
ADVANCED INTEGRATION TECHNIQUES
FOR HIGHLY RELIABLE

DUAL-OS EMBEDDED SYSTEMS

DANIEL SANGORRIN LOPEZ

mailto:daniel.sangorrin@gmail.com

II

Title in Japanese

高信頼デュアルOS組込みシステムにおける統合技術。

Keywords

Reliability, Dual-OS systems, Virtualization, Embedded, Real-Time, ARM, TrustZone, De-
vice sharing, Scheduling, Communications.

Preface

Except where indicated below, this dissertation is the result of my own work and includes
nothing which is the outcome of work done in collaboration. This dissertation is not sub-
stantially the same as any that I have submitted for a degree or diploma or other qualification
at any other University.

The work reported in § 2.5 (SafeG) was originally carried out at Nagoya University’s
center for embedded computing systems (NCES) before I started my research. During my
time as a doctoral student I contributed to the maintenance, dissemination and extension of
SafeG as a main developer.

On the subject of spelling, the author sides with the Oxford English Dictionary, who
justify their consistent use of the termination -ize as opposed to -ise.

This dissertation contains 42 figures, 14 tables and approximately 32,819 words.

Daniel Sangorrı́n López
Embedded and Real-Time Systems Laboratory
Nagoya University (Japan)
27th July 2012

III

IV

Acknowledgements

Associate Professor Shinya Honda has been an excellent supervisor, and I cannot thank him
enough for his support, guidance, patience, and for being so generous with his time. His
contributions both to this thesis and to my happiness at Nagoya these last few years are very
gratefully acknowledged. I also thank my advisor Professor Hiroaki Takada for his time and
support, and for giving me the opportunity to carry out my PhD in such a wonderful country.

Financial support from the Japanese Government (Monbukagakusho) scholarship is
gratefully acknowledged.

I have met some wonderful people here in Nagoya. I am very grateful to my laboratory
colleagues for their encouragement, and to my friends for making my time in Nagoya so
happy and memorable.

This thesis is dedicated to my family, for loving me and supporting me in everything
that I have wanted to do.

V

VI

Abstract

This thesis considers dual-OS virtualization for consolidating a trusted real-time operat-
ing system (RTOS) and an untrusted general-purpose operating system (GPOS) onto the
same hardware platform. Research on dual-OS systems is motivated by their smaller hard-
ware cost—due to the fact that hardware is shared—and their ability to address the in-
creasing complexity of modern embedded systems—by leveraging the GPOS advanced
functionality—without affecting the timely behavior of the RTOS. The most fundamental
requirement of a dual-OS system is guaranteeing the reliability and real-time performance
of the RTOS against any misbehavior or malicious attack coming from the untrusted GPOS.
For that reason, we use a dual-OS system (SafeG) that supports complete isolation of the
memory and devices assigned to the RTOS; and gives higher priority to the execution of the
RTOS. The SafeG dual-OS system is based on ARM TrustZone Security extensions, and its
main component is the SafeG monitor, which is used to context-switch between both OSs.

Although the mere execution of the RTOS and the GPOS in isolation may satisfy the
requirements of some systems, increasing the integration of the dual-OS system can lead
to performance improvements, new collaborative applications with higher sophistication,
and a further decrease of the hardware cost. The main three novel contributions to the
reliable integration of a dual-OS system proposed in this thesis are: an integrated scheduling
framework; efficient dual-OS communications; and repartition-based device sharing.

The integrated scheduling framework supports the interleaving of the execution pri-
ority levels of both OSs with high granularity, and uses execution-time reservations for
guaranteeing the timeliness of the RTOS. The evaluation results show that the framework
is suitable for enhancing the responsiveness of the GPOS time-sensitive activities without
compromising the reliability and real-time performance of the RTOS.

Dual-OS communications allow RTOS and GPOS applications to collaborate in com-
plex distributed applications. Traditional approaches are usually implemented by extending
the virtualization layer with new communication primitives. We present a more efficient
approach that minimizes the communication overhead caused by unnecessary copies and
context switches; and satisfies the strict reliability requirements of the RTOS.

Finally, we consider mechanisms for sharing devices reliably in dual-OS systems. We
note that previous approaches based on paravirtualization are not well suited to device shar-
ing patterns where the GPOS share greatly exceeds that of the RTOS. For that reason, we
propose two new approaches that are based on dynamically re-partitioning devices between
the RTOS and the GPOS at runtime. The evaluation results show an interesting trade-off
between overhead, functionality and device latency.

VII

VIII

Nomenclature

• ARM: Advanced Risc Machine.

• ASP: Advanced Standard Profile.

• ATK: Automotive Kernel.

• CAD: Computer-Aided Design.

• CAM: Computer-Aided Manufacturing.

• CNC: Computer Numerical Control.

• CPSR: Current Program Status Register.

• CPU: Central Processing Unit.

• DMA: Direct Memory Access.

• Dualoscom: Dual-OS Communications.

• ECU: Electronic Computing Unit.

• FIQ: Fast Interrupt Request.

• GPOS: General-Purpose Operating System.

• HMI: Human-Machine Interface.

• I/O: Input/Output.

• IRQ: Interrupt Request.

• IS: Integrated Scheduling.

• NS: Non-Secure.

• OS: Operating System.

• PLC: Programmable Logic Controller.

• RPC: Remote Procedure Call.

• RTOS: Real-Time Operating System.

• SafeG: Safety Gate.

• SMC: Secure Monitor Call.

• SWI: Software Interrupt.

• TCB: Trusted Computing Base.

• TOPPERS: Toyohashi OPen Platform for Embedded Real-time Systems.

• TPM: Trusted Platform Module.

• TZIC: TrustZone Interrupt Controller.

• TZPC: TrustZone Protection Controller.

• UCB: Untrusted Computing Base.

• VCPU: Virtual CPU.

IX

X

• V-Device: Virtual Device.

• VMM: Virtual Machine Monitor.

• VL: Virtualization Layer.

Contents

Contents XI

List of Figures XV

List of Tables XVII

1 Introduction 1
1.1 Motivation . 1

1.2 Overview . 2

2 Background 3
2.1 Real-time embedded systems . 3

2.2 Definition of a dual-OS system . 4

2.2.1 Dual-OS system example . 5

2.2.2 Dual-OS system requirements . 6

2.3 Dual-OS systems: state of the art . 8

2.3.1 Idle scheduling . 10

2.3.2 Comparison of existing approaches 11

2.4 Overview of the ARM architecture . 12

2.4.1 Introduction . 12

2.4.2 Register file . 13

2.4.3 CPU modes . 13

2.4.4 Coprocesors . 14

2.4.5 Exceptions . 14

2.4.6 ARM TrustZone . 15

2.5 The SafeG dual-OS system . 16

2.5.1 TrustZone configuration in SafeG 16

2.5.2 Execution flow model of SafeG 17

XI

XII CONTENTS

3 Integrated scheduling 19
3.1 Introduction . 19

3.2 Motivational example . 20

3.3 Assumptions and requirements . 22

3.4 Integrated scheduling architecture . 23

3.4.1 Overview and merits . 24

3.4.2 Groups of GPOS activities . 25

3.4.3 GPOS scheduling events . 25

3.4.4 Tracking GPOS scheduling events of type 1 and 2 26

3.4.5 Tracking GPOS scheduling events of type 3 27

3.4.6 IS Manager . 27

3.4.7 RTOS protection . 30

3.4.8 Example . 31

3.5 Implementation . 33

3.5.1 Implementation platform . 33

3.5.2 Linux kernel modifications . 33

3.5.3 TOPPERS/ASP modifications . 34

3.6 Evaluation . 34

3.6.1 Requirement 3.1: GPOS Latency 34

3.6.2 Requirement 3.2: RTOS timeliness 35

3.6.3 Requirement 3.3: overhead . 36

3.6.4 Requirement 3.4: GPOS modifications 37

3.6.5 Requirement 3.5: RTOS modifications 37

3.6.6 Requirement 3.6: SafeG modifications 38

3.6.7 Use case example . 38

3.7 Related work . 40

3.8 Conclusions . 41

4 Dual-OS communications 43
4.1 Introduction . 43

4.2 Background . 44

4.2.1 Dual-OS communications . 44

4.2.2 Related work . 45

4.3 Requirements and assumptions . 46

4.3.1 Reliability requirements . 46

4.3.2 Efficiency requirements . 46

CONTENTS XIII

4.3.3 Assumptions . 47

4.4 Communications architecture . 47

4.4.1 Satisfying reliability requirements 48

4.4.2 Satisfying efficiency requirements 50

4.4.3 Communication channels . 51

4.4.4 Dualoscom interface . 52

4.4.5 Middleware . 56

4.5 Implementation . 59

4.5.1 Implementation platform . 59

4.5.2 Code modifications . 59

4.5.3 Initialization steps . 60

4.6 Evaluation . 60

4.6.1 Requirement 4.1: memory isolation 61

4.6.2 Requirement 4.2: shared control data 61

4.6.3 Requirement 4.3: real-time . 62

4.6.4 Requirement 4.4: memory faults 63

4.6.5 Requirement 4.5: unbounded blocking 64

4.6.6 Requirement 4.6: code modifications 64

4.6.7 Requirement 4.7: throughput . 64

4.6.8 Requirement 4.8: memory size . 66

4.6.9 Requirement 4.9: interface . 66

4.6.10 Discussion . 66

4.7 Conclusions . 66

5 Reliable device sharing 67
5.1 Introduction . 67

5.2 Motivation . 68

5.3 Reliable device sharing . 70

5.3.1 Requirements and assumptions . 70

5.3.2 Suitability of existing device sharing approaches 70

5.3.3 Reliable device sharing through re-partitioning 73

5.4 Implementation . 77

5.5 Evaluation . 78

5.5.1 Overhead . 78

5.5.2 Device latency . 80

5.5.3 Code modifications . 81

XIV CONTENTS

5.5.4 Discussion . 81
5.6 Related work . 81
5.7 Conclusions . 83

6 Conclusions and future work 85
6.1 Summary . 85
6.2 Suggestions for future work . 86

Bibliography 87

List of publications by the author 95

List of Figures

2.1 Overview of a real-time embedded system. 3

2.2 Architecture of a generic dual-OS system. 5

2.3 Motivational example for the research on dual-OS systems. 6

2.4 Hybrid kernel approach. 8

2.5 VMM/Hypervisor approach. 9

2.6 Partitioning approach. 10

2.7 The idle scheduling principle. 10

2.8 ARM general-purpose and program status registers. 12

2.9 SafeG architecture . 16

2.10 SafeG idle scheduling. 17

2.11 Execution paths of the SafeG monitor. 18

3.1 Use case example. 21

3.2 Execution priority levels for the motivational example. 22

3.3 Integrated scheduling architecture. 24

3.4 Pseudocode of the GPOS scheduler hook function. 26

3.5 Tracking GPOS interrupts. 27

3.6 IS Manager architecture. 28

3.7 Pseudocode of the scheduling events FIQ handler. 28

3.8 Pseudocode of the Manager task. 29

3.9 Timeline: GPOS real-time task activation. 31

3.10 Evaluation of requirement 3.1. 35

3.11 Evaluation of requirement 3.2. 35

3.12 Frames per second in each scheduling approach. 39

4.1 Dual-OS communications example. 44

4.2 Previous communication approaches. 45

4.3 The proposed dual-OS communications architecture. 48

XV

XVI LIST OF FIGURES

4.4 Elements of a dualoscom communication channel. 49
4.5 Behavior of the filtering functionality in both communication directions. . . 50
4.6 The dualoscom build process. 53
4.7 Pseudocode of RPC communication. 57
4.8 Support for sampling messages on top of the dualoscom interface. 58
4.9 Limiting mechanisms for dealing with message overload attacks. 62
4.10 Evaluation of message interrupt limiting. 63
4.11 Overhead comparison. 65
4.12 Execution flow comparison. 65

5.1 Motivational example for device sharing applied to an in-vehicle system. . . 69
5.2 Device sharing approaches (VL=Virtualization Layer, comm.=Dual-OS com-

munications, V-Device=Virtual Device). 71
5.3 Architecture of the pure re-partitioning mechanism. 74
5.4 Pseudocode of the pure re-partitioning mechanism. 75
5.5 Architecture of the hybrid re-partitioning mechanism. 75
5.6 Pseudocode of the hybrid re-partitioning mechanism. 76
5.7 CPU performance for each mechanism. 79

List of Tables

2.1 Differences between real-time and general-purpose systems. 4
2.2 Comparison among dual-OS system approaches. 11
2.3 ARM exception vector table. 14

3.1 Overhead of the IS architecture. 36
3.2 Source code lines and binary size increase. 37
3.3 Tasks in the use case example. 38

4.1 Requirements Vs. Our design choices. 47
4.2 Overhead of the four steps algorithm. 61
4.3 Tasks for the evaluation of the message interrupt rate limiting functionality. 62
4.4 Size increase. 64

5.1 Qualitative comparison of device sharing approaches. 72
5.2 Execution time overhead per register access. 79
5.3 Device latency of each mechanism. 80
5.4 Number of source lines of code modified. 80

XVII

XVIII

Chapter 1

Introduction

This chapter briefly introduces the contents of this thesis. The chapter starts with the moti-

vation for our research, and then shows an overview of the main results obtained.

1.1 Motivation

Methods that consolidate a real-time control system and a highly functional system on a
single platform for reducing hardware costs are gaining considerable interest from different
embedded domains[13]. For example, the market for in-vehicle technology has experienced
a rapid growth. New cars include sophisticated parking and driving aid systems, as well as
less-critical functionality such as navigation, multimedia or Internet connectivity[19].

In order to develop highly functional applications—such as a web browser or a media
player—efficiently, a general-purpose operating system (GPOS) with its advanced libraries
is considered essential. However, most GPOSs are not able to satisfy the strict reliability
requirements of real-time control systems due to their large scale[4, 21]. Instead, a target-
specific real-time operating system (RTOS) running on a different hardware platform has
been traditionally used. A promising approach to cope with such complexity at a lower
hardware cost is the use of a dual-OS system[18, 14, 10] for consolidating an RTOS and a
GPOS on the same platform thanks to the use of a virtualization layer (VL).

The goal of this work is to investigate mechanisms that allow for a tighter integration be-
tween the RTOS and the GPOS activities inside a dual-OS system. The motivation behind it
is threefold: to address the latency bottleneck caused by RTOS background tasks on GPOS
activities that require short response times; to enable the development of new collaborative
applications with higher sophistication; and to further decrease the system’s hardware cost
through mechanisms that allow both OSs to share devices reliably.

1

2 CHAPTER 1. INTRODUCTION

1.2 Overview

The main three novel contributions to the reliable integration of a dual-OS system proposed
in this thesis are as follows:

• An integrated scheduling framework which supports the interleaving of the execution
priority levels from both OSs with high granularity. The framework uses execution-
time reservations for guaranteeing the timeliness of the RTOS. The evaluation results
show that the framework is suitable for enhancing the responsiveness of the GPOS
time-sensitive activities without compromising the reliability and real-time perfor-
mance of the RTOS.

• Dual-OS communications which allow the RTOS and GPOS to collaborate in com-
plex distributed applications. In contrast to traditional approaches based on extending
the virtualization layer with new communication primitives—which imposes a rather
high overhead—we present a more efficient approach that minimizes the communi-
cation overhead caused by unnecessary copies and context switches; and satisfies the
strict reliability requirements of the RTOS.

• Mechanisms for sharing devices reliably in dual-OS systems. We note that previous
approaches based on paravirtualization are not well suited to device sharing patterns
where the GPOS share greatly exceeds that of the RTOS. For that reason, we pro-
pose two new approaches that are based on dynamically re-partitioning devices be-
tween the RTOS and the GPOS at runtime. From the evaluation results, we observe
a trade-off between the lower overhead and higher functionality of the re-partitioning
approaches; and the shorter device latency of the paravirtualization approach.

The techniques mentioned above were all implemented on an real embedded platform
running a highly reliable dual-OS system (SafeG) that was developed in previous work.
From the evaluation results, we could confirm that the presented techniques are useful for
improving the integration of dual-OS systems, without affecting the reliability of the RTOS.

The remainder of this thesis is organized as follows. Chapter 2 reviews the state of the
art in dual-OS systems, and introduces details about the highly reliable dual-OS system
(SafeG) that will be extended throughout the thesis. Chapters 3 to 5 are dedicated to the
explanation of the three main contributions mentioned above. Finally, chapter 6 concludes
this thesis and discusses future work.

Chapter 2

Background

This chapter reviews the state of the art in dual-OS real-time embedded system techniques,

and summarizes the main aspects of SafeG—a highly reliable dual-OS system developed in

previous work—whose understanding is necessary for the remainder of the thesis.

2.1 Real-time embedded systems

This thesis focuses on real-time embedded systems which result from the combination of
typically resource-constrained hardware (i.e., processor and I/O) and special-purpose soft-
ware designed to interact with a changing external environment within a larger system (see
figure 2.1). In a real-time embedded system, the correctness of the system’s behavior not
only depends on the computed results, but also on the time at which they are generated.

Real-time applications typically consist of several concurrent tasks running on a special-
purpose real-time operating system (RTOS). Tasks are triggered by the arrival of certain
external events (e.g., a periodic clock event); and must provide a response (i.e., complete
their work) before a time limit called deadline. The timespan between the instant when an
event arrives and the instant when the corresponding task provides a response is known as
latency or response time.

Digital or
Analog I/OExternal

Environment
Clock

CPU

Real-Time Software

RTOS

Task Task Task

Communi-
cations

Other
Computers

Other I/O

Figure 2.1: Overview of a real-time embedded system.

3

4 CHAPTER 2. BACKGROUND

Table 2.1: Differences between real-time and general-purpose systems.

Property General-purpose system Real-time embedded system
Capacity High throughput Schedulability

Complexity High functionality High reliability
Responsiveness Fast average response Ensure worst-case latency

Overload Fairness Stability of critical part
Size Large scale Small scale

Table 2.1 shows the main differences between the properties of a real-time embedded
system and a general-purpose (conventional) system. General-purpose systems are mainly
concerned with increasing the average-case performance. Thus, their most important mea-
sures of merit are a high throughput, a high functionality—which typically comes at the cost
of a larger size—a fast average response time, and fairness to all of its tasks. In contrast,
real-time embedded systems are more concerned with ensuring that their worst-case behav-
ior is predictable and acceptable. In particular, the reliability of the system and its ability
to satisfy its timing requirements (i.e., schedulability) are paramount. For that reason, real-
time embedded system engineers normally avoid including functionality that is not strictly
necessary; and instead try to minimize the amount of trusted software. Real-time embedded
systems also replace the notion of fairness by the notion of stability—note that if all timing
requirements are met, then starvation or fairness are not an issue anymore. The notion of
stability implies that a system that becomes unable to meet all of its timing requirements
should at least ensure the deadlines of the most critical tasks, even at the cost of starving
other less critical tasks.

During the following chapters, we will use the terms real-time performance and time-

liness interchangeably for referring to the timing requirements of a real-time embedded
system. Also, we define hard timing requirements as those whose dissatisfaction results in
a system failure; and soft timing requirements as those whose dissatisfaction results in the
degradation of the system performance.

2.2 Definition of a dual-OS system

A dual-OS system[12, 13, 18, 14] is a method for consolidating a real-time operating system
(RTOS) and a general-purpose operating system (GPOS) onto the same embedded platform
for reducing the total hardware cost (see figure 2.2). This is usually achieved through a vir-
tualization layer (VL) that allows multiplexing the underlying hardware resources between
both operating systems. The RTOS provides support for applications with strict reliability

2.2. DEFINITION OF A DUAL-OS SYSTEM 5

RTOS
(e.g., TOPPERS)

GPOS
(e.g., Linux)

Virtualization Layer (VL)

CPU

Trusted
Untrusted

Figure 2.2: Architecture of a generic dual-OS system.

requirements (e.g., timeliness, isolation and security requirements). Both the RTOS and
the VL are small scale and considered to belong to the trusted computing base (TCB). In
contrast, the GPOS provides support for applications with high functionality requirements,
and is considered to belong to the untrusted computing base (UCB) due to its large scale.

2.2.1 Dual-OS system example

Figure 2.3 illustrates a motivational example that applies the dual-OS system concept to a
computer numerical control (CNC) system. CNC systems are often used in the manufactur-
ing business for any process that can be described as a series of movements and operations
(e.g., laser cutting, welding or picking and placing). Typical CNC machines have at least
four motors driving motion axes that must move synchronously and with very high preci-
sion. The loss of a single control cycle causes the CNC machine to enter fault state, in order
to prevent the machine from moving in such a way that can be harmful to the parts being
machined or the machine tools themselves. The reliability and real-time requirements of
the software controlling a CNC machine are very strict. For that reason, most CNC systems
run their control software on top of a deterministic and highly reliable RTOS.

However, vendors need to increase the productivity of their CNC systems for being
competitive. For example, having a good user interface, better usability or flexibility repre-
sents extra value to their customers. Most CNC systems accomplish that by leveraging the
rich functionality of a GPOS to support advanced features such as human-machine interface
(HMI) software, data logging, machine program development or remote interfaces.

Thus, the challenge for CNC vendors is to find an efficient method for combining all
these applications with conflicting requirements into the same system. The traditional ap-
proach followed by most vendors is depicted in figure 2.3(a). It involves the use of two
separate electronic computing units (ECUs) for running an RTOS and a GPOS. The main
disadvantage of this approach is the extra hardware cost caused by the need of two sepa-
rate ECUs. In contrast, figure 2.3(b) illustrates an alternative approach that uses a dual-OS
system for consolidating both OSs on a single ECU in order to reduce the hardware cost.

6 CHAPTER 2. BACKGROUND

Human-Machine Interface (HMI)

GPOS

CPU

CAD/CAM Software
HMI Software Remote

Interface

ECU #1

RTOS

CPU

Supervisory PLC
CNC Software

ECU #2

Motors

CNC machine

(a) Traditional CNC system based on two separated ECUs.

HMI

GPOS

CAD/CAM Software
HMI Software

Remote
InterfaceECU #1

RTOS

Virtualization Layer (VL)

Supervisory PLC
CNC SoftwareMotors

CNC machine

CPU

(b) CNC system based on a dual-OS system on a single ECU.

Figure 2.3: Motivational example for the research on dual-OS systems.

2.2.2 Dual-OS system requirements

No matter what the implementation strategy is, any dual-OS system should satisfy a set of
fundamental requirements[15]. The following set of requirements for dual-OS systems has
been created by taking into account the needs of several embedded domains, such as CNC
machines, car navigation systems, chemistry control systems and mobile phones.

REQUIREMENT 2.1 Overhead: minimize any unnecessary overhead.

REQUIREMENT 2.2 Timeliness: guarantee the real-time performance of the RTOS.

REQUIREMENT 2.3 Isolation: protect the RTOS memory and devices against any misbe-
havior or attack coming from the UCB.

REQUIREMENT 2.4 Maintainability: minimize modifications to the source code.

REQUIREMENT 2.5 TCB Size: minimize the size of the TCB.

REQUIREMENT 2.6 Integration: provide mechanisms for the deep integration of both op-
erating systems without affecting the reliability of the TCB.

2.2. DEFINITION OF A DUAL-OS SYSTEM 7

Requirement 2.1 is related to the decrease in performance caused by the interposition of
a VL between the guest operating systems and the underlying hardware platform. Dual-OS
systems must minimize this overhead.

Requirement 2.2 is fundamental for the timely behavior of RTOS applications. There-
fore, dual-OS systems must guarantee that the RTOS has full control over the timing behav-
ior of its tasks and interrupt handlers. As a corollary, it follows that the RTOS worst-case
latency must be bounded regardless of any misbehavior by the GPOS.

Requirement 2.3 is defined because the large scale of GPOS software often leads to the
appearance of defects (i.e., bugs) that can potentially compromise the reliability and security
of the RTOS. Therefore, protecting the RTOS memory and devices against any misbehavior
or malicious attack coming from the UCB is necessary to guarantee the correct execution
of the RTOS. In particular, dual-OS systems must also protect the RTOS memory against
DMA attacks—caused by devices with direct memory access that are maliciously controlled
by the GPOS. Additionally, the RTOS in a dual-OS system is often used as a replacement
for the trusted platform module (TPM[22]) in security applications. In such scenarios, the
RTOS memory and device registers may contain sensitive data that must not be accessible
by the GPOS. For that reason, memory and device isolation must be implemented not only
for write but also for read GPOS accesses.

