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Chapter 1 

General Introduction 

1.1 Background 

1.1.1 Martensitic transformation and the microstructure in lath 

martensitic steels 

Martensitic transformation is still one of the most studied state reactions. The 

transformation has specific features that distinguish itself from the convetional phase 

transformations described by classical Gibbs thermodynamics. These features include 

(i) the occurrence of a thermoelastic two-phase equilibrium within a certain 

temperature range; (ii) the stress-induced transformation and related hysteresis; (iii) 

the shape memory effect and (iv) the appearance of a typical “martensitic” 

microstructure consisting of internally twinned plates or densely packed dislocations 

[1-1]. The martensite phase is formed from the austenite phase by displacive or 

structural phase transformation without long-range atomic diffusion, which is called 

martensitic tansformation. Because the martensite phase exhibits desirable mechanical 

properties and is used as an important constituent phase of high-strength steel, the 

metallurgical, crystallographical and mechanical properties of steel containing a 

martensitic microstructure have been intensively studied experimentally and 

theoretically [1-2~1-5]. The martensite phase is produced by the shear deformation of 

the crystal lattice of the parent phase. In particular, the fcc-bcc martensitic 
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transformation in a ferrous alloy is described using the Bain distortion [1-6]. Due to 

this distortion, the ratio of lattice parameters of martensite phase, i.e., c/a changes, 

resulting in that elastic strain is generated in the material during the martensitic 

transformation. Therefore, the morphology of the martensitic microstructure is 

characterized by the minimization path of the total free energy containing the elastic 

strain energy. According to [1-7~1-10], it is suggested that elastic strain energy is 

reduced by the formation of a heterogeneous array of different orientation variants of 

the martensitic phase (self-accommodation) and by plastic deformation (plastic 

accommodation). For example, in the case of the martensitic transformation in 

high-carbon steels, elastic strain energy is reduced mainly by self-accommodation, 

and consequently, a twinned martensite is formed. On the other hand, for low-carbon 

steel, elastic strain energy is generally minimized by plastic accommodation, where a 

lot of dislocations are introduced to assist the accommodation. In this case, a lath 

martensite is formed and dense crystal defects are introduced into the microstructure 

[1-11]. Therefore, the microstructure of lath martensite is closely related with the 

dislocations appearing in martensitic transformation.  

In this thesis, we focus on the study of lath martensite because of its most 

appearance in the recent heat-resistant commercial steels. It is reported that the lath 

martensite has relatively high martensite start (Ms) tempretures and the habit plane is 

near {557}γ  and {111}γ [1-12]. Moreover, the crystal orientation relationship 

between lath martensite and austenite is near the Kurdjumov-Sachs (K-S) relationship 

that is ( ) ( )111 // 011 , 101 // 111
γ α γ α′ ′

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . ( )111
γ

 and ( )011
α ′

 are the closed 
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packed planes and 101
γ

⎡ ⎤⎣ ⎦  and 1 11
α′

⎡ ⎤⎣ ⎦  are the closed packed directions in the 

austenite (γ ) and martensite phases (α′ ). There are four equivalent closed packed 

planes in the austenite phase, and thus there are four crystallographically different 

packets in an austenite grain. For the parallel direction relationships, there are three 

equivalent closed packed directions in the austenite phase and two equivalent closed 

packed directions in the martensite phase. This results in the six variants with 

different direction parallel relationships on the same conjugate parallel close packed 

plane. A total of 24 crystallographic variants in a prior austenite grain satisfy this 

orientation relationship is shown in Table 1-1.  

 

 

 

 

 

 

Table 1-1 All 24 crystallographic variants that satisfy the K-S orientation relationship. 
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Lath martensite has a hierarchical structure consisting of packets, blocks, and 

laths containing densely packed complex and tangled dislocations without twins [1-13] 

as shown in Fig. 1-1. This hierarchy is as follows: (i) a prior austenite grain is 

composed of packets, (ii) a packet is composed of an ensemble of grains, called 

blocks, which have the same {111} plane as the habit plane, and (iii) a block is 

composed of an ensemble of single martensite crystals called laths, which have nearly 

the same crystal orientaion and high dislocation densities [1-14, 1-15].  

 

 

 

 

 

 

 

 

 

Even though many researches have been dedicated to study the formation 

mechanism of the complex microstructure in lath martensite, it is not yet understood 

clearly. Recently, Iwashita et al. [1-16] proposed a two types of slip deformation 

(TTSD) model by analytical calculation to explain the formation of lath martensite. 

This model extends Khachaturyan’s slip deformation model [1-17] by considering two 

types of plastic deformation independently to realize the martensitic transformation 

Fig.1-1 Illustration of the hierarchical lath martensite in a prior austenite grain. 
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without any lattice rotation. This model can exactly explain the {557}γ  habit plane of 

lath martensite. So it is promising to reveal the microstructural information of lath 

martensite by the TTSD model. Change in high-temperature strength of heat-resistant 

steels with creep time depends on the microstructural evolution of steels at elevated 

temperatures. Thus, it is important to clarify the morphological evolution of lath 

martensite phase.  

1.1.2 Prediction of the microstructural evolution by simulation 

based on the phase-field method 

Although materials fabrication has long been known, it is only recognized in the 

last century that the properties of a given material might not be primarily controlled 

by its chemical composition but rather by its microstructures. Materials 

microstructures are structural features that are subject to observation under 

microscopy. Recently, new and more accurare techniques, such as optical microscopy 

(OM), transmission electron microscopy (TEM), and the electron back scattered 

diffraction pattern (EBSP) on scanning electron microscopy (SEM), have been 

developed and used to study both the microstrutures and crystallogrophy of lath 

martensite [1-18]. However, our ability to characterize and predict quantitatively 

microstructural evolution, which tells the unambiguous processing-property 

relationship, is rather limited because of both the extreme complexity of 

microstructure and the nonlinear interaction of its elements. By means of plausible but 

non-rigorous approximations, analytical approaches are suitable for only qualitative 
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prediction. Computational simulation is becoming an attractive alternative in 

developing quantitative processing-microstructure-property relationships, 

complementing with the traditional analytical and experimental approaches. However, 

it is impossible to simulate directly the huge number of atoms with an objective of 

predicting macroscopic properties. It remains a great challenge to simulate essential 

properties that depend critically upon phenomena or processes taking place at very 

different length and time scales. This challenge could be overcome by uncovering the 

elusive connections in the hierarchy of quantum/molecular, atomistic/nano, 

mesoscopic, and macroscopic scales. Results from simulations at the smaller length 

scales could feed naturally back into larger length scale models. For this sake, the 

simulation of the microstructure evolution at a smaller scale is sense to predict the 

property and formation process of materials. 

Recently, a phase field method (PFM) has been extensively studied as a powerful 

tool for predicting microstructural evolution and has been applied to the martensitic 

transformation [1-19~1-22]. Examples of utilizing the PFM for studying 

microstructural evolution can be found for solidification [1-23~1-26], solid-state 

phase transformations [1-27] and grain growth [1-28]. PFM is a field dynamic model 

with field variables (position and time dependent) describing arbitrary microstructures. 

For example, concentration field can be used to describe precipitates; long-range 

order parameters can be used for ordered particles; orientation field can be used for 

grain growth; slip field can be used for dislocations, to name but a few. The dynamics 

is solved in terms of total free energy reduction by dynamic equations, both having 
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fundamental interpretation in statistical mechanics. Depending on the physical nature 

of the problem, the field variables may be associated with either microscopic or 

mesoscopic length scale. This approach avoids the mathematically difficult problem 

of applying a boundary condition at an interface whose location is a part of unknown 

solution. It permits to solve the problem by integrating a set of partial differential 

equations for the whole system, and thus it is achievable to model realistic 

microstructures in two or three dimensions using PFM.  

1.2 Purposes of present study 

In the recent heat-resistant steels, which has high creep strength at elevated 

tempretures, the carbon content is about 0.1 mass%, where lath martensite always 

appears. As mentioned in 1.1.1, the lath martensite has the unique hierarchical 

microstructure with high dislocation density and the mechanical properties are closely 

related to the microstructure evolution. From these facts, the purpose of this study is 

to characterize the microstructure of lath martensite phase by means of simulation and 

experiments.  

In terms of simulation, the martensitic transformation in Fe-0.1C mass% lath 

martensitic steel is simulated by the elasto-plastic phase-field model based on the two 

types of slip deformation (TTSD) model. The establishment of this model is to prove 

the validity of the TTSD model on explaining the formation of lath martensite. On the 

other hand, the microstructure evolution of lath martensite is presented in 3-D space 

by the phase-field simulation. Moreover, the maximum dislocation density of lath 
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martensite phase in Fe-0.1C mass% steel is estimated from the simulation results 

based on the TTSD model. 

In terms of experiments, the dislocation densities in 10Cr–5W low–carbon steels 

that containing the carbon content with 0.02C, 0.03C, 0.09C and 0.13C mass% were 

determined by the X-ray line analysis based on the modified Williamson–Hall and 

Warren–Averbach methods. Moreover, the dependence of the dislocation density on 

carbon content in lath martensite steels is clarified. Additionally, the microstructure of 

lath martensite in Fe-9Cr- (0.1, 0.2 and 0.4) C mass% steels were characterized by the 

the electron back scattered diffraction pattern (EBSP) on scanning electron 

microscopy (SEM). The refinement of the microstructures of lath martensite with the 

increase of carbon content is verified. 

1.3 Organization of the thesis 

On the basis of the background and purposes of the present study, this thesis is 

organized with six chapters. The summarized contents of each chapter are given 

below. 

In Chapter 1, the background of lath martensite phase and the phase-field method 

is introduced briefly. Moreover, the purposes and organization of the thesis are also 

explained in this chapter. 

In Chapter 2, the elasto-plastic phase-field model is constructed based on the 

TTSD model to simulate the formation of lath martensite. The morphological 

evolution of lath martensite in Fe-0.1C mass% steel is presented in 3-D space by the 
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phase-field simulation. 

In Chapter 3, the maximum dislocation density of the lath martensite phase in 

Fe-0.1C mass% steel is estimated by the simulation results based on the TTSD model.  

In Chapter 4, the dislocation densities in 10Cr–5W low–carbon steel that 

containing carbon content with 0.02C, 0.03C, 0.09C and 0.13C mass% are determined 

by X-ray line analysis based on the modified Williamson–Hall and Warren–Averbach 

methods. 

