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Abstract  

 

 

Road traffic accidents are a serious problem around the world, where the cost of human 

life is impossible to evaluate, and cause massive and continuous government spending. 

Different solutions have been proposed to reduce the effects of accidents, one of which, 

Advanced Driver Assistance Systems, as their name suggest, assist the driver by 

providing vital information on the traffic environment or by acting under specific 

circumstances to safeguard the occupants of the vehicle, or to facilitate driving. In case 

that an accident cannot be prevented, collision mitigation devices that are incorporated 

into vehicle design enhancement can be deployed to reduce the impact of the collision 

on the pedestrian.  

In this thesis we present a practical approach to the problem. Pedestrian protection is 

a crucial component of driver assistance systems. Our aim is to develop a video-based 

driver assistance system for the detection of the potential dangerous situation, in order 

to warn the driver. We address the problems of detecting pedestrian in real-world scenes 

and estimating walking direction with a single camera from a moving vehicle. The 

challenge is of considerable complexity due to the varying appearance of people (e.g., 

clothes, size, pose, shape, etc.), and the unstructured moving environments that urban 

scenarios represent. In addition, the required performance is demanding both in terms of 

computational time and detection rates.  

Considering all the available cues for predicting the possibility of collision is very 

important. The ―direction‖ in which the pedestrian is facing is one of the most important 

cues to predict where the pedestrian may move in future. Therefore we first emphasize 

the core problem of pedestrian orientation estimation in real-world scenes. The method 

is designed to estimate major eight orientations of different appearances. By taking 

account head-part orientation into the estimation, accuracy of overall estimation is 

drastically improved.  

Consequently, we construct and propose a three-stage method: (i) pedestrian 

detection, (ii) orientation estimation for single-frame and (iii) walking direction 

estimation for multi-frame. The first two stages employ and extend computationally 
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light Adaboost algorithms and Haar-like features. Therefore, the overall method meets a 

practical need with embedded on-board computing performance.  

In order to perform the experiments, we also present a real-world pedestrian dataset 

to the evaluation of all stages. It achieved a very good performance, 64% accuracy as a 

8-class recognition problem. Then, we estimate the pedestrian walking direction using 

multi-frame based on the result of single-frame orientation estimation. The results 

presented in this thesis not only end with a proposal of a pedestrian detection and 

pedestrian orientation estimation but also go one step beyond by estimating the 

pedestrian walking direction over an image sequence, introducing new techniques and 

evaluating their performance, which will provide new foundations for future research in 

the area. 

Following is a brief summary of each chapter in the dissertation. Chapter 1 presents 

the background and motivations of driver assistance systems and pedestrian protection 

systems. Technique issue and current trends of research and development are addressed.  

Chapter 2 describes related researches in pedestrian detection, pedestrian orientation 

estimation and pedestrian walking trajectory estimation. Chapter 3 presents the 

proposed whole system architecture consisting of three pyramid stages, and introduces 

the conventional approach for pedestrian detection for the stage 1. Chapter 4 presents 

our proposed approach for the estimation of pedestrian orientation based on the same 

feature extraction for the stage 1 with a newly designed multi-class classifier and 

describes the experimental results. Chapter 5 introduces a new approach on the study of 

the problem of pedestrian walking direction estimation. Chapter 6 summarizes the 

results and identifies other possible application areas and topics for future research. 
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Chapter 1 

 

Introduction 

 

As the modern industry develops, human seek happiness and life convenience. Humans 

have been designed intelligent machines since the appearance of early civilizations. For 

example, the first programmable machines have been traced back to the Ancient Greece 

in the 1
st
 century BC [1]. Furthermore, it is said that human sized automaton was built 

from the Renaissance until the 20
th

 century in the previous centuries [2]. The vehicle 

provide the convenience for human life, as the same time, vehicle accidents are one of 

the main causes of accidental death in the modern civilized world. The car seems to be 

one of the most deathly man-made objects used in the civilized world.  

The percentage of pedestrian deaths is even higher in many countries of Asia and 

Europe. Intelligent vehicle systems have the capability which can reduce the pedestrian 

deaths and injuries effectually. However, in order to provide effective protection, such 

systems need to not only detect pedestrians in varying environmental conditions, but 

also predict the possibility of collision. They should relay the information to the driver 

in efficient and non-distracting manner or to the control system of the vehicle in order to 

take preventive actions. 

 

1.1 Pedestrian safety 

 

Vehicles represent one of the key advanced technologies for human development in the 

modernization of the industry area. About 50 million passenger cars and 20 million 

commercial vehicles are being produced worldwide every year [3]. At this rate, the 

number of automobiles in the world will reach one billion units in the later years, 

especially due to emerging economies of Asian countries such as India and China. 

Fig.1.1 is referred from image.baidu.com. 
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Unfortunately, as the same time, followed with these many benefits, such the 

technology has also carried a bad effect: traffic accidents. The first death by a motor 

vehicle was registered in Ireland on 1869 [4]. Nowadays, according to the World Health 

Organization, road accidents represent the 6th cause of death in high-income countries 

and the 11th worldwide [5,6]. Every year almost 1.2 million people are killed in traffic 

collisions while the number of injured rises to 50 million. Furthermore, these numbers 

are expected to increase a 65% between 2000 and 2020, especially in low and 

middle-income countries. 

According to the World Bank website [11], pedestrians account for 65% of the 

fatalities out of the 1.17 million traffic related deaths around the world. In the United 

States, according to the National High-way Traffic Safety Administration [12], there 

were 4641 pedestrian fatalities during 2004, which accounted for 10.9% of the total 

42636 traffic-related fatalities. In Britain, pedestrians are twice as likely to be killed in 

accidents as vehicle occupants [13]. In Japan, about 2000 pedestrian fatalities every year 

(see Fig.1.2), especially many accidents owed the pedestrian make a sudden crossing 

(see Fig.1.3). The pedestrian death of number is total 18 in 2012 (12 is from right to left 

and 6 is from left to right), and from the 2009 to 2011, these kind of accidents is 132 in 

total.  

In developing countries such as India and China, the problem is much worse. During 

2001, there were 80000 fatalities on Indian roads, which grew in last decade at 5% per 

year [14]. In fact, 60%–80% of the road fatalities are the vulnerable road users [15],  

 

 

Fig. 1.1 Large numbers of automobiles 
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many of them from low-income groups. With the rapid increase in the number of 

vehicles in these countries, the number of accidents and fatalities is likely to increase 

before they can be reduced. Furthermore, the problems faced by developing countries 

are often different from those faced by developed countries. In developing countries, 

there are a large number of two wheelers, three wheelers, bicyclists, and pedestrians 

sharing the same road space with cars, buses, and trucks [16], [17]. Hence, the solutions 

for developed countries may not all be directly applicable for developing countries. In 

fact, the first steps for these countries lie in improving infrastructure design and 

developing appropriate infrastructure-based solutions. 

 

1.2 Approach for improving pedestrian safety 

 

Pedestrian safety can be improved at several stages. Long-term measures include 

infrastructure design enhancements in vehicles to reduce the fatalities. These 

enhancements can be complemented by systems that detect the pedestrians and prevent  

 

 

Fig. 1.2 Death toll in road traffic accidents in Japan (The blue bar represent the 

death number of pedestrian and the red bar represent the number of total 

accidents ) 
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accidents by warning the driver or triggering autonomous braking. In the cases where an 

accident cannot be prevented, collision mitigation devices that are incorporated into 

vehicle design enhancement can be deployed to reduce the impact of the collision on the 

pedestrian.  In this thesis, we focus on developing a video-based driver assistance 

system for the detection of potentially dangerous situation with the pedestrian, in order 

to warn the driver. Fig.1.4 is an introduction for traffic scene schematically. 

Infrastructure like road mark and signal lamb design enhancement and vehicle design 

can be reduced the fatality, autonomous driving system may be useful for reduce the 

accident. In this these, we focus on a driver assistance system which is able to detect the 

pedestrian and estimate the pedestrian walking direction. 

 

1.2.1 Infrastructure Design Enhancements 

 

Infrastructure enhancements to reduce pedestrian-related accidents are divided into 

three categories of countermeasures: speed control, pedestrian–vehicle separation, and 

measures to increase visibility of pedestrians.  

1. Reduction of speed results in fewer injuries due to the lowering of kinetic energy 

as well as greater reaction time. The techniques for speed control include single-lane 

roundabouts, speed bumps, pedestrian refuge islands, and use of multi way stop signs.  

2. Separation of pedestrians and vehicles can be performed by measures such as 

installing traffic signals, allocating exclusive time for pedestrian signals, in-pavement  

 
 

Fig. 1.3 Accidents owed the pedestrian make a sudden crossing  

(The number is the death number of pedestrian) 

2012

2009~2011
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flashing lights to warn drivers, and automatic pedestrian detection at walking signals.  

3. Pedestrian visibility can be increased by improving roadway lighting, since a 

majority of pedestrian fatalities occur at night time.      

 

 

1.2.2 Vehicle design for safety systems 

 

The design of the vehicle has great impact on the extent of injury that a pedestrian 

sustains in case of a collision. Most of the injuries take place in lower limbs, whereas 

most of the fatal injuries are head injuries. In order to minimize the effect of these 

injuries, various collision-absorbing components such as compliant bumpers, pop-up 

bonnets, and windscreen airbags are suggested. Ford and Volvo research laboratories 

have developed the use a finite element model of a pedestrian to simulate accidents. 

Such models help in predicting the effects of collision and in improving the vehicle 

design to minimize these effects. The EU has recently mandated the incorporation of 

pedestrian safety systems in cars. They designed an active hood, which automatically 

rises in case of collision with pedestrian, so that the surface that comes in contact with 

the head is deformable and flexible instead of hard and rigid. They have also developed 

a pair of airbags at the windshield pillar to prevent impact of windshield on the head. It 

is claimed that their pedestrian protection system can reduce risk of life-threatening 

injuries to 15% from nearly 100% for a collision, which is enough to satisfy the EU 

requirement. Pedestrian airbags can reduce head injuries by 90% and upper body 

 

 

Fig. 1.4 Pedestrian safety approach 
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injuries by 50%. 

 

1.2.3 Autonomous driving systems 

 

The first stone in the area of advanced drive assistance systems was put by E. 

Dickmanns group in 1986 with an autonomous highway driving system [7, 8]. They 

presented a system which can able to drive through closed highways at speeds of up to 

96km/h by exploiting cameras, rudimentary image processors and based on Kalman 

filtering algorithms. This research would later lead to the first European project on 

autonomous vehicles: Prometheus.  

Nowadays many advanced drive assistance systems have already been 

commercialized which can be found in the market as practical applications. For example, 

the first adaptive cruise control systems were introduced in high class Lexus, Mercedes 

and Jaguar in the late 1990s [9]. Adaptive cruise control systems keep a constant 

distance to the front vehicle by slowing or accelerating the host one. Lane departure 

warning systems warn the driver when the vehicle moves out of its lane, unless the 

corresponding direction turn signal is on. This technology was first included in trucks in 

2000 [10] and later extensively used in sedans. This technology is currently being 

improved by assisting the steering action or warning/intervening in lane changing in 

case of danger. One of the current-hot research topic is advanced front lighting systems, 

which control the headlight parameters so that the beam is optimized for different 

conditions like driving speed and direction. 

 

1.2.4 Advanced driver assistance systems 

 

Considerable research is being conducted by various groups for designing pedestrian 

detection systems. Such systems can employ various types of sensors and computer 

vision algorithms in order to detect pedestrians and to predict the possibility of 

collisions. The output of the systems can be used to generate appropriate warnings for 

the driver or to perform autonomous braking or maneuvering in the case of an imminent 

collision. 

Pedestrian Protection Systems are a particular type of advanced driver assistance 

systems devoted to pedestrian safety. A pedestrian protection system is formally defined 

as a system that detects both static and moving people in the surroundings of the vehicle 

typically in the front area in order to provide information to the driver and perform 

evasive or braking actions on the host vehicle if needed. Pedestrian detection before the  
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impact is crucial given that the severity of injuries for the pedestrian decreases with 

speed of the crashing vehicle. Thus, any reduction in the speed can drastically reduce 

the severity of the crash. According to [25], pedestrians have a 90% chance of surviving 

to car crashes at 30km/h or below, but less than 50% chance of surviving to impacts at 

45km/h or above. 

Without assistance, the human reaction time is long and consequently the brakes are 

auctioned about 1 second after the dangerous situation. A pedestrian is likely to suffer 

severe harm if he or she is at less than 25m. With assistance, the benefits are twofold. 

First, they can reduce the reaction time to 100ms or less [26, 27]. Second, since they can 

anticipate the potential accident they can not only provide warnings to the driver in a 

reduced time but also control the different active measures like airbags or brakes. Hence, 

the distance where pedestrians can be severely damaged is significantly reduced. 

 

1.3 The role of Computer Vision 

 

The central problem of pedestrian protection systems corresponds to the task of 

detecting pedestrians so as to provide the useful information to the driver. In order to 

detect objects (e.g., vehicles, pedestrians, obstacles) in the distance, advanced driver 

assistance systems make use of sensors that provide data to a computer/controller that 

processes them and performs the corresponding actions. A comprehensive analysis of 

these sensors is made.  

The most widely used sensors for pedestrian detection are cameras working either in 

the visible or infrared spectra. they provide the rich information, such as cues like edges, 

contours, texture or even relative temperature in the case of infrared cameras. Therefore, 

it is clear that Computer Vision plays a key role in the task of pedestrian detection, 

which in fact is the central problem in pedestrian protection systems. 

Once the problem and sensors involved in detection have been introduces, the 

 
 

Fig. 1.5 The variability of pedestrian is high as a result of the different possible 

illuminations, size, poses, view angels, clothes, etc. 
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challenges for pedestrian protection systems can be summarized in the following points: 

1. Appearance variability is very high in pedestrians, given that they can change pose, 

wear different clothes, carry different objects and their range of sizes is considerable 

(see Fig.1.5). 

2. Pedestrians shall be identified in outdoor urban scenarios. That is, they shall be 

detected in a cluttered background because urban areas are more complex than 

highways under different illumination and weather conditions that add variability to the 

quality of the sensed information (e.g., shadows and poor contrast in the visible 

spectrum).  

3. In addition, pedestrian can be partially occluded by different urban elements such 

as parked vehicles or street furniture. Maybe the people of the advertisement stand at 

the roadside will be considered as pedestrian. 

4. Pedestrian shall be identified in very dynamic scenes given that not only the 

pedestrians move but also the camera does, which makes tracking and movement 

analysis difficult. Because the background is not static means the background 

subtraction method is no more efficient.  

5. Furthermore, pedestrians appear under different viewing angels (e.g., lateral and 

front/rear positions) and a big range of distances shall be reached. Most of the systems 

are focused on the distances from 5 to 25m to the camera, namely high risk area. 

However, extending the detection to 50m, that is, covering also the low risk area, 

represents a great aid for pedestrian protection systems in the long term accident 

prevention. 

6. Nighttime detection with infrared cameras is affected by temperature, distance. 

7. The required performance is quite demanding in terms of system reaction time and 

robustness (false alarms and misdetections). 

In this thesis, we focused on the point of 1,2,4,5, and 7. Point 3 which is occlusion 

problem is a difficult problem current, and will be developed the research as future 

work. Point 7 will be benefit from the using vehicle sensors, and will be develop the 

research as future work. 

Our long term aim is to develop the driver assistance system which informs the 

dangerous situation with predicting the collision probability to the driver. Pedestrian 

orientation estimation can potentially improve the predication of future trajectories that 

the pedestrian may take and improve collision.  

 

1.4 Approach of the thesis 
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Pedestrian protection systems not only need to detect pedestrians, but also to predict the 

possibility of collisions between pedestrians and vehicles. The system must efficiently 

relay information to drivers so that they can take preventive actions. 

Our goal is to detect the pedestrian and estimate the pedestrian walking direction with 

a single camera on a moving vehicle, and long term aim is to develop a video-based 

driver assistance system for the detection of potentially dangerous situations with 

pedestrians, in order to warn the driver.  

It is certain that using some equipment such as senor, radar or stereo camera can 

increase the detect rate efficiently because these equipment can provide more useful 

information, but the cost is high and make the vehicle equipment complicate. 

Monocular imaging systems are less expensive and simpler to set up. So we propose to 

detect pedestrian and estimate the pedestrian walking direction using a single camera 

from a moving vehicle based learning approach. 

The challenges for our system can be summarized in the following points: 

1. Single camera. Single camera makes the detection difficult, but the cost is low 

and easier to embed on-board. 

2. Dynamic Scene. Not only the pedestrians move, but also the camera does. It 

makes the movement analysis difficult, because the background subtraction 

method is no more efficient. 

3. Outdoor/Various background. The urban traffic situation is more complex, various 

background make the problem of pedestrian detection more difficult. 

