
PHD DISSERTATION

Realization of Multipoint Communication over the

Internet using XCAST

ODIRA Elisha Abade

Nagoya University

Graduate School of Engineering

Department of Computational Science and Engineering

September 2012

Realization of Multipoint Communication over the Internet

using XCAST

481067019 ODIRA Elisha Abade

Abstract

Multipoint communication protocols such as multicast can increase efficiency

of bandwidth utilization in the Internet. However, conventional multicast requires

maintenance of state-information in a router’s Multicat Forwarding Table(MFT).

This does not scale well for larger groups and has impeded multicast deployment.

Hence multicast variants for small groups have been proposed.

This dissertation is motivated by the fact that explicit multiunicast (XCAST)

has been proposed as a complementary protocol to conventional multicast. How-

ever, deployment of XCAST in the Internet currently is not easy because the current

routers cannot process its packet headers correctly. Furthermore, no studies have

been conducted on how QoS provisioning can be achieved in an XCAST network.

The first part of this work proposes an out-of-the-box component called “XCAST

Routing Engine”, that is connected to core routers and helps in processing of XCAST

packets. The second part proposes a QoS-aware XCAST (QS-XCAST) and shows

its implementation using a network simulator (OMNeT++). We further extend the

model to investigate the feasibility of integrating XCAST into the Locator Identifier

Separation Protocol (LISP) aimed at deployment in the Future Internet.

The XCAST Routing Engine provides a simple, efficient and cost-effective way

for incremental deployment of XCAST in the Internet. Performance evaluation of

the XCAST Routing Engine shows that XCAST processing does not incur heavy

penalty on routers. Using OMNeT++, empirical results show that XCAST QoS

provisioning using DiffServ provides efficient bandwidth utilization, better packet

forwarding fairness between XCAST and non-XCAST traffic, lower traffic load on

routers and elimination of collusion attack (“Good Neighbour Effect”).

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Research Problem . 6

1.3 Solution . 7

1.4 Contribution . 8

1.5 Dissertation Structure . 11

2 Background and Related Work 14

2.1 Overview . 14

2.2 Introduction . 15

2.3 Multipoint communication . 16

2.3.1 Multicast . 17

2.3.2 Multicast Deployment Issues 22

2.3.3 Explicit Multiunicast (XCAST) 23

2.3.4 History of XCAST . 25

2.3.5 Motivation behind XCAST . 26

2.3.6 Challenges in XCAST Deployment 28

2.4 QoS: Quality of Service . 31

2.4.1 Why Qos? . 32

2.5 QoS in Conventional Multicast and XCAST 33

i

2.5.1 QoS in Conventional Multicast 33

2.5.2 QoS in XCAST . 35

2.6 DiffServ: Differentiated Services Architecture 37

2.7 LISP: Locator/Identifier Separation Protocol 39

2.8 Related Work . 40

2.8.1 XCAST deployment . 40

2.8.2 XCAST QoS Provisioning using DiffServ 40

2.9 Summary . 41

2.10 Conclusion . 41

3 XCAST6 Routing Engine 42

3.1 Overview . 42

3.2 Introduction . 43

3.3 XCAST6 Header Structure . 44

3.3.1 XCAST6 Processing in routers 47

3.4 XCAST6 Deployment in the Internet 47

3.4.1 Using existing commercial routers 48

3.4.2 Using XCAST-aware routers 49

3.5 XCAST6 Routing Engine . 49

3.5.1 Implementation options . 49

3.5.2 Commercially supplied SDKs 50

3.5.3 Network processors . 51

3.5.4 External Software routers . 52

3.5.5 Factors to consider in the design 52

3.6 Identifying and filtering XCAST6 packets 53

3.7 Synchronizing Routing Tables . 55

3.7.1 Routing Table Synchronization using SNMP 56

3.7.2 Synchronization using NETCONF 57

ii

3.8 Forwarding of processed XCAST6 packets 58

3.9 Implementation . 59

3.10 Performance Evaluation . 59

3.10.1 Bandwidth Utilization . 60

3.10.2 Latency and Latency Distribution 62

3.10.3 Packet Loss . 64

3.10.4 Internal System Behaviour . 65

3.11 Related Works . 70

3.12 Conclusion . 71

4 Quantitative Simulation of XCAST6 Performance 72

4.1 Overview . 72

4.2 Introduction . 72

4.3 Simulation tool for XCAST6 . 74

4.3.1 OMNeT++ . 74

4.3.2 The INET Framework . 75

4.4 Implementing XCAST6 in OMNeT++ 77

4.4.1 Network Layer . 78

4.4.2 Transport Layer . 79

4.4.3 Application Layer . 80

4.4.4 Statistics collection . 80

4.5 Simulations . 81

4.5.1 Simulation scenario . 81

4.6 Performance Evaluation . 82

4.6.1 Node Stress . 82

4.6.2 End-to-End Delay . 86

4.6.3 Cost overhead rate . 87

4.7 Conclusion . 89

iii

5 Scalable QoS for XCAST using DiffServ Architecture 90

5.1 Overview . 90

5.2 Introduction . 91

5.3 XCAST6 QoS Provisioning with DiffServ 93

5.3.1 Problems in XCAST QoS Provisioning with DiffServ 94

5.3.2 Previous work on XCAST QoS provisioning 99

5.3.3 Existing Multipoint DiffServ Solutions 100

5.4 Scalable QoS-aware XCAST (QS-XCAST) 102

5.4.1 Proposed Solution . 103

5.4.2 Algorithms for the proposed solutions 105

5.5 Simulations and Results . 105

5.5.1 Simulation Model . 108

5.5.2 Average Throughput . 114

5.5.3 Average Per-hop delay . 115

5.5.4 Average Link Utilization . 117

5.5.5 Effect of the Group Size . 119

5.5.6 Scalability: Effects of the network scale 120

5.5.7 Impact on DiffServ Routers 122

5.5.8 Other effects of our solution 124

5.5.9 Further Discussion on Practicality 125

5.6 Conclusion . 127

6 Integrating XCAST with LISP 128

6.1 Overview . 128

6.2 Introduction . 128

6.2.1 The Locator/Identifier split concept 129

6.2.2 Implementing the Locator/ID Separation 130

6.3 More on LISP Protocol . 131

iv

6.3.1 LISP with Static Nodes . 132

6.3.2 LISP-Mobile Node . 133

6.3.3 Multicast in LISP . 134

6.4 Why XCAST on LISP . 134

6.5 LISP-XCAST Integration approaches 135

6.5.1 With No Modification to LISP infrastructure 136

6.5.2 With Modification on LISP infrastructure 140

6.5.3 With XCAST Group Server in the LISP Mapping System . . 142

6.6 Implementing LISP in OMNeT++ 145

6.6.1 The Network Layer Module 147

6.6.2 LISP Nodes . 148

6.7 Integration on LISP-MN . 149

6.7.1 Wireless Host6 . 150

6.7.2 LISP-MN . 150

6.7.3 WirelessRouter6 . 151

6.8 Evaluation . 151

6.8.1 Comparative average latency 151

6.9 Conclusion . 151

7 Conclusions and Future work 153

7.1 Conclusions . 153

7.1.1 XCAST6 Deployment in the Internet 155

7.1.2 QoS-Aware XCAST . 156

7.1.3 XCAST on LISP . 157

7.1.4 Summary of the appendices 158

7.2 Future Research Directions . 158

Appendices 160

v

Appendix A IP Mulitcast-DiffServ Integration 161

A.1 Integration Difficulties . 163

A.2 QoS Provisioning Approaches . 165

Appendix B State-based approaches 170

B.1 DiffServ Aware Multicast(DAM) . 170

B.2 QUASIMODO . 173

Appendix C Stateless Protocols 177

C.1 QS-XCAST (QoS Aware XCAST) . 178

C.2 DSMCast . 180

Appendix D Selective Approaches 183

D.1 Distributed Core Multicast (DCM) 183

D.2 QoS-Aware Multicast for DiffServ(QMD) 186

Appendix E Edge-based Approaches 188

E.1 Edge Based Multicast(EBM) . 188

E.2 MPLS Multicast Tree(MMT) . 190

Appendix F Aggregation protocols 193

F.1 Aggregated QoS Multicast(AQoSM) 193

F.2 Harmonic DiffServ . 195

F.3 Summary . 197

vi

List of Figures

1.1 Structure of the dissertation . 12

2.1 Multiple unicast versus multicast. 17

2.2 Multicast technology map . 18

2.3 The life cycle of a multicast session 20

2.4 XCAST6 version 2.0 header structure 29

2.5 Cascaded delivery of XCAST6 packets. 30

2.6 XCAST packet with “QoS extension header”. 37

3.1 XCAST6 version 2.0 header summary 44

3.2 XCAST6 version 2.0 Outer IPv6 header 45

3.3 XCAST6 version 2.0 Inner IPv6 header 46

3.4 XCAST6 version 2.0 Routing extension header 46

3.5 Inefficient XCAST processing in conventional network 48

3.6 Intel IXP420 Network Processor . 51

3.7 XCAST6 Routing Engine . 53

3.8 XCAST6 Policy routing on Juniper JUNOS 54

3.9 Routing instance for XCAST6 packets 55

3.10 XCAST6 Engine Virtual Interfaces 58

3.11 Throughput for Full frame rate to Frame rate/3 61

3.12 Throughput for Frame rate/4 to Frame rate/5 62

vii

3.13 Latency variation by packet transmission rate 63

3.14 Kernel Density Estimate for latency distribution 64

3.15 Context switches due to CPU bus I/O requests. 66

3.16 Context switches due to memory read/writes. 68

3.17 XCAST6 CPU Utilization . 69

3.18 XCAST6 system memory utilization 70

4.1 Simulation Model Network . 81

4.2 Average Node stress for a group of 70 nodes 83

4.3 Average Node stress for a group of 60 nodes (scenario one) 84

4.4 Average Node stress for a group of 60 nodes (scenario two) 85

4.5 Average Node stress for a group of 50 nodes 86

4.6 Average Node stress for a group of 40 nodes 87

4.7 End-to-End Delay . 88

4.8 XCAST6/Multicast cost overhead ratio 89

5.1 XCAST6 Packet delivery. 94

5.2 XCAST6 Network with heterogeneous QoS requirements 96

5.3 XCAST6 DSCP Confusion problem 97

5.4 XCAST6 Collusion Attack problem 98

5.5 XCAST links exhibiting the allowable DSCPs 99

5.6 A block summary of QoS-aware XCAST header 103

5.7 Model network for IPTV Service . 109

5.8 Implementation of DiffServ in model routers 111

5.9 Service Differentiation verification using a group of 30 receivers. . . . 113

5.10 Comparative average throughput . 114

5.11 Comparative average per-hop delay 115

5.12 Collusion attack example in a group of 6 hosts. 117

viii

5.13 Throughput values for a group of 6 hosts before and after class change. 118

5.14 Comparative average link utilization 119

5.15 Throughput for varying group sizes 120

5.16 Average per-hop delay for varying group sizes 121

5.17 QoS Provisioning in multiple DiffServ domains 122

5.18 Time taken to receive Resource Allocation Answer (RAA) message . 123

5.19 The impact of XCAST6 and QS-XCAST6 on DiffServ routers. 124

6.1 XCAST-LISP header structure with option one. 138

6.2 Sample network where no change is done to underlying LISP architecture139

6.3 Sample LISP network with XCAST aware xTRs 143

6.4 Sample network in which XCAST aware xTRs register with group server145

6.5 Sample network in which XCAST aware xTRs register with group server152

7.1 Putting it up altogether . 154

A.1 Different approaches to handling of multicast-state-information. . . . 163

A.2 An overview of QoS provisioning strategies. 164

B.1 Multicast Traffic in DAM. 171

B.2 DAM heterogenous QoS Example. 172

B.3 QUASIMODO Architecture. 175

C.1 XCAST6 overview . 179

D.1 DCM Architecture. 184

E.1 EBM Architecture. 189

F.1 AQoSM Tree Manager. 194

ix

List of Tables

3.1 Bandwidth utilization per frame rate 60

4.1 Summary of simulation scenarios . 82

5.1 Dynamic DSCP assignment algorithm 106

5.2 Receiver initiated QoS level assignment algorithm 107

5.3 Simulation Parameters . 108

5.4 DSCP allocation and Buffering schemes 110

5.5 DiffServ Metering and scheduling Parameters 110

5.6 Bandwidth Allocation for XCAST6 and QS-XCAST6 using 100MB . 126

6.1 Explanation of LISP-XCAST Packet structure 137

6.2 How an XCAST packet changes in figure 6.2 140

6.3 How an XCAST packet changes in figure 6.3 144

6.4 How an XCAST packet changes in figure 6.4 146

A.1 Broad classification of QoS provisioning approaches 166

A.2 Detailed Classification of QoS Provisioning approaches 166

A.3 Summary of the DiffServ-Multipoint Communication integration ap-

proaches. 167

x

List of Abbreviations

AF Assured Forwarding

ALM Application Layer Multicast

BE Best Effort

DiffServ Differentiated Services

DSCP DiffServ Code Point

ECN Explicit Congestion Notification

EF Expedited Forwarding

HBH Hop By Hop

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

IESG Internet Engineering Steering Group

IETF Internet Engineering Task Force

Intserv Integrated

IPv6 Internet Protocol Version 6

IRTF Internet Research Engineering Task Force

xi

ISM Internet Style Multicast

JUNOS Juniper Network Operating System

LISP Locator Identifier Separation Protocol

MIB Management Information Base

NETCONF Network Configuration Protocol

OID Object Identifier

OMNeT++ Object Modular Network Testbed in C++

OSI Open Systems Interconnection

PIM Protocol Independent Multicast

QoS Quality of Service

QS-XCAST QoS-aware Explicit Multiunicast

RFC Request For Comments

SAMRG Scalable Adaptive Multicast Research Group

SNMP Simple Network Management Protocol

SSH Secure Shell

UDP User Datagram Protocol

VLAN Virtual LAN

VoIP Voice over Internet Protocol

X2U XCAST to Unicast

XCAST Explicit Multiunicast

xii

Chapter 1

Introduction

The last decade has witnessed an explosion in Internet technologies and devices that

connect onto the Internet. While the initial form of the Internet was mainly for

research in academia and focused majorly on delivery of data packets, the Internet

has since evolved into a critical business tool, taking the center stage as a key tool for

delivery of multimedia content (audio and video data). This evolution has also come

with an expansive growth of the Internet both in terms of the number of users and the

number of Internet-based applications, some of which support life-critical operations

while others are very sensitive to packet loss and delay.

One of the dominant questions facing the Internet today is how to achieve imple-

mentation of applications on the Internet that are capable of meeting the needs of the

numerous users and their devices while keeping such implementations scalable to the

billions of the current and future users and the devices which are themselves, diverse

in their computing power. Several aspects have been proposed. Among them are two

approaches. The first is the use of multipoint communication technologies to ensure

scalable and efficient utilization of Internet resources. The second is to re-think the

architecture of the Internet into a “Future Internet architecture”.

Multipoint communication refers to the transfer of information among a set

1

of participants through distinct one-to-many communication channels. The channels

(paths) are from a single location to multiple end points. Multipoint communication

approach was popularized by the need for collaboration on the Internet and saw the

emergence of technologies such as multicast[1, 2] that could help minimize the number

of packets sent from a given source to multiple recipients.

The Future Internet can simply be defined as the Internet of “tomorrow”;

a multi-service Internet that will need to be more powerful, more connected, more

intuitive and more a part of our everyday lives, at home, at work and even on the

move. This Internet of services, things and infrastructure, will include everything

from smart appliances that talk to each other to clothes that monitor our health,

from cars that can’t crash to mobile technologies and cloud platforms that run our

businesses. Future Internet Architecture therefore refers to the structure and

organization of this all-pervasive system of things, services and infrastructure.

Multicast is a form of multipoint communication in which if N members par-

ticipate in a communication session then the sender sends data to all other remaining

members (R) of the session by transmitting only one data packet instead of (R)

copies of the same packet in any single transmission instance. The packet is then be

replicated by the routers to all of the (R) receivers.

Explicit multiunicast (XCAST)[3] is a variant of multicast aimed at delivery

of data within small groups and can enhance scalability since it can support a very

large number of small sized groups unlike the conventional multicast that can support

only a small number of large groups. In the conventional multicast[1, 2], a packet

carries a multicast address as a logical identifier of all group members. On the other

hand, in XCAST, the source embeds the list of destinations within the XCAST packet

header and then sends the packets to a router. The destination addresses are explicitly

specified as a list of unicast addresses in the packet header. Section 2.3.3 presents

a detailed explanation of how these addresses are embedded in an XCAST header,

2

how XCAST packets are processed by XCAST-aware routers and how the packets

are eventually delivered to their respective destination hosts.

Multipoint communication technologies such as multicast and XCAST are impor-

tant because they not only simplify collaboration for a group of users but also lead

to efficient utilization of network resources. They are therefore commonly used in

delivery of multimedia data. However, multimedia data are sensitive to factors such

as packet loss, jitter and delay. Their delivery on the Internet must be done within

acceptable constraints. Packet loss refers to the failure of data packets to arrive at

their intended destination in a communication network. Jitter on the other hand

refers to the deviation in or displacement of some aspect of the pulses of a digital

signal from their assumed true periodicity. These factors affect quality of communi-

cation in the network and therefore have direct impact on the user experience during

a communication session.

Traditionally, the concept of quality in networks meant that all network traffic

was treated equally. The result was that all network traffic received the network’s

best effort, with no guarantees for reliability, delay, variation in delay, or other perfor-

mance characteristics. With best-effort delivery service, a single bandwidth-intensive

application can result in poor or unacceptable performance for all applications. The

limits of delay, jitter and packet loss constitute factors often referred to as the Qual-

ity of Service (QoS). An exhaustive definition of Quality of Service (QoS) is given in

section 2.4. QoS provisioning refers to the concept of quality in which the require-

ments of some applications and users are more critical than others hence some traffics

receive preferential treatment but others only get normal (“best-effort”) treatment.

The ones that receive preferential treatment have a guarantee on the degree of avail-

ability (uptime), reliability, delay, jitter and other network characteristics required

for acceptable user experience.

The challenge with XCAST is that while it can be used to deliver data to multiple

3

receivers which themselves might exhibit varying QoS requirements, the data to these

numerours receivers is usually transported in the same XCAST packet. What makes

QoS provisioning in XCAST a non-trivial task is the fact that XCAST QoS provi-

sioning must ensure that numerous QoS levels can be supported within the same data

packet. This probably explains why there is no significant previous work on XCAST

QoS provisioning.

1.1 Motivation

This dissertation is motivated by two key facts. The first is that, despite XCAST

having been proposed for use in delivery of multimedia data in small groups like video

conferencing and online gaming, deploying XCAST in the Internet is not easy because

the current commercial routers do not have inbuilt XCAST processing capabilities.

The second is that no significant previous studies have been conducted on how QoS

provisioning can be achieved in an XCAST network. The other motivation is the

fact that research into the architecture of the Future Internet has picked up and it

is therefore imperative that any QoS provisioning for XCAST transcends beyond the

current Internet into the Future Internet architecture.

The work presented in this dissertation focuses on explicit multiunicast on IPv6

(XCAST6)[3, 4]. The dissertation presents a study on how XCAST6 can be in-

crementally deployed in the Internet using software routers we call XCAST6 Rout-

ing Engine[5, 6]. It then presents a comprehensive study of QoS provisioning in

XCAST6 using Differentiated Services (DiffServ) architecture[7, 8] and further in-

tegrates XCAST6 into LISP[9] protocol which is premised on the Future Internet

architecture where the Locators and Identifiers are in Separate address spaces.

Differentiated Services (DiffServ) architecture is a QoS provisioning mech-

anism that was specified by the Internet Engineering Task Force (IETF). DiffServ was

4

designed to provide the benefits of QoS without the scalability limitations. Instead of

dealing with QoS on a per-flow basis, it aggregates traffic with similar QoS require-

ments into classes of traffic. A comprehensive background of DiffServ architecture is

given in the appendices of this dissertation.

Location/Identifier Separation Protocol (LISP)[9] is a new protocol, cur-

rently under discussion at the IETF. It is aimed at solving the scalability issues of

the current Internet by separation of network location and identity spaces. There-

fore LISP is one of the protocols that are laying down the foundation for the Future

Internet. More details will be explained in section 6.3.

The first part of this work focuses on deployment of XCAST6 in the real world.

It proposes, implements and evaluates an out-of-the-box component referred to as

XCAST6 Routing Engine[5, 6] that is connected to core routers and helps in pro-

cessing of XCAST6 packets since current commercial routers are not XCAST6-aware.

When the core router receives an XCAST6 packet, it forwards the packet to the

XCAST6 Routing Engine for processing. Once an XCAST6 packet has been pro-

cessed by the XCAST6 Routing Engine, the replicated packets are sent back to the

core router for onward forwarding.

The second part of this work uses a network simulator (OMNeT++)[10, 11] to

investigate QoS provisioning in an XCAST6 network. The second part implements

both XCAST6 protocol and Differentiated Services architecture in OMNeT++. A

simulation model is then built that uses both XCAST and DiffServ. The model is

then used to conduct an extensive study on the QoS properties of XCAST6. As

empirically illustrated, the approach provides efficient bandwidth utilization, better

packet forwarding fairness between XCAST6 and non-XCAST6 traffic, lower traffic

load on routers and elimination of collusion attack(Good Neighbour Effect). The

study then extends the model to investigate the feasibility of integrating XCAST6

with LISP, aimed at deployment in the Future Internet.

5

The remaining sections of this chapter discuss the research problem, solution and

the contribution of the work presented in this dissertation. The chapter concludes by

presenting the organization of the remaining chapters of this dissertation.

1.2 Research Problem

The goal of this dissertation is the realization of multipoint communication over the In-

ternet using XCAST. This entails looking for a simple, cost-effective means of achiev-

ing the deployment of XCAST in the real world and also the provisioning of QoS

to applications running on XCAST. It further aims at ensuring that XCAST can be

deployed not only in the current Internet, but also in the Future Internet where the

location and identity namespaces are separated. In order to make this goal man-

ageable, we identified a number of sub-problems whose solution would lead to the

solution of the main problem. These include:

1. To investigate how XCAST6 can be deployed in the real world in today’s Inter-

net. Real world deployment would allow for testing of XCAST6 performance

with respect to various performance metrics on real routers and real applica-

tions.

2. To develop a platform in which large-scale testing of XCAST6 performance can

be done with the least resources available and within a short time.

3. To investigate how Quality of Service mechanism can be integrated into XCAST6

without extensively compromising XCAST6 performance. This mechanism

needs to put into consideration the fact that the current specification of XCAST6

header structure is already complex and is not supported by current commer-

cially available routers. Integrating QoS into XCAST6 should therefore be done

without further increasing the size of (or complicating) XCAST6 header.

6

4. To investigate how XCAST can be integrated with the Locator Identifier Sep-

aration Protocol (LISP) for both static LISP and LISP mobility using LISP

Mobile Node (LISP-MN).

1.3 Solution

First, we study the implementation of the existing versions of XCAST6 and deter-

mine how they can be deployed into the real networking environment. This involves

understanding why the existing XCAST6 implementations cannot be deployed in the

commercially available routers. We then propose how to bridge this deployment gap

by proposing a “soft-router” called XCAST6 Routing Engine.

Secondly, we seek to solve the next sub-problem by integrating XCAST6 into one

of the popular network protocol simulators. This is because an XCAST6 simulator

would help realize rapid and cost-effective investigation of various aspects of XCAST6.

However the current commercial and open source network simulators do not support

XCAST6 header structure and routing models. We therefore chose an open source

simulator, OMNeT++[11, 10] and implemented XCAST6 protocol into its IPv6 stack.

Having done this, we could then achieve a low-cost, rapid quantitative simulation of

XCAST6 performance.

Third, we integrate Quality of Service awareness into XCAST6 by integrating

XCAST6 protocol into Differentiated Services(DiffServ) Architecture. Integrating

XCAST6 into DiffServ is challenging due to inherent architectural differences be-

tween XCAST6 and DiffServ when used for QoS provisioning. We therefore define

algorithms for overcoming these architectural differences to ensure a smooth integra-

tion of the two. Our choice for the use of DiffServ for QoS provisioning in XCAST6

was informed by the realization that there is no significant previous attempt into

handling XCAST6 QoS provisioning and also by the fact that XCAST6 header is

7

complex for the current routers therefore any QoS approach should not add another

layer of complexity into XCAST6 processing.

1.4 Contribution

This work makes the following contributions:

1. A mechanism to achieve gradual deployment of XCAST6 in the real world. Cur-

rent commercial routers do not have the inbuilt capabilities for processing of

XCAST6 header. This is because XCAST6 header comprises of at least an

IPv6 header tunneled within another IPv6 header and also a routing extension

header where the destination addresses are embedded. Furthermore the com-

mercial routers do not have inbuilt XCAST6 processing algorithm hence there is

a need to have an “out-of-the-box” component that can understand and process

the XCAST6 headers effectively before forwarding the processed XCAST6 pack-

ets to the conventional routers for forwarding to their respective destinations.

To achieve this “out-of-the-box” solution, we implemented a soft-router we call

XCAST6 Routing Engine on FreeBSD[12] operating system which is then con-

nected to the core routers. When the core routers receive an XCAST6 packet,

they simply forward the XCAST6 packet to the XCAST6 Routing Engine which

does the XCAST6 processing of the header. Once the XCAST6 packet has been

processed in the Routing Engine, the processed packets are sent back to the core

router which then forwards them to their correct destinations.

2. An analytical understanding of the effect of XCAST6 performance on routers.

We evaluated the performance of the XCAST6 Routing Engine so as to un-

derstand the impact of XCAST6 processing on routers. This evaluation was

conducted by using DV video[13, 14, 15] traffic in an XCAST6 testbed and

then analysing the behaviour of the XCAST6 Routing Engine with respect to

8

various performance metrics such as average router load, CPU and Memory uti-

lization and also the internal system bevahiours such as the number of context

switches that a router’s CPU makes while processing XCAST6 packets.

3. A quantitative simulation of XCAST6 performance characteristics. In addition

to the real world deployment using XCAST6 Routing Engine, we also real-

ized that there is a need to have an environment where large scale testing of

XCAST6 performance could be done. Since the existing network simulators do

not have XCAST6 implementation, we chose to implement XCAST6 in OM-

NeT++. Using OMNeT++ simulator, we then conducted quantitative simula-

tion of XCAST6 performance with respect to metrics such as stress, end-to-end

delay, efficiency and packet processing overhead rate.

4. An extensive investigation of XCAST QoS provisioning using Differentiated Ser-

vices. By way of simulation using OMNeT++, we have conducted an extensive

study on QoS provisioning using Differentiated Services in XCAST6 networks.

We’ve dubbed our implementation as QS-XCAST6. Owing to the fact that

XCAST6 header is already complex for today’s commercial routers, we chose a

QoS provisioning method that will not add another layer of complexity onto an

XCAST6 header. Hence we used Differentiated Services for QoS provisioning.

However, Differentiated Services architecture was originally meant for unicast

communication hence its integration into a multipoint communication environ-

ment poses a lot of challenges. We proposed changes to XCAST6 processing

and also inclusion of DSCP classes within the IPv6 routing extension headers

in an XCAST6 packet. We then compared our proposal to both conventional

XCAST6 and unicast with respect to throughput, average per-hop delay, link

utilization, router traffic load and fairness to other protocols. We further in-

vestigated the effect of varying the number of receivers(group size) on these pa-

9

rameters under both QS-XCAST6[16, 17] and XCAST6. Since XCAST6 (and

by extension QS-XCAST6) is meant for Internet-wide usage, we also investi-

gated the effect of network scale on using our approach. We found out that

our proposal out-performs conventional XCAST6 in key areas such as efficient

bandwidth utilization and very fair packet forwarding behaviour to other non-

XCAST traffic.

5. An economical way of utilizing bandwidth resources while provisioning QoS for

real-time traffic. Our work also reveals that using the QoS aware XCAST6 (QS-

XCAST6)[16, 17] can be important in ensuring bandwidth economy by taking

advantage of the various bandwidth allocation thresholds for the different DSCP

classes. This results in a phenomenon we call QS-XCAST6 Gain (QXG) in

chapter 5 and the lower the ratio of realtime to non-realtime traffic, the higher

this gain for a network service provider.

6. A simple approach for mitigating collusion attacks that naive deployment of

XCAST6 can be vulnerable to. Networks in which different QoS levels of services

are offered and prices vary with the kind of Service Level Agreements(SLAs) are

at times called “pay-per-service” networks. Collusion attack is a vulnerability

problem in those “pay-per-service” networks whereby a subset of clients collude

to exploit vulnerabilities in the network implementation to pay substantially

less amounts for the best QoS services offered, leaving other clients and the

service provider unaware of the unfolding collusion. The other unaware users

actually end up to be the ones soldiering the cost of services enjoyed by the

colluding clients hence they are usually referred to as “Good Neighbours” and

the attack is also at times called “Good Neighbour Effect (GNE)”. In DiffServ

networks, GNE occurs when clients can exploit “DSCP confusion” problem in

routers; a phenomenon in which the network routers queue low priority DSCP

10

packets in the queues of higher priority DSCP classes. QS-XCAST6 solves this

problem by dynamically re-writing the DSCP field of all the copies of XCAST6

packets at every replication point and in each copy, it puts the best DSCP value

that satisfies all clients whose destinations are embedded in the XCAST6 header

without giving the packet unduly higher DSCP value.

7. Integration of XCAST6 with LISP Protocol that opens up research of XCAST6

for the future Internet. The final part of this work investigates on how XCAST6

can be used in LISP networks. This is an important aspect because LISP

protocol is one of the protocols that is expected to run the future Internet. We

looked at three possible approaches that can be used to integrate LISP and

XCAST6. We looked at the pros and cons of these approaches and settled on

one of them which we implement in OMNeT++ for evaluation purposes. We

further work on this using LISP Mobility architecture (through LISP Moblie

Node) to integrate XCAST6 Mobility and LISP-MN.

1.5 Dissertation Structure

The dissertation is organized into two parts. Part I deals with the implementation of

XCAST6 in the real world while part II deals with study conducted on a simulation

environment. The structure of the remaining sections of this dissertation is organized

as shown in figure 1.1. The chapters are marked with numbers within the ellipses.

Information in the dotted boxes indicate methods that were used to obtain data that

is presented in the corresponding section of the dissertation.

Chapter two presents the background study and some of the related work. We

elaborate on the concept of Quality of Service and multipoint communication. The

chapter further delves into the Differentiated Services architecture and gives a com-

parative study of previous attempts that have been made to provide Quality of Service

11

Figure 1.1: Structure of the dissertation

in multipoint communication environment using Differentiated Services. We study

up to ten different protocols and give a classification of the various approaches that

each of those protocols have attempted and explain why such approaches cannot be

feasible for XCAST integration.

Chapter three deals with the issue of deployment of XCAST6 in the real world.

We investigate the challenges faced with the current implementation of XCAST6 and

propose an XCAST6 Routing Engine to help in real world deployment of XCAST6.

XCAST6 Routing Engine is a software router implemented in FreeBSD operating

system which we then use together with a Juniper router to explore how this concept

can be used for gradual deployment of XCAST6. We also conduct performance eval-

uation of the XCAST6 Routing Engine with respect to a number of metrics in order

to understand how XCAST6 would impact the performance of commercial routers.

12

Chapter four delves on the Quantitative simulation of XCAST6 performance.

First it shows how an XCAST6 protocol is implemented in the open source of net-

work simulator, OMNeT++. Specifically, XCAST6 is implemented in the INET

Framework[18] of OMNeT++. Chapter four explains the changes made onto the

INET Framework to allow for integration of XCAST6 into the IPv6 stack of INET

framework. The implementation is then tested and used to quantitatively investigate

performance aspects of XCAST6.

Chapter five focuses on the scalable QoS-aware XCAST6(QS-XCAST6). First

it extends the work on chapter four by integrating the Differentiated Services ar-

chitecture into OMNeT++. Since OMNeT++ currently has only a single classifier,

our work introduces numerous classes that specifically handle DiffServ functionality

into OMNeT++. We then use the platform to conduct an extensive study on QoS

provisioning in XCAST6 using Differentiated Services. We compare the QS-XCAST6

with the typical XCAST6 when used to deliver QoS sensitive traffic such as IPTV

traffic. This chapter also focuses on the simplification of integration of XCAST6 with

DiffServ and further shows how QS-XCAST6 solves the problem of collusion attack

which naive application of XCAST6 could be vulnerable to. We empirically show that

QS-XCAST6 is efficient in bandwidth utilization and also offers a very good “packet

forwarding fairness” to other non-realtime protocols when used in QoS provisioning.

Chapter six on the other hand delves on how XCAST6 can be implemented onto

Locator Identifier Separation Protocol (LISP). This chapter also extends the work

of chapter three in that we implemented the LISP functionality onto OMNeT++.

We then use the simulator to investigate various options of integrating XCAST6 and

LISP.

Chapter seven concludes the dissertation and looks at some possible future re-

search directions in this area.

13

Chapter 2

Background and Related Work

2.1 Overview

Realizing multipoint communication over the Internet involves a number of factors.

These include ensuring simple, cost-effective solutions for deploying multipoint com-

munication technologies in the Internet. It also involves identifying how the multi-

point communication networks can show predictable behaviour in terms of availabil-

ity(uptime), bandwidth (throughput) and limited delay; usually known as “Quality of

Service (QoS)”. A simple definition of multipoint communication is the “transfer of

information among a set of receivers using distinct one-to-many channels”. There are

a lot of technologies that can be applied to achieve multipoint communication. Ar-

guably, the most common multipoint communication technology is “multicast”. This

chapter defines multicast, shows the various types of multicast and then explains the

difference between multicast and XCAST. The chapter further explores some of the

challenges that have beleaguered the deployment of both multicast and XCAST. Fi-

nally it gives a background on how Quality of Service (QoS) can be guaranteed in

both XCAST and multicast networks.

14

2.2 Introduction

The need for group and collaborative applications on the Internet saw the emergence

of multipoint communication technologies such as Internet Standard Multicast[1, 19,

20, 21] to provide efficient packet delivery thereby minimizing the consumption of

bandwidth. As the number of services and users on the Internet increases, so is their

diversity in terms of bandwidth, delay and jitter requirements. These requirements

are dependent on several factors like the media processing capabilities of the user de-

vices, the amount of bandwidth the users are capable of paying for and the contract

agreements with the ISPs. Therefore the Internet needs to employ mechanisms of en-

suring that each user’s requirements are appropriately met. This implies provisioning

of a varying levels of Quality of Service (QoS) to the users and applications.

Quality of Service(QoS) refers to a collection of networking technologies and

techniques, the goal of which is to provide a guarantee on the ability of a network to

deliver predictable results satisfying the users’ requirements. Specifically this relates

to network performance in terms of availability (or uptime), bandwidth (throughput),

delay(latency), packet loss and error rate. QoS provisioning involves not only ensuring

that the above performance metrics are within a user’s acceptable limits but also

prioritization of network traffic to serve users differently depending of their needs.

QoS is especially important for transfer of multimedia data in Internet appli-

cations such as IPTV, VoIP, real-time Internet games and even microprocessors[22].

QoS applies to nearly all aspects of data communication including service oriented ar-

chitectures in IP networks[23, 24, 25, 26], Ad hoc networks[27], optical networks[28],

scheduling[29] and routing in general[30, 31].

The tremendous growth of group communications and quality of service (QoS)-

aware applications over the Internet has accelerated the need for scalable and efficient

network support[32, 2, 33, 34, 35]. Therefore enforcing a single QoS provisioning

strategy might not work. This becomes even harder in multipoint communication

15

where data to multiple recipients is sent out in only a single packet.

In the sections that follow, we give a detailed background of both multicast and

XCAST technologies. We then explore the challenges facing bothe their deployment

in the Internet and QoS provisioning for application running on top of them. We

further enumerate attempts that have been made to overcome these challenges under

multicast and then delve on why the multicast-oriented approaches for both deploy-

ment and QOS provisioning cannot be applied for XCAST. How these can be realized

for XCAST are then discussed in details in later chapters of this dissertation.

2.3 Multipoint communication

Multipoint communication refers to the transfer of information among a set of partic-

ipants through distinct one-to-many communication channels. The channels (paths)

are from a single source (the sender) to multiple end points (receivers). This kind of

communication can be achieved mostly in two ways:

i. Repeatedly unicasting: In which the source sends out copies of the same

packet repeatedly to all the receivers as shown in figure 2.1(a). This can be done

possibly in a round-robin pattern amongst all the participants in the session.

ii. Through multicast technology: In this case the source sends out only one

packet as shown in figure 2.1(b). However the packet gets replicated within the

routers in the network so that each participant receives a copy.

Multicast technology is efficient in terms of bandwidth utilization because only

one packet is sent out. Figure 2.2 gives an illustration of multicast-based technologies

in multipoint communication. It first classifies the technologies based on the type of

group sizes they support and then on how they are implemented; whether at router

level or at application level.