Requirement 2.4 refers to the fact that running two operating systems onto the same
platform may involve changes (e.g., kernel patches) to their hardware abstraction layer. In
particular, the maintenance of these changes on a large-scale and rapidly evolving GPOS has
been proven to be an extremely hard job[1]. Therefore, dual-OS systems should minimize
the amount of changes required to guest OSs.

Requirement 2.5 refers to the fact that in order to achieve a high degree of reliability the
size and complexity of the trusted code must be minimized.

Requirement 2.6 has a wider meaning than the other previous requirements. It expresses
the fact that running the two guest OSs in complete isolation can cause certain inefficiencies.
In particular, a few problems that can benefit from a better integration of both OSs are the
scheduling of GPOS soft real-time tasks and interrupts (see § 3.2); services that require a
communications system between both OSs (see § 4.2.1); and device sharing (see § 5.2).
Note that although a dual-OS system should contribute to the tighter integration of both
OSs, this integration must not affect the satisfaction of the other set of requirements.

In § 2.3, we perform a comparison among several existing approaches to the imple-
mentation of dual-OS systems, and qualitatively evaluate their ability to satisfy the set of
requirements defined above.

8 CHAPTER 2. BACKGROUND

VL

RTOS Patched GPOS

CPU

RTOS Devices GPOS Devices

Highly Functional
Applications

Control
Applications

Privilege
Level 2

Privilege
Level 1

security
attack

direct
access

access to RTOS
and peripherals
not protected

Figure 2.4: Hybrid kernel approach.

2.3 Dual-OS systems: state of the art

The majority of the existing approaches to consolidating an RTOS and a GPOS onto the
same platform can be classified in the following categories:

• Hybrid kernels: this was one of the first successful approaches to the consolidation
of an RTOS and a GPOS onto the same platform. Although details vary depending
on the implementation[39, 10, 11], virtually all of them were based on patching the
GPOS kernel code (usually Linux) with a software VL that controls the interrupt
controller and gives priority to the execution of the RTOS. Figure 2.4 depicts the
hybrid kernel approach. The main advantage of this approach is its low overhead
thanks to the fact that both operating systems execute with the highest privilege level
of the processor, and therefore have direct access to the hardware. However, this
comes at the cost of not having enough memory isolation between both OSs. For
that reason, the RTOS is vulnerable to malicious attacks or faults in the GPOS. For
example, if the GPOS runs out of control and disables all interrupts, the RTOS would
not be able to recover control. Furthermore, the GPOS may access memory assigned
to the RTOS, causing its failure or stealing sensitive information.

• Virtual Machine Monitor (VMM) or Hypervisor: this approach consists of virtualizing
the underlying hardware resources and multiplexing them between several guest op-
erating systems. Although originally VMM approaches have focused on cloud com-
puting systems[16] with many guest OSs, the same virtualization techniques can be
applied for the implementation of dual-OS systems[4, 6]. There exist several methods
to implement virtualization of resources. However, hypervisors for dual-OS systems
usually expose a software interface (paravirtualization) and require the hardware ab-

2.3. DUAL-OS SYSTEMS: STATE OF THE ART 9

RTOS

VMM/Hypervisor (VL)

CPU

GPOS

Control
Applications

Highly Functional
Applications

modifications modifications

Privilege
Level 2

Privilege
Level 1hypercall

Figure 2.5: VMM/Hypervisor approach.

straction layer of the guest OSs to be modified (see figure 2.5). The main advantage
of the VMM/Hypervisor approach over the hybrid kernel approach is a better isola-
tion among the guest operating systems. This is achieved by executing them under a
lower processor privilege level and enforcing their isolation through memory protec-
tion mechanisms. In this sense, we can say that hypervisors are close to the concept
of microkernels[4] because they focus on minimizing the amount of software that be-
longs to the TCB. The main disadvantages of this approach are the execution overhead
caused by the need to call the hypervisor (hypercalls) for the execution of privileged
operations; and the amount of modifications to the guest operating systems[1] re-
quired. Additionally, many implementations are vulnerable to DMA attacks against
the RTOS memory, caused by devices controlled by a compromised GPOS[68].

• Hardware-aid resource partitioning: this approach consists of partitioning all of the
hardware resources in the system, and assigning those that are critical for the reliabil-
ity of the system to the RTOS and the rest of them to the GPOS. The main advantages
of this approach are its strong isolation—including protection against DMA-based
attacks—and near native performance, because both OSs can access their correspond-
ing devices directly. Another important advantage is the fact that guest OSs do not re-
quire extensive modifications. On the downside, this approach usually has strong de-
pendencies on the underlying hardware; and lower flexibility compared to the VMM
approach. Figure 2.6(a) depicts an architecture that implements the partitioning ap-
proach by using customized dual-core hardware as in [23]; and figure 2.6(b) depicts
an alternative architecture that uses hardware virtualization extensions to accomplish
the same goal. In § 2.5 we describe SafeG, an implementation of the partitioning
approach based on the ARM TrustZone hardware virtualization extensions.

10 CHAPTER 2. BACKGROUND

CPU

RTOS Devices GPOS Devices

Trusted
Untrusted

OK

Access
Sandbox

Forbidden
RTOS

Highly Functional
Applications

VL

GPOS

Control
Applications

Privilege
Level 0

Privilege
Level 1

Privilege
Level 2

attack

access to RTOS
and peripherals

is protected
direct

access

Highly Functional
Applications

GPOS

Control
Applications

RTOS

CPU #1 CPU #2

RTOS Devices GPOS DevicesShared Devices

(b) Architecture based on a software/hardware virtualization layer.

(a) Architecture based on customized hardware (e.g., FPGA).

Figure 2.6: Partitioning approach.

2.3.1 Idle scheduling

Most existing single-core dual-OS system implementations[39, 10, 5, 6] use the so-called
idle scheduling principle for multiplexing processing time. This principle, illustrated by fig-
ure 2.7, implies that the GPOS—including its soft real-time tasks and interrupt handlers—
always executes with lower global priority than the RTOS. Thanks to this principle, dual-OS
system architectures can guarantee that the real-time performance of the RTOS is indepen-
dent of the execution of the GPOS, as required by requirement 2.2 (timeliness).

GPOS
Interrupt handlers
Real-Time Tasks

Normal Tasks
RTOS

Interrupt handlers
Critical Tasks

Middle Prio Tasks
Background Tasks

RTOS Global Priority (GP) GPOS
+ ++

- - -

Figure 2.7: The idle scheduling principle.

2.3. DUAL-OS SYSTEMS: STATE OF THE ART 11

Table 2.2: Comparison among dual-OS system approaches.

Requirement name Number Hybrid VMM/Hypervisor Partitioning
Overhead 2.1 3 7 3

Timeliness 2.2 3 3 3

Isolation 2.3 7 3 3

Maintainability 2.4 7 7 3

TCB Size 2.5 7 3 3

Integration 2.6 3 3 7

However, the idle scheduling principle—although useful for providing time isolation
to the RTOS—is not suitable for the scheduling of GPOS activities with soft real-time re-
quirements (e.g., a movie player). For example, § 3.2 illustrates some issues of the idle-
scheduling principle through an example dual-OS system where the RTOS controls the
movements of a robot, and logs them into a secure disk while the GPOS displays a movie.

In § 3.4, we propose an alternative scheduling mechanism based on the integration of
the schedulers of both operating systems through CPU-time resource reservations.

2.3.2 Comparison of existing approaches

Table 2.2 compares the ability of the three approaches mentioned above (i.e., hybrid kernel,
VMM/hypervisor and hardware-aid resource partitioning) to satisfy the dual-OS system re-
quirements defined in § 2.2.2. From the point of view of a system engineer, there are several
trade-offs that must be gauged when selecting a dual-OS system for a specific target appli-
cation. If the hardware platform does not have virtualization support, then the only two
possible choices are using a hybrid kernel or a hypervisor. Normally, the hypervisor ap-
proach should be selected—because it supports memory isolation and has a smaller TCB—
unless the overhead incurred is not acceptable, in which case the hybrid kernel approach
may be the only remaining option. If the hardware platform does support virtualization, the
two major choices are either using a hypervisor or following a partitioning strategy. Al-
though partitioning is superior to the hypervisor approach in most aspects—in particular it
has a lower overhead and it is easier to maintain—there are certain target applications that
require high flexibility where hypervisors may be the choice of preference.

In this thesis, we investigate advanced integration techniques that allow hardware-aid
resource partitioning approaches to better satisfy the flexibility requirements of such appli-
cations. In particular, we put emphasis on achieving a tight integration between both guest
OSs without affecting the best properties (i.e., low overhead, timeliness, memory isolation,
maintainability and small TCB size) of the partitioning approach.

12 CHAPTER 2. BACKGROUND

Abort
mode

IRQ
mode

FIQ
mode

Monitor
mode

Exception modes

PC

R0_usr

R1_usr

R2_usr

R3_usr

R4_usr

R5_usr

R6_usr

R7_usr

R8_usr

R9_usr

R10_usr

R11_usr

R12_usr

SP_usr

LR_usr

CPSR

SPSR_abt SPSR_und SPSR_irq SPSR_fiq

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

SP_fiq

LR_fiqLR_svc LR_mon LR_abt LR_und LR_irq

SP_svc SP_mon SP_abt SP_und SP_irq

Privileged modes

System level views

Undefined
mode

SPSR_monSPSR_svc

Supervisor
mode

System
mode

User
mode

PC

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP

LR

APSR

Application
level view

Figure 2.8: ARM general-purpose and program status registers.

2.4 Overview of the ARM architecture

This thesis focuses on single-core embedded systems (e.g., resource-constrained systems
embedded in a larger system) rather than on more powerful machines. For that reason, we
implemented our techniques on a dual-OS system (SafeG) that runs on a popular ARM
embedded single processor. This section briefly reviews the ARM architecture and SafeG.

2.4.1 Introduction

ARM[43] (Advanced RISC Machine) is a 32-bit (there is a special mode—called Thumb
mode—for running 16-bit instructions too) instruction set architecture (ISA) based on the
philosophy of reduced instruction set computers (RISC). In contrast to complex instruction
set computer (CISC) architectures, ARM has (mostly) simple 1-cycle instructions, broken
down pipelines that can execute in parallel, and a large general-purpose register set. ARM

2.4. OVERVIEW OF THE ARM ARCHITECTURE 13

instructions have a rather high density and may encode notable features such as conditional
execution. Unlike CISC architectures data processing instructions operate exclusively with
registers, and separate load and store instructions are used to move data between registers
and external memory. The ARM architecture has evolved over time through several versions
(e.g., ARMv1, ARMv2...ARMv7), and each architecture version includes several families
or profiles (e.g., ARM7TDMI or ARM Cortex-A).

2.4.2 Register file

The ARM architecture contains a total of 16 32-bit general-purpose registers (see fig-
ure 2.8), and some of them are banked depending on the CPU mode (see § 2.4.3 for an
explanation about CPU modes). The value contained in a general-purpose register can
be either some data or an address. General-purpose registers are identified as r0 to r15, al-
though registers r13 to r15 are typically aliased as sp (stack pointer), lr (link register) and pc
(program counter). Additionally, there are two program status registers (PSR): the Current
Program Status Register (CPSR) and the banked Saved Program Status Register (SPSR).
PSRs are used for ARM cores to monitor and control internal operation (i.e., hold processor
status and control information). The format of both PSR includes a set of condition code
flags, exception mask bits and the current processor mode.

2.4.3 CPU modes

An ARM processor can be in any of the following modes at a given time—note that for sim-
plicity, we have omitted the newest hypervisor mode released in the ARMv8 architecture:

• User mode (USR): the non-privileged mode for user applications.

• System mode (SYS): a privileged mode that can only be entered by modifying the
mode bits of the CPSR.

• Supervisor mode (SVC): a privileged mode entered through the SWI (Software Inter-
rupt) instruction and used typically for the kernel to execute system calls.

• Abort mode (ABT): a privileged mode that is entered when a prefetch or data abort
exception occurs.

• Undefined mode (UND): a privileged mode that is entered when an undefined instruc-
tion exception occurs.

• Interrupt mode (IRQ): a privileged mode that is entered when an interrupt request
(IRQ) arrives and the corresponding the CPSR mask bit is enabled.

14 CHAPTER 2. BACKGROUND

Table 2.3: ARM exception vector table.

Exception Mode Memory offset
Reset SVC 0x00

Undefined instruction UND 0x04
Supervisor call SVC 0x08
Prefetch abort ABT 0x0C

Data abort ABT 0x10
IRQ (interrupt) IRQ 0x18

FIQ (fast interrupt) FIQ 0x1C

• Fast Interrupt mode (FIQ): a privileged mode that is entered when a fast interrupt
request (FIQ) arrives and the corresponding the CPSR mask bit is enabled.

• Monitor mode (MON): a privileged mode for the execution of the TrustZone monitor
software (see § 2.5 for details).

2.4.4 Coprocesors

ARM processors use coprocessors to extend the architecture without having to add new
complex instructions or registers. The ARM architecture allows up to 16 coprocessors.
Coprocessor 15 (CP15) is reserved for typical control functions such as the overall system
configuration, TLB and Cache management, system performance monitoring, or memory
management.

2.4.5 Exceptions

An exception in the ARM architecture involves the occurrence of a certain condition that
causes the normal execution of the processor to suspend, change mode and load a special
address within an pre-registered exception vector table. Table 2.3 shows the name of the
existing exceptions, the mode in which they are processed and the relative offset to the
beginning of the vector table (typically placed at address 0 or 0xFFFF0000). Note that the
Supervisor call is replaced by the Secure Monitor call (SMC) in the vector table used in
monitor mode (see § 2.4.6).

ARM processors have two types of interrupt known as FIQ (Fast Interrupt Request) and
IRQ (Interrupt Request). The main difference between them resides in the fact that FIQ
interrupts have higher priority and more banked registers than IRQ interrupts. FIQ and
IRQ interrupts can be disabled within a privileged mode by setting two flag bits (F and I
respectively) of the CPSR.

2.4. OVERVIEW OF THE ARM ARCHITECTURE 15

2.4.6 ARM TrustZone

ARM TrustZone is a set of hardware extensions present in high-end ARM embedded pro-
cessors such as ARM 1176[31] or the Cortex-A series. This section briefly introduces some
concepts of ARM TrustZone that are necessary for understanding the rest of the thesis. For
more information, refer to [29, 31, 5, 12].

• Virtual CPUs: an ARM TrustZone-enabled single processor provides two Virtual
CPUs (VCPUs), the Secure VCPU and the Non-Secure VCPU. Each VCPU is equipped
with its own memory management unit and exception vector table; and supports all
ARM operation modes (i.e., User, FIQ, IRQ, Supervisor, Abort, System and Un-
defined modes). It is important to understand that these two VCPUs do not run in
parallel but rather in a time-sliced fashion (i.e., in turns). In other words, only one of
the VCPUs can be active at any given time.

• The Monitor: the Secure VCPU has an additional mode —called the monitor mode—
which is used to context switch between both VCPUs. The software executing in
monitor mode is commonly known as the secure Monitor. The entry to monitor mode
is tightly controlled and can only be triggered by software executing the Secure Mon-
itor Call (SMC) instruction or the occurrence of a hardware exception (i.e., IRQ, FIQ,
Data abort and Prefetch abort exceptions) through an exception vector table in mon-
itor mode. A VCPU context switch involves saving and restoring all ARM general
purpose registers plus coprocessor registers that are shared by both VCPUs.

• Address space partitioning: when a bus master accesses memory or devices, the NS
bit (Non-Secure bit) is propagated through the system bus indicating the privilege
of that access (i.e., secure or non-secure). This allows the partitioning of the address
space into two virtual worlds: the Secure and the Non-Secure world. This partitioning
can be done statically by the hardware vendor or at runtime through the TrustZone
Protection Controller (TZPC[36]). The Secure VCPU is allowed to access memory
and devices from both worlds. However, hardware logic makes sure that Secure world
memory and devices cannot be accessed by the Non-Secure VCPU nor other Non-
Secure bus masters, such as Non-Secure DMA devices.

• Device interrupts partitioning: In a TrustZone-enabled processor, ARM recommends
that Secure devices are configured to generate FIQ interrupts and Non-Secure de-
vices are configured to generate IRQ interrupts. This configuration is carried out
through the TrustZone Interrupt Controller (TZIC[32]) which is only accessible from

16 CHAPTER 2. BACKGROUND

Secure
data

Non-Secure
data

Secure
devices

Non-Secure
devices

Memory

BUS (NS bit)

ARM TrustZone Core®

RTOS
Interrupts

FIQ IRQ

TZICConfig

Trusted
Untrusted

VL (SafeG monitor)

Secure VCPU Non-Secure VCPU

GPOS

Figure 2.9: SafeG architecture

the Secure VCPU. To prevent Non-Secure software masking Secure device interrupts,
TrustZone provides the FW (F flag Writable) bit which is only accessible by the Se-
cure VCPU. When the FW bit is set to zero the F flag becomes non maskable for the
Non-Secure world. That is, Non-Secure software cannot disable FIQ interrupts (i.e.,
interrupts generated by Secure devices).

2.5 The SafeG dual-OS system

SafeG (Safety Gate) is a reliable dual-OS system presented in previous work[18]. It was
designed to support the concurrent execution of an RTOS and a GPOS on top of an ARM
TrustZone-enabled[29] single core. SafeG guarantees that the RTOS memory is protected
from the GPOS, which is considered by default unreliable. Moreover, SafeG provides time
isolation for the RTOS to guarantee that hard real-time tasks always meet their deadlines.
Both memory and time isolation are backed by the ARM TrustZone hardware extensions,
which allows for a low-overhead implementation and minimal modifications to the GPOS.

2.5.1 TrustZone configuration in SafeG

Figure 2.9 depicts the overall organization of the SafeG architecture. The SafeG architecture
takes advantage of ARM TrustZone hardware security extensions to concurrently execute
an RTOS and a GPOS on top of the same single-core processor. The SafeG monitor—which
is the main component of the SafeG architecture—is a specific implementation of the ARM
TrustZone monitor. It focuses on guaranteeing the real-time performance requirements
and memory isolation of the RTOS. The SafeG architecture leverages the ARM TrustZone
hardware security extensions under the following configuration:

2.5. THE SAFEG DUAL-OS SYSTEM 17

Figure 2.10: SafeG idle scheduling.

• Virtual CPUs: in the SafeG architecture the GPOS is assigned to the Non-Secure
VCPU; and the RTOS and the SafeG monitor are assigned to the Secure VCPU.

• The Monitor: the SafeG monitor is the software component of the SafeG architec-
ture that executes under monitor mode and handles the switching between the GPOS
and the RTOS. The entry to SafeG monitor can only be triggered by software execut-
ing the SMC instruction or the occurrence of an FIQ while the Non-Secure VCPU
is active. The SafeG monitor is small—around 2KB[18]—and executes with all in-
terrupts disabled, which simplifies its verification. A VCPU context switch on an
ARM1176[31] processor requires around 200 cycles[18].

• Address space partitioning: during initialization SafeG configures RTOS memory
and devices as Secure world resources; and GPOS memory and devices as Non-
Secure world resources. For that reason, the RTOS address space is protected from
potentially malicious accesses by the GPOS.

• Device interrupts partitioning: SafeG architecture configures RTOS devices (i.e., Se-
cure devices) to generate FIQ interrupts; and GPOS devices (i.e., Non-Secure de-
vices) to generate IRQ interrupts. This is done through the TZIC, which cannot be
accessed from the Non-Secure state.

2.5.2 Execution flow model of SafeG

The execution flow within the SafeG architecture is controlled by two fundamental princi-
ples that allow the RTOS to guarantee real-time performance requirements to its tasks and
interrupt handlers.

18 CHAPTER 2. BACKGROUND

Secure VCPU

RTOS GPOS
IRQ

FIQ

Non-Secure VCPU

PATH 1 (SMC)
PATH 2 (FIQ)

SMC

SafeG monitor

IRQ

FIQ

Figure 2.11: Execution paths of the SafeG monitor.

• Idle scheduling: the original SafeG architecture uses the idle scheduling principle
explained in § 2.3.1, which implies that the GPOS is only allowed to execute during
the RTOS idle time. The SafeG architecture can be seen as a two-level hierarchical
scheduler (see figure 2.10) where the RTOS scheduler plays the role of a global pri-
ority scheduler; and the GPOS scheduler acts as a local scheduler. The whole GPOS
is a black box represented in the RTOS scheduler by a task executed at idle priority.
We call this task RTOS SMC Task because its body consists of a loop executing the
SMC instruction to invoke the SafeG monitor. The SafeG monitor plays the role of a
dispatcher that context switches to the GPOS whenever the RTOS becomes idle.

• Processor control recovery: this principle refers to the ability of the RTOS to recover
control of the processor at any time through the use of an FIQ interrupt. When the
RTOS is executing (i.e., Secure VCPU is active) IRQ interrupts are disabled (i.e.,
the I flag is one). This prevents GPOS devices interrupting the execution of RTOS
tasks. On the other hand, when the GPOS is executing (i.e., Non-Secure VCPU is
active) FIQ interrupts are always enabled (i.e., the F flag is zero). For that reason, the
RTOS can recover the control of the processor at any time (e.g., by using a Secure
timer device). The TrustZone FW configuration bit is set to zero to prevent the GPOS
disabling FIQ interrupts (i.e., the GPOS cannot set the F flag to one).

Figure 2.11 illustrates the two main execution paths of the SafeG monitor. PATH 1
(SMC) is used by the RTOS SMC Task to context switch to the GPOS whenever the RTOS
becomes idle. PATH 2 (FIQ) occurs when an FIQ interrupt arrives to the processor while
the Non-Secure VCPU is active. The arrival of the FIQ interrupt forces the processor to
enter Monitor mode, where SafeG FIQ vector handler switches back to the RTOS.

Chapter 3

Integrated scheduling

In this chapter, we replace the idle scheduling principle from the original SafeG architecture

by an integrated scheduling architecture where the execution priority level of the GPOS and

RTOS activities can be mixed with high granularity. The evaluation results show that the

proposed approach is suitable for enhancing the responsiveness of the GPOS time-sensitive

activities without compromising the reliability and real-time performance of the RTOS.

3.1 Introduction

The most extended approach to guaranteeing the real-time performance of the RTOS in a
dual-OS system is the idle scheduling principle (see § 2.3.1), which consists of scheduling
the GPOS with lower priority than the RTOS. The main advantages of this approach are its
simplicity and its robustness against the presence of faulty or malicious GPOS software.

However, the idle scheduling principle is not suitable when the GPOS contains time-
sensitive activities (e.g., multimedia tasks or device interrupt handlers). For example, the
hardware buffer of a GPOS network card may get overwritten by the arrival of new packets
if the execution of the corresponding GPOS interrupt handler is delayed for an excessive
amount of time by the execution of the RTOS. This is particularly true if the RTOS contains
compute-bound activities (e.g., security services) with a rather long execution time.

Porting GPOS time-sensitive applications and drivers to the RTOS is usually a flawed
idea from the point of view of maintainability and TCB size. Similarly, moving RTOS
compute-bound activities to the GPOS is often unsatisfactory. For example, security ser-
vices (e.g., digital rights management) must run isolated from the UCB, and access special
devices (e.g., a smart card with cryptographic keys) that are not accessible by the GPOS.

In § 3.2 and § 3.6.7, we describe a motivational example with more detail where the

19

20 CHAPTER 3. INTEGRATED SCHEDULING

RTOS in a dual-OS system based on SafeG controls a robot, and logs all of its operations
into a secure disk while the GPOS displays a movie.

The goal of the work explained in this chapter is to fix the shortcomings of the idle
scheduling approach. The most important contribution is an integrated scheduling (IS)
architecture whose main features are:

• It supports mixing the global execution priority level of the GPOS and RTOS activi-
ties. This provides the system engineer with a means to configure the execution of a
GPOS time-sensitive activity to have higher priority than the execution of an RTOS
compute-bound task.

• The real-time performance and reliability of the RTOS is guaranteed even if the GPOS
is faulty or misbehaves. More in detail, the execution of GPOS time-sensitive activ-
ities is controlled and limited through CPU-time resource reservations. This mech-
anism guarantees that RTOS tasks executing with lower priority will not suffer un-
bounded blocking nor starvation.