4. Varying Illumination. There are different light conditions in real traffic world. 

5. Arbitrary clothing. Pedestrians wear different clothes. 

6. Various distances. It makes the pedestrian have different sizes 

7. Daytime.  

8. No occlusion. 

Future research will develop in different situation, such as in nighttime and occlusion. 

Considering all the available cues for predicting the possibility of collision is very 

important. The ―direction‖ in which the pedestrian is facing is one of the most important 

cues to predict where the pedestrian may move in future. Therefore we first address the 

problem of single-frame pedestrian orientation estimation in real-world scenes. The 

method is design to estimate major eight orientations by taking account head-part 

orientation into the estimation. Then, we estimate the pedestrian walking direction using 

multi-frame based on the result of single-frame orientation estimation finally.     

Consequently, we construct a three-stage method: pedestrian detection for 
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single-frame single-frame stage, orientation estimation for single-frame stage and 

walking direction estimation for multi-frame stage. 

Consider the system should be realized in real-time, the first two stages employ and 

extend computationally light Adaboost algorithms and Haar-like feature. Therefore, the 

overall method meets a practical need with embedded on-board computing environment. 

The results presented in this thesis not only end with a proposal of a pedestrian 

detection and pedestrian orientation estimation but also go one step beyond by 

estimating the pedestrian walking direction over an image sequence, introducing new 

techniques and evaluating their performance, which will provide new foundations for 

future research in the area. 

 

 

 

Fig. 1.6 The Schematic representation of whole system. 

Stage 1
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Stage 2

Orientation

Estimation

Stage 3 Walking Direction Estimation
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1.5 Thesis outline 

 

In this thesis we present a practical approach to the problem. Pedestrian protection is a 

crucial component of driver assistance systems. Our aim is to develop a video-based 

driver assistance system for the detection of the potential dangerous situation, in order 

to warn the driver. We address the problems of detecting pedestrian in real-world scenes 

and estimating walking direction with a single camera from a moving vehicle. The 

challenge is of considerable complexity due to the varying appearance of people (e.g., 

clothes, size, pose, shape, etc.), and the unstructured moving environments that urban 

scenarios represent. In addition, the required performance is demanding both in terms of 

computational time and detection rates.   

Considering all the available cues for predicting the possibility of collision is very 

important. The ―direction‖ in which the pedestrian is facing is one of the most important 

cues to predict where the pedestrian may move in future. Therefore we first emphasize 

the core problem of pedestrian orientation estimation in real-world scenes. The method 

is designed to estimate major eight orientations of different appearances. Then, we 

estimate the pedestrian walking direction using multi-frame based on the result of 

single-frame orientation estimation. 

Consequently, we construct and propose a three-stage method: (i) pedestrian 

detection, (ii) orientation estimation for single-frame and (iii) walking direction 

estimation for multi-frame (see Fig.1.6). The first two stages employ and extend 

computationally light Adaboost algorithms and Haar-like features. Therefore, the overall 

method meets a practical need with embedded on-board computing performance.  

The results presented in this thesis not only end with a proposal of a pedestrian 

detection and pedestrian orientation estimation but also go one step beyond by 

estimating the pedestrian walking direction over an image sequence, introducing new 

techniques and evaluating their performance, which will provide new foundations for 

future research in the area. 

Following is a brief summary of each chapter in the dissertation.  

Chapter 1 presents the background and motivations of Intelligent Transport System 

(ITS), driver assistance systems and pedestrian protection systems. Technical issue and 

current trends of research and development are addressed. 

Chapter 2 describes related researches in ITS, pedestrian detection, pedestrian 
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orientation estimation and pedestrian walking trajectory estimation as well as image 

processing and human image processing with pattern recognition. Some details are 

addressed in Appendix.  

Chapter 3 presents the proposed whole system architecture consisting of three 

pyramid stages, and introduces the conventional approach for pedestrian detection for 

the stage 1. Pedestrian detector is trained using Adaboost algorithm and Haar-like 

feature based on a large number training data which were obtained from the pictures of 

walking pedestrian in real world with a single camera on a moving vehicle. We confirm 

the performance of the detector for pedestrian detection problem. 

Chapter 4 presents the most important issue with our proposed approach for the 

estimation of pedestrian orientation based on the same feature extraction for the stage 1 

with a newly designed multi-class classifier and describes the experimental results. In 

this chapter, we outline the problem of estimation into one of eight orientations. We 

propose a cascade orientation estimation that integrated the head orientation estimation 

by a multi-Bayesian model. We also compares the performance of our proposed 

approach to one vs. one and one vs. all multi-class classification approach. Also, we 

compared it with a state of art 4 orientation detection method and confirmed a 

comparable performance on a possible semi-fair condition. 

Chapter 5 introduces a new approach on the study of the problem of pedestrian 

walking direction estimation. We propose an average orientation estimation method to 

estimate the pedestrian walking direction using the result of orientation estimation in a 

single frame, which is obtained from stage 2. The accuracy of pedestrian walking 

direction in a straight walking case reached to 83%-98%.  

Chapter 6 summarizes the results and achievements of pedestrian walking direction 

estimation, and it identifies other possible application areas and topics for future 

research in a short range and a long range aspect. 
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Chapter 2 

 

Background and Literature Review 

 

The survey starts by an overview of the different approach for pedestrian detection in 

advanced driver assistance systems in Section 2.1, describing the properties of the ones 

used for pedestrian protection systems in detail. Then, the review is made divided in 

review and analysis; the first is to enumerat the existing techniques and the later is to 

highlighting the advantages, disadvantages and future trends for each stage. Note that 

not all the reviewed techniques are strictly used in pedestrian protection systems but we 

also include the ones we find special importance for the area. Pedestrian pose estimation 

is described in Section 2.2. Finally, pedestrian walking trajectory estimation is 

presented in Section 2.3. 

 

2.1  Pedestrian detection 

 

Pedestrian detection is a rapidly evolving area in computer vision with key applications 

in intelligent vehicles, surveillance, and advanced driver assistance systems. Finding 

pedestrian in images is a key ability for those important applications. It is a difficult task 

from a machine vision perspective. Many approaches propose the problem using a 

vehicle-based sensor and get significant result with high cost. Other approaches are 

proposed to detect the pedestrian using classification method with learning algorithms. 

 

2.1.1 Video based monocular pedestrian detection 

 

In the case of imaging sensors, the shape and appearance of the pedestrians can be used 

to separate them from the background. For this purpose, characteristic features are 
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extracted from images, and a trained classifier is used to separate pedestrian from the 

background and other objects. Some of the features used for appearance-based detection 

are raw sub images [35], size and aspect ratio of bounding boxes [36], Haar wavelets 

[37], Gabor filter outputs [38], symmetry [37], [39], intensity gradients [31] and their 

histograms [40], and active contours [41]. In [42], texture information is extracted using 

simple masks, and classification is performed based on integrating the weak classifiers 

obtained from these masks. In thermal IR images, pedestrians that are warmer than the 

background form hot spots, which are used for detection, as in [43]. In [44], features 

based on histogram, inertia, and contrast is used to distinguish pedestrians.  

Motion is also an important cue in detecting pedestrians. In the case of stationary 

infrastructure-based cameras, background subtraction is used to separate moving objects 

from static background. However, in the case of moving platforms, the background 

undergoes ego-motion that depends on the camera motion as well as the scene structure. 

For laterally moving pedestrians, it is usually feasible to separate the pedestrian motion 

from ego-motion. However, for longitudinally moving pedestrians, the image motion is 

parallel to the ego-motion and, therefore, difficult to separate. The vehicle ego-motion 

can be split into rotation and translation. Rotational motion in video does not depend on 

the distance of the scene feature and is sometimes neglected [45], [46] or compensated 

for using gyro sensors [47]. The translational motion is inversely proportional to the 

distance to the scene and, hence, can be used in determining the scene structure. In the 

absence of rotational motion, the image motion vectors converge at a single point in the 

image called the focus of expansion. In [48], ego-motion estimation is performed using 

sparse optical flow at corner-like features. Motion of outliers corresponding to 

independently moving objects does not pass through focus of expansion and are 

clustered using region-growing segmentation on the residual image. In [47], a two-stage 

stereo correspondence and motion-detection procedure is developed to distinguish an 

object motion that is inconsistent with the background. This procedure does not need 

explicit ego-motion computation. Motion information can also be combined with 

texture information, as in [42]. An extremely efficient representation of image motion is 

developed based on five types of shifted image differences.  

Features characteristic to periodicity of human body motion which is within a 

frequency range are useful in detecting pedestrians and separating them from other 

moving and stationary objects. Spatial motion distribution represented by moment 

features [48], power spectral distribution of the motion time series [48], symmetry 

characteristics of the legs [49], and gait patterns [50] are some of the cues used to detect 

and verify pedestrian candidates.  
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Stereo cameras as well as time-of-flight sensors return information from which the 

distance of the object from the camera can be computed. This information is very useful 

for disambiguating pedestrians from background, handling occlusion between 

pedestrians, and eliminating extraneous features based on the image size. Disparity 

discontinuities can be used to aid segmentation, as in [27] and [31], to divide the image 

of the scene into layers. In [43], stereo is used to guide the active contour model for 

pedestrians.  

LASER scanners output radial distance at discrete azimuth angles in the scanning 

plane. These data are clustered into objects based on range discontinuities [49] and 

grouping measurements near each other in the 3-D space [50], [51]. The objects are 

tracked and classified into number of classes using models of object outlines and their 

dynamic behavior. The system also warns the driver or activates automatic braking in 

case of imminent collision. 

 

2.1.2 Sensing technology for pedestrian detection 

 

Various types of sensors have been employed for vehicles as well as 

infrastructure-based pedestrian detection systems. Commonly used sensors for detecting 

pedestrians are imaging sensors in various configurations using visible light and 

 

Table. 2.1 Comparison between different sensor for pedestrian detection 
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infrared (IR) radiation, as well as the ―time-of-flight‖ sensors such as RADARs and 

LASER scanners. Imaging sensors can capture a high-resolution perspective view of the 

scene, but extracting information involves substantial amount of processing.  

Every sensor has its advantages and limitations (see Table2.1). In order to enhance 

the advantages and overcome the limitations, one can use a combination of multiple 

sensors that give complementary information.  

 

2.1.2.1 Sensor mounting  

 

Sensors are mounted on vehicles or embedded within the infrastructure. 

Vehicle-mounted sensors are very useful in detecting pedestrians and other vehicles 

around the host vehicle. However, they often cannot see dangerous objects that are 

occluded by other vehicles or stationary structures. Sensors mounted in infrastructure 

would be able to see many of these objects and help to get a better view of the entire 

scene from the top. 

Sensors mounted in the front are used for detecting pedestrians ahead of the vehicle. 

On the other hand, side-mounted sensors cover blind spots. RADARs are often mounted 

in front of the vehicle to estimate the distance to the pedestrians. LASER scanners have 

a wide field of view and can be mounted in the front or sides to observe ahead of the 

vehicle as well as in blind spots.  

 

2.1.2.2 Stereo segmentation 

 

Stereo imagery is a natural approach to segment the object. For example, stereo is one 

of the main cues used to detect obstacles in human vision system. Thus, at a first glance, 

stereo segmentation seems to be promising method to generate candidates. However, 

from our experience, the single use of stereo is far from being useful for this task.  

  The existed some papers that claim the use of stereo-based segmentation as 

standalone method to perform the candidate generation [33, 34, 35], but not many of 

them give details regarding the algorithm employed. 

  In this thesis we do not consider stand-alone stereo techniques as a reliable algorithm 

to extract candidates, so it will not be evaluated. More details about sensing technology 

for pedestrian detection please refer to the appendix. 

 

2.1.3 Features and learning algorithms 
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Pedestrian classification involves pedestrian appearance models, using various spatial 

and temporal cues. Following a rough categorization of such models into generative and 

discriminative models [64], we further introduce a delineation in terms of visual 

features and classification techniques. In both the generative and discriminative 

approaches to pedestrian classification, a given image is to be assigned to either the 

pedestrian or non-pedestrian class, depending on the corresponding class posterior 

probabilities. The main difference between generative and discriminative models is how 

posterior probabilities are estimated for each class.    

Generative approaches to pedestrian classification model the appearance of the 

pedestrian class in terms of its class conditional density function. In combination with 

the class priors, the posterior probability for the pedestrian class can be inferred using a 

Bayesian approach.  

 

2.1.3.1 Shape model 

 

Shape cues are particularly attractive because of their property of reducing variations 

in pedestrian appearance due to lighting or clothing. At this point, we omit discussion of 

complex 3D human shape models [52] and focus on 2D pedestrian shape models that 

are commonly learned from shape contour examples. More details about 3D human 

shape model please refer to the appendix. In this regard, both discrete and continuous 

representations have been introduced to model the shape space.  

Discrete approaches represent the shape manifold by a set of exemplar shapes [53], 

[54], [55], [56]. On one hand, exemplar-based models imply a high specificity since 

only plausible shape examples are included and changes of topology need not be 

explicitly modeled. On the other hand, such models require a large amount of example 

shapes (up to many thousands) to sufficiently cover the shape space due to 

transformations and intra-class variance. From a practical point of view, exemplar-based 

 
 

Fig. 2.1 Shape modeled for pedestrian detection 
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models have to strike a balance between specificity and compactness to be used in 

real-world applications, particularly with regard to storage constraints and feasible 

online matching. Efficient matching techniques based on distance-transforms have been 

combined with pre-computed hierarchical structures, to allow for real-time online 

matching of many thousands of exemplars [53], [54], [55].  

Continuous shape models involve a compact parametric representation of the 

class-conditional density, learned from a set of training shapes, given the existence of an 

appropriate manual [57], [58], [59] or automatic [60], [61], [62], [63], [64] shape 

registration method. Linear shape space representations which model the 

class-conditional density as a single Gaussian have been employed by Baumberg [60] 

and Bergtholdt et al. [65]. Forcing topologically diverse shapes into a single linear 

model may result in many intermediate model instantiations that are physically 

implausible. To recover physically plausible regions in the linear model space, 

conditional density models have been proposed [57], [62]. Further, nonlinear extensions 

have been introduced at the cost of requiring a larger number of training shapes to cope 

with the higher model complexity [57], [58], [59], [62], [64]. Rather than modeling the 

nonlinearity explicitly, most approaches break up the nonlinear shape space into 

piecewise linear patches. Techniques to determine these local sub-regions include fitting 

a mixture of Gaussians via the EM-algorithm [57] and K-means clustering in shape 

space [58], [59], [62], [64].  

Fig.2.1 shows the example of shape model for pedestrian detection. This method 

using a forward rendering model to predict the images which is expensive and requires a 

good initialization, the computational cost is extremely high. 

 

2.1.3.2 Generative model 

 

Compared to discrete shape models, continuous generative models can fill gaps in the 

shape representation using interpolation. However, online matching proves to be more 

complex since recovering an estimate of the maximum-aposteriori model parameters 

involves iterative parameter estimation techniques, i.e., Active Contours [57], [64].  

Recently, a two-layer statistical field model has been proposed to increase the 

robustness of shape representations to partial occlusions and background clutter by 

representing shapes as a distributed connected model [66]. Here, a hidden Markov field 

layer to capture the shape prior is combined with an observation layer, which associates 

shape with the likelihood of image observations.  

One way to enrich the representation is to combine shape and texture information  
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within a compound parametric appearance model [57], [62], [63], [67], [68]. These 

approaches involve separate statistical models for shape and intensity variations. A 

linear intensity model is built from shape-normalized examples guided by sparse [65], 

[62], [68] or dense correspondences [63], [67]. Model fitting requires joint estimation of 

shape and texture parameters using iterative error minimization schemes [63], [68]. To 

reduce the complexity of parameter estimation, the relation of the fitting error and 

associated model parameters can be learned from examples [57]. 

 

2.1.3.3 Discriminative model and features 

 

In contrast to the generative models, discriminative models approximate the Bayesian 

maximum-a-posteriori decision by learning the parameters of a discriminant function, 

that is, decision boundary between the pedestrian and non-pedestrian classes from 

training examples. Fig.2.2 shows an example of discriminative model for pedestrian 

detection. We will discuss the merits and drawbacks of several feature representations 

and continue with a review of classifier architectures and techniques to break down the 

complexity of the pedestrian class.  

Local filters operating on pixel intensities are a frequently used feature set [69]. Haar 

wavelet features have been popularized by Papageorgiou and Poggio [38] and adapted 

by many others [70], [71], [44]. This over complete feature dictionary represents local 

intensity differences at various locations, scales, and orientations. Their simplicity and 

fast evaluation using integral images [44], [72] contributed to the popularity of Haar 

wavelet features. However, the many-times redundant representation, due to 

overlapping spatial shifts, requires mechanisms to select the most appropriate subset of 

features out of the vast amount of possible features. Initially, this selection was 

manually designed for the pedestrian class, by incorporating prior knowledge about the 

geometric configuration of the human body [38], [70], [71]. Later, automatic feature 

 

Fig. 2.2 Discriminative model for pedestrian detection 
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selection procedures (i.e., variants of AdaBoost [73]) were employed to select the most 

discriminative feature subset [44]. Because the Haar-Like features are valued as  pixel 

values directly based the rectangular features, it show a good ability to describe the 

features of the various parts of the human body and Calculation of Haar-Like features is 

very fast. 