In Chapter 5, the morphology of lath martensite phase in Fe-9Cr-(0.1, 0.2 and 

0.4)C mass% steels are characterized by the optical microscopy (OM) and the the 

electron back scattered diffraction pattern (EBSP) on scanning electron microscopy 

(SEM) technique. 

In Chapter 6, a general conclusion obtained from the present study is 

summarized. 
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Chapter 2 

Microstructure Simulation of Lath Martensite Phase 

by Elasto-Plastic Phase-Field Model 

2.1 Introduction 

It is well known that the mechanical properties of steels are strongly affected by 

the morphology of martensite phase. In ferrous alloys, various morphologies of the 

martensite phase, such as thin plate, lenticular, and lath martensite, can be observed 

with different chemical compositions [2-1, 2-2]. Among them, lath martensite is 

important for heat-resistant steels, because the carbon content in the recent 

heat-resistant steels is about 0.1 mass%, and the martensite phase formed in such 

steels is lath martensite. Lath martensite has a hierarchical structure consisting of 

packets, blocks, and laths containing densely packed complex and tangled 

dislocations without twins [2-3]. Change in high-temperature strength of heat-resistant 

steels with creep time depends on the microstructural evolution of steels at elevated 

temperatures. Thus, it is important to clarify the formation process and evolution 

process of the hierarchical structure in lath martensite. Recently, Iwashita et al. [2-4] 

clarified the formation mechanism of lath martensite by presenting two types of slip 

deformation (TTSD) model by extending Khachaturyan’s slip deformation model.   

The phase-field (PF) method has been extensively studied as a powerful tool to 

investigate various microstructural evolutions, such as the austenite to ferrite 

transformation, the ferrite-pearlite phase, dendritic patterns, and martensitic textures 
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[2-5~2-11]. In particular, Khachaturyan et al. integrated microelasticity into the 

phase-field theory. The resulting model is known as the phase-field microelasticity 

(PFM) model to simulate the martensitic transformation [2-12~2-15]. All these studies 

are concerned with the elastic strain induced by the phase transformation. However, 

they omit the effects of the transformation dislocations, which offer plastic 

accommodation to relax the very large lattice strain introduced by Bain deformation. 

The dislocation slip results in the irreversible plastic changes in the solid phase. In 

other words, most of this work focuses on the simulation of twin martensite [2-16].  

The purpose of this chapter is to construct a new phase-field model considering 

dislocation deformation for the plastic accommodation in martensitic transformation. 

From this purpose, an elasto-plastic phase-field model is developed based on the 

TTSD model in 3-D space. 

2.2 Two types of slip deformation (TTSD) model 

In the model proposed by Iwashita et al. [2-4], the formation mechanism of lath 

martensite phase is described by the two types of slip deformation (TTSD) model. In 

this model, the crystal deformation for martensitic transformation is realized by 

coupling the lattice deformation described by Bain deformation and plastic 

deformation by two types of dislocation slips. With the assistance of TTSD model, the 

habit plane (557)γ and lattice correspondence between the martensite phase and the 

austenite phase are exactly explained without any rotation matrix for the Bain 

deformation as explained in the following sections in this chapter.  
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2.2.1 Lattice deformation 

The lattice deformation is characterized by Bain deformation [2-17]. To generate 

the Bain deformation, a tetragonal cell is set in two face center cubic (fcc) crystal cells 

of the austenite phase as shown in Fig. 2-1 (a). The body center tetragonal (bct) 

martensite lattice is obtained from the tetragonal cell by Bain deformation as shown in 

Figs. 2-1 (b) and (c). For the case shown in Fig. 2-1, the [001] γ axis coincides with 

[001]α′ . Hereafter, the subscript γ  represents the austenite phase and α′  indicates 

the martensite phase. The other two cases where the [100] γ axis coincides with 

[001]α′  and the [010] γ axis coincides with [001]α′  are treated in a similar manner 

as the case shown in Fig. 2-1. Thus, the three different blocks in a packet of lath 

martensite phase are formed due to the three cases of lattice cooresponding . 

 

 

 

 

 

 

 

2.2.2 Plastic deformation 

The elastic strain energy caused by Bain deformation is so large that plastic 

Fig. 2-1 Skeleton of Bain deformation from fcc to bct crystal lattice.  

(b) (c)(a) 

aγ 

fcc lattice 

aγ

aγ / 2aγ
/ 2aγ

aγ

bct lattice 

aα′ aα′

cα′
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deformation is inevitable. According to the two types of slip deformation (TTSD) 

model [2-4], the plastic accommodation is realized by two independent slip systems. 

For simplicity, just the case where the [001] γ axis coincides with the [001]α′  is 

explained here as a representative example. After the Bain deformation, the length of 

the c-axis in the bct martensite lattice are adjusted properly to release the strain energy 

caused by the Bain deformation. In this simulation, it is assumed that the plastic 

deformation is totally accommodated by dislocations slip along the two slip systems 

[2-16], i.e., [101](101)α′  and [101](101)α′  as shown in Fig. 2-2 (a). Each slip system 

can be taken as a combination of two / 2 111a
α′

 dislocation slips with the Burgers 

vectors b1 and b2 as shown in Fig. 2-2 (b). In fact, it has been reported that densely 

packed / 2 111a
α′

 dislocations always exist in commercial steels [2-18]. The 

crystal orientation between lath martensite and austenite phase obeys the KS [2-19] 

relationship, resulting in the 24 crystallographic orientation, i.e., lath variants in lath 

martensite, which has been explained explicitly in Chapter 1. In the present simulation, 

we only treat the six variants in a packet of lath martensite, i.e., V1~V6 as shown in 

Table 1-1. The six variants in a packet have different direction parallel relationships 

on the same closed packed plane, which is representative for the microstructure in lath 

martensite. As mentioned previously, there are three blocks in each packet due to the 

three cases of lattice correspondence. For the plastic deformation, each block has two 

evolution paths, i.e., the two types of slip systems, resulting in the formation of six 

variants in a packet, i.e., V1, V2, V3, V4, V5, and V6. It is reported that the six 

crystallographic variants in a packet always appear in pairs and the two variants in 
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each pair with the similar crystal orientation. This is the so-called sub-block structure 

of lath martensite. With the assistance of the TTSD model, lath martensite phase with 

a sub-block microstructure can be formed. 

 

 

 

 

 

 

 

 

 

2.3 Elasto-plastic phase-field model  

By coupling the phase-field method with the TTSD model, an elasto-plastic 

phase-field model is constructed to simulate the formation of lath martensite. For 

phase-field model, a long range order (LRO) field variable ( )( ) 1, 2,3i iφ =r  is 

introduced to describe the Bain deformation. 1,2,3i =  is used to distinguish the three 

cases of lattice corresponding in Bain deformation and r is the coordinate vector. 

( )iφ r  is between 0 to 1 and 0 represents the disordered phase (austenite), while 1 is 

the ordered phase (martensite) as shown in Fig. 2-3.  

 

 

 

Fig. 2-2 Skeleton of plastic deformations by the two slip systems when the 

[001] γ axis coincides with [001]α′ . The two crossed planes represent two-slip 

systems, i.e., [ ]( ) '011101 α  and [ ]( ) '101011 α . 

(a) (b)
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The eigen strain caused by the Bain deformation ( )( 1,2,3)B
kl i iε =  is listed in 

matrix form as 

2 / 1 0 0

(1) 0 2 / 1 0
0 0 / 1

B
kl

a a

a a
c a

α γ

α γ

α γ

ε
′

′

′

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

,           (2-1)  

/ 1 0 0

(2) 0 2 / 1 0

0 0 2 / 1

B
kl

c a

a a

a a

α γ

α γ

α γ

ε
′

′

′

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

,           (2-2) 

      
2 / 1 0 0

(3) 0 / 1 0

0 0 2 / 1

B
kl

a a
c a

a a

α γ

α γ

α γ

ε
′

′

′

⎛ ⎞−
⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

,           (2-3) 

where aγ  is the lattice parameter of the austenite phase, aα ′  and cα′  are the lattice 

parameters of the martensite phase, respectively.  

With respect to the plastic deformation, it is realized by dislocation slips. In the 

phase-field model of dislocations, the deformed region sheared by a dislocation loop 

is described as a plate with thickness equal to the interplanar spacing of the glide 

planes [2-20]. By extending this description to a spatial region containing dislocations 

Fig. 2-3 Schematics of the LRO field variable, which assumes that 1 
is the ordered phase, and 0 is the disordered phase. 
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to characterize the plastic deformation, the eigen strain can be written as 

1
( )

2 ( )
pp x

D x
α α α α

α
α

ε
=

⊗ + ⊗
= ∑ b n n b , where p is the total number of slip systems and 

( )D xα  is the average distance between neighboring slip planes. Then a new set of 

field variable ( )( 1,2,3)ip iα =r is introduced [2-21] 

( 1, 2,3)i
i

i

p i
D

α
α

α= =
b

,                       (2-4)               

which characterizes the values of local plastic strain produced by dislocations from a 

specific slip system. α is the number of active slip systems. When α  is equal to 1 and 

2, it corresponds to the slip system [ ]( ) '011101 α  and [ ]( ) '101011 α , respectively, when 

1i = , i.e., a case of lattice corresponding in the Bain deformation. Therefore, the 

eigen strain tensor P
klε , caused by plastic deformation can be given by 

1,2

( )( 1,2,3)
2

P i i i i
kl i

i

p i
α α α α

α
α

α

ε
=

⊗ + ⊗
= ⋅ =∑ b n n b r

b
,             (2-5)              

where i
αb  is the Burgers vector, i

αn  is the unit vector of the slip plane normal, the 

subscript P represents plastic deformation and ⊗  represents the dyadic product. In 

Eq. (2-4), the denominator can also be expressed as  

                          i i hklD m dα α= × ,                          (2-6)                

where imα  is the number of lattice planes between neighboring slip planes in each 

slip system, and hkld  is the distance of each ( ) '
hkl

α
 plane. Due to the existence of 

two types of slip systems, there will be a pair of slip deformation ipα  for each lattice 

correspondence (i), resulting in a pair of m, i.e., m1 and m2 to distinguish the two 
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independent slip systems according to Eqs. (2-4) and (2-6). Here, the subscripts 1 and 

2 correspond to the [ ]( ) '011101 α  and [ ]( ) '101011 α  slip system, respectively, for a 

certain lattice correspondence.  

Three different blocks in a packet are generated due to the Bain deformation, 

which correspond to the three cases of lattice corresponding. In our simulation, the 

different blocks come from the different Bain deformation. While the two variants in 

each blocks have the same Bain deformation but different plastic deformation.  