• The architecture does not require modifications to the source code of the dual-OS
virtualization monitor nor to the RTOS kernel. This feature makes the integrated
scheduling architecture easier to maintain and verify.

We have built the IS architecture on a physical platform, and evaluated it through several
experiments and a realistic use case application. The evaluation results show that the archi-
tecture is suitable for enhancing the responsiveness of GPOS time-sensitive activities—by
scheduling RTOS compute-bound tasks at a lower priority—and the overhead introduced is
small enough for practical usage. This is accomplished without affecting the reliability and
real-time performance of the RTOS.

The remainder of this chapter is organized as follows. § 3.2 explains the main issues
present in idle scheduling that motivates this research. § 3.3 enumerates the main require-
ments for the IS architecture. § 3.4 constitutes the core of this chapter and explains the IS
architecture. § 3.5 details the implementation of the IS architecture. § 3.6 evaluates it, and
includes a use case example that shows its effectiveness in a real scenario. § 3.7 compares
this research with previous work. Finally, the chapter is concluded in § 3.8.

3.2 Motivational example

Figure 3.1 illustrates an example that motivates the development of the proposed IS archi-
tecture. The hardware configuration of the system consists of the following elements:

3.2. MOTIVATIONAL EXAMPLE 21

TOPPERS/ASP

SafeG

Secure VCPU

LINUX

Non-Secure VCPU

Logger Task

Robot Control
Task

Other tasks...

mplayer task

CAN bus

Sensor values

Motor value

10ms deadline

Secure
Disk

Display

24fps

Robot

Main board (PB1176JZF-S)
Serial bus

Robot software
TOPPERS/ATK

Figure 3.1: Use case example.

• Main board: a PB1176JZF-S[35] board, which contains an ARM1176 processor with
TrustZone support.

• Robot: a Puppy robot[41] which contains a gyroscope and rotary encoder sensors. It
is connected to the main board through a CAN bus, whose controller is assigned to
the Secure VCPU.

• Secure disk: a disk to store secure data. It is accessed through a serial bus interface
which is assigned to the Secure VCPU.

• Display: used by the Non-Secure VCPU to display a video.

The software configuration of the system is composed of the following elements:

• Robot software: the robot runs an application on top of TOPPERS/ATK[30]. The
application sends the values of the gyroscope and rotary encoder sensors to the main
board through the CAN bus with a period of 10ms. Then, it waits for an answer
containing an appropriate motor value for the robot to keep balance. If this value
arrives to the robot later than the next period (i.e., misses its deadline) the robot will
lose balance and fall down.

• Secure VCPU software: the Secure VCPU contains two tasks running on top of ASP.
The robot control task waits for messages coming from the Puppy robot—containing
the sensor values—and sends replies back with the calculated values for the motor.
The logger task is a compute-bound task whose main function is to encrypt and store
the execution log generated by the robot control task onto the secure disk.

• Non-Secure VCPU software: the Non-Secure VCPU contains Linux with a minimal
filesystem based on buildroot[34]. On top of that, a movie player application—called
mplayer[42]—is used to show a 24fps MPEG4 video on the display through the Linux
framebuffer device and executed with the maximum real-time priority in Linux.

22 CHAPTER 3. INTEGRATED SCHEDULING

(a) Idle scheduling (b) Integrated scheduling (IS)

Logger Task

Robot Control Task

Interrupt handlers

mplayer Task

Other tasks...

Logger Task

Robot Control Task

Interrupt handlers

mplayer Task

Other tasks...

ASP Global Priority (GP) Linux ASP Global Priority (GP) Linux
+

-

+

-

+

-

+

-

+

-

+

-

Figure 3.2: Execution priority levels for the motivational example.

• SafeG monitor: as explained in § 2.5.1, the SafeG monitor executes under TrustZone
monitor mode. It handles the switching between ASP and Linux following the idle
scheduling principle, as illustrated in figure 3.2(a).

We built the system in figure 3.1 on a physical platform and observed that the robot
performed correctly without any deadlines being missed. However, we noticed that the
dynamic frame rate of the video experimented strong drops (see figure 3.12), to the extent
that the user’s watching experience became unacceptable. We realized that the strong drops
in frame rate were caused by the blocking time imposed by the periodic execution of ASP’s
logger task on the mplayer application.

In this chapter, we propose a novel solution to this problem that replaces the idle
scheduling principle by an integrated scheduling architecture capable of mixing the exe-
cution priority levels of both OSs. This allows the system engineer to modify the schedule
of the motivational example from the one depicted in figure 3.2(a) to the one depicted in
figure 3.2(b), which increases the execution priority of the Linux interrupt handlers and the
mplayer task over the priority of the compute-bound ASP logger task. Furthermore, we
leverage previous work on aperiodic servers[49] to limit (and enforce) the execution time
of the Linux soft real-time activities, which is needed to ensure that ASP tasks executing
with lower priority (e.g., the logger task) do not starve or miss a deadline.

3.3 Assumptions and requirements

We define the following set of initial assumptions. Relaxing these assumptions for wider
usage is left for future work:

(a) The RTOS scheduler assigns each task to a fixed priority level. Tasks can be preempted
by tasks with higher priority level (i.e., fixed-priority preemptive scheduling[26]).

3.4. INTEGRATED SCHEDULING ARCHITECTURE 23

(b) The GPOS scheduler must allow tasks with (soft) real-time requirements to take prece-
dence over normal tasks by allocating a range of higher execution priority levels. Most
popular GPOSs provide this feature.

(c) We need access to the source code of the GPOS scheduler. For that reason we will use
an open source GPOS kernel.

Next, we define a list of requirements that the IS architecture must satisfy. Many of
these requirements are common to other virtualization architectures [15]:

REQUIREMENT 3.1 GPOS latency: GPOS interrupt handlers and real-time tasks can be
configured to take precedence over certain RTOS tasks with lower priority.

REQUIREMENT 3.2 RTOS timeliness: the worst-case response time of RTOS interrupt han-
dlers and tasks must remain upper-bounded in all cases.

REQUIREMENT 3.3 Overhead: the execution time overhead introduced by the IS architec-
ture must be small enough for practical usage.

REQUIREMENT 3.4 GPOS modifications: changes to the GPOS must be maintainable.

REQUIREMENT 3.5 RTOS modifications: the RTOS kernel must not be modified.

REQUIREMENT 3.6 SafeG modifications: the SafeG monitor must not be modified.

Requirement 3.1 refers to the ability to mix the priority levels of RTOS and GPOS activ-
ities from a global point of view. Notice that RTOS interrupt handlers still take precedence
over any GPOS activity. Requirement 3.2 is necessary to preserve the real-time perfor-
mance requirements of the RTOS activities even when malicious or defective software is
executing in the Non-Secure VCPU. In particular, RTOS tasks with low priority must be
protected from execution overruns by GPOS activities executing at a higher global priority.
Requirement 3.3 means that the execution overhead introduced by the IS architecture must
not affect the overall performance of the system to such an extent that it is no longer usable.
Requirement 3.4 is necessary since a GPOS is large and usually evolves very rapidly, thus
increasing the maintenance costs. Requirements 3.5 and 3.6 are defined because both the
RTOS and SafeG belong to the trusted computing base. Leaving them unmodified simplifies
its verification and smooths its maintainability.

3.4 Integrated scheduling architecture

This section describes the integrated scheduling (IS) architecture, whose goal is to support
mixing the execution priority levels of RTOS and GPOS activities without compromising
the reliability and real-time performance of the RTOS.

24 CHAPTER 3. INTEGRATED SCHEDULING

RTOS scheduler

IS
Manager

RTOS
Critical
Tasks

GPOS
Interrupt
Handlers

GPOS
Real-Time

Tasks

GPOS
Normal
Tasks

Highest
Priority

RTOS
SMC

Task #1

smc

RTOS
Middle Prio.

Tasks

RTOS
SMC

Task #2

smc

RTOS
Background

Tasks

RTOS
SMC

Task #3

smc

RTOS
Interrupt
Handlers

group #1

Modified GPOS scheduler

SafeG monitor

group #2 group #3

Shared Memory

Next_Group_#ID

Inter-VCPU interrupt

Non-Secure

Secure

Figure 3.3: Integrated scheduling architecture.

3.4.1 Overview and merits

A straightforward method to implement the mixing of execution priority levels is to extend
the SafeG monitor with a few hypercalls, a global scheduler, and support for CPU-time re-
source reservations. However, this approach has several problems that must be considered:
the increase of the number of execution paths inside the SafeG monitor which must be certi-
fied; the negative effect on the latency of RTOS interrupts (because the SafeG monitor runs
with all interrupts disabled); and the increase in complexity and size of the SafeG monitor.

Instead we take the challenge of designing a novel architecture based on the collabora-
tion between the RTOS user-space and the GPOS kernel scheduler. Implementing the IS
architecture at the RTOS user-space has the additional advantage of providing flexibility for
the control of the GPOS execution. For example, an RTOS task could easily suspend or
resume the execution of the GPOS by calling the existing RTOS application interface.

Figure 3.3 depicts the integrated scheduling (IS) architecture. The main idea is to sub-
divide GPOS activities into a configurable number of groups that will be scheduled by the
RTOS scheduler. In order to accurately map each group of GPOS activities into a differ-
ent RTOS scheduler’s priority level, the IS manager needs to track changes in the GPOS
scheduled group. For that reason, the GPOS scheduler is modified to notify the IS manager
about such GPOS scheduling events. This collaboration is accomplished by means of an
inter-VCPU interrupt—provided by the interrupt controller—and shared memory.

Finally, since the GPOS activities execute in a non-trusted open environment we need
to make sure that any execution overrun will not affect the real-time performance of the
RTOS tasks. To achieve that, the IS architecture runs each group of GPOS activities under
the control of a CPU-time resource reservation.

3.4. INTEGRATED SCHEDULING ARCHITECTURE 25

3.4.2 Groups of GPOS activities

In the IS architecture, system engineers subdivide GPOS activities into several groups, ac-
cording to their time requirements, and map each group to a different priority level on the
RTOS scheduler—which act as the global scheduler. Unlike the idle scheduling approach
that has a single RTOS SMC Task with idle priority, the IS architecture allows engineers to
assign each group of GPOS activities to a different RTOS SMC Task, executed with a con-
figurable priority. For example, in figure 3.3 GPOS activities are divided in these groups:

• Activities in group #1 (i.e., GPOS interrupt handlers) usually require a very short
response time. Therefore they are represented by the RTOS SMC Task #1 which
executes at a high priority.

• Activities in group #2 (i.e., GPOS real-time tasks) are usually I/O bound. They spend
most of the time waiting for events to arrive, and require good responsiveness to
attend to them. For that reason, they are represented by the RTOS SMC Task #2
which executes at a middle priority.

• Activities in group #3 (i.e., GPOS normal tasks) do not have special real-time require-
ments, and therefore they are represented by the RTOS SMC Task #3 at idle priority.
In the case that only this group existed, the IS architecture would be equivalent to the
idle scheduling approach.

The IS architecture supports each group of activities being further subdivided into smaller
groups—up to a single activity per group—to provide a more fine-grained scheduled sys-
tem. For the sake of clarity and without loss of generality, the following explanations will
use the mentioned 3 groups.

3.4.3 GPOS scheduling events

We define a GPOS scheduling event as the instant when the currently running group of
GPOS activities is about to be substituted by a different group. We can distinguish 3 types
of scheduling events:

• Event type 1: GPOS task from group α→ GPOS task from group β. This scheduling
event occurs when the GPOS switches tasks from different groups.

• Event type 2: GPOS interrupt handler→ GPOS task. This scheduling event occurs
when a GPOS interrupt handler ends and a GPOS task that belongs to a different
group is resumed.

26 CHAPTER 3. INTEGRATED SCHEDULING

Figure 3.4: Pseudocode of the GPOS scheduler hook function.

• Event type 3: GPOS task or RTOS task→ GPOS interrupt handler. This scheduling
event occurs when a GPOS interrupt handler interrupts the execution of a GPOS task
that belongs to a different group or an RTOS task.

The IS architecture needs to keep track of all GPOS scheduling events for the IS man-
ager in the RTOS to resume the RTOS SMC Task representing the next scheduled GPOS
group. Notifications of GPOS scheduling events are sent to the RTOS through FIQ inter-
rupts as we explain in the next two sections.

3.4.4 Tracking GPOS scheduling events of type 1 and 2

We inserted a hook function into the GPOS scheduler—which is called at every context
switch—in order to notify the RTOS about the occurrence of GPOS scheduling events of
type 1 and 2. Figure 3.4 shows the pseudocode of the GPOS scheduler hook function, which
executes in GPOS kernel context and receives the control block of the next scheduled task
(Next Task) as a parameter. At every GPOS context switch, the hook function updates a
variable named Next Group ID with the #ID of the GPOS group where Next Task belongs
to. Then, the hook function checks whether the next group differs from the previously
active GPOS group or not (see line 9). In the case that the next GPOS group is different,
the hook function sends an inter-VCPU interrupt to the RTOS (see line 10) as a way to
notify the RTOS of the occurrence of a GPOS scheduling event of type 1 or 2. The variable
Next Group ID is placed in inter-VCPU shared memory. It is used by the IS manager—
after checking its range—for the management of the state (i.e., suspended or resumed) of
the RTOS SMC Tasks. Even if malicious or faulty GPOS software intentionally set the
variable Next Group ID to the GPOS group with the highest priority, the RTOS real-time
performance is still protected by the corresponding CPU-time resource reservations.

3.4. INTEGRATED SCHEDULING ARCHITECTURE 27

TZIC
FIQ (Event
type 3)

IRQ

GPOS
Interrupt
Handler

VCPU: SECURE VCPU: NON-SECURE

GPOS
Devices

interrupt

IS
Managerconfig

Figure 3.5: Tracking GPOS interrupts.

3.4.5 Tracking GPOS scheduling events of type 3

GPOS scheduling events of type 3 cannot be tracked from the GPOS scheduler since GPOS
device interrupts may be raised asynchronously even while the RTOS is executing. In order
to track the occurrence of GPOS device interrupts within the IS architecture, we made a
subtle modification to the management of device interrupts:

• When a group of GPOS interrupt handlers (i.e., group #1) is not active, the corre-
sponding GPOS device interrupts are configured as FIQ interrupts. Therefore, the
interrupt flow from the original SafeG architecture (see § 2.5.2) is modified to notify
the RTOS, through an FIQ handler, of the occurrence of GPOS interrupts.

• When the RTOS is notified of the occurrence of a GPOS interrupt, the correspond-
ing GPOS group is activated and all device interrupts associated to that group are
configured back as IRQ interrupts, as in the original SafeG architecture.

Figure 3.5 illustrates the management of GPOS device interrupts within the IS architec-
ture. The presented approach allows the RTOS to track the activation of a group of GPOS
interrupt handlers even while the RTOS is in execution (i.e., while IRQ interrupts are dis-
abled by setting the I flag to 0). The configuration of the GPOS device interrupts is carried
out through the TZIC[32] by a special software agent in the RTOS, called the Manager task

(see § 3.4.6) and does not require modifications to the source code of the SafeG monitor.
The overhead introduced to the RTOS is upper-bounded, but it can disturb the execution of
RTOS tasks. Therefore, it must be taken into account when performing the schedulability
analysis of the RTOS tasks and interrupt handlers.

3.4.6 IS Manager

The IS Manager is an RTOS software agent executed with higher priority (see figure 3.3)
than the RTOS SMC Tasks. It is in charge of managing the RTOS SMC Tasks whenever a
FIQ interrupt is raised due to the occurrence of a GPOS scheduling event. Figure 3.6 shows
the internal architecture of the IS Manager, which is composed of the following elements:

28 CHAPTER 3. INTEGRATED SCHEDULING

Figure 3.6: IS Manager architecture.

• Scheduling events FIQ handler: an RTOS interrupt handler (i.e., FIQ handler) which
is raised whenever a GPOS scheduling event occurs. Figure 3.7 shows the pseudocode
of the handler. When a GPOS scheduling event occurs, the handler activates the
Manager task (which is described below). Then, in the case that the event was of type
3 the handler updates the shared variable Next Group ID (see line 5) and configures
the GPOS interrupts belonging to that group as IRQ interrupts (see line 6).

• Manager Task: an RTOS task aimed at controlling the state of the RTOS SMC
Tasks. Figure 3.8 shows the pseudocode of the Manager task. When activated by
the Scheduling events FIQ handler, the Manager task calculates which RTOS SMC
Task should be activated next (see line 6). Then, if that task is different to the previous
one—it could be the same due to execution time overruns as we will see later—the
Manager task resumes it and suspends the previous one. The RTOS SMC Task run-
ning at idle priority is a special case and remains always active since it cannot affect
the real-time performance of the RTOS tasks.

• Execution Overruns Module: a software module aimed at limiting the execution time
of each RTOS SMC Task in order to preserve the timeliness of the RTOS tasks that run
with lower priority. Until now, we assumed that GPOS interrupt handlers and GPOS
real-time tasks had a fixed worst-case execution time and inter-arrival period. How-

Figure 3.7: Pseudocode of the scheduling events FIQ handler.

3.4. INTEGRATED SCHEDULING ARCHITECTURE 29

Figure 3.8: Pseudocode of the Manager task.

ever, a fundamental principle of the SafeG architecture is to consider the GPOS as a
non-trusted component. Therefore, we need to guarantee the real-time performance
requirements of all RTOS activities even in the case that the GPOS misbehaves or
is attacked by malicious software. For that reason, RTOS SMC Tasks are executed
under the control of CPU-time resource reservations. A CPU-time resource reserva-
tion is a mechanism to limit—and at the same time guarantee—a certain amount of
execution time (the reserved budget) within a certain period and at a certain execu-
tion priority level. CPU-time resource reservations have been successfully used in
previous works[40] to guarantee the execution time of RTOS tasks and the bandwidth
of the communication channels in real-time networks. To the best of our knowledge,
this is the first time that CPU-time resource reservations have been applied to the
integration of a dual-OS system schedule. Each RTOS SMC Task, except the one
that runs with idle priority, is assigned to a CPU-time resource reservation which is
implemented using the following RTOS functionality:

– Overrun timer: an execution time timer that is used to keep track of the exe-
cution time consumed by the task associated to a CPU-time resource reserva-
tion. When an RTOS SMC Task executes, the budget of its CPU-time resource
reservation is consumed. If an RTOS SMC Task exhausts its associated budget,
the overrun timer expires. Then, an overrun timer handler activates the Man-
ager task which suspends the associated RTOS SMC Task and activates another
lower priority RTOS SMC Task with available budget.

– Replenishment timer: a timer used by the Execution Overruns Module to re-
plenish the budget of a CPU-time resource reservation. The way to replenish
the budget is dependant on the implementation algorithm. Our implementation
is based on the deferrable server algorithm, presented in previous work[49],

30 CHAPTER 3. INTEGRATED SCHEDULING

which replenishes budget in a periodic fashion. When an RTOS SMC task that
was previously suspended after exhausting its budget receives a budget replen-
ishment, the Manager task resumes the RTOS SMC task again if appropriate.

Additionally, the module also contains a set of discrete CPU-time resource reserva-
tions to bound the number of times that the Scheduling events FIQ handler can be
raised in a certain period. The algorithm for these discrete CPU-time resource reser-
vations uses a counter variable and a periodic timer. It has the following steps:

1. The counter, initialized to zero, is incremented each time the Scheduling events
FIQ handler is raised.

2. When the counter reaches a configurable limit, the inter-VCPU interrupt is
masked and GPOS device interrupts are configured as IRQ interrupts.

3. When the associated periodic timer expires, the budget of the discrete CPU-time
resource reservation is replenished. To accomplish that, the counter variable is
reset to zero; the inter-VCPU interrupt is enabled; and GPOS device interrupts
are configured as FIQ interrupts again.

• Manager Data: contains information about the RTOS SMC Tasks and is shared
among the elements inside the RTOS SMC Tasks manager. The information for each
RTOS SMC Task includes its execution state (i.e., suspended or resumed), priority,
budget, replenishment period and overrun status.

3.4.7 RTOS protection

Since the GPOS usually executes in an open environment and is prone to software defects
due to the size and complexity of its source code, the RTOS must be protected against any
GPOS fault or misbehavior. The IS architecture introduces three main components that can
be subject to attacks coming from faulty or malicious software running on the GPOS side:

• GPOS Execution overruns: groups of GPOS activities may try to overrun the ex-
ecution time budget assigned to them. RTOS activities are protected against that
misbehavior through the Execution Overruns Module explained above.

• Interrupt attacks: the GPOS may try to starve RTOS activities by sending a contin-
uous stream of inter-VCPU interrupt requests (events of type 1 and 2) to the RTOS.
The GPOS may also try to starve RTOS activities by programming a device to con-
tinuously generate interrupts requests (events of type 3). To protect the real-time

3.4. INTEGRATED SCHEDULING ARCHITECTURE 31

Sched Events FIQ handler

Manager Task

RTOS SMC Task #1

RTOS Middle Prio Task

SafeG PATH 1 (SMC)

SafeG PATH 2 (FIQ)

RTOS SMC Task #1 Budget

Next_Group_ID value

GPOS Interrupt handler

GPOS scheduler hook

#3 #1 #2

GPOS
interrupt

(1)

(3)

(2)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

RTOS SMC Task #2

RTOS SMC Task #2 Budget

GPOS real-time task

(12)

(13)

(14)

RTOS Background Task

Overrun Timer handler
(16)

(15)

(17)

(18)

RTOS
Overrun

Timer
interrupt

SMC

SMC

Activate
GPOS

real-time
task

inter-VCPU
interrupt

sleep until
next period

Scheduling Events type 3 type 2

Budget
exhausted

Figure 3.9: Timeline: GPOS real-time task activation.

performance of RTOS activities, the execution of the scheduling events FIQ handler

in the IS manager must be limited. For that reason, the Execution Overruns Mod-
ule contains a set of discrete CPU-time resource reservations to bound the number
of times that a certain scheduling event interrupt—handled by the scheduling events

FIQ handler—can occur in a certain period.

• Shared Variable attacks: the RTOS IS Manager must check the range of the variable
Next Group ID each time because it exists in inter-VCPU shared memory, and there-
fore it could be modified by the GPOS to contain a out-of-range value (i.e., not in
1..Max Groups). If the GPOS set the variable to the group with highest priority, the
execution time of the corresponding GPOS activities will be limited by the Execution
Overruns Module.

Finally, it should be noted that although the execution times of the Manager task, the
overrun and the replenishment timers are upper-bounded, they must be taken into account
for the schedulability analysis of the system.

3.4.8 Example

Figure 3.9 shows a simple example timeline to illustrate the execution flow of the IS archi-
tecture. The system is composed of a few tasks and interrupt handlers scheduled with the
same priority order as in figure 3.3. A detailed explanation of each step is shown below:

32 CHAPTER 3. INTEGRATED SCHEDULING

• (1) An RTOS middle priority task executes.

• (2) A GPOS interrupt occurs (event type 3) and it is handled by the RTOS through the
Scheduling events FIQ handler. The handler activates the Manager task, updates the
Next Group ID variable to #1 (i.e., group of GPOS interrupt handlers) and configures
GPOS device interrupts as IRQ interrupts.

• (3) The Manager task resumes the execution of the RTOS SMC Task #1.

• (4) Since the RTOS SMC Task #1 has a higher priority than the RTOS middle priority
task it resumes its execution. The CPU-time resource reservation associated to the
RTOS SMC Task #1 starts consuming its budget.

• (5) The RTOS SMC Task #1 calls SafeG through an SMC instruction. SafeG switches
to the GPOS (see § 2.5.2), where the GPOS interrupt handler starts executing.

• (6) The GPOS interrupt handler activates a GPOS real-time task and ends.

• (7) After that, the GPOS scheduler executes and the GPOS scheduler hook function
is called. The hook function updates the Next Group ID to #2 (i.e., GPOS real-time
tasks) and sends a GPOS scheduling event of type 2 to the RTOS through an inter-
VCPU FIQ interrupt.

• (8) SafeG context switches back to the RTOS as explained in § 2.5.2.

• (9) In the RTOS, the Scheduling Events FIQ handler receives the inter-VCPU inter-
rupt and activates the Manager task.

• (10) The Manager task suspends the RTOS SMC Task #1 and resumes the RTOS
SMC Task #2.