The automatic extraction of a subset of non-adaptive features can be regarded as 

optimizing the features for the classification task. Likewise, the particular configuration 

of spatial features has been included in the actual optimization itself, yielding feature 

sets that adapt to the underlying data set during training. Such features are referred to as 

local receptive fields [54], [74], [75], [36], [76], in reference to neural structures in the 

human visual cortex [77]. Recent studies have empirically demonstrated the superiority 

of adaptive local receptive field features over non adaptive Haar wavelet features with 

regard to pedestrian classification [75], [36].  

Another class of local intensity-based features is codebook feature patches, extracted 

around interesting points in the image [78], [79], [80], [81]. A codebook of distinctive 

object feature patches along with geometrical relations is learned from training data 

followed by clustering in the space of feature patches to obtain a compact representation 

of the underlying pedestrian class. Based on this representation, feature vectors have 

been extracted including information about the presence and geometric relation of 

codebook patches.  

Others have focused on discontinuities in the image brightness function in terms of 

models of local edge structure. Well-normalized image gradient orientation histograms, 

computed over local image blocks, have become popular in both dense [82], [28], [83], 

(HOG, histograms of oriented gradients) and sparse representations [84] (SIFT, 

scale-invariant feature transform), where sparseness arises from preprocessing with an 

interest-point detector. Initially, dense gradient orientation histograms were computed 

using local image blocks at a single fixed scale [82], [28] to limit the dimensionality of 

the feature vector and computational costs. Extensions to variable-sized blocks have 

been presented in [83], [85], [86]. Results indicate a performance improvement over the 

original HOG approach. Recently, local spatial variation and correlation of gradient 

based features have been encoded using covariance matrix descriptors which increase 

robustness toward illumination changes [87]. This approach has become increasingly 

popular in the domain of pedestrian classification in both linear and non-linear variants. 

However, resulting performance boosts are paid for with a significant increase in 

computational costs and memory. 

Yet others have designed local shape filters that explicitly incorporate the spatial 
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configuration of salient edge-like structures. Multi-scale features based on horizontal 

and vertical co-occurrence groups of dominant gradient orientation have been 

introduced by Mikolajczyk et al. [88]. Manually designed sets of edgelets, representing 

local line or curve segments, have been proposed to capture edge structure [89]. An 

extension to these predefined edgelet features has recently been introduced with regard 

to adapting the local edgelet features to the underlying image data [90]. So-called 

shapelet features are assembled from low-level oriented gradient responses using 

AdaBoost, to yield more discriminative local features. Again, variants of AdaBoost are 

frequently used to select the most discriminative subset of features.  

As an extension to spatial features, spatiotemporal features have been proposed to 

capture human motion [91], [92], [65], [44], especially gait [93], [94], [95]. For 

example, Haar wavelets and local shape filters have been extended to the temporal 

domain by incorporating intensity differences over time [65], [44]. Local receptive field 

features have been generalized to spatiotemporal receptive fields [93], [76]. HOGs have 

been extended to histograms of differential optical flow [103]. Several papers compared 

the performance of otherwise identical spatial and spatiotemporal features [91], [44] and 

reported superior performance of the latter at the drawback of requiring temporally 

aligned training samples.  

 

2.1.3.4 Discriminative classification 

 

Discriminative classification techniques aim at determining an optimal decision 

boundary between pattern classes in a feature space. Feed-forward multilayer neural 

networks [96] implement linear discriminant functions in the feature space in which 

input patterns have been mapped nonlinearly (e.g., by using the previously described 

feature sets). Optimality of the decision boundary is assessed by minimizing an error 

criterion with respect to the network parameters (i.e., mean squared error [96]). In the 

context of pedestrian detection, multilayer neural networks have been applied 

particularly in conjunction with adaptive local receptive field features as nonlinearities 

in the hidden network layer [74], [54], [75], [36], [76]. This architecture unifies feature 

extraction and classification within a single model.  

Support Vector Machines (SVMs) have evolved as a powerful tool to solve pattern 

classification problems. In contrast to neural networks, SVMs do not minimize some 

artificial error metric but maximize the margin of a linear decision boundary (hyper 

plane) to achieve maximum separation between the object classes. Regarding pedestrian 

classification, linear SVM classifiers have been used in combination with various 
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(nonlinear) feature sets [82], [91], [97], [83], [71], [85], [86].  

Nonlinear SVM classification (e.g., using polynomial or radial basis function kernels 

as implicit mapping of the samples into a higher dimensional (and probably infinite) 

space), yielded further performance boosts. These are, however, paid for with a 

significant increase in computational costs and memory requirements [98], [70], [75], 

[89], [38], [36].  

AdaBoost [73], which has been applied as automatic feature selection procedure, has 

also been used to construct strong classifiers as weighted linear combinations of the 

selected weak classifiers, each involving a threshold on a single feature [90], [28]. To 

incorporate nonlinearities and speed up the classification process, boosted detector 

cascades have been introduced by Viola et al. [44] and adopted by many others [88], 

[89], [83], [87], [101], [85], [86]. Motivated by the fact that the majority of detection 

windows in an image are non-pedestrians, the cascade structure is tuned to detect almost 

all pedestrians while rejecting non-pedestrians as early as possible. AdaBoost is used in 

each layer to iteratively construct a strong classifier guided by user-specified 

performance criteria. During training, each layer focuses on the errors the previous 

layers make. As a result, the whole cascade consists of increasingly more complex 

detectors. This contributes to the high processing speed of the cascade approach, since 

usually only a few feature evaluations in the early cascade layers are necessary to 

quickly reject non-pedestrian examples. Adaboost algorithm has been proved very 

efficient. 

Besides introducing new feature sets and classification techniques, many recent 

pedestrian detection approaches attempt to break down the complex appearance of the 

pedestrian class into manageable subparts. First, a mixture-of-experts strategy 

establishes local pose-specific pedestrian clusters, followed by the training of a 

specialized expert classifier for each subspace [54], [97], [28], [88], [85]. Appropriate 

pose-based clustering involves both manually [97], [28], [89] and automatically 

established [71] mutually exclusive clusters, as well as soft clustering approaches using 

probabilistic assignment of pedestrian examples to pose clusters, obtained by a 

preprocessing step, e.g., shape matching [54]. Matching method paid for with a 

significant increase in computational costs and memory requirements. 

An additional issue in mixture-of-experts architectures is how to integrate the 

individual expert responses to a final decision. Usually, all experts are run in parallel, 

where the final decision is obtained as a combination of local expert responses using 

techniques such as maximum selection [97], [89], majority voting [71], AdaBoost [28], 

trajectory based data association [85], and probabilistic shape-based weighting [54].  
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Second, component-based approaches decompose pedestrian appearance into parts. 

These parts are either semantically motivated (body parts such as head, torso, and legs) 

[98], [88], [70], [28], [65], [89] or concern codebook representations [81], [82], [89], 

[83]. A general trade-off is involved at the choice of the number and selection of the 

individual parts. On one hand, components should have as small spatial extent as 

possible, to succinctly capture articulated motion. On the other hand, components 

should have sufficiently large spatial extent to contain discriminative visual structure to 

allow reliable detection. Part-based approaches require assembly techniques to integrate 

the local part responses to a final detection, constrained by spatial relations among the 

parts.  

Approaches using partitions into semantic sub-regions train a discriminative 

feature-based classifier (see above), (specific to a single part), along with a model for 

geometric relations between parts. Techniques to assemble part-based detection 

responses to a final classification result include the training of a combination classifier 

[98], [70], [28] and probabilistic inference to determine the most likely object 

configuration given the observed image features [88], [65], [89]. Codebook approaches 

represent pedestrians in a bottom-up fashion as assemblies of local codebook features, 

extracted around salient points in the image, combined with top-down verification [81], 

[82], [83].  

Component-based approaches have certain advantages compared to full-body 

classification. They do not suffer from the unfavorable complexity related to the number 

of training examples necessary to adequately cover the set of possible appearances. 

Furthermore, the expectation of missing parts due to scene occlusions or inter object 

occlusions is easier addressed, particularly if explicit inter object occlusion reasoning is 

incorporated into the model [81], [82], [83], [101]. However, these advantages are paid 

for with higher complexity in both model generation and application. Their applicability 

to lower resolution images is limited since each component detector requires a certain 

spatial support for robustness. 

 

2.2 Human pose estimation 

 

Estimating human pose is an extremely challenging problem. A successful tracking 

system can find applications in motion capture, human computer interaction, and 

activity recognition. 
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2.2.1 Low-level image human pose observations 

 

Prior to 3D human pose estimation, low-level image observations must be extracted 

from images or video frames. Ideally, the extracted image observations should encode 

salient information for subsequent use in high-level image understanding tasks. In this 

context, high-level understanding tasks here refer to 3D body pose estimation. Although 

in theory, original images or video sequences could be used as image observations, they 

are too ―noisy‖ to be of any use for high level understanding tasks. Such noisy 

information originated from lighting variations, different clothing, cluttered background 

can seriously undermine high level understanding tasks. Therefore, low-level image 

observations to be extracted during feature extraction process is highly task-specific. It 

is common computer vision practice to make assumptions about the environment, 

acquisition, image generation process in order to simplify feature extraction process. In 

statistical perspectives, image observations extracted must have strong correlation to the 

problems at hand so that variations of estimation can be minimized. Often in 3D body 

pose estimation problem, commonly used image observations are silhouette, shapes, 

edges, motions, colors, and recent approaches are combinations of them. 

Enzweiler et al. presented a novel integrated framework method for single-frame 

pedestrian classification and orientation estimation, and showed a significant 

performance between pedestrian classification and orientation estimation research areas. 

However, they only classified four orientations: front/back and left/right. In the real 

traffic world, not only the left/right view, but also diagonal views of 45º, 135º, 225º, and 

315º are dangerous situations for collisions between vehicles and pedestrians. 

Furthermore, for developing a video based pedestrian protection system, eight 

orientations are more valuable. For example, when a pedestrian is walking forward and 

wants to turn right to cross the road, the pedestrian orientation should be changed from 

90º to 0º; if the driver notices that the pedestrian is changing his orientation to the 

intermediate 45º, he will realize that the possibility is getting higher that the pedestrian 

will cross the road. Estimation of eight orientations will help efficiently to relay the 

information to the driver to take preventive actions. That is our reason and motivation of 

tackling a more difficult eight orientations problem. Comparison with the Enzweiler‘s 

method will be introduced in Chapter 4. 

 

2.2.2 3D human pose estimation 
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Human body pose estimation has recently received great interest from the computer 

vision community. However, most researches consider 3D human pose estimation 

techniques [101]. Agarwal and Triggs [110] developed a learning-based method for 

estimating the 3D body poses of people from monocular images as well as video 

sequences. The approach uses the histogram of shape context descriptors as feature and 

various regression methods for estimating the 3D pose. Besides, work in the domain of 

3D human pose estimation, a few approaches have recovered an estimate of pedestrian 

orientation based on 2D lower-resolution images [91], [97]. Cucchiara et al. [141]
 

distinguished among various human postures such as standing, crouching, sitting, and 

lying down using Probabilistic Projection Maps on 2D silhouettes. However, most of 

the systems use an accurate silhouette of the pedestrian, which may not always be 

available, especially from a moving vehicle. More details about 3D human pose 

estimation please refer to the appendix. 

 

2.3 Pedestrian walking trajectory estimation 

 

For a complete safety system, detection should be followed by prediction of the 

possibility of collision. The system should relay the information to the driver in efficient 

and non-distracting manner or to the control system of the vehicle in order to take 

preventive actions. 

Some researches try to estimate the pedestrian trajectory by tracking method. There 

has been work on the tracking of pedestrians to infer trajectory-level information. One 

line of research has formulated tracking as frame-by-frame association of detections 

based on geometry and dynamics without particular pedestrian appearance models [110], 

[62]. Other approaches utilize pedestrian appearance models coupled with geometry and 

dynamics [90], [72], [119], [73], [74]. Some approaches furthermore integrate detection 

and tracking in a Bayesian framework, combining appearance models with an 

observation density, dynamics, and probabilistic inference of the posterior state density. 

For this, either single [64], [101] or multiple cues [72], [119], [73] are used.  

The integration of multiple cues [134] involves combining separate models for each 

cue into a joint observation density. The inference of the posterior state density is 

usually formulated as a recursive filtering process [135]. Particle filters [136] are very 

popular due to their ability to closely approximate complex real-world multimodal 

posterior densities using sets of weighted random samples. Extensions that are 

especially relevant for pedestrian tracking involve hybrid discrete/continuous 
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state-spaces [72] and efficient sampling strategies [136], [137], [138], [139].  

An important issue in real-world pedestrian tracking problems is how to deal with 

multiple targets in the image. Two basic strategies with regard to the tracking of 

multiple objects have been proposed. First, the theoretically most sound approach is to 

construct a joint state-space involving the number of targets and their configurations 

which are inferred in parallel. Problems arise regarding the significantly increased and 

variable dimensionality of the state space. Solutions to reduce the computational 

complexity have involved grid-based or pre-calculated likelihoods [138] and 

sophisticated re-sampling techniques such as Metropolis-Hastings sampling [138], 

partitioned sampling [139], or annealed particle filters [136]. Second, some approaches 

have been proposed to limit the number of objects to one per tracker and employ 

multiple tracker instances instead [72]. While this technique simplifies the state-space 

representation, a method for initializing a track along with rules to separate neighboring 

tracks is required. Typically, an independent detector process is employed to initialize a 

new track. 

Incorporating the independent detector into the proposal density tends to increase 

robustness by guiding the particle re-sampling toward candidate image regions. 

Competition rules between multiple tracker instances have been formulated in terms of 

heuristics [72]. In contrast to joint state-space approaches, the quality of tracking is 

directly dependent on the capability of the associated object detector used for 

initialization. 

In this thesis we try to ignore dynamics and find pedestrian in each frame 

independently, and estimate these pedestrian orientation in each frame independently. 

This approach is attractive because it self-starts and is robust to drift, since it essentially 

re-initializes itself at each frame. 
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Chapter 3 

 

Advanced Driver Assistance Systems 

 

Pedestrian is the most vulnerable involving the traffic accidents. Our long-term goal is 

to develop systems which, if not avoid these accidents altogether, at least minimize their 

severity by employing protective measures in case of upcoming collisions. 

Initiatives of pedestrian protection systems have been started to improve the safety of 

vulnerable road pedestrians. As introduced in Chapter 1, most projects aimed towards 

the development of sensor-based solutions for the detection of vulnerable road 

pedestrians, in order to facilitate preventive measures the use of warning or to avoid or 

minimized the impact of collisions. In our research, we try to realize the pedestrian 

protection system without any sensor, but using one monocular camera. 

   

3.1 The architecture of whole system 

 

To achieve the goal, we propose a three-stage method: pedestrian detection for 

single-frame stage, orientation estimation for single-frame stage and walking direction 

estimation for multi-frame stage. Fig.3.1 shows the architecture in a general pedestrian 

protection system. The processing is organized as a pyramid, with base having large 

quantity of raw data. As one climbs up the pyramid, the useful information is distilled in 

successive stages, until finally, one takes action based on a yes/no decision. In this 

thesis, we put emphasis on the base of three steps: pedestrian detection, pedestrian 

orientation estimation, and pedestrian walking direction estimation. Collision prediction 

and action process will be future issues. 

 

3.1.1 Stage 1: Pedestrian detection 
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Pedestrian detection is an important component of the pedestrian protection systems. 

This stage processes raw data using simple cues and fast algorithms to identify potential 

pedestrian candidate; in another word, the task of this stage is to find and locate the 

pedestrian in motion from the complicated traffic environment. The stage requires high 

detection rate even at the expense of allowing false alarms. If we inform the driver all 

the pedestrians that were detected in this stage, the driver needs to decide the situation 

which pedestrian has the most dangerous and probability of the collision to the vehicle 

by driver himself. It easily causes the problem of that driver cannot pay attention to 

driving, while exceeding information processing of danger decisions. Therefore, stage 

applies more complex algorithms to the candidates given by stage 1 to separate genuine 

pedestrians from false alarms is needed. The pedestrian orientation information also can 

potentially sort out less-danger candidate and improve the prediction of future  

 

 

 

Fig. 3.1 The architecture of whole system. 
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trajectories that the pedestrian may take.  