16

(a). Multiple unicasts of the same packet.

(b). Multicast. Only one packet is sent out.

Figure 2.1: Multiple unicast versus multicast.

IP multicast, usually considered the Internet Standard Multicast has several pro-

tocol implementations. Application Layer Multicast (ALM) is usually implemented

in overlay networks and a number of protocols and approaches have been proposed.

XCAST on the other hand is for small groups and has a unique address encoding

features that makes it fall in its own class. Figure 2.2 is by no means exhaustive in

illustrating the multicast variants. The subsequent sections give an elaborate descrip-

tion of multicast technology. We discuss the key concepts in multicat technology and

the various multicast QoS provisioning approaches.

2.3.1 Multicast

Multicast, the ability to efficiently send data to a group of destinations was first

proposed by David Cheriton and Stephen Deering in 1985. They proposed what

became known as the Host Group Multicast model[2]. Multicast[1, 2], is a form of

17

Figure 2.2: Multicast technology map

multipoint communication in which if N members participate in a communication

session then the sender sends data to all other remaining members (R) of the session

by transmitting only one data packet instead of (R) copies of the same packet in any

single transmission instance. The packet is then be replicated by the routers to all

of the (R) receivers. However replication takes place only at points in the network

routers where branching occurs in the delivery path. See figure 2.1(b).

Multicast technology is itself divided into several variants. We look at the “Host

Group Model” of IP multicast in the next section and briefly mention other multicast

variants too.

18

Host Group Model

The difference between multicasting and separately unicasting data to several desti-

nations is best explained using the “host group model”[2]. In this model, a host group

is a set of network entities sharing a common identifying address, called a multicast

address. All the entities receive any data packets addressed to this multicast address

by the senders (sources). The senders may or may not be members of the same group

and might be having no knowledge of the groups’s membership. This means that

from the sender’s point of view, this model reduces the multicast service interface to

a unicast one. Thus, the multicast model was proposed to reduce the many unicast

connections into a multicast tree for a group of receivers. A “group” can therefore be

loosely defined as a set of entities participating in communication within a specified

session. A “member” of a group refers to an individual entity participating in the

communication session.

Multicast group life cycle

Usually the lifetime of a multicast group comprises of four main steps as summarized

in figure 2.3. These include:

i. Multicast group (session) creation: This is the first step in initiation of a

multicast session. It involves assigning a unique address to the multicast group

such that the data of one group does not conflict with the other groups. Both

multicast groups (sessions) and addresses have associated lifetimes.

ii. Multicast tree construction with resource reservation: After creating the

groups, the next step is the construction of a multicast distribution tree. The

tree begins from the root (usually the source node) and spans a number of nodes

to the receivers, which mostly form the leaves. This is usually a complex process

and involves application of a number of multicast tree construction algorithms.

19

iii. Data transmission: After successfully executing the two previous steps, data

can be transmitted in the multicast session. Other activities such as session

control, failure handling and tree re-arrangement (for QoS assurance) also occur

in this stage.

iv. Multicast session teardown: When the session’s lifetime elapses, the source

begins the teardown process. Session teardown involves releasing the resources

reserved for the session along all of the links of the multicast tree and purging

all session-specific routing table entries. The multicast group address is then

released and this marks the completion of the teardown process.

Figure 2.3: The life cycle of a multicast session

Types of Multicast groups

Multicast groups can be classified based on a number of characteristics they exhibit.

Usually, the behaviour of a multicast group is unrestricted and can be looked at

from multiple perspectives. Groups may have local (e.g. LAN) or global (WAN)

20

membership. They may be transient or persistent in time and may as well have

constant or varying membership. Based on these, multicast groups can be classified

as:

• Dense: These are groups which have members in most of the links or subnets

in the network.

• Sparse: Groups which have members only in a small number of widely sepa-

rated links or subnets.

• Open: The sender (source) needs not to be a member of the group before they

can send to other group members.

• closed: Groups which allow only members to send to the group.

• Permanent: Groups which exist for a longer duration of time. Usually assumed

to last “forever”.

• Transient: Groups that exist only for a short period of time.

• Static: Groups whose membership remain constant in time;

• Dynamic: Groups which allow members to join/leave at anytime in the course

of the group’s lifetime.

Other variants of multicast protocol include: Internet Standard Multicast (ISM)[1,

19, 20, 21], Application Layer Multicast(ALM)[36, 37, 38], Protocol Independent

Multicast(PIM)[39, 40] and Source Specific Multicast(SSM)[41] among others. ISM

uses a range of protocols such as Reverse Path Forwarding(RPF)[42, 43], Router

Group Management Protocol (RGMP)[44], Bidirectional PIM (Bidir-PIM)[45] and

Pragmatic General Multicast (PGM)[46] to control flow of packets within a network.

21

2.3.2 Multicast Deployment Issues

Deployment of multicast at router level in the Internet has been plagued by numerous

challenges among them:

i. State scalability problem: Multicast routing state does not scale well. Multi-

cast routing protocols exchange messages that create state for each source, group

pair, “commonly denoted as (S,G) pair” in all the routers that are part of the

point-to-multipoint tree. This can be viewed as ”per flow” signaling that creates

multicast connection state, possibly yielding huge multicast forwarding tables

(MFTs). Routers need to keep states “per-group” and in some multicast vari-

ants, “per-group, per-source” information must be maintained. A large number of

groups results in a large number of state information to be stored by the routers.

This translates to larger memory requirements and a slower packet forwarding

rate.

ii. Per-session signaling: For every multicast session, a lot of signaling has to be

done in order to know members of the group who are still actively participating

in the session. For large groups, this can lead to exchange and maintenance of a

lot of information that eventually may lead to router overload.

iii. Complex tree construction algorithms: Constructing optimal multicast tree

is complex and involves application of complex algorithms and tree data struc-

tures. For a static multicast group, determining the optimal tree has been mod-

eled as Steiner tree problem[47] which is known to be NP-complete.

iv. Difficulty in QoS provisioning: QoS guarantee in multicast has been found to

be difficult[48]. This is especially true in instances where different members of a

group require different levels of QoS. This is called QoS heterogeneity. Implying

that a single QoS provisioning mechanism can hardly satisfy all members with

heterogeneous QoS requirements.

22

v. Multicast address scope: Multicast group address must be unique in the scope

where multicast is deployed. In most cases multicast applications are required to

be used all over the Internet. This implies the scope is global. It is difficult to

guarantee a globally unique multicast address since the multicast address ranges

are well known and any organization can pick an address from that range.

vi. Destination unawareness: When a multicast packet arrives in a router, the

router can determine the next hops for the packet, but knows neither the ultimate

destinations of the packet nor how many times the packet will be duplicated later

on in the network. This complicates QoS provisioning, especially when used with

DiffServ scheme where resource allocation per link is of ultimate importance.

Usually this leads to a problem called Neglected Reservation Subtree (”NRS”)[49].

It also complicates the security, accounting and policy functions.

vii. Source advertisement: Multicast routing protocols provide a mechanism by

which members get ’connected’ to the sources for a certain group without knowing

the sources themselves. In sparse-mode protocols[50, 51], this is achieved by

having a core node, which needs to be advertised in the complete domain. On

the other hand, in dense-mode protocols[52] this is achieved by a “flood and

prune” mechanism. Both approaches raise additional scalability issues.

To solve the scalability problems of multicast, a new variant of XCAST targeting

groups with very few members was proposed. This is called explicit multiunicast

(XCAST).

2.3.3 Explicit Multiunicast (XCAST)

The 1998 IAB Routing Workshop[53] came to the conclusion that “providing for many

groups of small conferences (a small number of widely dispersed people) with global

topological scope scales badly given the conventional multicast model”. This led to

23

an implication that two kinds of multicast seem to be important; a broadcast-like

multicast that sends data to a very large number of destinations and a “narrowcast”

multicast that sends data to a fairly small group[54]. An example of the first is

the audio and video multicasting of a presentation to all employees in a corporate

Intranet. An example of the second is a videoconference involving three or four

parties. It seems prudent to use different mechanisms for these two cases because a

“one size fits all” protocol will be unable to meet the requirements of all applications.

Explicit Multiunicast (XCAST), is a multicast scheme with complementary scal-

ing properties to those of the conventional IP multicast; XCAST supports a very

large number of small multicast sessions while IP multicast only scales well in terms

of members in a group but not for a large number of groups. XCAST achieves this

by explicitly encoding the list of destinations in the data packets, instead of using a

multicast group address.

XCAST takes advantage of one of the fundamental tenets of the Internet “philos-

ophy”, namely, that one should move complexity to the edges of the network and keep

the core network simple. This is the principle that guided the design of IP and TCP

and it is the principle that has made the incredible growth of the Internet possible.

In XCAST, the source embeds the list of destination in the XCAST header and

then sends the packets to a router. The destination addresses are explicitly specified

as a list of unicast addresses in the packet header. A bitmap is then used to keep

track of the set of addresses to which data has been sent and the other set to which

data has not been sent. Each router along the way parses the header, partitions

the destinations based on each destination’s next hop and forwards a packet with

an appropriate header to each of the next hops. When there is only one destination

left, the XCAST packet can be converted into a normal unicast packet which can be

unicasted along the remaining portion of the route. This is called XCAST to Unicast

(X2U).

24

2.3.4 History of XCAST

While active research in XCAST seems to have picked in late 1990s, it is interesting to

note that the idea of XCAST had been in existence for sometime. However the three

groups[54, 55, 56] that independently re-invented it actually did not know this. The

first proposal of the multicast concept in the Internet community, by Lorenzo Aguilar

in his 1984 SIGCOMM paper[57] proposed the use of an explicit list of destinations.

At about the same time (precisely 1985), David Cheriton and Stephen Deering devel-

oped the concept of Host Group model[2]. Since Aguilar’s proposal seemed to have

serious scaling problems, the Host Group model[2] was adopted. This was even un-

derstandable considering the fact that the Internet of 1985 must have been extremely

smaller than that of today.

In late 1990s, Rick Boivie and Nancy Weldman of the IBM Watson Research

Center began research on “Small Group Multicast (SGM)”[54]: a multicast scheme

in which the source node keeps track of the destinations that it wants to send packets

to and creates packet headers that contain the list of destination addresses. At about

the same time, Dirk Ooms and Wim Livens of Alcatel Corporate Research Center

in Belgium were working on a similar concept which they called “Connectionless

Multicast”[55]. Yet again within the same time span, extensive research on IPv6 was

going on and Yuji Imai of Fujitsu laboratory in Japan began to work on how to realize

multicast on IPv6 for small groups. His work was called “Multiple Destination option

on IPv6(MDO6)”[56].

These three independent pieces of work were presented to the IRTF and formed

part of the Sclable Adaptive Multicast Research Group (SAMRG) working group.

The harmonization of these pieces of work resulted in the new name “XCAST”. A

lot of research was conducted and a series of Internet Drafts written which later in

the 2007 resulted into the XCAST RFC document, RFC5058[3]. The research has

continued in XCAST since then. XCAST concept and options as described in the

25

RFC document[3] forms the basis of version 1.0 of XCAST on IPv6. This has been

extended by proposals in the draft document[4] to form the basis of XCAST6 version

2.0. To address efficient routing of XCAST6, we have also written an Internet draft

document[5] proposing the XCAST6 Routing Engine. This dissertation looks at not

only the XCAST6 Routing Engine but also goes further into the QoS provisioning

in XCAST and the feasibility of integrating XCAST with LISP for use in the future

Internet.

2.3.5 Motivation behind XCAST

XCAST was founded on the philosophy that, routers in the core network should not

have to keep track of a large number of individual multicast flows. This is one of the

fundamental tenets that have allowed for the expansive growth the Internet has seen

since its invention; that is, “one should move complexity to the edges of the network

and keep the middle of the network simple”. It is the same principle that guided the

design of TCP/IP.

One advantage of multicast schemes is that they can be used to minimize band-

width consumption. XCAST also can be used to minimize bandwidth consumption

for ”small groups”. But it has additional merits. XCAST eliminates the per-session

signaling and per-session state information of traditional IP multicast schemes. This

allows XCAST to support very large numbers of multicast sessions. This scalability

is important since it enables important classes of applications such as IP telephony,

videoconferencing, collaborative applications, networked games, etc., where there are

typically very large numbers of small multicast groups. Compared to traditional IP

multicast, XCAST has the following advantages:

i. No multicast address allocation required. XCAST uses unicast routing

table for transfer of data packets.

ii. No state maintenance. Routers do not have to maintain state per session

26

(or per channel). This makes XCAST very scalable in terms of the number of

sessions that can be supported since the nodes in the network do not need to

disseminate or store any multicast routing information for these sessions.

iii. No single point of failure: Unlike the shared tree schemes, XCAST does not

depend on a “core node” whose failure impacts the entire network. XCAST also

minimizes network latency and maximizes network “efficiency”.

iv. No multicast protocols. XCAST does not need multicast routing protocols

(neither intra- nor inter-domain). XCAST packets always take the “right” path

as determined by the ordinary unicast routing protocols.

v. Heterogeneous receivers. In an XCAST packet, besides the list of destina-

tions, a list of Diffserv Code Points (DSCPs) could also (optionally) be contained.

While traditional IP multicast protocols have to create separate groups for each

service class, XCAST incorporates the possibility of having receivers with differ-

ent service requirements within one multicast channel.

vi. Reliability: XCAST allows for a simple implementation of reliable protocols on

top of it. This is because XCAST can easily address a subset of the original list

of destinations to do a retransmission.

vii. No need for Symmetric paths. If a path between two nodes A and B is both

the shortest path from A to B as well as the shortest path from B to A, the path

is said to be symmetric. Traditional IP multicast routing protocols create non-

shortest-path trees if paths are not symmetric. In XCAST routing is efficient with

or without symmetric paths. Symmetric paths are therefore not required. It is

expected that an increasing number of paths in the Internet will be asymmetric in

the future due to traffic engineering and policy routing. Therefore the traditional

IP multicast schemes will result in an increasing amount of suboptimal routing.

viii. Automatic re-routes and failure recovery. Route changes can occur due

27

to node failure or link congestion among other factors. XCAST reacts immedi-

ately to unicast route changes. In traditional IP multicast routing protocols, a

communication between the unicast and the multicast routing protocol needs to

be established. In many implementations, this is on a polling basis, yielding a

slower reaction to, e.g., link failures. It may also take some time for traditional

IP multicast routing protocols to recover from failures if there is a large number

of groups that need to be fixed.

ix. Unicast Traffic Engineering. XCAST packets can make use of traffic-engineered

unicast paths.

x. Easy security and accounting. In contrast with the Host Group Model, in

XCAST all the sources know the members of the multicast channel, which gives

the sources the means to, for example, reject certain members or count the traffic

going to certain members quite easily. Not only a source, but also a border router

is able to determine how many times a packet will be duplicated in its domain.

It also becomes easier to restrict the number of senders or the bandwidth per

sender.

2.3.6 Challenges in XCAST Deployment

Despite all the benefits of XCAST, its deployment has been faced with challenges

stemming mainly from:

i. Header structure: XCAST header comprises of tunneled IP headers as shown in

figure 2.4. This complicates its processing.

ii. Processing algorithm: Currently available commercial routers do not understand

XCAST processing algorithm.

28

Header structure

An ordinary XCAST6 header comprises of two IPv6 headers, an IPv6 routing exten-

sion header and a transport header (usually UDP for multimedia applications). The

list of destinations is embedded within the IPv6 routing extension header. A simple

header of XCAST on IPv6 (XCAST6) that uses UDP as a transport protocol is shown

in figure 2.4.

Figure 2.4: XCAST6 version 2.0 header structure

Therefore XCAST6 version 2.0 uses an “IP within IP tunneling” to enable routing

of XCAST6 packets within the network. Tunneling is used so that nodes that are not

XCAST6 capable can simply forward the packet as if it were an ordinary IPv6 packet

based on the information they read on the outer IPv6 (semi-permeable tunneling)

header.

Since the existing commercial routers are not XCAST-aware, they will simply

pass the XCAST6 packets without proper processing. This leads to XCAST6 packets

being processed only at the end hosts which are XCAST aware. Such a scenario leads

to inefficient XCAST processing as shown in figure 2.5(a). In figure 2.5(a), XCAST6

packets are delivered in a cascaded manner from one end host to another instead of

being partitioned in the branching routers as required. This leads to several hops

(10 hops for node E)and the resulting delay is likely to affect communication quality

considerably. Proper processing in routers is shown in figure 2.5(b) in which packets

are replicated and forwarded almost concurrently from each branching router.

29

(a). Inefficient processing of XCAST packets at end-hosts.

(b). Proper processing of XCAST packets in routers.

Figure 2.5: Cascaded delivery of XCAST6 packets.

Processing algorithm

XCAST aware routers and hosts know that XCAST destinations are embedded within

the IP packet and there are bitmaps that determine how copies of the packet are to

be delivered. This implies that XCAST processing is usually different from that of

ordinary packets. When an XCAST packet is received by an XCAST aware node, the

node applies the XCAST processing algorithm, whereby the node:

i. Performs a route table lookup to find the next hops for each of the destinations

listed in the XCAST packet

30

ii. Partitions the set of destinations based on their next hops

iii. Replicates the packet so that there is only one copy of the packet for each of the

next hops that had been determined in the previous steps.

iv. Modifies the list of destinations in each of the copies so that the list in the copy for

a given next hop includes just the destinations that ought to be routed through

that next hop.

v. Sends the modified copies of the packet to each of the next hops.

vi. If there is only one destination left for a particular next hop, the router can further

take an optimization step in which the XCAST packet is sent as a standard

unicast packet in a process called XCAST to Unicast (X2U).

XCAST deployment in the Internet is therefore seriously jolted by the fact that

the routers currently installed in the Internet are not XCAST capable and cannot fol-

low the XCAST processing algorithm. Therefore a need arises for finding mechanisms

on how this efficient XCAST6 processing can be achieved so as to realize effective de-

ployment of XCAST6 on the Internet. This forms the basis of reseearch in chapter 3

of this dissertation.

2.4 QoS: Quality of Service

Quality of Service (QoS) is a set of technologies for managing network traffic in

a cost effective manner to enhance user experience. QoS technologies enable the

measurement of bandwidth utilization, detection of changing network conditions (such

as congestion or availability of bandwidth), and prioritization or throttling of network

traffic. For example, QoS technologies can be applied to prioritize traffic for latency-

sensitive applications (such as voice or video) and to control the impact of latency-

insensitive traffic (such as bulk data transfers). The goal of QoS is therefore to provide

31

preferential delivery service for the applications that need it by ensuring sufficient

bandwidth, controlling latency and jitter, and reducing data loss.

The Internet Engineering Task Force (IETF) defines two major models for QoS

on IP-based networks: Integrated Services (Intserv)[58] and Differentiated Services

(Diffserv)[7, 8]. These models encompass several categories of mechanisms that pro-

vide preferential treatment to specified traffic including:

i. Admission control : Determines which applications and users are entitled to net-

work resources. These mechanisms specify how, when, and by whom network

resources on a network segment (subnet) can be used.

ii. Traffic control : Regulates data flows by classifying, scheduling, and marking

packets based on priority and by shaping traffic (smoothing bursts of traffic by

limiting the rate of flow). Traffic control mechanisms segregate traffic into service

classes and control delivery to the network. The service class assigned to a traffic

flow determines the QoS treatment the traffic receives.

The Intserv model integrates resource reservation and traffic control mechanisms

to support special handling of individual traffic flows. The Diffserv model on the

other hand uses traffic control to support special handling of aggregated traffic flows.

2.4.1 Why Qos?

QoS provides the following benefits:

i. Gives administrators control over network resources and allows them to manage

the network from a business, rather than a technical, perspective.

ii. Ensures that time-sensitive and mission-critical applications have the resources

they require, while allowing other applications access to the network.

iii. Improves user experience.

32

iv. Reduces costs by using existing resources efficiently, thereby delaying or reducing

the need for expansion or upgrades.

2.5 QoS in Conventional Multicast and XCAST

Group based applications not only require scalable and efficient network support but

also have stringent QoS requirements in terms of throughput, end-to-end delay, delay

jitter, and error rate. QoS provisioning therefore plays an important role in realiz-

ing an acceptable multipoint communication scheme. There have been approaches

applied to QoS provisioning in multicast but due to the inherent differences between

multicast and XCAST in how members of a session are handled, these multicast-

oriented approaches cannot fit well for XCAST. In the sections that follow, we look

at how QoS is handled in both multicast and XCAST.

2.5.1 QoS in Conventional Multicast

Multicast technologies can reserve resources along the multicast tree as a way of

ensuring that QoS requirements are met. Resource reservation can thus be achieved

by protocols such as RSVP[59]. However, such protocols do not determine the path

hence a poor path choice will still impact negatively on the QoS of the multicast

group. It is the responsibility of the multicast routing protocol to determine that

path. QoS provisioning in multicast can therefore be achieved through the following

approaches:

i. QoS-aware routing.

ii. Tree rearrangement.

iii. Core/tree migration.

iv. DiffServ-aware multicasting.

33

QoS-aware routing

Multicast routing protocols can be classified as either source-based protocols or center-

based protocols. The source-based approach uses a shortest path tree (SPT) rooted

at the sender/source. In SPT, each branch of the tree is the shortest path from the

sender to each group member. The shortest path (in hops) is usually the shortest

delay path. Hence the receivers in the multicast tree typically receive excellent QoS.

In the converse, source-based trees introduce scalability problems for large networks.

This is because each individual receiver must have a shortest path from source to

receiver. The shortest path provides additional performance (better QoS) at the cost

of network resources.

The center-based protocols are also known as shared-tree protocols. They con-

struct a multicast tree spanning the members whose root is the center or core node.

These protocols are highly suitable for sparse groups and scalable for large networks.

However they provide excellent bandwidth conservation at the cost of QoS to the

receivers.

Tree rearrangement

The tree rearrangement mechanism is a means to achieve balance between the goal

of reduction of the cost of QoS provisioning and the disruption of a multicast session.

The group dynamic events of join and leave can disrupt an ongoing multicast session.

However it is important to ensure that the multicast tree after member join/leave will

still remain near optimal and satisfy the QoS requirements of all on-tree receivers.

One way to handle dynamic member join/leave is by reconstructing the tree every

time a member joins or leaves the session. This involves migration of on-tree nodes

to the new tree, which may result in a large service disruption that may not be

tolerable, especially by QoS multicast sessions. Another approach is by incrementally

changing the multicast tree through the graft/prune mechanism. This incremental

34

change approach suffers because the quality (e.g., tree cost) of the tree maintained

may deteriorate over time. Tree rearrangement takes into account two important and

possibly contradicting goals of: cost reduction and minimization of service disruption.

Core/tree migration

In center-based multicast routing protocols, core selection is important because the

location of the core influences the tree cost and delay. The quality of the tree based on

the current core may deteriorate over time due to dynamic join and leave of members.

The maintenance of a good-quality multicast tree requires online selection of a new

core, online construction of a multicast tree based on the new core, and migration of

the members from the old multicast tree to the new one. This way the quality of the

session is maintained.

DiffServ-aware multicasting

Another approach to multicast QoS provisioning is to integrate multicast with the

Differentiated Services (DiffServ) Architecture. This is usually not an easy task since

DiffServ specifications were aimed at unicast communication. Additionally, DiffServ

specification conflict with multicast QoS in a number of ways especially, the Diff-

Serv requirement of a stateless core network yet multicast involves maintenance of

state-information in routers. In section 2.6 we shall introduce key components of the

DiffServ architecture. A detailed discussion of multicast-DiffServ integration chal-

lenges and approaches aimed at solving the challenges is presented in the appendices

section of this dissertation.

2.5.2 QoS in XCAST

QoS research in XCAST is generally an unexplored field; characterized by lack of

significant previous work. Through literature review, we have been able to find only

35

two pieces of work in XCAST QoS[60, 61]; both of which have been published by the

same research team. In[60], Siregar et al, also acknowledge the lack of previous work

in XCAST QoS research.

Nonetheless, the work by Siregar et al, published in[60] seems to only enumerate

the available QoS routing techniques for unicast and multicast. They simply suggest

that per-packet dynamic routing for unicast can be used in XCAST but they fail to

show how this dynamic routing should be adopted for XCAST. On the other hand, in

[61], they propose a new modified IPv6 extension header which they call “IPv6 QoS

header” which should be used in holding a QoS value for an XCAST packet. The

QoS value is to be calculated by routers based on the number of users underneath

a router, total users requesting the video streams and the available priority levels.

These values further depend on some probability assignment and prioritization based

on the QoS levels. However, the work is not clear on how the priority and probability

values are to be calculated and allocated.

The approach proposed in[61], therefore has two glaring challenges:

i. Processing overhead costs. Calculation of the probability and priority values

incur additional processing cost. Moreover, the router also has to calculate the

users beneath it who are participating in the current session and also the total

number of users in the session. This increases computational complexity.

ii. Longer packet header. Adding a new extension header implies that the

XCAST packet will have two IPv6 headers (inner and outer), two routing ex-

tension headers (for list of destinations and for QoS), transport header and a

payload header as shown in figure 2.6. Compare this to the header shown in

figure 2.4. The implication here is that even if all these headers are fit into one

XCAST packet, the space left for payload data is too small. The packet will only

carry a small amount of data which in itself might impact the QoS. Additionally,

a longer header might be too large for the usual MTU in routers which leads to

36

IP Fragmentation problems.

Figure 2.6: XCAST packet with “QoS extension header”.

In chapter 5, we propose to leave the XCAST header as specified in the XCAST

RFC[3] but use DiffServ architecture for QoS provisioning. This proves to be simpler

and adds no severe processing overheads to the routers.

2.6 DiffServ: Differentiated Services Architecture

DiffServ architecture[7, 8, 62, 63] was specified by the IETF and defines an architec-

ture for implementing scalable service differentiation in the Internet. A comprehensive

background of DiffServ architecture is given in the appendices of this dissertation. The

primary goal of DiffServ was to provide the benefits of QoS without the scalability

limitations of IntServ[58]. Rather than attempting to deal with QoS on a per-flow

basis, the DiffServ model aggregates traffic with similar QoS requirements into classes

of traffic. DiffServ does not maintain per-flow information, thus eliminating the two

key weaknesses of the IntServ model, the setup and the maintenance of per-flow state

information. In addition, DiffServ focuses on domain-wise (AS) behavior rather than

end-to-end behavior in order to expedite the deployment of QoS services.

A “service” defines some significant characteristics of packet transmission across

a set of one or more paths within a network. These characteristics may be specified in

terms of throughput, delay, jitter, and loss or may otherwise be specified in terms of

some relative priority of access to network resources. Service differentiation is desired

to accommodate heterogeneous application requirements and user expectations and

also to permit differentiated pricing of Internet services.

37

DiffServ architecture is composed of a number of functional elements implemented

in network nodes including:

i. A set of per-hop behaviors (PHB)[64, 65, 66].

ii. Packet classification functions

iii. Traffic conditioning functions such as metering, marking, shaping, and policing.

DiffServ architecture achieves scalability by implementing complex classification and

conditioning functions[67, 68] only at network boundary nodes, and by applying per-

hop behaviors to aggregates of traffic which have been appropriately marked[69, 70,

71] using the DS field in the IP headers (Traffic Class in IPv6). Per-hop behaviors

are defined to permit a reasonably granular means of allocating buffer and bandwidth

resources at each node among competing traffic streams.

A key requirement of the DiffServ architecture is that “per-application flow” or

“per-customer forwarding state” need not be maintained within the core of the net-

work. In the DiffServ model, traffic entering a network is classified and possibly condi-

tioned at the boundaries of the network and assigned to different behavior aggregates.

Each behavior aggregate is identified by a single DiffServ Code Point(DSCP). Within

the core of the network, packets are forwarded according to the per-hop behavior

associated with the DSCP.

Routers in a DiffServ domain are therefore categorized into two classes, namely

core routers and edge routers. In contrast to core-routers, edge routers maintain “per-

application” or “per-customer forwarding state” information. This is a fundamental

conflict with most multipoint communication protocols in which the forwarding-state

information is maintained in routers including the core routers. Key application areas

of the DiffServ architecture include SLA-based Internet service pricing[72], traffic

engineering[73, 74, 75] and queueing[76, 77, 78]. Differentiated Services have also

been used in optical networking[79, 80, 81], general dynamic QoS adaptation[82, 83]

38

and in routing domains[84, 85].

2.7 LISP: Locator/Identifier Separation Protocol

The Location/Identifier Separation Protocol[9] has been recently proposed to provide

an incrementally deployable solution to separation of network location and identity

spaces anticipated in the future Internet. In this section we give a brief overview of

LISP protocol while more details will be explained in section 6.3. LISP considers

two different types of addresses: Endpoint Identifiers (EIDs) and Routing Locators

(RLOCs). EIDs identify hosts, and are assigned independently of the network topol-

ogy while RLOCs identify network attachment points, and are used for routing. This

allows for EIDs to remain unchanged even if a topological change occurs, such as

a handover in a mobile network. In LISP, packets in transit are encapsulated; the

outer header contains RLOCs while the inner contains EIDs. LISP also introduces a

Mapping System (MS)[86], a distributed database that maps EIDs to RLOCs.

LISP, as an architecture, provides two important features to the Internet:

i. First it truly splits location from identity, which is a requirement to provide

native mobility and multihoming. With LISP, mobile clients can be seamlessly

equipped with multiple wireless interfaces, and handover from different points of

attachment, or among interfaces.

ii. Secondly, it provides a new level of indirection. A hostname lookup in DNS re-

turns an EID, a second lookup is required to the Mapping System to find the

associated RLOC. With LISP, this MS acts as a location management system.

But unlike in traditional mobility protocols, such as Mobile IP[87, 88], LISP’s

MS is distributed and federated. Mobile IP’s location management system (the

Home Agent) is deployed at the mobile client’s service provider. The other ad-

vantage is that LISP’s MS avoids mobile service provider lock-in. Within the

39

LISP architecture[9], LISP-MN [89] specifies the mobility functionality

2.8 Related Work

The research presented in this dissertation focuses on XCAST deployment and QoS

provisioning. The work also aims at positioning XCAST for utilization in the Future

Internet using LISP architecture. So far no previous work in XCAST have delved

in the areas forming the key pillars of this research. However, XCAST is a form of

multicast. So the possible related work mostly occur in multicast-centric researches.

2.8.1 XCAST deployment

While there is no previous work targeting efficient XCAST deployment and no previ-

ous work was found for a Routing Engine concept, similar or related to the one pre-

sented in this dissertation, our own laboratory had previously run a related project.

This investigated a “NAT free” routing using a component called “”Application Layer

Router (ALR)”[90] and a middleware called Scalable Adaptive Multicast Toolkit

(SAMTK)[91].

2.8.2 XCAST QoS Provisioning using DiffServ

As mentioned in section 2.5.2, no significant research exists in the area of XCAST

QoS. However some pieces of work aimed at utilizing DiffServ for QoS provisioning in

multicast do exist. While they might be treated as related pieces of work, they cannot

be applied to XCAST because they are either based on the “host-group” model or

require multicast tree operations that are dependent on Multicast Forwarding Tables

(MFTs). XCAST on the other hand delivers multipoint communication functionality

using unicast routing tables and protocols. As detailed in the appendices section

of this dissertation, we extensively studied these multicast-centric approaches and

40

classified them into five classes. We then showed two examples of each class and theif

strengths and weaknesses. See the appendices for more details.

2.9 Summary

This dissertation gives a detailed work aimed at realizing multipoint communication

over the Internet using XCAST. This entails deployment of XCAST, quality assurance

for applications running on XCAST and strategically positioning XCAST for use in

the future Internet. The remaining chapters of this dissertation discusses each of the

three areas in details and in the appendices, we give a survey of the extensive study

we conducted on the challenges of QoS provisioning for multipoint communication

using Differentiated Services.

2.10 Conclusion

This chapter gives a background information of the various multipoint communication

protocols discussed in this dissertation. We also describe in details, the Differentiated

Services (DiffServ) architecture and how it fits in the QoS provisioning aspect of this

research. The main purpose of this chapter is to prepare our readers so that they

can be better placed to understand the subsequent chapters that focus on the various

technical details of which, without a background information, would be so hard to

understand. To this effect, this chapter focuses not only on the definition of the

various terminologies used in this dissertation but also on the historical information

behind the two key technologies of multicast and XCAST that form the pillar of this

research.

41

Chapter 3

XCAST6 Routing Engine

3.1 Overview

Even though several multicast variants exist, multicast deployment has been a chal-

lenge. In multicast address allocation, a multicast group address must be unique

in its scope. However, on the Internet, this scope will often be global. Therefore

implementing multicast at router-level still faces scalability problems especially in

the number of groups that can be supported. Explicit multiunicast(XCAST) solves

this scalability problem by using unicast routes thereby eliminating multicast state

information maintenance in routers and complex distribution tree construction algo-

rithms. However the custom header structure of XCAST has also created obstacles

in its deployment in the real-world. This chapter discusses our proposal, called an

“XCAST6 Routing Engine” which is an out-of-the-box solution that simplifies grad-

ual deployment of XCAST in the real-world. With the XCAST6 Routing Engine, we

not only provide a simple solution that can hasten deployment of XCAST on the real

Internet but we also exemplify experimentally using a number of performance metrics,

that contrary to other perceptions, XCAST does not actually add an extra-ordinary

load to the routing resources.

42

3.2 Introduction

Multipoint communication has moved from research to deployment then back to

research issues again. For instance, deployment of new services such as IPTV coupled

with the increased use of collaborative applications and the emerging future multi-

service Internet have reignited interest in research in multicast for both fixed and

mobile networks. Multicast has been researched extensively over the nearly 30 years

of the Internet. However challenges still persist regarding its deployment at network

router-levels.

In multicast address allocation, a multicast group address must be unique in its

scope. On the Internet, this scope will often be global. Additionally, most multi-

cast routing protocols exchange messages that create state for each (source, multicast

group) pair in all the routers that are part of the point-to-multipoint tree. This per-

flow signaling can possibly create huge multicast forwarding tables on the Internet

routers[92]. Therefore different multicast variants exist but most of multicast applica-

tions implement multicast at the application level; commonly known as Application

Layer Multicast[36, 37, 38].

Explicit multiunicast on IPv6 (XCAST6) solves multicast’s group scalability

problem by using unicast routes to deliver point-to-multipoint packets. It thus elim-

inates multicast routing tables, per-flow signaling and complex distribution tree con-

struction algorithms. XCAST6 can also simplify migration problems in multipoint

communication when combined with mobile IPv6[88]. Its efficiency can also be en-

hanced using Sender Initiated Congestion Control protocol[93]. However, deployment

of XCAST6 has had a few challenges with XCAST6 version 1.0 having been designed

to utilize hop-by-hop options header for deeper packet inspection. Hop-by-hop options

header has inherent characteristics that increase a router’s susceptibility to denial of

service attacks[94] hence its use in XCAST6 was a drawback which has since been re-

solved by its total elimination in XCAST6 version 2.0[4] all but with new deployment

43

challenges.

This chapter is organized into nine sections. In the next section, we discuss the

header structure of XCAST6 version 2.0 while in the fourth section we define and

show the need for the XCAST6 Routing Engine. The fifth and sixth sections address

various aspects of the engine design while in the seventh section, we show how the

XCAST6 Routing Engine can be implemented using FreeBSD operating system. In

the eight section, we show performance evaluation of the Routing Engine. Finally in

the last section we mention some research work related to XCAST6 Routing Engine.

3.3 XCAST6 Header Structure

Section 2.3.3 gave the background information of XCAST6 protocol. This section

will be examining XCAST6 in details, beginning by a look at how the XCAST6

header structure is organized. As of the time of this writing, the latest version of

XCAST6 is XCAST6 version 2.0 in which the hop-by-hop extension header has been

deprecated. A simple XCAST6 version 2.0 packet comprises of two IPv6 headers,

a routing extension header, a transport header and the payload as illustrated in

figure 3.1.

Figure 3.1: XCAST6 version 2.0 header summary

The outer IPv6 header is used to prepare a semi-permeable tunnel[3]. Semi-

permeable tunneling is a trick like IP over IP tunneling that XCAST6 uses to make

the XCAST6 datagram pass over non XCAST-aware nodes. The traffic class of

the outer IPv6 header is “010111XX”. The first four bits of the traffic class are

the “experimentally-assigned bits for XCAST6 by IRTF SAM RG”, while the fifth

44

and sixth bits are for experimental or local use as described in RFC2474[8] and

RFC4727[95]. The remaining two bits, “XX” are Explicit Congestion Notification

(ECN) bits as specified in RFC3168[96]. The Flow label comprises of three parts

namely: “01010111” which is the ASCII code of ‘X’ (0x58), reserved bits (‘00000’

by default) and the offset of ICMP target that specifies one of the destinations in

the address list for which ICMP reflection, echo reply or errors, is not ignored. The

’NextHeader’ points at the inner IPv6 header of an XCAST6 packet. The source ad-

dress field contains either the address of the source node or that of the latest branching

router while the destination address field is usually set to the first address listed in

the destination bitmap. Figure 3.2 shows a detailed view of the outer IPv6 header.