• (11) Since the RTOS middle priority task has precedence over the RTOS SMC Task
#2, it resumes its execution.

• (12) When the RTOS middle priority task ends—it goes to sleep until the next period—
the RTOS SMC Task #2 is scheduled and the budget associated to its CPU-time re-
source reservation starts being consumed.

• (13) The RTOS SMC Task #2 calls SafeG through the SMC instruction. SafeG con-
text switches to the GPOS where the GPOS real-time starts executing.

• (14) The GPOS real-time task executes for an excessive amount of time which causes
the associated RTOS overrun timer to expire.

• (15) SafeG traps the RTOS overrun timer FIQ and context switches back to the RTOS.

• (16) The interrupt is then handled by the overrun timer handler, inside the Execution
Overruns Module. The handler activates the Manager task.

• (17) The Manager task suspends the GPOS RTOS Task #2. However, the Next Group ID
variable is not modified. This only means that the group of GPOS real-time tasks will

3.5. IMPLEMENTATION 33

be temporarily represented by a lower priority RTOS SMC Task with available bud-
get (in this case, the one running at idle priority) until the RTOS SMC Task #2 has its
budget replenished.

• (18) The RTOS background task resumes its execution since the GPOS real-time task
already exhausted its budget.

3.5 Implementation

This section presents details about the implementation of the IS architecture on SafeG using
a physical platform. The implementation is distributed together with SafeG through the
TOPPERS open source license[30].

3.5.1 Implementation platform

The hardware and software platforms used to implement the IS architecture were as follows:

• RealView Platform Baseboard (PB1176JZF-S)

– Processor: ARM1176JZF-S[31] development chip at 210MHz.

– Cache: 32KB

– Mobile DDR RAM: 128MB (used by the GPOS)

– PSRAM: 8MB (used by SafeG and the RTOS)

– TZIC[32] and TZPC[36]

• RTOS: TOPPERS/ASP 1.6 [ASP] with overrun handlers enabled.

• GPOS: Linux 2.6.33 [Linux] with a minimal buildroot[34] filesystem.

Additionally, a Non-Trust version of ASP was adapted to the proposed global scheduling
architecture for testing purposes.

3.5.2 Linux kernel modifications

The Linux kernel has been extended with a new module that includes code for the initializa-
tion of the shared variable Next Group ID. The module also contains information to map
groups of GPOS activities into RTOS SMC tasks. The Linux scheduler was modified by
inserting a callback function, which can be activated or deactivated from user space (with
root privileges) through a boolean value in the Linux debug filesystem (debugfs). The main
goal of this callback function is to notify GPOS scheduling events of type 1 and 2; and to
update the shared variable Next Group ID.

34 CHAPTER 3. INTEGRATED SCHEDULING

3.5.3 TOPPERS/ASP modifications

The TOPPERS project[30] is a non profit organization that aims at producing high qual-
ity open-source software for embedded systems. ASP (Advanced Standard Profile) is one
of TOPPERS real-time kernels and follows an improved version of the µITRON4.0 [44]
specification. The IS implementation was fully accomplished at application-level space by
taking advantage of the following ASP system calls:

• ista_ovr: used by the budget replenishment handlers to replenish the budget of a
certain RTOS SMC task.

• isig_sem: used to signal the IS Manager from a handler executing in interrupt con-
text (e.g., the overrun handler).

• wai_sem: used by the IS Manager to wait for a signal.

• sus_tsk: used by the IS Manager to suspend the execution of an RTOS SMC task.

• rsm_tsk: used by the IS Manager to resume the execution of an RTOS SMC task.

Dynamic handling of Non-Trust interrupts (i.e., events of type 3) is implemented by
taking advantage of the TrustZone Interrupt Controller (TZIC[32]) whose architecture is
depicted in figure 3.5.

3.6 Evaluation

In this section, we evaluate the satisfaction of the requirements specified in § 3.3 by our
implementation of the IS architecture. We also evaluate the effectiveness of our approach
in the solution to the idle scheduling issues presented in the motivational example at § 3.2.

3.6.1 Requirement 3.1: GPOS Latency

We evaluate requirement 3.1 through an experiment in order to confirm that the IS architec-
ture allows enhancing the latency of GPOS activities. The evaluation system is composed
of a periodic RTOS task executed at low priority; and a periodic timer interrupt handler on
the GPOS executed at high priority (group #1). The experiment consists of measuring the
maximum latency of the GPOS timer interrupt handler for several payloads in the RTOS
task. The period of the RTOS task is 2 times the payload in all measurements.

The lower part of figure 3.10 shows the experiment results for the IS architecture. We
observe that the maximum latency of the GPOS interrupt handler (28µs) remains indepen-
dent of the payload of the low-priority RTOS task. In contrast, the maximum latency of

3.6. EVALUATION 35

 0

 20

 40

 60

 80

 100

Maximum Measured latency of the GPOS interrupt handler (ms)

idle scheduling

 0

 0.02

 0.04

0 20 40 60 80 100

RTOS low priority task payload (ms)

integrated scheduling

Figure 3.10: Evaluation of requirement 3.1.

 0

 20

 40

 60

 80

 100
Maximum Measured RTOS Middle Prio. Task Latency (ms)

 0
 0.02
 0.04

10 20 30 40 50 60 70 80 90

Budget (ms) for GPOS Interrupt Handlers (group #1)

Maximum Measured RTOS Interrupt Latency (ms)

Figure 3.11: Evaluation of requirement 3.2.

the GPOS timer interrupt handler increases proportionally to the payload of the RTOS task
for idle scheduling. These results are explained by the fact that the IS architecture allows
GPOS interrupt handlers to execute with higher priority than low-priority RTOS tasks.

3.6.2 Requirement 3.2: RTOS timeliness

We carried out an experiment for evaluating the real-time performance of the RTOS (see
requirement 3.2) under a worst-case situation where the GPOS misbehaves. The evaluation
experiment contains a greedy GPOS interrupt handler—which belongs to the GPOS group
#1 in figure 3.3—trying to monopolize the processor by executing an infinite loop. We
measured the maximum latency of a periodic RTOS interrupt handler and an RTOS middle
priority task for different values of the budget associated to CPU-time resource reservation
that limits the execution of the GPOS group #1.

36 CHAPTER 3. INTEGRATED SCHEDULING

Table 3.1: Overhead of the IS architecture.

type min(µs) median(µs) max(µs)
GPOS scheduling event type 1-2 7 15 28
GPOS scheduling event type 3 6 10 19
Budget replenishments 5 10 18
Budget overruns 5 9 20
SafeG switch time ' 1.7µs
Linux system tick = 50ms (CONFIG HZ=20)

Figure 3.11 shows the results of the experiment. We observe that the maximum mea-
sured latency of the RTOS interrupt handler remains independent of the budget assigned to
the group of GPOS interrupt handlers. This is coherent with the fact that RTOS interrupt
handlers always execute with higher priority than the GPOS.

In contrast, the latency of the RTOS middle priority task experiments a variable de-
lay caused by the blocking time imposed by the execution of the greedy GPOS interrupt
handler, which executes with higher priority. However, as figure 3.11 shows, this delay is
upper-bounded by the budget associated to the GPOS group #1, and therefore the real-time
performance of the RTOS middle priority task is guaranteed.

3.6.3 Requirement 3.3: overhead

We measured the execution time overhead incurred by the IS architecture, as specified by
requirement 3.3. Table 3.1 shows the evaluation results obtained by measuring the following
4 sources of overhead:

• GPOS scheduling event type 1-2: this is the execution time overhead by GPOS
scheduling events of type 1 and 2. In the example depicted by figure 3.9 the worst-
case measure would include steps (7) to (12).

• GPOS scheduling event type 3: execution time overhead caused by GPOS scheduling
events of type 3. The worst-case measure includes steps (2) to (5) in figure 3.9 plus
an additional SafeG context switch (in case the GPOS interrupt was raised while the
GPOS was executing).

• Budget replenishments: execution time overhead caused by the Replenishment timer
from the Execution Overruns Module. The worst-case measure includes 2 SafeG
context switches, the execution of the replenishment timer handler and the execution
of the Manager task.

3.6. EVALUATION 37

Table 3.2: Source code lines and binary size increase.

type new files code increase binary size increase
RTOS user 3 155 lines 2716 bytes

RTOS kernel 0 0 0
GPOS kernel 5 88 lines 372 bytes
GPOS user 0 0 0

SafeG monitor 0 0 0

• Budget overruns: execution time overhead caused by the overrun timers. The worst-
case measure includes steps (15) to (17) in figure 3.9 plus an extra SafeG context
switch to the GPOS.

The execution overheads shown in table 3.1 must be taken into account during the
schedulability analysis of the RTOS. However, they are small enough for practical appli-
cation, and therefore we can say that the implementation of the IS architecture is able to
satisfy the requirement 3.3.

3.6.4 Requirement 3.4: GPOS modifications

During the implementation of the IS architecture, we extended the Linux kernel with a new
driver which includes initialization code and stores information regarding the configuration
of the GPOS groups. The module provides a callback function to notify GPOS scheduling
events of type 1 and 2, which is inserted as a hook inside the Linux scheduler. The insertion
of the hook is facilitated by the ftrace[50] kernel tracer hooks infrastructure, which re-
duces the necessary maintenance efforts. As table 3.2 shows, the implementation of the IS
architecture on the Linux kernel required a total amount of 88 lines of C source code. 81 of
those lines are independent from the Linux kernel while the remaining 7 lines correspond
to the hook inserted in the scheduler.

3.6.5 Requirement 3.5: RTOS modifications

Table 3.2 shows that the size of the modifications to the RTOS kernel is zero. This is because
we managed to implement the IS architecture completely on RTOS user space by using the
TOPPERS/ASP[30] application interface which includes overrun handlers, cyclic handlers,
semaphores and an interface to suspend and resume tasks. The implementation required a
total of 155 C source code lines and the binary size was increased by 2716 bytes, most of
them in the .bss (uninitialized data) section.

38 CHAPTER 3. INTEGRATED SCHEDULING

Table 3.3: Tasks in the use case example.

OS task name period(ms) execution time(ms)
ASP Robot Control task 10 5
ASP Logger task 4000 500
Linux mplayer task 41 12

3.6.6 Requirement 3.6: SafeG modifications

In this implementation the SafeG monitor was completely unmodified and therefore re-
quirement 3.6 was satisfied. The main reason for which SafeG may need to be extended in
a future implementation is that the chip did not support inter-VCPU interrupts. In that case,
a new SMC call should be added for SafeG to emulate inter-VCPU interrupts.

3.6.7 Use case example

In order to prove the practical applicability and effectiveness of the proposed architecture
we built the system previously described in § 3.2, and measured its performance under the
idle scheduling and the integrated scheduling approach. The main difference between both
approaches is the fact that on the IS approach, Linux interrupts and the mplayer task are
scheduled with higher priority than the ASP logger task; whereas in the idle scheduling
approach they are scheduled with lower priority.

The period and execution time of each task in the system are shown in table 3.3 (dead-
lines equal to periods). Additionally, a CPU-time resource reservation with 12ms of budget
and 41ms of replenishment period was used to prevent the ASP logger task from starving on
the IS approach. The theoretical worst-case response time of the mplayer task under each
scheduling approach can be calculated by using real-time response analysis[47, 26]:

Wi(t) = Ci +

⌈
t

Ti−1

⌉
· Ci−1 + ...+

⌈
t

T1

⌉
· C1 (3.1)

WCRTmplayeridle = 12 +

⌈
1027

10

⌉
· 5 +

⌈
1027

4000

⌉
· 500 = 1027ms (3.2)

WCRTmplayeris = 12 +

⌈
27

10

⌉
· 5 = 27ms (3.3)

Where Wi(t) is the amount of work of priority Pi or higher started before time t; Ci is
the execution time for task i; and Ti is the period of task i. The equation is solved by iter-
ating the value of t until two successive steps yield the same result for Wi(t), which equals

3.6. EVALUATION 39

Figure 3.12: Frames per second in each scheduling approach.

to the worst-case response time for task i (i.e., WCRTi). The mplayer task is schedulable
under the IS architecture because its worst-case response time (27ms) is smaller than its
deadline (41ms). In contrast, its worst-case response time under the idle scheduling ap-
proach (1027ms) is greater than its deadline (41ms), and therefore not schedulable. We can
also see that the logger task remains schedulable under the IS architecture:

WCRTloggeris = 500 +

⌈
2418

10

⌉
· 5 +

⌈
2418

41

⌉
· 12 = 2418ms < 4000ms (3.4)

Figure 3.12 shows the dynamic frame rate at which the video is played under both
scheduling approaches. We measured the dynamic frame rate of the video by using the
movbench utilities available at [48]. We observe that the frame rate under the idle scheduling
approach experiments strong drops approximately every 4000ms (i.e., the period of the
logger task) which are caused by the blocking time imposed by the execution of the ASP
logger task. The average frame rate is reduced from 24 to 20 frames-per-second, and most
importantly the user’s video watching experience gets dramatically worsened.

In contrast, we observe that under the IS architecture the video is played smoothly at a
constant rate of 24fps. We also observed that this was accomplished without causing any
deadline miss to the ASP robot control task (i.e., the robot never fell down) nor starvation
to the ASP logger task. From these observations, we shall conclude that the proposed
IS architecture was effective at enhancing the responsiveness of the mplayer task without
damaging the real-time performance of the ASP activities.

40 CHAPTER 3. INTEGRATED SCHEDULING

3.7 Related work

There is a large amount of literature proposing different dual-OS mechanisms to enable the
concurrent execution of a GPOS and an RTOS under time and memory isolation conditions.
However, research on dual-OS scheduling is rather scarce and most of it can be classified
in the following groups:

• Idle scheduling: dual-OS monitors that schedule the GPOS as the RTOS idle task
belong to this group. A few examples are RTAI[39], Linux on ITRON[10] and more
recently, MobiVMM[6]. [51] proposes a combination of a time-driven, priority-based
and proportionally shared scheduler. However, in their proposal the RTOS is always
assigned a static high priority, and therefore providing responsiveness to the GPOS is
rather difficult.

• Compositional scheduling: this includes dual-OS monitors that schedule the RTOS
and GPOS using time-based compositional scheduling frameworks. An example is
the XTRATUM[11] hypervisor whose scheduler is based on ARINC-653[24]. This
approach allows for a great degree of time isolation between the guest OSs. However,
it is not suitable for event-driven processing, such as interrupts, that require very short
latencies.

• Fair scheduling: a typical example is the XEN[2, 16] credit scheduler which enables
sharing the CPU proportionally between the guest OS. XEN has several mechanisms
[45] for improving the responsiveness of I/O bound guest OSs but it is not able to
cope with the hard real-time requirements of an RTOS.

The idle-scheduling problem described in § 3.2 was also identified by [46], where a
task grain scheduling algorithm for a virtualized embedded system was presented. The
architecture proposed in [46] uses the L4-embedded microkernel as a hypervisor running
para-virtualized versions of Linux (Wombat) and TOPPERS/JSP (L4/TOPPERS). In order
to implement task grain scheduling, each of the guest operating systems notifies the priority
of the running task to a global scheduler. However, their approach does not protect RTOS
tasks real-time properties from GPOS misbehavior and is not capable of mixing the priority
of GPOS interrupt handlers with RTOS tasks. Also, the architecture proposed in that ap-
proach requires an extra global scheduler while in the IS architecture the RTOS scheduler
plays that role.

3.8. CONCLUSIONS 41

3.8 Conclusions

In this chapter, we replaced the idle scheduling principle from the original SafeG architec-
ture by an integrated scheduling architecture that allows mixing the execution priority levels
of RTOS and GPOS activities. The architecture is based on the collaboration of an RTOS
user-space library and the GPOS scheduler. We showed that the IS architecture is useful
for enhancing the responsiveness of GPOS activities with soft real-time requirements (e.g.,
interrupt handlers or multimedia applications). At the same time, the real-time performance
requirements of the RTOS are guaranteed thanks to the use of overrun control mechanisms.
We implemented the architecture on a physical platform and evaluated it. The results of
the evaluation showed that all the requirements defined in § 3.3 were satisfied. Addition-
ally, we built a use case example that proved the practical applicability and effectiveness of
the proposed approach in a real-world application. The source code of the IS architecture
and usage examples are distributed along with SafeG through the TOPPERS open source
license[30].

42

Chapter 4

Dual-OS communications

Dual-OS communications allow a real-time operating system (RTOS) and a general-purpose

operating system (GPOS)—sharing the same processor through virtualization—to collab-

orate in complex distributed applications. However, they also introduce new threats to

the reliability of the RTOS that must be considered. In this chapter, we propose a novel

dual-OS communications approach able to accomplish efficient communications without

compromising the reliability of the RTOS.

4.1 Introduction

Although the mere execution of the RTOS and the GPOS in isolation may satisfy the re-
quirements of some systems, support for communication between both OSs opens the door
for new applications with higher sophistication. However, dual-OS communications also
introduce new threats to the reliability of the RTOS that must be considered. Some ex-
isting dual-OS communication systems[14, 24, 11, 25] are able to cope with most of the
aforementioned reliability threats. However, they all essentially follow the same traditional
approach (see figure 4.2(a)) based on extending the dual-OS virtualization layer with addi-
tional communication primitives. Although the traditional approach simplifies synchroniz-
ing both OSs and protecting communication structures, it has several efficiency drawbacks
to consider, such as the use of unnecessary data copies and context switches.

The main contribution of this work is a new dual-OS communications architecture able
to provide efficient communications without compromising the reliability of the RTOS. We
implemented it on a physical platform using the highly reliable SafeG dual-OS system (see
§ 2.5). Our implementation leverages ARM TrustZone hardware security extensions[29]
to guarantee the memory protection and timeliness of the RTOS at a rather low overhead.

43

44 CHAPTER 4. DUAL-OS COMMUNICATIONS

Figure 4.1: Dual-OS communications example.

We evaluated our approach through several experiments; and compared the results with the
traditional approach used in previous dual-OS systems. From the evaluation results, we ob-
served that the proposed architecture is indeed effective at minimizing the communication
overhead while satisfying the strict reliability requirements of the RTOS.

The remainder of this chapter is structured as follows. § 4.2 reviews background knowl-
edge for better understanding the contents of this chapter. We also introduce related work
and detail the efficiency and reliability problems that we encountered in previous approaches
to dual-OS communications. § 4.3 provides a list of requirements and assumptions for the
design of our dual-OS communications architecture. § 4.4 constitutes the core of this chap-
ter and describes our approach to dual-OS communications. § 4.5 details the implemen-
tation of our architecture and § 4.6 presents the results of the evaluation and discusses the
satisfaction of the requirements listed in § 4.3. Finally, § 4.7 concludes the chapter.

4.2 Background

4.2.1 Dual-OS communications

A dual-OS communications system is a set of methods for the exchange of information
between RTOS and GPOS applications—running on a dual-OS system—which opens the
possibilities for new applications with higher sophistication:

• RTOS⇒ GPOS communications are typically used for the RTOS to leverage the rich
functionality of the GPOS. Figure 4.1 shows an example where dual-OS communi-
cations are used for the RTOS to report the status of a group of heating devices to the
GPOS, which is in turn connected to a remote user through a network.

• GPOS ⇒ RTOS communications are typically used for the GPOS to request a ser-
vice that only the RTOS can provide. For example, the RTOS may provide secu-

4.2. BACKGROUND 45

RTOS

Task

Kernel

Task

VL

Kernel

GPOS

(a) Traditional approach.

RTOS

Task

Kernel

Task

Kernel

GPOS

Shared
Memory

(b) Cluster hypervisor approach.

Data path Events path

VL

Figure 4.2: Previous communication approaches.

rity services[12, 29] (e.g., digital rights or authentication services) that use crypto-
graphic keys stored on secure memory that are not accessible by the GPOS. Another
application is device sharing[57, 58] which cannot be accomplished through GPOS
devices—even if both OSs have access to them—because otherwise the GPOS could
access sensible data belonging to the RTOS; or change the device’s configuration.

4.2.2 Related work

In spite of its benefits, dual-OS communications also introduce new threats to the reliability
of the RTOS: message overload attacks[52]; user and control data corruption attacks[53];
memory faults caused by shared pages being removed[59]; or unbounded waits caused by
the non-cooperation of the GPOS are just a few examples.

There already exist several dual-OS communication systems[14, 24, 11, 25] capable
of addressing most of the aforementioned reliability threats. However, they all essentially
follow the same rather conservative traditional approach (see figure 4.2(a)) that requires
the communications data path to traverse the VL, which needs to be extended with addi-
tional communication primitives. This approach simplifies the synchronization between
both OSs—typically by disabling interrupts inside the VL—in the access to the control data
used for communications; and is useful to protect it against GPOS attacks. However, it also
has several efficiency drawbacks that must be considered, such as unnecessary data copies
and context switches[66, 61].

In parallel, several works[54, 55, 56] have addressed the demanding efficiency require-
ments of inter-OS communications for multiple-guest hypervisors (e.g., XEN[16]) used in
enterprise cluster computing. Most of them exploit the use of kernel shared memory for
reducing the number of data copies (see figure 4.2(b)). Unfortunately, none of these hyper-
visors are able to guarantee the high reliability requirements of a dual-OS system.

46 CHAPTER 4. DUAL-OS COMMUNICATIONS

4.3 Requirements and assumptions

This section presents a list of requirements and assumptions for the design of a reliable and
efficient dual-OS communications system. The satisfaction of these requirements will be
discussed in § 4.6.

4.3.1 Reliability requirements

REQUIREMENT 4.1 Memory isolation: TCB memory must be protected against any access—
accidental or malicious—by the GPOS. Shared memory used for communications
must only be accessible by the RTOS and GPOS privileged software, which should
pass a software quality control for increasing its trustworthiness.

REQUIREMENT 4.2 Shared control data: control data shared by both OSs must be vali-
dated (e.g., using range checking) by the RTOS, and protected against further mali-
cious modifications by the GPOS.

REQUIREMENT 4.3 Real-time: the timeliness of RTOS interrupt handlers and tasks must
be guaranteed. In particular, it must be protected against message overload attacks
coming from the GPOS.

REQUIREMENT 4.4 Memory faults: the architecture must guarantee that the RTOS will
not access non-existent memory—causing the corresponding memory faults—even if
GPOS tasks are swapped out to virtual storage or shared memory used for communi-
cations is unmapped by the GPOS.

REQUIREMENT 4.5 Unbounded blocking: the architecture must guarantee that RTOS tasks
will not suffer unbounded waiting times caused by the non-cooperation of the GPOS.

REQUIREMENT 4.6 Code modifications: the architecture must not impose modifications
to the RTOS kernel or the VL to avoid reissuing a new verification process, and for
improving the maintainability of the architecture. The GPOS kernel can be extended
with a driver (e.g. to handle communication events) but its core code must not be
modified due to maintenance reasons.

4.3.2 Efficiency requirements

REQUIREMENT 4.7 Throughput: the architecture must minimize the overhead caused by
unnecessary data copies and context switches; and the use of costly protocol stacks.

REQUIREMENT 4.8 Memory size: the amount of memory used for dual-OS communica-
tions must be minimized.

4.4. COMMUNICATIONS ARCHITECTURE 47

Table 4.1: Requirements Vs. Our design choices.

Type Requirement name Number Evaluation Our design choices
R

el
ia

bi
lit

y

Memory isolation 4.1 QL Three trustworthiness levels.
Shared control data 4.2 QL/QN Four steps update algorithm.
Real-time 4.3 QN Message rate limiting.
Memory faults 4.4 QL Reserve shared memory.
Unbounded blocking 4.5 QL Timeouts and non-blocking.
Code modifications 4.6 QL/QN User-level library.

E
ffi

ci
en

cy Throughput 4.7 QN Shared memory; Filters.
Memory size 4.8 QN Static configuration interface.
Interface 4.9 QL Shared memory & events;

RPCs; sampling messages.
QL=Qualitative QN=Quantitative

REQUIREMENT 4.9 Interface: the communications interface must be suitable for imple-
menting communication patterns—such as remote procedure calls (RPC) or sampling
communication—typically present in common embedded systems.

4.3.3 Assumptions

(a) Static: all RTOS communication resources can be statically allocated for reliability
reasons.

(b) Transparency: the user interface does not require being transparent to the user.

(c) Events driver: the GPOS allows implementing a driver to send or receive software
interrupts.