A major complication is that, because of the moving vehicle, one does not have the 

luxury to use simple background subtraction methods to obtain a foreground region 

containing the human (see Fig.3.2). There are hard real-time requirements for the 

vehicle application which rule out any brute-force approaches. Furthermore, because of 

the moving vehicle, simple tracking method such as optical-flow cannot estimate the 

pedestrian walking direction efficiently in image plane. When the pedestrian is moving, 

her/his motion direction can be inferred as well as her orientation from past trajectories 

using a tracking approach. However, when the pedestrian is static, the motion direction 

is not defined, but the person is more likely in the future to move in the direction she is 

facing. Therefore, orientation information can improve the prediction of future 

trajectories that the pedestrian may take efficiently. 

 

3.1.2 Stage 2: Body orientation estimation 

 

The second stage is to estimate the pedestrian orientation for single-frame based on the 

result from previous pedestrian detection stage. In this stage, more complex algorithms 

are used to estimate the orientation of each pedestrian candidate obtained from stage 1. 

In this stage we aim to differentiate eight orientations which is evenly divided a turn  

 

 

Frame1                             Frame 51 

Fig. 3.2 Urban traffic scene 
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with every 45 degree. Enzweiler et al. [140] only estimated front/back and left/right four 

orientations. In the real traffic world, not only the left/right view, but also diagonal 

views of 45º, 135º, 225º, and 315º are dangerous situations for collisions between 

vehicles and pedestrians (see Fig.3.3).  

Furthermore, for developing a video based pedestrian protection system, eight 

orientations are more valuable. For example, when a pedestrian is walking forward and 

wants to turn right to cross the road, the pedestrian orientation should be changed from 

90º to 0º; if the driver notices that the pedestrian is changing his orientation to the 

intermediate 45º, he will realize that the possibility that is getting higher the pedestrian 

will cross the road (see Fig.3.4). Assume that estimate 16 orientation every 22.5º, it is 

obvious that more sudden orientation change can be estimated earlier which is benefited 

from such 16 orientation estimation. But at the same time, it makes the problem more 

difficult and should be paid for with a significant increase in computational costs and 

memory. Multiple orientation estimation is one of multi-class classification problems. 

In general, the more the number of class increase, the less the accuracy becomes. We 

assume that estimating of eight orientations will help efficiently relay the information to 

the driver to take preventive actions. That is our reason and motivation of tackling a 

sufficiently difficult eight orientations problem. However, increasing the classes of 

orientation is a scientifically interesting issue in the future. 

 

3.1.3 Stage 3: Pedestrian walking direction estimation 

 

Single-frame orientation estimation allows us to recover pedestrian headings without 

integration over time and static pedestrians can also be estimated without posing any  

 

 
 

Fig. 3.3 More dangerous diagonal direction. 
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problem. But for practical application, the video-based pedestrian protection systems are 

necessary. So the stage 3 is to estimate the walking direction for multi-frame. In general 

moving object recognition, usually using the method which exploits the object tracking 

algorithm and gives a trace on the image coordinate space; however, we need to 

compute the trace‘s projection onto the driving surface coordinate system from a 

moving camera image space. Therefore, in this stage, we estimate the pedestrian 

walking direction for multi-frame using the result of orientation estimation in a single 

frame which was obtained from stage 2. It can correct the result in stage 2 effectively 

and can improve the prediction of future trajectories that the pedestrian may take 

efficiently. 

  The following will describe stage 1 as the important component of pedestrian 

protection systems. Stage 2 and stage 3 will be introduced in chapter 4 and chapter 5. 

 

3.2 Pedestrian detection 

 

Pedestrian detection is a difficult task from a machine vision perspective as described in  

 

 

Fig. 3.4 Intermediate (diagonal) orientation provide early warning. 
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Chapter 2. The lack of explicit and general human walking models leads to the use of 

machine learning techniques, where an implicit representation is learned from examples. 

As such, it is an instantiation of the multiclass object categorization problem. Yet the 

pedestrian detection task has some of its own characteristics, which can influence the 

methods of choice. Foremost, there is the wide range of possible pedestrian appearance, 

due to changing articulated pose, clothing, lighting, and background. The detection 

component is typically part of a system situated in a physical environment, which 

means that prior scene knowledge (camera calibration, ground plane constraint) is often 

available to improve performance. 

 

 

Fig. 3.5 Flowchart of the pedestrian detection system. 
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Finding people in images is a key ability in a variety of important applications. In this 

section, we are concerned with where the human body to be detected covers a smaller 

portion of the image (i.e., is visible at lower resolution). This implies outdoor settings 

with the moving vehicles, where an onboard camera watches the road ahead of possible 

collisions with pedestrians. More detailed recognition tasks such as human orientation 

estimation and walking direction estimation will be presented later. 

 

3.2.1 Cost efficient approach 

 

As introduced in Chapter 2, many researches for pedestrian detection have been 

proposed. Shape cues are widely used because of their robustness to variation in 

pedestrian appearance due to lighting or clothing, but these approaches require data 

normalization methods and, involve a significantly increased feature space.  

Histogram of Oriented Gradient based features and Support Vector Machines as 

classifier architectures for building a pedestrian detector. This approach has become 

increasingly popular in the domain of pedestrian classification in both linear and 

non-linear variants. However, resulting performance boosts are paid for with a 

significant increase in computational costs and memory. 

The framework for object detection proposed by Viola and Jones [42 ]has also proved 

to be very efficient especially for human faces. This method‘s basic idea is to select 

weak features, e.g., Haar wavelet, by adaboost to build a cascade structured strong 

classifier. 

To improve pedestrian classification performance, several approaches have attempted 

to use video sequences and apply background subtraction to reduce clutter. Human 

motion information can be a rich source, as shown by Viola et al. Their motion features 

proved the most discriminative. However, their work is restricted to a static camera 

setting; we would like to realize a system with a moving vehicle.  

Several approaches have attempted to establish local pose-specific clusters, followed 

by the training of specialized classifiers for each subspace. The final decision of the 

classifier ensemble involves maximum-selection. Approaches that perform object 

classification using multiple cameras at different view points are also relevant to our 

current work. In this paper, we only use a single camera.  

Considering our application that detects anomalous events to warn drivers in 

real-time, we employed a variant of adaboost both to select a small set of features and to 

train the classifier because this approach‘s computation, which is built on the detection 

work of Viola and Jones, is highly efficient. Sliding-window methods have also been  
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used to scan the image at all relevant positions and scales to detect pedestrians. Fig. 3.5 

shows the Flowchart of the detection pedestrian system. 

 

3.2.2 Adaboost with haar-like feature 

 

Many approaches have been proposed for pedestrian detection. Considering our 

application that detects anomalous events to warn drivers in real-time, we employed a 

variant of adaboost both to select a small set of features and to train the classifier 

because this approach‘s computation, which is built on the detection work of Viola and 

Jones, is highly efficient. Sliding-window methods have also been used to scan the 

image at all relevant positions and scales to detect pedestrians.  

Given feature and training sets of positive and negative samples, a classification 

function can be learned. The weak learning algorithm is designed to select the single 

rectangle feature that best separates the positive and negative examples. For each 

feature, the weak learner determines the optimal threshold classification function, such 

that the minimum number of examples is misclassified. 

The approach of the training cascade classifier uses the method of Viola and Jones. 

Boosted classifiers can be constructed that reject many of the negative sub-windows 

while detecting almost all positive instances. A positive result from the first classifier  

 

 

 

Fig. 3.6 Example rectangle features shown relative to the enclosing detection 

window. The sum of the pixels values which lie within the white rectangles 

are subtracted from the sum of pixels values in the grey rectangles. 
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triggers the evaluation of a second classifier that has also been adjusted to achieve very 

high detection rates. A positive result from the second classifier triggers a third classifier, 

and so on. A negative outcome at any point leads to the immediate rejection of the 

sub-window. 

 

3.2.2.1 Features  

 

Our pedestrian detection procedure classifies images based on the value of simple 

features. There are many motivations for using features rather than the pixels value 

directly. The most common reason is that features can act to encode ad-hoc domain 

knowledge that is difficult to learn using a finite quantity of training data. There is also 

a second critical motivation for features: the feature based system operates much faster 

than a pixel-based system. 

More specifically, we use three kinds of features. The value of a two-rectangle 

feature is the difference between the sum of the pixels values within two rectangular 

regions. The regions have the same size and shape, and are horizontally or vertically 

adjacent (see Fig.3.6). A three-rectangle feature computes the sum of values within two 

outside rectangles subtracted from the sum in a center rectangle. Finally a four-rectangle 

feature computes the difference between diagonal pairs of rectangles. Note that unlike 

the Haar basis, the set of rectangle features is over complete. Fig.3.7 shows some 

examples of filters that give high response in regions containing pedestrians. This figure 

is referred from David Geronimo. Calculation of Haar-Like features is achieved through 

the integral image. As indicated in Fig. 3.8 (a), a gray image I is defined with its 

integral image I as: 

 

 

 

 

Fig. 3.7 Examples of filters that give high response in regions containing pedestrians. 
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Where, (x, y) are the pixel point. 

In Fig 3.8(b), the sum of pixel gray values in the rectangle D can be achieved from 

the four points in the integral image. S1 is the sum of pixel gray values in the rectangle 

A , S2 is the sum of pixel gray values in the rectangles A+B, S3 is the sum of pixel gray 

values in the rectangles A+C, S4 is the sum of pixel gray values in the rectangles 

A+B+C+D. So, S1, S2, S3 and S4 combined to produce the sum of pixel gray values in 

their bounded rectangular area D as S1+S4-S2-S3. 

For an input image I, the integral image can be obtained by the computation based on 

the one-time point by point scanning of the original image, which is the sum of all the 

pixel gray values of the original image (x, y) with the column where the vertical axis 

does not exceed the point, and the recurrence formula is as below: 

 

( , ) ( , 1) ( , )

( , ) ( 1, ) ( , )

s x y s x y i x y

ii x y ii x y s x y

  


  
    (2) 

 

Multi-scale testing should be implemented by way of the scaling feature template. 

Even though the search occurs at any scale, this integral image is available. In other 

 

 

 

Fig. 3.8 Integral image 
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words, the whole testing process requires only scanning the original image once. 

Rectangle features are somewhat primitive when compared with alternatives such as 

steerable filters. Steerable filters, and their relatives, are excellent for the detailed 

analysis of boundaries, image compression, and texture analysis. In contrast rectangle 

features, while sensitive to the presence of edges, bars, and other simple image structure, 

are quite coarse. Unlike steerable filters the only orientations available are vertical, 

horizontal, and diagonal. The set of rectangle features, however, provides a rich image 

representation which supports effective learning. In conjunction with the integral image, 

the efficiency of the rectangle feature set provides ample compensation for their limited 

flexibility. 

 

3.2.2.2 Learning Classification Functions 

 

Given a feature set and a training set of positive and negative images, any number of 

machine learning approaches could be used to learn a classification function. In our 

system a variant of AdaBoost is used both to select a small set of features and train the 

classifier. In its original form, the AdaBoost learning algorithm is used to boost the 

classification performance of a simple learning algorithm. There are a number of formal 

guarantees provided by the AdaBoost learning procedure. A number of results were 

later proved about generalization performance. The key insight is that generalization 

performance is related to the margin of the examples, and that AdaBoost achieves large 

margins rapidly. A very small number of features can be combined to form an effective 

classifier. The weak learning algorithm is designed to select the single rectangle feature 

which best separates the positive and negative examples.  For each feature, the weak 

learner determines the optimal threshold classification function, such that the minimum 

numbers of examples are misclassified. 

The key to achieving pedestrian detection is training to acquire the pedestrian 

detection classifier. Regarding a training set given n training samples, these samples xi 

fall in a certain distribution X, while the sample yi in certain set Y. For pedestrian 

detection as one or two classification problems, set {Y = − 1, 1} to have the fake and 

real samples. The samples to be classified with k simple features is expressed as fj , 

where, 1 ≤ j ≤ k; as for xi , the No i training sample, it is featured with fi (xi) . The weak 

classifier hj (x) for No. j feature consists of a feature value fj , a threshold θj and a bias 

value pj for the direction of inequality ( given two cases as ±1): 
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Train process is as follow: 

1. Establish the initial weight. Set ωt,i，(i=1,2,…,n) as weighted error of No i sample 

in No t times of cycle. Regarding a training set containing n samples, in which there are 

u fake samples, and v real samples, respectively, corresponding to yi =0 and yi =1. In the 

first cycle, each of the training samples is given the same weight. That is, yi =0, 1 

ω1,i=1/2u; yi =1, ω1,i =1/2v. 

2. for t=1,…,T 

① Normalized weight, enables ωt,i to be a probability distribution; 

, , ,
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      (4) 

② Each of the features j is trained with its weak classifier hj, and calculated on its 

weighted error; 
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③ The smallest classifier h j is selected for weighted error ε j; 

④ Weight is updated, where, if xi is correctly classified, then ei =0; otherwise, ei =1. 

Whereas βt=εt  / 1-εt 
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⑤ Output of the final strong classifier 
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3.2.2.3 Cascade classifiers 

 

Cascade of classifiers achieves increased detection performance while radically 

reducing computation time. The key insight is that smaller, and therefore more efficient, 

boosted classifiers can be constructed which reject many of the negative sub-windows 

while detecting almost all positive instances. Simpler classifiers are used to reject the 

majority of sub-windows before more complex classifiers are called upon to achieve 

low false positive rates. The overall form of the detection process is that of a degenerate 

decision tree which called cascade. A positive result from the first classifier triggers the 

evaluation of a second classifier which has also been adjusted to achieve very high 

detection rates. A positive result from the second classifier triggers a third classifier, and 

so on. A negative outcome at any point leads to the immediate rejection of the 

sub-window. 

 
 

Fig. 3.9 Schematic representation of a detection cascade of classifiers with N stages. 
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Stages in the cascade are constructed by training classifiers using AdaBoost and then 

adjusting the threshold to minimize false negatives. The structure of the cascade reflects 

the fact that within any single image an overwhelming majority of sub-windows are 

negative. As such, the cascade attempts to reject as many negatives as possible at the 

earliest stage possible. While a positive instance will trigger the evaluation of every 

classifier in the cascade, this is an exceedingly rare event (see Fig. 3.9). Subsequent 

classifiers are trained using those examples which pass through all the previous stages. 

As a result, the second classifier faces a more difficult task than the first. The examples 

which make it through the first stage are harder than typical examples. The more 

difficult examples faced by deeper classifiers push the entire receiver operating 

characteristic curve downward. At a given detection rate, deeper classifiers have 

correspondingly higher false positive rates. 

 

3.2.3 Experimental results 

 

In this step, we generate the pedestrian detector; it just used to detect and locate the 

pedestrian in a still image. The training samples were obtained from the pictures of 

walking pedestrian in real world with a single camera on a moving vehicle. All training  

 
Fig. 3.10 Positive training samples (top two rows) and negative training samples 

(bottom two rows) 
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samples were normalized to the same size. The size of each training image was 24 x 58 

pixels. The general pedestrian classifier was trained with 2800 positive samples and 

4100 negative samples. Fig. 3.10 shows some positive and negative samples. 

In the training session above, the general pedestrian classifier was trained in 

relatively good performance. The learning curve is shown in Fig. 3.11 in the format of 

ROC curve. To create the ROC curve the threshold of the final layer classifier is 

adjusted from negative infinity to infinity. Adjusting the threshold to infinity will yield 

a detection rate of 0 and a false positive rate of 0. Adjusting the threshold to negative 

infinity, however, increases both the detection rate and false positive rate, but only to a 

certain point. Neither rate can be higher than the rate of the detection cascade minus the 

final layer. In effect, a threshold of negative infinity is equivalent to removing that layer. 

Further increasing the detection and false positive rates requires decreasing the 

threshold of the next classifier in the cascade. Thus, in order to construct a complete 

ROC curve, classifier layers are removed. We use the number of false positives as 

 

Fig. 3.11 ROC curves of the detector for general pedestrian extraction 
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opposed to the rate of false positive for the x-axis of the ROC curve to facilitate for the 

comparison with other systems. 

 

 

3.3 Conclusion 

 

In this stage, we generated the pedestrian detector based on the conventional Adaboost 

classifier using Haar-like image features; it just used to detect and locate the pedestrian 

in a still image. Considering our application that detects anomalous events to warn 

drivers in real-time, we employed a variant of Adaboost both to select a small set of 

features and to train the classifier because this approach‘s computation, which is built 

on the detection work of Viola and Jones, is highly efficient.  

Sliding-window methods have also been used to scan the image at all relevant 

positions and scales to detect pedestrians.  

From the experiment, the general pedestrian classifier was trained in relatively good 

performance. 

  There is no originality about employing Adaboost at this stage. However, we extend 

the algorithm and fully exploiting its simplicity and fast learning and run-time 

performance, in order to compose an eight-class classifier of body orientation estimation. 

