ0ψL,R(−x, t) , (3.88)

thus, the 5d action is invariant under the parity transformation when∫
dw fR(w) ∂w fL(w) =

∫
dw fL(w) (−∂w) fR(w) =

∫
dw fL(−w) ∂w fR(−w) ,∫

dw fR(w) fR(w) =
∫

dw fL(w) fL(w) =
∫

dw fL(−w) fL(−w) , (3.89)

are satisfied. All of these conditions are realized when we choose

fR(w) = ± fL(−w) . (3.90)

By using the differential equations (3.82) and (3.83), we can rewrite the kinetic
term plus the mass term as

i B̄ΓM∂M B−mb(w) B̄B= f 2
R ψ̄R(iγµ∂µ −mB)ψR+ f 2

L ψ̄L(iγµ∂µ −mB)ψL . (3.91)
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Integrating overw direction with the normalization condition∫
dw f2

R(w) =
∫

dw f2
L (w) = 1 , (3.92)

we obtain the 4d baryon action∫
d4x ψ̄(iγµ∂µ −mB)ψ . (3.93)

Therefore, we can interpretmB as the mass of a baryon.
When we define

f = fL + fR , (3.94)

f̃ = fL − fR , (3.95)

the differential equations (3.82) and (3.83) are written as

∂w f − (mb(w) +mB) f̃ = 0 , (3.96)

∂w f̃ − (mb(w) −mB) f = 0 , (3.97)

and the condition (3.90) becomes

f (w) = ± f (−w) . (3.98)

The boundary conditions for thef (w) = f (−w) case are

f ′(0) = 0 (regular atw = 0) , f (±wmax) = 0 (normalizable), (3.99)

and those for thef (w) = − f (−w) case are

f (0) = 0 (regular atw = 0) , f (±wmax) = 0 (normalizable). (3.100)

The baryon massmB is obtained as the eigenvalue of the eigenvalue equations
(3.96) and (3.97). In order to obtain the mass of the baryon in the ground state,
we find the lowest positive eigenvalue with the boundary condition (3.99), which
is the same value (up to sign) as the lowest negative eigenvalue with (3.100).

The results for the baryon massmB for various values ofλNc are listed in
Table 3.3. This shows that the baryon mass increases as the ’t Hooft couplingλ
becomes larger. This is due to the fact that the 5d mass of the baryonmb(w) is
proportional toλ. If we fix two parameters of the model in the same way as in
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λNc mB/MKK

10 1.37
20 1.52
30 1.66
40 1.80
50 1.93
60 2.06
80 2.32

Table 3.3: Numerical results for the baryon mass.

Ref. [14]. We fit the values ofMKK andλNc to fit the experimental values of theρ
meson mass and the pion decay constant as

MKK = 949 MeV, λNc = 50. (3.101)

Then, the baryon mass is estimated as

mB = 1.93MKK = 1.83GeV, (3.102)

which is about twice as heavy as the experimental values of the nucleon mass.
This suggests that it is difficult to reproduce meson and baryon mass spectra si-
multaneously in this model. Such a situation is also seen in other holographic
models with the instanton baryons [40] and in the Skyrme model [45].
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Chapter 4

ρ − a1 mixing in dense baryonic
matter

In this chapter, we report our study1 on theρ−a1 mixing in dense baryonic matter.
We use a holographic model in the bottom-up approach to investigate the mixing.

4.1 Theρ − a1 mixing

At finite baryon number density, charge conjugation invariance is violated because
the number of baryons is larger than that of anti-baryons. There, the vector (ρ) and
the axial-vector (a1) mesons with finite momenta mix though a mixing term [46,
47]

Lmix = C ϵ0νλσ [∂ν Vλ · Aσ + ∂ν Aλ · Vσ] , (4.1)

which violates charge conjugation invariance, but preserves parity invariance. The
coefficientC determines the strength of the mixing. This means that the dispersion
relation of these mesons are modified at finite density.

In this study, we use a holographic model in the bottom-up approach to ob-
serve the density dependence of the dispersion relations of these modes. An ex-
ample of this study in holographic QCD is shown in Ref. [46]. They construct an
effective action in AdS5 space, whose metric is given by

ds2 =
1
z2

(−dz2 + dxµdxµ) , (ϵ ≤ z≤ zm) , (4.2)

1This study has been done in collaboration with Masayasu Harada (Nagoya University, Japan)
with the discussions with Youngman Kim (APCTP, Korea).
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and add the Chern-Simons term which causes theρ−a1 mixing at finite density. In
Ref. [46], they succeeded in estimating the strength of the mixingC. In the present
analysis, we study how the following two contributions affect the mixing. One is
the backreaction of the matter to spacetime geometry. The 5d space is distorted
by dense matter, so the true metric deviates from (4.2) as the density grows. This
means that the analysis using the metric (4.2) is reliable only at the low density
region. Another is the contributions from the mixing to the higher excited states.
Theρ meson can mix not only with thea1 meson, but also with its excited states
a′1,a

′′
1 , · · · . The aim of this study is to observe how these ingredients affect the

ρ − a1 mixing.