(d) Raw user data: validating the raw contents of user messages is out of the scope of this
chapter.

(e) Verified TCB: we assume that software belonging to the TCB has been correctly verified
and does not have any defects.

4.4 Communications architecture

Table 4.1 summarizes the list of requirements presented in § 4.3, and introduces the cor-
responding design choices followed by the proposed dual-OS communications architecture
(hereafter dualoscom architecture). This section describes the design of the dualoscom
architecture, which will be evaluated in § 4.6 against the mentioned requirements and com-
pared against the traditional approach depicted in figure 4.2(a).

48 CHAPTER 4. DUAL-OS COMMUNICATIONS

Virtualization-based
2nd protection level

Virtualization layer

RTOS kernel

RTOS
task

GPOS kernel

comm.

lib
other
tasks

Events path (inter-OS interrupts)

Shared
Memory

control
data copy

RTOS Devices

interrupt limiting

comm. lib

control data

RTOS

driver

GPOS
comm.
task

GPOS

GPOS Devices

Trusted

Untrusted-unprivileged

Access

Sandbox

Permissions-based
1st protection level

Interaction

data path

Untrusted-privileged

Figure 4.3: The proposed dual-OS communications architecture.

4.4.1 Satisfying reliability requirements

• Memory isolation (requirement 4.1): the dualoscom architecture relies on user-level
shared memory for implementing dual-OS communications efficiently (see figure 4.3).
In contrast to the traditional approach (see figure 4.2(a)) dualoscom control data struc-
tures are not protected by the VL. Instead, we divide GPOS tasks into two groups:
GPOS communicating tasks with the privilege of accessing the shared memory re-
gion; and other GPOS tasks without such privilege. GPOS communicating tasks
are created and thoroughly tested by the dual-OS system engineer during the devel-
opment phase. In contrast, the other GPOS tasks may include malicious or buggy
applications installed by the user during the lifetime of the system, and are expected
to be less trustworthy. This reasoning leads to the existence of three trustworthiness
levels (trusted, untrusted-privileged and untrusted-unprivileged), which are separated
by the two protection sandboxes illustrated by figure 4.3. TCB memory (i.e., trusted
memory for the RTOS and the VL) is protected against any GPOS access by the VL
protection level; and communications shared memory is protected against untrust-
worthy GPOS tasks by the permissions-based protection level.

• Shared control data (requirement 4.2): if the permissions-based protection level is
broken (e.g., by exploiting a GPOS kernel bug), untrusted-unprivileged GPOS tasks
can attack the second virtualization-based protection level by maliciously modifying
the shared control data. In order to protect the RTOS against such modifications—
for example, to avoid dereferencing a null pointer—all updates by the RTOS to the
shared control data are made in four steps: copy the required control data to the RTOS
memory; validate it by range-checking; update it according to the current operation
(e.g., enqueue); and finally, copy the modified control data back to shared memory.
Validating the raw contents of user messages is out of the scope of this chapter.

4.4. COMMUNICATIONS ARCHITECTURE 49

Figure 4.4: Elements of a dualoscom communication channel.

• Real-Time (requirement 4.3): another way for a malicious GPOS application to at-
tempt breaking the second protection level is by sending an excessive amount of mes-
sages to the RTOS. The dualoscom architecture splits the transmission of messages
in two parts: the data path and the events path. The data path involves non-blocking
operations to enqueue or dequeue blocks of data; and is implemented through lock-
free bidirectional FIFOs that exist in shared memory (see figure 4.4). The events path
involves asynchronous notifications (implemented through inter-OS interrupts) and
wait-event operations that may block the calling task until a timeout expires. This
separation allows tasks to communicate using both polling or event-driven communi-
cation patterns. However, in order to protect the timeliness of RTOS activities the rate
of GPOS⇒ RTOS message interrupts must be limited. The dualoscom architecture
supports two message interrupt limiting algorithms presented in previous work[52]:
the strict message interrupt limiter which enforces the minimum inter-arrival time
between interrupts; and the bursty message interrupt rate limiter which enforces a
maximum burst size and a maximum arrival rate. Finally, it is the responsibility of
RTOS applications not to poll for new GPOS messages in an endless loop.

• Memory faults (requirement 4.4): to guarantee that the RTOS will never try to access
non-existent or unmapped memory, the shared memory region used for communica-
tions is statically allocated at configuration time.

• Unbounded blocking (requirement 4.5): to avoid a situation in which RTOS tasks
could wait for a GPOS message for an unbounded amount of time, a timeout can be
specified in all blocking operations of the events path. Non-blocking operations never
perform retries, and return an error code instead when there is contention.

• Code modifications (requirement 4.6): to avoid modifying the RTOS kernel or the VL,
the data path is carried out by the dualoscom communications library (comm. lib) at
user level. The events path and the message interrupt rate limiting mechanisms are

50 CHAPTER 4. DUAL-OS COMMUNICATIONS

(a) RTOS⇒ GPOS communication direction. (b) GPOS⇒ RTOS communication direction.

Figure 4.5: Behavior of the filtering functionality in both communication directions.

implemented through the RTOS application interface (API). In contrast, to implement
event operations (e.g., waiting or sending an event), the GPOS kernel requires being
extended with a communications driver.

4.4.2 Satisfying efficiency requirements

• Throughput (requirement 4.7): to minimize the overhead caused by unnecessary data
copies and context switches, all data path communications occur at user level through
shared memory. To reduce the overhead caused by the events path, applications can
choose to use a single event to notify the transmission of several messages, thus re-
ducing the number of context switches per message. This is supported by splitting
the communications interface between the transmission of data and events. There
are two more mechanisms for reducing the overhead caused by unnecessary context
switches: filters and non-synchronized accesses. Filters are functions that execute on
the sender side of a channel (see figure 4.4 and figure 4.5) and are used for discard-
ing the transmission of messages when they are not needed by the receiver (e.g., if a
variable has not changed since the last time it was received). The access to a channel
can be configured to be synchronized (e.g., through a priority ceiling mutex) or non-
synchronized. This allows avoiding the execution time overhead associated to access
synchronization when only a single task is supposed to access the channel.

• Memory size (requirement 4.8): to minimize the amount of memory used by dual-
OS communications, all channel parameters can be configured. The configuration
parameters of a channel include: the number of blocks and their size; the use of
synchronized accesses; and its associated filters.

• Interface (requirement 4.9): the runtime interface to the dualoscom architecture sup-
ports shared memory blocks and asynchronous event notifications. By combining

4.4. COMMUNICATIONS ARCHITECTURE 51

them it is possible to build more complex communication patterns such as RPCs or
sampling messages[24, 27]. See § 4.4.4 and § 4.4.5 for details.

4.4.3 Communication channels

A channel is a communication entity by means of which RTOS and GPOS untrusted-
privileged tasks can exchange information. Figure 4.4 depicts the main structures of a
communication channel, which is composed of the following elements:

• Blocks: a block is a piece of shared memory used to send data. Each channel con-
tains a pool of a configurable number of blocks. All the blocks in a channel have
a fixed size, which is also configurable. Blocks must be explicitly allocated before
being used. They can be sent in both directions (i.e., RTOS⇔GPOS) and they can be
released back to the channel’s pool either by the sender or the receiver.

• FIFOs: a FIFO (First-In-First-Out) queue is a data structure used to deliver blocks in
the same order they were enqueued. Each channel contains exactly two FIFOs, one
for each communication direction. A FIFO has a number of elements equal to the
number of blocks in the channel. Each enqueued element consists of a block identifier
that was previously allocated and enqueued by a sender. A FIFO queue can be easily
implemented using a lock-free algorithm if all of its operations are serialized. For that
reason, the GPOS does not need to disable RTOS interrupts (e.g., for synchronization
purposes) which is forbidden by the VL.

• Filters: a filter is a function that receives a block’s buffer and size, and returns a
boolean to indicate whether the corresponding block should be sent or not. Filters are
used for discarding the transmission of a block (i.e., before it is enqueued) depending
on its contents. They are used to avoid unnecessary communication overhead[27].
Figure 4.5 depicts the dualoscom filtering functionality. Each channel contains two
active filter functions (e.g., rtfilter2 and gpfilter0), one for each communi-
cation direction. Filters used in the RTOS⇒ GPOS communication direction (e.g.,
rtfilter#) execute on the RTOS, and therefore must follow the same formal veri-
fication process as other components in the TCB. In contrast, GPOS⇒ RTOS filters
(e.g., gpfilter#) execute on the GPOS untrusted-privileged user space. Compared
to untrusted-unprivileged software, GPOS filters must follow a software quality con-
trol. However, they are allowed to assume that data sent by the RTOS is valid. The
source code of RTOS and GPOS filters is statically provided by the dual-OS system

52 CHAPTER 4. DUAL-OS COMMUNICATIONS

engineer during the build process (see figure 4.6), and their contents cannot be modi-
fied during the execution of the system. Instead, each channel contains two variables
(RTOS and GPOS active filter id), which are identifier numbers for indicating the
currently active filter on each communication direction (e.g., 2 in figure 4.5(a) and
0 in figure 4.5(b)). While filter functions are located in the same memory region
as the operating system where they execute, active filter id variables are located in
shared memory. Receiver tasks can select the active filter at runtime by using a filter
identifier—or a null value if no filtering is required—as illustrated by figure 4.5. Filter
identifiers are automatically allocated by the dualoscom configurator tool during the
configuration phase (see figure 4.6), and are internally represented as natural integers.
Before a block is enqueued to a channel, the dualoscom library reads its active filter id

number from shared memory, and executes the associated active filter function (e.g.,
rtfilter2 and gpfilter0) on it. If the filter function returns true, the block is
enqueued to the FIFO; otherwise an error code is returned to the user, indicating that
the block was discarded. Note that in figure 4.5(a), a malicious GPOS task can poten-
tially set a corrupted the active filter id (47). The RTOS library must always validate
the range of the active filter id variable before using it to select a filter function for
execution. Note that any value inside the range is valid, and therefore filters must be
prepared to handle any block that is sent through that channel direction.

• Events: an event is a method for sending asynchronous notifications between the
RTOS and the GPOS. Events can be sent in both directions and they are not queued,
meaning that they must be acknowledged by the receiver before a new event can be
sent. Events are sent independently to the process of enqueueing blocks. This allows
senders to enqueue several blocks before notifying the receivers.

• Mutexes: a mutex is a mechanism used for serializing the access of tasks to a channel
within the same OS. Channels can have up to two mutexes, one for each communi-
cation direction. Each mutex can be removed at configuration time—for minimizing
the synchronization overhead—if access contention is not expected.

4.4.4 Dualoscom interface

The dualoscom build process

Figure 4.6 illustrates the dualoscom build process through the heating devices example from
figure 4.1. As it is common practice in most RTOSs[30], dualoscom provides a configura-
tion interface which allows all of its structures to be allocated statically. This is necessary

4.4. COMMUNICATIONS ARCHITECTURE 53

RTOS
(e.g. asp.bin)

GPOS (user)
(e.g. user.elf)

1:DUALOSCOM_FILTER(TMP_FILTER, tmp_update);
2:DUALOSCOM_CHANNEL(CH_A,8,1,false,false,{TMP_FILTER},NULL);
3:DUALOSCOM_CHANNEL(CH_B,8,1,false,false,{TMP_FILTER},NULL);
4:DUALOSCOM_CHANNEL(CH_C,8,1,false,false,{TMP_FILTER},NULL);
5:DUALOSCOM_CHANNELS_GROUP(GR,CH_A,CH_B,CH_C);

Dualoscom configuration file (dualoscom_config.txt)

 1:/* FILTERS */
 2:#define NULL_FILTER 0xFFFFFFFF
 3:#define TMP_FILTER 0
 4:...
 5:/* CHANNELS */
 6:#define NUM_CHANNELS 3
 7:#define CH_A 0
 8:#define CH_B 1
 9:#define CH_C 2
10:...
11:/* GROUPS */
12:#define NUM_GROUPS 1
13:#define GR 0
14:...

Configured header
dualoscom_config.h

dualoscom configurator

Compile
and
Link

 1:dualoscom_init(tout);
 2:dualoscom_filter_set(CH_A,TMP_FILTER);
 3:dualoscom_filter_set(CH_B,TMP_FILTER);
 4:dualoscom_filter_set(CH_C,TMP_FILTER);
 5:while(1) {
 6: dualoscom_event_select(GR,&ch_id,tout);
 7: dualoscom_block_dequeue(ch_id,&block_id);
 8: dualoscom_block_getbuffer(block_id,
 &data_ref);
 9: smartphone_send_update(heater[ch_id],
 *data_ref);
10: dualoscom_block_free(block_id);
11:}

GPOS application

Compile
and
Link

GPOS dualoscom library

GPOS filters*

*not necessary in this example

 1:dualoscom_init(tout);
 2:while(1){
 3: delay_until_next_period();
 4: dualoscom_block_alloc(CH_A,&block_id);
 5: dualoscom_block_getbuffer(block_id,
 &data_ref);
 6: heater_get_status(HEATER_A,data_ref);
 7: ret=dualoscom_block_enqueue(block_id);
 8: if (ret == DUALOSCOM_SUCCESS)
 9: dualoscom_event_send(CH_A);
10: else
11: dualoscom_block_free(block_id);
12:}

RTOS dualoscom library

RTOS kernel

1:bool_t tmp_update(void *data,uint32_t size){
2: static uint32_t prev=0;
3: uint32_t *data_ref=(uint32_t *)data;
4: if (prev == *data_ref) return false;
5: prev=*data_ref;
6: return true;
7:}

RTOS filters (rtos_filters.c)

RTOS application (1 task per heater)

1:CRE_SEM(SEM_CH_A,{TA_NULL,0,1});
2:CRE_SEM(SEM_CH_B,{TA_NULL,0,1});

RTOS configuration file (rtos.cfg)

Figure 4.6: The dualoscom build process.

for guaranteeing the reliability of the TCB and it allows minimizing its memory and ex-
ecution time overhead. First, the dual-OS system engineer provides a configuration file
(e.g., dualoscom_config.txt) containing a channel declaration for each heating device.
Then, the configuration file is parsed by the dualoscom configurator tool, which generates a
configured header file (e.g., dualoscom_config.h) with constant definitions (e.g., identi-
fiers); and an RTOS configuration file (e.g., rtos.cfg) with static declarations—note that
RTOS resources are typically allocated statically for reliability reasons[26]. Finally, the
dual-OS system engineer provides the RTOS and GPOS communicating applications, and
the filter functions if necessary. These applications use a runtime interface whose syntax,
together with the syntax of the configuration interface, is described below.

The build process ends with the generation of two binaries: the RTOS bare-metal binary
(e.g., asp.bin), which contains the RTOS kernel, dualoscom library and application (the
RTOS kernel is typically linked to the user application for performance reasons); and the
GPOS user application (e.g., user.elf) which is linked to the dualoscom library. The
GPOS kernel is patched with a dualoscom driver, which receives all configuration parame-
ters from user-space at initialization, and therefore it only needs to be built once.

54 CHAPTER 4. DUAL-OS COMMUNICATIONS

Configuration interface

The configuration interface uses the next syntax:

DUALOSCOM_FILTER(): used to declare a filter. It accepts the following parameters:

• FILTER_NAME: a name for the filter. The dualoscom configurator generates a con-
stant with the same name (e.g., TMP_FILTER in figure 4.6) which is used as an iden-
tifier for the receiving tasks to select the active filter at runtime.

• filter: the name of a function which takes a block’s buffer and size as input param-
eters, and returns a boolean value (see the tmp_update function in figure 4.6 for an
example). If the return value is true, the block will be enqueued; otherwise it will be
discarded. The body of the function is written and tested (i.e., it must follow the same
software quality controls as any other software executed in the same trustworthiness
level) by the dual-OS system engineer before the build process starts.

DUALOSCOM_CHANNEL(): used to declare a channel. It accepts these parameters:

• CHANNEL_NAME: a name for the channel. After configuration, the same name (e.g.,
CH_A) can be used to identify the channel.

• num_blocks: the number of blocks.

• block_size: the block size in memory words.

• mutexes: two booleans to indicate if mutual exclusion is used at each end.

• rtos_filters: list of FILTER_NAME values to declare which filters can be selected
on the RTOS end of this channel. The value NULL can be used to declare no filter. By
default, there is no active filter at initialization.

• gpos_filters: list of FILTER_NAME values to declare which filters can be selected
on the GPOS end of this channel. The value NULL can be used to declare no filter. By
default, there is no active filter at initialization.

DUALOSCOM_CHANNELS_GROUP(): used to declare a group of channels, to allow wait-
ing for events on several channels at the same time.

• GROUP_NAME: a name for the group of channels. After configuration, the same name
can be used to identify the group.

• channels: a list of CHANNEL_NAME values that must match the values used during
the declaration of channels.

4.4. COMMUNICATIONS ARCHITECTURE 55

Runtime interface

The runtime interface is a set of functions for the RTOS and GPOS applications to com-
municate between each other at runtime. All functions return DUALOSCOM_SUCCESS upon
success and one of the following errors upon failure:

ERROR 1 DUALOSCOM_NOPERM: not enough permissions.

ERROR 2 DUALOSCOM_NOINIT: the communications system is not initialized yet.

ERROR 3 DUALOSCOM_PARAM: incorrect parameter.

ERROR 4 DUALOSCOM_FULL: there are no free blocks.

ERROR 5 DUALOSCOM_ENQ: the block is enqueued.

ERROR 6 DUALOSCOM_FILTER: the block was discarded.

ERROR 7 DUALOSCOM_EMPTY: no block is enqueued.

ERROR 8 DUALOSCOM_ALLOC: the block is not allocated.

ERROR 9 DUALOSCOM_TIMEOUT: a timeout occurred.

The runtime interface is composed of the following list of functions. Note that the prefix
dualoscom_ has been omitted from each function for the sake of shortness.

Initialization functions

• init(timeout): initializes the dualoscom system. The initialization protocol and
the timeout units are implementation-dependent. May return errors 1, 3, and 9.

Block management functions

• block_alloc(chan_id, &block_id): it allocates a block from a channel’s pool.
This function never blocks the calling task. May return errors 1, 2, 3, and 4.

• block_free(chan_id, block_id): releases a block back to the channel’s pool
where it belongs. May return errors 1, 2, 3, and 8.

• block_getbuffer(chan_id, block_id, &buffer_p, &size): to obtain a pointer
to the beginning of the memory region of a block. May return errors 1, 2, 3, and 8.

• block_enqueue(chan_id, block_id): enqueues a block to a channel’s FIFO.
May return errors 1, 2, 3, 6, and 8.

• block_dequeue(chan_id, &block_id): dequeues a block from a channel’s FIFO.
This function never blocks the calling task. May return errors 1, 2, 3, 7, and 8.

56 CHAPTER 4. DUAL-OS COMMUNICATIONS

Event management functions

• event_send(chan_id): sends a channel event notification. If a notification had
already been sent but not acknowledged by the receiver, then the function returns
DUALOSCOM_SUCCESS. Otherwise it may return errors 1, 2, and 3.

• event_wait(chan_id, timeout): this function makes the calling task wait for
an event notification on a channel. If an event was pending, the function acknowl-
edges it and returns immediately. Otherwise, the calling task is put in waiting state
until an event arrives or a timeout occurs. The timeout units are implementation-
dependent. May return errors 1, 2, 3, and 9.

• event_select(group_id, &chan_id, timeout): this function makes the call-
ing task wait for an event notification on a specific group of channels at the same time.
If an event on one of the channels was pending, the function acknowledges it and re-
turns immediately. Otherwise, the calling task is put in waiting state until an event
arrives or a timeout occurs. The timeout units are implementation-dependent. May
return errors 1, 2, 3, and 9.

Filter management functions

• filter_set(chan_id, filter_id): used by receiver tasks to select one of the
filter functions available at the sending side of a channel through a filter identifier.
The filter identifier can be NULL_FILTER if no filtering is desired. May return errors
1, 2, and 3.

4.4.5 Middleware

This section describes an example implementation of remote procedure calls (RPCs) and
sampling messages[24, 27] using the dualoscom interface. The goal of this section is just
to show the potential of the basic interface, rather than providing a complete middleware
framework.

RPC communication

Dual-OS RPC communications allow an RTOS client to request the execution of a subrou-
tine by a GPOS server (or vice versa) in the same manner as if the subroutine was local.
Figure 4.7 outlines the pseudocode of a simple algorithm—error checking is not shown—
for accomplishing RPC communications on top of the basic dualoscom interface.

4.4. COMMUNICATIONS ARCHITECTURE 57

Figure 4.7: Pseudocode of RPC communication.

First, the system engineer must declare the RPC parameters on a configuration file (e.g.,
rpc_config.txt) which has the following syntax:

DUALOSCOM_RPC(): used to declare an RPC.

• function: the name of the function.

• direction: indicates the communication direction (RPCs are unidirectional).

• mutex: indicates if mutual exclusion is required at the client end.

• params: a list of parameters with the next format: param : [in] [out] type.

The RPC configuration file is parsed by the RPC configurator tool, which generates a du-
aloscom configuration file (e.g., dualoscom_config.txt) and the necessary stub func-
tions on each OS that must also be linked into the final binaries.

RPCs are internally implemented through client request messages sent over dualoscom
channels (e.g., RPC_ADD). Each request message contains the input parameters (e.g., a and
b) for the subroutine, and memory space for the RPC server to store the output parameters
(e.g., result). If the RPC is synchronous, the client is put into waiting state while the
server processes the request message.

The main advantage of this interface is that, from the client application’s point of view,
the fact that the subroutine (e.g., add) executes remotely becomes completely transparent.

Sampling messages

Sampling messages—also known as unqueued messages—are part of several standards for
real-time systems, such as ARINC653[24] or OSEK[27]. They are a useful method for the
RTOS tasks to share data samples in a loosely-coupled fashion with the GPOS tasks. A data
sample consists of a typically small region of memory containing a value that is updated
periodically by a producer task. This value is read periodically by a loosely-coupled set of

58 CHAPTER 4. DUAL-OS COMMUNICATIONS

(a) Sampling messages on top of the dualoscom interface

(b) Configuration of sampling messages

Figure 4.8: Support for sampling messages on top of the dualoscom interface.

consumer tasks. Sampling messages are useful for situations in which only the last value
of some data (e.g., sensor data) is relevant to the application. Figure 4.8 illustrates a simple
method to implement sampling messages on top of the dualoscom architecture. The exam-
ple consists of two data samples sent in the RTOS⇒ GPOS communication direction. Data
samples (e.g., S1 and S2) are declared in a configuration file (e.g., samp_config.txt)
using the following syntax:

DUALOSCOM_SAMPLE(): used to declare a data sample. The parameters are:

• SAMPLE_NAME: the name of the data sample. After configuration, the same name can
be used to identify the data sample.

• mx_size: the maximum size of the sample.

• direction: indicates the communication direction (e.g., RTOS⇒GPOS).

• mutex: indicates if mutual exclusion is required to allow having multiple producers
for the same data sample.

• filter: default filter.

• init: data sample initialization function.

The samples configuration file is parsed by the samples configurator tool (see fig-
ure 4.8(b)). This tool generates a sampling header (e.g., samp_config.h) that contains

4.5. IMPLEMENTATION 59

the definition of several constants (e.g., the sample identifiers); and the dualoscom con-
figuration file (e.g., dualoscom_config.txt), which contains a channel declaration per
data sample (e.g., SAMP_S1 and SAMP_S2) and a group. RTOS producer tasks periodically
send new sample values through these channels. On the GPOS side, there is a sampling
library that contains a samples manager agent. When a new sample value arrives, the sam-
ples manager updates the corresponding data sample in local memory (e.g., S1 and S2 in
figure 4.8(a)). The access to these local data samples is protected through a readers-writer
lock which allows several consumers to access the same data sample concurrently.

4.5 Implementation

This section gives details about the implementation of the dualoscom architecture on top of
the SafeG dual-OS system.

4.5.1 Implementation platform

The hardware and software environment used to implement and evaluate the dualoscom
architecture consisted of the following elements:

• PB1176JZF-S baseboard[35].

– ARM1176JZF-S[31] core at 210MHz.

– 32KB Cache

– DRAM: 128MB (Non-Secure memory)

– PSRAM: 8MB (Secure memory)

• RTOS: TOPPERS/ASP v1.6[30].