The detail is introduced in Chapter 4. 
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Chapter 4 

 

Pedestrian Orientation Estimation 

 

Pedestrian protection systems not only need to detect pedestrians, but also to predict the 

possibility of collisions between pedestrians and vehicles. The system must efficiently 

relay information to drivers so that they can take preventive actions. 

When the pedestrian is moving, her motion direction can be inferred from past 

trajectories using a tracking approach. However, when the pedestrian is static, the 

motion direction is hard to tell specifically, but the person is more likely in the future to 

move in the direction she is facing. Therefore, orientation information can potentially 

improve the prediction of future trajectories that the pedestrian may take and improve 

collision prediction as seen in Fig. 4.1. Tracking pedestrian from moving camera images 

will produce a trajectory on image plane dependent to car-pedestrian relative movement. 

Tracking approaches also require a certain amount of time. Quick adaptation to sudden 

changes in movement is crucial. Particularly in intelligent vehicle systems, time is 

precious, and fast reactions are necessary. 

In this Chapter, we present a novel discriminative model based approach to estimate 

their orientation for single-frame by observing pedestrian movements in a natural 

environment. We first employ a two-class object recognition algorithm to construct two 

naïve multi-class recognition algorithms. Second, we derive a novel cascade algorithm 

that combine a global and a local classifiers by taking account the performances of each 

sub-class classifier. Finally, we propose an integrated approach of pedestrian body and 

head orientations. 

 

4.1 Discriminator for pose direction 

 

We describe the algorithm for estimating pedestrian orientations. We use Haar-like  



  

44  CHAPTER 4: PEDESTRIAN ORIENTATION ESTIMATION 

Estimation of Pedestrian Walking Direction for Driver Assistance System 

 

features to generate the feature vectors of the input images. Adaboost is used as a 

classifier in order to estimate the pedestrian orientation. The typical form of adaboost is 

a two-category classifier that forms a decision boundary between classes. Here, we 

design an eight-category classifier for eight orientations such as 0º, 45º, 90º,…, 315º.  

As shown in Fig. 4.2, the orientation is differed counter-clockwise by 45º, and each is 

labeled by an orientation number 1 to 8. Lateral orientations 1 (0º) and 5 (180º) are 

often observed on the road crossing in front of a car, while orientations 2, 4, 6, and 8 are 

on the sidewalk. We experimentally collected training samples of diagonal directional 

orientations 2, 4, 6 and 8 from scenes of pedestrians on sidewalks without rigid 

attention to walking direction. 

When the pedestrian walks alone the roadside, no doubt, he/she is consider to be 

safety, like the diagonal orientations 2, 4, 6, and 8. And the lateral orientations 1 and 5 is 

usually observed on the road crossing in front of the car, we consider the two situations 

is the most dangerous of the collision between the vehicle and the pedestrian. This issue 

is addressed later in this Chapter in body-head integration. As all known, pedestrian 

changes his/her orientation from orientation 1(right) to 3(back), he/she must change to 

the orientation 2(right-back) first. To improve the prediction of collision in real time, we 

consider 8 orientations classifying is necessary. 

 

Fig. 4.1 Pedestrian is more likely to move in direction in which she is oriented.  

Arrows denote probabilities of anticipated movement 
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4.2 Multi classification for orientation estimation 

 

Multi-category classification is a difficult problem in machine learning. Even though 

two-class (binary) classification methods are relatively well-developed, how to 

effectively extend them for multi-classification is an important on-going research issue. 

 

4.2.1 One versus one classification 

 

One naïve scheme that is particularly worthy of attention is the "all-pairs", or one versus 

one classification. In this approach, binary classifiers are trained; each classifier 

separates a pair of classes. This classification has a simple conceptual justification, and 

can be implemented to train faster and classify quickly. 

 

Fig. 4.2 Eight-category classifier for eight walking directions that 

differ counter-clockwise by 45º. Each number 1 to 8 is given 

to each orientation as its label 
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The one-versus-one method, which is usually implemented using a majority voting 

strategy, constructs one two-category classifier for every pair of distinct classes for a 

total of M(M-1)/2 two-category classifiers where M is the number of classes. The 

classifiers are trained with examples from one class as positive samples and another 

class as negative samples. For an example, if classifier   says ―in class i ‖, it votes for 

class  , and otherwise, the vote for class   is counted. After M(M-1)/2 classifiers vote, 

this method classifies it by class with the largest number of votes (see Fig.4.3) .  

This method has an advantage: we can reject the result when the votes are scattered 

among categories, but it should employ a large number of classifiers. In the training 

phase, first, we use one group of images as positive samples and another group as 

negative samples. For example,  ( i=1, j=2), that is, C12 is the classifier of 0º orientation 

as positive samples and with 45º direction as negative samples. Total 28 classifiers 

employing the adaboost algorithm were trained. 28 classifiers vote, and we choose the 

classifier with the largest number of votes that correspond to the orientation as the final 

estimated orientation. 

 

 

 

 

 

 

 

Fig. 4.3 One versus one classification 
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4.2.2 One versus all classification 

 

One of the simplest multiclass classification schemes that is built on top of real-valued 

binary classifiers is to train M different binary classifiers, each one trained to 

distinguish the examples in a single class from the examples in all remaining classes. 

When it is desired to classify a new example, these M classifiers run, and the classifier 

which outputs the largest (most positive) value is chosen as the final decision. This 

scheme will be referred to as the one versus all classification. One might argue that one 

versus all classification is the first thing thought of when asked to come up with an 

approach for combining binary classifiers to solve multiclass problems. Although it is 

simple and obvious, it is extremely powerful (see Fig.4.4). 

In the training phase, first, we use one group images as the positive samples and the 

other seven group images as the negative samples for a corresponding orientation 

classifier. For example, the classifier of class0 (0º) as positive samples and with those of 

the other seven orientations (45º, 90º, 135º,…,315º) as negative samples. Each classifier 

employing the adaboost algorithm is trained corresponding to the appropriate 

 

 

Fig. 4.4 One versus all classification 
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orientation.  

This method has higher accuracy, but disadvantages include complicated 

implementation and slow training. At run time, each of the eight classifiers produces 

eight outputs. We select the classifier that gives the highest value corresponding to the 

orientation as the final orientation.  

We exploit the adaboost decision function as the measure of the strength of class i for 

pattern x: 

   
1 1

1

2

T T

i t t tt t
C x h x 

 
           (1) 

 

1
log

t

t





, / 1

t t t
              (2) 

 

 argmax : 1,...,8
i

i

k C i 
        (3) 

where   is the weak classifier and   is the error rate. We select label k that 

corresponds to the highest value as the estimation result of the final orientation. 

 

4.2.3 Preliminary experiment 

 
As a baseline of orientation estimation evaluation we conducted preliminary 

experiments using the mentioned one vs. one and one vs. all algorithms 

  Fig.4.5 and Fig.4.6 shows the performance of one vs. one and one vs. all approach. 

From the Fig.4.6, we found that some orientations are easily confused with each other, 

especially, symmetrical or adjacent one. For example, cell as seen in fig.4.6 with bold 

rectangle according to 0º orientation classifying, the symmetrical orientation 180º is 

easily confused which has the second largest classify rate. Besides, the adjacent 

orientation 45º and 315º is also easily confused with 0º orientation. 

 

 

 

 

Fig. 4.5 Performance of one vs. one approach 
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4.3 Cascade orientation estimation 

   

4.3.1 Naive cascade 

 

We propose to generate a cascade orientation classifier that is different from adaboost 

cascade. First, the easily confused orientations are put into one positive group, and the 

other orientations are labeled as negative group to train a large two-class classifier 

called a global classifier. Next, the rather smaller classifier called a local classifier is 

trained for the corresponding orientations. The cascade architecture is illustrated in Fig. 

4.7. For example, to obtain the classifier for orientation 1, a global classifier is trained 

with the easily confused class groups including orientations 1, 2, 5, and 8 as positive 

classes and with those of orientations 3, 4, 6, and 7 as negative classes. Then, local 

classifier is trained with the class of orientation 1 as positive samples and orientations 2, 

5, and 8 as negative. We used eight global classifiers that correspond to each orientation  

 

 
 

Fig. 4.6 Performance of one vs. all approach 
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Fig. 4.8 Training sample classification of cascade orientation classifier 

 

Fig. 4.7 Architecture of cascade orientation classifier 

Positive orientation Negative orientation Positive orientation Negative orientation

Global
Classifier

Global
Classifier

Global
Classifier

Local
Classifier

Local
Classifier

Local
Classifier

Global
Classifier

Global
Classifier

Global
Classifier

Local
Classifier

Local
Classifier

Local
Classifier



CHAPTER 4: PEDESTRIAN ORIENTATION ESTIMATION  51 

 

Estimation of Pedestrian Walking Direction for Driver Assistance System 

 

to classify the input images. Positive results from the global classifier trigger local 

classifiers. Finally, we selected the local classifier that gives the highest value 

corresponding to the orientations as the final orientation.  

Fig.4.9 shows the performance of cascade orientation approach. From the preliminary 

experiments, the cascade orientation classifying approach has slightly better 

classification accuracy than the simple one vs. all classifying approach (see Fig.4.10). 

But the orientation of the opposite direction is still easily misclassified. For example, 

the orientations of 90º and 270º are easily misclassified. The problem of left/right 

orientation should be classified more accurately using a motion information based 

multi-frame even if the vehicle and the pedestrian are both moving. But front/rear 

 

Fig. 4.10 Comparison performance between one vs. all and cascade approach 

 

 
 

Fig. 4.9 Performance of cascade orientation approach 

(Bold rectangles highlight large misclassification of 90º (0.52) to 270º) 
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orientation remains hard to classify because the speed of the pedestrian and vehicle is 

not fixed. For example, a pedestrian seems likely to move back when the vehicle is 

moving faster than the pedestrian, although they move in the same direction. The front 

and back views are more confused because the front and back views of the pedestrians 

are highly similar both in shape and texture. The main distinguishing factor is the 

head/face area, which is very small compared to the torso/leg area.  

In this research, in the following section, we proposed a novel approach to exploit the 

head orientation information (see Fig.4.11) to improve the performance of pedestrian 

orientation estimation in a single-frame. 

 

4.3.2 Cascade orientation estimation combined head orientation 

 

Single-frame orientation estimation allows us to recover pedestrian headings without 

integration over time and static pedestrians can also be estimated without posing any 

problem. Besides body orientation, head orientation can also provide important 

information for predicting pedestrian trajectories, because a person is likely to move in 

the direction he is facing.  

The body and head orientations may be different, at such scenarios as pedestrian 

crossings, where they usually look to the left and right sides, but their body orientation 

is forward. Head orientation is more important when orientation estimation becomes 

difficult because of the wide range of possible pedestrian appearances, due to changing 

articulated poses, clothing, lighting, and backgrounds. 

For head orientation classification, we separated the samples into two groups (45º,  

90º and 135º as rear orientation and 225º, 270º and 315º as front orientation) and,  

 

Fig. 4.11 Head classifier and front/rear samples 

(a) (b)(a) (b)
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reduced our task to a two-class problem. Note that we here ignored left (180º) and right 

(0º) directions, as described above, so that the left/right orientations can be classified or 

corrected based on motion information in the later step.  

Since the head and body orientations sometimes can be different, in this paper, we 

address the problem of pedestrian orientation by referring to a constrained combination 

of the head and body orientations. Since the head orientation classifier is only used to 

classify the head‘s front/rear orientation, there are two factors: body and head 

orientation classifiers. We proposed an approach with a multi-Bayesian model. 

The input to our framework is training set D of six groups pedestrian samples that 

correspond to six pedestrian orientations every 45º      , associated with each body  

 

 

Fig. 4.12 Performance of cascade orientation combined head orientation approach 

 

Fig. 4.13 Comparison performance between three approaches 

 

225
。

0
。

45
。

90
。

135
。

270
。

315
。

180
。

C1

C2

C3

C4

C5

C6

C7

C8

（0
。
）

（45
。
）

（90
。
）

（135
。
）

（180
。
）

（225
。
）

（270
。
）

（315
。
）

C
la

ssifica
tio

n

Cascade Orientation + Head Orientation

(c)

225
。

0
。

45
。

90
。

135
。

270
。

315
。

180
。

C1

C2

C3

C4

C5

C6

C7

C8

（0
。
）

（45
。
）

（90
。
）

（135
。
）

（180
。
）

（225
。
）

（270
。
）

（315
。
）

225
。

0
。

45
。

90
。

135
。

270
。

315
。

180
。

C1

C2

C3

C4

C5

C6

C7

C8

（0
。
）

（45
。
）

（90
。
）

（135
。
）

（180
。
）

（225
。
）

（270
。
）

（315
。
）

C
la

ssifica
tio

n

Cascade Orientation + Head Orientation

(c)

i
x D



  

54  CHAPTER 4: PEDESTRIAN ORIENTATION ESTIMATION 

Estimation of Pedestrian Walking Direction for Driver Assistance System 

,
i i

 

 

orientation is class label   , (   for the body orientation 45º,   for 90º,   for 135º,      

for 225º,  for 270º and   for 315º, respectively). We also labeled these pedestrian 

samples with class label  , (   for the front head orientation and   for the rear head   

orientation). For pedestrian direction estimation, our goal is to determine the class label 

of previously unseen samples. We make a multi-Bayesian decision and assign 

pedestrian direction x to the class with highest aposteriori probability: 

 
  

(4) 
 

 

Since we assume that the body and head orientations are independent of each other, 

we decompose           as, the probability of pedestrian orientation   with a given 

Table. 4.1 Aposteriori probabilities 
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body orientation   and a head orientation   . 
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    (5) 

The body and head orientations of each training sample are manually labeled as 

ground truth. The aposteriori probabilities are calculated from the training samples 

using equation (5) in the learning phase. Table 4.1 shows the obtained aposteriori 

probabilities of all conditions. For example, based on the maximum criteria, when the 

result of the body orientation classification is 45º and the result of the head orientation 

classification is the front, the probability (0.438) of 315º (red rectangle cell in table 4.1) 

is maximum in the first column and is chosen. This means that the factor of the head 

orientation classification takes a more important role than the body orientation. 

Fig.4.12 shows the performance of cascade orientation combined head orientation 

approach. Shown as Fig.4.13, cascade orientation combined head orientation approach 

has the best accuracy compared with simple one vs. all and cascade orientation 

approach. The only fly in the ointment is the classify rate of the orientation 315º is 

change into lower than before. We trace it to the cause from the table.1, when the result 

of the body orientation classification is 135º and the result of the head orientation 

 

a. Multi-Bayesian model                 b. manually define 

 

Fig. 4.14 Effect of head orientation estimation 
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classification is the front ( i F  ), the probability (0.404) of 135º (bold rectangle cell 

in table 4.1) is maximum in the third column and is chosen. As the same time, when the  

result of the body orientation classification is 135º and the result of the head orientation 

classification is the rear ( i R  ), the probability (0.677) of 135º is maximum in the 

third column and is chosen. It means, whether the head orientation is front or rear, it 

always is considered as the pedestrian orientation is 135º.  

We are interested in the above case of probability 0.404, because all other 

combinations rely on head orientation than body orientation result. We tested to make a 

little change manually, in order to see what would be happening here. That is, when the 

result of the body orientation classification is 135º and the result of the head orientation 

classification is the front, we chose the 225º orientation as the final pedestrian 

orientation. The classify rate of the 225º reached to 63% which is increased more than 

6%. In this case, the head orientation takes a more important role than the body 

orientation, and manually change learning result seems better (see Fig.4.14). However, 

for all that, we still insisted on respecting the data. Determine the pedestrian orientation 

using cascade orientation by exploiting head orientation by a multi-Bayesian model is 

better choice when based a large number learning data and we will extend the algorithm 

toward more general cases where no clear heuristics would not be given such as head 

orientation.  
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Fig. 4.16 Comparison performance between each approach 

 

4.4 Experiments 
 

4.4.1 Eight orientation performance 

 

In this section, we test our proposed approach in realistic conditions using images 

obtained from a single camera attached in a moving vehicle. To measure its 

performance, we performed experiments to estimate the pedestrian orientation 

 

Fig. 4.15 Performance of Orientation Estimation 
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compared with the one-versus-one and one-versus-all methods using the same training 

and test samples. 

All of the training and test samples were obtained manually from pictures of walking 

pedestrians in the real world with a single camera on a moving vehicle. All samples 

were normalized to the same size: 24×58. 

In the pedestrian orientation estimation, training was performed using 3200 samples: 

a collection of 400 samples for eight orientations. The test was performed with an extra 

800 pedestrian samples (100 samples corresponding to one pose direction) 

independently prepared to the 3200 training samples. The ground truth orientation in  

eight directions was manually determined. 