4.2 The model

We construct a model based on the hard-wall model, which we reviewed in Sec-
tion 3.1. We set a UV boundary atz = ϵ, and an IR cutoff at z = zm in the fifth
direction. To construct a 5d dual of dense QCD, we introduce a 5dU(1) gauge
field AM(x, z) which corresponds to the quark number current in QCD. In this
study, we express density in terms of the quark number densitynq and the quark
chemical potentialµq, which are related to the baryon number densitynB and the
baryon chemical potentialµB as

nq = Nc nB , (4.3)

µq =
1
Nc

µB , (4.4)

whereNc denotes the number of colors.
We work in theAz(x, z) = 0 gauge, and replace the gauge field with the mean

field as
A0(x, z)→ A0(z) , Ai(x, z)→ 0 . (4.5)

We impose
A0(ϵ) = µ , (4.6)

whereµ is the quark chemical potential.
It is shown in Ref. [48] that the metric

ds2 =
1
z2

(
− 1

f (z)
dz2 + f (z) dt2 − dx2

i

)
, f (z) = 1+ q2 z6 , (4.7)
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and the mean field
A0(z) = µq − Q z2 , (4.8)

with

q2 =
2κ2

3g2
Q2 , (4.9)

satisfy the Einstein equation

RMN −
1
2

GMNR−GMN

(
−1

6

)
= −κ

2

g2
5

(
FMPFP

N −
1
4

GMNFPQFPQ

)
, (4.10)

and the Maxwell equation

∂M

√
G GMPGNQFPQ = 0 , (4.11)

simultaneously. Thus, the backreaction of the matter to gravity is correctly in-
troduced in (4.7). Note that the metric (4.7) reduces to the simple AdS5 metric
(4.2) for f (z) = 1. In the following calculations, we use the metric (4.7) and then
compare the results with thef (z) = 1 case.

We use a 5d action

S5 =

∫
d4x dz

√
G Tr

[
| D X |2 +3 | X |2 − 1

4g2
5

(F2
L + F2

R)

]
, (4.12)

and add a Chern-Simons term

SCS =
i Nc

24π2

∫
(ω5 (AL) − ω5 (AR)) , (4.13)

which contains aρ − a1 mixing term

Nc

8π2
Q

∫
d4x dz zϵ i jk (Va

i ∂ jA
a
k + Aa

i ∂ jV
a
k ) . (4.14)

FL,R in (4.12) is the field strength tensor of theU(2)L,R gauge fieldAL,R which
consists of theU(1)L,R part ÂL,R and theS U(2)L,R partAa

L,R as

AL,R = ÂL,R t̂ + Aa
L,R ta , (4.15)

where t̂ and ta are the generators ofU(1) andS U(2), respectively. Therefore,
(4.12) isU(2)L × U(2)R gauge invariant. In (4.14), we defined the vector and the
axial-vector fields as

V =
1
2

(AL + AR) , A =
1
2

(AL − AR) . (4.16)
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Q is proportional to the quark number densitynq as

nq =
Q

g2
5

, (4.17)

which is found by differentiating the on-shell action with respect to the quark
chemical potentialµq [46]. Therefore, the transverse modes of theρ and thea1

mesons with finite momenta mix through (4.14) at finite density.
In the following analysis, we take the degenerated mass for up and down

quarksmu = md = mq. We definev(z) as

X(z) =
1
2

v(z)

[
1 0
0 1

]
. (4.18)

Then, the equation of motion forv(z) is defined as[
∂2

z +
z f′(z) − 3 f (z)

z f(z)
∂z+

3
z2 f (z)

]
v(z) = 0 . (4.19)

The solution is given by

v(z) = mq z 2 F1

(
1
6
,
1
2
,
2
3
,−q2z6

)
+ σ z3

2F1

(
1
2
,
5
6
,
4
3
,−q2z6

)
. (4.20)

4.3 The dispersion relation of theρ − a1 mixture

We work in theVz = Az = 0 gauge, and choose the momentum to the third
direction as

k = (ω,0,0, k3) . (4.21)