2.3.1 Energy description of martensitic transformation 

The martensitic transformation is a minimization process of the total free 

energy described by the elasto-plastic phase-field model. For a structurally 

non-uniform system, the total free energy Ftotal, is defined as the sum of the chemical 

energy, the gradient energy and the elastic strain energy: 

_ _total L grad grad p elF f E E E dφ⎡ ⎤= + + +⎣ ⎦∫r
r ,              (2-7) 

where fL is specific local free energy density, _gradE φ  and _grad pE  are the gradient 

energy density with respect to the field variable ( )iφ r and ipα , respectively, and Eel is 

the elastic energy density caused by a coherent interface. 

fL is the specific free energy, which is invariant with respect to any rotation and 

symmetries of austenite phase and it follows the Landau polynominal expansion as 

[2-15]: 
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         2 2 2 3 3 3 2 2 2 2
1 2 3 1 2 3 1 2 3( ) ( ) ( )

2 3 4L
a b cf f φ φ φ φ φ φ φ φ φ⎧ ⎫= Δ + + − + + + + +⎨ ⎬

⎩ ⎭
.  (2-8)              

Here, a, b, and c are dimensionless coefficients of the Landau polynomial expansion. 

The symmetry of Eq. (2-8) results in the automatic degeneration of the global 

minimum in the space of the { }iφ  variables into a set of three ( 1,2,3)i =  equal 

global minima. Each of these minima describes the corresponding domain of lath 

martensite, i.e., 1φ , 2φ  and 3φ . In this study, the dimensionless coefficients are 

chosen as 0.1a = , 3 12b a= + , and 2 12c a= +  to provide a local minimum at 

1 2 3 0φ φ φ= = = . fΔ  is the driving force for the martensitic transformation, which is 

equal to the chemical free energy difference between the austenite and martensite 

phases. fΔ  is calculated by Thermo-Calc with CALPHAD method [2-22]. Fig. 2-4 

[2-15] shows the specific free energy fL when 2 3 0φ φ= = , which reveals that the 

local minimum at 1 0φ =  represents a metastable state, while the absolute minimum 

1 1φ =  corresponds to an equillibrium state for the martensite phase. The difference of 

the free energy between these two state is the driving force for martensitic 

transformation. This driving force influences the width of austenite/martensite 

interface, λ. With the increase of driving force, λ decreases, resulting in the interface 

become sharp. The local maxima describes the chemical energy barriers of the 

transformation, which provides the energy hump between the austenite phase and 

martensite phase. 
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According to gradient thermodynamics [2-23~2-25], the gradient energy density 

Egrad_φ accounts for contributions from spatial variation of ( )iφ r  and is given by 

3
2

_
1

( ( ))
2grad i

i
E φ

φ

κ
φ

=

= ∇∑ r .                        (2-9) 

φκ  is the gradient energy coefficient with respect to ( )iφ r , which can be determined 

by fitting interfacial energies to experimental or calculated data [2-26]. The value of 

φκ  also affects the width of interface λ, which increases with the increase of gradient 

coefficient, resulting in the interface becomes diffuse. / ir∇ ≡ ∂ ∂  is a differential 

operator. In fact, the gradient energy Egrad_φ , reflects the interfacial energy. 

The gradient energy density Egrad_p with respect to ipα  is given by [2-21] 

          
3

_
1 1,2

( ) ( )
2

p
grad p i i i i

i

E p pα α α α

α

κ

= =

⎡ ⎤ ⎡ ⎤= ×∇ ⋅ ×∇⎣ ⎦ ⎣ ⎦∑ ∑ n r n r ,            (2-10)               

φ1 

∆f 

Fig. 2-4 Landau energy density for 2 3 0φ φ= =  quotoed from Ref. [2-15]. 
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where pκ  is the gradient energy coefficient that guarantees a smooth transition of the 

deformation strain field profile on the austenite/martensite interface. Eq. (2-10) 

describes the gradient energy attributed to the core energy of the dislocations to the 

plastic accommodation, which corresponds to the geometrically necessary 

dislocations described by Ashby’s model. 

In forming a coherent interface where the atomic lattice planes are continuous 

from one domain to another, the lattices in both domains are necessarily distorted to 

accommodate their mismatch at interface. Such accommodation reduces the 

interfacial energy, while causes the elastic energy stored in all domains. The elastic 

energy density is derived as [2-16, 2-27], 

            ( ) ( ){ } ( ) ( ){ }0 01
2el ij ij kl klE ε ε ε ε= − −r r r rijklC ,            (2-11)                

where Cijkl is the elastic modulus tensor. In a real case, the elastic strain energy also 

comes from the deformed austenite phase. So the elastic constants of austenite phase 

should be used to estimate the strain energy. However, in the present simulation, it is 

assumed that all of the elastic strain comes from the lath martensite during phase 

transition due to the complexity of considering the deformed austenite phase. In this 

assumption, the strain from the deformed austenite phase is contained in the total 

elastic strain estimated by Eq. (2-11). After such assumptions, the elastic constants of 

martensite phase should be adopted for calculation. But there are lack of the 

experimental results of the elastic constants for martensite up to now, for simplicity, 

the isotropic elasticity is used in this calculation. And thus the tensor Cijkl [2-14] can 
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be expressed as ( )ij kl ik jl il jkλδ δ μ δ δ δ δ= + +ijklC  in terms of the Lamé constants λ 

and μ in a pure iron. ( )xδ  is the Kronecker delta function. The total eigen strain 

( )0
klε r  is the sum of Bain strain ( )B

kl iε , and eigen strain for plastic deformation P
klε , 

which is shown as below: 

          ( )
3

0

1 1,2
[ ( ) ( ) ( )]

2
B i i i i

kl kl i i
i i

i p
α α α α

α
α

α

ε ε φ
= =

⊗ + ⊗
= ⋅ + ⋅∑ ∑ b n n br r

b
.         (2-12) 

( )klε r  in Eq. (2-11) is the total strain, which is defined as the sum of the 

homogeneous strain klε  and the heterogeneous strain klδε :  

                        ( ) ( )kl kl klε ε δε= +r r .                      (2-13) 

The homogeneous strain is a uniform macroscopic strain and describes the 

macroscopic deformation of the system, which is given by 01/ ( )kl klV dε ε= ∫r
r r , where 

V is the total volume of the system. The heterogeneous strain is expressed as [2-28] 

( ) ( )1( )
2

k l
kl

l k

u u
r r

δε
⎧ ⎫∂ ∂

= +⎨ ⎬∂ ∂⎩ ⎭

r rr ,                 (2-14)                

where uk represents the kth component of the elastic displacement. By using the local 

equilibrium equation, namely / 0el
ij jrσ∂ ∂ = , the heterogeneous dislplacement in 

Fourier space can be solved. Finally, the heterogeneous strain is given by 

                 { } 01( ) ( ) ( )
2kl ik l il k ijpq pq jn n C nδε ε= Ω + Ωr k k ,            (2-15)                

where ( )ikΩ k  is the Green function tensor. 
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Both of the field variable ( )iφ r  and ( )ipα r  are taken as non-conserved fields 

because they have no kinematic constrains and their values are determined by the free 

energy minimization only. Therefore the temporal dependence follows the general 

Time Dependent Ginzburg-Landau (TDGL) kinetic equation [2-12, 2-20]: 

( )
( )

,
,

total
M

M t FL
t M t

δ
δ

∂
= −

∂
r

r
,                     (2-16) 

where ( ), ( , )i iM t M pαφ=r  are the field variables and ( , )M i iL M pαφ=  are the 

kinetic parameters, which reflect the diffusion mobility of each specific field. The 

negative sign indicates that the evolution is driven to the energy minimum. The 

mobility for the microstructure evolution is determined by the relationship between 

the kinetic parameters Lφ  and pL . In the TTSD model, the slip deformation should 

follow the Bain deformation. However, in real materials, the dislocations assiting the 

plastic accommodation move so fast during martensitic transformation. So it is 

assumed that the mobility of the dislocation field and the interface is the same to each 

other, i.e., pL Lφ = , to guarantee that the process of microstructure evolution is 

diffusion-controlled. 

2.3.2 Numerical simulation 

The martensitic transformation in Fe-0.1C mass % steel was simulated at 300K in 3-D 

space by the phase-field model. Eq. (2-16) is solved by a finite difference method 

with the periodic boundary conditions. The transformation is calculated numerically 

with the Fast Fourier Transformation (FFT) method according to the phase-field 
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microelastisity [2-16]. The simulation was performed in a cubic with N3 (N=64) grid 

points. Such scale is chosen because the size effect and the inaccuracy introduced by 

the assumption of macroscopic homogeneity, which are both associated with the 

comparatively small system volume, are not too significant to prevent reproducing the 

major features of the martensitic structures. The size of each grid, refered to as the 

length scale, has two particular constrains in the phase field model. The first is to be 

large enough that a moderate number of grids can span the entire microstructure, but 

be fine enough that a diffuse interface can be maintained. In this study, the grid size l 

is calculated to be 4 nm by fitting the interfacial energy. Therefore, the computational 

domain is 256 × 256 × 256 nm.  

For the initial state, a dislocation loop was set in the center of a homogeneous 

austenite crystal with a radius of 12 nm and thickness. This dislocation loop 

introduces a stress-free strain, which is given by a symmetric dyadic product of 

1
1 [110]
2

aγ=b  and the unit vector 1 1 3,1 3,1 3=n  as 

1 1 1 1

(111)

(1)
2

d
ij d

ε ⊗ + ⊗
=

b n n b , where (111) 3d aγ=  is the interplanar distance. The 

simulation parameters used in the present model are listed in Table 1. For an isotropic 

calculation system, the Lamé constants λ and μ are estimated from the Young’s 

modulus and the Bulk modulus in pure iron [2-29]. The gradient coefficient φκ  is 

fitted to the interfacal energy per area, 20.01 /J mγ = , calculated from TEM data 

[2-16], ensuring a coherent boundary between the domain walls.  

For convenience of numerical simulation, the physical parameters are converted 

to dimensionless quantities. The length is scaled by the grid size l  and all the 
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energies are scaled by RT , where R is the gas constant, T is the absolute tempreture. 

The kinetic paramenters ( , )M i iL M pαφ=  are set to as * 1ML =  to guarantee the 

diffusion controlled microstructure evolution, where the asterisk denotes a 

dimensionless quantity. The unit time step is selected as ∆t* = 0.001 to maintain 

numerical accuracy and stability. 