In the head orientation estimation, the head samples were obtained manually from the 

pedestrian samples. The training was performed using 2400 samples that consisted of 

1200 front and 1200 rear samples. The 2400 samples set is a subset of the 3200 sample 

set. The test was performed with 600 samples independently prepared for training 

samples: 300 for front head orientation and 300 for rear head orientation. The samples 

were all normalized to the same size: 20×20. 

In our experiment, we evaluated the orientation estimation performance using the best 

performance approach: cascade orientation combined with the head orientation 

approach. 

We compared our approach to our own implementations of three approaches to 

estimate the orientation, using the same data and evaluation criteria. First, we 

considered one vs. one approach. Second, we evaluated the orientation using the one vs. 

all approach. Third, we compared the cascade orientation approach which combined 

head orientation and naive cascade orientation. Each classifier learned in the orientation 

estimation was constructed from 200 features, and the performances are shown in Fig. 

4.12 and Fig. 4.15. Fig. 4.16 shows that the one vs. all approach outperforms the one vs. 

one approach for the implementations of the one vs. all approach. The cascade 

orientation classification approach has slightly better classification accuracy than the 

simple one vs. all approach. The average performance of the orientation estimation 

based the on one vs. one classification approach reached to 52% accuracy, up from the 

57% accuracy using the one vs. all classification approach and the 59% accuracy using 

the cascade orientation classification approach. Our approach, which is cascade 

orientation combined with the head orientation approach and reached 64% accuracy, 

increased more than 5% of the cascade orientation classifying approach, and more than 

7% of the one vs. all classifying approach and more than 12% of the one vs. one 

classifying approach. The benefit is more significant for exploiting the head information 
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by a multi-Bayesian model. 

 

4.4.2 Four orientation performance 

 

Finally we additionally compared our approach to the approach of Enzweiler, whose 

technique uses HOG features and Gaussian mixture-model formulation. Because 

Enzweiler [140] estimated four orientations, we used our approach to estimate the same 

four orientations, left/right and front/back, to compare the performance based on our 

own data that are different to Enzweiler‘s. Although each experiment used different 

proprietary datasets, both contain fairly general situations, and we explain the potential 

performance of each method. 

Fig.4.17 compares the performance between our approach and Enzweiler‘s. The 

result shows that, the average performance of the cascade orientation approach is 67%, 

but when combined with the head orientation, the average performance of our approach 

is 77.5%, which is slightly better than Enzweiler‘s 75.7%. In addition, for the back/front 

orientation estimation, our approach outperforms Enzweiler‘s, because of the benefit of 

exploiting the head orientation information by a multi-Bayesian model. For the left/right 

orientation estimation, the performance of our approach is worse than Enzweiler‘s, 

because the HOG feature is better than the Haar-like features, especially for flipped  
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Fig. 4.17 Performance comparison of each approach for four orientation case: (a) 

cascade orientation (proposed), (b) cascade orientation combined head 

orientation (proposed), (c) GMM  
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shape discrimination. Fig.4.18 shows orientation example using single-frame 

estimation. 

 

4.5 Discussion 

 

Pedestrian protection is an important application of intelligent driver support systems. 

A robust system that detects pedestrians and predicts the collision probability between 

the vehicle and pedestrians can reduce accidents. This Chapter presented an important 

problem: orientation estimation.  

We outlined the problem of estimation into one of eight directions. We used cascade 

orientation estimation that integrated the head orientation estimation by a 

multi-Bayesian model and reached total 64% accuracy, compared to the one vs. one, one 

vs. all, and cascade orientation approaches. We also compared the performance between 

our approach and Enzweiler‘s who challenge to classify four orientations. The average 

performance of our approach is 77.5%, which is slightly better than Enzweiler‘s 75.7%. 

Because the comparison is made based on different datasets, it is just an example. 

However, the size and variety of our dataset is considered general, therefore, it is worth 

to show the comparison. As for the characteristics of both algorithms, for the back/front 

orientation estimation, our approach outperforms Enzweiler‘s, because of the benefit of 

exploiting the head orientation information by a multi-Bayesian model. For the left/right 

orientation estimation, the performance of our approach is worse than Enzweiler‘s, 

because the HOG feature is better than the Haar-like features, especially for flipped 

shape discrimination. But the computational cost of HOG is bigger than Haar-like, in 

 

Fig. 4.18 Examples of orientation estimation using single-frame  
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order to realize the system in real-time, the sooner react, the better. We confirmed the 

benefit of exploiting the head orientation information, which supports the strength of 

our proposed approach. Since our main proposal separately exploits head orientation 

information, the idea can be combined with existing methods. We still believe that less 

computation cost is important for this application in image feature selection, as far as 

the total performance is acceptable, as we could demonstrate in this Chapter. 
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Chapter 5 

 

Pedestrian Walking Direction Estimation 

 

For a complete safety system, detection should be followed by prediction of the 

possibility of collision. The system should relay the information to the driver in efficient 

and non-distracting manner or to the control system of the vehicle in order to take 

preventive actions. Walking direction information can potentially improve the 

prediction of future trajectories that the pedestrian may take and improve collision 

prediction. This chapter introduces the approach for pedestrian walking direction 

estimation.  

In this Chapter, we estimate the walking direction in the situation that the pedestrian 

walking straight, that is, the pedestrian walking toward one direction, and not change 

his/her walking direction. The case when the pedestrian change his/her walking 

direction will be researched as our future work. We consider that the performance of 

estimation of the pedestrian walking straight direction can improve the estimation 

performance even when the pedestrian walking curve direction because of the curve 

trajectory can be divided into some straight trajectory. Here, we estimate the pedestrian 

walking direction by employing an average method to integrate the pedestrian 

orientation which is obtained from stage 2 (presented in Chapter 4) frame by frame 

during a video sequence segment. 
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frame 13                     frame 14                   frame 15 

 

Fig. 5.1 Orientation estimation result for multi-frame  
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5.1 Question study on walking direction estimation 

 

The orientation of the pedestrian body, gives useful information about the future 

direction of motion. Hence, estimating the pedestrian orientation can potentially 

improve the motion prediction and give better estimating of collision probability. 

Our long term goal is to estimate the walking direction of pedestrians in the 

real-world to identify situations as quickly as we can where pedestrians might be hit by 

car. In general moving object recognition, we often exploit an object tracking algorithm 

and give a trace on the image coordinate space. However, we need to compute the 

trace‘s projection onto the driving surface coordinate system from a moving camera 

image space. From the stage 2 which were introduced in Chapter 4, we estimate the 

pedestrian orientation in a single frame and get rather good estimation result. It provides 

more valuable information to improve the prediction of future trajectories that the 

pedestrian may take. Therefore, we propose algorithm of the pedestrian walking 

direction using the result of orientation estimation in a single frame which is presented 

in Chapter 4. 

Fig. 5.1 is shown to introduce the orientation estimation for multi-frame, find that not 

every frame orientation estimation result is correct. It is to be regretted that the 

orientation estimation step does not reach a hundred percent performance. For example,  

 

 

Fig.5.2. Frame by frame pedestrian direction estimation  
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the orientation estimation in frame 4 is 225º and the orientation estimation in frame 14 

is 315º, although the ground-truth is 270º. As introduced in Chapter 4, the neighbor 

orientation is easily confused each other; we impute the failure to the feature of those 

orientation that is similar with each other. We even find that the most of orientation 

estimation result is correct. We think here the wrong results as noise, so the problem 

becomes to a simple smoothing problem with noise reduction.  

In order to improve the reliability of estimation, we estimate the orientation for a 

sequence video which the single frame orientation is integrated frame by frame. The 

evolution of pedestrian orientation over time is modeled with an average orientation 

estimation method between different orientation states. We consider the orientation 

estimation for sequence video as the pedestrian walking direction in this duration. In 

this thesis, we just estimate one walking direction during a duration of video sequence, 

not consider when the pedestrian change the walking direction. 

 

5.2 Sequence segmentation 

 

In the process above, the object tracking is performed at the same time. A simple 

assumption is employed here to construct a sequence. That is, the neighbor regions 

across the consecutive frames are concatenated to construct a sequence.  If any 

detection error occurs for a moving object, the sequence is divided into two or more 

separated sequences. 

The walking direction estimated by integrating t image frames, the orientation of 

 

 

Fig.5.3. architecture of pedestrian direction estimation  
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pedestrian is obtained from each frame, using the average method to estimate the 

current walking direction during the segment see Fig.5.2. In this thesis, we estimate the 

pedestrian walking direction during a duration (time=t), predicting the walking direction 

(t+1) as the future work (see Fig.5.3). 

 

5.3 Walking direction estimation method 

 

As the first approach of exploiting temporal consistency, we introduce the idea of 

average orientation over a certain duration T. We propose two methods and evaluate 

their performances in the experiment. 

 

5.3.1 Most frequent method 

 

The first method is to use a most frequent orientation estimation result as the walking 

direction D in the following equation. 

 

Df = argmaxi (fo1, fo2,..., fo8)  (6) 

 

Where foi is the occurrence frequency of orientation i. 

 

5.3.2 Average method 

 

The second method is to use a rounded average of estimated orientation as in the 

following equation. 

Da=1/ni                (7) 

 

Where n is the total number of video frames for the duration T and i is the number of 

orientation. 

Because the number of orientation is cyclic, we implement the summation by using 

the Df as the bias and setting it to new label 0, and counter-clockwise 1 to 4 from it and 

clockwise -1 to -3 from it.  For example, if the most frequent orientation Df is 2 as 

shown as Fig. 5.4, the orientation 2 is set to new label 0 and other orientation from -3 to 

4. The average Da is computed then. The final result is rounded to the nearest direction.  

 

5.3.3 An example of direction estimation 
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Using above approach, we estimate the orientation in the sequence of Fig. 5.1. First 

we calculated the most frequent orientation; the orientation 270º is occurred 13 times in 

all of 15 frames. We implemented the summation by using the orientation 270º as the 

bias and setting it to new label 0. Label the counter-clockwise 315 º, 0º, 45º and 90º as 1 

to 4, and clockwise 225º, 180º, 135º as -1 to -3. The average is the orientation 270º; we 

consider 270º as this pedestrian walking direction in this duration of 15 frames. In this 

example, it is so lucky because the only two occurred wrong orientation is the opposite 

orientation. 

But there are two other cases which lead the walking estimation to a wrong result.  

One case is when the most frequent orientation is not the ground-truth. Using the 

proposed average method, it causes a fatal mistake which the estimated orientation is 

the most frequent orientation. For example, as shown in Table 2, the sequence No. 4 

whose most frequent direction was already incorrect. The ground-truth is orientation 6 

(225º), but the orientation 8 (315º) occurred at the most. Although the calculated 

average is 0.46 which is below 0.5, the estimated walking direction is 8.46; it means the 

pedestrian walking direction is between the 315º and 0º; it is obviously a wrong 

direction estimation. But from the experiment, occurs with 4 sequences out of 212 and 

the error rate is 1.9%. It is benefit from the approach which is the orientation estimation 

for single-frame, the most frequent orientation is usually correct, and we think if the 

sequence is long enough, the most frequent orientation will be correct. 

 

Fig. 5.4. Assign ‗label 0‘ to the direction which has the largest frequency. 

counter-clockwise from it to the reverse side orderly add 1, clockwise from it 

to the reverse side orderly add -1. Finally, calculate the average.  
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The other case is when the opposite orientation of the ground-truth orientation 

occurred frequently. For example, as shown in Table 2, the sequence 5 shows this 

estimation error.  The ground-truth orientation is orientation 5 (180º); although the 

most frequent orientation is correct, the frequent occurrence of opposite orientation 1 

(0º) lead the calculated average which is 0.64 exceeding 0.5; the estimated walking 

direction is 5.64; it is more close to orientation 6 (225º) rather than orientation 5. From 

the experiment these types of errors occurs with 35 sequences out of 212 and the error 

rate is 16.5%. Most of errors follow into the left/right orientation and front/back  

 

Fig. 5.5. Sample of the calculated estimation of walking direction  

 

Fig. 5.6. Distribution of calculated estimation of walking direction  

(Distribution of the result of Fig.5.5)  
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direction express well performance with low error rate. We confirmed the benefit of 

exploiting the head orientation information, which supports the strength of our proposed 

approach. As to mistake for left/right orientation estimation, we think it can be solved 

using motion information in the future. 

 

 

5.4 Experiment 

 

In the walking direction estimation step generated 212 object sequences by 

concatenating spatio-temporal neighbors, discarding the short sequences. The samples 

results of walking direction is given in the Fig.5. 5.  The sequences No. 1-3 are correct 

estimation examples for both criteria (the most frequent and the rounded average) since 

their averaged residuals are less than 0.5. The sequence No.4 is an incorrect example for 

either criterion. It's most frequent direction was already incorrect. Fig.5.6 shows the 

distribution of the result of Fig.5.5, from the distribution, we can see the most of the 

results are less than 0.5. It proves the approach for estimating the walking direction has 

been reduced the noise efficiently, and the result of the estimation for walking direction 

is close with the ground-truth. 

Fig.5.7 shows the performance of walking direction estimation. The error occurs with 

4 sequences out of 212 and the accuracy is 98.1% by the most frequent method (see 

Fig.5.9). It achieved a surprisingly good result with the most frequent criterion. This 

kind of errors occurred with 35 sequence out of 212 and the accuracy falls into 83.5%. 

 

Fig. 5.7. Performance of walking direction estimation  
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The sequence No.5 is another incorrect example for rounded average criterion. 

Although the most frequent direction was correct, the averaged residual was 0.64 and 

exceeding 0.5(see Fig.5.8). Thus the final estimated direction was not right.  This case 

was unfortunate because the pose classifiers made more errors with opposite direction 

estimation.  

It has corrected the walking directions efficiently after the step 3 and will be benefit 

to predict the pedestrian‘s path in the future. 

 

5.5 Conclusion 

 

Pedestrian protection is an important issue for intelligent vehicle, pedestrian 

protection need not only detect the pedestrian but also predict the collision between the 

pedestrian and the vehicle. This Chapter presented an important problem: pedestrian 

walking direction estimation. 

We outlined the problem of estimating the pedestrian walking direction in a duration 

time. It provides more valuable information to improve the prediction of future 

trajectories that the pedestrian may take efficiently. In this Chapter, we estimate the 

walking direction in the situation that the pedestrian walking straight, that is, the 

pedestrian walking toward one direction, and not change his/her walking direction. We 

used average method to integrate the pedestrian orientation frame by frame during a 

video sequence segment. Experiments on a large amount of real-world data show a 

significant performance improvement of 83.5% in estimating the walking direction 

against 212 targeted objects, and reached a significant performance which is 98.1% 

accuracy. It has corrected the walking directions efficiently after the step 3 and will be 

benefit to predict the pedestrian‘s path in the future. 

Many approaches to estimate the pedestrian walking direction by using estimate the 

walking trajectory with tracking method. One line of research has formulated tracking 

as frame-by-frame association of detections based on geometry and dynamics without 

particular pedestrian appearance models. Other approaches utilize pedestrian 

appearance models coupled with geometry and dynamics; some approaches furthermore 

integrate detection and tracking in a Bayesian framework, combining appearance 

models with an observation density, dynamics, and probabilistic inference of the 

posterior state density. For this, either single or multiple cues are used. The integration 

of multiple cues involves combining separate models for each cue into a joint 

observation density. The inference of the posterior state density is usually formulated as  
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a recursive filtering process. Particle filters are very popular due to their ability to 

closely approximate complex real-world multimodal posterior densities using sets of 

weighted random samples. Extensions that are especially relevant for pedestrian 

tracking involve hybrid discrete/continuous state-spaces and efficient sampling 

strategies. But using tracking method causes the reason of computation cost, and the 

reaction in real time is difficult. 
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Fig.5.8. Example of pedestrian walking direction estimation  

(The result of No.5 in Fig.5.5) 



  

74  CHAPTER 5: PEDESTRIAN WALKING DIRECTION ESTIMATION 

Estimation of Pedestrian Walking Direction for Driver Assistance System 

 

     
Frame 1 Orientation=6    Frame 2 Orientation=8    Frame 3 Orientation=6 

     

Frame 4 Orientation=8   Frame 5 Orientation=8    Frame 6 Orientation=8 

     

 Frame 7 Orientation=6  Frame 8 Orientation=6    Frame 9 Orientation=4 

     

 Frame 10 Orientation=8  Frame 11 Orientation=8  Frame 12 Orientation=7 

 

Frame 13 Orientation=6 

 

Fig.5.9 Example of pedestrian walking direction estimation  

(The result of No.4 in Fig.5.5) 



CHAPTER 6: CONCLUSION  75 

 

Estimation of Pedestrian Walking Direction for Driver Assistance System 

 

 

 

 

Chapter 6 

 

Conclusion 

This chapter summarizes the topics and results of the research covered in this thesis, and 

provides some directions for future research. 