We mode expand the transverse modes of the vector (V1,2) and the axial-vector
(A2,1) fields by the complete sets{ψ(n)

ρ (z)} and{ψ(n)
a1 (z)} as

Va
1(k, z) = Va

2(k, z) =
∞∑

n=1

V(n) a
T (k)ψ(n)

ρ (z) , (4.22)

i Aa
2(k, z) = −i Aa

1(k, z) =
∞∑

n=1

V(n) a
T (k)ψ(n)

a1
(z) . (4.23)
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ψ(n)
ρ (z) andψ(n)

a1 (z) satisfy the differential equations

∂z

(
1
z

f (z) ∂z

)
ψ(n)
ρ (z) = −1

z

(
ω(n) 2

f (z)
− k2

3

)
ψ(n)
ρ (z) −

( Nc

4π2
g2

5 Q
)

z k3ψ
(n)
a1

(z) ,

(4.24)[
∂z

(
1
z

f (z) ∂z

)
− g2

5

v2(z)
z3

]
ψ(n)

a1
(z) = −1

z

(
ω(n) 2

f (z)
− k2

3

)
ψ(n)

a1
(z) −

( Nc

4π2
g2

5 Q
)

z k3ψ
(n)
ρ (z) ,

(4.25)

whereω(n) is the eigenvalue. The eigenfunctionsψ(n)
ρ (z) andψ(n)

a1 (z) satisfy the
orthonormal condition∫

dz
1

z f(z)

[
ψ(n)
ρ (z)ψ(m)

ρ (z) − ψ(n)
a1

(z)ψ(m)
a1

(z)
]
= δnm . (4.26)

Substituting the expansions (4.22) – (4.23) into the actionS5+SCS, the transverse
part becomes

(S5 + SCS)transverse= 2
∞∑

n=1

∫
d4k

(2π)4

1
2

1

g2
5

(ω2 − ω(n) 2) V(n) a
T (k) V(n) a

T (−k) . (4.27)

Thus, we can interpret the eigenvalueω(n) of the differential equations (4.24) –
(4.25) as the energy of theρ − a1 mixture in the (n − 1) th excited state. In this
study, we observe the dispersion relation of theρ − a1 mixture in the ground state
by finding the eigenvalueω(1) (k3) of the differential equations (4.24) – (4.25) with
the boundary conditions

ψ(1)
ρ,a1

(ϵ) = 0, ∂zψ
(1)
ρ,a1

(zm) = 0 , (4.28)

for each momentumk3.
Now we show the numerical results. We use the same parameter set as in

Section 3.1, i.e.

g2
5 =

12π2

Nc
, (4.29)

zm = 1/(323MeV), (4.30)

mq = 2.29MeV, (4.31)

σ = (327MeV)3 , (4.32)

45



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  0.5  1  1.5  2

M
as

s(
M

eV
)

Density

Figure 4.1: Density dependence of theρ meson mass. The horizontal axis repre-
sents the baryon number density normalized by the normal nuclear matter density,
nq/n0.

and fix the Newton constant by matching the free energy of QCD with that of the
gravity theory [48] as

1
κ2
=

2N2
c

45π2
, (4.33)

and takeNc = 3. We use the quark number density of the normal nuclear matter

n0 = 3.69× 106 MeV3 , (4.34)

to normalize the quark number densitynq.
Figure 4.1 shows the density dependence of theρ meson mass, which is al-

ready studied in Ref. [48]. Theρ meson mass increases as the density grows.
If we take f (z) = 1, theρ meson mass does not change with the density, which
means that the mass increase in Figure 4.1 is caused by the backreaction.

Figure 4.2 shows the dispersion relation of theρ − a1 mixture for nq/n0 =

0.1,0.5 and 1.0. For nq/n0 = 0.1, the dispersion relation is consistent with the

Klein-Gordon type dispersion relation (KG),ω (k3) =
√

m2 + k2
3. For nq/n0 =

0.5, however, the dispersion relation deviates from KG, and the energy is shifted
downward due to theρ − a1 mixing [47]. The energy is more shifted downward
as the density grows, and fornq/n0 = 1.0, it drops to 0 atk3 = 540 MeV — the
condensation of theρ anda1 mesons occurs. This condensation breaks rotational
invariance in 3d space.
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Figure 4.2: The dispersion relation of theρ − a1 mixture fornq/n0 = 0.1,0.5,1.0.
The solid line indicates the dispersion relation of theρ−a1 mixture, and the dashed
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Figure 4.3 shows the effect of the backreaction on the dispersion relation. It is
shown that the energy is shifted downward due to the backreaction more than the
case without backreaction. Thus, we find that the mixing becomes even stronger
when we take the backreaction into account.