Figure 3.2: XCAST6 version 2.0 Outer IPv6 header

The inner IPv6 header shown in figure 3.3 is processed by the node or the router

specified by the destination address of the semi-permeable header. Its source address

is set to the unicast address of the original XCAST sender and its destination address

set to ALL XCAST NODES. If a node is XCAST-aware, it will know how to process

this header. However, for non XCAST-aware nodes, they simply drop the packet

since ALL XCAST NODES is in the range of multicast addresses and is required to

be dropped without any ICMP notification by any node that cannot process it.

The routing extension header in XCAST6 is used by the sending node to embed

the list of destinations into XCAST6 header and also to maintain a bitmap for tracking

XCAST packet delivery. The Nextheader and the Header extension length are filled

with the type of the next header and the length of the routing header respectively. The

type value in the routing header is 253, for “XCAST route”, from the experimental

45

Figure 3.3: XCAST6 version 2.0 Inner IPv6 header

values defined in RFC4727. To guarantee that non XCAST-capable routers discard

the packets without replying with an ICMP error message, it is recommended that

the fourth octet of the routing extension header be filled with zeros.

Figure 3.4: XCAST6 version 2.0 Routing extension header

The number of destinations is contained in the fifth octet of the routing header.

Due to the length limitations of the IPv6 routing header itself, the maximum number

of destinations for XCAST6 is 126. To keep track on which hosts, the packets are to

be delivered at each branching point, a bitmap is maintained in the routing header

such that when a given field of the bitmap is set to 1, then a packet needs to be

delivered to the corresponding destination, otherwise if a bitmap is not set, there is

no need to deliver a packet to the destination address corresponding to the bit in

the bitmap. The transport header in XCAST6 header defines the transport protocol

family that needs to be used. XCAST has been tested with multimedia applications

hence the transport headers of choice have been UDP and RTP due to their preference

in transmission of multimedia content.

46

3.3.1 XCAST6 Processing in routers

When an XCAST packet is received by an XCAST-aware router, the router:

i. Performs a route table lookup to find the next hops for each of the destinations

listed in the XCAST packet

ii. Partitions the set of destinations based on their next hops

iii. Replicates the packet so that there is only one copy of the packet for each of the

next hops that had been determined in the previous steps.

iv. Modifies the list of destinations in each of the copies so that the list in the copy for

a given next hop includes just the destinations that ought to be routed through

that next hop.

v. Sends the modified copies of the packet to each of the next hops.

vi. If there is only one destination left for a particular next hop, the router can further

take an optimization step in which the XCAST packet is sent as a standard

unicast packet in a process called XCAST to Unicast (X2U).

3.4 XCAST6 Deployment in the Internet

Experiments and small scale video conferencing have been used to prove the advan-

tages of XCAST6 especially in terms of group scalability[97]. Nonetheless deployment

in the real world has not been easy. This is because XCAST protocol has a custom

header structure with a new processing algorithm that is not understood by the

commercial routers in the market today. However it is impractical to replace the

existing routers with new XCAST-aware routers. Moreover, the huge capital invest-

ments already put into the existing infrastructure on the Internet must be protected.

Therefore two options for deployment of XCAST in the Internet can be postulated

47

as follows: either to deploy XCAST within the existing infrastructure of commercial

routers or come up with XCAST-aware routers.

3.4.1 Using existing commercial routers

As explained earlier, the existing commercial routers are not XCAST aware. They

cannot be expected to processes XCAST packets correctly. Instead, they will simply

read the semi-permeable tunneling header (outer IPv6 header) and route the packet as

if it were an ordinary packet. By deploying XCAST in the current Internet therefore,

it means that XCAST can only be processed at end hosts that are XCAST aware.

This will often imply an inefficient approach to XCAST processing due to successive

(cascaded) delivery of data among XCAST receivers. This scenarion is shown in

figure 3.5.

Figure 3.5: Inefficient XCAST processing in conventional network

To solve this problem, routers in an XCAST network need to either be XCAST-

aware or have an out-of-the box XCAST processing mechanisms.

48

3.4.2 Using XCAST-aware routers

This is the ideal situation but the problem is that this ability is currently not available

among commercial routers. The router vendors need to be shown the benefits of

XCAST and also a confirmation that XCAST processing cannot incur severe penalties

in the routers workload so as to motivate them to build XCAST-aware routers. To

achieve this, we need to investigate the impact of XCAST processing in routers. The

empirical evidence of the impact of XCAST processing in routers will play a key role

in motivating the vendors to add XCAST stack into their forwarding engines. It is on

this premise that we propose an out-of-the-box solution we call an “XCAST6 Routing

Engine” that can be used to realize gradual deployment of XCAST6 in the real-world

and then investigate further optimizations that could be done to help embed XCAST

into the future commercial routers.

3.5 XCAST6 Routing Engine

The XCAST6 Routing Engine is an XCAST6-aware node connected to the core router.

Its purpose is to process XCAST6 packets as had been outlined earlier then send back

the processed XCAST6 packets to the core router for further onward delivery.

3.5.1 Implementation options

The XCAST Routing engine functionality can be achieved using three main ap-

proaches:

i. Commercially supplied SDKs

ii. Network processors

iii. External Software routers

49

Each of the above approaches have strengths and weaknesses which we assessed in

our decision making process before we settled on the third option.

3.5.2 Commercially supplied SDKs

Until recently, it was not possible to add custom code into the commercially available

routers. However, the leading commercial router vendors have recently opened up

this space by the introduction of their legacy Software Development Kits (SDKs).

The SDKs can be used to extend the functionalities of those vendors’ routing devices.

Juniper Networks Inc. introduced the JUNOS SDK[98] while Cisco Systems Inc. has

also introduced the Cisco Application Extension Platform (Cisco AXP)[99].

While this is a commendable effort and a truly plausible option toward integrating

XCAST into the commercial routers, we did not choose it because of the following

possible drawbacks:

i. Impact on production environment : Since the source code of the new application

is added into the routers already deployed in production environments, bugs

in the newly added source code can impact negatively on the router, stalling

the entire existing routing infrastructure. This means that separate routers are

required for testing. Nonetheless ensuring a 100% bug-free software cannot be

guaranteed and the impact of such bugs can be catastrophic. Production routers

can be completely crippled leading to losses in orders or magnitude and even law

suites from disgruntled clients.

ii. Required skill set : Since the vendors used legacy codes, this approach will require

understanding the the vendor-specific coding conventions which might take time

to be mastered by the application programmers.

iii. Licensing fees : Acquiring the SDKs attract licensing fees which definitely cannot

be affordable to everyone.

50

iv. Time constrains: Programming new applications on top of the existing router

codes can be time consuming.

Hence the need for a simple, cost effective XCAST routing engine was realized in

this research. To implement this, we used FreeBSD operating system, which is open

source and requires no vendor specific skill set.

3.5.3 Network processors

A network processor is an integrated circuit which has a feature set specifically tar-

geted at the networking application domain[100, 101]. Figure 3.6 shows Intel IXP420

network processor. Network processors are typically software programmable devices

and would have generic characteristics similar to general purpose central processing

units that are commonly used in many different types of equipment and products.

Therefore XCAST6 processing algorithm can be implemented in a network proces-

sor and the processor then plugged into the available slots in the circuit boards of

commercial routers.

Figure 3.6: Intel IXP420 Network Processor

This technology is similar to the special routing boards and technologies used in

51

systems such as Open flow[102]. However this approach is likely to face two major

challenges:

i. Special programming skills : Working with network processors require special pro-

gramming skills especially a good experience with Hardware Description Lan-

guage (HDL) such as Verilog. However HDL experts are few compared to those

of other high level programming languages such as C, C++ or Java.

ii. Time constraints: Programming, testing and installation of network processors

takes a longer time and would not be simple and cost-effective compared to other

approaches.

3.5.4 External Software routers

This approach uses a PC in which the XCAST protocol has been implemented. We

implemented XCAST in the FreeBSD operating system kernel and used the XCAST

aware PC as the routing engine. It is connected side-by-side to the core router as

shown in figure 3.7 and acts as a “software-router” for XCAST6 packets. As shown

in figure 3.7, inbound packets in step 1 are examined by the core router and non-

XCAST traffic is handled by the core-router’s forwarding engine while XCAST6 traffic

is deflected to the XCAST6 Routing Engine in step 2 for processing. The XCAST6

packet is partitioned accordingly and sent back to the core router in step 3 where

they are delivered to their final destinations as shown in steps 4 and 5.

3.5.5 Factors to consider in the design

In order to realize this design, we investigate factors that need to be considered

namely:

i. How to identify and filter XCAST6 packets inbound to the core router.

52

Figure 3.7: XCAST6 Routing Engine

ii. How to process the XCAST6 packets in the routing engine and still realize the

same next hops as if processing was done in the core router.

iii. How to forward XCAST6 packets correctly from the XCAST6 Routing Engine.

3.6 Identifying and filtering XCAST6 packets

At the core router, only XCAST6 traffic is re-directed to the XCAST6 Routing En-

gine. The usual traffic remains to be processed within the core router itself. This

requirement can be realized using policy routing framework. With this framework,

we can implement a set of rules defining the relationship between the router and the

external world in terms of the route information exchange and protocol interaction.

We can define the list of routes that the router will accept from its peers, the list of

routes the router can propagate to its peers and also determine the redistribution of

routes between protocols and interfaces defined in the router. To identify XCAST6

53

packets, we implemented a policy-based bit-matching utilizing the traffic class of IPv6

packets. On the core router, the policy matches the traffic class “010111” to XCAST6

and all IPv6 stream with that traffic class are forwarded to the XCAST6 Routing En-

gine. The policy, which can be implemented as a filter in the core router is associated

with all inbound interfaces except the one onto which the XCAST6 Routing Engine is

connected. This ensures that traffic inbound to router from all segments are handled

appropriately. Below is an excerpt using Juniper’s JUNOS syntax to show how we

implemented the XCAST6 packet filter on a Juniper router.

Figure 3.8: XCAST6 Policy routing on Juniper JUNOS

For incoming packets, the policy, implemented as a filter-based firewall, “FBF-

Nxt-hdr” on IPv6 traffic (inet6) matches the 6 bit part of the IPv6 traffic class used for

Differentiated Service Code Point. It counts the matching packets and assigns them

to a specific routing table also called “FBF-Nxt-hdr” for the purpose of simplicity.

In the listing above, the routing instance ”FBFNxt-Hdr”, specifies the option

type as ’forwarding’ and the option is associated with the routing information base

54

Figure 3.9: Routing instance for XCAST6 packets

assigned a static route specifying XCAST6 Routing Engine as the next-hop. All

matching packets are therefore forwarded to the XCAST6 Routing Engine. Once in

the XCAST6 Routing Engine, the packets are processed then sent back to the core

router for effective onward delivery to their respective destinations.

3.7 Synchronizing Routing Tables

In this architecture, both the core router and the XCAST6 Routing Engine are net-

work nodes, each with its own distinct routing table. However the existence of an

XCAST6 Routing Engine is transparent to all other nodes in the network. Therefore

XCAST6 packets need to be processed as if the processing was done by the core router

performing a lookup on its own routing table. We thus seek to have a mechanism by

which the routing table of the XCAST6 Routing Engine and that of the core router

can be synchronized. We identified two methods by which this synchronization can

55

be realized:

i. Using Simple Network Management Protocol

ii. Using Network Configuration Protocol.

3.7.1 Routing Table Synchronization using SNMP

SNMP is configured on both XCAST6 Routing Engine and the core router. A pro-

gram running on the XCAST6 Engine then invokes SNMP commands to get the core

router’s routing table. In order to parse the IPv6 routing table in IPv6 MIB tree,

we need to know the IPv6 routing table’s Object Identifier (OID). The OID is used

to invoke either GetNextRequest or Get BulkRequest commands of SNMPv1 and

SNMPv2 respectively[103]. The program then parses the dumped routing table to

extract each ”destination” and their corresponding ”next hops” which together form

a single route entry in the routing table. The new routes are compared against the

route entries in the local routing table of the XCAST6 Routing Engine and any new

route identified is updated on the local routing table. The program on the XCAST6

Routing Engine polls the core router to ensure the changes if exist, are updated on a

regular interval.

The challenge is that using GetNextRequest in SNMPv1 to traverse the MIB can

require a large sequence of request-response exchanges between the core router and the

XCAST6 Engine especially in the real-world where core network routers usually have

huge routing tables. This can introduce unwanted latencies or CPU load owing that

most routers use simple processors. GetBulkRequest in SNMPv2 solves this problem

since it reduces the number of protocol exchanges required to retrieve a large amount

of MIB data by returning a series of variable bindings in a single response. However,

the command generator (XCAST6 Routing Engine in this case) is required to specify a

”max-repetitions” count so that the responder(core router) can fill in as many variable

bindings as it can without exceeding either this count, or the maximum message size.

56

The challenge however is that it is not possible to know the number of rows in the

routing table before-hand. Therefore we cannot possibly set the ’max-repetitions’ to

an optimum value. With these limitations, SNMP operations in fetching huge data

like the routing table of a core router can be highly processor intensive hence it is not

a favoured approach.

3.7.2 Synchronization using NETCONF

NETCONF protocol is enabled in both the core router and the XCAST6 Routing

Engine. Additionally, SSH is required by the two nodes[104]. A client application

running on the XCAST6 Routing Engine (we implemented a Perl program for this)

embeds Remote Procedure Calls in XML (XML-RPC) and issues them to the core

router over a secure channel via SSH. The XML embedded RPC request can be

customized to request for information relating only to a specified table in the IPv6

Routing table hierarchy.

The advantage of NETCONF over SNMP is that NETCONF operates in a trans-

actional manner thereby manipulating semantically related data efficiently. Whereas

SNMP modifies or retrieves the value of a single data at a time, NETCONF modifies

or retrieves all or selected parameters in a single primitive operation. This ensures it

does not incur load on CPU usage. In Juniper routers, the command to get the rout-

ing table data via NETCONF is <get-route-information>. The router’s response,

also in XML-RPC, is processed using a custom XSLT template that extracts the var-

ious elements and zeros in on "destination" and "next hop" items for every single

route entry in the table. The Perl program is set to poll the core router periodically

to check if new routes have been defined in the core router. If a new route entry is

found, the local routing table of the XCAST6 Routing Engine is updated accordingly.

Otherwise no operation takes place if the two routing tables are in synchrony.

57

3.8 Forwarding of processed XCAST6 packets

Routers usually have multiple interfaces, each connecting to a different network seg-

ment thereby ensuring that traffic meant for each subnet is routed properly. Con-

sidering that XCAST6 packets are processed within the XCAST6 Routing Engine,

with a routing table that nearly mirrors that of the core router, we need an interface

corresponding to each of the interfaces on the core router. To implement multiple

interfaces on the XCAST6 Routing Engine, we use a simple approach for cloning

interface as shown in figure 3.10. For example, the core router in our testbed has 4

Gigabit interfaces as shown below.

Figure 3.10: XCAST6 Engine Virtual Interfaces

To have a matching number of interfaces on the XCAST6 Routing Engine, we

clone a number of virtual interfaces on it using VLAN tagging (IEEE 802.1Q) tech-

niques. Each of these interfaces is configured in its own subnet and ultimately ensures

that the processed XCAST6 packets are correctly forwarded to their next hops.

58

3.9 Implementation

We setup the testbed comprising of a Juniper router, the XCAST6 Routing Engine

and other XCAST-aware nodes. The XCAST6 Routing Engine was implemented on

a PC running FreeBSD7.2 with Pentium (M), 1.60GHz processor, 760 MB of RAM

and 40GB hard disk. The low specifications of this PC is conducive for testing since

most routers deployed today also run simpler CPUs and have small capacity memory

modules installed.

We installed our latest version of XCAST6 (version 2.0) onto this PC while the

other test nodes also had XCAST6 version 2.0 for their respective FreeBSD versions

installed in them. The core router in the testbed runs on Juniper J2320 running

JUNOS 9.3. It has 4 built-in Gigabit Ethernet ports, 3 modular interface slots, 512

MB DRAM, 512MB compact flash and supports hardware encryption, Unified Access

Control and content filtering. All the required configuration were done and the system

confirmed to be running well through a process we term as “testbed characterization”.

Any unneeded protocols was disabled both on the XCAST6 Routing Engine and the

core router to ensure that testing is not compromised so much by other external

factors. The Juniper router is also additionally deployed onto the WIDE[105] network

using the WIDE connection at Nagoya University so as to ensure it operates in a real

Internet setting.

3.10 Performance Evaluation

Our aim was to evaluate the routing engine in a real Internet environment. We there-

fore deployed the routing engine in a real network and used a DV format[13, 14, 15]

based videoconferencing application to evaluate its packet processing capability. Dig-

ital Video (DV) format is a packet based video/audio encoding in which each encod-

ing scheme specifies a standard digital interface media to exchange the digital stream

59

Table 3.1: Bandwidth utilization per frame rate
DV Frame
Rate

Bandwidth IN
(Mbps)

Bandwidth
OUT(Mbps)

Expected
Bandwidth
OUT (Mbps)

1/1 36.024 144.098 144.096
1/2 19.181 76.720 76.724
1/3 13.516 54.062 54.063
1/4 10.683 42.731 42.732
1/5 8.984 35.940 35.937

data. In our experiment, we receive the DV video from the firewire (IEEE1394)

interface connected to a camera on one of the PCs in our testbed and receive the

video transported across the network using our application on the other hosts in the

network. Group management functionality is handled by the Scalable Adaptive Mul-

ticast Toolkit (SAMTK)[91]. SAMTK is a middleware for multipoint communication

we have developed in our laboratory. DV format was chosen for this test because of

the large size of the DV Frames (120Kbytes and 144Kbytes for NTSC and PAL re-

spectively) and the high frame rate required for DV frame transmission (29.97 frames

per second).

3.10.1 Bandwidth Utilization

Bandwidth refers to the bit-rate measurements representing the available or con-

sumed data communication resources. It is usually expressed in bits per second or

multiples of it (e.g bps, kbps, Mbps, Gbps). Bandwidth is at times used to define the

net bit rate, channel capacity, or the maximum throughput of a logical or physical

communication path in a digital communication system.

Full DV stream consumes over 30Mbps when using standard NTSC quality video

at 525 lines and 29.97 picture frames per second. With multiple receivers placed

in different IPv6 network segments in the testbed, we could therefore measure the

inbound and outbound packets at the XCAST6 routing engine to determine its pro-

60

cessing and also calculate the bandwidth utilization for both inbound and outbound

XCAST6 traffics. Varying DV frame rates on the sender side also allowed us to deter-

mine the processing capabilities of the routing engine with varying number of packets

transmitted per unit time. Table 3.1 shows the varying results at each transmission

rate.

The XCAST6 Engine is observed to partition packets appropriately and only

an infinitesimal variance is noted between the output and the expected values. We

attribute this to possible inclusion of the control and session management packets

between the nodes and the Group Server in the network.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600

B
a
n
d
w
i
d
t
h

(
M
b
p
s
)

Time (seconds)

Fullrate IN
Fullrate OUT

Frame Rate/2 IN
Frame Rate/2 OUT
Frame Rate/3 IN
Frame Rate/3 OUT

Figure 3.11: Throughput for Full frame rate to Frame rate/3

The graphs in figure 3.11 and figure 3.12 show the variation of the packet pro-

cessing and bandwidth utilization with time as observed during the processing. The

graphs show bandwidth utilization as reported on every 10 second interval. While

notable variations were observed in the number of packets processed, the differences

were very minimal and a consistent packet processing and partitioning is observed

throughout the experiment period. For visibility purposes, we have plotted the ob-

servations in two graphs as shown in figure 3.11 and figure 3.12 below.

61

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

B
a
n
d
w
i
d
t
h

(
M
b
p
s
)

Time (seconds)

Frame Rate/4 IN
Frame Rate/4 OUT
Frame Rate/5 IN
Frame Rate/5 OUT

Figure 3.12: Throughput for Frame rate/4 to Frame rate/5

3.10.2 Latency and Latency Distribution

In computer and telecommunication networks, latency is defined as a measure of the

time delay experienced in the network. Latency can be measured either “one-way”

(the time from the source sending a packet to the destination receiving it) or “round-

trip” (the one-way latency from source to destination plus the one-way latency from

the destination back to the source). Latency distribution on the other hand refers to

the measure of “how the latency values spread between the lowest and highest” values

recorded.

To effectively measure latency and latency distribution, we used the network

performance analysis tool, Spirent SmartBits 600B. The SmartBits 600B had 1 Gi-

gabit card (smartMetrics XD 2 port Gigabit Ethernet, LAN-3320A). We defined five

streams on each port based on custom XCAST6 packet with two destinations em-

bedded in the header then measured the percentage utilization of the bandwidth as

packet transmission rate (packetss per second) is varied. A constant 136 bytes long

payload was used for all the streams. Each stream had an effective length of 286

bytes excluding the signature bits added by SmartBits.

62

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 10 20 30 40 50 60 70 80

L
a
t
e
n
c
y

(
m
i
c
r
o
s
e
c
o
n
d
s
)

Transmssion Rate (’000 Packets/Second)

Latency Variation By Packet Transmission Rate

Minimum latency
Maximum latency
Average latency

Figure 3.13: Latency variation by packet transmission rate

For all packet rates, the average latency approaches the maximum values ob-

served. We attribute this to the distribution of latencies which tend to be skewed

towards the maximum value recorded in each case. At 50,000 packets per second

the latency values rise above 110 microseconds which we attribute to the bandwidth

utilization which was observed to hit above 50% at this frame rate. From this rate,

the Engine starts dropping XCAST6 packets as observed from the log files. This is

attributed to replicated XCAST6 packets being too many than the 1 Gigabit Ethernet

adapter can transfer. Figure 3.13 shows the observations.

The large variation on the latency values observed motivated us to investigate the

latency distribution of these values over the observed range. Since the observations

were made at different packet transmission rates and at varying frequencies within

each transmission rate, plotting them on histograms would not only be cumbersome

but might also not be easy to interpret. We therefore applied the Kernel density

estimation techniques in order to observe the percentage distribution of these values.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate

the probability density function of a random variable. Kernel density estimation is

63

a fundamental data smoothing problem where inferences about the population are

made, based on a finite data sample. Kernel density estimation plots provide the

probability density estimates for a population using the measured data. This is done

by replacing each measurement with a location (mean) of the measurement and a

spread (deviation) selected by a free “spread” parameter. Then the entire data set is

summed and normalized by the number of measurements included. Figure 3.14 shows

this estimation. We note that over 35% of the latency values observed are slightly

above 110 microseconds, approximately 12% of the values are at 110 microseconds

and another 20% fall just slightly below 110 microseconds.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 40 50 60 70 80 90 100 110 120 130

D
e
n
s
i
t
y

Latency (microseconds)

Kernel Density Estimation

Figure 3.14: Kernel Density Estimate for latency distribution

3.10.3 Packet Loss

Packet loss is defined as the failure of one or more packets to arrive at their des-

tination. Packet loss measurement in this setup was done not at the Interfaces of

the routing engine but at the applications on the receiving hosts. Only infinitesimal

packet loss of 0.08% percent was detected at the hosts hence we deduce that the

XCAST routing engine did not incur a significant packet loss while doing XCAST6

64

processing. This situation however might change when there are many receivers in

the network transmitting many huge packets because of the likelihood of the XCAST6

routing engine replicating several packets when the next hop routers are significantly

different for the many receiving nodes. However such situations in the real Internet

are demmed to be rare hence, in as much as the packet loss ratio is expected to

rise with the increase in the receivers, we still expect an efficient performance by the

XCAST6 routing Engine..

3.10.4 Internal System Behaviour

The aim of implementing XCAST6 Routing Engine is not only to simplify the de-

ployment of XCAST6 in the real world but also to help in understanding the impact

of XCAST6 protocol processing on the internal behavior of the routers especially

with regards to system load level if XCAST6 were deployed in commercial routers.

With the XCAST6 Routing Engine, we achieve this objective by actively profiling

the FreeBSD system onto which the engine has been implemented when processing

XCAST6 packets. One key internal behaviour is the “context switch”. A context

switch is the computing process of storing and restoring the state (context) of a CPU

so that execution can be resumed from the same point at a later time. This enables

multiple processes to share a single CPU. Context switches are usually computation-

ally intensive and much of the design of operating systems is to optimize the use of

context switches. Therefore the number of XCAST-related context switches can be

used to infer the load XCAST processing incurs on routers.

CPU Context Switch Counts due to bus I/O

XCAST6 runs at the kernel level therefore, the reported observation is for ”System

level” and not ”User level” CPU utilization. We used FreeBSD’s PMC tools[106], to

investigate various internal activities of the system when processing XCAST6 packets.

65

Using the PMC tools, we registered the counts of context switches related to data read

and data writes that the CPU makes when processing XCAST6 packets. This was

compared with the observations made when the routing engine is not actively engaged

in XCAST6 processing and also to when the engine is processing ICMPv6 packets.

Specifically the PMC tool was run by monitoring the changes in the behaviour of

process that monitors software interrupts made by the network process (swinet) in

FreeBSD. The results are presented as shown in figure 3.15.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200

C
P
U

R
e
a
d
/
W
r
i
t
e

(
I
/
0
)

C
o
u
n
t
s

Time (seconds)

Processing XCAST6
No XCAST6 Processing

Processing ICMPv6

Figure 3.15: Count of context switches due to I/O requests on CPU bus

We observe that processing of XCAST6 incurs a higher number of context switches

due to CPU bus I/O activities than ICMPv6. However if we consider this together

with the values observed when the XCAST Routing Engine is not processing any

XCAST6 packets then the difference while significant, is not too big to cause an

alarm. This dispels the general feeling that owing to its complex header structure,

XCAST6 could impact heavily on the router’s CPU load. However we also note that

ICMPv6 registers fluctuations that on the lower bound are almost equivalent to peak

observations made when the routing engine is not actively processing data packets.

66

XCAST6 related observations on the other hand do not show this great fluctuation.

This is expected considering the structure of the XCAST6 header which embeds two

IPv6 packets.

CPU Context Switch Counts due to memory access

We also investigated the number of context switches made due to memory access

requests while processing XCAST6 packets. Hyok Kim et al[107] have shown that

these counts are correlated with the number of completed memory transactions and

are important because they help in determining the system level memory bandwidth

requirements. We therefore use them to help understand such memory bandwidth

requirements for processing XCAST6 packets. The observations are shown in fig-

ure 3.16. The counts of ”system” memory (not userland memory) transactions for

XCAST6 and ICMPv6 processing and also when no active packet processing is done

show clearly that XCAST6 processing registers higher counts while ICMPv6 maps

nearly equally to the system idle state. This is possibly attributed to the XCAST6

packet length which is certainly longer than that of ICMPv6.

Impact of the embedded destinations on CPU and Memory utilization

We further investigated the impact of the embedded destinations in the XCAST6

header on CPU and Memory utilization. We used Spirent SmartBits 600B perfor-

mance analysis tool in this measurement. Five streams were defined on each port

based on custom XCAST6 packet, varying the number of destinations each time and

subjecting the XCAST6 routing engine to the huge traffic generated by SmartBits but

maintaining the bandwidth utilization at not more than 60% because the resulting

XCAST6 outbound traffic are also sent through the same network interface and Vlan

tagged interfaces that still depend on the same physical interface. It is observed that

XCAST6 packets with fewer destinations consume more CPU resources than those

67

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 200 400 600 800 1000 1200

M
e
m
o
r
y

T
r
a
n
s
a
c
t
i
o
n

C
o
u
n
t
s

Time (seconds)

Processing XCAST6
No XCAST6 Processing

Processing ICMPv6

Figure 3.16: Comparative count of context switches due to memory transaction re-
quests

with several XCAST destinations in the header as shown

Packets with fewer XCAST6 destinations are shorter than those with many des-

tinations embedded in the header. Therefore several shorter packets are required to

maintain a constant bandwidth compared to those needed for longer packets. With

fewer destinations in the XCAST6 header, the CPU processes more XCAST6 pack-

ets than it does when the packet embeds several destinations hence the near-inverse

proportionality depicted by the graph above.

Despite the higher number of context switches related to System level memory

read observed earlier, we also note that once a stable level is realized, XCAST6 does

not consume a lot of memory resources even if the number of the headers in the

XCAST6 packet is increased. Maximum memory utilization varies only slightly irre-

spective of the number of destinations as depicted in the figure below. We attribute

this to the fact that XCAST6 runs at the kernel level therefore it launches no addi-

tional application that requires any huge memory resources.

68

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

P
e
r
c
e
n
t
a
g
e

U
t
i
l
i
z
a
t
i
o
n

Embedded XCAST6 Destinations

System Level CPU Utilization Vs XCAST destinations

Average occupation
Maximum occupation

Figure 3.17: XCAST6 CPU Utilization

XCAST6 packet fragmentation

We observed IP fragmentation when more than 70 XCAST6 destinations are em-

bedded in an XCAST6 header. The MTU of the XCAST6 routing engine therefore

needs to be set to a value that accommodates longer packets especially in deploy-

ment scenarios where the group membership is envisaged to approach 100 nodes. En-

abling jumbo packets processing in the engine is recommended. Overall, the XCAST6

Routing Engine showed a very good performance within the acceptable limits. While

CPU utilization is higher with fewer XCAST6 destinations, we note that XCAST6 is

a group communication protocol hence scenarios like two destination can best work

with peer-to-peer. Moreover, it is highly unlikely that a communication scenario can

arise that imposes a requirement on maintaining a threshold on bandwidth utilization

that we did in our test, for stress testing purposes only. Therefore when used with

the right number of destinations that warrant group communication, XCAST6 is not

CPU intensive. Should such a need a rise then XCAST6 can be complemented with

SICC[93].

69

 44.4

 44.6

 44.8

 45

 45.2

 45.4

 45.6

 45.8

 46

 0 10 20 30 40 50 60 70

P
e
r
c
e
n
t
a
g
e

U
t
i
l
i
z
a
t
i
o
n

Embedded XCAST6 Destinations

System Level Memory Utilization Vs XCAST destinations

Average Memory Usage
Maximum Memory Usage

Figure 3.18: XCAST6 system memory utilization

3.11 Related Works

The SAMTK project[91, 90] provides interfaces for XCAST, ALM and ALR network

plugins. ALR (Application Level Router) has some components that overlap with

the functions of our routing engine. It parses UDP packets and does a lookup in its

internal forwarding table to duplicate and deliver the packets to multiple destinations.

In addition, it provides NAT traversal function by using a singe UDP port both

for session registration and packet delivery. Many recent projects also attempt to

define architectures for large scale Internet group services that can operate in the

future Internet. OASIS[108] proposes a generic approach to inter-domain multicast,

guided by an abstract, DHT-inspired overlay that may operate on a future Internet

architecture. It is aimed at facilitating multipath multicast transport, offering fault-

tolerant routing, and arbitrary redundancy for packets and paths. However, it is

based on the assumptions of a globally available end-to-end unicast routing. Simple

technologies such as the one we have presented here can help ensure the end-to-

end unicast routing that OASIS assumes to always exist. Multipoint communication

70

research is also ongoing in structured overlay and hybrid networks. In the HAMCast

project[109], Xuemin Shen et al review the key concepts of multicast and broadcast

data distribution. They further perform an analysis examining different distribution

trees constructed on top of the key-based routing layer. Finally, they compare the

performance characteristics of the various multicast approaches and identify major

internal differences. This way, they seek to identify key areas that need optimization

for application in the future Internet.

3.12 Conclusion

In this chapter, we have described the XCAST6 Routing Engine, a software routing

component that simplifies gradual deployment of XCAST6 in the real-world even if

the router is not XCAST-aware. We used a low cost PC with modest specification

to implement the XCAST6 Routing Engine on both FreeBSD 6.2 and FreeBSD7.2,

connecting the PC to a Juniper J2320 router as the core router in the testbed. To

handle routing table synchronization issues, we proposed and implemented two differ-

ent approaches using either SNMP or NETCONF. XCAST Routing Engine provides

a simple, efficient and cost-effective way for incremental deployment of XCAST in

the Internet. We have evaluated its performance and empirically shown that XCAST

processing does not incur heavy penalty on routers.

71

Chapter 4

Quantitative Simulation of

XCAST6 Performance

4.1 Overview

Sometimes real world implementation of XCAST6 can take a long time to deploy and

resource constraints can limit the scale of testing that can be done. We have therefore

integrated XCAST into the IPv6 stack of INET Framework for OMNeT++ to allow

for large-scale, exhaustive and realistic investigation of XCAST6 characteristics and

to complement our current research into real world deployment of XCAST6. The

contribution of this chapter is two fold. First, it describes our implementation of

XCAST6 in OMNeT++’s INET framework. Secondly, it experimentally shows the

effectiveness of XCAST6 with regards to various multicast performance metrics such

as stress, end-to-end delay, efficiency and packet processing overhead rate.

4.2 Introduction

Numerous multicast technologies have been proposed to ensure efficient utilization of

Internet bandwidth for group communication. Even though IP Multicast is conceptu-

72

ally able to provide efficient group communication and utilize the available bandwidth

efficiently[110], its global deployment has not been effectively realized. This has ma-

jorly been due to security issues, lack of efficient congestion control scheme and need

for special support in the network devices[111]. However, there exist local networks

that are multicast capable[112] and are used to deliver TV and Telephony services.

Multicast was originally targeted at very large groups but there also exist group

communication applications such as video conferencing, IP telephony and online mul-

tiplayer games which only require a large number of distinct, small groups and can-

not be served well with the traditional IP multicast. Small group, multi-destination

multicast variants have therefore been proposed specifically to serve this class of ap-

plications. Explicit multiunicast (XCAST)[3] is a form of small group multicast in

which the sender embeds IP addresses of all receiving nodes in a special header which

it then sends with every data packet.

Deployment of XCAST in the real world has been a subject of research[97, 5].

In chapter 3 of this dissertation and in other publications[5, 6], we proposed a simple

routing engine for realizing incremental XCAST deployment in the Internet. However,

we are also cognizant of the fact that sometimes real world implementations can take

a very long time to realize. Resource constraints can also limit the scale of testing that

can be done. A simulation environment for XCAST6 is therefore necessary. However

most of the existing simulators do not have multicast routing models required by

small group multicast protocols such as XCAST.

Kolberg and Burford[113], in their project of extending OMNeT++ for Scal-

able Adaptive Multicast simulations, have come up with XCAST and AMT imple-

mentations for the Oversim simulator[114]. Their work however currently supports

only simulation of XCAST on the IPv4 stack. On the other hand, our current re-

search on XCAST6 deployment in the real world is based on XCAST6 version 2.0[4]

hence we found it necessary to extend the IPv6 stack of the INET Framework[18] in

73

OMNeT++[11, 10] to allow for simulation of our current research.

This chapter is organized as follows: in the next section we briefly describe OM-

NeT++ and the INET Framework; the simulation environment in which we imple-

ment the XCAST6 Simulator. In section four we describe the implementation of

XCAST6 on OMNeT++ while in section five we describe our simulation of XCAST6

using OMNeT++ and discuss the results in section six.

4.3 Simulation tool for XCAST6

4.3.1 OMNeT++

Object Modular Network Testbed in C++ (OMNeT++)[10, 11] is an open source,

extensible, modular, component-based simulation library and framework. Because of

its generic architecture, OMNeT++ is used in simulating a wide range of networks.

Domain-specific functionality such as support for sensor networks, wireless ad-hoc

networks, Internet protocols, performance modeling, photonic networks, etc., is pro-

vided by model frameworks, developed as independent projects such as the INET

Framework, INETMANET, xMIPV6 and MiXiM among others.

OMNeT++ is a collection of hierarchically nested modules which communicate

with each other using message passing and messages may carry arbitrary data struc-

tures. The depth of module nesting is unlimited. Modules can be connected with

each other via gates (other systems would call them ports) and channels. Channels

can posses certain bandwidth, delay and loss characteristics. The modules can also

be combined to form compound modules. Modules at the lowest level of the hierarchy

are called simple modules and they encapsulate the model behavior. Simple modules

are programmed in C++ and make use of the simulation library. In the hierarchy,

the top-most module is called the System Module or Network and contains one or

more sub-modules each of which could contain other sub-modules.

74

The structure of the model and that of the modules are defined using a special

language called NED (Network Description) language. Each module is usually defined

in a separate NED file. Among the features of NED that makes it scale well to large

projects are its component-based approach and hierarchical nature. NED supports

inheritance therefore modules and channels can be easily sub-classed. Derived mod-

ules and channels can add new parameters, gates and even new submodules. NED

also uses a Java-like package structure to reduce the risk of name clashes between

different models.

OMNeT++ offers an Eclipse-based IDE, a graphical runtime environment, and

a host of other tools which support features for development, debugging, running

simulations and for visualization and analyses of simulation results. However, for

larger networks and more complex simulations, OMNeT++ also has a command line

simulation environment that allows for dedication of more computing resources to

simulation rather than being consumed in supporting the GUI functionalities. There

are extensions for real-time simulation, network emulation, alternative programming

languages (Java, C#), database integration, System C integration, and several other

functions.