 

6.1  Summary of research and results 

 

Pedestrians are the most vulnerable road users, and therefore, they require maximum 

protection on the road. A large number of fatalities and injuries show the importance of 

developing pedestrian protection systems. This paper discussed the global nature of the 

pedestrian safety problem and the initiatives taken to address it. It focused an approach 

and challenge in improving pedestrian safety with image processing by extracting 

pedestrians and estimating body orientation and eventually walking direction. 

We outlined the problem of estimation into one of eight directions. We used cascade 

orientation estimation that integrated the head orientation estimation by a 

multi-Bayesian model and reached 64% accuracy, compared to the one vs. one, one vs. 

all, and cascade orientation approaches. We also compared the performance between our 

approach and Enzweiler‘s who challenge to classify four orientations. The average 

performance of our approach is 77.5%, which is slightly better than Enzweiler‘s 75.7%. 

In addition, for the back/front orientation estimation, our approach outperforms 

Enzweiler‘s, We confirmed the benefit of exploiting the head orientation information, 

which supports the strength of our proposed approach. Since our main proposal 

separately exploits head orientation information, the idea can be combined with existing 

methods. We still believe that less computation cost is important for this application in 

image feature selection, as far as the total performance is acceptable. Furthermore, we 

did experiments on a large amount of real-world data show a significant performance 

improvement of 83.5% in estimating the walking direction against 212 tageted objcets. 
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It has corrected the walking directions efficiently after the step 3 and will be benefit to 

predict the pedestrian‘s path in the future. 

Chapter 1 presented the background and motivations of driver assistance systems and 

pedestrian protection systems. Technique issue and current trends of research and 

development was addressed. 

Chapter 2 described related researches in pedestrian detection, pedestrian orientation 

estimation and pedestrian walking trajectory estimation.  

Chapter 3 presented the proposed whole system architecture consisting of three 

pyramid stages, and introduced the conventional approach for pedestrian detection for 

the stage 1. Pedestrian detector was trained using Adaboost algorithm and Haar-like 

feature based on a large number training data which were obtained from the pictures of 

walking pedestrian in real world with a single camera on a moving vehicle. We 

confirmed the performance of the detector is good enough for pedestrian detection 

problem. 

Chapter 4 presented our proposed approach for the estimation of pedestrian 

orientation based on the same feature extraction for the stage 1 with a newly designed 

multi-class classifier and describes the experimental results. In this chapter, we outlined 

the problem of estimation into one of eight orientations. We proposed a cascade 

orientation estimation that integrated the head orientation estimation by a 

multi-Bayesian model and reached 64% accuracy, compares the performance of our 

proposed approach to one vs. one and one vs. all multi-class classification approach, 

and also did a experiment to compare our approach with Enzweiler‘s who challenged to 

classify four orientation. 

Chapter 5 introduced a new approach on the study of the problem of pedestrian 

walking direction estimation. We proposed an average orientation estimation method to 

estimate the pedestrian walking direction using the result of orientation estimation in a 

single frame which is obtained from stage 2 and reached 83.5% accuracy. The 

pedestrian walking direction estimation can provide more valuable information to 

improve the prediction of future trajectories that the pedestrian may take. 

Chapter 6 summarized the results and identifies other possible application areas and 

topics for future research. 

Pedestrian protection systems offer many important research problems to work on, 

such as development of different types of sensors, processing of sensor information to 

extract relevant features, analysis and classification of these features to detect and track 

pedestrians, behavior and intent analysis of drivers and pedestrians, as well as human 

factors and interfaces. In the last five years, we have seen a considerable research 
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activity throughout the world, particularly in Europe and Japan. This is a very positive 

development. Such research has already produced a lot of important results and also 

produced a clearer and better understanding of the remaining challenges to work on. 

Much of the current research on pedestrian protection systems is toward improving 

and characterizing their performance. New types of non visible light sensors such as 

thermal IR and LASER scanners show promise of improving the detection in situations 

where visible light sensors would be less effective. Although these sensors are 

expensive at present, mass production is likely to reduce the costs of these devices. 

Research on sensor fusion and registration would also be very important to ensure 

performance enhancement using the combination of sensors. Infrastructure-mounted 

sensors are also likely to complement vehicle-mounted sensors in generating a complete 

picture of surroundings by filling blind spots of vehicles. Furthermore, detection from 

infrastructure-based sensors is less complex due to the static background. Research on 

detecting pedestrians and vehicles for surveillance as well as traffic analysis would 

therefore be very valuable in the development of infra structure based collision 

avoidance systems. For a complete system, effective communication between 

infrastructure and vehicles would be essential. 

Pedestrian protection is an important application of intelligent driver support systems. 

A robust system that detects pedestrians and predicts the collision probability between 

the vehicle and pedestrians can reduce accidents. In this paper we proposed a method to 

estimate the orientation and walking direction. 

 

6.2 Future work 

 

Many works are possible that can further develop the research results presented here. 

  Driver assistance systems (particularly pedestrian protection systems), are a very 

young area of research. Hence, the future research possibilities are so numerous and 

diverse. We condense the lines we consider of key importance in a few general points. 

   

6.2.1 Short range issues 

  

We will continue to do the research which is described below as our short range issue. 

1. To improve the accuracy of stage 2. As introduced in Chapter 4, from the 

experiment, the performance for the left/right orientation estimation is not good enough. 

We thought the haar-like feature is weak when the feature is similar. We need to 
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perform the experiment using other efficient feature for solve this problem in the future. 

Comparison experiment between our approach with Enzweiler‘s has been done, but 

it‘s a pity that the experiment has not based on the same dataset. We need to try an 

experiment using the same dataset. 

2. For pedestrian walking direction estimation stage, our approach has been proved 

efficient, but it was restricted to one straight walking directions. We must propose an 

approach for estimating the walking direction even when the pedestrian change his/her 

walking direction. 

Moreover, in order to realize the collision prediction system, a predicting method of 

the pedestrian walking direction needs to be developed. A pedestrian walking direction 

method using some probability model such as particle filter or HMM is a promising 

approach. 

3. We will make a further analysis of the computation cost and the accuracy when the 

system runs as a whole. 

4. In this thesis, we consider that the system should be realized in real time. So we 

choice the Haar-like feature and Adaboost algorithms which is proved fast and efficient. 

In the future, it is an alternative approach to pursue high accuracy. It is worth to try 

using other feature or classifier, such as HOG features and SVM classifier. 

  5. A traffic-monitoring system is designed to predict various behaviors, including 

collision between vehicles and pedestrians. The possibility of collision is determined 

using the zone of interaction, which is defined as an elliptic region with the same 

orientation as the target but with larger size. Events where targets are close and have 

dangerously high relative velocities trigger a potential collision event. But this approach 

need that the camera is stationary and is not suitable to attach on the vehicle. 

6. A stochastic model of the pedestrian dynamics is most appropriate for predicting the 

collision probability.  

Monte Carlo simulations can then be used to generate a number of possible trajectories 

based on the dynamic model. The collision probability is then predicted based on the 

fraction of trajectories that eventually collide with the vehicle. Particle filtering is a 

natural framework for simultaneously tracking the object and predicting the collision 

probability. 

For developing a robust system for pedestrian protection, a thorough evaluation of 

these models, the conditions under which they work, and their performance in real 

world is required. Using these approaches is necessary to build such a model by 

machine learning or manual labor using samples of the trajectories of pedestrians 

collected in advance. However, it is difficult to collect enough samples to build a 
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behavioral model of dangerous pedestrians, since the collision of a pedestrian with a 

vehicle rarely happens in the real world and moreover, the samples of the dangerous 

behavior are hardly collected. In addition, nothing but the pedestrian whose behavior 

deviates from the model of pedestrian behavior is dangerous. Thus, predicting the 

collision possibility of a pedestrian with a vehicle based on the prediction of the future 

trajectory of a pedestrian is fraught with difficulty. 

 

6.2.2 Long range issues 

 

6.2.2.1 Pedestrian behavior modeling 

 

An effective pedestrian protection system needs to not only detect pedestrians but 

also predict the possibility of collision, which is based on modeling of pedestrian 

behaviors. The improvement of the classification results using motion information 

based on multi-frames is necessary. One of future interesting issues is to find a more 

feasible model to evaluate the walking direction and predict the pedestrian walking 

direction a few second after. For this purpose, such scene context as whether pedestrians 

are on the sidewalk, in the crosswalk, or in the middle of the road as well as the traffic 

signal state should be incorporated.  

Behavior modeling and prediction is an active area of research. In particular, Monte 

Carlo method in particle filtering framework is a promising approach for integrating 

pedestrian detection with collision prediction. One of the challenges in behavior 

modeling, specifically for collision predictions, is the scarcity of real-world data, since 

accidents are rare events, and performing the experiments to collect data would involve 

human subjects in potentially dangerous situations. Hence, a large number of 

experiments using trajectory simulation in addition to the available real-world accident 

data would be the only acceptable method in developing and characterizing such 

systems.  

It is seen that there are various models that are developed for pedestrian behavior 

analysis. Some of these models have been applied for collision prediction. The ―discrete 

choice model‖ is used in which a pedestrian makes a choice at every step about the 

speed and direction of the next step. It is assumed that a pedestrian would normally 

move toward the destination direction, avoid frequent direction changes, and try to 

adjust speed to a desired speed. The discrete choice behavioral model can be also 

integrated with person detection and tracking from static cameras based on image 

processing in order to improve performance. This approach differs from the 
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conventional tracking since it uses behavior rather than appearance for detection. Also, 

instead of making hard decisions about target presence on every frame, it integrates the 

evidence from a number of frames before making a decision. The pedestrian dynamics 

is modeled using a hidden Markov model with four states corresponding to standing still, 

walking, jogging, and running. For each state, the probability distributions of absolute 

speed as well as the change of direction are modeled as truncated Gaussians. a model of 

pedestrian behavior in crowds is developed based on ―stress‖ that the pedestrians 

experience while walking in crowd, including pedestrian stress from other pedestrians, 

which would push them away, and destination stress, which pulls them toward their 

destination. 

 

6.2.2.2 Driver’s state modeling 

 

Finally, in addition to the extraction of information about surrounding objects, it is 

also important to ascertain the driver‘s state in order to generate appropriate warnings or 

actions so that the system would help the driver rather than cause distraction. For 

example, if a driver has already seen a pedestrian and is taking appropriate action, one 

may not want to alarm the driver unnecessarily. For this purpose, it is important to not 

only look outside the vehicle to detect dangerous situations but also look inside the 

vehicle in order to assess the state and intent of the driver.  

 

6.2.2.3 Infrastructure design 

 

Another interesting and useful research for pedestrian protection is vehicle to vehicle 

communication. Nowadays it exists a shared conjecture on the benefits of vehicle to 

vehicle communications. It is expected that vehicle to vehicle communications will 

enhance the safety and efficiency of human driven vehicles. Multiple initiatives have 

been deployed to explore these ideas. If benefits are possible for human driven vehicles, 

the same applies to driverless vehicle. 

Again it is expected that by exchanging data the vehicles will increase their 

knowledge of the situation, and that more information will allow better decisions. 

Vehicle to vehicle communication for driverless vehicles can operate as an extension or 

replacement of the driving rules for humans, which are mainly used to allow one human 

to predict the behavior of another human. The exchange of data could replace such rules 

based predictions. 

It is seen that the research on pedestrian protection systems is still young and in the 
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long process of reaching maturity. The success of this research should eventually find 

systems in future automobiles, and help in saving lives and reducing injuries to 

pedestrians on the road. 
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Appendix I Detailed Survey of Review 

 

I.1 Infrastructure design enhancements 

 

Since parked vehicles block the vision of drivers as well as pedestrians, removing 

on-street parking and implementing diagonal parking in residential streets would help in 

reducing accidents. For single-lane or low-density roads, there has been no significant 

difference between fatality rates on marked and unmarked intersections. However, 

multilane marked crosswalks have greater rate of accidents than the unmarked ones, 

particularly for multilane crossings. A possible explanation is that multilane roads with 

heavy traffic at high speeds are difficult to cross for many pedestrians. In such cases, the 

presence of marked crosswalks may be encouraging people to cross there instead of 

using a signal-controlled intersection, therefore increasing the number of at-risk 

pedestrians. Marking intersections should be used in conjunction with other measures 

described above in order to increase safety. Flashing light warnings on pedestrian 

crosswalks in order to warn the drivers of the presence of pedestrians is also useful. 

These lights can be triggered by a button pressed by the pedestrian or an automatic 

detection system. In India, the solutions proposed include putting regulators on buses, 

trucks, and other heavy vehicles to limit their speed, segregation of fast and slow traffic, 

providing safe walking and road crossing facilities, and traffic calming measures such 

as the use of roundabouts. Measures necessary in urban areas as well as those on 

highways and rural roads are specifically addressed. 

 

I.2 Project of advanced driver assistance systems 

 

Enhancing comfort and safety of the driver and the occupants of an automobile has 

been a major motivator in the innovations associated with Intelligent Vehicles and 

Intelligent Transportation Systems. In the United States, the Turner–Fairbank Highway 

Research Center, which is affiliated with the Federal Highway Administration (FHWA), 

conducts research on various topics related to transportation. In particular, the 
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Pedestrian and Bicycle Safety Research Program [18] seek to enhance the safety and 

mobility of pedestrians and bicyclists. The Pedestrian smart program [19] has the 

objective of applying the ITS technology to improve pedestrian safety. They have 

developed various devices that provide feedback to the waiting and crossing pedestrians 

as well as the motorists. They have also developed the software called the Pedestrian 

and Bicycle Crash Analysis Tool to analyze the interactions between pedestrians, 

bicyclists, and motor vehicles. This tool has an application for developing and testing 

countermeasures for enhancing pedestrian safety. The California Partners for Advanced 

Transit and Highways [20] conducts research on transportation safety issues, including 

pedestrian protection, driver behavior modeling, and intersection collision prevention. 

In particular, they have performed research on analyzing the collision behavior at 

marked and unmarked crosswalks, automatic pedestrian detection systems at 

intersections, and LED signals to alert drivers to the presence of pedestrians.  

The European Union has been conducting several projects in collaboration with 

industry and research institutes for intelligent vehicle systems in general and pedestrian 

safety in particular. The project PReVENT [21] deals with the development of safety 

technologies which help drivers prevent or mitigate the effects of an accident using 

sensor-based analysis of surroundings as well as the state of the driver. In particular, the 

sub project COMPOSE focuses on detection of pedestrians, cyclists, and other vehicles 

using data fusion from sensors and protection using autonomous or semiautonomous 

braking. The PROTECTOR project and its successor SAVE-U were particularly 

focused on reducing accidents involving vulnerable road users [22]. The European 

project PUVAME proposes an infrastructure-based solution to prevent collisions 

between vulnerable road users and transit buses. They use off-board cameras that 

observe intersections and bus stops to track the movement of buses as well as 

vulnerable road users. 

In Japan, Infrastructure, and Transport has promoted the Advanced Safety Vehicle 

project, which has spanned over three 5-year phases between 1991 and 2005 [23]. The 

final phase of Advanced Safety Vehicle emphasized car-to-car communications in order 

to improve safety. Pedestrian detection was an important component of this research. 

Systems that warned the driver about the presence of pedestrians while making turns 

were demonstrated at the Tokyo Motor Show [24]. 

 

I.3 3D human pose estimation 
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Human body pose estimation has recently received great interest from the computer 

vision community. However, most researches consider 3D human pose estimation 

techniques. Agarwal and Triggs developed a learning-based method for estimating the 

3D body poses of people from monocular images as well as video sequences. The 

approach uses the histogram of shape context descriptors as feature and various 

regression methods for estimating the 3D pose. Besides, work in the domain of 3D 

human pose estimation, a few approaches have recovered an estimate of pedestrian 

orientation based on 2D lower-resolution images. Cucchiara et al. distinguished among 

various human postures such as standing, crouching, sitting, and lying down using 

Probabilistic Projection Maps on 2D silhouettes. However, most of the systems use an 

accurate silhouette of the pedestrian, which may not always be available, especially 

from a moving vehicle. More details about 3d human pose estimation please refer to the 

appendix. 

Human body pose estimation has recently received great interest from the computer 

vision community. With lower costs of cameras and advances in computing power, 

accurate analysis of 3D human pose from video can help surveillance operators to 

identify events such as running, walking, shop-lifting, wall-climbing, loitering and other 

abnormal human activities.  

According to a survey [100], there are few technical challenges to be addressed in 

single camera pose estimation such as depth ambiguities, high-dimensional 

representation of human pose, self-occlusion, unconstrained motions, observation 

ambiguities, motion blurs and unconstrained lighting. Depth ambiguities arise because 

3D world is projected into a 2D image, causing loss of depth information. Loss of depth 

information cannot be recovered using single camera only. For this reason, recovering 

full body human pose is an ill-posed problem since kinematic tree/skeleton is 

commonly used to represent 3D human body. Without depth information, it is 

challenging to reconstruct skeleton in 3D. Furthermore, it is common that skeleton is 

modeled according to human anatomy where limbs (hand, legs, elbow, arms, etc.) and 

torso are modeled using 30-60 joint angle variables. However, estimation of these joint 

angle variables is computationally expensive because of high dimensional space. 