• GPOS: Linux v2.6.33 with buildroot[34].

• VL: TOPPERS/SafeG v0.2.

4.5.2 Code modifications

The implementation of the dualoscom architecture on ASP was completely accomplished at
application level by leveraging ASP’s application interface[30]. Therefore, neither the ASP
kernel nor the SafeG monitor required any modifications. The most relevant parts of ASP’s
interface for the implementation of the dualoscom library were semaphore operations (e.g.,
isig_sem or wai_sem); and the static configuration interface of interrupt handlers, which
were used for the transmission of asynchronous events through inter-OS interrupts.

60 CHAPTER 4. DUAL-OS COMMUNICATIONS

In contrast, the Linux kernel was extended with a module that exports a character device
file interface (e.g., /dev/dualoscom) to the user-space dualoscom library. The main two
operations that the kernel module implements are the memory map (mmap) operation and
the I/O control (ioctl) operation. The former is used by the function dualoscom_init

to map a region of Non-Secure memory that is used as inter-OS shared memory. The later
operation is used mainly for the transmission of events between both operating systems.

4.5.3 Initialization steps

The initialization of dualoscom comprises the following steps:

• Before Linux starts, an ASP task invokes the dualoscom_init function. This func-
tion initializes the shared memory region—which is hardwired into the code—and
OS structures needed for the channel events (e.g., semaphores and interrupt handlers).
Then the function resets a shared variable called initialized to false, and waits on
a semaphore for the Linux side to initialize.

• When the RTOS SMC Task is scheduled, Linux starts its initialization. The values for
the shared memory region are passed to the Linux kernel using the kernel parameters.

• When the dualoscom module gets loaded, it maps the shared memory region into
the Linux kernel virtual address space; it creates a device file; and it associates an
interrupt handler routine to the inter-OS interrupt number.

• Eventually a GPOS application will call the dualoscom_init function. This func-
tion maps the shared memory region into the application address space; initializes any
application-level internal structures; and performs a system call to the kernel module.
This call sets the initialized variable to true, and sends an event to ASP.

• Finally, ASP receives the event and wakes up the task that was waiting on a semaphore
concluding the initialization process.

Note that if the GPOS never sends an event, then the task will still be woken up when
the specified timeout value expires. Also, it is important to note that the library is prepared
against malicious modifications of the shared memory region by the GPOS.

4.6 Evaluation

This section evaluates the satisfaction of the qualitative and quantitative requirements de-
fined in table 4.1 by our implementation of the dualoscom architecture.

4.6. EVALUATION 61

Table 4.2: Overhead of the four steps algorithm.

function copied bytes overhead
block_alloc 0 0µs
block_free 0 0µs
block_getbuffer 0 0µs
block_enqueue 12 bytes 2.15µs
block_dequeue 4 bytes 0.75µs
event_send 0 0µs
event_wait 0 0µs
event_select 0 0µs
filter_set 0 0µs

4.6.1 Requirement 4.1: memory isolation

Memory isolation is satisfied by the dualoscom architecture through the use of two protec-
tion levels. In our implementation, the first level of protection is implemented through the
permissions associated to a Linux device file (e.g., /dev/dualoscom) which are read/write
for user tasks belonging to a configurable Linux group, and null for the rest of tasks. This
device file is managed by the dualoscom Linux driver, and can be used for mapping the
shared memory region into user space; or for the transmission of channel events. Protection
with channel granularity can also be implemented at the cost of an increased memory usage
due to the need of separated memory pages for each channel. The second level of protection
is guaranteed by the TrustZone configuration as in the original architecture of SafeG.

4.6.2 Requirement 4.2: shared control data

Traditional approaches (see figure 4.2) store all control data in trusted memory, where it is
not accessible by the GPOS. In contrast, dualoscom stores control data in shared memory—
which is accessible by untrusted-privileged software—and uses a four steps algorithm (see
§ 4.4.1) involving a copy of the control data to RTOS memory. Updates to control data
are done using variables validated on RTOS memory. Therefore the GPOS cannot attack
the execution of the RTOS and requirement 4.2 is satisfied. Table 4.2 shows the amount
of control data copied by each function and its validation overhead. We observed that the
highest overhead occurs in the block_enqueue function, because it needs to copy and
validate the active filter id and the FIFO’s read/write cursors of the channel. The function
block_dequeue only needs to copy and validate the FIFO’s read cursor. The rest of
functions do not require any copy since they are all based on simple atomic operations.

62 CHAPTER 4. DUAL-OS COMMUNICATIONS

Table 4.3: Tasks for the evaluation of the message interrupt rate limiting functionality.

Task name OS Global Priority C T
RTH RTOS High 5ms 100ms
GPM GPOS Medium 10ms 100ms
RTL RTOS Low 40ms 100ms

(a) Ideal behavior. (b) Without limiter. (c) With limiter (2int/100ms).

Figure 4.9: Limiting mechanisms for dealing with message overload attacks.

4.6.3 Requirement 4.3: real-time

The dualoscom architecture supports message interrupt rate limiting mechanisms for pro-
tecting the real-time performance of RTOS activities against message overload attacks com-
ing from the GPOS (see § 4.4.1). We evaluated the effectiveness of message interrupt limit-
ing on a dual-OS system with two RTOS tasks and one GPOS task. The parameters of these
tasks are shown in table 4.3, where C and T represent the execution time and period (dead-
lines are equal to periods) for RTOS tasks, or the execution time budget and replenishment
period for the GPOS task. The dualoscom system is configured with a single communi-
cation channel for the GPM (GPOS Medium priority) task to send messages to the RTH
(RTOS High priority) task every 100 ms. The RTL (RTOS Low priority) task does not use
the dualoscom system at all. Instead, it is activated every 100 ms, and at each activation
it consumes 40 ms of execution time with a global priority lower than the priority of the
GPM and RTH tasks. Under an ideal scenario (see figure 4.9(a)) the worst-case response
time (WCRT) of the RTL task (i.e., the length of the longest interval from the task’s release
till its completion) should always be shorter than

∑
Ci = 55ms. However, if the GPM task

misbehaves—due to a bug or a malicious user—it can potentially cause the RTL task enter
starvation by generating a message overload attack against the RTH task (see figure 4.9(b)).
Note that the time for the GPM task to send a single message is an order of magnitude lower
than its execution time budget. Figure 4.9(c) illustrates how the dualoscom message inter-
rupt rate limiting functionality can address this issue, by disabling the reception of message
interrupts (e.g., using the RTOS interrupt controller) whenever the message interrupt rate
limiting value is overrun.

4.6. EVALUATION 63

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
e

a
s
u

re
d

 W
C

R
T

rt
l (

m
s
)

Malicious interrupt burst rate (int/100ms)

Without limiter
With limiter (1interrupt/100ms)
With limiter (5interrupt/100ms)

With limiter (10interrupt/100ms)

Figure 4.10: Evaluation of message interrupt limiting.

We inserted malicious code into the GPM task for generating message overload attacks
against the RTH task. Then, we measured the WCRT of the RTL task with and without
the use of a bursty message interrupt rate limiter (note that the strict limiter is a particular
case of the bursty limiter). Figure 4.10 displays the measured WCRT of the RTL task
for different malicious interrupt burst rates; and three different limiting values (i.e., 1, 5
and 10 interrupts/100ms). We observe that without a limiter, the WCRT of the RTL task
increases proportionally to the malicious burst rate until it cannot meet its own deadlines
for burst rates over 10. Then, it continues increasing with values close to the theoretical
WCRT of the RTL task, which is defined by the smallest x ∈ R+ that satisfies the following
formula[47] where N represents the malicious burst rate:

x = Crtl +

⌈
x

Tgpm

⌉
Cgpm +

⌈
x

Trth

⌉
Crth ·N (4.1)

For malicious burst rates above 17 interrupts per 100ms, the RTL task enters starvation.
This occurs because the utilization of the RTH and GPM tasks reaches 100% for burst rates
of 18 or more (e.g., 5·18+10

100
= 1). In contrast, when limiters are used the WCRT of the RTL

task is always upper-bounded by substituting N in Eq. 4.1 with the corresponding limiting
value (i.e., 1, 5 and 10 interrupts/100ms). For that reason, we can say that the dualoscom
architecture satisfies requirement 4.3.

4.6.4 Requirement 4.4: memory faults

This requirement is satisfied because the region of shared memory used for communications
is allocated statically during configuration time. In our implementation, we reserve the

64 CHAPTER 4. DUAL-OS COMMUNICATIONS

Table 4.4: Size increase.

OS Level SLOC Binary increase
ASP user 530 lines 5980 bytes
ASP kernel 0 lines 0 bytes
Linux user 483 lines 5456 bytes
Linux kernel 279 lines 280 bytes
SafeG monitor 0 0

region of shared memory by using a Linux kernel boot parameter (mem); and then create the
necessary kernel page tables—in the dualoscom driver—using functionality for remapping
I/O memory (ioremap[28]) from the Linux interface.

4.6.5 Requirement 4.5: unbounded blocking

The dualoscom architecture has two functions that can block the calling task: event_wait
and event_select (see § 4.4.4). Both of them have a timeout parameter to protect RTOS
tasks against the potential non-cooperation of the GPOS. The remainder interface uses non-
blocking algorithms, and therefore we can say that requirement 4.5 is satisfied.

4.6.6 Requirement 4.6: code modifications

Table 4.4 presents the number of added source lines of code (SLOC) and the binary size
increase for our reference implementation. Requirement 4.6 is satisfied because neither
the RTOS kernel nor the SafeG monitor required any modifications. The Linux kernel
was extended with a simple character driver. This driver can be easily maintained because
its dependencies on Linux—fundamentally functions related to memory mapping and file
operations—are small and unlikely to experience dramatic changes in the future.

4.6.7 Requirement 4.7: throughput

We implemented the traditional approach in figure 4.2(a) on top of SafeG, and compared
its performance against the dualoscom approach. Figure 4.11 shows the results of the com-
munications overhead of each approach (all measures are averaged). We observed that
the dualoscom approach provides a constant overhead independent of the number of bytes
being transmitted. This is a natural consequence of using zero-copy shared memory com-
munications. In contrast, the overhead observed for the traditional approach is proportional
to the amount of bytes being transmitted. The reason is that the main source of overhead

4.6. EVALUATION 65

Figure 4.11: Overhead comparison.

Li
nu

x
Ta

sk
Li
nu

x
D
ri
ve

r
S
af
eG

m
on

it.
A
S
P

Ta
sk

b
lo

ck
_

a
llo

c
b

lo
ck

_
g

e
tb

u
ff
e

r
b

lo
ck

_
e

n
q

u
e

u
e

e
ve

n
t_

se
n

d

b
lo

ck
_

d
e

q
u

e
u

e
b

lo
ck

_
g

e
tb

u
ff
e

r
b

lo
ck

_
fr

e
e

sm
c

sw
itc

h
IR

Q

w
ak

e_
up

dualoscom overhead (183μs) traditional approach overhead (αbytes)

sm
c

w
rit

e

sw
itc

h

sm
c

sw
itc

h

w
rit

e

fif
o_

re
ad

sm
c

re
ad

re
ad

co
py

_t
o_

us
er

re
tu

rn

(1
)

(2
)

(3
)

Figure 4.12: Execution flow comparison.

in the traditional approach is caused by the number of unnecessary data copies—(1), (2)
and (3) in figure 4.12—and context switches. We also observed that differences in the com-
munication overhead are smaller when the amount of data being transmitted is below 128
bytes. In particular, we observed that the traditional approach performed better for 32 bytes
blocks. However, the main reason for that is that the dualoscom measurements include
synchronization overhead (e.g., event notifications), while in the traditional approach the
Linux task just polls (i.e., busy-wait) for the arrival of new messages at a SCHED_FIFO pri-
ority (this is the typical implementation of the traditional approach[11]). If the dualoscom
approach is used in polling mode, the overhead for the transmission of a 32 bytes block
decreases to 30µs. This is smaller than the 47µs required by the traditional approach to
transmit a single byte. From these observations and other performance improvements—
such as the filtering functionality or the ability to configure the synchronization needs of
each individual channel—we can say that requirement 4.7 is satisfied.

66 CHAPTER 4. DUAL-OS COMMUNICATIONS

4.6.8 Requirement 4.8: memory size

The memory size overhead per channel caused by the shared control data used for commu-
nications is only 40 + 4 · NB bytes, where NB is the number of blocks in a channel. The
memory overhead caused by the four steps algorithm (see § 4.4.1) is 16 bytes/channel. Also,
the architecture provides a configuration interface for minimizing the size of the shared
memory required in a particular application. For all these reasons, we can say that require-
ment 4.8 is satisfied.

4.6.9 Requirement 4.9: interface

§ 4.4.5 showed that the dualoscom interface is able to satisfy this requirement by supporting
higher-level communication patterns—such as RPCs or sampling messages—that are often
used in embedded systems.

4.6.10 Discussion

It seems that the dualoscom architecture has two fundamental advantages over the tradi-
tional approach: better real-time performance and lower overhead. The former is accom-
plished by using lock-free structures together with a novel 4-steps algorithm that avoids the
need of using the VL—which runs with interrupts disabled—to transmit messages. The
later is accomplished by using user-level shared memory which avoids unnecessary context
switches or data copies, and makes it possible to send messages in constant time (see § 4.6.7)
which is specially useful for time-sensitive applications. In contrast, the main advantage of
the traditional approach over the dualoscom architecture is its simplicity.

4.7 Conclusions

We proposed a new dual-OS communications architecture designed by taking into account
the reliability and efficiency requirements of a dual-OS system. We implemented it and
the traditional approach on a physical platform using a reliable dual-OS system (SafeG)
that leverages ARM hardware security extensions for guaranteeing the RTOS reliability.
The implementation is distributed together with SafeG through the TOPPERS open source
license[30]. Then, we evaluated both implementations through several experiments and
observed that our architecture is more effective at minimizing the communications overhead
and able to satisfy the reliability requirements of the RTOS.

Chapter 5

Reliable device sharing

This chapter investigates and compares several mechanisms for sharing devices reliably in

a dual-OS system. In particular, we observe that device sharing mechanisms currently used

for cloud virtualization are not necessarily appropriate for dual-OS systems. We propose

two new mechanisms based on the dynamic re-partition of devices; and evaluate them on a

physical platform to show the advantages and drawbacks of each approach.

5.1 Introduction

In dual-OS systems, devices are usually duplicated and assigned exclusively to each guest
OS: devices that are critical for the reliability of the system are assigned to the RTOS;
and the remainder devices are assigned to the GPOS. The dual-OS VL must guarantee that
neither the GPOS nor GPOS devices—particularly devices with Direct Memory Access
(DMA)—are allowed to access the memory and devices assigned to the RTOS.

Device duplication is useful for ensuring the reliability of the RTOS, and maximizing
the system performance. However, it also adds a significant increase in the total hard-
ware cost. Several device sharing mechanisms have been proposed in the context of cloud
virtualization[16, 17] to reduce this cost. Most of them use a model in which device drivers
are paravirtualized, splitting them between a front-end driver in the guest OSs, and the
real back-end driver running on a trusted domain. The most typical application is sharing
high-bandwidth network and storage devices that are concurrently accessed by numerous
guest OSs. Despite its benefits, this approach is not suitable for dual-OS systems because
of its rather high overhead; issues on the real-time performance of the trusted domain; and
a significant increase in the complexity of the TCB.

67

68 CHAPTER 5. RELIABLE DEVICE SHARING

This chapter investigates and compares several mechanisms for sharing devices reliably
and efficiently in a dual-OS system. The main contributions are:

• A study on the suitability of existing device sharing mechanisms for dual-OS systems.
We observe that—in contrast to cloud virtualization—highly concurrent device shar-
ing is not usually required in dual-OS systems. Instead, a more common pattern is to
use devices in turns, where the GPOS usage percentage greatly exceeds the RTOS’s.

• We propose two new mechanisms based on the dynamic re-partition of devices to op-
erating systems at runtime. The difference is a trade-off between execution overhead
and the latency to access a shared device.

We implemented both mechanisms and the paravirtualization approach on a physical
platform using the SafeG dual-OS system. From the results of the evaluation, we observed
that each mechanism is best suited to a particular set of conditions and assumptions. In par-
ticular, our two new mechanisms seem more suitable for device sharing patterns commonly
found in dual-OS systems than the paravirtualization approach.

The chapter is organized as follows. § 5.2 reviews previous approaches to device shar-
ing and presents a motivational example for this work. § 5.3 is the core of the chapter
and explains several device sharing mechanisms for dual-OS systems. § 5.4 details the im-
plementation of our two new mechanisms and the paravirtualization approach on SafeG.
§ 5.5 evaluates the overhead, latency and code modifications of each implementation. § 5.6
compares this research with previous work. Finally, the chapter is concluded in § 5.7.

5.2 Motivation

Figure 5.1 illustrates a motivational example for reliable device sharing inside an in-vehicle
car terminal[19] that operates in two modes: multimedia and parking mode. In multimedia

mode, the terminal is used for GPS navigation, video playback or Internet access. This
mode requires highly functional libraries such as video codecs or network stacks. For that
reason, the most suitable way to implement it is by using a GPOS. In parking mode, the
system fetches data from a camera and a distance sensor placed on the rear of the car. The
camera data is displayed on the terminal to assist the driver during parking maneuver, and
the distance to nearby obstacles is indicated through a repetitive sound. This mode requires
high reliability and time determinism to avoid a potential car accident. For that reason, the
most suitable way to implement it is by using an RTOS.

5.2. MOTIVATION 69

mechanical
switch

GPOS
(navigation,
multimedia)

CPU

RTOS
(parking aid)

CPU
R 1 3 5

2 4 6

Sensor

Camera

GPS

WiFi

RTOS
(parking aid)

R 1 3 5

2 4 6

GPOS
(navigation,
multimedia)

Virtualization layer

CPU

Video Card

Audio Card

Video Card

Audio Card

Sensor

Camera

GPS

WiFi
Video Card

Audio Card

(a) Traditional solution with hardware duplication.

(b) Solution based on a dual-OS system with shared devices.

Gear-
Change
Lever

Gear-
Change
Lever

ECU #1

ECU #2

ECU #1

street

st
re

e
t

st
re

e
t

♪♫

Car terminal
(multimedia or
parking mode)

street

st
re

e
t

st
re

e
t

♪♫

Car terminal
(multimedia or
parking mode)

Figure 5.1: Motivational example for device sharing applied to an in-vehicle system.

The traditional approach to implement this system is illustrated by figure 5.1(a) and
consists of two separated computing units (ECUs). One ECU contains a GPOS with rich
libraries to handle the multimedia mode; and the other one contains a reliable RTOS to
handle the parking mode. Parking mode is activated through a mechanical switch (i.e.,
a gear-change lever) whenever the car is driven backwards. Although this approach can
satisfy the requirements of the system, duplication of the hardware increases the total cost.

In contrast, figure 5.1(b) illustrates a solution based on a dual-OS system with device
sharing capabilities. Thanks to the use of a virtualization layer and device sharing, it is
possible to consolidate both operating systems onto the same platform and avoid dupli-
cating hardware. An important difference with device sharing in enterprise cloud virtual-
ization is that devices (e.g., the video and sound card) are shared with low concurrency
or rather in turns. For example, the car terminal is expected to operate in multimedia
mode during most of the time; and only switch to parking mode occasionally. For that
reason, existing device sharing mechanisms designed for highly concurrent systems—such
as paravirtualization[16]—are not suited to this situation. Ideally, in a dual-OS system the
GPOS should have direct access to devices for maximizing performance; and use its own
feature-rich drivers instead of relying on a more complex TCB. Additionally, the worst-case
amount of time that the RTOS has to wait for a shared device to be usable with reliability
guarantees must be upper-bounded.

70 CHAPTER 5. RELIABLE DEVICE SHARING

5.3 Reliable device sharing

5.3.1 Requirements and assumptions

Based on the motivational example above, we define the following set of requirements for
the design of a reliable device sharing mechanism.

REQUIREMENT 5.1 Completion: device sharing mechanisms must guarantee that the TCB
has full control over the successful completion of operations on shared devices.

REQUIREMENT 5.2 Memory isolation: TCB resources must be protected against any
access—accidental or malicious—coming from UCB (including devices with DMA).

REQUIREMENT 5.3 Real-time: the timeliness of the RTOS must be guaranteed. In partic-
ular, malicious GPOS software must not be able to prevent or delay further use of a
shared device (i.e., device latency) for an unbounded amount of time.

REQUIREMENT 5.4 Software-only: device sharing must be implemented in software. Cus-
tomized hardware implementations are out of the scope of this chapter.

REQUIREMENT 5.5 Performance: the overhead caused by a device sharing mechanism
(e.g., due to unnecessary data copies or context switches) must be minimized. Ideally,
a device should be operated with native performance.

REQUIREMENT 5.6 Code modifications: modifications to the TCB software must be min-
imized. In particular, complex modifications to the VL must be avoided because they
can increase the latency of RTOS interrupts. In contrast, the GPOS kernel can be ex-
tended with drivers. Nonetheless, GPOS applications and libraries should not require
modifications for the sake of reusability.

We also make the following assumptions: software that belongs to the UCB does not
have defects; the RTOS and GPOS drivers can be modified; the hardware reset time of a
shared device is upper-bounded; the processor has a single core; and finally, we assume that
the GPOS cannot damage a shared device.

5.3.2 Suitability of existing device sharing approaches

Figure 5.2(a)–(d) illustrate several existing approaches to device sharing, adapted to the
context of a dual-OS system. Below we analyze each approach.

(a) Proxy task: in this approach, RTOS client tasks send requests to a proxy task in the
GPOS—through a dual-OS communications system usually provided by the VL—with
the intention of leveraging the richness of GPOS libraries and drivers. Requests can be

5.3. RELIABLE DEVICE SHARING 71

(b) Device emulation.

GPOSRTOS

Device

Trap

V-Device

VL

Legacy
DriverDriver

limit

(d) Paravirtualization.

GPOSRTOS

Device

VL

Front-end
Driver

Back-end
Driver

limit

(a) Proxy task.

GPOSRTOS

Device

comm.VL

Client
Task

Proxy
Task

(c) Self-virtualizing devices.

GPOSRTOS

Self-virtualizing Device

Driver Driver

V-Device V-Device

VL

(e) Re-partitioning.

VL

RTOS

Driver

GPOS

Driver

Device

VL

RTOS

Driver

GPOS

Driver

Device

re-partition

comm.

Figure 5.2: Device sharing approaches (VL=Virtualization Layer, comm.=Dual-OS com-
munications, V-Device=Virtual Device).

sent with a high level of abstraction (e.g., play this sound), and therefore the overhead
incurred is rather low. Despite all these benefits, the proxy task approach cannot be used
for reliable device sharing because GPOS software is untrusted and it may misbehave
or ignore RTOS requests which goes against requirement 5.1.

(b) Device emulation: this approach follows the classical Popek and Goldberg’s trap-and-
emulate model for machine virtualization[20]. The GPOS is tricked to think that there
is a legacy device in the board. GPOS accesses to this virtual device are trapped by the
VL and forwarded to the RTOS, where a driver handles the real device. This approach
brings platform independence and flexibility to the GPOS. However, it has a significant
execution overhead, and requires complex extensions to the TCB (see requirement 5.6)
in order to implement the trap mechanism. Additionally, traps are typically delivered to
the RTOS as software interrupts. To guarantee the real-time performance of the RTOS
(see requirement 5.3), the TCB must limit the rate of these software interrupts, which
may become a performance bottleneck if the GPOS needs to access device registers
very frequently.

(c) Self-virtualizing devices: A self-virtualizing device with built-in support for real-time
reservations could be shared seamlessly by the RTOS and the GPOS through separated
interfaces, achieving near-native performance. Hardware virtualization support was re-
cently introduced to some devices[33]. Unfortunately, the current availability of such

72 CHAPTER 5. RELIABLE DEVICE SHARING

Table 5.1: Qualitative comparison of device sharing approaches.

Existing approaches Re-partitioning
Property Proxy Emula-

tion
Self-
virt

Paravirt. Pure Hybrid

(1) Real-time 7 3 3 3 3 3

(2) Functionality 3 7 3 7 3 3

(3) Device Latency 7 3 3 3 7 3

(4) Overhead 3 7 3 7 3 7

(5) Concurrency 3 3 3 3 7 7

(6) Hardware Cost 3 3 7 3 3 3

devices is limited in practice to high bandwidth network and storage interfaces for en-
terprise cloud computing. The design of customized self-virtualizing hardware with
support for real-time reservations is out of the scope of this chapter (see 5.4).