 

 

2.4 Results and discussion 

Fig. 2-5 shows the simulation result of the initial state of lath martensite, which is a 

circular platelet as shown in (a) and the platelet is with some a thickness as shown in 

(b) observed from another view angle. 

Table 2-1 Simulation parameters for the phase-field model in Fe-0.1C mass % steel 
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Fig. 2-6 shows the simulation result of time evolution of energy densities in 

Fe-0.1C mass% steel. It was observed that the elastic energy density and gradient 

energy density increase monotonically, while the specific free energy density 

decreases monotonically with time t* from about 4600 to 0 J/mol. It is also observed 

that the gradient energy coming from the interface is much bigger than that attributed 

to the dislocation core energy. The specific free energy is the driving force for 

martensitic transformation to overcome the increase of the sum of elastic energy and 

gradient energy resulting in the minimization of total free energy. It is noted that all 

energy densities have become steady around 20 time steps, indicating the end of 

martensitic transformation. It should be noted that even though the growth of the 

martensite phase is mostly driven by the chemical free energy, the refining and 

coalescence of the microstructure are driven by the strain energy and the gradient 

energy reduction. 

Fig. 2-5 Simulation result of the initial state of lath martensite. (a) and (b) are

the same state observed from different view angles in 3-D space. 
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Fig. 2-7 shows the simulation result of time evolution of three types of blocks in 

a packet on the {111} plane. The blue areas represent the retained austenite phase and 

the other colored areas (green, yellow, and red) represent three different blocks as 

explained in the formation mechanism of lath martensite. The occurrence of each 

block is determined by the value of the field variable ( )iφ r . In this simulation, it is 

assumed that the martensite phase appears only when ( ) 0.7iφ ≥r . As shown in Fig. 

2-7 that at t* = 2, all of the three blocks appear around the dislocation loop set in the 

center of simulation region. At t* = 4, different blocks grow bigger around the 

existing martensite phase. In the process of martensite growth, when a second order 

block meets a first order block, it will stop growing. It results in that the boundary of 

the first order block is a straight line. In this manner, the martensite phase becomes 

Fig. 2-6 Simulation result of time evolution of energy densities in Fe-0.1C mass% 

steel at 300K. 
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coarser until the morphology of the full martensite appears. At t* = 8, the packet is 

almostly full of lath martensite phase except that only a few austenite phase can be 

seen. At t* = 20, the three blocks have accupied the whole simulation region, 

indicating the accomplishment of the martensitic transformation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-8 shows the simulation results of time evolution of lath variants in a 

packet on the {111} plane and the six colored areas represent the six variants which 

are illustrated explicitly in (e). As shown in Fig. 2-8 (e), each block shown in Fig. 2-7 

is composed of a pair of variants, i.e., V1~V4, V2~V5, and V3~V6, which is the 

so-called sub-block structure in lath martensite. A block composed of the two 

Fig. 2-7 Time evolution of blocks on {111} plane for (a) t* = 2, (b) t* = 4, (c) t* = 8, 

and (d) t* = 20 simulated by elasto-plastic phase-field model. The three colors, i.e., 

blue, red, and yellow represent three blocks and deep blue represents austenite phase. 
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martensitic variants defined by the KS relationship is ideal for the adjustment of 

plastic deformation by the two types of slip systems. For comparing, the experimental 

result is shown in (f), which is the EBSP observation of lath martensite [2-30]. In Fig. 

(f), the parallel block structure can be observed and each block is a combination of the 

two variants. By comparing Figs. 2-8 (e) and (f), the qualitative similarity of the 

sub-block micorostructure between the simulation results and experimental 

observation can be seen. The ratio of the volume fraction of the three block in our 

simulation is calculated to be 1:1:1 by the mesh method, while the ratio of B1:B2:B3 

in (f) is calculated to be 1:2:1. As the lath martensite is an inhomogeneous system, it 

needs a lot of mapping information for the accurate quantitative analysis, which is 

unavailable up to present and needs further effort. 
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Fig. 2-8 Time evolution of lath variants on {111} plane for (a) t* = 2, (b) t* = 4, (c) t* = 

8, and (d) t* = 20 simulated by elasto-plastic phase-field model. (e) is the specific 

explanation of variants shown in (d). The six colors represent six different variants in a 

packet. (f) is the EBSP observation of lath martensite quoted from Ref. [2-30]. 
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Figs. 2-9 and 2-10 show the simulation results of the time evolution of plastic 

strain ( )ipα r  along the slip systems of [101](101)α′  and [101](101)α′  when 1i =  

in a packet, respectively. The blue areas indicate no slip deformation, whereas the red 

areas represent the most dramatic slip deformation. Each point in Figs. 2-9 and 2-10 

represents a local plastic strain for a certain i, whereas all the points scattered in the 

simulation region contain the plastic strain coming from the three cases of lattice 

corresponding, i.e., 1i = , 2 and 3. The slip systems [101](101)α′  and  [ ]( ) '101011 α  

correspond to the slip systems when 1i =  as explained in Chapter 2. These figures 

reveal that the plastic deformation originated from the center of the austenite phase 

and the range of the slip deformation extends with the progression of martensitic 

transformation. By comparing Figs. 2-9 and 2-10, it is found that the plastic 

deformation along the two slip systems are complementary with each other. Taking 

area “A” in Fig. 2-9 and area “B” in Fig. 2-10 as an example, the plastic strain in “A” 

is very large, while there is almost no plastic deformation in the same area along the 

other slip system, as shown in “B”. This phenomena can be observed at all places and 

times during martensitic transformation. So it is concluded that the slip deformation 

along the two slip systems cooperate with each other to assist the plastic 

accommodation. The phenomena that the plastic deformation occurs along the two 

slip systems alternatively is consistent with the formation mechanism of sub-block 

structure in lath martensite. It is to be noted that the plastic strain shown in Figs. 2-9 

and 2-10 represent only the local values, which should be integrated within the whole 

crystal to assess the contribution of dislocation slip on plastic accommodation. 
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Fig. 2-10 Time evolution of plastic strain ( )( 1,2,3)ip iα =r  along [101](101)α′  slip 

system on {111} plane for (a) t* = 2, (b) t* = 4, (c) t* = 8, and (d) t* = 20 by 

phase-field simulation.  

Fig. 2-9 Time evolution of plastic strain ( )( 1,2,3)ip iα =r  along [101](101)α′  slip 

system on {111} plane for (a) t* = 2, (b) t* = 4, (c) t* = 8, and (d) t* = 20 by 

phase-field simulation. 

(a) (b)

(c) (d)
A 

B 
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On the other hand, by comparing Fig. 2-8 and Figs. 2-9, 2-10, it is found that the 

morphology of lath martensitic evolution corresponds to the plastic strain evolution. 

In particular, the slip deformation in Fig. 2-9 and Fig. 2-10 starts from the beginning 

of martensitic transformation. With the progression of phase transition, the increase of 

plastic strain urges the growth and coalescence of the martensitic variants shown in 

Fig. 2-8. In other words, the occurrence and evolution of the plastic deformation 

determine the formation and morphological evolution of the lath martensite phase. 

By inserting the local plastic strain along each slip system in Eqs. (2-4) and (2-6), 

the values of  m1 and m2 can be evaluated. As mentioned previously, the subscripts 1 

and 2 correspond to the [ ]( ) '011101 α  and [ ]( ) '101011 α  slip system, respectively, in 

the lattice corresponding of 1i = . Because of the three cases of lattice 

correspondence, there should be three pairs of m1 and m2. Since each pair is 

equivalent, only the case in which the [001]γ -axis coincides with the [001]α′ -axis, 

i.e., 1i = , is discussed as an example. For this case, the variants of V1 and V4 will 

appear. For the other two cases, the relationship between the values of m along the 

two independent slip systems should be similar to that of 1i = . By inserting the local 

values of the slip deformation 1
1p  and 2

1p  in Eqs. (2-4) and (2-6), the values of m1 

and m2 are estimated and the relationship between m1 and m2 within simulation areas 

is plotted in Fig. 2-11 (a), where two thousand local values distributed in the 

simulation areas are collected. It is found that the dense points concentrate in one 

corner due to the close values as shown in Fig. 2-11 (a). For easy observation, the m1 

and m2 maxima are limited to within 100 and the enlarged part is shown in Fig. 2-11 
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(b). For comparison, the analytical result is also shown in Fig. 2-11 (c), which is 

obtained from eigenvalues satisfying the invariant plane deformation of the 

deformation matrix [2-4]. A “corner” type contour is exhibited in Fig. 2-11 (b) and the 

values of m1 and m2 in the corner are approximately 16, which is close to the corner 

point m1 = m2 = 19 in Fig. 2-11 (c). Fig. 2-11 (b) also reveals that when m2 reaches its 

minimum 10, m1 increases from 20 to infinity. The converse situation yields a similar 

result. The contour shown in Fig. 2-11 (b) is consistent with the analytical results 

shown in Fig. 2-11 (c). This indicates that m1 and m2 are mutually dependent, which 

can be seen not only from the analytical results, but also from the simulation results. 

The relationship between m1 and m2 corresponds to the relationship between the 

plastic deformation along the two slip systems. Therefore, it is concluded that the 

simulation result of the relationship between the two types of slip deformation is 

consistent with the analytical solution calculated by the TTSD model. On the other 

hand, Eqs. (2-4) and (2-6) suggest that if m1 is larger than m2, the plastic strain along 

[ ]( ) '011101 α  is larger than that along [ ]( ) '101011 α . It causes the formation of variant 

V4. On the contrary, the variant V1 appears. It suggests that the values of m1 and m2 

determine the appearance of V1 or V4. This simulation result is consistent with the 

analytical result calculated by Iwashita et al. [2-4]. 

The simulation result of the time evolution of elastic strain energy is plotted in 

Fig. 2-12. The red colour represents the maximum value of the elastic strain energy 

and the blue color the minimum value, i.e., when the elastic strain energy is zero. At 

the initial stage of the martensitic transformation, the elastic strain energy is small as  
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shown in Fig. 2-12 (a) and only exists in a small area. The elastic strain is the biggest 

around the initial dislocation loop. As time evolves, the elastic strain energy increases 

and is distributed over the entire simulation region. The values of the elastic strain 

energy shown in Fig. 2-12 represent the local elastic strain energy in a packet. By 

integrating the local values over the entire computational domain, the maximum value 

of the elastic strain energy should be equal to the value of the elastic strain energy 

when the martensitic transformation finished as shown in Fig. 2-6.  