4.4 Discussions

We have discussed theρ − a1 mixing in dense baryonic matter by using a holo-
graphic model in the bottom-up approach. We have used the metric proposed in
Ref. [48] in which the backreaction of the matter to gravity is taken into account.
The energy of theρ − a1 mixture in the ground state is shifted downward due to
the mixing, which becomes stronger as the density grows. We have also seen that
the mixing becomes even stronger when we take the backreaction into account.

Surprisingly, it is suggested that the vector meson condensation occurs at the
normal nuclear matter density. This possibility is also mentioned in Ref. [46].
The situation can change depending on how we fix the parameters [49], or we
include higher order terms into the model action. It is of particular interest to
explore how the situation changes when we include dynamical baryons into the
model. The existence of dynamical baryons does affect the mean fieldA0(z) and
thus contributes the mixing term. It is important to obtain a holographic model at
finite density including dynamical baryons, and we will address this issue in the
next chapter.
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Chapter 5

Holographic mean-field theory for
baryon many-body systems

In this chapter, we report our study in Ref. [50].
The current framework of the AdS/CFT correspondence still has room for

improvement in dealing with the systems at finite baryon density. It can be sum-
marized as follows: 1) dynamical baryons at finite density have not been satisfac-
torily incorporated, and 2) the application of the GKP-Witten prescription [12, 13]
to relate the baryon chemical potential to the baryon density has an ambiguity in
the grand canonical ensemble.

In this chapter, we shall propose a new approach, a holographic mean-field
theory for fermions, to resolve these two problems. The self-consistent incorpo-
ration of dynamical baryons in our mean-field approach provides an eigenvalue
equation which eliminates the ambiguity. We apply our approach to the HRYY
model in Section 3.3 and present the relation between the chemical potential and
the baryon density.

5.1 Baryonic matter in holographic QCD

The quarks are realized as fundamental strings attached to the flavor brane in
the gravity dual [51]. Each end point of the strings carries a unit charge with
respect to aU(1) gauge field on the flavor brane, and the quark density can be
evaluated from the electric field in the radial direction at the boundary through the
Gauss-law constraint. The quark chemical potential is thus the time component of
theU(1) vector potential,A0, at the boundary, which is conjugate to the electric
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field [52, 53]. This fits the conventional GKP-Witten prescription: The boundary
value ofA0 gives the source (the chemical potential); the expectation value of the
conjugate operator (the density) is given by the derivative ofA0 at the boundary
with respect to the radial direction. These quantities are boundary conditions
for the Gauss-law constraint which may be chosen arbitrarily. However, another
physical conditionin the bulk, i.e., the bulk condition, fixes the ambiguity in the
relationship between them whenever the GKP-Witten prescription works. To the
best of the authors’ knowledge, only the example where the bulk condition is yet
to be known is the finite density systems of baryons.

The origin of the ambiguity can be understood in the following way. The
global U(1)B (U(1)-baryon) symmetry is enhanced to theU(1) gauge symme-
try in the gravity dual. The constant shift of the boundary value ofA0 can be a
gauge transformation which does not alter the physics in the gravity dual whereas
the constant shift of the chemical potential has definite physical meaning in the
boundary theory. This contradiction is resolved when the flavor brane intersects
the horizon:A0 has to vanish at the horizon to make the one-form well-defined
there [54, 55]. This removes the ambiguity of the constant shift of the bound-
ary value ofA0. However, we cannot employ this prescription if the flavor brane
does not intersect the horizon. One way to estimate the chemical potential may
be to perform a Legendre transformation [56, 55, 57] to the canonical ensemble
where the chemical potential is given by differentiating the Helmholtz free energy
with respect to the charge. However, the success of the conventional GKP-Witten
prescription implies the presence of an unknown bulk condition from which the
baryon chemical potential at a given baryon density is uniquely assigned within
the grand canonical ensemble.

More serious problem is the difficulty to incorporate many-body systems of
dynamical baryons. In the phase where the flavor brane is away from the horizon,
quarks are confined. TheU(1)B charge is carried by baryons in this case. The
baryon is holographically realized as a baryon vertex [43, 58] which consists of
the fundamental strings and a D-brane wrapped on a compact subspace. In order
to prepare a system of finite density of baryons, we need to deal with many-body
physics of wrapped D-branes on a curved spacetime which is quite a challenge
within the current technology of the superstring theory. The baryons can also
be described as solitons (or Skyrmion-like objects) [38, 39, 40] on the effective
worldvolume theory of the flavor brane. However, we still need to deal with many-
body problems of solitons on a curved spacetime. Because of these difficulties,
the baryons have been introduced as point-like objects localized at the most IR
point (the most distant point from the boundary) on the flavor brane in most of the
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literature. However, since the baryons are dynamical objects, their distribution
along the radial direction should be determined dynamically. Thus, a gravity dual
to deal with the dynamical baryons at finite density has been awaited.