4.3.2 The INET Framework

The INET Framework[18] builds upon OMNeT++ and uses the same concept of

modules and messages whereby modules communicate with each other by message

passing. It is organized into protocol layers that nearly mirror the OSI reference

model. Specifically, the INET Framework contains models for several wired and wire-

less networking protocols in the Link, Network and Transport layers of the protocol

stack. Support for mobility and wireless communication has been derived from the

Mobility Framework project[115]. Some of the implemented protocols include: UDP,

TCP, SCTP, IP, IPv6, Ethernet, PPP, 802.11, MPLS, OSPF, and many others. It

75

implements the MPLS model with RSVP-TE and LDP signaling.

The INET Framework represents protocols by simple modules whose behaviours

are defined in a C++ class of the same name. However, a simple module’s external

interface such as gates (connectors) and parameters is described in an NED file. To

describe protocol headers and packet formats, the INET framework uses message

definition files (msg files) which are translated into C++ classes by OMNeT++’s

opp msgc tool. The generated message classes subclass from OMNeT++’s cMessage

class.

However, not all modules in the INET Framework implement protocols. Some

are used to execute specific non-protocol related tasks. There are modules which hold

data (for example RoutingTable), facilitate communication between modules (Noti-

ficationBoard), perform autoconfiguration of a network (FlatNetworkConfigurator),

move a mobile node around (for example ConstSpeedMobility) and perform house-

keeping associated with radio channels in wireless simulations (ChannelControl).

Modules in the INET Framework can be freely combined to form hosts and other

network devices with the NED language without C++ code or the need for recom-

pilation whatsoever. Therefore, there are some common modules that appear in all

(or many) host, router and device models such as InterfaceTable, RoutingTable and

NotificationBoard modules. Modules communicate by message passing and so are the

protocol layers. When an upper-layer protocol wants to send a data packet over a

lower-layer protocol, the upper-layer module sends the message object representing

the packet to the lower-layer module. The lower layer protocol module then encap-

sulates the message and sends it out. When a lower layer protocol wants to send a

packet to an upper layer protocol, it removes lower layer information from the packet

(decapsulation) then sends the message to an upper protocol layer module.

Extra information such as connection identifiers, destination addresses, and pa-

rameters like the packet TTL are often needed to be transmitted together with the

76

packets between the protocol layers. This extra information is attached to the mes-

sage object as Controlinfo. Controlinfo are small value objects, which are attached

to packets (message objects) with its setControlInfo() member function. Controlinfo

only holds auxiliary information for the next protocol layer, and is not supposed to

be sent over the network to other hosts and routers.

4.4 Implementing XCAST6 in OMNeT++

XCAST and AMT are some of the Scalable Adaptive Multicast protocols currently

not supported by most of the existing network simulators, especially when analyzing

hybrid multicast protocols[113]. In [113], Kolberg et al have proposed an implemen-

tation of XCAST for Oversim and OMNeT++ which in the current state, is only

on the IPv4 protocol stack of INET Framework. Additionally, their implementation

is an XCAST model whereby an XCAST packet gets duplicated at branching nodes

and fewer addresses are attached to each copy of the packet until each copy reverts

back to a unicast IP/UDP message as the packet traverses the network.

This complex header reconstruction at every branch can be reduced to a simple

operation of updating a bitmap[3, 4] in the XCAST6 header and leaving the destina-

tions intact in all copies of the XCAST6 packets. Furthermore, the use of bitmaps

instead of the header reconstruction has the advantage that it allows for the possibil-

ity of using XCAST with IPSec since only the bitmap is changed and not the entire

IPv6 header.

Since our main research on XCAST is in the area of real world deployment of

XCAST6 version 2.0[4], our motivation is to realize an XCAST6 simulation environ-

ment which can complement our real world XCAST6 deployment when faced with

time and resource constraints. Therefore, our target in OMNeT++ was the im-

plementation of XCAST simulation on the IPv6 stack. In our work, in addition

77

to targetting the IPv6 stack of OMNeT++’s INET Framework, we also implement

the XCAST6 concept where the bitmaps are used instead of the complex header

reconstruction[3, 4]process.

Our approach also utilizes much of the functionalities in the INET Framework’s

network layer modules with significant changes done only in the network layer mod-

ules. Since the key nodes such as Router6 and StandardHost6 modules inherit from

most of the network layer modules like IPv6 and IPv6ControlInfo, our implementa-

tion does not require any adaptation whatsoever to the existing StandardHost6 and

Router6 modules. Therefore sample networks can be generated using any existing

tools such as OMNeT++ IDE or ReaSE[116] without any other need for adaptation.

The subsequent subsections describe our implmentation in each of the layers of INET

Framework.

4.4.1 Network Layer

The greatest impact of XCAST6 is in the network layer of the INET Framework. We

derived a number of classes to implement XCAST6 functionality while some other

classes were only slightly altered by adding a few lines for XCAST6 specific function-

ality. As specified in [3, 4], XCAST6 destinations and the bitmap are contained in

the IPv6 routing extension headers. We modified the IPv6ExtensionHeader.msg file

to include these XCAST6 specific attributes in the INET Framework’s IPv6 routing

extension header. This in effect adds these two data containers into the generated

IPv6ExtensionHeader class.

To facilitate inter-protocol layer transmission of XCAST6 controls, we added the

XCAST6 traffic class, destination addresses list and the bitmap in the IPv6ControlInfo

Module. Traffic class of XCAST6 header is “010111XX”, which is “23” in decimal no-

tation, so any IPv6 traffic in the simulation with a traffic class of 23 (“010111XX”) is

recorgnized as XCAST6 traffic and this information is shared between protocol layers

78

using the IPv6ControlInfo Modulue. The IPv6Datagram module was also amended

to be able to handle the new XCAST6-capable extension header modules.

In INET Framework, routing decisions are made in the IP layer. We amended

the IPv6 class to allow for XCAST6-aware routing. We added a method called rou-

teXcast6Packet() in the IPv6 class and also amended its message handling method to

be able to identify XCAST6 messages and handle them by invoking our new XCAST6

routing method.

The IPv6FlatNetworkConfigurator that comes with OMNeT++’s INET Frame-

work assumes that all nodes are in the same subnetwork. To work with numerous

subnets, we used a NETCONF-style XML file detailing routing tables of the nodes

within the network. We therefore modified the RoutingTable6 class such that at

stage3 of the initialization process it invoked our newly defined method called par-

seXMLConfigFileForStaticRoutes(). In this method we parse the XML routing file

and use the route information to either invoke the addDefaultRoute() or addStati-

cRoute() methods of the RoutingTable6 class.

4.4.2 Transport Layer

In INET, the source and destination addresses of a UDP datagram are defined in

the UDPControlInfo module. We therefore modified this module to be able to han-

dle multiple destinations as required by XCAST6. In [3, 4], the XCAST6 header

is defined such that the destination address of the outer IPv6 header is that of

ALL XCAST NODES, given in the range of IPv6 multicast addresses as “ff0e::114”.

The destination address used by the UDPControlInfo module in our implementation

also uses the ALL XCAST NODES while the list of unicast destinations and the

bitmap are contained in our newly defined containers in this module.

There is no further modifications and derivations needed in the implementation

of UDP protocol since we use UDPControlInfo and IPv6ControlInfo to exchange the

79

XCAST6 information between protocol layers in the stack and just before trans-

mitting the message across the network, we add the XCAST6 information into the

IPv6Datagram message.

4.4.3 Application Layer

We developed a simple UDP application which can be used to test XCAST6 in OM-

NeT++. It is based on the UDPBasicApp that comes with INET Framework. How-

ever we implemented in it the ability to specify a parameter with the list of IP

addresses to be used as XCAST6 receivers from the omnet.ini file. In simulation

models with several nodes and only a set of them need to form an XCAST6 group,

it is possible to specify a number of groups and the IP addresses of the members of

the group. The application then delivers data to all members of the specified group.

In the INET’s UDPBasicApp example the application randomly picks one address

and sends data to it. We improved on this such that when simulating on XCAST6,

it is possible to specify a list of groups, of course each group also has a list of its

members. Our application can randomly select a group and deliver a UDP packet to

all members of that group.

4.4.4 Statistics collection

Our implementation also collects various information about XCAST6 packets on each

of the nodes in the model. For example we collect information on how many XCAST6

packets have been delivered locally, forwarded by a router, processed by a given node,

sent out by the sending node and the number of replications that a router peforms

during each simulation run. We shall add more features to this functionality.

80

4.5 Simulations

We used OMNeT++ IDE to define a model network with a topology similar to

the one shown in figure 4.1 comprising of hosts, routers and switches. The model

network had seven subnetworks with six routers connected to each subnetwork by an

Ethernet switch. In each subnet, we defined ten IPv6 hosts connected to the Ethernet

switches by bidirectional links. We considered a simple case where there is only one

XCAST6 sender, the host connected to router R1, while all the remaining 70 hosts

were receivers. All the links were assumed to have the same bandwidth and equal

chances of packet loss. The sender’s message frequency was assigned to 0.9s in the

omnet.ini file.

Figure 4.1: Simulation Model Network

4.5.1 Simulation scenario

We are interested in investigating XCAST behavior at different points in the network,

namely the sender side, the core and the edge of the network. We therefore investigate

the number of XCAST6 packets circulating in the network at each of these 3 distinct

points in different simulation scenarios. We defined test scenarios by changing the

number of receivers in each case. This changes the length of XCAST6 header and

81

Table 4.1: Summary of simulation scenarios
Scenario Number of

Receivers
Receivers distribu-
tion per subnet

1 70 All subnets: 10
2 60 Subnets 1 and 2: 5,

Other subnets: 10
3 60 Subnets 6 and 7: 5,

Other subnets: 10
4 50 Subnets 6 and 7: 5,

Subnets 3,4,5: 7, Sub-
net 1: 9

5 40 Subnets 3,4,5,6,7: 5,
Subnet 1: 7, Subnet 2:
8

the number of locally attached hosts for the routers each time. We then monitored

the impact of the number of receivers on XCAST6 on each of the routers at various

points in the network. Table 4.1 summarizes each of these test scenarios.

4.6 Performance Evaluation

Several performance metrics have been defined to characterize the multicast commu-

nication service and its impact on the network[117, 118]. The most important ones

being stress (both link and node stress), link stretch, time to first packet, control over-

heads and efficiency. We measured some of these metrics for XCAST6 as discussed

in the subsections that follow.

4.6.1 Node Stress

This is defined in terms of the number of identical packets a physical link (link stress)

or a node (node stress) carries in a network. Clearly for XCAST6, the link stress

is 1 because no packet is sent repeatedly over the same link. However we measured

the node stress since at each branching point, the XCAST algorithm states that the

82

router duplicates the packet according to the number of the next hops. For our model

network routers R1 and R2 have no branches hence the stress is minimal and incurred

only in destination lookups for the embedded XCAST6 destinations.

λh =
1

T

T∑

i=0

K (Lh(i) +Nh(i)) (4.1)

To calculate the average stress at the branching routers, we define a number of

variables. We define K to be the number of packets sent by the sender, L as the

number of locally attached receivers of the packet, N the number of unique next hops

for each of the destinations in the XCAST6 header and T the time interval for each

measurement split into (i) time slots. For each of the routing node (h), we used

the variables K, L, N and T to formulate the simple equation(4.1) which we used in

calculating the average stress (λ).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200

A
v
e
r
a
g
e

N
o
d
e

S
t
r
e
s
s

Time (s)

router R3
router R4
router R5
router R6

Figure 4.2: Average stress per router for a group of 70 nodes

In all scenarios, we observe that it takes sometime before the stress level stabilizes.

We observed that a lot of Neighbor Discovery and Router Advertisement Packets are

exchanged in the network over the same period of time so we attribute the shape

83

of graph at those points to these kind of exchange messages. Using equation (1)

we calculated the average node stress at intervals of 50 seconds based on emitted

XCAST6 statistical signals. Figure 4.2 shows the results for the first scenario with 70

receivers. Router R3 registers a constant low average stress of approximately 2 which

corresponds to the expected unique next hops while router R5 registers the highest

stress level averaging to approximately 36. This is because of the several receivers

that are locally attached to it. Routers R4 and R6 with the same number of locally

attached receivers register nearly similar level of stress but that of router R4 is slightly

higher because router R4 also has router R6 as the next hop for all XCAST6 packets

destined to subnetworks 6 and 7.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200

A
v
e
r
a
g
e

N
o
d
e

S
t
r
e
s
s

Time (s)

router R3
router R4
router R5
router R6

Figure 4.3: Average stress per router for a group of 60 nodes (scenario one)

We reduced the receivers to 60 but conducted two tests by changing the number

of locally attached receivers on routers R4 and R6. Figure 4.3 shows the results when

the number of receivers attached to router R4 were reduced to 10 (5 in each subnet

for subnets 1 and 2) while retaining locally attached receivers on router R6 at 20, (10

in each subnet for subnets 6 and 7).

84

The stress on R4 reduces while that on R6 remains at the same level registered

in the first simulation scenario. The reduction of the number of receivers from 70 to

60 only impacts on router R4 in the entire model.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200

A
v
e
r
a
g
e

N
o
d
e

S
t
r
e
s
s

Time (s)

router R3
router R4
router R5
router R6

Figure 4.4: Average stress per router for a group of 60 nodes (scenario two)

Figure 4.4 shows that the impact of changing locally attached hosts is noted on

routers R6 and R4 while the rest of the routers in the model are unaffected despite the

fact that the total number of receivers has been reduced to 60. The fourth scenario

had a group size of 50 receivers only and host distributed as summarized in table 4.1.

A considerable reduction in stress on router R5 is seen as indicated in Figure 4.5.

In our final scenario, we reduced the number of receivers to 40. For comparison

we had 15 locally attached receivers on router R4 and R5 but router R4 also has a

next hop for all packets destined to subnetworks 6 and 7. Figure 4.6 shows that router

R4 registered the highest stress level since it had more hosts than all the others. In

all scenarios, router R3 recorded the least nodal stress.

We therefore note that an important point on effectiveness of XCAST6 protocol is

that it enhances the Internet philosophy of pushing all the loads to the edge networks,

85

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

A
v
e
r
a
g
e

N
o
d
e

S
t
r
e
s
s

Time (s)

router R3
router R4
router R5
router R6

Figure 4.5: Average stress per router for a group of 50 nodes

away from the core. We observe that only the edge routers registered higher stress

levels depending on the number of locally attached receivers and the next hops of the

packets being transmitted.

4.6.2 End-to-End Delay

We also measured the average end-to-end delay during each of the above scenarios.

Using the NICE overlay protocol implemented in OverSim[114], we used the same

network model to compare the time delays in XCAST6 and Application Layer Multi-

cast (ALM) and results are shown in figure 4.7. This also acts as an indicator of the

processing overhead incurred by XCAST6 due to the increased packet header com-

plexity as compared to ALM. However, XCAST6 is targeting small groups and the

difference in end-to-end delay noted is also very small considering it is in the range

of very minor fractions of a second.

86

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

A
v
e
r
a
g
e

N
o
d
e

S
t
r
e
s
s

Time (s)

router R3
router R4
router R5
router R6

Figure 4.6: Average stress per router for a group of 40 nodes

4.6.3 Cost overhead rate

Considering that the result of section 4.6.2 shows a likely impact of the XCAST6

header complexity as a processing overhead, we compare XCAT6 and multicast based

on a factor we define as the cost overhead rate. This is calculated using the number of

packets that XCAST6 can generate if used in networks of hosts with varying MTUs

such as the Internet. We define the following variables for this comparison: HDR to

be the size of IPv6 header, ADR to be the size of an IPv6 address, N to the number

of XCAST6 receivers. THDR to be the length of the transport protocol header and

P to be the size of the payload data to be delivered in an XCAST6 message. We

assume that each bit of the bitmap requires only 1 unit of data to store.

fx(N,P) =
HDR + N*ADR + N*1 + 2 + THDR + P

MTU
(4.2)

Where 2 is added to represent the bytes storing the size of the bitmap and also

the length of the header in the IPv6 routing extension header. For the same data,

87

Figure 4.7: End-to-End Delay

the number of packets required by Multicast will be:

fm(N,P) =
HDR + THDR + P

MTU
(4.3)

Now we let a value M be defined as follows:

M = HDR + THDR + P (4.4)

The ratio of equation 4.2 and 4.3 and substituting for M, can be defined as the

XCAST6 gain on Multicast. This comes to:

fx(N,P)

fm(N,P)
=

M + N (ADR +1)+2

M
(4.5)

We note that ADR and THDR are constant. For IPv6, the ADR is 16 bytes and

THDR for UDP is 8 bytes. Therefore the value of (M) in equation 4.4 only varies

with the length of the payload data, (P). When we plot equation 4.5 above for upto

75 destinations against the payload size of between 250 bytes and 2000 bytes we find

88

 400 600
 800 1000

 1200 1400 1600 1800 2000

 10 20 30 40 50 60 70

 1

 2

 3

 4

 5

 6

 7

C
o
s
t

O
v
e
r
h
e
a
d

R
a
t
i
o

(M + N*(ADR+1) + 2) / (M)

Payload Length (Bytes)

No. of destinations

C
o
s
t

O
v
e
r
h
e
a
d

R
a
t
i
o

Figure 4.8: XCAST6/Multicast cost overhead ratio

the resulting comparison as shown in figure 4.8. The value of the cost overhead rate

goes as high 6.1 when there are many destinations and the payload length is shorter.

However, for a majority of cases the rate is between 2 and 2.5 especially for fewer

destinations and payload length of between 600 bytes and 1400 bytes. Considering

that the MTU for common Network Interface cards is at 1500 bytes, it implies that

XCAST6 bears a low overhead for the typical communication scenarios.

4.7 Conclusion

In this chapter, we have shown how to implement XCAST6 on OMNeT++. We

chose an approach that would ensure that all existing host modules of OMNeT++

can work without any need for alteration. We have also implemented various signaling

information for statistical data collection in the model and used these to measure the

stress node due to XCAST packet replication. We have confirmed that the simulation

works correctly by analyzing various XCAST performance characteristics.

89

Chapter 5

Scalable QoS for XCAST using

DiffServ Architecture

5.1 Overview

This chapter deals with QoS provisioning in XCAST networks using Differentiated

Services (DiffServ). We show that integration of DiffServ in XCAST is a non-trivial

problem due to inherent architectural differences between XCAST and DiffServ. We

then propose a scheme called QS-XCAST that uses dynamic DSCPs to adapt to the

heterogeneity of receivers in an XCAST network. We also provide an algorithm for

harmonizing the receiver-driven and sender-driven QoS approaches between XCAST

and DiffServ thereby determining the correct DSCP-PHB for all links in an XCAST

network. By simulating using OMNeT++ we evaluate QS-XCAST using four metrics:

throughput, average per-hop-delay, link utilization and forwarding fairness to other

traffic in the network. Our solution eliminates DSCP confusion and collusion attack

problems to which naive XCAST QoS provisioning is vulnerable. It also offers a

more efficient bandwidth utilization, better forwarding fairness and less traffic load

compared to the existing XCAST.

90

5.2 Introduction

The expansive growth of the Internet in the past decades has resulted in merging of

both data and real-time multimedia traffic. Availability of adequate bandwidth at

low cost however continues to be one of the challenges facing Internet users today.

While the available bandwidth to the end users has continuously increased over the

same period, the increase is always outdone by an increase in the number of Internet

users and the emergence of new applications some of which have intensive bandwidth

consumption.

As the number of services and users on the Internet increases, so is their diversity

in terms of bandwidth, delay and jitter requirements. These requirements are depen-

dent on several factors like the media processing capabilities of the user devices, the

amount of bandwidth the users are capable of paying for and the contract agreements

with the ISPs. Quality of Service (QoS) provisioning on the other hand is a complex

mix of factors such as bandwidth availability, criticality of applications, pricing and

the nature of the underlying networks. Therefore enforcing a single QoS provisioning

strategy might not work in this scenario hence the need for heterogeneous QoS pro-

visioning for each of the users and services running on the Internet. This becomes

even harder in multicast where data to multiple recipients is sent out in only a single

packet.

The Differentiated Services (DiffServ) architecture[7, 8] is one of the proposals

made by the IETF for provisioning of QoS in the Internet. In this architecture, the

network routers are classified into two main groups of core routers and edge routers.

The edge routers are further categorized as either ingress edge-routers or egress edge-

routers, depending on their locations relative to the source of the packets transmitted

in the network. These routers form a domain in which the ingress edge-routers’

principal task is to mark the packets with specific codes called DiffServ Code Point

(DSCP) and each DSCP is expected to allow the flow in the network to be shaped

91

according to a specific defined behaviour called Per-Hop-Behaviour (PHB)[7, 8, 64,

65, 66].

Explicit multiunicast (XCAST)[3], a promising technology for IPTV, videocon-

ferencing and multiplayer online games, has been proposed as a multicasting scheme

with complementary scaling properties which can solve the scalability problems of

conventional IP Multicast. Most research in XCAST however have focused on its

performance[97, 6, 119, 120, 121, 4, 122] and implementation[5, 3] in the Internet

leaving out its Quality of Service.

In addition to difficulties facing muticast QoS provisioning[123], QoS provisioning

in XCAST is further complicated by the fact that while XCAST is a form of multi-

cast, routing of XCAST packets does not use the multicast tree delivery paths but

instead it uses a unicast routing table[3]. Therefore most of the current solutions on

integrating DiffServ with Multicast which are dependent on construction and aggre-

gation of multicast trees cannot be applicable in XCAST networks. QoS provisioning

in XCAST using Differentiated Services should therefore be cognizant of the need for

heterogeneous QoS owing to the inherent heterogeneity of the receivers and at the

same time avoid reliance on multicast forwarding tables. This calls for the need for

dynamic DSCP assignment based on unicast routing.

In this chapter we highlight the architectural conflicts between XCAST and Diff-

Serv that make their integration a non-trivial problem and then propose a scheme

called QS-XCAST that uses dynamic DSCPs to cater for the heterogeneity of receivers

in an XCAST network. We also provide an algorithm for harmonizing the receiver-

driven and sender-driven QoS issues between XCAST and DiffServ thereby deter-

mining the appropriate DSCP-PHB for all links in the XCAST network. Through

simulation in OMNeT++[11, 10] we evaluate our solution using the following met-

rics: throughput, average per-hop delay, link utilization, traffic load and forwarding

fairness. The latter two are obtained from the router’s buffer evolution pattern. We

92

show that our solution eliminates the problems of DSCP confusion and collusion at-

tack that impede integration of DiffServ in multicast networks. It also gives better

performance in terms of bandwidth utilization, forwarding fairness to other protocols

and less traffic load on the router.

The rest of this chapter is organized as follows. In the next section we highlight

the issues that complicate XCAST-DiffServ integration. We also briefly introduce

previous attempts at XCAST QoS provisioning. We then look at currently existing

DiffServ-Multicast integration approaches and explain why they are not applicable

for XCAST-DiffServ integration. In section four we describe our proposed solution

and in section five we implement the solution in OMNeT++ simulation environment

and then discuss the simulation results and other possible effects of our proposal in

an XCAST-DiffServ network.

5.3 XCAST6 QoS Provisioning with DiffServ

The background of XCAST was introduced in section 2.3.3. Further explanation of

the structure of an XCAST packet header was then done in section 3.3. XCAST

protocol concept and options have been defined by the IRTF in RFC 5058[3] for both

IPv4 and IPv6. The implementation of XCAST on IPv6 is usually referred to as

XCAST6[3, 4], which is the focus of our work.

Figure 5.1 illustrates packet processing in a sample XCAST network. The XCAST

processing algorithm was described in sections 2.3.6 and 3.3.1. Section C.1 also uses a

similar diagram to explain how XCAST packet replication is done. In this section we

shall be looking at previous attempts at QoS provisioning in XCAST. We shall also

be highlighting the the challenges faced while attempting to use DiffServ architecture

in XCAST QoS provisioning.

93

Figure 5.1: XCAST6 Packet delivery.

5.3.1 Problems in XCAST QoS Provisioning with DiffServ

A group communication system using XCAST needs to consider group, network and

traffic dynamics that will affect the quality of communication. Group and network

dynamics refer to factors such as member join or leave events and changes in the

network topology possibly due to node or link failures or the addition of new nodes

or links in the network. Traffic dynamics however relate to data flow, link congestion

and error control in the network.

To take care of these dynamics, an XCAST network should have some form of

QoS provisioning such as integration with DiffServ. Considering the heterogeneity

of the receivers, such an XCAST-DiffServ network would have to guarantee dynamic

QoS appropriate to the demand of each receiver. This calls for QoS Precedence in

which each link in the delivery path guarantees data to be delivered at a QoS level

not lower than the highest level issued by any of its downstream links. Guaranteeing

QoS precedence using DiffServ in an XCAST network is however challenging due to

the following reasons:

1. Multipoint data delivery using unicast routing tables: XCAST delivers data to

94

multiple receivers but it does not rely on multicast forwarding tables (MFT) in

its routing of data packets. Instead, XCAST routers lookup next hops in unicast

routing tables and depend on unicast routing protocols. This means that QoS

multicasting techniques that rely on either aggregation or multiplexing of the

multicast trees within a DiffServ domain or between DiffServ domains cannot

solve the XCAST-DiffServ integration problem on the one hand while on the

other hand, unicast based DiffServ cannot provide a solution since XCAST

delivers data to multiple recipients.

2. QoS heterogeneity for a single data packet : XCAST achieves its multipoint de-

livery capability through the use of encapsulation techniques whereby multiple

destination addresses are embedded in an IP packet header. This means that

one packet contains data to be delivered to multiple receivers each of which is

likely to have different QoS requirements. The packet’s QoS should therefore

be such that all the embedded receivers’ QoS requirements are met. Boivie et

al, in [3] recommend setting the packet’s QoS to that of the most demanding

receiver. However this approach is insufficient because it leaves serious gaps in

management of resources in an XCAST network as we shall be explaining in

“resource management” section.

3. Sender-driven QoS versus receiver-driven QoS : This is fundamentally an ar-

chitectural conflict between XCAST and DiffServ that complicates XCAST-

DiffServ integration. XCAST allows members to join a group at the QoS level

that meets their requirements. Furthermore in multicast of which XCAST is a

variant, the receivers can request for different levels of QoS depending on the

changes in the resources available to them or other dynamics in the network.

This is a receiver-driven approach to QoS control which is inherent in multicast

(and by extension in XCAST) architecture. In DiffServ on the other hand, the

QoS provisioning starts from the sender side. The ingress routers insert the

95

appropriate Differentiated Service Code Point (DSCP) for the receiver in the

packet header. The core routers on the other hand simply check the packet’s

DSCP and then determine the appropriate forwarding queue for the packet.

This is contrary to the architectural design in multicast (and XCAST too) since

the receiver does not mark the packets to determine their QoS level.

4. Resource management :

(a) DSCP Confusion Problem: We consider an XCAST network of hosts with

heterogeneous QoS requirements as shown in figure 5.2. Assuming this

is an IPTV service provider network offering IPTV services at various

Service Level Agreements (SLAs) which are classified into various plans

dubbed Premium, Gold, Silver, Bronze and Normal. These plans are then

mapped onto Expedited Forwarding (EF)[64], AF41, AF31, AF21 [65] and

Best Effort (BE)[66] DSCP-PHB classes respectively. We note that host

(H1) is a premium customer, (H2) is a Gold customer and host (H3) is

a Bronze customer. Each of them pay different prices for the services and

require different treatment but their data is delivered in the same XCAST

packet.

Figure 5.2: XCAST6 Network with heterogeneous QoS requirements

If an XCAST packet is sent from the source to all three customers, then

96

depending on the routing table entries and the underlying routing protocol

in the network, potentially there are three branching routers where the first

replication of the XCAST packet can occur; on router R1, router R5 or

router R7. Let us assume that replication happens at router R5. Since all

the links from the source to the host H1 are premium (have EF DSCP),

the DSCP class of the packet from the source will be EF. On replication,

two copies of the XCAST packet emerge, each of which should now be

handled at different QoS levels. The copy bound for H2 and H3 through

router R8 should be handled at AF41 while that bound for H1 should

receive EF DSCP treatment .

Figure 5.3: XCAST6 DSCP Confusion problem

Since XCAST currently does not support dynamic DSCPs, router R5 will

not queue the two XCAST packet copies in their correct DSCP queues as

illustrated by figure 5.3. Router R5 will most likely queue the copy bound

for R8 on an EF DSCP queue yet it should be queued on AF41 queue.

This is referred to as DSCP confusion problem. While implementing QoS

provisioning in XCAST using DSCP, the algorithm should solve such likely

DSCP confusion problem.

(b) Collusion Attack Problem:

97

Figure 5.4: XCAST6 Collusion Attack problem

In figure 5.4 we consider a scenario where a new client is enrolled in the

IPTV service under the “Normal” plan. The new client H4 joined the

network through router R6 and based on the SLA mapping, his/her pack-

ets receive BE DSCP class. If the source sends a packet to all the hosts

(H1...H4), then depending on the underlying routing protocol in the net-

work and the entries in the routing tables of each of the routers, such a

packet might have three possible branching points; at routers R3 or R5 or

even on R7. In such a scenario, in addition to the DSCP confusion problem

mentioned above, a new problem arises. Since host H1 is paying a pre-

mium rate for the connections from the source all the way (we assume the

path to be R1→ R3→ R5→ R7→ H1), the resource allocation for this path

will be highly prioritized. The IPTV provider will not incur any additional

cost in delivering the XCAST packet up to router R7 (host H1 has paid for

it). If XCAST packet replication occurs at router R7, all the other hosts

will be getting the same treatment as H1 in terms of bandwidth (and other

resources) allocation as we later show in our simulation. Even (H4) who

98

is paying for only a “Normal” (BE) service will in the real sense be getting

near premium services. This opens the network to a kind of attack where

a subset of clients collude to pay substantially less amount for the best

QoS services available, leaving other unaware clients (Good Neighbors) to

be taking care of the other costs and both the “Good Neighbors” and the

IPTV Service Provider remain oblivious of the unfolding scenario. This

is called a collusion attack (in this case all the other hosts H2...H4 can

do that. Hosts H2 and H3 can even reduce their SLAs with the source to

lower classes while still getting near premium TV services).

An XCAST QoS provisioning scheme should therefore be more efficient and en-

sure that at each given moment, receivers actually get only what is acceptable within

their respective SLAs irrespective of their heterogeneity. Such a scheme would ensure

that the links of the sample network exhibit DSCP-PHBs as shown in figure 5.5.

Figure 5.5: XCAST links exhibiting the allowable DSCPs

5.3.2 Previous work on XCAST QoS provisioning

While a lot of research in XCAST has been focusing on its design, implementation

and performance, not so much has been done on QoS provisioning in XCAST. In[60],

99

Siregar et al, also acknowledge the lack of previous work in XCAST QoS research.

However their work as well seems to only enumerate the available QoS routing tech-

niques for unicast and multicast and then suggests that per-packet dynamic routing

for unicast can be used in XCAST but they do not show how this dynamic routing

should be adopted for XCAST. Nonetheless in [61], they propose a new modified IPv6

extension header they call “IPv6 QoS header” which contains a QoS value. The QoS

value is to be calculated by routers based on the number of users underneath a router,

total users requesting the video streams and the available priority levels. These values

further depend on some probability assignment. The prioritization based on the QoS

levels and how the probability values are calculated and allocated are however not

explained.

Since the XCAST header is already complex for existing routers, adding another

extension header for the purpose of QoS provisioning is likely to impact negatively on

XCAST performance. We therefore propose to leave the XCAST header as specified

in the XCAST RFC[3] but use DiffServ architecture for QoS provisioning.

5.3.3 Existing Multipoint DiffServ Solutions

In section 8.3 of RFC 5058 document[3], it is specified that an XCAST packet may

contain a list of DSCPs so that the DSCP of the packet is assigned to the most

demanding DSCP value from the list. However this specification does not take care

of what happens when the XCAST packet is replicated at a branching router and the

embedded list of destinations for a given set of next-hops no longer require the higher

level of QoS that was embedded in the original IP header. The specification also

does not put in place mechanisms to ensure that nodes receive the exact QoS which

is entitled to their “last-mile” link. It is unlikely that all the receivers in the group

will be willing to pay for the highest level QoS which they receive when the DSCP

of the XCAST packet is assigned to be that of the most demanding from the list.

100

This leaves the current DSCP usage specification in XCAST susceptible to collusion

attack and DSCP confusion problems explained above.

There are other research activities aimed at integrating DiffServ into multipoint

communication environments. An example of the encapsulation based approach is

DSMCast [124, 125] which like XCAST eliminates the maintenance of per-session

state information in the routers. However DSMCast works by constructing a Tree

Encapsulation Header (TEH) from the networks’ multicast tree information and then

encapsulates the TEH into the IP header. Additionally, in DSMCast, the TEH is

limited to information on the edge-routers alone and not the actual receivers. This

coupled with the fact that it relies on a multicast tree construction makes it not

an applicable approach in integrating XCAST in DiffServ networks. Furthermore,

DSMCast’s approach is susceptible to collusion attack.

Other approaches still exist that aim at integrating DiffServ into multipoint com-

munication by maintaining the state-information of the multicast trees in the core

routers. This means that they have a major limitation in terms of scalability since

maintenance of per-session state information increases the routers’ load proportion-

ately to the size of the multicast group. This also contravenes the DiffServ design

philosophy of removing complexity from the core of the network and pushing all such

loads to the edge network.

Jun-Hong Cui et al, proposed AQoSM [126] that uses the concept of aggregated

multicast but decouples group and distribution tree concepts. AQoSM also proposes

that admission control can be carried out on the level of aggregated trees instead

of being done at individual links, thereby increasing efficiency due to the statistical

multiplexing of multiple groups on a single tree. Being based on tree-group matching,

AQoSM cannot be easily applicable in an XCAST scenario that depends on a unicast

routing mechanism. Moreover, AQoSM depends on link-state collection which under-

mines the DiffServ design principle of statelessness at the core. Its dependence on a

101

single tree also opens it up to the collusion attack and DSCP confusion at the routers.

AQoSM also introduces the installation of a new component, the Tree Manager, in

a DiffServ network whose management and installation process is likely to add some

overheads in the DiffServ network.

Other solutions such as Harmonic DiffServ[127], DAM (DiffServ Aware Multicasting)[128]

and QMD (QoS-aware Multicasting in DiffServ domains) [129] have been proposed

but each of them suffers from both the DSCP problems described above and the

complexity involved in state-information maintenance. These approaches are there-

fore not easily adaptable for integrating XCAST in DiffServ networks.

We therefore propose a model for XCAST-DiffServ integration that not only seeks

to solve the problems described above but also relies on the existing XCAST concepts

and options with an enhanced resource management and admission control.

5.4 Scalable QoS-aware XCAST (QS-XCAST)

In order to integrate XCAST and DiffServ and to avoid the problems mentioned

above, we propose a new approach called Scalable QoS-aware XCAST (QS-XCAST)

and its implementation in IPv6 is codenamed QS-XCAST6. This approach is cog-

nizant of receivers’ QoS heterogeneity. It is based on dynamic DSCPs and an algo-

rithm for “request-grant” QoS control between the source and the receivers.

Our approach is based on a typical DiffServ network (like an example in figure 5.5)

comprising of all the essential DiffServ nodes such as:

1. A Bandwidth Broker

2. Core routers

3. Edge routers

4. End hosts (senders and receivers)

102

Using this approach and XCAST specifications in[3], the XCAST6 header will be as

shown in figure 5.6. The DSCP class of the XCAST packet is therefore determined

by the DSCP value in the outer IPv6 header.

Figure 5.6: A block summary of QoS-aware XCAST header

5.4.1 Proposed Solution

1. Dynamic DSCPs in the XCAST packet header : We propose to extend the packet

header processing in XCAST to allow for adaptive re-writing of the DSCP field

at the branching routers. Therefore during packet replication in a branching

router, the bitmap is used to determine which corresponding addresses in each

copy of the packet the data is to be delivered and the respective DSCPs of these

destinations are evaluated to obtain a new QoS precedence order. The DSCP

fields of the packet copies where the new DSCP precedence differs from the

original DSCP value are then updated with the new most demanding DSCP

for each copy before the copies are transmitted to their next-hop routers. This

mitigates the DSCP confusion problem and eliminates the vulnerability to col-

lusion attack. Since the DSCP check is done at every branching router, we

do not create two copies of a packet unnecessarily. Therefore if the current

branching point is not the last branch on a path, the bandwidth is still saved.

