
Combining Multiple Interests in

Decision Support Queries

GUO Xi

https://sites.google.com/site/guoxi022/

“Sometimes we are confronted with more data than we can really use, and it may be wisest

to forget and to destroy most of it.”

Donald Knuth, The Art of Computer Programming

Abstract

Decision support queries can recommend a handful of appropriate objects to a user to

help in decision-makings. The user specifies multiple interests as the query and the system

outputs objects that may be interesting to the user as the answer. Among the objects

recommended, the user can choose favorites. Typically, there are two types of queries to

recommend objects: top-k queries and skyline queries.

Top-k queries retrieve objects based on their scores. The scores are used to evaluate

the usefulness of the objects. The scoring function is defined by the user by combining

multiple interests. Sorting the objects by their scores, the system outputs the k objects at

the top of the ranking list as the answer. However, asking users to define scoring functions

is not reasonable because users may not be experts for defining the functions. This is one

of the main disadvantages of top-k queries.

To overcome this disadvantage, skyline queries were proposed. Skyline queries can recom-

mend objects without relying on a scoring function. They use the notion of dominance;

an object dominates another object if it is better in at least one attribute and not worse

in any attributes. Given a set of objects with multiple attributes, an object would not be

recommended if it is dominated by some other objects.

Generally speaking, the studies in this thesis fall into the skyline query category. In this

thesis, two types of queries are proposed and investigated: direction-based surrounder

(DBS) queries for spatial datasets and combination skyline queries for multi-attribute

datasets.

A DBS query can be applied to the location-based services that recommend spatial objects

to users. In the conventional location-based services, the most popular recommendation

method is to select the nearest objects of the user. For spatial objects, however, not only

their distances but also their directions are important. Motivated by this idea, a DBS

query retrieves the nearest objects around the user from all directions.

In this thesis, two types of DBS queries are defined in terms of the two-dimensional

Euclidean space and road networks. In the Euclidean space, we consider two objects a

and b to be in the same direction with respect to the user’s position q if their included

angle ∠aqb is bounded by a threshold specified by the user at the query time. In a road

network, we consider two objects a and b to be in the same direction if their shortest

paths to q overlap. We say object a dominates object b if they are in the same direction

and a is closer to q than b. All objects that are not dominated by others, based on this

dominance relationship, constitute the DBSs. The non-dominated objects found in the

Euclidean space are called E-DBSs, while the ones found in a road network are called

R-DBSs.

In the thesis, DBS queries are studied in both snapshot and continuous settings, and

extensive experiments are performed using both real and synthetic datasets to evaluate

the proposed algorithms. A snapshot query finds the DBSs according to the current

position of a user. A continuous query updates the DBSs when the user is moving. In

order to answer snapshot queries in Euclidean spaces, two properties are observed to

reduce the search space. For snapshot queries in road networks, we calculate the shortest

path of every object and then determine whether it is dominated or not. Answering

continuous queries is more difficult than answering snapshot queries because both the

distances and the directions are changing due to the movement of the user. The basic

idea of the algorithm is that we update the DBSs only at change moments rather than

updating DBSs at every moment. The change moments can be predicated when the

user starts to move. Experimental results demonstrate that the proposed algorithms can

answer DBS queries efficiently.

The second study is for the combination skyline queries. A combination skyline query

retrieves fixed-size combinations of objects that are not dominated by any other possible

combinations. These selected combinations are called skyline combinations. Combination

skyline queries are applicable to many application scenarios such as selecting desired

stock portfolios. Answering such queries is technically challenging because the traditional

skyline approaches work well only when objects are handled individually. In other words,

they cannot handle an exponential number of combinations efficiently.

From the observations, it is shown that the number of skyline combinations is far smaller

than that of the combinations that can be enumerated. The proposed pattern-based

pruning (PBP) algorithm can retrieve the skyline combinations without enumerating and

checking all of the combinations. Using an R-tree for indexing objects, the algorithm can

prune the candidates efficiently. The solution is based on object-selecting patterns that

indicate the number of objects to be selected from each minimum bounding rectangle

(MBR) in the R-tree. Two major pruning conditions are proposed to avoid unnecessary

expansions and enumerations, as well as a technique to reduce space consumption on

storing the skyline for each rule in the object-selecting pattern. The efficiency of the pro-

posed algorithms is demonstrated by the extensive experiments on both real and synthetic

datasets.