Examples of the attempts to incorporate the dynamical baryons in the gravity
dual are as follows. Point-like massive baryons localized at the most IR point
were first introduced to the gravity dual at finite baryon density in Ref. [59]. In
Ref. [60], baryon vertices attached to a flavor brane at the most IR point were
introduced to a holographic dual of finite baryon density. However, singular con-
figurations of the baryon vertices and the flavor branes have been used so far in
this approach. An attempt to take account of the distribution of the baryons in the
bulk has been made in Ref. [61], but the distribution of the baryons or the energy
density of the system obtained there were found to be singular for the spatially
homogeneous setups. Bulk baryon fields have been introduced [62, 39] to models
of holographic QCD. An analysis of the baryon mass at finite baryon density was
done [63] within the model of Ref. [62], but the dynamics of theU(1) gauge field
does not reflect the dynamics of the baryon field.

A holographic treatment of the fermion many-body system in the confine-
ment phase is also made in terms of the Fermi liquid in 2+ 1 dimensions [64].
There, instead of imposing suitable boundary conditions, the Fermi distribution
of the boundary theory is introduced as an input to obtain the relation between the
chemical potential and the charge density.

In this study, we introduce a holographic mean-field theory for fermions to
describe many-body systems of dynamical fermions including baryons. In the
boundary theory, the one-point expectation value of the fermionic operator has to
vanish (in the absence of the conjugate fermionic source) while the bi-linear oper-
ator of the fermions, such as the density operator, can carry a non-zero expectation
value: the conventional mean-field approach makes sense for the bi-linear opera-
tors, but not for the fermionic field itself. However, we point out that the things
are different in the holographic dual. The expectation value of the fermionic oper-
ator is given by the boundary value of the corresponding bulk fermionic field [65].
Therefore, we can introduce a non-vanishing classical fermionic field in the bulk
while maintaining the expectation value of the boundary fermionic operator to be
zero. The non-vanishing bulk fermionic field induces non-zero expectation val-
ues of the bi-linear operators, such as the charge density which is detected by the
derivative of theU(1) gauge field. We call the non-vanishing classical fermionic
field in the bulk theholographic mean field. The dynamical distribution of the
fermions along the radial direction is realized by the dynamics of the holographic
mean field.
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The holographic mean field is requested to carry theU(1) charge. The coupled
equations of motion for the fermions and theU(1) gauge field give an eigenvalue
equation from which the chemical potential is unambiguously fixed. It will also
be shown that the chemical potential at the zero-density limit automatically agrees
with the mass of the fermion. Thus, the above mentioned problems are resolved
in harmony in our approach.

5.2 The holographic mean-field theory

Let us consider a dual geometry without an event horizon whose metric of the
non-compact 5d part depends only on the radial coordinate, the fifth direction.
The 5d metric can be transformed to the conformally flat metric

ds2
5d = H(w)(dw2 + ηµνdxµdxν) , (5.1)

by an appropriate coordinate transformation unless the geometry has a horizon.
Here,ηµν is diag(−,+,+,+). We consider the dimensionally-reduced theory on
the 5d geometry (5.1) assuming that all the bulk fields depend only on (w, xν). We
introduce a Dirac spinorΨ on the 5d geometry which interacts with a bulkU(1)
gauge fieldAM. The actions forΨ andAM are

SΨ =
∫

d4xdw
[
iΨ̄ΓM(∂M − iqAM)Ψ −m5(w)Ψ̄Ψ

]
,

SA =

∫
d4xdwLA , (5.2)

whereq andm5(w) denote the charge and the 5d mass of the fermion, respectively.
The vielbein and the spin connection are absorbed by a suitable field redefinition
of the fermion field. The possible boundary terms and the counter terms are omit-
ted here. Thew dependence ofm5(w) reflects the curvature of the original geom-
etry. ΓM are written in terms of the 4d Dirac matrices asΓν = γν (ν = 0,1,2,3)
andiΓw = γ5. We employ the probe approximation such that the fermion field and
the gauge field do not modify the geometry: we regardS = SΨ + SA as the total
action up to the action of the gravity sector.