(d) Paravirtualization: in this approach, the GPOS is extended with a paravirtual driver—
typically known as the front-end driver in XEN[16] split-driver terminology—that uses
dual-OS communications for sending requests to the RTOS back-end driver. Paravir-
tualization helps raising the level of abstraction from bus operations to device-level
operations in order to reduce the overhead, though its performance is still far from na-
tive. Similar to the emulation approach, the rate of device operation requests must be
limited not to affect the real-time performance of the RTOS. The major drawback of
this approach is the fact that the GPOS is limited to the functionality supported by the
RTOS driver. RTOS drivers do not necessarily provide support for all of the function-
ality available in a certain device. For instance, a sound card may have audio capture
features that are not needed by the RTOS. Implementing this extra functionality on the
RTOS would complicate unnecessarily the TCB (see requirement 5.6).

The left part of table 5.1 summarizes qualitatively the properties of each approach. Prop-
erty (1) refers to the ability to guarantee the timeliness of the RTOS. Property (2) indicates
whether the GPOS uses its own fully functional drivers or not. Property (3) shows the
adequacy of each approach to minimize the device latency. Property (4) refers to the over-
head introduced by each approach. Property (5) expresses the suitability of each approach
for a highly concurrent scenario. Finally, property (6) refers to the hardware cost of each
approach.

We discard the proxy, device emulation and self-virtualizing approaches (i.e., approaches
(a), (b) and (c)) because they cannot satisfy requirements 5.1, 5.6 and 5.4 respectively. Par-
avirtualization (approach (d)) can satisfy all of the requirements enumerated in § 5.3.1, at

5.3. RELIABLE DEVICE SHARING 73

the cost of reduced functionality and moderate overhead. However, it is not suitable for the
type of device sharing patterns described in § 5.2, where the GPOS usage percentage of the
shared device greatly exceeds the RTOS usage percentage. For that reason, in § 5.3.3 we
explore a new approach based on dynamically re-partitioning devices between the RTOS
and the GPOS at runtime.

5.3.3 Reliable device sharing through re-partitioning

The re-partitioning approach (see figure 5.2(e)) consists of dynamically modifying the as-
signment of devices to each OS at runtime. Re-partitioning is always initiated by the RTOS
after a trigger condition (e.g., car going into backwards mode) and has several benefits:

• Devices can be accessed directly by both OSs which minimizes overhead.

• If a device is assigned to the GPOS, its interrupts (IRQ) are handled by the GPOS
itself, which runs with the lowest RTOS priority. For that reason, the timeliness of
RTOS tasks and interrupt handlers can be guaranteed.

• The VL does not require complex or any modifications at all.

• Any device can be used (e.g., not restricted to self-virtualizing devices).

• The GPOS can leverage its own feature-rich drivers, while the RTOS restricts itself
to offer the minimum support in order to keep the TCB small.

We propose two mechanisms for implementing device sharing using the re-partitioning
approach: a pure re-partitioning mechanism and a hybrid one. The main difference between
them is a trade-off between the higher performance of pure re-partitioning; and the lower
device latency of the hybrid mechanism.

Pure re-partitioning

Illustrated by figure 5.3, the architecture uses the concept of hotplugging—typically found
in buses such as USB—and applies it to the dynamic re-partitioning of a device between
the RTOS and the GPOS. Device sharing is managed by the so-called Re-partition Manager

agents at each OS. The pseudocode of both agents is shown in figure 5.4. When a condition
triggers the re-partitioning process, the RTOS re-partition manager is activated. The RTOS
re-partition manager needs to handle two scenarios:

• If the device must be re-partitioned to the TCB, the RTOS re-partition manager will
send an UNPLUG event to the GPOS counterpart. The RTOS re-partition manager
is not dependent on the state of its GPOS counterpart. This is necessary for ensuring

74 CHAPTER 5. RELIABLE DEVICE SHARING

Driver

RTOS
Re-partition

Manager

Trigger

RTOS

Reset

VL

Driver

GPOS
Re-partition

Manager

RTOS

plug/unplug

FIQ

PLUG /
UNPLUG

Config

Device

IRQ
TrustUntrust

TZPC

Dual-OS
Communi-

cations

Figure 5.3: Architecture of the pure re-partitioning mechanism.

that even if the GPOS misbehaved, the RTOS would still be able to use the shared
device with reliability guarantees. For that reason, once the UNPLUG event is sent,
the RTOS re-partition manager needs to fully reset the device into a predefined state.
This operation may involve disabling the device’s interrupt, canceling current oper-
ations or waking the device from low-power mode. Immediately after resetting the
device—and without the GPOS being able to execute—the RTOS re-partition man-
ager configures the device as part of the TCB. Note that the opposite order would be
insecure if the device was in the middle of a DMA operation. The method to configure
a shared device as part of the TCB is dependent on the VL implementation. Once the
re-partition process finishes, the RTOS can respond to the trigger condition and use
the device reliably. When the GPOS is scheduled to execute by the VL (e.g., when
the RTOS becomes idle) the GPOS re-partition manager must handle the UNPLUG
event. The way to handle it may differ depending on the implementation but typi-
cally requires killing or suspending tasks that were using the device; and unloading
or disabling the corresponding device driver.

• If the device must be re-partitioned to the UCB (e.g., when the RTOS does not need
it), the RTOS re-partition manager must flush any sensitive data from the shared de-
vice; configure it as part of the UCB; and send a PLUG event to the GPOS. The
GPOS re-partition manager will handle the PLUG event, which typically involves re-
enabling or loading the corresponding device driver; and sending a notification to user
space for registered processes to resume applications that were previously stopped.

The pure re-partitioning mechanism provides both OSs with direct access to devices
for maximizing performance. However, fully resetting devices before re-partitioning can
boost device latency to tens of milliseconds (see § 5.5), which may be considered excessive
depending on the real-time application.

5.3. RELIABLE DEVICE SHARING 75

1 task RTOS_Repartition_Manager is
2 begin
3 loop
4 accept Repartition(Device, Trigger) do
5 case Trigger is:
6 when 'Set_Trust' =>
7 Send_Event(UNPLUG)
8 Reset(Device)
9 Config(Device, TRUST)
10 when 'Set_Untrust' =>
11 Flush(Device)
12 Config(Device, UNTRUST)
13 Send_Event(PLUG)
14 end case
15 end Repartition
16 end loop
17 end task

1 task GPOS_Repartition_Manager is
2 begin
3 loop
4 Wait(Event, Device)
5 case Event is:
6 when 'UNPLUG' =>
7 Unplug(Device)
8 when 'PLUG' =>
9 Plug(Device)
10 end case
11 end loop
12 end task

Figure 5.4: Pseudocode of the pure re-partitioning mechanism.

Untrust_Access

Init

Device

Runtime

Driver

RTOS
Re-partition

Manager

Trigger

Config

VL

Modified Driver

GPOS
Re-partition

Manager
Plug

FIQ

Ok
Error

PLUG

IRQ

VL Call

Dual-OS
Communications

Figure 5.5: Architecture of the hybrid re-partitioning mechanism.

Hybrid re-partitioning

In order to reduce the device latency, we modified the pure re-partitioning mechanism with
some concepts inspired by the paravirtualization approach, ergo the name of hybrid re-
partitioning. The mechanism is derived from the observation that most part of the time spent
on resetting a device is consumed on operations that are only performed at the initialization
of the system but not at runtime. In the hybrid mechanism, the interface of a shared device
is logically divided between bits that are required at initialization (Init interface); and those
required during runtime (Runtime interface). The Init interface can only be accessed by the
RTOS. For that reason, the RTOS can guarantee that certain conditions (e.g., that the device
is powered on) are satisfied at all times, and thus reduce the time for resetting a device. In
contrast, the Runtime interface can be re-partitioned to the RTOS or the GPOS. A software-
only method to implement the hybrid approach (see figure 5.5) consists of configuring the

76 CHAPTER 5. RELIABLE DEVICE SHARING

1 task RTOS_Repartition_Manager is
2 begin
3 Init(Device)
4 loop
5 accept Repartition(Device, Trigger) do
6 case Trigger is:
7 when 'Set_Trust' =>
8 Reset_Runtime(Device)
9 Config(Device, TRUST)
10 when 'Set_Untrust' =>
11 Flush(Device)
12 Config(Device, UNTRUST)
13 Send_Event(PLUG)
14 end case
15 end Repartition
16 end loop
17 end task

1 task GPOS_Repartition_Manager is
2 begin
3 loop
4 Wait_Event(PLUG, Device)
5 Plug(Device)
6 end loop
7 end task

1 procedure Write(Reg : in, Value : in) is
2 begin
3 Ret = VL_call(Reg,Value)
4 if Ret == Error then
5 Unplug(This)
6 Exit
7 end if
8 end procedure

Figure 5.6: Pseudocode of the hybrid re-partitioning mechanism.

device as part of the TCB, and extending the VL with a simple VL call for the GPOS to
access the Runtime interface. Access permissions to the Runtime interface are controlled
by the RTOS re-partition manager and the VL through a boolean variable (Untrust Access)
in trusted memory. Figure 5.6 shows the pseudocode of the hybrid mechanism which differs
from the one in figure 5.4 in the following aspects:

• Devices do not require a complete reset when re-partitioned to the TCB because only
the Runtime interface could have been altered by the UCB.

• In a software-only implementation, RTOS UNPLUG events can be replaced by a
lazy algorithm. If the GPOS attempts calling the VL while the Runtime interface is
assigned to the TCB, the VL will return an error code. The GPOS device driver is
modified to handle this error code as an UNPLUG event. Note that the handling of
PLUG and UNPLUG events must be serialized to avoid race conditions.

The right part of table 5.1 summarizes the properties of each re-partitioning mechanism.
The hybrid mechanism has the major benefit of a shorter device latency, compared to the
pure re-partitioning mechanism, because it ensures that time-consuming device initializa-
tion operations are not available to the GPOS. However, a software-only implementation of
the hybrid mechanism requires small modifications to the VL and introduces overhead on
each register access. Also, if the shared device has DMA capabilities, the VL may require
further modifications in order to check that DMA memory addresses belong to the UCB.

5.4. IMPLEMENTATION 77

5.4 Implementation

We implemented both re-partitioning mechanisms (pure and hybrid) and the paravirtualiza-
tion approach—suitable for highly concurrent shared devices—on a physical platform for
comparison. The hardware and software environment used to implement and evaluate the
device sharing approaches consisted of the following elements:

• PB1176JZF-S baseboard[35].

– ARM1176JZF-S[31] core at 210MHz.

– 32KB Cache

– DRAM: 128MB (Non-Secure memory)

– PSRAM: 8MB (Secure memory)

• RTOS: TOPPERS/ASP v1.6[30].

• GPOS: Linux v2.6.33 with buildroot[34].

• VL: TOPPERS/SafeG v0.3.

The following device peripherals were used for the implementation:

• Sound device: an ARM PrimeCell Advanced Audio CODEC Interface connected to
an LM4549 audio CODEC that is compatible with AC’97 Rev 2.1. The device in the
board provides an audio channel with 512-depth transmit and receive FIFOs for audio
playback and audio capture respectively.

• Display device: an ARM PrimeCell Color LCD controller (CLCDC) that provides
a display interface with outputs to a DVI digital/analog connector for connecting
to a CLCD monitor. The controller has dual 16-deep programmable 64-bit wide
FIFOs for buffering incoming display data through a DMA master interface. The
controller is configured through a slave interface, and has a color palette memory for
low-resolution configurations.

Both devices can be configured to be part of the TrustZone Secure or Non-Secure worlds
through the TrustZone Protection Controller (TZPC[36]). In particular, the master and slave
interfaces of the CLCDC can be selectively configured as Secure and Non-Secure.

For the implementation of the paravirtualization approach, the GPOS was extended with
a new ALSA[37] sound driver that acts as the front-end driver; and a simplified back-end
sound driver—without capturing features—was added to the RTOS. GPOS operations on
the sound card are forwarded to the RTOS back-end driver through the SafeG dual-OS com-
munications system (see chapter 4). The GPOS video driver was also splitted in two parts.

78 CHAPTER 5. RELIABLE DEVICE SHARING

The GPOS front-end driver implements the Linux framebuffer interface by sending requests
to a simplified RTOS back-end driver which uses a low-resolution configuration. After that,
pixel operations are performed directly on a region of Non-Secure memory accessed by
DMA. The RTOS back-end driver validates that DMA addresses sent by the GPOS front-
end driver belong to the UCB.

For the implementation of the two re-partitioning mechanisms, we used the baseline
feature-rich (e.g., with audio capturing or high resolution video) GPOS sound and video
drivers; and simplified drivers for the RTOS. The GPOS re-partition manager executes with
a high SCHED FIFO priority and handles hotplug events by killing/restarting tasks asso-
ciated to a device; and removing/installing the corresponding device driver modules. The
hybrid mechanism was implemented in software (i.e., through VL calls) because the Trust-
Zone controller currently does not support bit granularity for the configuration of a device
interface as Secure or Non-Secure. Therefore, the SafeG monitor was extended with a
lightweight system call—implemented with a few assembly instructions—for the GPOS
to access the Runtime interface. This system call involves a secure monitor call (SMC)
instruction; a branch that depends on the value of the Untrust Access variable (placed in
Secure memory); validating the bits being accessed (including DMA addresses); and re-
turning back to the GPOS.

5.5 Evaluation

This section presents the results of the evaluation of the device sharing implementations
described above. The evaluation environment is the same as the one used for the implemen-
tation in § 5.4. All time measurement experiments were repeated for 10,000 times.

5.5.1 Overhead

In this section we evaluate the overhead that each mechanism causes on the handling of
shared devices. The RTOS has direct device access (i.e., no overhead) in all mechanisms,
and therefore we only evaluate the overhead on the GPOS.

First, we configured a system in which the RTOS is always idle and the GPOS is used ei-
ther to play a 16bits/48Khz OGG Vorbis music file; or to show an MP4 video with 1024x768
pixels and 16 bpp resolution streamed from a network server. Both applications are executed
with lower priority than the GPOS re-partition manager. Table 5.2 shows the measured ex-
ecution time overhead per register access for each mechanism. In the pure re-partitioning
mechanism, the GPOS can access shared devices directly, and therefore no overhead ap-

5.5. EVALUATION 79

Table 5.2: Execution time overhead per register access.

Paravirtual Pure Hybrid

min avg max min avg max min avg max

Sound 61µs 122µs 182µs 0 0 0 30µs 41µs 52µs
Video 47µs 117µs 187µs 0 0 0 30µs 42µs 53µs

 0

 20

 40

 60

 80

 100

Sound card Video card

%
 o

f
n
a
ti
v
e
 p

e
rf

o
rm

a
n
c
e Paravirt.

Pure
Hybrid

Figure 5.7: CPU performance for each mechanism.

pears. The overhead incurred by the paravirtualization mechanism is caused by the com-
munications between the back- and front-end drivers. Note that we measured the overhead
as per-register access because a single paravirtual operation may involve the reading or writ-
ing of several registers at once. Finally, the hybrid mechanism has lower overhead because
register accesses do not cause a full context switch to the RTOS as in the paravirtualization
approach.

Then, we repeated the same experiment but this time we also executed the Dhrys-

tone[34] benchmark on the GPOS (with a lower priority) for quantifying the performance
decrease caused by each mechanism. Figure 5.7 shows the performance of each mecha-
nism as a percentage of the native performance. As expected, pure re-partitioning achieves
100% of native performance for both devices. The overhead of the paravirtualization and
the hybrid mechanisms is considerably more pronounced for the sound card than for the
video card. The reason is that the sound card is completely handled through registers; while
the video card—once initialized through its slave interface registers—is managed simply by
modifying a block of RAM memory that the master interface accesses through DMA. Cur-
rently, the overhead of the hybrid mechanism is higher than what we had expected because
we found a cache coherence problem between the Secure and Non-Secure worlds. We have
temporarily solved this problem by flushing the data cache for each register access, which
introduces significant overhead. We also observed that the overhead of the paravirtualiza-
tion approach in the handling of the sound card can be reduced by increasing the size of the
buffer used to store music samples inside the ALSA front-end driver in the GPOS.

80 CHAPTER 5. RELIABLE DEVICE SHARING

Table 5.3: Device latency of each mechanism.

Paravir-
tual

Pure Hybrid

Sound 83µs 10.53ms 113µs
Video 3µs 20.22ms 10µs

Table 5.4: Number of source lines of code modified.

Paravirtual Pure Hybrid

GPOS(user) 0 153 113
GPOS(kernel) 297 0 54
RTOS 38 43 32
VL 0 0 37

5.5.2 Device latency

Device latency is the worst-case amount of time that the RTOS may have to wait until a
shared device can be used reliably. We modified the system described in § 5.5.1 (without
the Dhrystone benchmark) so that every 10 seconds the GPOS audio or video playback
application is interrupted by the RTOS, in order to emit a short beep sound (a raw PCM
linked to the RTOS binary) or display a black and white alert message on the screen.

Table 5.3 shows the worst-case measurements for the device latency of each mecha-
nism. The measurements for the paravirtualization and hybrid mechanisms are an order of
magnitude smaller than the ones observed for pure re-partitioning. The reason for that is
the fact that both the paravirtualization and the hybrid approach can limit GPOS access to
critical bits of the device interface. For example, the GPOS is not allowed to set the AC’97
CODEC or the LCD in low power mode. In contrast, the pure re-partitioning approach
allows the GPOS to access the device directly, and therefore shared devices must be fully
reset every time the RTOS needs to use them. This must be taken into account during the
real-time scheduling analysis of the system. The device latency of the hybrid mechanism
is slightly longer than the latency observed for the paravirtualization approach. This can
be explained by the fact that in the paravirtualization approach the usable functionality of a
device is limited by the support included in the simplified RTOS driver. In contrast, in the
hybrid approach the GPOS uses its own feature-rich drivers (e.g., with support for audio
capturing and high video resolutions), and therefore there are a few more registers that need
to be reconfigured.

5.6. RELATED WORK 81

5.5.3 Code modifications

Table 5.4 displays the number of source lines of code (C code, except the VL which is
written in assembly) modified for each implementation. The paravirtualization mechanism
required a new GPOS sound driver and modifications to the GPOS video driver in order
to communicate with the RTOS drivers, which also required modifications. In the pure
re-partitioning mechanism, most modifications occurred at user level where the re-partition
managers execute. Finally, the hybrid approach required modifications both in user and
kernel level. In particular, GPOS drivers were modified to perform calls to the VL, which
was extended to handle this new paravirtual call.

5.5.4 Discussion

From the evaluation it seems that paravirtualization and re-partitioning are complementary
approaches suitable for different target applications. In particular, we identify an interesting
trade-off between the the lower overhead and higher functionality of the re-partitioning
approaches; and the shorter device latency of the paravirtualization approach.

Dual-OS system engineers will probably prefer to apply the paravirtualization approach
for device sharing scenarios that require high concurrency and flexibility (e.g., network or
data storage controllers). However, they will have to pay the penalty of a considerable
overhead and a more complex TCB.

In contrast, systems with low device sharing concurrency can take advantage of the
re-partitioning approaches to increase the performance and smooth the maintainability of
the system. The hybrid approach seems to be a good compromise between the pure and the
paravirtualization approach because it provides lower overhead and better functionality than
the paravirtualization approach at the cost of limiting the reset configuration of a device and
a slightly higher device latency. However, we expect that this device latency can be reduced
through simple hardware customizations.

Finally, we believe that these methods are independent of the SafeG architecture or the
TrustZone extensions, and can be applied to any other dual-OS system architecture that
satisfies the requirements listed in § 2.2.2.

5.6 Related work

While techniques for virtualizing processing time and memory resources have usually a
rather low overhead, it is challenging to efficiently virtualize I/O devices. There exists

82 CHAPTER 5. RELIABLE DEVICE SHARING

a substantial amount of literature describing methods to virtualize hardware devices. In
particular, virtualization of high-bandwidth network interface devices in the context of en-
terprise virtualization for data centers has been the subject of extensive research.

• Full device emulation is used by fully virtualized systems[62]. In this approach, guest
OS accesses to a virtual legacy device interface are trapped by a hypervisor, which
converts them into operations on a real device. The main benefits of this approach
are the fact that guest OSs do not require modifications; and the ability to migrate
them between heterogeneous hardware. However, this approach incurs a significant
performance degradation due to frequent context switches between the guest OS and
the hypervisor.

• Paravirtualization is the de-facto approach to device sharing in most popular enter-
prise hypervisors[16, 17]. In this approach, guest OSs contain device drivers that are
hypervisor-aware. A paravirtualized device driver operates by communicating with
the real device driver which runs outside the guest. The real device driver that actu-
ally accesses the hardware can reside in the hypervisor or in a separate device driver
domain with privileged access. The level of abstraction is raised from low-level bus
operations to device-level operations. For that reason, paravirtualized devices achieve
better performance than emulated ones. Nonetheless, paravirtualization introduces a
rather high CPU overhead compared to a non-virtualized environment which also
leads to throughput degradation in high bandwidth networks[63]. Several techniques
to improve the performance of paravirtualized drivers have been presented. In [64]
the authors report a 56% reduction of execution overhead on the receive path for
conventional network interfaces through improvements on the driver domain model.
[65] introduces improvements to the memory sharing mechanism used by paravirtu-
alized drivers to communicate with the real device driver, reporting a reduction of
up to 31% in the per-packet overhead. [66] proposes a software architecture which
runs middleware modules at the hypervisor level. Their approach reduces I/O virtu-
alization overhead by increasing the level of abstraction which allows to cut down
the number of guest-hypervisor context switches. Despite the numerous performance
improvements, paravirtual solutions are still far from native performance.

• Direct device assignment—also known as pass-through access—provides guest OSs
with direct access to the real device, maximizing performance. With direct device
assignment, an untrusted guest OS could potentially program a DMA device to over-
write the memory of another guest or the hypervisor itself. [67] presents a study on

5.7. CONCLUSIONS 83

available protection strategies. The most extended strategy involves the use of I/O
memory management units (IOMMUs)[68]. Software-based approaches have also
been presented[69, 70]. Recently, in [71] the authors report up to 97%-100% of
bare-metal performance for I/O virtualization in a system that combines the usage of
IOMMU and a software-only approach for handling interrupts within guest virtual
machines. Despite its benefits, direct device assignment does not allow guest OSs to
share the same device and makes live migration difficult[72, 73].

• Self-virtualizing devices have been introduced[33, 70, 74, 75] to avoid the high perfor-
mance overhead of software-based device virtualization. This approach allows guest
OSs to access devices directly, through separate interfaces that can be assigned inde-
pendently to each guest OS. The main drawbacks of this approach are its increased
hardware cost and limited availability.

Micro-kernels use a technique close to paravirtualization. Device drivers are imple-
mented as user-space processes and applications communicate with them through inter-
process communication[15]. Finally, direct device assignment is not easy to implement in
embedded systems because they are not usually equipped with an IOMMU to provide the
necessary isolation. Fortunately, recent ARM high-end embedded processors include Trust-
Zone hardware security extensions[29] which provide similar functionality for separating
up to two domains.

5.7 Conclusions

In this chapter, we investigated several device sharing mechanisms for dual-OS systems,
where the most fundamental requirement is protecting the reliability of the RTOS. We ob-
served that previous approaches are not well suited to device sharing patterns where the
GPOS share greatly exceeds that of the RTOS. For that reason, we proposed two new ap-
proaches (pure and hybrid) that are based on dynamically re-partitioning devices between
the RTOS and the GPOS at runtime. The reliability of the RTOS is ensured by the fact that
before a device is re-partitioned to the RTOS, the device (or its run-time interface) is reset
and configured as a TCB resource, which prevents further accesses by malicious GPOS ap-
plications. Additionally, when a device is re-partitioned back to the GPOS, its buffers are
flushed to avoid leaking sensitive data. We evaluated both approaches and compared them
with the paravirtualization approach, popular in cloud virtualization. We observed a trade-
off between the lower overhead and higher functionality of the re-partitioning approaches;
and the shorter device latency of the paravirtualization approach.

84

Chapter 6

Conclusions and future work

This chapter contains a summary of the contributions of this thesis, together with some

suggestions for future work.