2. Receiver initiated QoS Requests : We propose an approach where a receiver

103

can initiate the changing of its current QoS level by sending a “QoS change”

request to the Bandwidth Broker[130]. In a commercial network this can simply

be implemented on a portal where customers choose various SLA levels which

are eventually communicated to the Bandwidth Broker for consideration. The

Bandwidth Broker knows the topology and capacities of the links within its

domain. The Bandwidth Broker can therefore easily determine whether to grant

a receiver the requested QoS level or reject the request but provide an acceptable

alternative QoS level. The Bandwidth Broker (BB) maps the requested QoS

level to its corresponding DSCP-PHB class and keeps a record of each receiver

and its latest DSCP class assignment. This record is updated regularly within

a definite control period (T) within which the receivers send feedback messages

to the Bandwidth Broker in order to allow the Bandwidth Broker to keep-alive

the receiver’s record. When a receiver leaves an XCAST session, a timeout

occurs i.e. the control period (T) expires before the receiver sends the feedback

message to the Bandwidth Broker. The Bandwidth Broker then deletes the

record of the receiver’s current DSCP-PHB association.

Using this approach where the Bandwidth Broker is modified to also maintain

a record of receivers and their latest DSCP class assignments (QoS level) has

the advantage that when initiating traffic shaping and policing in an XCAST

session, the ingress edge-routers find it easy to know the QoS requirements of all

receivers of a given packet. They can therefore determine the appropriate DSCP

precedence and mark the XCAST packet with the correct DSCP. This way not

only do we solve the architectural conflict between DiffServ’s sender-driven QoS

and XCAST’s receiver-driven QoS control approaches but also ensure that by

maintaining the latest QoS requirements, we mitigate collusion attack problems.

This algorithm is summarized in table 5.2

104

5.4.2 Algorithms for the proposed solutions

The extended XCAST processing algorithm

For solution (1) in section 5.4.1 above, we modify the XCAST processing algorithm at

the routers according to algorithm 5.1. When used with the QoS network in figure 5.5,

each of the hosts (H1...H4) end up receiving the QoS level requested as shown by

the colour of their corresponding arrows in the figure. Even if a client attempts to

downgrade their current QoS level, they cannot end up paying less for a higher QoS

since the algorithm adapts to the latest QoS level as obtained from the embedded

DSCP corresponding to each receiver at any branching point in the XCAST network.

Receiver initiated QoS level assignment

RFC2638 [130] defines the Bandwidth Broker (BB) as an agent in a DiffServ network

that has some knowledge of an organization’s priorities and policies and allocates QoS

resources with respect to those policies. Admission control is therefore one of the key

roles of the BB in a DiffServ network. The BB acts as a Policy Decision Point (PDP)

in deciding whether to allow or reject a flow, whilst the edge routers act as Policy

Enforcement Points (PEPs) for policing the traffic (allowing and marking packets, or

simply dropping them). Therefore in solution (2) of section 5.4.1 above, we propose

an algorithm that controls monitoring of changes in a receivers’ QoS requirements

thereby letting the receiver to request the BB to appropriately allocate QoS resources

dynamically in a given DiffServ domain. The proposed algorithm is summarized in

algorithm 5.2

5.5 Simulations and Results

We implemented our proposal in a simulation environment and used the simulation

model to evaluate the proposal. The metrics on the receivers are throughput, average

105

Table 5.1: Dynamic DSCP assignment algorithm
On receiving an XCAST packet:

1. Obtain the current DSCP class of the packet. We call it the
“original DSCP” class.

2. Do a route table lookup and determine the next-hop for each
of the embedded destination addresses.

3. Partition the set of destinations based on their next-hops.

4. Replicate the packet so that there is only one copy of the
packet for each of the next-hops found in step 2 above.

5. Modify the bitmap for the list of destinations in each of the
packet copies so that the bitmap in a copy to any particular
next-hop is set only for the destinations that ought to be
routed through that next-hop.

6. If the “original DSCP” class was found to be “Best Effort”
(DSCP value of “00000”) then go to step 8, otherwise process
the next step.

7. For each packet copy obtained from step 4 above:

(a) Obtain the highest DSCP class from the list of embedded
DSCPs for which delivery is to be done so as to determine
QoS Precedence. This is the “new DSCP” class.

(b) Update the DSCP field of the current packet copy to the
“new DSCP” obtained in (a) above.

(c) Continue to the next unprocessed packet copy.

8. Send the modified copies of the packet on to the next-hops.

9. If there is only one destination for a particular next-hop, the
packet can be sent as a standard unicast packet to the desti-
nation (X2U).

106

Table 5.2: Receiver initiated QoS level assignment algorithm
If a receiver wants to change its current QoS level:

1. The receiver selects a preferred level (higher or lower than its
current QoS assignment) from the list of QoS offered in the
network.

2. The receiver communicates the new QoS level to the Band-
width Broker(BB).

3. The BB verifies if there are adequate resources (e.g. band-
width) along the receiver’s path that can serve the requested
QoS level.

4. The BB does a lookup in its map table for the entry of the
receiver:

(a) If the receiver’s entry exists in BB’s record and the
resources are adequate for the requested QoS, the BB
checks the DSCP mapping table for the requested QoS
level and updates the receiver’s DSCP class in the table.

(b) If the receiver’s entry exists in BB’s record but resources
are inadequate, the BB determines the acceptable QoS
level and updates the receiver’s table with the DSCP
class matching this new acceptable QoS level.

(c) If the receiver’s entry does not exist in the BB’s table,
the BB creates a new entry for the receiver with an ap-
propriate QoS level.

(d) The BB notifies the receiver of the assigned QoS level.

5. The receiver sends an acknowledgment to the BB.

6. The BB notifies the edge routers of the latest policy changes.

7. Edge routers update their traffic shaping and policy rules to
reflect the latest policies from the BB.

107

Table 5.3: Simulation Parameters

Simulation parameter Value

Message size 1450 Bytes
Message frequency 50 ms
Queueing scheme Shown in tables 5.4 and 5.5
Max Queue capacity 20 MB
MAC Tx rate 100 Mbps
Background Traffic frequency 50 ms

per-hop delay and link utilization. To investigate the impact of this model on DiffServ

routers, buffer evolution was also investigated and used to infer the router’s traffic

load and forwarding fairness to other protocols. We also evaluate the model to verify

that our approach eliminates the collusion attack problem.

5.5.1 Simulation Model

The proposed QoS aware XCAST is tested using OMNeT++ simulation tool[10, 11,

18]. OMNeT++ currently does not have inbuilt XCAST header encapsulation and

routing models. However, previously[119], we gave a detailed description on how to

integrate XCAST6 into OMNeT++. Additionally the basic DiffServ in OMNeT++

only has a simple classifier that classifies packets into only two classes but several other

DiffServ components are missing. We therefore implemented our own full DiffServ

architecture for OMNeT++. Using OMNeT++, we model an IP Television (IPTV)

service provider network organized hierarchically such that the core routers form

the provider’s backbone network while the edge routers form the points where IPTV

clients are hooked onto the network similar to the illustration in figure 5.7. Our model

network comprises of 29 routers divided into 13 core routers and 16 edge routers (each

edge router in its own subnet). Each edge router is connected to 5 hosts. One host

is the source that sends data to all other remaining hosts in the entire network. The

basic parameters are summarized in table 5.3.

108

Figure 5.7: Model network for IPTV Service

In addition to IPTV (UDP) messages, a background non-XCAST TCP traffic is

also run in the network and processed by all nodes. Interconnections between core

routers are restricted to a degree of not more than five per router. For pricing, band-

width allocation and Service Level Agreements (SLAs) purposes, the IPTV services

are offered in six plans namely: Super-platinum, Platinum, Gold, Silver, Bronze and

Normal. The service plans are mapped onto the DiffServ architecture’s DSCP Per-

Hop-Behaviours as shown in table 5.4. Bandwidth allocation threshold is 35% for EF

class (Super-platinum), 55% for all AF traffic (Platinum, Gold, Silver and Bronze)

since they use the same buffer model and 10% for Normal.

All receivers are assigned various DSCP classes selected from a pool of six DSCPs

explained above. This is to conform with a typical IPTV subscription service in

which each client is provided with the services at an agreed SLA. The DSCP is

assigned statically at load time for each receiver. In section 5.5.1 we elaborate on the

implementation of DiffServ metering and buffering. The receivers are distributed in

different subnetworks. During the experiment, for each metric, we varied the number

of receivers (“group size”) ranging from 10 to 75 hosts and ten simulation runs were

conducted for each group size. Thereafter average values from all the runs were

109

Table 5.4: DSCP allocation and Buffering schemes
IPTV plan DSCP

Class
Metering and buffering
schemes

Super-
platinum

EF Drop-Tail with a leaky bucket

Platinum AF11 RIO1 queue with token bucket
Gold AF21 RIO queue with token bucket
Silver AF31 RIO queue with token bucket
Bronze AF41 RIO queue with token bucket
Normal BE RIO queue with token bucket

1RED (Random Early Detection) with distinction of In-profile and Out-profile
packets

Table 5.5: DiffServ Metering and scheduling Parameters

Queue model Queue Parameters Parameter values

Leaky Bucket
Token rate (Bytes/sec) 100,000
Bucket depth(Bytes) 200,000

Token Bucket
Token rate (Bytes/sec) 100,000
Bucket depth(Bytes) 400,000

RIO queue
Queue size (Bytes) 500,000
Probabilities (Px1)

1 0.5, 0.6, 0.7, 0.8, 0.9
Thresholds (TMin x1,TMax x1)

2 0.9,1.0; 0.8,0.95; 0.7,0.95;
0.6,0.97; 0.5,1.0

1For AFx1, x=1,...,4. The last probability value is for BE.
2Semicolons separate min, max pair for each class. The last pair is for BE.

calculated.

DiffServ parameters

We implemented packet metering to check on in-profile and out-profile packets using

leaky bucket[131] and token bucket[131] algorithms for EF and AF traffic classes

respectively. This is because EF traffic should not allow for traffic burstiness while

AF traffic can allow for burstiness. The EF buffer implementation was realized using

a Drop-tail[131] queue with leaky bucket while RIO queues[131] with token buckets

were used for all the AF classes and the BE class.

110

(a) RIO Algorithm (b) Metering and scheduling

Figure 5.8: Implementation of DiffServ in model routers

Parameters for these data structures are shown in table 5.5. RIO queue implemen-

tation was a little complex because we had to specify both minimum and maximum

thresholds and the corresponding “drop probabilities” for all the AF classes and the

BE class. In our implementation, dropping of packets is only done when the lowest,

i.e BE, queue is full, hence the term, “re-scheduling probability” used in figure 5.8(a)

instead of “drop probability”. We have an array of “RIO queues” as shown in fig-

ure 5.8(b). For a RIO queue at index (i), (i=0,...,4) in the array, if the queue length

exceeds the minimum threshold TMin x1, (x=1,...,4), the new “AFx1” packets are

scheduled in a lower queue at index (i+1) of the array, with an increasing probability

up to Px1. When the queue length exceeds the maximum threshold TMax x1 and the

current queue is not the last one in the array, all new “AFx1” packets are scheduled

in a lower queue at index (i+1). If the current index (i) is the last one in the array

then the packets are dropped.

Path construction and packet delivery to receivers

XCAST does not depend on delivery tree construction. Instead, as specified in sec-

tions 3 and 4 of XCAST RFC document[3], XCAST packets always take the “right”

path as determined by the unicast routing table. This implies that data delivery in

an XCAST network is affected by the state of the routing tables of each interme-

111

diate node an XCAST packet passes through. In our model, the routing table of

each node was initially constructed using a NETCONF[132, 133] based XML file.

We added methods in the “RoutingTable6” module of OMNeT++ which parse the

XML file based on NETCONF XML DTDs[132]. The NETCONF-XML file is filled

with all possible paths within the mesh of nodes that forms the simulation model and

OMNeT++’s “RoutingTable6” module loads these into the model at the initializa-

tion stage of the model. Additionally, the model IPv6 routers used in the simulation

send out router advertisement (RA) messages at regular intervals to all their adja-

cent neighbours which the recipient routers then use to update their routing table

information. This therefore ensures that at any given moment in time, the routing

table of each of the model routers is up to date and the most optimal path is used to

deliver both XCAST and unicast data to any particular receiver.

Receiver handling in XCAST6 and QS-XCAST6

XCAST6 is primarily designed for small group sizes hence group membership is usu-

ally limited. As specified in section 9.3.2.1 of the XCAST RFC document[3], the

destination addresses are embedded within the IPv6 routing extension header. The

IPv6 routing extension header length is expressed in 8-octets thus the theoretical

upper bound of the number of XCAST6 destinations (group membership) is up to

127 receivers. In practice however, the possible number of receivers can be much

less depending on the configuration of the MTU of routers in the network. This is

because, the entire packet length also includes the data payload. The length of the

data payload therefore affects how many destinations can be embedded within the

IPv6 routing extension header without realizing IP fragmentation due to router MTU

size limitations which is usually up to 1500 bytes. In our case, we embedded up to 75

destinations with a payload data of approximately 256 Bytes hence the total message

length was 1450 Bytes.

112

Model verification for DiffServ functionality

We first verified QS-XCAST6 service differentiation using the model and a group size

of 30 receivers and plotted the observations in figure 5.9. The model starts with 30

BE receivers and after 20 seconds 15 BE receivers change their QoS level to AF21

using the algorithm in algorithm 5.2. After 50 seconds the hosts are further changed

such that we have 10 receivers for BE, AF21 and EF respectively. After 100 seconds

we revert to the original state.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Time(sec)

EF(QS-XCAST)
AF11(QS-XCAST)

BE(QS-XCAST)

Figure 5.9: Service Differentiation verification using a group of 30 receivers.

Service differentiation is confirmed as required since the lower priority traffics

are seen to reduce as expected whenever a higher priority traffic is injected into the

network. This shows that each class is scheduled in its own independent queue. The

BE actually rises after 100 seconds when we remove both EF and AF21 receivers and

replace them with BE receivers. We then proceeded to investigate the model using

various metrics as explained in section 5.5.1.

113

5.5.2 Average Throughput

The values of average throughput presented in figure 5.10 and those of average per-

hop delay (figure 5.11 of section 5.5.3) were calculated by summing up the observed

data in every corresponding DSCP class under each group size (10...75) and then

dividing the total by the number of groups used (8 in this case). For example the EF

values in figure 5.10 are averages of all EF observations for eight different group sizes

varied from a group size of 10 to 75 receivers for both XCAST6 and QS-XCAST6.

 0

 5000

 10000

 15000

 20000

 25000

 30000

EF AF11 AF21 AF31 AF41 BE

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

by
te

s/
se

c)

DSCP-PHB class

XCAST
QS-XCAST6

UNICAST

Figure 5.10: Comparative average throughput

In figure 5.10, in all cases except for the EF DSCP class, XCAST6 yields a higher

throughput. This is because XCAST6 sends data to all the receivers in one packet

and the DSCP of the XCAST6 packet is set to that with the highest priority from

the list of DSCPs of the receivers hence even the lower priority DSCP classes get

near-optimal treatment. However in XCAST6, the EF DSCP class suffers a little

reduction in throughput and a longer delay when compared to the corresponding

values in unicast and QS-XCAST6. This is because some of its resources are shared

with the lower classes.

114

Unicast on the other hand, treats each of the DSCP-PHBs independently, there-

fore its EF class does not share any resource with lower DSCP classes. QS-XCAST6

finds a middle ground between these two extremes by ensuring that in as much as

the data is delivered in one packet, each class still gets an appropriate treatment.

Therefore the lower DSCP classes do not get near Super-platinum services that they

are not paying for and the higher priority class does not suffer extensively due to the

lower priority classes.

5.5.3 Average Per-hop delay

The method used for getting average per-hop delays for each DSCP class is the same

as the approach used in calculating average throughput in section 5.5.2 above. As

illustrated by figure 5.11, the average per-hop delay for all the DSCP classes reflects

the disparity in DSCP treatment by each of the investigated protocols. XCAST6 still

out-performs all the others hence the the lower priority DSCP classes still get very

minimal delay compared to the same values registered by the other two protocols for

each corresponding DSCP class. Figure 5.11 shows that for XCAST6, delays of all

 0

 0.5

 1

 1.5

 2

 2.5

 3

EF AF11 AF21 AF31 AF41 BE

A
ve

ra
ge

 p
er

-h
op

 d
el

ay
 (

m
se

c)

DSCP-PHB class

XCAST6
QS-XCAST6

UNICAST

Figure 5.11: Comparative average per-hop delay

115

other classes tend to coalesce around that of EF traffic but for Unicast traffic each

class is more distinct. QS-XCAST6 again finds an optimal middle ground for these

cases ensuring that each class is treated fairly in accordance with its defined Per-Hop-

Behavior. QS-XCAST6 achieves this by ensuring that during replication of XCAST6

packets at the branching routers, each copy is placed in its appropriate DSCP queue.

Elimination of DSCP confusion and Collusion Attack

Collusion attack exploits the possibility of low priority class of packets being treated

at a higher priority in routers. In such case, the customers located downstream in the

delivery path and are on lower priority SLAs collude to get better services but pay

less. We use a sample network in figure 5.12 to show how this happens and how it is

mitigated in QS-XCAST6. Each of the hosts (H1 to H6) is assigned DSCP classes that

correspond to their SLAs as specified in their corresponding labels. The simulation

is scheduled to run for 100 seconds then a measurement of throughput values on each

host is taken. At this point, the DSCP values of hosts H2, H3 and H5 are reduced to

BE class (Normal plan) using the receiver initiated QoS SLA assignment algorithm

in table 5.2. The model is then let to run for another 100 seconds before a second

measurement of throughput values is taken. The results are plotted in figure 5.13.

As shown in figure 5.13(a), for XCAST6, all the hosts receive nearly the same

amount of throughput irrespective of their DSCP classes. Throughput values for

lower DSCP classes tend to coalesce around that of the EF class. This is because

for XCAST6 even after replication, the packet copies still have the EF DSCP as the

effective value. In QS-XCAST6 on the other hand, throughput values on each of

the host is distinct and obeys the required DSCP precedence. This is because QS-

XCAST6 dynamically re-writes the DSCP at every replication point according to the

SLAs. Figure 5.13(b) shows that in XCAST6, even after changing the DSCP values

of H2, H3 and H5 to BE (“Normal”) after the first 100 seconds, they still continue to

116

Figure 5.12: Collusion attack example in a group of 6 hosts.

receive the packets at EF level hence H2, H3 and H5 can easily collude to subscribe

at BE level (and pay less) yet in the real sense they continue receiving near Super-

platinum services. For QS-XCAST6, figure 5.13(b) shows that the throughput values

of H2, H3 and H5 change to that of the BE level. This is because on replication, QS-

XCAST6 places each copy of the packet in its appropriate queue thereby eliminating

DSCP confusion which also eliminates any possibility of collusion attack.

5.5.4 Average Link Utilization

The link utilization statistics considers both the UDP traffic (for IPTV simulation)

and the background TCP traffic in the network. The average values plotted in fig-

ure 5.14 were calculated from all group sizes (10 to 75) using the same approach

explained at the beginning of section 5.5.2. Unicast link utilization was found to be

so high; more than double for BE at about 68% and more than 90% for EF. Hence

they do not compare well in the same graph with the XCAST6 and QS-XCAST6.

We attribute this high link utilization by unicast to the fact that unicast has to send

several successive packets for each receiver unlike XCAST that sends out the data

117

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Host1 Host2 Host3 Host4 Host5 Host6

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Host Name

XCAST
QS-XCAST6

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Host1 Host2 Host3 Host4 Host5 Host6

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Host Name

XCAST
QS-XCAST6

(a) (b)
Values with initial DSCP assignments. H2, H3 and H5 changed to (BE class).

Figure 5.13: Throughput values for a group of 6 hosts before and after class change.

to all receivers in only one packet. From figure 5.14 it is observed that QS-XCAST6

ensures greater bandwidth efficiency than XCAST6. For every DSCP class, XCAST6

utilizes more bandwidth on the final links (“last mile”) to each receiver than does

QS-XCAST6. This is because by dynamically assigning DSCP values, QS-XCAST6

ensures that each host gets data at an agreed SLA even though the data to all re-

ceivers are transmitted in one packet. XCAST6 on the other hand delivers data at

the highest priory DSCP since the DSCP fields of all the copies of the packet to all

receivers are set to be that of the most demanding receiver.

QS-XCAST6 therefore proves to be an efficient method for IPTV data delivery

compared to XCAST6 since for any given link with a definite bandwidth allocation,

when using QS-XCAST6 the amount of bandwidth consumed is lower. This im-

plies that for the constant bandwidth value on a link in the network, the remaining

unconsumed bandwidth under QS-XCAST6 can still be utilized in connecting more

clients than when XCAST is used. Therefore, from a service provider’s point of view,

QS-XCAST6 is very cost effective and serves all clients efficiently and reliably.

118

 0

 5

 10

 15

 20

 25

 30

 35

EF AF11 AF21 AF31 AF41 BE

P
er

ce
nt

ag
e

Li
nk

 U
til

iz
at

io
n

(%
 M

bp
s)

DSCP-PHB class

XCAST6
QS-XCAST6

Figure 5.14: Comparative average link utilization

5.5.5 Effect of the Group Size

This comparison is done between XCAST6 and QS-XCAST6 and in order to enhance

legibility, we plotted results of only 3 DSCP classes (EF, AF21 and BE) for each

protocol.

Effect on Throughput

For both protocols, as the group size increases, throughput decreases marginally.

This is illustrated in figure 5.15. XCAST6 registers a marginally higher performance

than QS-XCAST6. QS-XCAST6 gives a clear distinction in throughput between the

various QoS levels as noted especially by the wider difference in throughput values for

EF and BE in QS-XCAST6. QS-XCAST6 thus gives the benefit of ensuring that each

DSCP class gets its corresponding treatment as defined by the Per-Hop-Behaviour

hence it introduces QoS awareness to XCAST6.

119

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 32000

 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

by
te

s/
se

c)

Number of Receivers

EF(XCAST)
EF(QS-XCAST)

AF21(XCAST)
AF21(QS-XCAST)

BE(XCAST)
BE(QS-XCAST)

Figure 5.15: Throughput for varying group sizes

Effect on Average per-hop delay

Effect of an increase in the members in a group on the average delay for both pro-

tocols mirrors that of throughput. Once again, QS-XCAST6 shows a clear difference

between the QoS classes in terms of their average per-hop delay. Hence each DSCP

class is handled according to its respective priority level as shown in figure 5.16.

5.5.6 Scalability: Effects of the network scale

In instances like the Internet where QoS provisioning needs to span multiple DiffServ

domains, in order to achieve an end-to-end allocation of resources across the separate

domains, the Bandwidth Broker managing a domain will have to communicate with

its adjacent peers. This allows end-to-end services to be constructed out of bilateral

agreements as shown in figure 5.17.

An end system initiates a request for service to its domain’s Bandwidth Broker

(BB) with a fully-specified destination address of the intended receivers of the service.

The local Bandwidth Broker realizes that the request is for a host in another DiffServ

120

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 10 20 30 40 50 60 70 80

A
ve

ra
ge

 p
er

-h
op

 d
el

ay
 (

m
s)

Number of Receivers

EF(XCAST)
EF(QS-XCAST)

AF21(XCAST)
AF21(QS-XCAST)

BE(XCAST)
BE(QS-XCAST)

Figure 5.16: Average per-hop delay for varying group sizes

domain and requests the service to another domain. In the transit domain, this is in

effect a pipe to another domain where the destination host is located. The Bandwidth

Broker (BB), of the host’s domain receives the request and liaises with the host to

determine its QoS level. Then the request is sent back to the original domain via the

transit domain. The Bandwidth Broker of the end system that initiated the request

forwards the verified QoS requirements of the intended recipient and then the service

delivery can begin. In this test, we compare cases where this request to initiate

a QoS service delivery over multiple DiffServ domains is done via XCAST6 (same

for QS-XCAST6) and when it is done via unicast for varying number of intended

recipients.

The request messages are referred to as Resource Allocation Requests (RAR) and

their answer messages as Resource Allocation Answer (RAA). Since at this stage the

RAR and RAA messages are of the same priority (DSCP value), it does not matter

whether we use QS-XCAST6 or XCAST6. Figure 5.18 shows the time it takes to

receive the RAA message so that data delivery can begin for various group sizes

(for unicast we track the nth RAA for a group of n members). Since XCAST6 out-

121

Figure 5.17: QoS Provisioning in multiple DiffServ domains

performs unicast, integration of XCAST would be really beneficial for QoS aware

implementations spanning multiple DiffServ domains.

5.5.7 Impact on DiffServ Routers

In DiffServ, the edge routers act as policy enforcement points. They typically classify

incoming packets into pre-defined aggregates, meters them to determine compliance

to traffic parameters, marks them appropriately by writing (or re-writing) the DSCP

values and shapes (buffers the packets to achieve a target flow rate) or drops the

packets in an event of congestion. We assessed the impact of our proposal on DiffServ

routers by analyzing the buffering patterns of ingress edge routers and core routers

under both XCAST6 and QS-XCAST6 traffic. We plotted the results as shown in

figure 5.19.

The number of buffered packets under XCAST6 remains higher than those under

QS-XCAST6. For both protocols, buffering in edge routers is less than that of core

routers. Interpretation of buffer evolution can be two fold in terms of: the impact on

router’s traffic load and that of forwarding fairness to other protocols.

122

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 10 20 30 40 50 60 70 80

T
im

e
of

 R
A

A
 a

rr
iv

al
 (

m
s)

Number of Receivers

XCAST
UNICAST

Figure 5.18: Time taken to receive Resource Allocation Answer (RAA) message

Impact on Traffic Load

Traffic load can be defined as the ratio of incoming traffic to outgoing traffic in a

router[134]. This way, buffering can be assumed to be directly proportional to a

router’s load size. Interpreting results of figure 5.19 in this context, we can conclude

that QS-XCAST6 adds less traffic load than XCAST6 to a DiffServ router.

Impact on Forwarding Fairness to other protocols

If we interpret the buffer evolution pattern in figure 5.19 in conjunction with obser-

vations made in figures 5.10 and 5.11 where XCAST6 registers higher throughput

and lower average per-hop delay compared to QS-XCAST6, we conclude that most

of the buffered packets are for the background TCP traffic running in the model.

This is clearer if we consider that the background traffic here represents the standard

(non-prioritized) packets thereby being buffered in the BE queue. This buffer evo-

lution pattern points to the fact that QS-XCAST6 is likely to realize better “packet

forwarding fairness” than XCAST6 between real-time(prioritized) and standard (non-

123

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

N
um

be
r

of
 P

ac
ke

ts
 in

 B
uf

fe
r

Time (s)

XCAST6
QS-XCAST6

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

N
um

be
r

of
 P

ac
ke

ts
 in

 B
uf

fe
r

Time (s)

XCAST6
QS-XCAST6

(a) Edge routers’ buffer evolution (b) Core routers’ buffer evolution

Figure 5.19: The impact of XCAST6 and QS-XCAST6 on DiffServ routers.

prioritized) traffic in the network since its buffering effects on the standard traffic is

less than that of XCAST6.

5.5.8 Other effects of our solution

1. Header size and packet length: Embedding the list of destinations and their

corresponding DSCP classes in the IP packet header increases the header size.

This in turn increases possibilities of IP fragmentation problems. As observed

in our case where according to XCAST RFC document[3], we can embed up to

127 unicast addresses but in practice this number is affected by the length of

the payload data too. Therefore we were able to simulate with up to 75 des-

tinations without breaching the router interfaces’ MTU limits. To mitigate IP

fragmentation problems, QS-XCAST6 could be combined with the G-XCAST

solution[135] to ensure the group sizes are small enough to pass within the MTU

limits.

2. DSCP field modification: In order to reduce overheads related to DSCP pro-

cessing, we limit the DSCP processing to simple comparison and update is done

only on the DSCP field of the IP header and not on the entire list of the embed-

ded DSCPs. The alteration of the DSCP field however might bring challenges

124

in situations where IPsec is to be used with QS-XCAST.

3. Feedback implosion: The communication of bandwidth requirements by re-

ceivers to the source needs to be done in a way that ensures that the source

is not overwhelmed by such messages. Approaches such as exponentially dis-

tributed timers[136] can be implemented between the receivers and the source.

This potentially avoids the feedback implosion and enhances the scalability of

bandwidth requirements handling at the source even for larger groups.

5.5.9 Further Discussion on Practicality

QS-XCAST6 can be used to improve on flexibility and efficiency of bandwidth allo-

cation. If providers use QS-XCAST6 for delivery of real-time traffic, they can take

advantage of the fact that the various IPTV plans have varying bandwidth thresh-

olds to economize on bandwidth utilization on any given link. As an example, we use

bandwidth allocation thresholds as shown in the second column of table 5.6 for each

DSCP class and define a new ratio called “QS-XCAST Gain”, (QXG) to determine

the savings that can be realized using QS-XCAST6. We also use a scenario where the

allocation is to be done for 100 MB on a given link. “QS-XCAST Gain”, (QXG) is

defined using formula (5.1) as the gain for different traffic loads in terms of the band-

width required by XCAST6 (Bw XCAST6) divided by the bandwidth required by

QS-XCAST6 (Bw QSXCAST6) to achieve the same QoS Service Level Agreement.

QXG =
Bw XCAST6

Bw QSXCAST6
(5.1)

For the purpose of this illustration, we calculate QS-XCAST Gain as shown in

table 5.6 based on the link utilization results observed in figure 5.14 (section 5.5.4).

From a bandwidth of 100 MB on a link, if we apply the indicated bandwidth

allocation policy for each DSCP class and use QS-XCAST6, we obtain an estimated

125

Table 5.6: Bandwidth Allocation for XCAST6 and QS-XCAST6 using 100MB

IPTV plan DSCP
Class

Bandwidth
Allocation
(%)

QXG QS-XCAST6
Bandwidth
Estimate

Super-
platinum

EF 35 0.999 35.04

Platinum AF11 18 1.117 16.11
Gold AF21 14 1.148 12.20
Silver AF31 12 1.167 10.28
Bronze AF41 11 1.213 9.07
Normal BE 10 1.253 7.98
Total 100 90.68

bandwidth utilization of 90.68 MB saving the rest due to QS-XCAST Gain as shown

in table 5.6. The saved bandwidth can be used for deploying other services hence

ensuring efficient and economical bandwidth utilization. However, we note that the

exact bandwidth economy realized by any IPTV service provider while using either

XCAST6 or QS-XCAST6 is dependent on the ratio of the real-time traffic to the

standard traffic in the network and also on the threshold allocations per given DSCP

class. The lower the ratio of real-time to standard traffic, the higher the QS-XCAST6

gain and hence the better the performance of QS-XCAST6.

QS-XCAST6 effect on Router Performance

Having run this on a simulation environment, we have not been able to investigate

the impact of QS-XCAST6 on the router’s CPU and Memory utilization. However in

section 5.5.7, we investigated possible impact on a DiffServ router’s buffering pattern

for both edge and core routers where we observed that QS-XCAST6 has lower buffer-

ing effects than XCAST6. If applying QS-XCAST6 impacts negatively on a router’s

forwarding performance then the router will support less aggregate throughput. How-

ever, today’s commercial routers typically implement DiffServ Per-Hop-Behaviours in

126

ASICs[137] thereby ensuring that there is no forwarding penalty associated with Diff-

Serv implementation.

5.6 Conclusion

We have proposed a model for providing Quality of Service in XCAST using Diff-

Serv. We explored the various challenges that complicate integration of XCAST and

DiffServ. We then showed how to overcome the challenges and tested our proposal

by simulation using OMNeT++. Our proposed QoS-aware XCAST6(QS-XCAST6)

proves to be very efficient when it comes to bandwidth utilization, out-performing

the current XCAST6 thereby proving to be very conducive for offering services such

as IPTV using XCAST6. QS-XCAST6 also impacts less on DiffServ router buffer-

ing patterns compared to XCAST6, showing a better fairness to non-priority traffic

when compared to XCAST6. QS-XCAST6 only registers a slight drop in throughput

compared to XCAST6 but ensures that all clients get the services at the agreed SLA.

XCAST6 on the other hand allows even lower priority clients to enjoy better services

than what they are paying for thereby ending up consuming more bandwidth than

ought to have been the case. XCAST6 also leaves the network vulnerable to collusion

attack which QS-XCAST6 totally eliminates. We therefore find that QS-XCAST6 is

preferable for commercial service provision like in IPTV scenarios.

127

Chapter 6

Integrating XCAST with LISP

6.1 Overview

A number of concerns about the state of the current Internet have resulted in the

research in an architecture for the Future Internet. These concerns include the diffi-

culties with regards to scalability of the routing system and the impending exhaustion

of the IPv4 address space. Separating the Identity and Location spaces on the Inter-

net has been one of the proposed solutions to these problems. In this area, Location

Identifier Separation Protocol (LISP) has been the most successful so far. This chap-

ter therefore aims at realizing deployment of XCAST even in the Future Internet

where locator and identifier spaces have been separated. To achieve this, we explore

the Integration of XCAST with LISP.

6.2 Introduction

The near exponential growth of users connecting to the Internet and the explosion

of the availability of mobile devices such as cell phones and tablets which are in-

creasingly used by mobile users to connect to the Internet have fueled research into

the Future Internet architecture. This is because the current Internet already faces

128

serious problems with regards to scalability of the routing system and the impending

exhaustion of the IPv4 address space. Research in this area was actually touched

off by the Internet Architecture Board(IAB)’s workshop on Routing and Address-

ing held in October 2006. Since the IAB workshop, several proposals have emerged

that attempt to address the concerns expressed both at the workshop and in other

forums[138, 139, 140, 141, 142, 143]. One common factor with all these proposals is

that they aim at separation of locators and identifiers in the numbering of Internet

devices. This is commonly referred to as ”Loc/ID split”. However in this research,

we focus on one Loc/ID split proposal known as the Locator/Identifier Separation

Protocol (LISP)[9].

6.2.1 The Locator/Identifier split concept

The current Internet routing and addressing architecture combines two functions:

Routing Locators (RLOCs), which describes how a device is attached to the network,

and Endpoint Identifiers (EIDs), which defines ”who” the device is, in a single

numbering space, the IP address. This results in an ”overloading” of functions in

the IP address space. Researchers therefore argue that this overloading of functions

results in forcing a number of constraints on the address space and makes it impossible

to build an efficient routing system without forcing unacceptable constraints on end-

system use of addresses.

Loc/ID split therefore proposes that these functions be split in such a way that

EIDs and RLOCs use different numbering spaces. This is envisioned to offer several

advantages including improved scalability of the routing system through greater ag-

gregation of RLOCs. This split in turn will facilitate improved aggregation of the

RLOC space, implement persistent identity in the EID space, and, possibly increase

the security and efficiency of network mobility. These are basically the foundation

onto which the LISP protocol is built.

129

6.2.2 Implementing the Locator/ID Separation

Two distinct approaches have so far come up on how this split can be achieved.

These are map-and-encap and Address re-writing. The former works seamlessly for

both IPv4 and IPv6 while the latter works only in IPv6 address space. We briefly

discuss each of these approaches in the sections that follow.

Map-and-encap

Map-and-encap is a Loc/ID split scheme in which the handling of a packet is deter-

mined by whether the EID to which it is addressed is within the same domain as the

source. When a source sends a packet to the EID of a destination that is outside its

own domain, the packet traverses the domain infrastructure to a border router (or

other border element). The border router maps the destination EID to an RLOC that

corresponds to an entry point in the destination domain. Therefore an EID-to-RLOC

mapping system is needed. This phase is the ”map” phase of map-and-encap.

After a success in the mapping phase, the border router then prepends a new

header(”the outer header”) to the packet it just received from a sending host(becomes

the ”inner header”). The source and destination addresses of the inner header are

EIDs while those of the outer header are mostly RLOCs. The source address of

the outer header is the RLOC address of the border router while its destination

address is the RLOC returned by the mapping infrastructure. This process is called

encapsulation and this phase is the ”encap” of the map-and-encap model.

When an encapsulated packet arrives at the destination border router, the router

decapsulates it to get both the inner and the outer headers. The outer header is

usually destined to the border router so it will be discarded as the router sends the

inner header to its destination. In this regards, EIDs need to be routable, usually

within their local domain.

An advantage of the Map-and-encap schemes is that they do not require host

130

changes or any changes to the core routing infrastructure. The other one is that

they work with both IPv4 and IPv6, while retaining the the original source address.

However, there have been arguments[144] as to whether or not the encapsulation and

decapsulation processes pose significant overheads.

Address Rewriting

This is the seond approach ot Loc/ID split and applies only to IPv6 address space. It

aims at taking advantage of the 128-bit IPv6 address length in the IPv6 address space

and use the top 64 bits as the routing locator (”Routing Goop”, or RG), and the lower

64 bits as the endpoint identifier.Using this scheme, when a packet destined to another

domain is sent by a host, the source address contains its identifier (frequently a IEEE

MAC address) in the lower 64 bits, and a special value (meaning unspecified) in the

RG. On the other hand, the destination address contains the fully specified destination

address (RG and EID). When the packet arrives at the border router(egress router)

of the local domain , the source RG is filled in (forming a full 128-bit address), and

the packet is routed to the remote domain. When the packet reaches the destination

domain (at the ingress router of the remote domain), the destination RG is rewritten

with the unspecified value, ensuring that the host does not know what its RG is.

An outstanding weakness of this proposal is that besides its complexity, it requires

changes on the network hosts. Further it works only on the IPv6 address space.