We work in theAw(x,w) = 0 gauge, and replace the gauge field with the mean
field as

A0(x,w)→ A0(w) , Ai(x,w)→ Ai(w) , (5.3)
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wherei = (1,2,3). We identify

A0(w)
∣∣∣
boundary

= µ , Ai(w)
∣∣∣
boundary

= 0 (5.4)

whereµ is the chemical potential associated with the fermion charge. We now
explain how we formulate the holographic mean-field approach for the fermion
field. We introduce the holographic mean field as

Ψ(x,w)→ Ψ(w) . (5.5)

The non-vanishing mean field realizes the dynamical distribution of the charge in
w direction, which is given by

ρ(w) = qΨ†(w)Ψ(w) . (5.6)

The integration overw gives the 4d charge densityn. In the present analysis, we
switch off the fermionic source. The one-point expectation value of the fermionic
field of the boundary theory has to vanish in the absence of the fermionic source,
then

Ψ(w)
∣∣∣
boundary

= 0 . (5.7)

We also require that the mean fields are regular.
Now A′0 ≡ ∂wA0 is given by the Gauss-law constraint:

∂w
∂LA

∂A′0(w)
− qΨ†(w)Ψ(w) = 0 , (5.8)

while A′i ≡ ∂wAi is given by

∂w
∂LA

∂A′i (w)
− qΨ†(w)Γ0ΓiΨ(w) = 0 . (5.9)

The scalar potentialA0(w) is given by usingA′0(w):

A0(w) = µ +
∫ w

boundary
dw′A′0(w

′) ≡ µ + Ã0(w) . (5.10)

However, the boundary valueµ is arbitrary at this stage. In other words, whatever
value ofµ can give the same charge distribution. This has been a problem in
holographic models at finite density. This problem will be resolved by solving the
equation of motion forΨ(w):[

iΓw∂w + qΓ0A0(w) + qΓiAi(w) −m5(w)
]
Ψ(w) = 0 , (5.11)
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where the mean fieldΨ(w) and hence the charge distribution depend on the bound-
ary value ofA0(w).

Let us see how it works explicitly. We writeΨ(w) in terms of the two-
component spinorsΨ± as

Ψ(w) =

(
Ψ+
Ψ−

)
, (5.12)

with the Dirac matrices given by

iΓw =

(
0 1
1 0

)
,Γ0 =

(
1 0
0 −1

)
,Γi =

(
0 σi

−σi 0

)
. (5.13)

We assume rotational invariance in 3d space, thus we can takeA1(w) = A2(w) = 0,
and henceσ3Ψ± = Ψ± without loss of generality. From (5.11), we obtain

[∂w − qA3(w)]Ψ+ − [m5(w) + qÃ0(w)]Ψ− = qµΨ− ,

[∂w + qA3(w)]Ψ− − [m5(w) − qÃ0(w)]Ψ+ = −qµΨ+ . (5.14)

Solving (5.14) coupled with (5.8) and (5.9),qµ is obtained as the eigenvalue
for a given value ofn =

∫
dw qΨ†(w)Ψ(w). Note thatn determines the normal-

ization ofΨ(w) as well. In this way, the holographic mean-field theory provides
the equation of state (EOS): the relation between the 4d charge densityn and the
chemical potentialµ is determined dynamically. The new bulk condition to fix the
ambiguity ofµ in the GKP-Witten prescription is the regularity of the fermionic
mean field under (5.7).

In order to obtain the energy spectrum of the quasifermions for givenn, we
need to introduce the fluctuationsψ(x,w),aν(x,w) on top of the mean fieldsΨ(w),Aν(w)
as

Ψ(x,w) = Ψ(w) + ψ(x,w) ,

Aν(x,w) = Aν(w) + aν(x,w) . (5.15)

The 4d Fourier-transformed fluctuations obey

[iΓw∂w + Γ
0(p0 + qA0(w)) + Γ3qA3(w) + Γ⃗ · p⃗−m5(w)]ψ(p0, p⃗,w)

+ Ψ(w)Γνqaν(p0, p⃗,w) = 0 , (5.16)

where the mean fieldsA0(w),A3(w) are already determined above. By solving
(5.16) coupled with the equation of motion foraν for given momentum⃗p, we
obtain the energy eigenvaluep0 + qµ and thus the dispersion relation.
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Let us discuss the zero density limit,n → 0. (5.8) and (5.9) tell us that
Ã0(w)→ 0,A3(w)→ 0, and (5.14) becomes