6.1 Summary

In this thesis, we considered the reliable integration of dual-OS systems that consolidate
an RTOS and a GPOS onto the same platform through a virtualization layer. The main
three novel contributions proposed in this thesis were: an integrated scheduling framework;
efficient dual-OS communications; and repartition-based device sharing.

The integrated scheduling framework supports the mixing of execution priority levels of
both OSs with high granularity, and uses execution-time reservations for guaranteeing the
timeliness of the RTOS. The evaluation results showed that the framework is suitable for
enhancing the responsiveness of the GPOS time-sensitive activities without compromising
the reliability and real-time performance of the RTOS.

We present a very efficient approach to dual-OS communications for enabling the col-
laboration of RTOS and GPOS applications in more sophisticated applications. Compared
to traditional approaches that are usually implemented by extending the virtualization layer
with new communication primitives, our approach minimizes the communication overhead
caused by unnecessary copies and context switches; and satisfies the strict reliability re-
quirements of the RTOS.

Finally, we investigated reliable device sharing mechanisms for dual-OS systems. We
observed that existing approaches, in particular paravirtualization, are not well suited to de-
vice sharing patterns where the GPOS share greatly exceeds that of the RTOS. For that
reason, we proposed two new approaches based on dynamically re-partitioning devices

85

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

between both OSs at runtime. The evaluation results showed an interesting trade-off be-
tween the lower overhead and higher functionality of the re-partitioning approaches; and
the shorter device latency of the paravirtualization approach.

The three mechanisms were implemented on a physical platform and evaluated against
the strict reliability requirements of a dual-OS system. From the evaluation results, we
confirmed their suitability for improving the integration of a partitioning-based dual-OS
system (SafeG) without affecting its low overhead, isolation, maintainability and real-time
performance.

6.2 Suggestions for future work

It seems that multi-core processors pose new issues to the reliable integration of a dual-
OS system. One of those well-known issues is the lock-holder preemption problem, which
occurs whenever the GPOS gets suddenly preempted by the RTOS while in the middle of
a critical section (e.g., holding a spinlock), and causes rather long blocking times to other
cores trying to access it. It seems that an extension to the integrated scheduling framework
presented in chapter 3 for solving this issue is worth exploring.

Another problem that arises on multi-core platforms is the need to coordinate both op-
erating systems in the power management of the platform. In particular, reducing the fre-
quency of a processor’s clock could affect the real-time performance of the RTOS activities.

Additionally, in § 5.3.1 we assumed that the system runs on a single processor. On a
multi-core implementation, both re-partitioning algorithms need to address a race condition
that may occur if the GPOS accesses a device just after being reset by the RTOS, and before
being configured as a TCB resource (e.g., lines 8 and 9 of the RTOS re-partition manager in
figure 5.4). To solve this problem, a mechanism for the RTOS to block UCB accesses to the
shared device, while still configured as an UCB resource, is needed. The implementation
could be done in software by extending the VL with support for TCB critical sections; or in
hardware by adding a new flag for blocking UCB accesses to the shared device.

There is also scope to improve the performance of the hybrid approach to device shar-
ing presented in chapter 5. We suggest that TrustZone hardware could be extended to allow
configuring device interfaces with finer granularity for the hybrid approach to be imple-
mented with near-native performance. This will become practical soon with the release of
new FPGAs containing ARM TrustZone-enabled cores.

Finally, the use of dual-OS systems as a method for implementing monitoring mecha-
nisms against external attacks to the GPOS seems promising.

Bibliography

[1] LeVasseur, J. and Uhlig, V. and Chapman, M. and Chubb, P. and Leslie, B. and Heiser,
G.: Pre-Virtualization: soft layering for virtual machines, Fakultät für Informatik,
Universität Karlsruhe, Technical Report (2006).

[2] Hwang, J. and Suh, S. and Heo, S. and Park, C. and Ryu, J. and Kim, C.: Xen on ARM:
System Virtualization using Xen Hypervisor for ARM-based Secure Mobile Phones,
Proc. 5th Annual IEEE Consumer Communications & Networking Conference, USA
(2008).

[3] Uhlig, V. and LeVasseur, J. and Skoglund, E. and Dannowski, U.: Towards scalable
multi-processor virtual machines, Proc. 3rd Conference on Virtual Machine Research
And Technology Symposium, California, USA (2004).

[4] Heiser, G.: Hypervisors for consumer electronics, Proc. 6th IEEE Conference on Con-
sumer Communications and Networking Conference, Las Vegas, USA, pp. 614–618
(2009).

[5] Cereia, M. and Bertolotti, I.: Asymmetric virtualisation for real-time systems, Proc.
IEEE International Symposium on Industrial Electronics, Cambridge, UK, pp. 1680–
1685 (2008).

[6] Yoo, S. and Liu, Y. and Hong, C. and Yoo, C. and Zhang, Y.: MobiVMM: a virtual
machine monitor for mobile phones, Proc. 1st Workshop on Virtualization in Mobile
Computing, Breckenridge, USA, pp. 1–5 (2008).

[7] Wilson, P. and Frey, A. and Mihm, T. and Kershaw, D. and Alves, T.: Implement-
ing Embedded Security on Dual-Virtual-CPU Systems, Journal IEEE Design & Test,
Vol. 24, No. 6, pp. 582–591 (2007).

[8] Cereia, M. and Bertolotti, I.: Virtual machines for distributed real-time systems, Com-
puter Standards Interfaces, Elsevier, Vol. 31, No. 1, pp. 30–39 (2009).

87

88 BIBLIOGRAPHY

[9] Marquet, P. and Piel, E. and Soula, J. and Dekeyser, J.: Implementation of ARTiS, an
asymmetric real-time extension of SMP Linux, Proc. 6th Real-Time Linux Workshop,
Singapore (2004).

[10] Takada, H., Iiyama, S., Kindaichi, T. and Hachiya, S.: Linux on ITRON: A Hybrid
Operating System Architecture for Embedded Systems, Proc. 2002 Symposium on
Applications and the Internet Workshops, Nara, Japan, IEEE, pp. 4–7 (2002).

[11] Masmano, M., Ripoll, I., Crespo, A. and Metge, J.: XtratuM: a Hypervisor for Safety
Critical Embedded Systems, Proc. 11th Real-Time Linux Workshop, Dresden, Ger-
many (2009).

[12] Wilson, P., Frey, A., Mihm, T., Kershaw, D. and Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems, Design & Test of Computers, IEEE, Vol.24,
No.6, pp. 582–591 (2007).

[13] Heiser, G.: The Role of Virtualization in Embedded Systems, Proc. 1st Workshop on
Isolation and Integration in Embedded Systems, pp. 11–16, Glasgow, UK (2008).

[14] Beltrame, G., Fossati, L., Zulianello, M., Braga, P. and Henriques, L.: xLuna: a Real-
Time, Dependable Kernel for Embedded Systems, Proc. 19th IP based electronics
system conference and exhibition (IP-SoC), Grenoble, France (2010).

[15] Armand, F. and Gien, M.: A practical look at micro-kernels and virtual machine moni-
tors, Proc. 6th IEEE Conference on Consumer Communications and Networking Con-
ference, pp. 395–401, Piscataway, USA (2009).

[16] Chisnall, D.: The Definitive Guide to the Xen Hypervisor, Prentice Hall Press, First
edition (2007).

[17] Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A.: kvm: the Linux Virtual
Machine Monitor, Proc. Ottawa Linux Symposium (OLS’07), pp. 225–230, Ottawa,
Canada (2007).

[18] Nakajima, K., Honda, S., Teshima, S. and Takada, H.: Enhancing Reliability in Hy-
brid OS System with Security Hardware, IEICE Transactions on Information Systems,
Vol.93, No.2, pp. 75–85 (2010).

[19] Hergenhan, A. and Heiser, G.: Operating Systems Technology for Converged ECUs,
Proc. 6th Embedded Security in Cars conference (ESCAR), Hamburg, Germany
(2008).

BIBLIOGRAPHY 89

[20] Popek, G., and Goldberg, R.: Formal requirements for virtualizable third generation
architectures. Communications of the ACM, vol.17, no.7, pp. 412–421 (1974).

[21] Kinebuchi, Y. and Koshimae, H. and Oikawa, S. and Nakajima, T.: Virtualization tech-
niques for embedded systems, Proc. 12th IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (Work-in-Progress Session),
Sydney, Australia (2006).

[22] Ponsini, N.: Implementation Report of the Logical TrustZone/TPM integration,
TECOM deliverable (2010).

[23] Freescale Semiconductor Inc.: Rich applications in real time, Introducing Vybrid Con-
troller Solutions. BeyondBITS no.7, Whitepaper (2012).

[24] Airlines Electronic Engineering Committee: ARINC 653 Avionics Application Soft-
ware Standard Interface (2003).

[25] OKL4: The OKL4 File System, Inter-VM communications. http://wiki.

ok-labs.com/OKL4FS/.

[26] Burns, A. and Wellings, A.: Real-Time Systems and Programming Languages, 4th
edition, Addison Wesley (2009).

[27] Lemieux, J.: Programming in the OSEK/VDX Environment, CMP Books, Elsevier
(2001).

[28] Corbet, J., Rubini, A., and Kroah-Hartman, G.: Linux device drivers 3rd edition,
O’Reilly Media Inc. (2005).

[29] ARM Ltd.: ARM Security Technology. Building a Secure System using TrustZone
Technology, PRD29-GENC-009492C (2009).

[30] TOPPERS project: Official website. http://www.toppers.jp/.

[31] ARM Ltd.: ARM1176JZF-S Technical Reference Manual, DDI 0301G (2008).

[32] ARM Ltd.: AMBA3 TrustZone Interrupt Controller Technical Reference Manual,
DTO 0013B (2008).

[33] PCI-SIG: I/O Virtualization, http://www.pcisig.com/specifications/
iov/.

http://wiki.ok-labs.com/OKL4FS/
http://wiki.ok-labs.com/OKL4FS/
http://www.toppers.jp/
http://www.pcisig.com/specifications/iov/
http://www.pcisig.com/specifications/iov/

90 BIBLIOGRAPHY

[34] Buildroot: Official website. http://buildroot.uclibc.org/.

[35] ARM Ltd.: RealView Platform Baseboard for ARM1176JZF-S User Guide (2011).

[36] ARM Ltd.: AMBA3 TrustZone Protection Controller TRM, DTO 0015A (2004).

[37] ALSA project: Official website. http://www.alsa-project.org/.

[38] Android project: Official website. http://www.android.com/.

[39] RTAI: Official website. https://www.rtai.org/.

[40] FRESCOR project: Official website. http://www.frescor.org.

[41] Hokuto Electronics: Puppy robot website. http://www.hokutodenshi.co.
jp/7/PUPPY.htm.

[42] MPlayer: Official website. http://www.mplayerhq.hu/.

[43] Sloss, A. and Symes, D. and Wright, C. and Rayfield, J.: ARM System Developer’s
Guide (Designing and Optimizing System Software), ISBN: 978-1-55860-874-0, El-
sevier Inc. (2004).

[44] Takada, H. and Sakamura, K.: µITRON for small-scale embedded systems, IEEE
Micro, vol. 15, pp. 46–54, (1995).

[45] Ongaro, D. and Cox, A. and Rixner, S.: Scheduling I/O in virtual machine monitors,
Proc. 4th ACM SIGPLAN/SIGOPS international conference on Virtual execution en-
vironments, Seattle, USA, pp. 1–10 (2008).

[46] Kinebuchi, Y. and Sugaya, M. and Oikawa, S. and Nakajima, T.: Task Grain Schedul-
ing for Hypervisor-Based Embedded System, Proc. 10th IEEE International Confer-
ence on High Performance Computing and Communications, Dalian, China, pp. 190–
197 (2008).

[47] Joseph, M., Pandya, P.: Finding response times in a real-time system. The Computer

Journal, Vol. 29, No. 5, pp. 390–395 (1986).

[48] Kato, S. and Ishikawa, Y. and Rajkumar, R.: CPU Scheduling and Memory Man-
agement for Interactive Real-Time Applications, Real-Time Systems Journal, Kluwer
Academic Publishers, Vol. 47, No.5, pp. 454–488 (2011).

http://buildroot.uclibc.org/
http://www.alsa-project.org/
http://www.android.com/
https://www.rtai.org/
http://www.frescor.org
http://www.hokutodenshi.co.jp/7/PUPPY.htm
http://www.hokutodenshi.co.jp/7/PUPPY.htm
http://www.mplayerhq.hu/

BIBLIOGRAPHY 91

[49] Bernat, G. and Burns, A.: New results on fixed priority aperiodic servers, Proc. 20th
IEEE Real-Time Systems Symposium, Phoenix, USA (1999).

[50] Rostedt, S.: Finding origins of latencies using Ftrace, Proc. 11th Real-Time Linux
Workshop, Dresden, Germany (2009).

[51] Kaiser, R.: Alternatives for scheduling virtual machines in real-time embedded sys-
tems, Proc. 1st workshop on Isolation and integration in embedded systems, Glasgow,
Scotland, ACM, pp. 5–10 (2008).

[52] Regehr, J. and Duongsaa, U.: Preventing interrupt overload. ACM SIGPLAN Notices,
Vol. 40, No. 7, pp. 50–58 (2005).

[53] Chen, S., Xu, J., Sezer, E., Gauriar, P., and Iyer, R.: Non-control-data attacks are
realistic threats, Proc. 14th conference on USENIX Security Symposium, Baltimore,
USA, USENIX, pp. 177–192 (2005).

[54] Wang, J.: Survey of State-of-the-art in Inter-VM Communication Mechanisms, Tech-
nical Report (2009).

[55] Zhang, X., McIntosh, S., Rohatgi, P. and Griffin, J. L.: XenSocket: a high-throughput
interdomain transport for virtual machines, Proc. International Conference on Middle-
ware, Newport Beach, USA, Springer, pp. 184–203 (2007).

[56] Li, D., Jin, H., Shao, Y., Liao, X., Han, X., and Chen, K.: A High-Performance Inter-
Domain Data Transferring System for Virtual Machines. Journal of Software, Vol. 5,
No. 2, pp. 206–213 (2010).

[57] Xia, L., Lange, J., Dinda, P., and Bae, C.: Investigating Virtual Passthrough I/O
on Commodity Devices. ACM Operating Systems Review, Vol.43, No.3, pp. 83–94
(2009).

[58] Ram, K., Santos, J., Turner, Y. and Cox, A. and Rixner, S.: Achieving 10 Gb/s using
safe and transparent network interface virtualization, Proc. International conference
on Virtual execution environments, Washington, USA, ACM, pp. 61–70 (2009).

[59] Ram, K., Santos, J., Turner, Y.: Redesigning Xen’s Memory Sharing Mechanism
for Safe and Efficient I/O Virtualization, Proc. 2nd conference on I/O virtualization,
Berkeley, USA, USENIX (2010).

92 BIBLIOGRAPHY

[60] Gordon, A., Ben-Yehuda, M., Filimonov, D., and Dahan, M.: VAMOS, Virtualization
Aware Middleware, Proc. 3rd Workshop on I/O Virtualization, Portland, USA (2011).

[61] Landau, A., Ben-Yehuda, M., Gordon, A.: SplitX, Split Guest/Hypervisor Execu-
tion on Multi-Core, Proc. USENIX Workshop on I/O Virtualization, Portland, USA,
(2011).

[62] Sugerman, J., Venkitachalam, G. and Lim, B.: Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor, Proc. USENIX 2001 Annual Techni-
cal Conference, pp. 1–14, Boston, USA (2001).

[63] Menon, A., Santos, J., Turner, Y., Janakiraman, G. and Zwaenepoel, W.: Diag-
nosing performance overheads in the XEN virtual machine environment, Proc. 1st
ACM/USENIX international conference on Virtual execution environments (VEE
’05), pp. 13–23, Chicago, USA (2005).

[64] Santos, J., Turner, Y., Janakiraman, G. and Pratt, I.: Bridging the gap between software
and hardware techniques for I/O virtualization, Proc. USENIX 2008 Annual Technical
Conference, pp. 29–42, Boston, USA (2008).

[65] Ram, K., Santos, J., Turner, Y.: Redesigning Xen’s Memory Sharing Mechanism
for Safe and Efficient I/O Virtualization, Proc. 2nd conference on I/O virtualization
(WIOV’10), Pittsburgh, USA (2010).

[66] Gordon, A., Ben-Yehuda, M., Filimonov, D., and Dahan, M.: VAMOS, Virtualization
Aware Middleware, Proc. 3rd conference on I/O virtualization (WIOV’11), Portland,
USA (2011).

[67] Willmann, P., Rixner, S. and Cox, A.: Protection strategies for direct access to vir-
tualized I/O devices, Proc. USENIX 2008 Annual Technical Conference, pp. 15–28,
Boston, USA (2008).

[68] Ben-Yehuda, M., Xenidis, J., Ostrowski, M., Rister, K., Bruemmer, A. and Doorn, L.:
The Price of Safety: Evaluating IOMMU Performance, Proc. Ottawa Linux Sympo-
sium (OLS’07), pp. 9–20, Ottawa, Canada (2007).

[69] Xia, L., Lange, J., Dinda, P., and Bae, C.: Investigating Virtual Passthrough I/O on
Commodity Devices, Operating Systems Review, Vol.43, No.3, pp. 83–94 (2009).

BIBLIOGRAPHY 93

[70] Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A. and Zwaenepoel, W.:
Concurrent Direct Network Access for Virtual Machine Monitors, Proc. 13th IEEE
International Symposium on High-Performance Computer Architecture (HPCA-13),
pp. 306–317, Phoenix, USA (2007).

[71] Gordon, A., Amit, N., HarEl, N., Ben-Yehuda, M., Landau, A., Schuster, A. and
Tsafrir, D.: ELI: Bare-Metal Performance for I/O Virtualization, Proc. 17th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2012), London, UK (2012).

[72] Zhai, E., Cummings, G. and Dong, Y.: Live Migration with Pass-through Device for
Linux VM, Proc. Ottawa Linux Symposium (OLS’08), pp. 261–268, Ottawa, Canada
(2008).

[73] Kadav, A. and Swift, M.: Live migration of direct-access devices, Operating Systems
Review, Vol.43, No.3, pp. 95–104 (2009).

[74] Raj, H., and Schwan, K.: High performance and scalable I/O virtualization via self-
virtualized devices, Proc. 16th international symposium on High performance dis-
tributed computing, pp. 179–188, California, USA (2007).

[75] Rauchfuss, H., Wild, T., and Herkersdorf, A.: A network interface card architecture
for I/O virtualization in embedded systems, Proc. 2nd conference on I/O virtualization
(WIOV’10), Pittsburgh, USA (2010).

94

List of publications by the author

Journal papers

1. Sangorrin, D., Honda, S., and Takada, H.: Integrated Scheduling for a Reliable
Dual-OS Monitor, IPSJ Transactions on Advanced Computing Systems, Vol. 5, No.2,
pp. 99–110 (2012).

2. Sangorrin, D., Honda, S., and Takada, H.: Reliable and Efficient Dual-OS Com-
munications for Real-Time Embedded Virtualization, Journal of Computer Software,
Japan Society For Software Science and Technology (to appear).

International conference papers

1. Sangorrin, D., Honda, S., and Takada, H.: Dual Operating System Architecture for
Real-Time Embedded Systems, Proc. 6th International Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Applications (OSPERT), pp. 6–15, Brus-
sels, Belgium (2010).

2. Sangorrin, D., Honda, S., and Takada, H.: Reliable Device Sharing Mechanisms for
Dual-OS Embedded Trusted Computing, Proc. 5th International Conference on Trust
and Trustworthy Computing, Vienna, Austria (2012).

Domestic conference papers

1. Sangorrin, D., Honda, S., and Takada, H.: Integrated Scheduling in a Real-Time
Embedded Hypervisor, 情報処理学会組込みシステム研究会第18回研究発表
会,公立はこだて未来大学 (2010).

2. Sangorrin, D., Honda, S., and Takada, H.: Inter-OS Communications for a Real-Time
Dual-OS Monitor,情報処理学会第117回OS研究会,那覇市 (2011).

95

96 LIST OF PUBLICATIONS BY THE AUTHOR

Domestic conference papers (2nd author)

1. 太田貴也，Sangorrin, D.，一場利幸，本田晋也，高田広章，組込み向け高信
頼デュアルOSモニタのマルチコアアーキテクチャへの適用,情報処理学会
第117回OS研究会 (2011).

2. 太田貴也，Sangorrin, D.，本田晋也，高田広章，組込み向け高信頼デュア
ルOSモニタとそのマルチコア拡張,第13回組込みシステム技術に関するサ
マーワークショップ（SWEST13)ポスター，予稿集,下呂市 (2011).

Awards and honors

1. Monbukagakusho (MEXT) scholarship from April 2009 to September 2012.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Background
	2.1 Real-time embedded systems
	2.2 Definition of a dual-OS system
	2.2.1 Dual-OS system example
	2.2.2 Dual-OS system requirements

	2.3 Dual-OS systems: state of the art
	2.3.1 Idle scheduling
	2.3.2 Comparison of existing approaches

	2.4 Overview of the ARM architecture
	2.4.1 Introduction
	2.4.2 Register file
	2.4.3 CPU modes
	2.4.4 Coprocesors
	2.4.5 Exceptions
	2.4.6 ARM TrustZone

	2.5 The SafeG dual-OS system
	2.5.1 TrustZone configuration in SafeG
	2.5.2 Execution flow model of SafeG

	3 Integrated scheduling
	3.1 Introduction
	3.2 Motivational example
	3.3 Assumptions and requirements
	3.4 Integrated scheduling architecture
	3.4.1 Overview and merits
	3.4.2 Groups of GPOS activities
	3.4.3 GPOS scheduling events
	3.4.4 Tracking GPOS scheduling events of type 1 and 2
	3.4.5 Tracking GPOS scheduling events of type 3
	3.4.6 IS Manager
	3.4.7 RTOS protection
	3.4.8 Example

	3.5 Implementation
	3.5.1 Implementation platform
	3.5.2 Linux kernel modifications
	3.5.3 TOPPERS/ASP modifications

	3.6 Evaluation
	3.6.1 Requirement 3.1: GPOS Latency
	3.6.2 Requirement 3.2: RTOS timeliness
	3.6.3 Requirement 3.3: overhead
	3.6.4 Requirement 3.4: GPOS modifications
	3.6.5 Requirement 3.5: RTOS modifications
	3.6.6 Requirement 3.6: SafeG modifications
	3.6.7 Use case example

	3.7 Related work
	3.8 Conclusions

	4 Dual-OS communications
	4.1 Introduction
	4.2 Background
	4.2.1 Dual-OS communications
	4.2.2 Related work

	4.3 Requirements and assumptions
	4.3.1 Reliability requirements
	4.3.2 Efficiency requirements
	4.3.3 Assumptions

	4.4 Communications architecture
	4.4.1 Satisfying reliability requirements
	4.4.2 Satisfying efficiency requirements
	4.4.3 Communication channels
	4.4.4 Dualoscom interface
	4.4.5 Middleware

	4.5 Implementation
	4.5.1 Implementation platform
	4.5.2 Code modifications
	4.5.3 Initialization steps

	4.6 Evaluation
	4.6.1 Requirement 4.1: memory isolation
	4.6.2 Requirement 4.2: shared control data
	4.6.3 Requirement 4.3: real-time
	4.6.4 Requirement 4.4: memory faults
	4.6.5 Requirement 4.5: unbounded blocking
	4.6.6 Requirement 4.6: code modifications
	4.6.7 Requirement 4.7: throughput
	4.6.8 Requirement 4.8: memory size
	4.6.9 Requirement 4.9: interface
	4.6.10 Discussion

	4.7 Conclusions

	5 Reliable device sharing
	5.1 Introduction
	5.2 Motivation
	5.3 Reliable device sharing
	5.3.1 Requirements and assumptions
	5.3.2 Suitability of existing device sharing approaches
	5.3.3 Reliable device sharing through re-partitioning

	5.4 Implementation
	5.5 Evaluation
	5.5.1 Overhead
	5.5.2 Device latency
	5.5.3 Code modifications
	5.5.4 Discussion

	5.6 Related work
	5.7 Conclusions

	6 Conclusions and future work
	6.1 Summary
	6.2 Suggestions for future work

	Bibliography
	List of publications by the author