Therefore our effort is focused on LISP that uses Map-and-encap and offers several

advantages including incremental deployment in the existing network infrastructure.

6.3 More on LISP Protocol

We first introduced LISP in section 2.7. LISP aims at being a simple, incremen-

tal, network-based map-and-encap protocol for implementing the Loc/ID split using

131

EIDs and RLOCs. LISP requires no changes to host stacks and no major changes

to existing network infrastructures. The greatest advantage of LISP comes in the

mobility environment where it has the key advantage of improving site multihoming

and decoupling of site addressing from provider addressing thereby reducing the size

and dynamic properties of the core routing tables.

6.3.1 LISP with Static Nodes

First we note that LISP is “IP-protocol agnostic”, therefore RLOCs can either be

IPv4 or IPv6 addresses used for routing through transit networks. In order to reach a

host, identified by its EID, one must first find the current Routing locator (RLOC) of

the host. This is usually an RLOC address of the border router in charge of the end-

host’s (receiver’s) domain. Once the RLOC associated with the EID is discovered,

packets with headers from the EID numbering space are encapsulated in a second

header from the RLOC space (usually the RLOC address of the border router within

the sender’s domain), and are routed to the destination, where the LISP header is

removed before delivering packet to the destination host.

In LISP terminology, the border routers that perform packet encapsulation and

decapsulation are referred to as Tunnel Routers. They are the entry and exit points of

the tunnels that help tunnel LISP packets through non-LISP domains. We therefore

have at least two types of Tunnel Routers, the Ingress Tunnel Router (ITR) and

an Egress Tunnel Router (ETR). However in other instances we also have a Proxy

Tunneling Router (PTR). LISP also introduces a publicly accessible Mapping System

that is designed to serve the EID-to-RLOC mapping information. This is achieved by

various technologies, the most common of which is the LISP-Alternate architecture

(LISP-ALT).

132

6.3.2 LISP-Mobile Node

In LISP architecture, host applications bind to host’s EID, which is used as the ad-

dress for transport connections. The fact that host identifiers (EIDs) are separated

from their locators (RLOCs) and also noting that applications bind only on EIDs,

enable seamless endpoint mobility. This is because even in mobility scenarios, appli-

cations are able to bind to a permanent address, the host’s EID. A mobile node can

therefore change locations many times during an ongoing network connection with-

out terminating the already established communication links. Each time, the LISP

tunnel routers will encapsulate the packets to the new RLOC, preserving the connec-

tion session from breaking. LISP Mobile Node (LISP-MN)[89] architecture therefore

builds on this foundation to come up with a robust mobility platform within the LISP

architecture.

In LISP-MN, a mobile node (MN) is typically statically provisioned with an EID

that it uses for all its connections. Each mobile node essentially behaves as a LISP site

in accordance to the LISP architecture. Packets (except for management protocols

such as DHCP) are LISP encapsulated by the mobile node, and routed based on

the RLOCs to the destination site. In the event of a handover, MN receives a new

RLOC and updates its EID-to-RLOC mapping in the associated mapping system to

maintain reachability at its new location. The LISP-MN architecture leverages four

existing LISP components:

i. A Mapping System,

ii. LISP-MN,

iii. LISP Internetworking components

iv. LISP NAT-traversal

The LISP-MN protocol is then, best understood, as the concatenation of three dif-

ferent phases:

133

i. Registering EID and obtaining an RLOC

ii. Signaling EID-to-RLOC bindings and transmitting data-packets

iii. Handover.

6.3.3 Multicast in LISP

Finally in this section we look at how multicast processing is handled in LISP protocol.

In IP multicast, a multicast group address is an identifier of a grouping of topologically

independent receiver host locations. A Multicast address itself does not determine

the location of the receiver(s). Instead, the locations of receivers are determined by

the multicast routing protocols and the network-based multicast state information

created by the protocols. In the LISP context, a multicast group address is both an

EID and a RLOC. Therefore no specific action is necessary for destination addresses;

a group address that appears in an inner IP header (built by a source host) is used as

the destination EID by an ITR as a destination address when it LISP-encapsulates

the packet. This implies that the ITR uses the same group address as the destination

RLOC. The source RLOC, as is usually the case, is the ITR IP address (that is, one

of its RLOCs).

On the receiving side, Protocol Independent Multicast (PIM)[145] is used to

translate the source-address Join/Prune messages from RLOCs to EIDs when mul-

ticast packets are forwarded by the ETR. However, in contrast to the unicast case

(where a Map Request is sent by the ITR at forwarding time), a Map Request can

be sent when the multicast tree is being built.

6.4 Why XCAST on LISP

The intention of XCAST researchers is to have it deployed for use in the real world.

Despite the deployment challenges, most of which have been highlighted in chapter

134

three, it is important that XCAST research also looks ahead into deploying XCAST

in the future Internet. For this reason, we look at finding ways of integrating XCAST

with LISP since, as the current Internet scalability challenges continue to be a concern,

Future Internet architecture solutions like LISP will be drawing closer to universal

adoption over the Internet.

Another reason for LISP-XCAST integration is that both protocols share the

objective of incremental deployment without significantly altering either the current

hosts on the Internet or the Internet infrastructure itself. Just like XCAST Routing

Engines can be incrementally deployed over the Internet, so are the LISP Tunnel

Routers.

Finally, LISP Mobile Nodes (LISP-MN) offer simpler mobility solutions and upon

successful LISP-XCAST Integration, XCAST mobility will certainly be simplified

using XCAST aware LISP-MNs. Since the Future Internet is going to be characterized

by massive mobility, this integration definitely positions XCAST for use even in the

Future Internet.

6.5 LISP-XCAST Integration approaches

We identified three approaches that can be applied to realize successful integration

of LISP and XCAST. In this section we shall be looking at these approaches in

details. We finally settled on one of them and implemented on a network simula-

tor (OMNeT++) for the purpose of evaluation. The three approaches are classified

depending on what changes have to be made into the LISP infrastructure. These

include:

i. No Modification to LISP infrastructure

ii. With Modification on LISP infrastructure

iii. With an XCAST Group Server and Group Information Maintained in xTR

135

Table 6.1 is a key that explains the different packet structures under each approach.

It helps understand the packet structures used in figures 6.2, 6.3 and 6.4 together

with their corresponding tables 6.2, 6.3 and 6.4. In the next sub-sections, we discuss

each of these approaches with a view to highlighting the required changes to the

LILSP infrastructure and the XCAST header structure and also how XCAST send

and receive processes are undertaken in each case.

6.5.1 With No Modification to LISP infrastructure

The first approach is the one in which LISP architecture remains unaffected. The

architecture remains as currently specified in the LISP Internet draft document[9]

but modification is done to the XCAST Implementation on end hosts. There are two

schools of though in this approach.

The first one proposes that owing to the fact that LISP uses map-and-encap ap-

proach that involves prepending of an outer LISP header to the packet, there is a

need to deprecate the semi-permeable(outer)[3] header of XCAST. This reasoning is

plausible because if one of the IPv4/IPv6 headers in XCAST is not deprecated, inte-

grating XCAST with LISP will result in a packet with three consecutive IPv4/IPv6

headers as shown in figure 6.1. This will result in a packet that will likely be ”too big”

for the ordinary configuration of router MTUs (usually 1500Bytes) and will result in

IP Fragmentation problems. Typically in this approach, traffic class and flow label

fields of outer header will be removed and taken to what is now ”inner IP header”

in XCAST. The source address of inner header to remain as it is and the destination

address will be picked from one of the list by the sender. This will often be any one

destination whose corresponding bitmap is set to 1.

In the second school of thought we argue that deprecating the semi-permeable

header would be detrimental since it effectively implies that the resultant XCAST

packet can only be transported in networks that have LISP Tunnel routers (xTRs).

136

Table 6.1: Explanation of LISP-XCAST Packet structure

Packet Example Explanation

A LISP header that an ITR pre-pends to the
XCAST packet. It forms the ”outer” IP header.
This if from ITR with RLOC S1 to an ETR with
RLOC A1.

An XCAST packet header for option 1. Source
Addresses is EID of the sender and destination ad-
dress is an EID of an XCAST aware host among
the receivers. The host in the DA field will pro-
cess the packet and send copies to other hosts in
the list where the corresponding bit in the bitmap
is set to 1.

An XCAST packet header for option 2. Source
Addresses is EID of the sender and destination ad-
dress is an EID of any of the hosts in the destina-
tion list. Since xTRs are also XCAST aware, the
address in the DA does not matter. They use the
embedded list in doing map-and-encap and decap-
sulation operations.

An XCAST packet header for option 3. Source
Addresses is EID of the sender and destination
address is a ”well known” EID obtainable from
the group server. The map server has a list of
xTRs that understand the ”well known” group
EID. Therefore an ITR will simply send the en-
capsulated packet to an ETR that understands the
”well known EID, XCST HOSTS”.

137

Figure 6.1: XCAST-LISP header structure with option one.

Without the LISP xTRs, the current Internet routers will fail to identify the XCAST

packet effectively. Irrespective of the school of thought employed above, XCAST

sending and receiving will be handled as explained in the section that follows using

an XCAST6 example.

XCAST Sending Process in this scenario

i. A source end-host gets end-host EIDs for all XCAST receivers from a group server

ii. The source creates an IPv6 packet with its own EID as the source address.

iii. The source embeds all receivers’ EIDs in the routing extension header.

iv. The source also selects one of the receivers’ EID and puts it as the destination

address.

v. The source then sends the XCAST packet to an ITR (this is an improved XCAST

header where the semi-permeable header has been removed).

vi. The ITR does map-and-encap and sends the XCAST packet to the ETR of the

receiver in the destination address.

vii. The target ETR decapsulates the packet and sends it to the receiver whose EID

is in the destination field.

viii. On receiving the XCAST packet the host checks how many other receivers should

get the packet.

138

ix. It resets the bit corresponding to its own EID in the bitmap list.

x. Makes a copy of the packet which it sends to its own Transport layer

xi. It then modifies the destination address of the remaining copy to one of the EIDs

whose corresponding bit is still set in the bitmap.

xii. Finally it sends out this copy to its own ITR for further delivery

Figure 6.2 uses a simple XCAST network with a single source and 6 receivers

(D1,D2,...,D6), to illustrate how this method can be realized. The greatest weakness

of this approach is that it leads to cascaded delivery of XCAST data (a hop-by-

hop delivery style). Therefore this approach might not be not be good for real-time

multimedia delivery since the time difference between when the first receiver receives

a packet and when the last receiver in the cascaded deliver path does so can greatly

jeopardize the conversation quality. This is not acceptable in some situations like in

videoconferencing which is a key application area for XCAST.

Figure 6.2: Sample network where no change is done to underlying LISP architecture

In figure 6.2, the following conventions have been used:

• The green lines represent the probe packets for requesting the RLOC of the

ETR from the map server possibly through a LISP ALT infrastructure.

139

Table 6.2: How an XCAST packet changes in figure 6.2

Flow step Corresponding packet structure

1

2

3

4

5

6

7

8

9

10

11

12

• The red lines indicate map-reply message sent back to ITR in the source domain.

• The green and red lines are for one-time transactions only used to establish the

ETR addresses in cases of cache-miss at the ITR of the source domain.

6.5.2 With Modification on LISP infrastructure

The cascaded delivery of XCAST data of the first approach is very detrimental in

delivery of multimedia data hence that approach is not plausible. We therefore pro-

pose a second approach in which the both ingress and egress LISP Tunnel Routers

(xTRs) are made to be XCAST aware. With this option, the XCAST processing at

140

the xTRs changes to be as follows:

1. Processing in ITR:

• An ITR does a mapping (getting RLOCs) for all the EIDs in the routing

extension header

• An ITR replicates the packet for each of the unique RLOCs found during the

lookup

• An ITR updates the bitmap for each copy such that only destinations corre-

sponding to the RLOC in each copy have their bits set to 1 in the bitmap

• An ITR does encapsulates each copy of the packet with an appropriate LISP

header

• An ITR sends out each copy to the ETRs that have the corresponding RLOCs

in each copy.

2. Processing in ETR:

• An ETR decapsulates the received copies and sends out to packets to hosts

within its domain for each corresponding EID

This means that the xTRs have must be able to distinguish between XCAST non-

XCAST packets. This is can be done using the traffic class or flow label fields as

currently used by the outer IPv6 header.

Modification on XCAST

Using this approach, we still have the two schools of thoughts explained earlier and

either of them can be applied to XCAST implementation. Irrespective of the school of

thought opted for, sending, reception and processing of XCAST packets will follow the

procedure explained below. However it is important to note that XCAST processing

at the end-hosts will remain as defined in the XCAST RFC document[3] and there is

141

no need for cascaded delivery. A possible side effect of this approach is a considerable

overload of the xTRs. However this needs further investigation.

XCAST Sending Process in this scenario

i. A source end-host gets end-host EIDs for all XCAST receivers from a group server

ii. The source creates an IPv6 packet with its own EID as the source address.

iii. The source embeds all receivers’ EIDs in the routing extension header.

iv. The source sets the destination address to ”well known” ALL XCAST NODES

address (”ffoe::114”).

v. The source then sends the XCAST packet to an ITR (Again this is an improved

XCAST header where the semi-permeable header has been removed).

vi. The ITR does map-replicate-and-encap as described above under xTRs

vii. The ITR sends the copies to respective ETRs

viii. The target ETR decapsulates the packet

ix. If the packet has more than one EIDs with corresponding bits set to 1, the ETR

replicates the packet for each EID.

x. The ETR then zeros all the bits in the bitmap and sends out each copy to their

final recipients.

6.5.3 With XCAST Group Server in the LISP Mapping Sys-

tem

The third approach is where we seek to take advantage of LISP’s handling of multicast

group address(see section 6.3.3). Rather than getting the ETRs send back their

RLOCs to the sender’s ITR, we have an XCAST group server installed within the

142

Figure 6.3: Sample LISP network with XCAST aware xTRs

LISP mapping system, from which the map server gets information of members in

a group. For example, we can have members being associated with an EID like

”XCST HOSTS” and xTRs register with the group server to be associated with this

EID. The ”XCST HOSTS” is to be treated like a multicast group address therefore

it is both an EID and an RLOC at the same time. Each xTR also knows other xTRs

and hosts that participate in this group.

When a packet is sent, the sender simply puts the EID ”XCST HOSTS” as the

destination address and sends to its domain ITR. the ITR then asks the map server

for resolution. The map server consults the XCAST group server and sends back the

RLOC of any of the ETRs in the requested domains that participated in this group

(Alternatively it can send RLOC of all the participating ETRs). In this case we call

the ”XCST HOSTS” a ”well known” EID since the members know each other.

On getting an ETR which understands the ”well known”, EID, the sender’s

ITR just does a map-and-encap to the XCAST packet and sends the packet to the

143

Table 6.3: How an XCAST packet changes in figure 6.3

Flow step Corresponding packet structure

1

A (Black lines)

2

3

B (Black lines)

4

5

C (Black lines)

6

7

identified ETR. When the packet reaches such an ETR (e.g. A1 in figure 6.4), the

ETR replicates the packet and updates the bitmap according to XCAST algorithm

and sends the copies to the nodes in its own domain and also the other ETRs in the

domains of other participating hosts.

A further modification can be done to the LISP-aware XCAST especially on IPv6

(XCAST6). This is because IPv6 packet has some fields that are currently not used.

These fields can be used for ”flagging” purposes. In such a case, the flag can be used

to switch between the second and third (in sections 6.5.2 and 6.5.3) implementation

approaches above in an xTR. For example, if the bit is set then option 2 (section 6.5.2)

is used especially for delay-sensitive contents like a videoconferencing session. If it is

not set, the option 3 (section 6.5.3) is used.

144

Figure 6.4: Sample network in which XCAST aware xTRs register with group server

6.6 Implementing LISP in OMNeT++

In order to evaluate our proposed integration approaches above, we require a platform

that supports both XCAST and LISP. Since we had already implemented XCAST in

the INET Framework of OMNeT++[119, 16], we had to find how to integrate LISP

into the same environment since OMNeT++ currently does not have inbuilt support

for LISP. We implemented LISP data plane, control plane and a test application for

use in the evaluation. The LISP implementation on OMNeT++ is summarized as

follows:

i. Data Plane

a. IPv6-in-IPv6 encapsulation

ii. Control Plane

a. Map-Register with a statically configured single Map-Server

b. Mapping lookups using Map-Resolvers and statically assigned Map-Server

145

Table 6.4: How an XCAST packet changes in figure 6.4

Flow step Corresponding packet structure

1

2

3

4

5

6

7

8

9

10

c. Sending of Map-Request Messages

d. Processing of Map-Reply Messages

e. Sending of Map-Register Messages

f. Sending of Map-Notify Messages

g. RLOC probing at an interval of 30 seconds.

iii. Test application

a. Modified the UDPBasicApp that comes with INET Framework

To achieve this, we introduced numerous classes in the OMNeT++ source code.

We also modified several existing classes among them the IPv6 class so as to allow

for LISP routing capabilities in OMNeT++ network models. Below is a list of the

new classes we introduced into OMNeT++ to implement LISP capabilities:

146

i. LISP (Core LISP characteristics)

ii. LISPSimpleMapTable

iii. LISPMapResolver

iv. LISPRouting6

v. IPv6 (Modified to suppor both LISP and Non-LISP routing)

vi. LISPControlMessages

vii. LISPEncapControlMessages

viii. LISPMappingRecord

ix. LISPMapServer

x. LISPMapResolverAccess

xi. LISPRouting6Access

xii. LISPMobileNode (WirelessHost6)

xiii. WirelessRouter6

In the subsequent sub-sections we describe how we knit these classes to achieve

LISP functionality in the INET Framework.

6.6.1 The Network Layer Module

In OMNeT++ the network layer functions are mostly implemented in the IPv4 and

IPv6 modules. These modules form the key points where routing decisions are made

in OMNeT++. We implemented LISP functionality by combining the new classes

introduced in section 6.6 into new LISP related modules. The core LISP functionality

is implemented in the LISPRouting6 module. This module is then linked up with the

IPv6 module to achieve the LISP routing functionalities within LISP nodes.

147

While the LISPRouting6 module offers several LISP-related functions, key in

its implementation are the LISP packet encapsulation and decapsulation. These are

implemented within two methods we call lisp hooks and are named lisp6 output()

and lisp6 input() respectively. The lisp6 output() method handles encapsulation of

packets destined to other LISP domains and it also invokes methods that perform

EID-to-RLOC mapping. The lisp6 input() method does the reverse by handling in-

coming packets from other LISP domains and performs the packet decapsulation.

The lisp hooks are implemented in the LISPRouting6 module and therefore nodes

that implement LISP functionality must have LISPRouting6 in them. LISPRouting6

module is then invoked within the routepacket(), routeXcast6Packet() and assem-

bleAndDeliver() methods of the IPv6 module. In section 4.4.1 we had explained

how XCAST integration in the network layer is achieved and by having lisp hooks

now hooked into the IPv6 module via the LISPRouting6 module, we have effectively

achieved LISP-XCAST integration in OMNeT++.

6.6.2 LISP Nodes

We added the following new nodes into the INET framework that can be used in

modeling LISP networks:

LISPxTR

LISPxTR is our implementation of the LISP Tunnel Routers as specified in the LISP

draft document[9]. It is a new node we introduce into the INET Framework by ex-

tending the Router6 module with LISP routing behaviour. Since the classes that

implement LISP routing functionalities have been aggregated into the LISPRouting6

module, the LISPxTR at its simplest is a Router6 module with LISPRouting6 added

in its network layer. We also added the LISPMapResolver module to help in com-

munication with the MapServer node. Communication between the the IPv6 module

148

and the two LISP modules is achieved through INET’s NotificationBoard module.

The LISPxTR module implements both ITR and ETR behaviour. This simplifies the

process of building either single-homed or multi-homed LISP domains with multiple

LISP gateways.

LISP static Nodes

The static nodes are not affected and the usual OMNeT++’s NetworkHost6 is able

to process the LISP. This is because the network layer modules of the host nodes do

not embed the LISPRouting6 module.

LISPMapServer

The LISPMapServer node acts as an interface to the mapping system and receivers

map-register and map-request messages from the MapResolver module. usually, these

messages are sent over UDP on well known port 4342. The LISPMapServer node

contains theMapServer module that queries its database and performs EID-to-RLOC

resolutions. The key responsibility of this module is to receive and process the LISP

control messages and return reply messages with the requested information, usually

to the LISPxTR and LISP-MN modules.

Currently we have not fully implemented the LISP Alternative Topology (LISP+ALT)

but we look forward to implementing it in the INET Framework.

6.7 Integration on LISP-MN

LISP-Mobile Node (LISP-MN) module implementation in OMNeT++ is by modifica-

tion of the WirelessHost module. Currently the WirelessHost module only supports

IPv4 protocol stack. Additionally, the existing wireless communication modules in

the INET Framework support only one wireless interface per client. We therefore

149

created two new nodes, WirelessHost6 which supports IPv6 and LISPMN which is

a WirelessHost6 that supports LISP protocol. To allow for testing of the multi-

homing capabilities of the LISP Mobile Node architecture, the LISP-MN is required

to support multiple wireless interfaces.

6.7.1 Wireless Host6

In the existing INET Framework, the ChannelControl module only keeps a single

interface so it also had to be modified to keep a list of all wireless nodes. The

ChannelControl module then keeps a list of all wireless entities per interface and not

per node like in the original model. This way, a wireless host can be registered with

multiple wireless interfaces at the ChannelControl module. This required changes to

the AbstractRadio module, the ChannelControl module, the ChannelAccess module

and the BasicMobility module.

6.7.2 LISP-MN

To include the LISP mobile node architecture, we extended the newly created Wire-

lessHost6 module by including an enhanced version of LISPRouting6 module. We

added extra conditional codes in the IPv6 module to handle both packet sending

and delivery correctly. Since the RLOC address of the mobile node can change at

handover, the MapResolver module has to be made aware of such changes. In our

implementation, these changes are signaled through the NotificationBoard.

Once the wireless interface gets a new careof-address, the registration process

is started by the MapResolver module. This event is signaled between the Interfac-

eTable6 module and the MapResolver module through the NotificationBoard. During

the registration process, the MapResolver sends a map-register message to the con-

figured MapServer node. The MapServer acknowledges the map-register message

with a map-notify message. Once the MapResolver receives this message, it starts

150

the configured update process of remote caches of communication partners and this

completes the handover process.

6.7.3 WirelessRouter6

We also had to implement a WirelessRouter6 module that supports IPv6 protocol

for the INET Framework. This is used in communication with WirelessHost6 and

the LISP-MN and allows for the inter networking between the wired and the wireless

domains in the simulation model.

6.8 Evaluation

With all these nodes in place, we were now able to evaluate our integration approaches

as proposed earlier. This is discussed in details in this section.

6.8.1 Comparative average latency

A comparative study of the average per-hop latency was conducted between the

approach where no modification is done to LISP and that in which the LISP xTRs

are made XCAST aware (approach in section 6.5.1 vs that of section 6.5.2). As shown

in figure 6.5, a higher average per-hop delay is observed in the approach in which the

LISP xTRs are non XCAST-aware. This is due to the cascaded delivery of XCAST

data in a “hop-by-hop” fashion from one host to the next. If LISP xTRs are made

XCAST-aware, a better performance is observed.

6.9 Conclusion

We extended the OMNeT++ by also implementing LISP into it. We then proposed

three different approaches through which LISP-XCAST integration can be achieved.

151

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80

A
ve

ra
ge

 p
er

-h
op

 d
el

ay
 (

m
s)

Number of Receivers

With No Modification to LISP
With XCAST-aware LISP xTRs

Figure 6.5: Sample network in which XCAST aware xTRs register with group server

We compared two of these approaches and concluded that one of them which involves

introducing XCAST-aware tunnel routers is more acceptable. LISP-XCAST integra-

tion is important because it will ensure that XCAST can not only be deployed in the

current Internet, but also in the Future Internet in which the routing locators and

host identifiers are in separate numbering spaces. LISP also simplifies mobility, there

LISP-XCAST integration also ensures that XCAST mobility can be easily realized.

152

Chapter 7

Conclusions and Future work

7.1 Conclusions

The work presented in this dissertation aims at realizing multipoint communication

over the Internet using XCAST. It is divided into two parts. The first part deals

with deployment of XCAST in the real world. The second part deals with testing of

XCAST in a simulation environment.

In the second part, OMNeT++ network simulation tool has been used to im-

plement the simulation environment for XCAST, Differentiated Services Architecture

(DiffServ) and LISP. Using OMNeT++ we have investigated how QoS can be guar-

anteed for sensitive applications running in XCAST network and how XCAST can be

integrated with LISP.

Realizing multipoint communication using XCAST was founded on a set of minor

objectives including simplicity, cost-effectiveness, efficiency, scalability and incremen-

tal deployment. These minor objectives formed the foundation of the key objectives

of this research. Hence in figure 7.1, we refer to them as the “building blocks of the

research objectives”. Above them in the hierarchy shown in figure 7.1 are the mecha-

nisms employed by this study in ensuring that the objectives are achieved. These form

153

Figure 7.1: Putting it up altogether

the pieces of work we have presented in chapters three to six of this dissertation. In

figure 7.1, the circled numbers show which chapter of this dissertation implements the

corresponding objective. These pieces of work converge to help achieve the three key

objectives which are important in realizing multipoint communication using XCAST.

This is depicted in figure 7.1 by the flow of arrows which shows convergence at the

top of the “pyramid”. The study achieves:

i. Simple, cost-effective, efficient, incremental deployment of XCAST.

ii. Simple, scalable XCAST QoS provisioning.

iii. Scalable, LISP-aware XCAST for the Future Internet.

The subsequent sections look at how the three objectives contribute to the overall

theme of this research.

154

7.1.1 XCAST6 Deployment in the Internet

XCAST has several advantages but a key limitation impeding its usage on the Inter-

net is the fact that currently there are no routers which understand it. This leaves

the possibility of XCAST usage to an inefficient approach where XCAST packets are

processed at the XCAST-aware end hosts. In setting out to realizing multipoint com-

munication over the Internet using XCAST, one part this research was investigating

how deployment of XCAST protocol in the Internet can be achieved in a manner that

ensures efficient processing of XCAST packets.

This study explored various options for achieving XCAST deployment in the

Internet. The study proposed an external component that can be used to “assist”

routers so that they can efficiently process XCAST packets. The study investigated

three methods by which this external component can be implemented. This included

using programmable network processors, vendor supplied SDKs and a “software-based

routing”. After analyzing the strengths and weaknesses of each method, the study

settled on the “software-based routing” approach in which the “software-router” is

implemented in FreeBSD operating System. This external component that processes

XCAST packets is what is called XCAST6 Routing Engine in this dissertation.

Using XCAST6 Routing Engine has the advantage of being simple to implement,

cheap (since FreeBSD is open source) and above all provide efficient processing of

XCAST packets. The XCAST6 Routing Engine therefore eliminates the cascaded

delivery of XCAST data that leads to inefficient processing of XCAST packets in non

XCAST-aware routers.

Other than realizing a simple, cost-effecctive and efficient XCAST deployment,

another significant contribution of the study is that performance evaluation of the

XCAST6 Routing Engine reveals that XCAST processing does not subject network

routers to any unusual load. The XCAST6 Routing was evaluated against a number of

metrics including throughput, latency, latency distribution, CPU utilization, Memory

155

utilization and the CPU context switch behaviour. All these metrics have revealed

that XCAST processing is within the normal range as other network protocols. This is

very important because these results can be used to confirm to the commercial router

vendors that they can integrate XCAST into commercial routers without any fear of

performance degradation on their routers. Such a step is very important because it

will help realize a universal usage of XCAST in the Internet.

7.1.2 QoS-Aware XCAST

XCAST protocol is used for transport of multimedia data in applications such as

videoconferencing programs and online games. These application programs are often

used in realtime communications. Quality of data used in these applications must

therefore be very good so as not to impact negatively on the user experience. Taking

the need for good quality into consideration, realing communication using XCAST

should therefore have mechanisms to guarantee Quality of Service to applications

running in an XCAST network. This study therefore proposed how to make a QoS-

aware XCAST that can be used for both realtime and non-realtime packet delivery.

The study looked at various possible options for QoS provisioning in XCAST and

proposed the integration of XCAST with the Differentiated Services Architecture in

order to achieve a QoS-aware XCAST. In order to implement the proposal, the study

first chose a network simulator, OMNeT++ and added XCAST into its protocol stack.

Chapter four of this dissertation gives a narrative of how XCAST implementation in

OMNeT++ can be realized. XCAST implementation in OMNeT++ is then evaluated

with respect to a number of metrics in order to verify its correctness.

The study then proceeds to implement the Differentiated Services (DiffServ) Ar-

chitecture in OMNeT++. There are a number of challenges when trying to integrate

DiffServ into a multipoint communication environment. In chapter five of this dis-

sertation we looked into these challenges in details and how to overcome them in

156

order to realize a QoS-aware XCAST. Evaluation of the QoS-aware XCAST shows

that it provides efficient bandwidth utilization, better packet forwarding fairness be-

tween XCAST and non-XCAST traffic, lower traffic load on routers and elimination

of collusion attack (“Good Neighbour Effect”).

This way, the main objective of this study has been realized since the result-

ing QoS-aware XCAST can be relied on for use even with applications where QoS

guarantee is required.

7.1.3 XCAST on LISP

The third objective of this study was to achieve an XCAST implementation that is

compatible with LISP. This is because, research on the Future Internet has recently

picked up and LISP is one of the protocols that are being viewed to be used in the

Future Internet. Therefore a LISP compatible XCAST will not only simplify XCAST

mobility (using LISP-MN) but also ensure that XCAST deployment in the Future

Internet is devoid of numerous challenges.

This study implemented LISP in OMNeT++ and integrated it with XCAST.

The study initially explored three possible methods for integrating XCAST with

LISP. After analyzing the probable strengths and weaknesses of each option, the

study implemented two of the option. The first option is the case in which there is no

modification done to the LISP infrastructure while the second option requires that

the LISP tunnel routers (xTRs) be XCAST-aware. The study compares these two ap-

proaches and finds out that XCAST-aware xTRs simplifies XCAST-LISP integration

and registers better performance in form of lower delays. XCAST-LISP integration is

very important especially for mobility where XCAST can leverage on the LISP-MN

architecture to achieve efficient handover and dual homing capabilities.

157

7.1.4 Summary of the appendices

There are six appendices in this dissertation. In the appendices, we have presented

a comprehensive survey of protocols and architectures for integrating Differentiated

Services QoS provisioning into multipoint communication environments. We have

classified these approaches into five categories. Appendix A gives an explanation of

our classification methodology. Each of the remaining appendices describe a specific

approach to DiffServ-Multicast QoS provisioning. For every class, we have described

two protocols. We have also looked at the key approaches to packet replication for

each protocol or architecture then analyzed the strengths and weaknesses of each

technology with respect to the specification of the DiffServ architecture. We included

QS-XCAST6 in the comparison model and highlighted how it solves the per-host

level QoS heterogeneity which in turn makes it avoid the Good Neighbour Effect

while maintaining a stateless core. The trade-off however is in the increased packet

header size due to embedded DSCPs. Finally, we observe that all the other proposed

approaches have their own unique strengths and weaknesses which must be considered

in the deployment phase but non of them can be applied to XCAST other than our

proposed QS-XCAST6.

7.2 Future Research Directions

As future work, we shall be seeking to implement the XCAST6 applications relying on

the routing engine, that can be used in the QoS research in multipoint communication

and also to investigate among other things, security considerations for XCAST6.

Currently we have only implemented 14 per-hop-behaviours in our DiffServ ar-

chitecture. We shall be seeking to implement as many PHBs as possible so as to

increase the number of testing scenarios that can be done using this tool. We shall

also be adding several statistics collection classes. This will help in ensuring that the

158

simulation models can be used to report on a huge number of metrics than currently

captured. Such an environment would simplify exhaustive testing of QoS in XCAST.

We shall then extend the simulation to investigate other possible security loopholes

that can be attributed to QoS provisioning in XCAST.

As far as XCAST-LISP integration is concerned, we shall be looking at a detailed

implementation of other aspects of the LISP infrastructure such as LISP-Alternate

Architecture (LISP-ALT). We shall also be adding NAT traversal mechanisms and

Dynamic Host Configuration Protocol (DHCP) to this architecture. These two func-

tionalities are key to implementing a realistic LISP-MN architecture. We shall also

be investigation various aspects of XCAST when combined with LISP-MN to achieve

XCAST mobility.

159

Appendices

160

Appendix A

IP Mulitcast-DiffServ Integration

As observed in chapter 2, multicast deployment in the Internet has been impeded

by among other factors, the scalability and QoS issues. To improve multicast state

scalability, several mechanisms have been proposed[146, 147, 148, 149, 150]. However

these approaches are not directly concerned with multicast QoS. The other attempts

that have been made with regards to multicast QoS include[151, 152, 153, 154, 155,

156, 157, 158].

The approaches intended to solve QoS problems however exhibit various limita-

tions. For example, some of them cannot scale well with large groups while others

cannot handle heterogeneous QoS effectively. Failure to handle QoS heterogeneity

results from their lack of tightly enforcing “QoS precedence”; the requirement that in

an environment where members of a group have varying QoS needs, each link in the

multicast tree must guarantee the data to be serviced at a QoS level not lower than

the highest level issued by any of its downstream receivers.

It is important to note however that the mentioned approaches do not specifically

deal with QoS provisioning on multicast using DiffServ. In this section we narrow

down to the approaches that use DiffServ QoS provisioning. While multipoint commu-

nication and Differentiated Services can be complementary technologies for providing

161

QoS in IP networks[159, 160, 161, 162, 163], their integration is a non-trivial under-

taking owing to serious impediments posed by their architectural differences i.e. QoS

in multipoint communication is receiver driven while DiffServ QoS is sender-driven.

QoS from a multipoint communication protocol is receiver driven owing to the

fact that receivers can choose groups that meet their QoS requirements to join and

through feedback based approaches, they can inform the sender of any changes in their

QoS requirements. In DiffServ on the other hand, packet marking and flow policing

is controlled by the ingress edge routers. Additionally, multipoint communication

technologies like Internet Standard Multicast (ISM) lead to maintenance of multicast-

state information in routers. DiffServ architecture on the other hand, specifies that

the core network must be kept simple. Core routers must thefore not maintain state

information. This complicates DiffServ-multicast integration.

In DiffServ architecture, the network routers are classified into two main groups

of core routers and edge routers. The edge routers are further categorized as either

ingress edge-routers or egress edge-routers depending on their locations relative to the

source of the packets transmitted in the network. These routers form a domain where

the ingress edge-routers’ principal task is to mark the packets with specific codes

called DiffServ Code Point (DSCP) and each DSCP is expected to allow the flow in

the network to be shaped in a specific defined behaviour called Per-Hop-Behaviour

(PHB)[7, 8, 64, 65, 66].

In these appendices, we provide a survey of ten protocols and architectures that

have been proposed for using DiffServ architecture in multipoint communication net-

works. We classify the approaches into five categories and look at two examples from

each category under each appendix. Finally, we summarize with analyses on the pros

and cons of each approach for all the five categories.

Integrating multipoint communication with DiffServ is even complicated when

other dynamics like admission Control[164], fault management, QoS Precedence and

162

(a) Statefull approach (b) Stateless approach

(c) Hybrid approach

Figure A.1: Different approaches to handling of multicast-state-information.

management of QoS heterogeneity are to be factored in. This chapter looks at various

approaches that have been proposed to provide QoS using an integration of the two

technologies of multipoint communication and Differentiated Services. We classify

them based on how they handle the “state-information maintenance” into statefull

(state-based), stateless and hybrid approaches. Figure A.1 shows a graphical illus-

tration of state-maintenance as used in this classification. We further classify the

“hybrid” approach into three sub-classes thus ending up with five categories.

A.1 Integration Difficulties

DiffServ and Multicast should essentially be complementing each other in QoS pro-

visioning whereby multicast plays a significant role in situations where DiffServ is

to be used in multipoint communication environments. However, current multicast

architecture does not handle QoS efficiently because:

1. Multicast routing state does not scale well. Routers need to keep states “per-

163

(a). Same QoS per group (b). Heterogenous QoS in a group

Figure A.2: An overview of QoS provisioning strategies.

group” and in some multicast variants, “per-group, per-source” information must

be maintained. A large number of groups results in a large number of state infor-

mation to be stored by the routers. This translates to larger memory requirements

and a slower packet forwarding rate. DiffServ specification on the other hand for-

bids state-maintenance in the core routers. Core statelessness is therefore hard to

achieve when integrating DiffServ with multicast.

2. A multicast tree is associated with a single group. This complicates resource

reservation while integrating multicast with DiffServ. This is because to meet this

requirements, resources should be reserved separately for each multicast tree as-

sociated with a given sender so as to allow for simultaneous sending by multiple

sources with QoS constrains. However, creating and maintaining a multicast tree

per group is time and resource consuming. As the number of members increases,

the multicast tree complexity might also increase. This brings in additional chal-

lenges in multicast tree management and scalability of control management in the

multicast tree.