Fig. 2-13 shows the growth process of the lath martensite in 3-D space. The 

cubic skeleton represents the prior austenite lattice. The martensite phase grows 

bigger around the initial lath martensite nucleus and becomes full martensite at t* = 

20, which occupies the whole austenite cubic as shown in Fig. 2-13 (d). 

 

Fig. 2-11 (a) show the simulation results of the relationship between m1 and m2 when 

i = 1, (b) is the enlarged part of (a) when both of m1 and m2 are limited within 100 and 

(c) is analytical results the relationship between m1 and m2 quoted from Ref. [2-4]. 
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Fig. 2-12 Time evolution of elastic strain energy on {111} plane for (a) t* = 2, 

(b) t* =4, (c) t* = 8, and (d) t* = 20 simulated by phase-field model. 

Fig. 2-13 The growth process of lath martensite at (a) t* = 2, (b) t* = 4, (c) t* = 8,

and (d) t* = 20 in 3-D space simulated by phase-field model. 
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Fig. 2-14 exhibits the time evolution of lath martensite in 3-D space seen from 

the outside of austenite cubic. The blue cubic represents the austenite phase lattice. 

The six coloured areas on the surface of the cubic are the six lath variants. At t* = 2 

and 4, the lath martensite only exists inside of the auxtenite cubic as shown in Figs. 

2-13 (a) and (b), resulting in that the lath martensite can not be seen from the outside. 

Therefore, the austenite cubic is still blue as shown in Figs. 2-14 (a) and (b). With the 

progression of the martensitic transition, the lath martensite phase reaches the surface 

of the austenite cubic and can be seen from the outside of the austenite cubic as shown 

in Fig. 2-14 (c). When the martensitic transformation is completed, the lath martensite 

phase spreads all over the surface of austenite cubic as shown in Fig. 2-14 (d). 

 

 

 

 

 

 
 
 
 
 
 
 
 Fig. 2-14 Time evolution of lath martensite at (a) t* = 2, (b) t* = 4, (c) t* = 8, and (d) 

t* = 20 in 3-D space observed from the outside of austenite cubic simulated by

phase-field model. Each color represents a lath variant. 



 

 39

2.5 Conclusions 

On the basis of the two types of slip deformation (TTSD) model for the 

formation of lath martensite, an elasto-plastic phase-field model was constructed. 

Furthermore, the morphological evolution of lath martensite in Fe-0.1C mass% steel 

was simulated by the elasto-plastic phase-field model in 3-D space. It was observed 

that the full martensite phase can be obtained by releasing the large elastic strain 

caused by the Bain deformation, via the two types of independent dislocation slips. 

Moreover, origin of the morphology of lath martensite such as sub-blocks, as seen in 

commercial steels, can be understood. The relationship of plastic deformation 

between the two slip systems simulated by phase-field model is consistent with the 

analytical calculation using by TTSD model. This indicates the validity of the TTSD 

model for the formation of lath martensite phase. It was proved that the phase-field 

model was a promising tool to predict the dynamic microstructural evolution of lath 

martensite. 
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Chapter 3 

Prediction of Maximum Dislocation Density in Lath 

Martensite by Phase-field Simulation 

3.1 Introduction  

    It is known to us that the martensitic microstructures must be characterized 

accurately in terms of orientation, morphology, transformation dislocation density, 

and retained austenite. In recent years, Morito et al. observed the martensitic 

orientation and microstructures by means of TEM, SEM, and EBSD [3-1~3-4]. 

Spanos et al. adopted EBSD and serial sectioning to establish 3-D morphology of 

martensite lath [3-5], which provided further detailed insights into lath orientation, 

distributions, and shapes.  

In order to accommodate the large strain induced by martensitic transformation, 

high dislocation density is inevitable in lath martensite. Wayman classified the 

dislocations in the martensite phase into two types: transformation dislocations and 

interface dislocations [3-6]. Morito et al. used a TEM method to measure the 

dislocation densities in both nickel steels and carbon steels, and they reported that the 

dislocation density for lath martensite is approximately 1.11 × 1015 m−2 in a Fe-0.18C 

steel and 3.8 × 1014 m−2 in a Fe-11Ni steel [3-7]. In addition, Cong et al. used the 

X-ray diffraction (XRD) method to evaluate the dislocation density of lath martensite 

in low carbon steels (0.02–0.09C mass%). The dislocation density is 4.87 × 1014 m−2 

in a Fe-10Cr-5W-0.02C steel [3-8]. As mentioned in Chapter 2 about the TTSD model, 
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during martensitic transformation, a lot of dislocations contribute to the formation of 

lath martensite. However, after the phase transition, some dislocations are resided in 

the martensite crystal, which can be observed by experiments. While some 

dislocations pass through out of the martensite crystal, which may be used for forming 

the lath boundaries. This part of dislocations cannot be observed by experimental 

observation. In this study, we focus on the estimation of the total dislocations for the 

necessity of the formation of lath martensite, which is wrriten as ρlim. On the basis of 

TTSD model, all of the dislocations (ρlim) contribute to plastic accommodation, the 

maximum dislocation density can be evaluated from the plastic strain. 

In TTSD model [3-9], the plastic deformation is assumed to be realized by 

dislocation slips along two independent slip systems. In this study, the total 

dislocations for the necessity of the formation of lath martensite steel is counted by 

simulation using an elasto-plastic phase-field model based on the TTSD model, and 

the result is compared with the experimental results reported until date.  

3.2 Evaluation method 

In TTSD model (Chapter 2), it is assumed that the plastic deformation for 

martensitic transformation is accommodated thoroughly by the dislocation slips along 

the two kinds of slip systems [ ]( ) '011101 α  and [ ]( ) '101011 α  as shown in Fig. 3-1 (a) 

and each slip system can be taken as a combination of two / 2 111a
α′

 dislocation 

slips with the Burgers vectors of b1 and b2 as shown in Fig. 3-1 (b). 
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The idea for using the phase-field method to model a dislocation is established 

by Nabarro [3-10] that dislocations can be taken as a set of coherent misfitting platelet 

inclusions. For simplisity, a dislocation loop is described as a sheared pletelet with 

thickness and the region inside the platelet is sheared by a Burgers vector b [3-11]. By 

extending this discription to a spatial region with a population of dislocations, the 

average plastic strain, pave, caused by dislocation slip is given by 

avep
D

=
b

,                              (3-1) 

where b  is the magnitude of the Burgers vector and D  is the average distance 

between the neighboring slip planes, that is, dislocation planes. For a real case, the 

slip planes should arrange randomly as shown in Fig. 3-2 (a). For simplicity, it is 

assumed that the intervals between neighboring slip planes are the same, as shown in 

Fig. 3-2 (b), resulting in the reasonability of Eq. (3-1). Seen from Fig. 3-2 (b), if the 

number of lattice planes between two adjacent slip planes for each slip system is m, 

or 
[ ]( ) '
101 101

α

( ) '
101 101

α
⎡ ⎤⎣ ⎦

(a) (b)

Fig. 3-1 Skeleton of plastic deformations along two slip systems, i.e., [ ]( ) '011101 α  

and [ ]( ) '101011 α . b1 and b2 are the Burgers vector for the two slip systems. 
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then the value of D can be given by 

hklD m d= × .                            (3-2) 

The distance between the ( ) '
hkl

α
 planes is given by 

 
2 2 2

2 2 2

1
hkld

h k l
a a cα α α′ ′ ′

=

+ +

,                      (3-3) 

where h, k, and l are the Miller indices of the slip planes, and aα ′  and cα′  are the 

lattice parameters of the martensite phase. 

 

 

 

In the martensitic transformation, ρlim should contribute to the plastic 

deformation for moderating the strain by Bain deformation. Here, we give the 

distance between neighboring dislocations by a rough estimation as  

lim1/D ρ≈ .                              (3-4) 

Eq. (3-4) is given by the original definition of dislocation density, which is equal to 

the number of dislocations in unit area as shown in Fig. 3-3. It is assunmed that the 

Fig. 3-2 Slip deformation skeleton of the (100) plane along the direction of 

[ ]( ) '011101 α  or [ ]( ) '101011 α  for (a) a random state and (b) an assumed state. 
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dislocations rank with equal intervals not only in the direction of Burgers vector b, 

but also in the direction of slip normal n. After such declaration, Eq. (3-4) is 

reasonable as a rough estimation. 

 

 

 

 

 

 

 

 

Assuming that all of the dislocations contriute to the plastic deformation, the 

value of D can be estimated from the average plastic strain pave, which is available 

from the simulation results by using phase-field model. As mentioned above, TTSD 

model is based on [ ]( ) '011101 α  and [ ]( ) '101011 α  slip systems in bct crystals. 

Therefore, the value of D evaluated from Eq. (3-1) is the distance between the 

neighboring slip planes along [ ]( ) '011101 α  or [ ]( ) '101011 α . To obtain the total 

dislocations for the necessity of the formation of martensite phase in a real case, the 

value of D along 
'

101
α

 should be transformed to the value along 
'

111
α

. By 

inserting the values of (101)D  estimated from Eq. (3-1) and (101)d  in Eq. (3-2), we 

can evaluate the number of lattice planes slipping along the 
'

101
α

 system, (101)m . 

As a result, the number of lattice planes slipping actually along the 
'

111
α

 direction 

Fig. 3-3 Skeleton of the dislocations in unit volumn and each side of the cube is 1. 

b

n
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(111)m  should be twice that of (101)m . By substituting the values of (111)m  and (111)d  

into Eq. (3-2), we obtain (111)D . Now with the assistance of (111)D  and Eq. (3-4), the 

total amount of dislocations for the necessity of the formation of lath martensite in 

commercial steels can be evaluated. 

3.3 Results and discussion 

The phase-field simulation has been described in Chapter 2 and the average 

value of plastic strain avep , is obtained from the simulation results by the same model 

used in Chapter 2. Figure 3-3 shows the simulation result of time evolution of the 

average value of plastic strain avep . It averaged all the values of local plastic strain in 

lath martensite along the two slip systems, [ ]( ) '011101 α  and [ ]( ) '101011 α . The figure 

indicates that the average plastic strain increases with the progression of martensitic 

transformation and saturated in 20 time steps at a value of 0.035. This means that the 

martensitic transformation is accomplished at t* = 20. Therefore, we use the saturated 

value of avep  to estimate the maximum dislocation density in a full lath martensite. 

By inserting the values of avep  and (101)α′b  = 4.06 × 10−10 m in pure iron into Eq. 