Self-occlusion occurs frequently in a single camera view as one body part tends to hide 

another body part during motion of these articulated limbs. Unconstrained motions are 

the result of highly diversified human movements; withstanding human movements can 

not be highly structured at the same time. For instance, walking or running has 

repetitive human pose structure over time although it also shows large pose variations at 

different speed, acceleration and at different body size. Observation ambiguities occurs 
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because single image observation can be mapped to more than one possible 3D human 

pose; it is difficult to disambiguate 3D human pose without depth information. Lighting 

inevitably changes at different environment as a function of space and time. Lighting 

variations affect image observations for estimation of body pose. For instance, 

silhouette shape of the same human pose may appear differently at different capturing 

time. While capturing rapid human motion, slow camera shutter time causes blurring of 

image objects; this affects the quality of image observations also. 

There are few related surveys published in the area of vision-based human motion 

analysis, all [101, 102, 103] except one [100] give broad overview of vision-based 

human motion analysis using the taxonomy of detection, tracking, pose estimation and 

recognition. T. B. Moeslund [101] review advances made in human motion analysis and 

capture from 2000-2006, extending his previous survey [104] to include new research 

directions such as detection and tracking of human in natural environment rather than 

laboratory environment, model-based pose estimation approaches where motion and 

stochastic sampling framework are employed to search for optimal state (human pose) 

given the image observations. Their survey divided papers into different taxonomy such 

as initialization, tracking, pose estimation and recognition. R. Poppe [102] review about 

advances human motion analysis such that human pose estimation problems are divided 

into two main classes: model-based approaches and model-less approaches. 

Sminchisescu [100] categorized single camera reconstruction of full-body 3D human 

motion problems into generative or discriminative approaches. Generative approaches 

build and optimize objective function to match image observations so that the correct 

human pose hypotheses should maximise observation likelihood within the probabilistic 

framework. Discriminative methods formulate pose estimation into recognition problem, 

pose estimation is predicted by trained model using training sets consisting of joint pose 

and image observations. Discriminative approaches use machine learning extensively to 

predict state distributions in the absence of depth information. D. A. Forsyth et al. [105] 

review methods to track human body from video focus on tracking and motion synthesis. 

3D body pose can be inferred by lifting 2D pose to 3D pose. They believe that 

ambiguities during lifting can be partially if not completely solved whenever motion, 

geometric and context information are incorporated appropriately into probabilistic 

framework. Recent new research directions have emerged such as (1) Bottom up 

approach, detection of local parts (hand, legs, torso) using data-driven approach before 

pose estimation [101,104,105,106], (2) Learning in low-dimensional pose manifold 

rather than original high-dimensional appearance manifold, [107], and (3) Learning of 

nonlinear dynamics of human motion models for smoother 3D human pose from video 
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sequence [107,108,109]. 

 

I.4 3D Human Body Model 

 

Full human body is highly articulated structure but body parts can be considered as rigid 

structure. To that end, there are few body models to represent articulated 3D human 

pose. In most cases, 3D human pose can be represented by kinematic tree model, 

consisting of segments linked by joints. In kinematic tree model, joints are consider 

non-articulated and can have maximum three degrees of freedom (DOF) corresponding 

to three orthogonal directions. Number of joints and DOF required depends on the 

degree of details required in the application. Whereas for spatial resolution of human in 

the image, smaller the spatial resolution of the human, smaller the number of DOF 

required and vice versa. Even though detailed DOF can produce more realistic human 

pose, it also increases computational complexity as estimation now has to be performed 

at higher dimensional space. Therefore trade-off must be made to balance degree of 

details required against computational complexity. Papers that use kinematic tree 

models are [110]. Besides kinematic model, human pose can also be represented by 

volumetric models such as elliptical cylinder. This volumetric model have all the limbs 

fleshed out by elliptical cylinder; papers using this model are [111, 112]. Lee [112] 

represents 3D human body by both kinematic tree model and volumetric elliptical 

cylinder. His model can simultaneously describe human shape of different body size 

and clothing that a person wears. Another volumetric model is super quadrics [113] and 

generalized cones [114]. Volumetric base models representation have limited 

description capabilities when comes to variations of body size. In older works, width or 

length of limbs in elliptical cylinder model is manually fixed during initialization for 

computational convenience. However, some researchers [112,115] have started to take 

this issue into consideration by recovering the parameters of limbs automatically during 

initialization. Of course, this will take additional steps thereby increasing computational 

complexity. 

 

I.5 Single camera 3D human pose estimation 

 

Pose estimation can be formulated as optimization problem since the main concern is to 

find the pose parameters that minimize errors between the image observations and the 
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2D projected 3D body pose. Human pose estimation can also be regarded as inferring 

the underlying kinematic structure (in the form human skeletal) from image 

observations. In single camera problem, it is common to impose additional constraints 

(kinematics, motions, or geometrical information) to reduce the ambiguities that appear 

in the inferred 3D body configurations. Without use of constraints, there are many 

possible 3D configurations that could explain a single observation manifested in 

multiple modes in likelihood function.  

To deal with multiple mode problem in the posterior (likelihood function), 

randomized search in the form of stochastic sampling method particle filters are 

commonly employed. Few publications explaining the idea behind particle filters are 

given in [116].  

The key idea behind particle filters is to use randomized sampling to search the 

posterior because the distribution of posterior is non-Gaussian in general. To that end, 

particle filters approximate the posterior distribution by sets of points concentrating 

around places where large values of likelihood are found. The posterior evolves over 

time using assumed underlying dynamical state space model to predict time varying 

configurations. The sampled representation of the new posterior are then the predicted 

prior of body configuration. The prior body configuration is later matched to image 

observations, and those sets of points that give good comparisons are given more 

weights, resulting in new representation of the desired posterior distribution. Particle 

filters are becoming important for applications that need approximate model to explain 

the underlying dynamics of time-varying physical system that typically shows 

nonlinearity/non-Gaussianity (when Kalman filtering fails) in their posterior distribution. 

For instance, one can use particle filtering to track multivariate data in time-series 

problem. A good tutorial of using particle filters on tracking problem can be found in 

[117]. 

  However, one disadvantage of using particle filters in estimating 3D body pose is 

high data dimensionality. One 3D human body can have at least 20 degrees of freedoms 

according to D. Forsyth [103] ( one at each knee, two at each hip, three at each shoulder, 

one at each elbow and six for the root). To deal with problems of high-dimensionality, 

researchers focus their efforts on building more efficient search methods rather than 

improving the core algorithm of particle filters.  

Sidenbladh et al. [118, 119] use important sampling method to guide particle filtering 

search on likelihood either on the learnt walking model or on motion database. The 

importance sampling method use a proposal distribution as alternative to the prior 

likelihood function so that samples can be drawn in places that are more likely. Another 
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variant of importance sampling is to use annealed search by Deutscher et al. [120]. This 

method shows improvement in speed than the former method in tracking 3D pose of a 

subject. However, this method uses three cameras to track a single person under simple 

black background. Moreover, the method shows no experimental evidence that it can 

work in natural environment when clutters and other textures are all too common.  

Sminchisescu et al. [120] present an extension to particle filtering method to recover 

3D human pose from single camera image sequences. They believe that for successful 

single camera 3D body tracking, at least three difficulties need to be resolved such as 

(1) to estimate 30 joint parameters, (2) to estimate depth information to recover the 

unobservable 1/3 DOF (3) to match image observations with complex body model 

under self-occlusion and cluttered background. They design cost matching function 

using combination of edge, optical flow and motion boundaries while enforcing hard 

joint angle limits with non self-intersection constraints. Covariance scaled sampling 

method is used as search strategies to find good poses in high-dimensional body 

configuration space. From their observations, cost minima occur most likely along the 

local valley of cost surface where covariance has highly uncertain directions. The 

hypothesis distribution is determined along these highly uncertain directions while 

combining with certain temporal dynamic models. Good 3D human body poses are 

sampled using random or regular pattern from this hypothesis distribution for rescaled 

covariances. Results demonstrate robust tracking of entire arm and full-body 3D for 

those video sequences that contain self-occlusion and cluttered background. In further 

research [121], they improve the speed of the search for local minimum by constructing 

an interpretation tree that can generate many possible 3D human poses to explain the 

same image observations by introducing inverse kinematics. Experiments show that it 

can track 3D human body in short video sequences that contain fast, unpredictable and 

complex motion (such as dancing) under cluttered backgrounds.  

In recent work, Lee et al. [112] introduced novel methods to address automatic 

initialization issue in monocular 3D human pose tracking by estimating multiple human 

positions and sizes before inferring their corresponding 3D poses. Automatic 

initialization is seldom addressed and is an important step to bootstrap pose estimation 

for many applications. In their approach, body part positions are estimated by the head, 

shoulders and limbs detector modules. Multiple image cues/observations such as skin 

color, head shoulder shapes are used in tandem with learnt detector to locate the head 

position. Torso location is estimated based on head position (just below the head). In the 

second stage, belief propagation technique is used to refine the positions of the body 

parts from the earlier detection. In the last stage, data-driven Markov chain Monte Carlo 
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(MCMC) [122, 123] algorithm is used to estimate 3D human pose in each frame. 

MCMC is a variant of stochastic sampling method used in particle filtering framework 

to explore solution spaces by carefully designing proposal function to generate optimal 

candidate states (body pose). In their work, proposal function to evaluate likelihood of a 

candidate state is formulated using four criteria (1) region consistency (2) color 

dissimilarity with background (3) skin color and (4) foreground matching.  

Although human pose can be estimated from static images only, motion prior helps in 

smooth tracking of human pose by enforcing strong constraints. Recent approaches 

mainly concentrate on learnt motion model to obtain realizable human poses and 

motions [119, 124, 125]. Learnt motion models often use motion capture training data. 

One best known publicly available motion capture database is from CMU. Nevertheless, 

one weakness with learnt motion models approach is the excessive dependency on the 

amount and quality of motion capture training data. There must be sufficiently large 

amount of training data to accurately learn the representation of all possible human 

motions. Besides, some motion capture data is noisy because of the presence of random 

and systematic errors inherent during human motion measurement capture.  

Howe et al. [125] presented a system to reconstruct 3D human motion using single 

camera. In each frame, they track the entire body using learnt 2D body parts detector. 

Motion capture data is assembled into snippets (motions consisting of 11 successive 

frames) are later used to train mixture-of-Gaussians probability density functions for 

few classes of 3D body configurations. The output of 2D body parts are matched to the 

probability density functions to find the corresponding 3D body configuration. 

Siddenbladh et al. [119] solved similar problem using generative model. Generative 

model determines the likelihood of observing certain image observations (shape, 

appearance and motion features) given a state (3D human pose and movement). Learnt 

motion models are determined using previous history of states from motion capture data. 

Particle filtering optimization is later used to find the approximate states. Agarwal et al. 

[126] presented a novel approach that is able to track unseen human pose not in motion 

capture training data in the presence of complex background. Their method track 2D 

human pose but readily extends to 3D when needed. Rather than learning the whole 

state space parameters, they partition the state space parameters into regions with 

similar dynamical characteristics. This facilitates learning of nonlinear dynamics using 

piece-wise linear autoregressive process for each region. Bottom-up processes are also 

been incorporated into top-down processes as illustrated in [127]. The advantages in this 

approach are automatic initialization in contrast to manual initialization and recovery 

from tracking failures. In [127], body is represented as graphical model. Each node 
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corresponds to a body part and edges between nodes represents statistical dependencies 

and physical constraints. Probabilistic models are learned from motion capture training 

sets to capture temporal evolution of each node over time. 3D human pose at any time 

instant is then recovered by probabilistic inference using non-parametric 

belief-propagation [128].  

One major problem in estimating 3D human pose is high dimensionality of pose 

space data. This problem poses great challenge to machine learning approaches 

including particle filtering framework because number of available training samples are 

often too small to cover all possible human movement intricacies. This phenomenon is 

the well known "curse of dimensionality". To avoid this phenomenon, recent research 

trends concentrate on discovering methods to reduce the data dimensionality prior to 

estimation [124]. Moreover, these approaches are also motivated by the findings that 

human pose can be sufficiently represented by low-dimensional latent manifolds as 

shown in [124]. To that end, these approaches attempt to learn low-dimensional 

mapping functions relating human pose to the image observations. However, learning 

mapping functions are difficult because the manifolds are nonlinear. To recover 3D 

human pose from image observations, two mapping functions are learned such as 

mapping of image observations space to pose space and its corresponding inverse 

mapping.  

Elgammal et al. [124] introduced a method to reconstruct 3D body from a given 

viewpoint from silhouettes information using single camera. Local linear embedding 

(LLE) is used to learn mapping of pose space to silhouette space and its corresponding 

inverse mapping. Unseen 3D human pose (not part of the training data) is recovered by 

interpolation by radial-basis function (RBF). While their earlier work [124] is strictly 

view dependent and limited to walking pose activity, Elgammal et al. [109] in his later 

work modeled 3D body pose of a person observed at different viewpoints and extensible 

to general human motions. Body pose and viewpoint are explicitly modeled in two 

separated low dimensional representations. In similar spirit, Sminchisescu et al. [129] 

proposed the use of spectral embedding algorithm to learn mapping of image 

observation space to low-dimensional manifold pose space and its inverse mapping 

separately. Tracking of human pose is later constrained to the learnt low-dimensional 

manifolds. Agarwal et al. [110] implicitly achieved data dimensionality reduction using 

relevance vector machines (RVM) regression. RVM selects only the "most relevant" 

basis function by retaining only the relevant input features. As a consequence, large 

training data are reduced to a minimal subset.  

Although LLE and spectral embedding methods can learn low-dimensional 
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embedding manifolds from data, they lack probabilistic interpretation. This suggests 

that no straightforward learning-based method can be applied to the learnt 

low-dimensional manifolds. It is also difficult if not impossible to find inverse mapping 

between low dimensional latent space back to image observations space. Urtasun et al. 

[130] proposed the use of Scaled Gaussian Process Latent Variable Model (SGPLVM) 

[130] that admits probabilistic interpretation to learn human pose prior with continuous 

mapping between observation space and pose space. Human pose is recovered by 

finding body pose that maximizes the likelihood of the learnt SGPLVM model given 

sets of image observations. Results demonstrate good tracking accuracy of 3D body 

pose for both walking and golfing activity but in their experiments 3D body positions 

are manually initialized. SGPLVM has generalized well even with small available 

training set. In similar work, SGPLVM was extended by incorporating additional 

nonlinear dynamics mapping while retaining the original mapping and its corresponding 

inverse mapping obtained through Gaussian Process Dynamical Model (GPDM) [107]. 

GPDM produces smoother motion models compared to SGPLVM. In recent work, the 

fact that the tasks of body estimation are strongly correlated with activity recognition 

motivated T. Jaeggli et al. to introduce method to simultaneously track human pose and 

recognition of multiple action categories. In similar spirit they use LLE as mapping of 

body pose to low-dimensional space, while kernel regressor as inverse mapping back to 

original body pose. Low dimensional models are learned separately for different 

activities; for instance each low-dimensional manifolds are dedicated to walking and 

running respectively. To model activity switching, nonlinear mapping between pair of 

activities are also modeled. Likelihood function using Gaussian distribution is used as 

probability measures to determine activity transition. Experiments demonstrate that 

their approach can reliably track subjects while recognizing activity transition 

simultaneously even with low-resolution video.  

Vast pose estimation literature sees major problem lies in managing multiple modes 

in likelihood function in high dimensional data, which explains the extensive use of 

particle filtering variants. Some evidence [103], though inconclusive, seems to suggest 

that ambiguities may not persist when short motions (snippets) are used in place of 

single frame. Howe et al. [131] reconstructed 3D body pose by comparing 3D motion 

capture data with 2D snippets via dynamic programming. Ramanan et al. [132] used 

similar approach to lift 2D snippets into full 3D body pose by matching them to the 

stored 3D motion capture database with assumption camera is in lateral view. Best 

matching 3D pose is also recovered by dynamic programming. The same approach is 

used in [133] to build viewpoint invariant human activities retrieval system. 3D body 
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pose is constructed by lifting the output from 2D limb detectors [105]. One 

disadvantage in this approach is one needs large 3D motion capture database in order to 

lift 2D pose into good 3D pose let alone massive computation incurred during the 

matching process. Therefore, this approach remains as an open research problem. It 

remains to be seen on how one can reconstruct 3D body pose from 2D snippets using 

smaller motion capture database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