3. Various nodes in a multicast session might exhibit varying QoS requirements. One

solution is to split the members into groups whereby each group is served at a

specified QoS SLA. Figure A.2(a) shows such a scenario. Other form of QoS

heterogeneity exists whereby members of the same group exhibit different QoS re-

quirements. This results in “in-group” or “host-level” QoS heterogeneity as shown

164

in figure A.2(b). Supporting heterogeneous-QoS in situations where members of a

group have varying QoS requirements is very complex.

4. The architectural differences in approach to QoS provisioning between multipoint

communication technologies (e.g. multicast) also poses difficulties in integration.

QoS provisioning in multicast is receiver-driven. The receivers join multicast

groups that offer QoS levels which meet their requirements. Receivers can also

use feedback messages to the sender to inform the sender of changes in their QoS

requirements. In DiffServ on the other hand, QoS is sender-driven. This is be-

cause the packet shaping and policing is done in the ingress edge routers on the

sender-side. The core network simply forwards the packets and the receivers have

no control on the packet shaping and policing.

A.2 QoS Provisioning Approaches

Various approaches have been proposed to solve the above challenges and help realize

provisioning of QoS services in multipoint communication[165, 166, 167, 168]. These

approaches can be broadly classified into three main categories depending on how

they handle multicast state information maintenance in routers. As summarized in

table A.1, the approaches can therefore be classified as:

(I) Stateful,

(II) Stateless or

(III) Hybrid.

However, the hybrid class can also be further categorized into selective, edge-based

and aggregation-based approaches. As summarized in table A.2, we end up with a

detailed classification scheme of five classes, namely:

(a) State-based (Statefull) approaches. (Appendix: B)

165

Table A.1: Broad classification of QoS provisioning approaches
Statefull Stateless Hybrid

Explanation All routers main-
tain multicast state
information.

Routers do not
maintain multicast
state information.

Only some routers
maintain state infor-
mation

QoS han-
dling

Easy to implement
“Per-group” QoS

Can implement
“Per-group” and
“per-tree” QoS

Easy to implement
“Per-group” QoS

Examples DAM, Quasimodo.
See (B.1) and (B.2)

QS-XCAST, DSM-
Cast. See (C.1) and
(C.2)

DCM, QMD, EBM,
AQoSM. See (D.1),
(D.2), (E.1) and (F.1)

Table A.2: Detailed Classification of QoS Provisioning approaches
Category State Information handling Replication Level

State-
based

Both edge and core routers main-
tain state information

per-group in routing tables

Stateless No state maintenance Replication information is
embedded in the packer
header

Selective Only selected “key nodes”
maintain state. Key nodes can be
core or edge routers.

Uses tunneling

Edge-
based

Nodes that maintain state are
purposely deployed at the edge of
the network

Uses tunneling

Aggregation-
based

Map several distribution trees
onto one distribution tree

Uses tree-aggregation

(b) Stateless approaches. (Appendix: C)

(c) Selective approaches. (Appendix: D)

(d) Edge-based approaches. (Appendix: E)

(e) Aggregation-based approaches. (Appendix: F)

In the subsequent appendices, we look into details the key ideas behind some of

these approaches. We also highlight their fundamental strengths and weaknesses.

166

Table A.3: Summary of the DiffServ-Multipoint Commu-

nication integration approaches.

Category Example Advantages Disadvantages

State-based DAM,

QUASI-

MODO

i. Has the most ef-

ficient bandwidth

usage

i. Do not conform to DiffServ

requirement of statelessness

at the core

ii. Scalability problem due to

state maintenance

Stateless QS-

XCAST,

DSMCast
i. No state mainte-

nance

ii. Scale well with

the number of

groups

i. Not scalable for large group-

size

ii. Incur Processing overhead in

routers

167

Selective DCM,QMD,

HBH, RE-

UNITE
i. Meets DiffServ

requirement:

The core is com-

pletely multicast-

unaware

ii. Easy to imple-

ment

iii. Highly scalable

i. Incur performance degrada-

tion compared to stateful ap-

proaches

ii. Only works well for sparse

groups where replication is

less at the core.

Edge-based EBM,

MMT
i. Meets DiffServ

requirement:

The core is com-

pletely multicast-

unaware and

only edge routers

maintain state

information

ii. Highly scalable

i. Incur performance degrada-

tion compared to stateful ap-

proaches

ii. Only works well for sparse

groups where replication is

less at the core.

168

Aggregation AQoSM,

Harmonic

DiffServ
i. Core routers

only maintain

minimal state in-

formation (“for

super multicast

groups”).

ii. Partially con-

form to DiffServ

requirements

i. Aggregation only reduces

state maintenance at the

core but does not eliminate

it

ii. Only partially meets DiffServ

requirements

iii. Most aggregators introduce

new entities that can be sin-

gle point of failure. Dis-

tributing these entities in-

creases protocol complexity

Table A.3 gives a summary of the examples, advantages and disadvantages of

each of the above mentioned approaches. In the following subsections, we look at

the fundamental principle behind each of these classes and atleast two examples of

protocols or architecture for each class.

169

Appendix B

State-based approaches

The state-based protocols and architectures derive the name from the fact that in

this category, both the edge and core routers in the DiffServ domain maintain per-

group state-information for each of the multicast groups and each multicast group

has a corresponding multicast tree. A grave drawback of this approach is that state

maintenance results in scalability problems due to substantial increase in router loads

as more members join a multicast group. Statefulness at the core also contradicts the

fundamental concept of DiffServ architecture which stipulates statelessness at the core

and pushes complexities to the edge of the network. Some of the protocols and archi-

tectures that fall in this category include DAM (DiffServ Aware Multicast)[169] and

QUASIMODO[170](which is an adaptation of the PIM-SM Model[145]). In the next

subsections, we offer a more detailed description and analyses of these two examples.

B.1 DiffServ Aware Multicast(DAM)

DAM[169] is an approach aimed at tackling two major multicast-DiffServ integra-

tion problems, namely: Neglected Reservation Subtree(NRS)[49] and the inherent

architectural conflicts between multicast and DiffServ. DAM is realized using three

features namely:

170

i. Weighted Traffic Conditioning (WTC),

ii. Receiver Initiated Marking(RIM) scheme and

iii. Heterogeneous DSCP Headers encapsulation (HDHE).

WTC aims at maintaining the negotiated SLAs while RIM is primarily to ac-

commodate QoS heterogeneity in the multicast groups and also to harmonize the

receiver-driven versus the sender-driven QoS approaches between multicast and Diff-

Serv. HDHE on the other hand is aimed at providing fairness between multicast and

non-multicast traffic.

The basic idea of WTC is that at the edge routers of a DiffServ domain where

traffic conditioning occurs, the admitted “multicast traffic” is counted as “multiple

unicast traffics” as illustrated in figure B.1. WTC reserves bandwidth by overesti-

mating the bandwidth consumption on the links based on the traffic flows that enter

and the number of copied flows that leave the domain. The edge routers therefore

maintain and update WTC lookup tables in which the multicast state information

are stored. Each entry in WTC lookup table contains three entities namely: multicast

group ID, DSCP, and the number of replications.

Figure B.1: Multicast Traffic in DAM. Source:[169]

In DAM, the RIM feature solves the receiver-driven vs sender-driven architectural

conflicts exhibited in multicast and DiffServ architectures respectively. In RIM, this

171

is achieved by piggy backing a receiver’s QoS requirements on the multicast JOIN

message. DAM defines four levels which describe the possible types of QoS a receiver

might request during a join operation. Using RIM, the network entities are signaled

for admission control purposes to ensure that a receiver joins at a QoS level specified

in the SLA and its branch is marked with correct DSCP that will ensure it gets the

best available QoS meeting the SLA specification.

HDHE works by ensuring that when a multicast flow enters a DiffServ domain

and has nodes with heterogeneous QoS requirements, the markings for each of the

branches are encapsulated in the packet header at the ingress edge router of the

domain. Figure B.2 illustrates HDHE operations. The argument here is that since

the number of branches within a DiffServ domain are not expected to be so many, the

HDHE will not pose significant overheads in processing due to the increased packet

header length

Figure B.2: DAM heterogenous QoS Example. Source:[169]

DiffServ Aware Multicast is generally a simple approach but a few drawbacks can

be identified as follows:

i. Using WTC ensures adequate bandwidth is reserved even for the the replicated

172

traffic. However, in as much as SLAs may not be violated in this approach, the

reserved bandwidth may never be wholly consumed leading to possible bandwidth

wastage.

ii. The number of branches is hard to know in advance and in case of groups which

result in massive branching within the domain, performance penalties will still

occur.

iii. The WTC also requires that the edge routers maintain and update flow-specific

information. While this state is maintained at the edge and therefore conforms

with DiffServ requirements, the challenge comes in the necessary steps needed

for load-balancing so as to reduce the WTC lookup table.

iv. Implementing DAM implies that the architecture of the edge routers (which are

the traffic conditioners in the DiffServ domain) must be modified to accommo-

date weighted multicast metering since this is not implemented in many routers

currently.

It is also important to note that in order to facilitate marking using RIM, each

multicast routers need to have one of more DSCP field setup for the multicatst flow.

B.2 QUASIMODO

The acronym QUASIMODO is derived from Quality of Service-aware Multicasting

Over DiffServ and Overlay networks. The approach in real sense is an adaptation of

the Protocol Independent Multicast Scarce Mode(PIM-SM) model [145]. QUASIMODO[170]

aims at solving among others the Neglected Reservation Subtree(NRS) problem[49]

that arises while integrating IP multicast with DiffServ. NRS is a problem that

arises due to the dynamic join or leave events in a multicast tree especially when a

new member joins the QoS-constrained group without explicitly reserving required

resources. This can adversely affect the existing traffic since the replicated packets

173

get the same DSCP of the original packet and thus experience the corresponding

treatment thereby consuming un-reserved resources. Therefore, resources should be

reserved separately for each Multicast tree associated with a given sender so as to

allow sending by multiple sources with QoS constraints. QUASIMODO proposes to

solve this problem by combining two ideas of:

i. Using a probe-based approach to ensure that resource availability along a new

QoS path is verified.

ii. Providing for QoS precedence in cases of heterogeneous QoS by marking repli-

cated packets with a special DSCP value before forwarding.

Because it is based on PIM-SM, it assumes that a Rendezvous Point(RP) router

is defined in the network and the RP forms the root of all traffic sources. QUASI-

MODO also defines Designated Routers (DRs) which act on behalf of the host as

far as PIM-SM is concerned by managing all group management informations (using

IGMP[171]) on one side and on the other side emits PIM join/prune message towards

RP. Additionally, the network also contains DiffServ routers which are non-multicast

aware and are transparent to the multicast protocol hence forming a “DiffServ Over-

lay” in the network. Figure B.3 shows an example of a QUASIMODO network with

the mentioned components.

QUASIMODO adds an additional field in the Multicast Routing Table(MRT)

which specifies the DSCP(s) to be used for each each router output interface(oif).

The DSCP is then used to mark replicated packets that are forwarded along the

considered output interface(oif). QUASIMODO proposes that in order to support

heterogeneous-QoS, traffic associated with different multicast trees should be treated

independently. It also exercises admission control using a probe-based procedure

called GRIP (Gauge and Gate Reservation with Independent Probing) which is based

on the idea of “implicit-signaling”, that is, GRIP uses a data plane operation to

174

Figure B.3: QUASIMODO Architecture. Source:[170]

convey at the network borders, information on whether a network link is congested

and cannot accept a new flow.

The drawback of this approach however is that besides relying on the PIM-SM,

QUASIMODO works on many other assumptions about the MRT that are currently

not supported in the commercial routers and the processing algorithm itself especially

for handling member join events are very complex. The “per-tree” based QoS model

also introduces serious scalability problems because routing decision made by each

router is based on the fully-specified “multicast” address and the forwarding table

size and volume of IGMP messages to be exchanged for maintaining the session grow

linearly with the group size. In effect, contrary to the QUASIMODO proponents

assertion, it has the potential of violating the scalable design principle of DiffServ

architecture. The per-tree QoS also has the limitation that all clients on the same

multicast tree must have the same QoS requirements and therefore the QoS hetero-

175

geneity is limited to the tree-level and not per-host.

Marking all packets leaving a given router interface with the same DSCP also has

the subtle effect that in the event of full QoS Precedence, even clients who are not

paying for QoS services will receive high priority treatment for services being paid for

by their neighbours, a condition usually referred to as Good Neighbour Effect (GNE).

GNE has the potential of opening the network to collusion attack whereby malicious

clients collude to get high quality services for services they are not actually paying

for.

176

Appendix C

Stateless Protocols

In DiffServ context core routers only rely on marking of the packet to determine the

unciast QoS. The stateless protocols for multipoint communication adopt a similar

methodology whereby the necessary multicast information is embedded inside the IP

packet. Therefore core routers do not need to maintain any state information about

the multicast tree. The embedded information is either the multicast tree information

or a list of destination addresses explicitly enumerated within the IP packet itself.

Stateless protocols have the basic advantage that they do not require the routers

to maintain per-state information hence they do not unduly overload the routers

and additionally comply with the DiffServ requirement of statelessness at the core of

the network. Statelessness by these protocols increases their scalability especially in

terms of the number of groups that they can support. However, they may not scale

well in terms of the group size since encapsulation takes up some space in the IP

packet header and increases the packet length. This scalability issue can be reduced

by encapsulating only the tree for the DiffServ domain and not the entire end-to-end

multicast tree. In effect, this makes the size of the tree to be dependent only on the

egress points of the DiffServ domain and not the number of receivers.

The second weakness of these protocols is that they are likely to incur extra

177

penalty in form of packet header processing overheads. So far only two protocols are

known to take this approach namely: XCAST[3, 6, 4, 5] (especially its QoS-aware

variant, QS-XCAST[16] which we recently proposed) and DSMCast[172].

C.1 QS-XCAST (QoS Aware XCAST)

In XCAST[3] the sender explicitly specifies the destination addresses of all the re-

ceivers as a list of unicast addresses embedded in the IP packet header then sends the

packet to a router. Along the transmission path, each router examines the IP packet

header in order to determine the next-hop for each destination specified in the list.

The router then groups together the destinations with the same next-hop and finally

forwards a packet with an appropriate XCAST header to each of the identified next

hops. The process is repeated until all the destinations are reached.

The XCAST packet header also comprises of a bitmap with bits corresponding

to each destination, which the routers use to determine which of the embedded des-

tinations the packet needs to be delivered and to which ones a copy of the packet

has already been delivered. Therefore if a bit corresponding to a given destination

is set to 1, it means the packet needs to be delivered to that destination. Each of

the branching routers updates this bitmap for each copy of XCAST packet during

replication. Figure C.1 is an illustration of a basic XCAST network.

To integrate XCAST with DiffServ, in addition to the list of destinations and

a bitmap, the XCAST header also embeds a list of DSCPs in which a DSCP value

corresponds to each destination. Further, adaptive re-writing of the DS (Traffic

class) field of the IP header at the branching routers must be provided for. During

the replication of XCAST packets at the branching routers, the bitmap field is used

to determine which corresponding address in each copy of the packet the data needs

to be delivered. The respective DSCPs of these destinations are evaluated to obtain

178

Figure C.1: XCAST6 overview

a new QoS precedence order. The DSCP fields of the packet copies where the new

most demanding DSCP differs from the original DSCP value are then updated with

the most demanding DSCP for each copy before the copies are transmitted to their

corresponding next-hop routers. This QoS-aware version of XCAST is known as

QS-XCAST [16, 119] and integrates well with DiffServ for QoS provisioning.

The advantage of the QS-XCAST approach is that it offers “per-receiver” level

QoS hence supports “host-level” QoS heterogeneity as opposed to the per-group or

per-tree based approaches to QoS heterogeneity that most of the other solutions here

can offer. Because of its “per-receiver” level QoS, QS-XCAST also eliminates DSCP

confusion problem in the routers where it ensures that each copy of the packet is

enqueued in the appropriate router queue that can guarantee the packets prescribed

DSCP-PHB. The greatest advantage of the “per-receiver” level QoS heterogeneity as

offered by QS-XCAST is the total elimination of the network’s susceptibility to “collu-

sion attack problems”. In this kind of problem (collusion attack), several downstream

receivers can take advantage of the network topology and collude to pay substantially

minimal cost for the best QoS which is indeed paid for by one or more upstream re-

ceivers with neither the service provider’s nor the the upstream receiver’s knowledge.

179

Such upstream receivers are usually referred to as “Good Neighbours” hence collusion

attack can also be at times referred to as “Good Neighbour Effect (GNE)”.

The QS-XCAST approach also spans multiple DiffServ domains. This gives it

the benefit of being able to be deployed in a global Internet as long as the multiple

DiffServ domains have Bandwidth Brokers that are able to offer inter-domain policy

enforcement functionalities.

C.2 DSMCast

Unlike XCAST, DSMCast[172] does not embed the list of all destinations in the

header. Instead, DSMcast reduces the problem to edge-to-edge transport across a

single DiffServ domain by only embedding the multicast tree information of each

group in a special header called Tree Encapsulation Header (TEH). Encapsulation is

done at the ingress edge routers and decapsulation follows at the egress edge router

of the domain.

DSMCast is divided into four components, namely:

i. The transport mechanism,

ii. The extensions for heterogeneous QoS

iii. The tree construction mechanism

iv. The egress(member) join/leave protocol

In the subsequent subsections, we look at each of these components in details.

i. The transport mechanism : All replication (or routing) for multicast packets

is controlled by the Tree Encapsulation Header (TEH). When a multicast packet

arrives at an ingress router of the domain, the ingress router adds a TEH to

the multicast. The TEH is inserted between Layer 3 and layer 4 (IP and UDP)

header of the packet. When the packet is received by the core routers, the router

180

simply checks which DSCP unicast queue to place the packet in and sends it

over. The packet is then treated according to the PHB defined for the DSCP

class. The DSCP class can be re-written to accommodate QoS heterogeneity

among members of a multicast group.

ii. Tree Encapsulation Header (TEH): The TEH is a sequence of bits that

are responsible for routing and replicating the packets and comprises of 3 fields:

NumEntries, Options and Routing entries.

iii. Variable QoS Extensions : DSMCast uses this to support heterogeneous QoS

among members in the same multicast group. This is realized by allowing the DS

(Traffic class) field of an IP header to change as the multicast packet is replicated.

The best PHB is propagated up the tree towards the ingress router.

iv. Tree construction : The TEH is constructed and maintained by the ingress

router. DSMCast assumes that the edge routers have an accurate and complete

knowledge of the entire DiffServ domain possibly getting this information from

the underlying routing protocols in the network, e.g. OSPF. On member join or

leave, the ingress router updates its tree information accordingly. Additionally,

DSMCast does not specify any specific tree construction algorithm and therefore

assumes that there are mechanisms to deal with fault detection and reconfigura-

tion in the network.

v. The egress(member) join/leave protocol : DSMCast handles a join request

from an egress router using two special routines called bid/probe routines. An

egress router that wants to join the network sends a Bid-Request message to all

edge routers. Each edge router that receives the Bid-Request message responds

with a Bid-Probe message towards the new egress router. This helps the edge

route to know which at point to join the group.

In addition to the general drawbacks of encapsulation-based protocols, the other

181

weaknesses of DSMCast are:

1. It is intended for a single DiffServ domain only since the TEH is removed at the

egress end of the DiffServ domain. It is therefore not suitable for a global scale

deployment like the real-world Internet.

2. DSMCast assumes that the edge routers know the network topology, bandwidth

and PHB of each link in the network hence it is not clear on how DSMCast fits

in a DiffServ architecture where the Bandwidth Broker(BB)[130, 173] is the key

manager of a DiffServ domain since in such a domain, the bandwidth Broker is the

Policy Decision Maker and the edge routers are simply Policy Enforcemnet Points

(PEPs).

182

Appendix D

Selective Approaches

Under selective approaches, we classify protocols and architectures in which only

routers at the branch nodes of the multicast trees are designated to maintain mul-

ticast forwarding states and perform packet replications. These protocols therefore

implement QoS selectively hence the classification, “Selective Approaches”. In this

approach, multicast packets are encapsulated and transmitted using unicast between

the selected branch nodes. The effect is that non-branching nodes are relieved from

maintaining state information. A number of protocols have been proposed that fol-

low this approach including: DCM (Distributed Core Multicast)[174], QMD (QoS

Aware Multicast for DiffServ)[175], REUNITE[148] and HBH(Hop-by-Hop)[176]. The

branching points are usually selected on the least-cost-routes basis. However, QMD

expands further on the selective nature to exploit other facets other than the least-cost

based routes. In this class of protocols, we shall look at DCM and QMD.

D.1 Distributed Core Multicast (DCM)

DCM[174] is a sparse mode routing protocol that like XCAST scales well with the

number of small sized-groups. However unlike XCAST, DCM does not employ header

encapsulation. Instead, it follows other sparse mode multicast routing protocols such

183

as PIM-SM[145] and Core-Based Trees (CBT)[50] that build a single delivery tree

per multicast group which is shared by all senders in the group. This tree is usually

rooted on a central router referred to as the “core” in CBT and “rendezvous

point(RP)” in PIM-SM. DCM is based on an extension of the CBT approach. It

uses several core routers, called Distributed Core Routers (DCRs) and a special control

protocol called Membership Distribution Protocol (MDP) for communication between

the DCRs. The MDP runs between the DCRs serving the same range of multicast

addresses and enables the DCRs to learn about other DCRs that have group members.

Figure D.1 shows an example of data distribution using DCM architecture in a large

single domain network1.

Figure D.1: DCM Architecture. Source:[174]

DCM considers a network model organized hierarchically into two levels. The

top level is a single backbone area to which all other areas connect similar to the

OSPF[177] network model. While DCM uses the “area” concept as in OSPF, it does

1The model shows four non-backbone areas that communicate via the backbone. It also shows a
single multicast group M and DCRs X1, X2, X3 and X4 that serve M. In Step (1), the senders A2,
B1 and C1 send data to the corresponding DCRs inside their areas. In step (2), the DCRs distribute
the multicast data across the backbone area to DCR X1 that needs it. In step (3), a local DCR
sends data to the local receivers in its area.

184

not require the underlying unicast link state routing and does not restrict the under-

lying unicast routing protocol to be OSPF. The DCRs are then placed at the edge

of the backbone area but inside each non-backbone area there can still exist several

DCRs serving as core routers for the area. Within non-backbone areas, multicast

routers keep group membership information for groups that have members inside the

corresponding area. The multicast state information kept by these routers is “per-

group” and not “per-source”. Within the backbone, non-DCR routers do not keep

the membership information for groups that have members in the non-backbone ar-

eas. However if deemed necessary, the backbone routers may keep group membership

information for a small number of reserved multicast groups that are used for control

purposes inside the backbone.

In DCM since the DCRs are close to any sender or receiver, converging traffic is

not sent to a single central router in the network. If a host wants to send multicast

data, it sends the the data to its local DCR and data sent from a sender to a group

within the same area is not forwarded to the backbone. The multicast data delivery

process is such that the DCRs act as backbone access points for the data sent by

senders inside their area to receivers outside their area. A DCR also forwards the

multicast data received from the backbone to receivers its area. Admission control

in DCM is exercised in such away that if a host wants to join the multicast a group,

the host sends a join message which is propagated by hop-by-hop to the DCR inside

its area that serves the multicast group.

The only notable drawback of DCM is that its QoS heterogeneity handling can

only go as low as “per-group” QoS and not “per-host”. Additionally, being in as

much as it is selective, the core is not completely stateless as required by DiffServ

specifications.

185

D.2 QoS-Aware Multicast for DiffServ(QMD)

QMD[175] is a QoS-aware multicast routing protocol that aims at removing the com-

plex multicasting control plane functionalities from the core routers. In QMD, for

each multicast tree, only a small set of on-tree routers (referred to as key nodes)

maintain the multicast routing states using Multicast Forwarding Tables (MFT) and

therefore are the only ones that forward multicast traffic. Each MFT entry is com-

posed of three fields: the group id, key nodes of the group’s children and the DSCPs

for the traffic to children key nodes. Multicast traffic is carried in the “DATA”

message which includes the group address and the real multicasting data. A DATA

message is a unicast packet with the destination address as the next key node. The

DSCP of the DATA message is set to be that of its corresponding multicasting code

point as read from the MFT. When a key node receives the DATA message, it first

retrieves the group address and then obtains the corresponding MFT entry. If the

entry has only one child key node, the current key node sends the DATA message to

the child otherwise it duplicates the message and sends copies to all the children.

The key nodes of a multicast group uniquely identify a QoS-satisfied multicast

tree connecting the group members. The other on-tree routers between any two

key nodes do not maintain any multicast routing states. QMD is premised on the

requirement that a Bandwidth Broker (BB) is installed in the DiffServ domain. The

Bandwidth Broker (BB) does admission control and is also a decision point of other

policies in the domain while edge routers remain to be policy enforcers in the domain.

The core routers therefore maintain only minimal data forwarding states. QMD

proposes the addition of multicast modules to the BB such that the BB’s multicast

module will handle most of the multicast control plane functions within the BB’s

domain such as processing the join/leave requests for admission control, finding new

branches and informing the selected on-tree nodes to install data forwarding states.

In QMD, a QoS satisfied branch connecting any member to a multicast tree

186

is identified by a list of key nodes. To find a QoS-satisfied branch, QMD uses a

slightly modified version of the Dijkstra algorithm called “QMD-DIJKSTRA”. QMD-

DIJKSTRA models a DiffServ domain as a connected directed graph in which the

set of nodes and their connecting links are used together with the link bandwidths to

construct paths that meet the QoS constraints. In QMD, a set of key nodes can not

only identify a multicast routing tree but also provide a predictable QoS services to the

group members. The set of key nodes are divided into two namely: branching nodes

and milestone nodes. The branching nodes are those ones that have more than one

child in a multicast routing tree while the milestone nodes are used to enhance QoS

support and provide desirable QoS to the multicast receivers by avoiding situations

where some packets might need to be dropped due to link bandwidth exhaustion.

To realize the notion of key nodes and non-key nodes among the on-tree routers,

the data plane implementation of QMD uses the idea of “recursive unicast” just as de-

scribed in other selective multicast approaches such as REUNITE[148] and HBH(Hop-

by-Hop)[176]. In “a regular recursive unicasts”, only the routers at the branching

nodes maintain multicast forwarding state and the multicast traffic is repeatedly uni-

casted between the branching nodes without bothering other on-tree nodes. However

unlike the QMD’s recursive unicast approach, in regular recursive unicast, all other

on-tree nodes still need to maintain the multicast tree control information and process

join/leave events.

The drawback of QMD approach is that it does not consider how to harmonize

the receiver-driven QoS versus the sender-driven QoS approaches of multicast and

DiffServ architectures respectively which inherently undermine each other. Also, even

though QMDmoves complexity to the edge routers, it still demands state maintenance

in some core nodes (the key nodes) so the core is not completely stateless.

187

Appendix E

Edge-based Approaches

Protocols and architectures in this class are almost similar to the selective-approach

based protocols. The key difference is the fact that for this category, the branch nodes

are purposely deployed at the edge (ingress) routers of the network. The net effect is

that the core is completely multicast un-aware. It therefore conforms to the DiffServ

architecture’s requirement of statelessness at the core. The key advantage of this

approach is that its protocols are easy to implement and are highly scalable. However,

they incur performance degradation in terms of bandwidth consumption compared to

the state-based and aggregation-based approaches. This approach is therefore highly

suitable for sparse groups where replication of packets at the core is less likely to

occur compared to that of dense groups which might need replication of packets at

the core hence are likely to impact badly on this approach. The two protocols that fit

in this family are the EBM(Edge Based Multicast)[178] and MMT(MPLS Multicast

Tree)[179].

E.1 Edge Based Multicast(EBM)

EBM[178] works a cross a single DiffServ domain and not on a global scope like

the Internet. However, it exploits the intelligence of edge routers and maintain core

188

statelessness. It achieves this by defining a new entity called a Multicast Broker

(MB) for group management and ensures that the core routers are kept stateless

and multicast-unaware. Since the core routers are multicast unaware, they do not

maintain any multicast state information which is a great advantage of this protocol.

Figure E.1 shows a sample architecture for EBM.

Figure E.1: EBM Architecture. Source:[178]

In EBM, replication of packets occur only at the edge routers. However the

replication information can be handled in two different ways:

i. It may be carried in the packet in the form of an encapsulated tree.

ii. Alternatively it may be maintained as state information at the edge routers.

Responsibilities of the Multicast Broker(MB) include tree construction, tree re-

arrangement and security management. MB also does admission control, managing

the egress join/leave requests from group members. It also manages multicast trees

for the DiffServ domain or individual groups at an ingress router. Additionally, the

MB manages QoS interactions for multicasting such as resource reservations. The MB

189

can either be centralized or distributed. The reason for distribution being to avoid

the scenario where the MB becomes a single point of failure in the domain. The

MB uses an algorithm referred to as “Edge Cluster Tree (ECT) algorithm” for tree

construction which helps reduce the multicast transport to an edge-to-edge transport

functionality.

The principle of ECT algorithm is to cluster together egress points with similar

QoS-classes so as to balance the cost of the tree versus the additional hops required

for edge-based branching. The ingress node tunnels the packets to clusters that then

tunnel the packets to the egress points in their clusters and other downstream clusters.

The ECT algorithm itself can be broken into two key phases of cluster construction

and cluster linkage.

EBM defines a “cluster” as a collection of all egress points within a given number

of hops (H) of an edge router(ER) whose Per-Hop-Behaviors(PHBs) can be satisfied

by the PHB used for packets sent to ER. The cluster construction therefore involves

locating all the ERs that meet the requirements imposed by this definition. Once

identified, the the clusters are linked together via tunnels to construct the multicast

distribution tree for the domain.

There are some unclear aspects regarding EBM implementation. For example,

it is not explicitly stated whether EBM assumes the presence or absence of a BB

in the DiffServ domain. In the event of the BB’s presence, its role and that of the

Mulitcast Broker(MB) would greatly be conflicting. The MB can be single point of

failure therefore for effective EBM the distributed EBM option should be prioritized.

E.2 MPLS Multicast Tree(MMT)

As the name suggests MPLS Multicast Tree[179], is a multicast implementation of the

MPLS protocol in which only the branching routers maintain multicast state. It con-

190

structs a multicast tree by considering only the branching routers along the multicast

delivery path. Since only routers at the branching points maintain multicast state,

MMT protocol converts multicast flows into “multiple unicast” flows. In addition,

MMT also uses a degree of multicast tree aggregation, a concept we explain under

the section, “aggregation-based protocols” in this paper. Using the aggregation tech-

nique, MMT ensures that multiple channels share the ingress and egress LSRs hence

several multicast channels share branches of their trees rather than constructing a

tree for each channel. Unicast LSPs are used between the branching node routers of

the multicast tree.

Just like in other protocols that use “tree managers” or “Multicast Brokers”

in the DiffServ domain, MMT introduces a new entity for the purpose of multicast

traffic engineering. The entity in MMT is called a “Network Information Manage-

ment System (NIMS)”. Each domain contains a NIMS for each group. The NIMS

is charged with collecting join and leave messages from all group members in that

domain. MMT also borrows from PIM-SM[145] in that the NIMS is elected through

a mechanism similar to the one used to elect the RP router in PIM-SM[145].

The responsibilities of NIMS include:

i. Admission control

ii. Keeping all the necessary information about the LSPs such as:

• All sources and destinations of each multicast group

• All the bandwidth associations between all nodes in the network

iii. Keeping information about the network topology. Nodes inform the NIMS of all

changes in the network topology due to factors such as LSP and router failures.

iv. Keeping all the necessary information about the LSPs including all sources and

destinations of each multicast group as well as all the bandwidth associations.

191

Again, MMT shares with the QMD approach in terms of the use of a modified

version of Dijkstra’s algorithm. After collecting all join messages, the NIMS computes

the multicast tree for that group in the domain using a constrained form of Dijkstra’s

algorithm. The computations means discovering all branching node routers for that

group. On receiving a multicast message, a branching node router creates a multicast

forwarding state for the multicast channel. Once branching node routers and their

next hops are identified, packets will be sent from a branching node router to another

until they reach their destination.

The key strength of MMT is that packets are sent on branches using established

MPLS tunnels between the edge routers through the core routers. Consequently, the

multicast LSP construction, the multicast flows association and the multicast traffic

aggregation are transformed into simple unicast problems.

A significant drawback is that like the “MB” in EBM protocol, a NIMS in MMT

can be a single point of failure therefore distributed NIMS should be used.

192

Appendix F

Aggregation protocols

The last category in our classification of these protocols can be seen as a special

sub-category of the state-based protocols. However, they differ slightly from the fully

state-based approaches in that they try to reduce the amount of state information

maintained at the core by adding approaches whereby the multicast trees for numerous

groups are combined (“aggregated”) into a limited number of “super-multicast”

groups at edge routers. The core routers therefore only service multicast information

for the “super-multicast” groups.

State information maintenance at the core routers still remains their drawback

since it conflicts with the DiffServ architecture. Some these protocols include AQoSM[180]

and Harmonic DiffServ[181].

F.1 Aggregated QoS Multicast(AQoSM)

AQoSM[180] is not a protocol but an architecture for providing scalable and efficient

QoS Multicast in DiffServ networks. In [180], the authors demonstrate how to use

the architecture to design MPLS-based AQoSM protocol with admission control and

MPLS multicast tree management. AQoSM uses the concept of aggegated multicast

but its key innovation is the decoupling of the concept of “groups” from the concept

193

of “distribution tree” by “mapping” many groups to one distribution tree. This

way, many groups can be multiplexed on a single tree and a group can be switched

easily between distribution trees. This allows for multicast groups to be routed and

re-routed very quickly by assigning different labels (e.g. tree IDs) to the packets.

AQoSM is premised on the fact that, aggregation of groups into fewer multicast

trees leads to routing state reduction and less tree management overheads thereby

complying with the tenets of the DiffServ architecture. Admission control can then

be carried out on the level of aggregated trees instead of individual links thereby

improving resource efficiency due to statistical multiplexing of multiple groups on

a single tree. However it is important to note that like DSMCast[172], AQoSM

is intended for QoS provisioning within a single DiffServ domain, particularly the

backbone(transit) domain and therefore cannot span a global scope like the Internet.

Figure F.1: AQoSM Tree Manager. Source:[180]

To manage groups and trees, AQoSM architecture incorporates a logical entity

called “tree manager”. Its responsibilities include tree maintenance and “group-to-

tree” matching. Figure F.1 illustrates a sample AQoSM network. The tree manager

consists of several service modules including: admission control, group-tree matching,

routing and policy control modules. The tree manager also embeds a Management In-

formation Base for collecting up-to-date information including: the network topology,

194

the available resources, the group membership and their QoS requirements. Addi-

tionally, it also keeps the link-state information which it obtains from routers in the

domain. Principally, each router in the DiffServ domain is expected to measure its

traffic load and send to the tree manager.

We however note the following potential drawbacks in AQoSM.

i. It is not clear how the tree manager fits into the typical DiffServ architecture in

which the Policy Decision Point(PDP) is in the Bandwidth Broker(BB). This is

becasue some of the roles played by the tree manager are stipulated to be done

by the BB. Probably, it might be helpful if the tree manager were an additional

module in the BB.

ii. Fitting of too many responsibilities on the tree manager is likely to create a single

point of failure in AQoSM network. It would be helpful to expand the AQoSM

specification to allow for redundant tree managers to allow for fault tolerance in

an AQoSM network.

iii. AQoSM, like all other aggregation-based protocols only reduces the amount of

state-information maintained by the core routers but does not eradicate it. There-

fore the number of aggregates still determines whether the network is truly scal-

able or not.

F.2 Harmonic DiffServ

Harmonic DiffServ[181] is an approach for providing scalable support of IP multicast

for groups with members exhibiting heterogeneous QoS requirements in a DiffServ

network. It focuses on provisioning of QoS heterogeneity and mitigating scalability

issues due to state-information maintenance in the routers. Harmonic proposes to

achieve these objectives through:

195

i. Logically partitioning the multicast tree into a limited number of clusters such

that multicast trees in the same cluster aggregate together to share a common

multicast address (channel). The purpose of the aggregation is to limit the size of

the routing table by merging multicast trees into several clusters, each of which

then forms a unique multicast group for transmission. Using this approach, the

size of the routing table then depends on the number of multicast addresses in

use rather than the number of multicast trees.

ii. Further marking packets within each multicast session by a set of DSCPs which

lead packets into specific QoS treatments in each router in a way that the respec-

tive QoS requirements of every multicast tree are realized properly. In an attempt

to meet the DiffServ requirement of reducing the load in the core routers, Har-

monic DiffServ also proposes to move major adaptation tasks of clustering and

DSCP Management to the edge routers. However the core routers will still need

to maintain a few multicast groups (the clusters) and run the DiffServ model.

iii. Proposes a heuristic clustering scheme. Based on the heuristic, the scheme is

divided into either Fixed Encoding(FE) or Dynamic Encoding (DE)

The number of sub-clusters that a clusters is divided into is an important factor in

Harmonic DiffServ because it determines the number of DSCPs hence should be min-

imized. Nonetheless, proponents of the Harmonic DiffServ concur that multicast-tree

clustering problem used in their model is harder than the graph-coloring problem[182,

183] which is known to be NP-complete. Therefore they propose a heuristic-based

encoding approach to it on which DSCP-PHB associations are derived. The encoding

approaches are either Fixed Encoding(FE) in which a particular DSCP is associated

with a fixed or a dynamic (Dynamic Encoding (DE)) Per-Hop-Behaviour where the

DSCP-PHB association varies adaptively. The DE heuristic is found to consume less

number of DSCPs than the FE approach. However this comes at the cost of slightly

196

more computational costs and control overheads.