(3-1), we calculate the distance between neighboring slip planes (101)D  to be 1.16 × 

10−8 m. Substituting the values of (101)D  and (101)d
α ′

 = 2.03 × 10−10 m into Eq. (3-3), 

the value of (101)m  is estimated to be 57, and thus (111)m  should be 114 for the actual 

slip systems in the martensite phase. By substituting the values of (111)m  and (111)d
α ′

 

= 1.66 × 10−10 m into Eq. (3-3) again, we calculated (111)D  to be 1.89 × 10−8 m. Once 

the value of (111)D  is known, the maximum dislocation density in a practical steel is 
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evaluated to be 2.8 × 1015 m−2 from Eq. (3-2). The simulation result is almost twice of 

the experimental result in a Fe-0.1C mass% steel (1.55 × 1015 m−2) measured by 

Kehoe et al. using a TEM method [3-12]. The simulation result is definitely higher 

than the experimental result with respect to the value, but the orders of the dislocation 

density are the same. As mentioned in 3.2, the maximum dislocation density ρlim 

considers the total dislocations for the necessity of the formation of lath martensite. In 

this sense, the calculation result is natural and right higher than the observed 

dislocation density.  

 

 

 

 

 

 

 

 

 

In our calculation, only the dislocations in the martensite phase are considered. 

In fact, the surrounding austenite phase should also contain some dislocations because 

of the strain originating from the martensite phase and they may be inherited into the 

lath martensite phase during martensitic transformation [3-6]. However, it is argued 

that if the surrounding austenite phase is deformed during martensitic transformation, 

Fig. 3-3 Simulation result of the time evolution of average value of the 
plastic strain pave. 
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it will help to accommodate part of the strain in the martensite phase, thus resulting in 

the loss of dislocation density in the martensite phase itself. This loss and the 

dislocations stored in the surrounding austenite phase cancel each other out. Therefore, 

the maximum dislocation density in a full martensite should be almost equal to our 

result. In other words, during martensitic transformation, the total strain containing 

the surrounding austenite phase is considered to be represented by the dislocations in 

this study, although the quantitative evaluation should be done in the future. 

3.4 Conclusions 

The maximum dislocation density of lath martensite in a Fe-0.1C mass% steel 

was evaluated by phase-field simulation on the basis of TTSD model. The average 

value of plastic strain was evaluated to be approximately 0.035 for 20 time steps by 

phase-field simulation. The evaluated maximum dislocation density in lath martensite 

was 2.8 × 1015 m−2. This result was reasonable to be higher than the observed 

dislocation density in value but to be the same in order. 
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Chapter 4 

Dislocation Density of Lath Martensite in 10Cr–5W 

Heat-Resistant Steels 

4.1 Introduction 

High chromium heat–resistant steel has been widely used in power plants 

because of its excellent creep properties and low thermal expansion coefficients 

[4-1~4-4]. Even though the carbon content of such heat–resistant steel is relatively 

low (less than 0.1 mass%), the advanced steels containing refractory elements, such as 

Mo and W, have high strength at elevated tempretures. The high dislocation density 

introduced into the matrix through martensitic transformation significantly contributes 

to the high creep strength of such steel. In such steels, lath martensite always appears, 

which contains a lot of dislocations but no twins. Therefore, researching the 

dislocation density in the as-quenched state of high–chromium steel is of great 

importance. 

The dislocation density in lath martensite is on the order of 1014–1015 m–2  

[4-5~4-10]. Generally, the dislocation density can be measured by transmission 

electron microscopy (TEM) techniques, X-ray diffraction (XRD) and neutron 

techniques. These experimental methods complement with each other. However, for 

martensitic steel, the dislocation density varies from place to place within the grain on 

a microscopic scale; therefore, in such an inhomogeneous system [4-11] the XRD 

method has the advantages on that it determines a macroscopic average value 
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compared to TEM method giving a microscopic local value [4-11, 4-12]. In this study, 

we adopted the XRD technique to measure the dislocation density of lath martensitic 

steel with low–carbon content (0.02 mass% – 0.13 mass%) and clarified the effect of 

carbon content on the dislocation density in such steels. 

4.2 XRD profile analysis  

In the present study, modified Williamson–Hall and modified Warren–Averbach 

plots were employed to determine the dislocation density from the X-ray profiles 

[4-13, 4-14]. The value of the full width at half maximum (FWHM) obtained from 

peak fitting is substituted into the following modified Williamson–Hall equation 

[4-15]:  

                ( )
2 2 1/ 21/ 2 20.9

2
M bK KC O K C

D
π ρΔ ≅ + + .             (4-1) 

In the quadratic form it is: 

( )
2 2 22 2 2 40.9( )

2
M bK K C O K C

D
π ρΔ ≅ + + ,             (4-2) 

where 2sin /K θ λ=  and 2cos ( ) /K θ θ λΔ = Δ . Here θ , θΔ  and λ  are the 

diffraction angle, full width at half-maximum (FWHM) and wavelength of the X-rays, 

respectively. θ  and θΔ  can be obtained by fitting the diffraction profiles. In the 

case of Cu radiation, 0.15405nmλ = . D, ρ  and b are the average grain size, 

dislocation density and magnitude of the Burgers vector, respectively. M is a constant 

that depends on the effective outer cut-off radius of the dislocations. O denotes the 

higher–order terms in 
1/ 2

KC . Since M can only be obtained from the tails of the 
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profiles, taking into account the shape of their dacay, the higher-order term can be 

negligible. Eq. (4-2) can be transformed into a linear function as 

                   2 2 2
00[( ) ] / (1 ) / 2hK K C qHα βΔ − ≅ − ,               (4-3) 

where α = (0.9/D)2 and β = πM2b2ρ/2. The value of  α is determined to maintain a 

linear relationship between the left-hand term and H2 in Eq. (4.3). H is a constant and 

for a given (hkl) reflection it can be given as 

( )22 2 2 2 2 2 2 2 2 2( ) /H h k h l k l h k l= + + + + .             (4-4) 

q is a constant to be determined experimentally, which tells the characterization of 

dislocations. 00hC  is the average dislocation contrast factor corresponding to the 

(h00) diffraction and is determined by the crystal elasticity and 00 = 0.285hC  in a pure 

iron was employed in this study [4-16]. From the linear relationship shown in Eq. 

(4-3), the value of q can be obtained from the interception on the horizontal axis.  

Within the frame of the kinematical theory of scattering the diffraction profiles 

are the convolution of the so-called size and distortion profiles, SI  and DI , 

respectively: F S DI I I= × , where the superscript F indicates physical profile, i.e., free 

or stripped from instrumental effects. The earliest diffraction experiments and 

theoretical considerations have shown that size broadening is diffraction-order 

independent, whereas strain broadening increases with diffraction order. The increase 

strain part of broadening, however, reveals hkl anisotropy. The strain anisotropic 

broadening is caused by the presence of dislocations and can be rationalized by the 

dislocation contrast factors C, in the modified Williamson-Hall plot. So in this study, 
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we use the strain broadening to estimate the dislocation density. The Fourier 

transformation of F S DI I I= ×  is written as [4-15]  

2 2 2 2
,exp[ 2 ]S D S

L L L L LA A A A Lπ ε= = − gg ,                   (4-5) 

where S and D indicate size and distortion, respectively, and L is the Fourier length.  

2
,Lεg  is the mean square strain. By taking the logatithm of Eq. (4-5), the basic 

Warren–Averbach equation can be written as  

                                             .                   (4-6) 

The mean square strain, which can be evaluated for different kinds of lattice defects, 

especially for dislocation reads as 

2
2 ln(Re/ )

4
C Lρε
π

=g
b ,                          (4-7) 

By inserting Eq. (4-7) in Eq. (4-6), the modified Warren–Averbach equationis given 

by [4-17] 

                                                     .           (4-8) 

Here, A(L) is the real part of the Fourier coefficients of the (hkl) diffraction peak 

depending on the L. The superscript S in the term ln A(L) means that this term is 

related to the crystal size. The Fourier length L is defined as below [4-18] 

                              3L na= ,                            (4-9) 

where n are intergers and 3a  is the unit of the Fourier length in the direction of the 

diffraction vector g. 3 2 1/ 2(sin sin )a λ θ θ= − , where the diffraction profile is 

measured in the angular range 1 2θ θ∼  and λ  is the wavelength of the X-rays. ρ is 

the dislocation density and b is the Burgers vector. Re is the effective outer cut-off 

( ) ( )2422
2

ln
2

)(ln)(ln CKQCK
L
RLbLALA eS +⎟

⎠
⎞

⎜
⎝
⎛−≅

πρ

2 2 2 2ln ln 2S
L LA A Lπ ε= − gg
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radius of dislocation. C  is the average contrast factor of dislocation, which is given 

by [4-19],  

                                         .                      (4-10) 

By inserting the value of q obtained from modified Warren–Averbach plot in the 

equation above, the value of C  can be known. By inserting the values of A(L) and 

C  into Eq. (4-8), the plot between ln A(L) and 2K C  is available, which is the 

modified Warren–Averbach plot. The coefficient of the second term in Eq. (4-8) is 

taken as a function of Y, which is arranged as 

                                          .                     (4-11) 

The value of Y can be obtained by fitting the modified Warren–Averbach plot. Then 

we can get a linear relationship between 2/Y L  and ln L. Therefore, the value of ρ is 

determined from the gradient of the linear relationship in Eq. (4-11).                              

4.3 Experimental procedures  

The 10Cr–5W commercial steels containing 0.02, 0.03, 0.09, and 0.13 mass% C 

(hereafter 10Cr–5W steels) were prepared by austenization at 1323 K for 1 h, 

followed by quenching into water to obtain a full martensite microstructure. The 

chemical compositions of these alloys are listed in Table 4-1. Each steel sample was 

cut into a proper size and polished mechanically with emery papers down to #2000, 

followed by buff polishing with Al2O3 powders down to 0.3 μm. Furthermore, 

electropolishing was performed to remove the extra dislocations introduced by 

mechanical polishing. The electropolishing was carried out using a 10% HClO4 acetic 

2

2

(ln ln )
2 e

Y b R L
L

πρ= −

( )2
00 1 qHCC h −=
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acid solution at 273K with a voltage of 30V. 

 

 

For the XRD analysis, the diffraction profiles of the (110), (200), (211), (220), 

(310), and (222) reflections were measured using a conventional diffractometer 

(Rigaku UltimaIV X–ray diffractometer) with Cu Kα1 and Kα2 radiation operating at 

40kV and 40mA with a scan speed of 0.25° min–1.  