∂wΨ+ −m5(w)Ψ− = qµΨ− ,

∂wΨ− −m5(w)Ψ+ = −qµΨ+ . (5.17)

On the other hand, atµ = 0, (5.16) is reduced to be

∂wψ+ −m5(w)ψ− = mfψ− ,

∂wψ− −m5(w)ψ+ = −mfψ+ , (5.18)

whereψ = (ψ+, ψ−)T and we usedΓνpνψ = mfψ.
The lowest eigenvaluemf of (5.18) for the non-vanishing eigenfunction under

the boundary conditionψ
∣∣∣
boundary

= 0 is the mass of the fermion in the ground state.
Therefore, the chemical potential determined by (5.17) for the non-vanishing den-
sity coincides with the fermion mass, i.e.,qµ → mf at the limit n → 0. We do
not find any nontrivial solutions forΨ(w) for |qµ| < mf , where there is no for-
mation of the Fermi surface. The chemical potentialµon for onset of the density
automatically agrees with the fermion mass in our approach as a consequence of
the dynamics. If we knowmf a priori, the conditionqµon = mf may be used to
fix the constant shift ofA0, but this does not necessarily fix the gauge at arbitrary
density.

5.3 The equation of state for baryon many-body sys-
tems

Now we demonstrate how to obtain the EOS for baryon many-body systems. We
apply our method to the model [39] dealing with the fluctuation of the baryon
field at µ = 0. The boundaries in this model are located atw = ±wmax, thus
the boundary conditions for the mean fields areA0(±wmax) = µ, A3(±wmax) = 0,
Ψ(±wmax) = 0. Hereµ denotes the baryon chemical potential and thenq = 1.
We assume that the theory is invariant under the 5d parity (t, x,w) → (t,−x,−w).
Therefore,A0(w) (A3(w)) is an even (odd) function ofw, and the regularity condi-
tion leads toA′0(0) = 0 (A3(0) = 0). From the parity invariance,Ψ+(w) is either
an even function ofw or an odd function. The former implies thatΨ+(w) is the
mean field for the even parity baryons, and the latter for the odd parity baryons.
Here we consider the distribution of the even parity baryons, and the regularity
condition requiresΨ′+(0) = 0.
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Figure 5.1: The EOS of the model (solid) compared with the one for the free

baryons (dashed):µ/µn→0 =

√
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Figure 5.2: The baryon charge distributionρ(w)/n for n/n0 = 0.1 (solid), 1
(dashed) and 2 (dotted). The boundary is located atw = wmax ≃ 3.64.
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We use the DBI action of the D8-branes asSA:

SA = −C
∫

d4xdwU1/4(w)
√

H3(w){H2(w) − (2πl2s/Nc)2[(A′0(w))2 − (A′3(w))2]} ,
(5.19)

whereC = (2π)−7(4π2/3)l−11/2
s λ1/4(2MKK )−1/4Nf Nc, and theA0(w) here isNc times

A0(w) in the standard convention. Here,MKK is the energy scale of the theory,λ
is the ’t Hooft coupling,Nc is the number of colors,Nf is the number of flavors,
and ls is the string length which does not show up in the end of the calculation.
The definitions ofU(w) andH(w) are given in [39].

We fix MKK andλ in the same way as in [14]:MKK = 949 MeV andλNc =

50. We considerNf = 2 case, and use the normal nuclear matter densityn0 =

0.16 fm−3 to scale the baryon number densityn. Figure 5.1 shows the resultant
EOS compared with the one for the free baryons. The chemical potentialµ in-
creases as the density grows. The increase ofµ is quite larger than that of the free
baryons, which indicates that the interactions among the baryons are taken into
account.

Figure 5.2 shows the density dependence of the baryon charge distribution
ρ(w), which is indeed regular. The distribution shifts to the boundary side as the
density grows. This implies that taking account of the distribution of the baryon
charge along the radial direction becomes important at the high density regions.

5.4 Discussions

We have proposed a holographic mean-field theory to analyze many-body sys-
tems of fermions. We have seen that our approach provides the relation between
the charge density and the chemical potential, the equation of state. We have ap-
plied this method to the HRYY model and have presented the equation of state
for baryon many-body systems. In this way, we obtain a way for analyzing holo-
graphic models in which the dynamics of the baryons and that of theU(1)B gauge
fields in the bulk are inclusively considered.

We expect that our approach is applicable to various physical subjects related
to dense matter. Investigating the density dependence of the masses/dispersion
relations and the decay constants of hadrons and the couplings among them must
be interesting. When we discuss the stability of neutron stars, it is important to
obtain the equation of state for the nuclear matter, and our approach can help it.