It is important to note that inspite of reducing the number of multicast trees

through clustering, Harmonic DiffServ still suffers some limitation with regards to

scalability because the core routers are not completely multicast-unaware. The state-

information maintained by the core routers increases with the increase in the number

of the computed clusters. Another significant drawback of Harmonic DiffServ is the

degree of QoS heterogeneity that it can support since it implements group-level QoS

heterogeneity and not host-level QoS heterogenity, implying that the best case sce-

nario is where all members of each “cluster” demand similar QoS level.

F.3 Summary

Most of the approaches mentioned actually borrow alot from each other and strict

classification for some of them might be hard. However, we classified them based on

the dorminant approach in their implementation. From the literature, it is possible

to deduce that other than the edge based approaches, all the remaining categories

allow for replication of multicast packet to happen at both core and edge routers.

For edge based approaches, replication specifically takes place at the edege routers.

It is also important to note that for selective and edge-based approaches, replication

information is mostly carried through tunneling techniques. For state-based and

aggregation approaches replication information is however retrieved from the multi-

cast routing tables that are maintained as part of multicast state information. The

stateless (encapsulation-based) approaches, the replication information is included

within the IP packet header. The examples, advantages and disadvantages of these

approaches are summarized in table A.3 in section A.2.

197

Bibliography

[1] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram internetworks

and extended lans,” ACM Transactions on Computer Systems, vol. 8, pp. 85–

110, May 1990.

[2] D. R. Cheriton and S. Deering, “Host Groups: A Multicast Extension for Data-

gram Internetworks,” in Procedings of Symposium on Data Communications,

1985.

[3] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit multicast

(xcast) concepts and options,” RFC 5058, November 2007.

[4] Y. Imai, T. Kurosawa, and E. Muramoto., “Xcast6 (version 2.0) protocol spec-

ification,,” Internet Draft, draft-ug-xcast20-protocol-spec-00.txt,, 2008.

[5] O. E. Abade, N. Kawaguchi, Y. Imai, T. Kurosawa, and E. Muramoto, “Design

and implementation of an xcast6 routing engine,” Internet Draft, draft-abade-

xcast20-routing-engine-spec-00.txt, October 2009.

[6] O. E. Abade, K. Kaji, and N. Kawaguchi, “Design, implementation and evalua-

tion of a routing engine for a multipoint communication protocol: Xcast6,” In-

ternational Journal of Computer Science and Network Security, vol. 11, pp. 200–

209, May 2011.

198

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An archi-

tecture for differentiated services,” RFC 2475, December 1998.

[8] K. Nichols, S. Blake, F. Bakers, and D. Black, “Definition of the differentiated

services field (ds field) in the ipv4 and ipv6 headers,” RFC 2474, December

1998.

[9] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “Locator/id separation protocol

(lisp),” IETF draft-ietflisp-22. (Work In Progress), February 2012.

[10] A. Varga.., “The omnet++ discrete event simulation system,” Proceedings of

the European Simulation Multiconference, pp. 319–324, June 2001.

[11] “Omnet++ community site.”

http://www.omnetpp.org.

[12] “The FreeBSD Project.”

http://www.freebsd.org.

[13] K. Kobayashi, A. Ogawa, S. Casner, and C. Bormann, “Rtp payload format for

dv (iec 61834) video,” IETF RFC3189, January 2002.

[14] “DV Format.”

http://en.wikipedia.org/wiki/DV.

[15] “Digital Video Encoding (DV, DVCAM, DVCPRO).”

http://www.digitalpreservation.gov/formats/fdd/fdd000183.shtml.

[16] O. E. Abade, K. Kaji, and N. Kawaguchi, “QS-XCAST: A QoS Aware

XCAST Implementation,” in Proceedings of Fifth International workshop on

OMNeT++, OMNeT++2012, DesenZano, Italy., March 2012.

199

[17] O. E. Abade, K. Kaji, and N. Kawaguchi, “Scalable qos for xcast using differen-

tiated services architecture,” Journal of Information Processing, (IPSJ - JIP).

(To appear), vol. 21, no. 1, 2013.

[18] “The INET Framework Project site.”

http://inet.omnetpp.org.

[19] “IP Multicast.”

http://fengnet.com/book/CNF/ch05lev1sec1.html.

[20] S. Deering, “Host extensions for ip multicasting,” RFC 1112, August 1989.

[21] “IP Multicast.”

http://en.wikipedia.org/wiki/Multicast#IP multicast.

[22] D. Cotroneo, G. Iannello, S. Russo, and G. Ventre, “A real time-based archi-

tecture for qos multimedia provisioning,” Microprocessors and Microsystems,

vol. 27, pp. 55–63, March 2003.

[23] D. A. Menasce, H. Ruan, and H. Gomaa, “Qos management in service-oriented

architectures,” Performance Evaluation, vol. 64, pp. 646–663, August 2007.

[24] P. Florissi, Y. Yemini, and D. Florissi, “Qosockets: a new extension to the

sockets api for end-to-end application qos management,” Computer Networks,

vol. 35, pp. 57–76, December 2000.

[25] Y. Ito and S. Tasaka, “Feasibility of qos control based on qos mapping over ip

networks,” Computer Communications, vol. 31, pp. 2589–2595, December 2000.

[26] L. Chunlin and L. Layuan, “Qos based resource scheduling by computa-

tional economy in computational grid,” Information Processing Letters, vol. 98,

pp. 119–126, May 2006.

200

[27] B. Sun and L. Li, “Qos-aware multicast routing protocol for ad hoc networks,”

Journal of Systems Engineering and Electronics, vol. 17, pp. 417–422, June

2006.

[28] B. Praveen, J. Praveen, and C. S. R. Murthy, “A survey of differentiated qos

schemes in optical burst switched networks,” Optical Switching and Networking,

vol. 3, pp. 134–142, August 2006.

[29] F. Buccafurri, P. D. Meo, M. Fugini, R. Furnari, A. Goy, G. Lax, P. Lops,

S. Modafferi, B. Pernici, D. Redavid, G. Semeraro, and D. Ursino, “Analysis

of qos in cooperative services for real time applications,” Data & Knowledge

Engineering, vol. 67, pp. 463–484, December 2008.

[30] Y. Cui, J. Wu, and K. Xu, “Precomputation for intra-domain qos routing,”

Computer Networks, vol. 47, pp. 923–937, April 2005.

[31] H. Kochkar, T. Ikenaga, K. Kawahara, and Y. Oie, “Multi-class qos routing

strategies based on the network state,” Computer Communications, vol. 28,

pp. 1348–1355, July 2005.

[32] M. Ramalho, “Intra- and interdomain multicast routing protocols: A survey

and taxonomy,” IEEE Commun. Surveys and Tutorials, vol. 3, pp. 2–25, Jan

2000.

[33] J. Hou and B. Wang, “Multicast routing and its qos extension: Problems,

algorithms, and protocols,” IEEE Network, Jan 2000.

[34] J. C. Pasquale, G. C. Polyzos, and G. Xylomenos, “The multimedia multicasting

problem.,” Multimedia Systems, vol. 6, no. 1, pp. 43–59, 1998.

[35] L. Sahasrabuddhe and B. Mukherjee, “Multicast routing algorithms and proto-

cols: A tutorial,” IEEE Network, Jan 2000.

201

[36] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang,

and A. Wolman, “An evaluation of scalable application-level multicast built

using peer-to-peer overlays,” in Proceedings of IEEE INFOCOM, 2003.

[37] C. Yeo, B. Lee, and M.H.Er, “A survey of application level multicast tech-

niques,” Computer Communications, vol. 27, pp. 1547–1568, April 2004.

[38] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer

multicast,” in Proceedings of ACM SIGCOMM, 2002.

[39] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, “Protocol independent

multicast - sparse mode (pim-sm): Protocol specification (revised),” RFC 4601,

August 2006.

[40] G. Fairhurst, “Pim routing,” in Proceedings of IP Multicast Workshop at Net-

workshop, 2006.

[41] H. Holbrook and B. Cain, “Source-specific multicast for ip,” RFC 4607, August

2006.

[42] F. Baker and P. Savola, “Ingress filtering for multihomed networks,” RFC 3704,

March 2004.

[43] I. Wijnands, A. Boers, and E. Rosen, “The reverse path forwarding (rpf) vector

tlv,” RFC 5496, March 2009.

[44] I. Wu and T. Eckert, “Router-port group management protocol (rgmp),” RFC

3488, February 2003.

[45] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, “Bidirectional protocol

independent multicast (bidir-pim),” RFC 5015, October 2007.

[46] Cisco, “Cisco white paper on: Bidirectional pim deployment guide,” Cisco

White Paper, February 2008.

202

[47] H. Muller and A. Brandstadt, “The np-completeness of steiner tree and domi-

nating set for chordal bipartite graphs,” Theoretical Computer Science, vol. 53,

pp. 257–265, April 1987.

[48] A. Strigel and G. Manimaran, “A surevy of qos multicasting issues,” IEEE

Communications Magazine, pp. 82–87, June 2002.

[49] R. Bless and K. Wehrle, “Ip multicast in differentiated services (ds) networks,”

RFC 3754, 2004.

[50] A. Ballardie, “Core based trees (cbt) multicast routing architecture,” RFC 2201,

1997.

[51] S. Deering, D. L. Steiin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei,

“The pim architecture for wide-area multicast routing,” ACM Transactions on

Networks, pp. 153–162, April 1996.

[52] D. Waitzman, C. Partridge, and S. Deering., “Distance vector multicast routing

protocol,” RFC 1075, November 1998.

[53] S. Deering, S. Hares, C. Perkins, and R. Perlman, “Overview of the 1998 iab

routing workshop,” IETF RFC2902, August 2000.

[54] R. Boivie and N. Feldman, “Small group multicast,” Internet Draft draft-boivie-

sgm-00.txt, March 2000.

[55] D. Ooms and W. Livens, “Connectionless multicast,” Internet Draft draft-ooms-

cl-multicast-00.txt, June 1999.

[56] I. Yuji, “Multiple destination option on ipv6(mdo6),” Internet Draft draft-imai-

mdo6-02.txt, September 2000.

203

[57] L. Aguilar, “Datagram routing for internet multicasting,” in Proceedings of the

ACM SIGCOMM symposium on Communications architectures and protocols:

tutorials and symposium, June 1984.

[58] R. Braden, D. Clark, and S. Shenker, “Integrated services in the internet archi-

tecture: an overview,” IETF RFC1633, June 1994.

[59] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reservation

protocol (rsvp),” IETF RFC2205, September 1997.

[60] L. Siregar, R. Budiarto, M. Omar, and A. Rosli, “Quality of service performance

for xcast in ipv6 network,” Proceedings of DFmA 2008, October 21-22 2008.

[61] L. Siregar, R. Aji, Z. Hasibuan, and R. Budiarto, “Quality of service for iptv

using xcast in ipv6 network,” Proceedings of NETAPPS 2010, September 22-23

2010.

[62] “Differentiated Services.”

http://en.wikipedia.org/wiki/Differentiated services.

[63] “Differentiated Service Architecture in IP Network.”

http://www.javvin.com/protocolDiffServ.html.

[64] B. Davie, A. Charny, J. Bennett, K. Benson, J. L. Boudec, W. Courtney,

S. Davari, PMC-Sierra, V. Firoiu, and D. Stiliadis, “An expedited forwarding

phb (per-hop behavior),” RFC 3246, March 2002.

[65] J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wroclawski, “Assured

forwarding phb group,” RFC 2597, June 1999.

[66] D. Grossman, “New terminology and clarifications for diffserv,” RFC 3260,

April 2002.

204

[67] X. He, Q. Chu, and M. Zhu, “Minimizing preemption cost for path selection

in diffserv-ware mpls networks,” Computer Communications, vol. 29, pp. 3825–

3832, November 2006.

[68] T. Kimura and S. Kamei, “Qos evaluation of diffserv-aware constraint-based

routing schemes for multi-protocol label switching networks,” Computer Com-

munications, vol. 27, pp. 147–152, February 2004.

[69] A. M. Alkharasani and M. Othman, “M2i2tswtcm: A new efficient optimization

marker algorithm to improve fairness bandwidth in diffserv networks,” Journal

of Network and Computer Applications, p.

http://dx.doi.org/10.1016/j.jnca.2012.01.021, 2012.

[70] M. Elshaikh, M. Othman, S. Shamala, and J. Desa, “A new fair marker al-

gorithm for diffserv networks,” Computer Communications, vol. 31, pp. 3064–

3070, September 2008.

[71] C. Casetti and M. Mellia, “A lightweight marker with partial state information

for diffserv networks,” Computer Networks, vol. 49, pp. 541–560, November

2005.

[72] C. Bourasa and A. Sevasti, “Sla-based qos pricing in diffserv networks,” Com-

puter Communications, vol. 27, pp. 1868–1880, December 2004.

[73] W.-H. Hsu, Y.-P. Shieh, and J. Chen, “Multiple path selection algorithm for

diffserv-aware mpls traffic engineering,” Computer Communications, vol. 33,

pp. 25–41, August 2010.

[74] I. Akyildiz, T. Anjali, L. Chen, J. de Oliveira, C. Scoglio, A. Sciuto, J. Smith,

and G. Uhl, “A new traffic engineering manager for diffserv/mpls networks:

design and implementation on an ip qos testbed,” Computer Communications,

vol. 26, pp. 388–403, March 2003.

205

[75] H. Chen, H.-K. Su, and B.-C. Cheng, “An objective-oriented service model

for voip overlay networks over diffserv/mpls networks,” Computer Communica-

tions, vol. 30, pp. 3055–3062, November 2007.

[76] R. Tandra, N. Hemachandra, and D. Manjunath, “Diffserv node with join mini-

mum cost queue policy and multiclass traffic,” Performance Evaluation, vol. 55,

pp. 541–560, August 2003.

[77] Z. Quan and J.-M. Chung, “Queue length analysis of non-preemptive diffserv

networks,” AEU - International Journal of Electronics and Communications,

vol. 57, pp. 338–340, March 2003.

[78] W.-H. Hsu, Y.-P. Shieh, and J. Chen, “Analysis of nonpreemptive priority

queueing of diffserv networks with bulk arrivals,” AEU - International Journal

of Electronics and Communications, vol. 33, no. 13, pp. 409–414, 2003.

[79] C. Awada, B. Sanso, and A. Girard, “Diffserv for differentiated reliability in

meshed ip/wdm networks,” Computer Networks, vol. 52, pp. 1988–2012, July

2008.

[80] J. Yao, L. Xiao, C. Nie, D. Tung, C. Wong, and Y. H. Chew, “Resource allo-

cation for end-to-end qos provisioning in a hybrid wireless wcdma and wireline

ip-based diffserv network,” European Journal of Operational Research, vol. 191,

pp. 1139–1160, December 2008.

[81] Q. LIU, H. LI, Y. feng JI, and Y. jun QIAO, “Resources allocation in an

intserv/diffserv integrated epon system,” The Journal of China Universities

of Posts and Telecommunications, vol. 16, pp. 108–113, June 2009.

[82] S. D. Cnoddera, O. Elloumib, and K. Pauwels, “Rate adaptive shaping for the

efficient transport of data traffic in diffserv networks,” Computer Networks,

vol. 35, pp. 263–285, February 2001.

206

[83] T. Ahmed, R. Boutaba, and A. Mehaoua, “A measurement-based approach

for dynamic qos adaptation in diffserv networks,” Computer Communications,

vol. 28, pp. 2020–2033, November 2005.

[84] I. T. Okumus, H. A. Mantar, J. Hwang, and S. J. Chapin, “Inter-domain qos

routing on diffserv networks: a region-based approach,” Computer Communi-

cations, vol. 28, pp. 174–188, February 2005.

[85] H. Liu, H. Xu, and S. Zhao, “Consistent-degradation macroblock grouping

for parallel video streams over diffserv networks,” Computer Communications,

vol. 35, pp. 151–158, January 2012.

[86] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis, “Lisp alternate topology

(lisp+alt),” IETF draft-ietf-lispalt-05. Work in Progress, October 2010.

[87] C. Perkins, “Ip mobility support for ipv4,” IETF RFC3344, August 2002.

[88] D. Johnson, C. Perkins, and J. Arkko, “Ip mobility support for ipv6,” IETF

RFC377544, June 2004.

[89] D. Farinacci, D. Meyer, and D. Lewis, “Lisp mobile node,” IETF draft-meyer-

lisp-mn-07. (Work In Progress), April 2012.

[90] N. Kawaguchi, S. Nishiura, O. E. Abade, T. Kurosawa, T. Jinmei, and E. Mu-

ramoto, “Nat free open source 3d video conferencing using samtk and appli-

cation layer router,” in Proceedings of the 6th IEEE Conference on Consumer

Communications and Networking Conference, CCNC09, Las Vegas USA., Jan-

uary 2009.

[91] “Scalable Adaptive Multicast Toolkit (SAMTK) project.”

http://www.samtk.org.

207

[92] T. Yoneda, E. Muramoto, C.-C. Hsu, K. Konishi, and T. Matsumoto, “Evalua-

tion of congestion control method using multiple-constant bit rate streams over

xcast6,” in Proceedings of Internet Conference, IC2005, Tokyo, Japan., 2005.

[93] T. Yoneda, E. Muramoto, M. Hsu, K. Konishi, and T. Kawahara, “Sender

initiated congestion control using multiple constant bit rate for small group

multicast,” IPSJ Transaction on Information and Media Technologies, vol. 24,

pp. 808–820, February 2007.

[94] S. Krishnan, “The case against hop-by-hop options,” IETF draft-krishnan-ipv6-

hopbyhop-04. (Work In Progress), March 2010.

[95] B. Fenner, “Experimental values in ipv4, ipv6, icmpv4, icmpv6, udp, and tcp

headers,” RFC 4727, November 2006.

[96] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit congestion

notification (ecn) to ip,” RFC 3168, September 2001.

[97] Y. Imai., “Bsd implementations of xcast6,” Proceedings of ASiaBSDCon2008

Tokyo,, March 2008.

[98] “Develop with the JUNOS SDK.”

https://developer.juniper.net/content/jdn/en/develop-overview/junos-

sdk/getting-started.html.

[99] “Cisco Application eXtension Platform.”

http://www.cisco.com/en/US/prod/collateral/routers/ps9701/qa c67 463943.html.

[100] “Network Processors.”

http://en.wikipedia.org/wiki/Network processor.

208

[101] “An Introduction to Network Processors.”

http://140.116.82.38/members/html/ms03/dclin/technique_paper/NP/

network_processors_introduction.pdf.

[102] “Open Flow.”

http://www.openflow.org/.

[103] D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for describing

simple network management protocol (snmp) management frameworks,” RFC

3411, December 2002.

[104] R. E. Ed, “Netconf configuration protocol,” RFC 4741, December 2006.

[105] “Widely Integrated Distributed Environment (WIDE) project.”

http://www.wide.ad.jp.

[106] “The FreeBSD Project PMC tools.”

http://wiki.freebsd.org/PmcTools.

[107] H. Kim, H. Sung, and H. Lee, “Performance analysis of the tcp/ip protocol

under unix operating systems for high performance computing and communi-

cations,” in Proceedings of the High-Performance Computing on the Information

Superhighway, HPC-Asia ’97., May 1997.

[108] W. Matthias, C. Thomas, and W. Georg, “Oasis: An overlay abstraction for

re-architecting large scale internet group services,” Berlin Heidelberg:Springer-

Verlag - Lecture Notes in Computer Science, vol. 5630, pp. 95–106, June 2009.

[109] X. Shen, H. Yu, J. Buford, and M. Akon, “Multicast routing in structured

overlays and hybrid networks,” Berlin Heidelberg:Springer-Verlag - Handbook

of Peer-to-Peer Networking, June 2009.

209

[110] C. Diot, B. N. Leivine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment

issues for the ip multicast service and architecture,” IEEE Network, vol. 14,

pp. 78–88, January 2000.

[111] T. Hardjono. and G. Tsudik., “Ip multicast security: Issues and directions,”

Annales de Tlcommunications, vol. 55, pp. 324–340, January 2000.

[112] N. Y. Times, “Cheap, ultrafast broadband? hong kong has it,” New

York Times, http: // www. nytimes. com/ 2011/ 03/ 06/ business/ 06digi.

html? _ r= 1s , November 2007.

[113] M. Kolberg and J. Burford, “An xcast multicast implementation for the oversim

simulator,” Proceedings of Consumer Communications and Networking Confer-

ence (CCNC), 2010 7th IEEE, January 2010.

[114] “The overlay simulator http://www.oversim.org/wiki,”

[115] M. Framework, “Mobility framework http://mobility-fw.sourceforge.

net/,”

[116] T. Gamer and M. Scharf., “Realistic simulation environments for ip-based net-

works,” Proceedings of 1st International Workshop on OMNeT++, ICST, Mar-

seille, France, March 2008.

[117] A. El-Sayed, V. Roca, and L. Mathy, “A survey of proposals for an alternative

group communication service,” IEEE Networks, vol. 17, no. 1, pp. 46–51, 2003.

[118] A. Popescu, D. Constantinescu, D. Erman, and D. Ilie, “A survey of reliable

multicast communication,” Proceedings of the 3rd Euro-NGI conference on Next

Generation Internet Networks (NGI 2007), Trondheim, Norway, 2007.

210

[119] O. E. Abade, K. Kaji, and N. Kawaguchi, “Quantitative Simulation of XCAST6

Performance Using OMNeT++,” in Proceedings of Asian Internet Engineering

Conference, AINTEC’11, Bangkok, Thailand., 2011.

[120] S. S.-B. Mozafar Bag-Mohammadi, Nasser Yazdani, “On the efficiency of ex-

plicit multicast routing protocols,” Proceedings of the 10th IEEE Symposium

on Computers and Communications, 2005.

[121] M. Bag-Mohammadi and N. Yazdani, “A fast and efficient explicit multicast

routing protocol,” IEICE Transaction on Communications, vol. E88, pp. 4000

– 4007, October 2005.

[122] F. Y. Alzyoud, T.-C. Wan, and I. J. Mohamad, “The effect of using xcast based

routing protocol in wireless ad hoc network,” IEEE TENCON 2009, November

2009.

[123] A. Strigel and G. Manimaran, “A survey of qos multicasting issues,” IEEE

Communications Magazine, pp. 82 – 87, Junet 2002.

[124] A. Strigel and G. Manimaran, “A scalable approach for diffserv multicasting,”

IEEE International Conference on Communications, vol. 8, pp. 2327 – 2331,

August 2001.

[125] A. Strigel and G. Manimaran, “Dsmcast: A scalable approach for diffserv mul-

ticasting,” Computer Networks, vol. 44, no. 6, pp. 713–735, 2004.

[126] J.-H. Cui, L. Lao, M. Faloutsos, and M. Gerla, “Aqosm: Scalable qos multicast

provisioning in diffserv networks,” Computer Networks, vol. 50, pp. 80 – 105,

2006.

211

[127] S.-R. Tong and C.-C. Chang, “Harmonic diffserv: Scalable support of ip mul-

ticast with qos heterogeneity in diffserv backbone networks,” Computer Com-

munications, vol. 29, pp. 1780 – 1797, 2006.

[128] B. Yang and P. Mohapatra, “Multicasting in differentiated service domains,”

Proceedings of IEEE GLOBECOM, 2002.

[129] Z. Li and P. Mohapatra, “Qos-aware multicasting in diffserv domains,” Pro-

ceedings of Global Internet Symposium, 2002.

[130] K. Nichols, V. Jacobson, and L. Zhang, “A two-bit differentiated services ar-

chitecture for the internet,” RFC 2638, July 1997.

[131] J. Evans and C. Filsfils, Deploying IP and MPLS QoS for Multiservice Net-

works: Theory and Practice. 500 Sansome Street, Suite 400, San Francisco, CA

94111 USA: Morgan Kaufmann, 2007.

[132] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configu-

ration protocol (netconf),” RFC 6241, June 2011.

[133] P. Shafer, “An architecture for network management using netconf and yang,”

RFC 6244, June 2011.

[134] K. Singh, “Router buffer traffic load calculation based on a tcp congestion con-

trol algorithm,” International Journal of Computational Engineering & Man-

agement, vol. 15, pp. 20–23, January 2012.

[135] A. G. Ali BOUDANI and B. COUSIN, “Gxcast: Generalized explicit multicast

routing protocol,” Proceedings of International Symposiym on Computers and

Communications, (IEEE ISCC 2004), June 2004.

[136] J. Nonnenmacher and E. W. Biersack, “Scalable feedback for large groups,”

IEEE Transactions on Networking, vol. 7, pp. 375–386, June 1999.

212

[137] C. Filsfils and J. Evans, “Deploying diffserv in backbone networks for tight sla

control,” IEEE Internet Computing, vol. 15, pp. 58–65, January 2005.

[138] D. Massey, L. Wang, B. Zhang, and L. Zhang, “A proposal for scalable internet

routing and addressing,” IETF Internet Draft, Work in Progress, draft-wang-

ietf-efit-01.txt, February 2007.

[139] T. Narten, “On the scalability of internet routing,” IETF Internet Draft, Work

in Progress, draft-wang-ietf-efit-01.txt, February 2010.

[140] D. Meyer, L. Zhang, and K. Fall, “Report from the iab workshop on routing

and addressing,” IETF RFC 4984, September 2007.

[141] F. Templin, “The ipvlx architecture,” IETF Interner Draft: draft-templin-ipvlx-

08.txt, May 2007.

[142] C. Vogt, “Six/one: A solution for routing and addressing in ipv6,” IETF Inter-

net Draft: draft-vogt-rrg-six-one-02, October 2009.

[143] C. Vogt, “Ivip (internet vastly improved plumbing) architecture,” IETF Inter-

net Draft: draft-whittle-ivip-arch-03.txt, January 2010.

[144] F. Templin, “The subnetwork encapsulation and adaptation layer (seal),” IETF

RFC5320, February 2010.

[145] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-

cobson, C. Liu, P. Sharma, and L. Wei, “Protocol independent multicast-sparse

mode (pim-sm),” RFC 2362, 1998.

[146] J. Tian and G. Neufeld, “Forwarding state reduction for sparse mode multicast

communications,” Proceedings of IEEE INFOCOM, March 1998.

[147] D. Thaler and M. Handley, “On the aggregability of multicast forwarding state,”

Proceedings of IEEE INFOCOM, March 2000.

213

[148] I. Stoica and H. Zhang, “REUNITE: a recursive unicast approach to multicast,”

in Proceedings of IEEE INFOCOM, 2000.

[149] P. Radoslavov, D. Estring, and R. Govindan, “Exploiting the bandwidth-

memory tradeoff in multicast state aggregation,” Technical Report, USC De-

partment of CS, vol. 99-697, July 1999.

[150] L. Costa, S. Fdida, and O. Duarte, “Hop-by-hop multicast routing protocol,”

Proceedings of SIGCOMM’01, August 2001.

[151] R. Sriram, G. Marimaran, and C. S. R. Murthy, “Preferred link-based delay-

constrained least cost routing in wide area networks,” Computer Communica-

tions, vol. 21, no. 18, pp. 1655–1669, 1998.

[152] S. Chen, K. Nahrstedt, and Y. Shavitt, “A QoS-Aware Multicast Routing Pro-

tocol,” in Procedings of IEEE INFOCOM, 2000.

[153] G. Manimaran, H. S. Rahul, C. Siva, and R. Murthy, “A new distributed

route selection approach for channel establishment in real-time networks,”

IEEE/ACM Transactions on Networks, vol. 7, pp. 698–709, October 1999.

[154] R. Sriram, G. Manimaran, and C. S. R. Murthy, “A rearrangeable algorithm

for the construction of delay-constrained dynamic multicast trees,” IEEE/ACM

Transactions on Networks, vol. 7, pp. 514–529, August 1999.

[155] C. Donahoo and Zegura, “Core migration for dynamic multicast routing,” in

Proceedings of ICCCN, 1995.

[156] E. Fleury, Y. Huang, and P. K. McKinley, “On the performance and feasibility

of multicast core selection heuristics,” in Proceedings of ICCCN, 1998.

[157] A. Striegel and G. Manimaran, “A scalable protocol for member join/leave in

diffserve multicast,” in Proceedings of IEEE LCN 2001, Tampa, FL, 2001.

214

[158] L. Schwiebert and R. Chintalapati, “Improved fault recovery for core based

trees,” Computer Communications, vol. 23, April 2000.

[159] C.-L. Chen, “A study of ipv6 labeling forwarding model supporting diffserv,”

Procedia Engineering, vol. 15, pp. 5590–5594, 2011.

[160] Z. Mammeri, “Framework for parameter mapping to provide end-to-end

qos guarantees in intserv/diffserv architectures,” Computer Communications,

vol. 28, pp. 1074–1092, June 2005.

[161] M. Brunner, A. Gonzalez, and P. Martinez, “From dynamic ip transport service

ordering to diffserv network configuration,” Computer Networks, vol. 43, pp. 25–

41, September 2003.

[162] K.-S. S. Eun-Hee Cho and and S.-J. Yoo, “Sip-based qos support architecture

and session management in a combined intserv and diffserv networks,” Com-

puter Communications, vol. 29, pp. 2996–3009, September 2006.

[163] M. D. Stojanovic and V. S. Acimovic-Raspopovic, “On efficient traffic engi-

neering with dv-based routing protocols in diffserv-aware ip networks,” AEU -

International Journal of Electronics and Communications, vol. 60, pp. 387–398,

May 2006.

[164] M. Li, D. B. Hoang, and A. J. Simmonds, “Fair intelligent admission control

over resource-feedback diffserv network,” Computer Communications, vol. 28,

pp. 1770–1777, September 2005.

[165] F. Faucher, L. Wu, B. Davie, S. Davari, P. Vaananen, R. Krishnan, P. Cheval,

and J. Heinanen, “Multi-protocol label switching support of differentiated ser-

vices,” IETF RFC 3270, May 2002.

215

[166] A. Fei, J. Cui, M. Gerla, and M. Faloutsos, “Aggregated multicast: an ap-

proach to reduce multicast state,” in Proceedings of the sixth Global Internet

Symposium (GI2001), November 2001.

[167] A. Fei and M. Gerla, “Receiver initiated multicasting with muliple qos con-

straints,” in Proceedings of IEEE INFOCOM, March 2000.

[168] S. Ganti, N. Seddigh, and B. Nandy, “Mpls support of differentiated services

using e-lsp,” Internet Draft: draft-ietf-mpls-diff-ext.txt.00, April 2001.

[169] B. Yang and P. Mohapatra, “Multicasting in Differentiated Services Domain,”

in Proceedings of IEEE GLOBECOM, 2002.

[170] G. Bianchi, N. Blefari-Melazzi, G. Bonafede, and E. Tintinelli, “QUASIMODO:

QUAlity of ServIce-aware Multicasting Over Diffserv and Overlay networks,”

in Proceedings of IEEE Network, 2003.

[171] B. Fenner, H. He, B. Haberman, and H. Sandick, “Internet group management

protocol (igmp) / multicast listener discovery (mld)-based multicast forwarding

(igmp/mld proxying),” RFC 3754, 2006.

[172] A. Striegel and G. Manimaran, “Dsmcast: A scalable approach for diffserv

multicasting,” Computer Networks, vol. 44, pp. 713–735, April 2004.

[173] “Bandwidth Broker.”

http://en.wikipedia.org/Bandwidth Broker.

[174] L. Blazevic and J.-Y. L. Boudec, “Distributed Core Multicast (DCM): a mul-

ticast routing protocol for many groups with few receivers ,” in Proceedings of

Networked Group Communication., 1999.

[175] Z. Li and P. Mohapatra, “QoS-aware Multicasting in DiffServ Domains,” in

Proceedings of Global Internet Symposium., 2002.

216

[176] L. Henrique, M. K. Costa, S. Fdida, and O. Duarte, “Hop by hop multicast

routing protocol - ACM Digital Library,” in Proceedings of SIGCOMM, 2001.

[177] J. Moy, “Ospf version 2,” RFC 2328, 1998.

[178] A. Strigel, A. Bouabdallah, H. Bettahar, and G. Manimaran, “EBM: A new

approach for scalable multicasting,” in Proceedings of Fifth International Work-

shop on Network Group Communication (NGC)., September 2003.

[179] A. Boudani, B. Cousin, and J.-M. Bonnin, “MPLS Multicast Traffic Engineer-

ing,” in Proceedings of IEEE GLOBECOM, 2005.

[180] J.-H. Cui, L. Lao, M. Faloutsos, and M. Gerla, “Aqosm: Scalable qos multicast

provisioning in diffserv networks,” Computer Networks, vol. 50, pp. 80–105,

March 2006.

[181] S.-R. Tong and C.-C. Chang, “Harmonic diffserv: Scalable support of ip mul-

ticast with qos heterogeneity in diffserv backbone networks,” Computer Com-

munications, vol. 29, pp. 1780–1797, ‘.

[182] “Graph coloring.”

http://en.wikipedia.org/wiki/Graph coloring.

[183] I. Mendez-Diaz and P. Zabala, “A cutting plane algorithm for graph coloring,”

Discrete Applied Mathematics, vol. 156, pp. 159–179, April 2008.

217

List of Publications

O. E. Abade, K. Kaji, and N. Kawaguchi, “Scalable qos for xcast using differentiated

services architecture,” Journal of Information Processing, (IPSJ - JIP). (To appear),

vol. 21, no. 1, 2013.

O. E. Abade, K. Kaji, and N. Kawaguchi, “Design, implementation and evaluation

of a routing engine for a multipoint communication protocol: Xcast6,” International

Journal of Computer Science and Network Security, vol. 11, pp. 200–209, May 2011.

O. E. Abade, K. Kaji, and N. Kawaguchi, “QS-XCAST: A QoS Aware XCAST Im-

plementation,” in Proceedings of Fifth International workshop on OMNeT++, OM-

NeT++2012, DesenZano, Italy., March 2012.

O. E. Abade, K. Kaji, and N. Kawaguchi, “Quantitative Simulation of XCAST6

Performance Using OMNeT++,” in Proceedings of Asian Internet Engineering Con-

ference, AINTEC’11, Bangkok, Thailand., 2011.

N. Kawaguchi, S. Nishiura, O. E. Abade, T. Kurosawa, T. Jinmei, and E. Muramoto,

“Nat free open source 3d video conferencing using samtk and application layer router,”

in Proceedings of the 6th IEEE Conference on Consumer Communications and Net-

working Conference, CCNC09, Las Vegas USA., January 2009.

O. E. Abade, N. Kawaguchi, Y. Imai, T. Kurosawa, and E. Muramoto, “Design and

218

implementation of an xcast6 routing engine,” Internet Draft, draft-abade-xcast20-

routing-engine-spec-00.txt, October 2009.

219

Acknowledgement

This dissertation, submitted in partial fulfillment of the requirements for the award

of the degree of Doctor of Engineering from the Graduate School of Engineering,

department of Computational Science and Engineering of Nagoya University has been

realized through the assistance from many people to whom I humbly express my

gratitude.

First I would like to thank Professor Nobuo Kawaguchi, who did not only grant

me the chance to join Nagoya University by accepting me into his laboratory as a

government scholar but also mentored me during the period of this research. I extend

my heartfelt gratitude to all my doctoral committee members. Your guidance made

me improve on this work greatly. I personally thank my examiners; Professor Takeshi

Furuhashi and Professor Tetsu Iwata both from the department of Computational

Science and Engineering, Nagoya University together with Professor Akira Kato of

Keio University for all your dedication to read and critique different pieces of this

research work.

All members of the Ubiquitous Communications Laboratory, am grateful for your

assistance. I further extend my special gratitude to all members of my family. Your

love, prayers, support and encouragement kept me going even when things were never

easy. I am forever grateful and proud to have been born a midst you. To my fiancee,

Jessica, your love and patience with me despite the massive geographical separation

are virtues I will forever cherish.

220

Finally, I humbly thank the special team of people, the XCAST funs club; Eichi

Muramoto, Yuji Imai and Takahiro Kurosawa, who made me find a topic to research

on. May you be blessed abundantly. To everyone who made my life easier in Japan,

thank you very much. God bless you all.

221

R
ea
liz
at
io
n
of

M
ul
ti
p
oi
nt

C
om

m
un

ic
at
io
n
ov
er

th
e
In
te
rn
et

us
in
g
X
C
A
S
T
.