4.4 Results and discussion 

The dislocation density of a series of 10Cr–5W steel samples was measured by 

XRD method. On the basis of the analytical method mentioned in Chapter 4.2, the 

XRD analysis were performed. Fig. 4-1 shows the peak deconvolution of the (211) 

reflection in 10Cr–5W–0.02C steel as a representative result. The clear circles in Fig. 

4-1 represent the measured data, which agrees well with the regression lines. In such 

plots, only the peak obtained from Cu Kα1 radiation was required. Hence, each peak 

was separated into Kα1 radiation and Kα2 radiation using the Lorentz function and the 

FWHM value of each peak was estimated from the fitting results.  

 

Steel C Cr V Nb W Co B N Ni Fe 

Fe–Cr–W–0.02C 0.02 10.08 0.06 0.06 5.01 3.00 0.011 0.020 1.55 Bal.

Fe–Cr–W–0.03C 0.03 10.04 0.00 0.00 4.96 2.99 0.011 0.020 1.53 Bal.

Fe–Cr–W–0.09C 0.09 10.06 0.06 0.06 4.96 3.00 0.011 0.019 1.54 Bal.

Fe–Cr–W–0.13C 0.13 10.05 0.06 0.06 4.93 3.00 0.011 0.020 1.54 Bal.

Table 4-1 Chemical compositions of 10Cr–5W specimens (mass%). 
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As the analytical procedures are the same for each sample with different carbon 

contents, only the analytical procedure for the 0.02 C mass% steel is presented as a 

representative example. The data obtained from the XRD profiles of 10Cr–5W–0.02C 

steel is listed in Table 4-2, which shows the diffraction angles, θ and FWHM, θΔ  

for the six reflections. By inserting these data into Eq. (4-3), α = 10–5 nm-1 and q = 

2.04 were derived from the linear relationship between 2 2( ) /K KαΔ −  and 2H , as 

shown in Fig. 4-2. The value of α  is determined to guarantee the linear relationship 

shown in Fig. 4-2. Following that, the value of q was substituted into Eq. (4-8) and the 

modified Warren–Averbach plot was obtained as shown in Fig. 4-3. The range of L is 

chosen to be from 40 to 90 in order to obtain the full tail part of the profiles shown in 

Fig. 4-3. The second term on the right hand of Eq. (4-8) was derived by fitting a series 

of quadratic curves automatically. As a result, ρ = 4.87 × 1014 m-2 was determined 

θ 

Fig. 4-1 Measured data of the (211) reflection and the fitting profiles

using the Lorenz function in 10Cr–5W–0.02C steel. 
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from the linear relationship explained in Eq. (4-11), as shown in Fig. 4-4. To be noted 

that all the solid dots represent the experimental results and lines are regression results 

shown in Figs. 4-2, 4-3 and 4-4. 

 

 

 

 

 

            

 

 

 

 

 

 

Bragg reflection 2θ/deg FWHM/deg 

110 44.56 0.113 

200 64.85 0.250 

211 82.03 0.227 

220 98.50 0.344 

310 115.76 0.595 

222 136.15 0.569 

  Fig. 4-2 Linear relationship between 2 2( ) /K KαΔ −  and 2H  in Eq. (4-3). 

 Table 4-2 The XRD data of each reflection in 10Cr–5W–0.02C steel. 
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The dislocation density in the other three steel samples was derived in a manner 

similar to that in the 10Cr–5W–0.02C steel sample. For each steel, the dislocation 

density was measured for three times by selecting the different positions on the 

surface of the specimen to reduce the measurement deviation. The average dislocation 

density for each steel sample is shown in Fig. 4-5. Note that the dislocation density 

  Fig. 4-4 Y/L2 versus ln L plot according to Eq. (4-11). 

  Fig. 4-3 Modified Warren-Averbach plot from Eq. (4-8). 
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increased slightly with the increase of carbon content. The error bars for each sample 

are shown within a reasonable range, indicating that the measurments of the three 

times are authentic. For comparison, the results in Morito’s study [4-20] are also 

plotted in the Fig. 4-5. As known to us that the ratio of the lattice parameters in the 

martensite phase (i. e., c/a) increases with the increase of carbon content, which 

causes the volume strain for the martensitic transformation to increase, resulting in the 

increase of dislocation density. In the present study, we focused on detecting the 

dislocation density in the range of low–carbon range of 0.02–0.13 mass% C, because 

the dislocation density in such a small range is crucial to the mechanical properties of 

heat-resistant steels.  

The rate of change in dislocation density with the carbon content in our study is 

considered to be consistent with Morito’s data. However, Morito et al. did not detect 

the dislocation density in such a low–carbon range (less than 0.1mass% C) except in 

the steel with 0.0026 mass% C (C free) and they determied that the average 

dislocation density in Fe–0.0026C was 6.5 × 1014 m–2. Interpolating their results 

suggests that the dislocation density in their study is higher than our results within the 

low–carbon content range by a factor of ~1.5. One possible reason may be due to the 

difference in measuring methods. We adopted the XRD method, which gives the 

average information in bulk materials, compared to the TEM method adopted by 

Morito, which gives a microscopic local value. Furthermore, it can be said that when 

the density becomes greater than 1014 m–2, it is difficult to accurately measure the 

dislocation density by means of TEM, because of the complicated image contrasts 
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from the sample, particularly in the martensite phase with small lattice rotation, 

containing such a high dislocation density. On the other hand, the existence of W may 

be one of the possible reasons resulting in the difference between our research and 

Morito’s study. Anyhow, it needs further investigations to verify the effect of W on 

dislocation density. 

 

 

 

 

 

 

 

 

Fig. 4-6 shows the change in parameter q with carbon content of lath martensite 

phase in 10Cr–5W steel. The parameter q depends on the elastic constants of the 

crystal and determines the character of the prevailing dislocation, i. e., screw, edge or 

mixed–type dislocation type. The theoretical values of pure edge and screw 

dislocations in the martensite phase are obtained numerically in various slip systems 

based on the elastic constants by using Eq. (4-10). The theoretical values of pure edge 

and screw dislocations, depending on the elastic constants in martensite phase, are 

estimated to be 1.2 and 2.8, respectively, by using the elastic constants in pure iron 

  Fig. 4-5 Change in dislocation density with carbon content in low carbon 10Cr–5W 
steels. The solid squares represent the results measured by XRD in this study and 
the clear diamonds represent the results in Morito’s study measured by TEM. 
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[4-19, 4-21] due to the unavailability of the elastic constants of martensite phase. As 

shown in Fig. 4-6, the value of q increases slightly from 2.01 to 2.14 as the carbon 

content increases from 0.02 to 0.13. This indicates that the prevailing dislocation 

character is mixed type in the lath martensite phase. Also, the dislocation character is 

determined by the equation below: 

exp 1
screw
thedge screw
screw edge
th th

q q
f f

q q
−

= = −
−

,                (4-12) 

where edgef and screwf  are the fractions of edge and screw dislocations, respectively. 

By inserting the theoretical and experimental values of q into Eq. (4-12), the fraction 

of edge dislocation is approximately 46%, 44%, 37% and 41% in the 10Cr–5W steels 

with 0.02C, 0.03C, 0.09C and 0.13C mass%, respectively. It seems that the governing 

dislocation type does not depend on the carbon content. Even though the prevailing 

dislocation in lath martensite is mixed type, the screw dislocations exist more than the 

edge dislocations in each lath martensite steel sample. 

 

 

 

 

 

 

 

 

 
Fig. 4-6 Change in the parameter q with carbon content in low carbon 10Cr–5W steels. 
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The increase of Vickers hardness shown in Fig. 4-7 indicates that hardness in lath 

martensite increases not only with the dislocation density but also carbon content. 

This is consistent with that the high dislocation density is one of the reasons for 

strenthening the martensite phase with the increase of carbon content. 

 

 

 

 

 

 

 

 

4.5 Conclusions 

The dislocation density in 10Cr–5W steels containing 0.02, 0.03, 0.09 and 0.13C 

(mass %) was determined to be ~1014 by the XRD method. It was found that the 

dislocation density increased with the increase of carbon content. It is argued that the 

increases of the carbon content results in the increase of lattice parameters in the 

martensite phase (i. e., c/a). This change causes the increase of volume strain for the 

martensitic transformation, resulting in the increase of dislocation density. Although, 

the dislocation densities in present study are lower than the previous reports, the slope 

ρ 

 Fig. 4-7 Change in Vickers hardness with carbon content and dislocation

density in as-quenched low carbon 10Cr–5W steel. 
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of the linear relationship between dislocation density and carbon content in our study 

is consistent with Morito’s study. The prevailing dislocation character is mixed type in 

the lath martensitic steels with different carbon content, although the screw 

dislocations exist more than edge dislocations in each steel. Moreover, the hardness in 

lath martensite steel was also detected. It is found that the hardness increases not only 

with the increase of carbon content, but also with the increase of dislocation density. 

This result rightly verifies that the high dislocation density can enhance the strength in 

steels. 
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Chapter 5 

Morphological Observation of Lath Martensite in 

Fe-Cr-C Steels  

5.1 Introduction 

Lath martensite is a characteristic product in as-quenched steels with a low or 

negligible carbon content, such as plain low-carbon steels, low-carbon and low-alloy 

steels, maraging steels and interstitial free (IF) steels. The morphology of the lath 

martensite was investigated extensively by optical microscopy (OM) and transmission 

electron microscopy (TEM) [5-1~5-6]. The transformation of a parent austenite grain 

into lath martensite was characterized as a grain subdivision on different length scales 

to form the unique hierarchical structure in lath martensite. Firstly, the prior austenite 

grain breaks down to several packets, which are composed of parallel blocks. Each 

block is further subdivided by laths, which are narrow units with width in the 

sub-micrometer range. Since the strength and toughness of martensitic steels are 

strongly related to packet and block sizes [5-7], the characteristics of those 

substructures are of great importance. 

On the other hand, due to the increasing demands for the highly efficient power 

plants, the heat resistant ferritic steels have become more popular because of its lower 

thermal expansion coefficient and the higher resistance to thermal fatigue compared to 

the austenite steels. Recently, some kinds of heat resistant steels have been developed 

for the structural applications in the power plants [5-8, 5-9]. In such steels, there is a 
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common trend in their alloy compositions, where the carbon content decreases as well 

as the contents of chromium increases. Such a compositional modification of the 

steels could improve high tempreture creep strength and lath martensite phase always 

appears in such steels. The present investigation involves the morphology observation 

of the typical lath martensite in Fe-9Cr-(0.1, 0.2, 0.4) C mass% steels by OM and 

EBSD techniques. 