Of course, improving our approach to obtain a more sophisticated model is
also valuable. One direction is to include anti-fermion degrees of freedom which
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is neglected in our approach. Another direction is to take into account the back-
reaction of the matter to spacetime geometry which becomes important at high
density regions.
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Chapter 6

Summary

We have presented our studies about QCD at finite density using effective models.
In Chapter 2, we have explored general features of thermodynamic quanti-

ties and hadron mass spectra in a possible phase where chiralS U(2)L × S U(2)R
symmetry is spontaneously broken while its centerZ2 symmetry remains. In this
phase, chiral symmetry breaking is driven by a quartic quark condensate rather
than a bilinear quark condensate which is possible at finite density. A Ginzburg-
Landau study leads to a new tricritical point between theZ2 broken and unbroken
phases. The quark number density exhibits an abrupt change near the restoration
of the center symmetry rather than that of the chiral symmetry. Hadron masses in
possible phases are also studied in a linear sigma model. We have shown that, in
the Z2 symmetric phase, the Nambu-Goldstone boson is a pure four-quark state,
and the masses of the nucleon in the excited state and its parity partner are degen-
erated.

In Chapter 3, we have reviewed previous studies about holographic models of
QCD. We have shown how the mass and the decay constants are calculated in the
hard-wall model. Then we have shown the construction of the Sakai-Sugimoto
model. We have also mentioned some attempts to introduce baryons into the
Sakai-Sigimoto model.

In Chapter 4, we have investigate theρ − a1 mixing in dense baryonic matter
by using a holographic model in the bottom-up approach. We have used a 5d
geometry such that the backreaction of the matter to spacetime geometry is taken
into account. In the model, the 5d Chern-Simons term causes a mixing between
the ρ anda1 mesons at finite density and at finite momentum. We have shown
that the mixing betweenρ anda1 becomes stronger due to the backreaction of
the mater to the spacetime geometry. The holographic model we have used here
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is though, does not include dynamical baryons despite we consider the system in
dense baryonic matter. This gives us a strong motivation to obtain the holographic
model at finite density including dynamical baryons.

In Chapter 5, we have proposed the holographic mean-field theory to analyze
many-body systems of fermions including baryons. We have applied our approach
to the HRYY model to obtain the holographic model for finite-density systems of
baryons, and have presented the equation of state for the system.

We think that our studies surely made some contributions to get a better un-
derstanding about QCD at finite density, but at the same time, we feel that we still
have a long way to go. We hope QCD will continuously provide many interesting
topics to study and keep us enjoyed and annoyed.
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Appendix A

Phase boundaries from
Ginzburg-Landau potential

The relevant expressions for the phase boundaries obtained from the potential (2.10)
are given below. We will takeD = F = 0 and the chiral limith = 0.

• Second-order phase transition whenB ≥ 1/4:

A = 0 . (.1)

The solutions forσ andχ on this boundary are given by

(σ0 , χ0) = (0 ,0) . (.2)

• First-order phase transition when 0≤ B < 1/4 and 0< A ≤ 1/8:

A =

3
8
−

√(
3
8

)2

+
1
2

(
B− 1

4

)
√√√
−3

8
− 2

(
B− 1

4

)
+

√(
3
8

)2

+
1
2

(
B− 1

4

)
. (.3)
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The solutions forσ andχ on this boundary are given by

(σ0 , χ0)

= (0 ,0) ,±
1
2

1
8
+

√(
3
8

)2

+
1
2

(
B− 1

4

)
√√√
−3

8
− 2

(
B− 1

4

)
+

√(
3
8

)2

+
1
2

(
B− 1

4

)
1/2

,

1
2

√√√
−3

8
− 2

(
B− 1

4

)
+

√(
3
8

)2

+
1
2

(
B− 1

4

) . (.4)

• First-order phase transition when−1/8 < B < 0 and 1/8 < A < 1/4:

A =
1
8
− B . (.5)

The solutions forσ andχ on this boundary are given by

(σ0 , χ0) =

0 ,±√
−B
2

 ,
±

√
1
2

(
B+

1
8

)
,
1
4

 . (.6)

• Second-order phase transition whenB ≤ −1/8 andA ≥ 1/4:

A =

√
−B

2
. (.7)

The solutions forσ andχ on this boundary are given by

(σ0 , χ0) =

0 ,±√
−B
2

 . (.8)

• Second-order phase transition whenA > 1/8:

B = 0 . (.9)

The solutions forσ andχ on this boundary are given by

(σ0 , χ0) = (0 ,0) . (.10)
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