5.2 Experimental procedures 

A ternary Fe–9Cr–C steel containing 0.1, 0.2, and 0.4C (mass%) were prepared 

by austenization at 1373 K for 1h, followed by quenching into water and liquid 

nitrogen for 45 min to obtain a full martensite microstructure. Then they were 

tempered at 1043 K for 1 h. Their chemical compositions are listed in Table 5-1. The 

tempered steel samples were cut to a proper size and polished mechanically with 

emery papers down to #2000, followed by buff polishing with Al2O3 powders down to 

0.3 μm. After mechanical polishing, the specimens were etched by 5% HCI and picric 

acid solution for 8s and then the microstructures were observed by OM. For the EBSP 

observation, each specimen with different carbon content was etched with a 5% picric 

acid solution followed by the cross section polishing with a JEOL SM–09010 

machine. Finally, the crystal orientaion maps of lath martensite in Fe-Cr-C steels were 

obtained by the EBSP measurement. Kikuchi patterns obtained by the convergent 

beam method were analyzed by software for orientation determination. 
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5.3 Results and discussion 

5.3.1 OM observation 

    Fig. 5-1 shows the optical micrographs (OM) of lath martensite in Fe-Cr-C 

alloys with different carbon contents. In the 0.1C alloy (Fig. 5-1 (a)), large parallel 

blocks are seen in a packet with strong contrast. The 0.2C alloy, as shown in Fig. 5-1 

(b), also exhibits clear block structures, although they are slightly finer than the 

blocks in the 0.1 C alloy. In the 0.4C alloy (Fig. 5-1 (c)), blocks and packets are finer 

than those in the lower carbon alloys. In some areas, it is difficult to recognize blocks 

and packets in the optical micrograph. The substructures of lath martensite tangled 

with each other. These results are consistent with the results obtained by Morito’s 

study [5-6]. The specific packet or block of lath martensite cannot only be determined 

from the rough OM observation, whereas the microstructure refinement with the 

increase of carbon content was verified by the visual observation.  

 

Steel C P S Cr Al N O Fe 

Fe-Cr-0.1C 0.10 <0.003 0.0012 9.56 0.008 0.0014 0.0035 Bal. 

Fe-Cr-0.2C 0.21 <0.003 0.0016 9.00 <0.005 0.0012 0.0018 Bal. 

Fe-Cr-0.4C 0.39 <0.003 0.0016 8.94 <0.005 0.0013 0.0013 Bal. 

Table 5-1 Chemical compositions of Fe-Cr-C specimens (mass%). 
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5.3.2 EBSP observation     

Fig. 5-2 shows the crystal-orientation maps obtained by EBSP measurement in 

the Fe-Cr-C alloys with different carbon content. Generally, the EBSP maps are used 

to analyze the crystallography of the lath martensite. However, in the present study, 

we did not focus on the crystallography to distinguish the specific packet or block of 

lath martensite, but observed the morphology of the lath martensite to analyze the 

block size of lath martensite. The colored EBSP maps are processed to black-white 

maps to detect the blocks, where black represents the block boundaries and white 

represents the blocks. By inputting such maps into the Cos-Mos software, the average 

Fig. 5-1 Optical micrographs of lath martensite in a Fe-Cr-0.1C, 
(b) Fe-Cr-0.2C and (c) Fe-Cr-0.4C alloys. 

(a) (b) 

(c) 
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widths of the blocks of lath martensite in the Fe-Cr-C alloys were estimated 

automatically. In a similar manner, the block sizes of lath martensite in the alloys with 

different carbon content were obtained. The coloured maps in Fig. 5-2 (a) show the 

orientaion of laths in Fe-Cr-0.1C alloy. The long and narrow areas with different 

colour are taken as different blocks of lath martensite and each block contains 

sub-blocks with similar color contrast. Fig. 5-2 (b) shows the EBSP measurement in 

the Fe-Cr-0.2C alloy. The block width seems narrower than that in the Fe-Cr-0.1C 

alloy. But the different blocks with different orientations and each block containing 

sub-blocks in the same way as the Fe-Cr-0.1C were revealed by Fig. 5-2 (b). Fig. 5-2 

(c) shows the crystal-orientation map in Fe-Cr-0.4C alloy. Blocks are finer and more 

degenerate in comparision with those of the lath martensite in Fe-Cr-0.2C alloy 

shown in Fig. 5-2 (b). However, the presence of sub-blocks is still recognizable within 

a block. The EBSP maps also reveal that the microstructure of lath martensite 

becomes finer with the increase of carbon content, which corresponds to the OM 

observations. 
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Moreover, the EBSP maps are processed to realize the binarization, so that the 

black and white maps can be obtained as the inputting files for Cos-Mos softwarwe. 

Fig. 5-3 shows the black and white in Fe-Cr-0.2C steel as an example. Each narrow 

area shown in Fig. 5-3 is taken as a block of lath martensite phase. By inputting such 

files into the Cos-Mos siftware, each separated area is taken as a grain, i.e. the block 

of lath martensite, and the average block size was obtained automatically by counting 

all the blocks appearing in Fig. 5-3.  

 

 

 

 

Fig. 5-2 The crystal-orientation map measured by EBSP of (a) Fe-Cr-0.1C (b) 
Fe-Cr-0.2C and (c) Fe-Cr-0.4C alloys. 
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It is to be noted that the so-called block is a long and narrow area, which has 

width and length. In the present calculation, the each block area is converted to a 

circle and the radius of the circle is taken as the average block size. Considering the 

anisotropy of the crystal, for each alloy, three EBSP maps in the directions of ND, TD 

and RD are used to obtain the average block size as shown in Fig. 5.4. In this way, the 

block sizes in the alloys with 0.1C, 0.2C and 0.4C were estimated to be 11.39μm, 

5.92 μm and 4.30 μm, respectively. And the relationship between the block size and 

carbon content is plotted in Fig. 5-5. 

 

 

 

 

 

 

60μm 

Fig. 5-3 The black-white map of the block boundaries in Fe- Cr-0.2C alloy. 

Fig. 5-4 The skeleton of the polished specimens used for EBSP 
measurement. 

ND

TD 

LD

Polishing surface 
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5.4 Conclusions 

    The morphology and crystallography of lath martensite in Fe-Cr-C alloys with 

different carbon contents such as 0.1, 0.2 and 0.4 mass% were detected by means of 

OM and EBSP techniques. The phenomena that the microstructure of lath martensite 

becomes finer with the increase of carbon content is confirmed both from the OM 

observations and EBSP measurements. The block sizes of lath martensite in the alloys 

with 0.1C, 0.2C and 0.4C are evaluated to be 11.39μm, 5.92 μm and 4.30 μm, 

respectively. 

 
 
 
 
 
 
 
 
 

Fig. 5-5 The relationship between the block size and carbon content. 
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Chapter 6 

General Conclusions 

    This study aims to investigate the microstructure evolution in lath martensitic 

steels not only by the experimental tools but also by simulation model. For this 

purpose, high dislocation density and the hierarchical structure of lath martensite 

phase are studied in heat-resistant steels by carrying on a series of experiments. On 

the other hand, an elasto-plastic phase-field model is developed based on the two 

types of slip deformation (TTSD) model to predict the evolution of martensitic 

transformation. Moreover, the maximum dislocation density for the necessity of the 

formation of lath martensite phase in Fe-0.1C (mass %) steel is estimated from the 

simulation result. Finally, by comparing the experimental results with simulation 

results, it is found that they are well consistent with each other. The results obtained in 

each chapter are summarized as follows. 

In Chapter 2, the two types of slip deformation (TTSD) model was elaborated in 

details. By this model, the formation of the lath martensite phase is realized by the 

Bain deformation followed by plastic deformation along two independent slip systems 

without any adjustable parameters. In order to prove the validity of the TTSD model, 

the phase-field method was introduced to simulate the formation of lath martensite in 

Fe-0.1C mass% steel based on the TTSD model. The blocks and sub-blocks evolution 

of lath martensite were presented by the simulation. Moreover, it is found that the slip 

deformation along the two kinds of slip systems occur complementary with each other 
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in the lath martensite phase. It was found that the relationship of the degree of slip 

deformation between the two slip systems was well consistent with the analytical 

calculation by the TTSD model. The morphology of the growing process of lath 

martensite in 3-D space was also obtained by the simulation. All these results proved 

the validity of the TTSD model on explaining the formation of lath martensite and the 

usefulness of the phase-filed model as a powerful tool to predict the microstucture 

evolution in lath martensite phase. 

In Chapter 3, the maximum dislocation density of lath martensite in Fe-0.1C 

(mass%) steel was estimated from the average plastic strain obtained from the 

simulation results based on the TTSD model. The evaluated maximum dislocation 

density was 2.8 × 1015 m−2. This result was reasonable to be higher than the observed 

experimental dislocation density in value but to be the same in order. Therefore, the 

TTSD model is considered to be a reliable model to predict the dislocation density in 

lath martensite.  

In Chapter 4, the dislocation density in 10Cr–5W steels containing 0.02, 0.03, 

0.09 and 0.13C (mass %) was determined to be ~1014 by the XRD method. It was 

found that the dislocation density increased with the carbon content in lath martensitic 

steels. Even though our results are lower than the previous reports, the slope of the 

linear relationship between the dislocation density and carbon content in our study in 

consistent with the previous study. The prevailing dislocation character was mixed 

type in the lath martensitic steels with different carbon content, and the screw 

dislocations existed more than edge dislocations in each steel.  
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In Chapter 5, the microstruture of lath martensite in Fe-Cr-C alloys with different 

carbon contents such as 0.1, 0.2 and 0.4 mass% were detected by means of OM and 

EBSP techniques. It was found that the microstructure of lath martensite became finer 

with the increase of carbon content, which was consistent with the previous reports. 

On the other hand, the morphology and crystallography of lath martensite were 

observed from the coloured EBSP maps. Moreover, the block sizes of lath martensite 

in the alloys with different carbon content were estimated by image analysis. The 

analytic results also verified that the block sizes decreased with the increase of carbon 

content. 

Generally, the present study for the first time developed an elasto-plastic 

phase-field model based on the TTSD model to simulate the formation of lath 

martensite in 3-D space. This is helpful to understand the formation mechanism of 

lath martensite. At the same, the simulation results prove the validity of the TTSD 

model on explaining the formation mechanism of lath martensite and the power of 

phase-field model for microstructure prediction in materials. 
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