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Prof. Yoshiharu

Ishikawa. During my Ph.D. studies, he gave me valuable academic guidance and constant

encouragement. His patience, knowledge, honesty, and diligence impressed me greatly.

I would also like to thank the rest of my thesis committee: Prof. Toyohide Watanabe,

Prof. Kenji Mase, and Prof. Takami Yasuda, for their careful reading, useful comments,

and fruitful discussions.

My sincere thanks also go to Prof. Baihua Zheng, Prof. Yunjun Gao, and Dr. Chuan Xiao,

co-authors of papers I published during my Ph.D. studies, for their constructive advice

and thoughtful discussions.

I would like to take this opportunity to express my gratitude to Prof. Hiroyuki Kitagawa,

Prof. Cyrus Shahabi, Dr. Xing Xie, Prof. Wang-Chien Lee, and Prof. Bin Wang, for their

unceasing encouragement and support. In particular, I am grateful to Prof. Xiaochun

Yang for introducing me to research.

I am very thankful to the other current and past members of our laboratory at Nagoya

University. I’ll always remember their kindness and friendship.

Last but not least, I would like to thank my parents, for raising me and supporting me

spiritually throughout my life. I would like to thank my friends who make my life merry

and full of happiness.

iv

Contents

Abstract ii

Acknowledgements iv

List of Figures vi

List of Tables vii

Abbreviations viii

Symbols ix

1 Introduction 1

1.1 Research Background . 1

1.2 Research Objectives and Contributions . 3

1.3 Related Work . 8

1.4 Thesis Organization . 10

2 Direction-Based Surrounder Queries in the Euclidean Space 11

2.1 Motivation . 11

2.2 Problem . 12

2.2.1 Snapshot E-DBS Queries . 12

2.2.2 Continuous E-DBS Queries . 14

2.3 Related Work . 15

2.3.1 Direction-Based kNN Queries . 15

2.3.2 Location-Based Skyline Queries . 17

2.3.3 Quoted Work . 20

2.3.4 Summary . 20

2.4 Preliminaries . 20

2.4.1 Dominance Relationship and E-DBS Query 21

2.4.2 Directional Closeness . 21

2.4.3 Two Minor Issues . 22

2.5 Processing of Snapshot Queries . 23

2.5.1 First Observation: Search Space Pruning 23

2.5.2 Second Observation: Early Termination 25

v

Contents vi

2.5.3 Algorithm . 26

2.6 Processing of Continuous Queries . 28

2.6.1 Basic Idea . 30

2.6.2 Finding Adjacent Objects . 34

2.6.3 Checking Dominance . 38

2.6.4 Checking Termination Condition 39

2.7 Experiments . 45

2.7.1 Settings . 45

2.7.2 Performances of Snapshot Queries 46

2.7.3 Performances of Continuous Queries 48

3 Direction-Based Surrounder Queries in Road Networks 54

3.1 Problem . 54

3.1.1 Snapshot R-DBS Queries . 54

3.1.2 Continuous R-DBS Queries . 55

3.2 Related Work . 56

3.2.1 kNN Queries in Road Networks . 56

3.2.2 Path Nearest Neighbor Query . 57

3.2.3 Quoted Work . 57

3.2.4 Summary . 58

3.3 Preliminaries . 58

3.3.1 Dominance Relationship and R-DBS Query 58

3.3.2 Directional Closeness . 59

3.4 Processing of Snapshot Queries . 60

3.4.1 Property . 60

3.4.2 Näıve Algorithm . 60

3.4.3 Optimized Algorithm . 61

3.5 Processing of Continuous Queries . 63

3.5.1 Basic Idea . 64

3.5.2 Properties . 65

3.5.3 Algorithms . 67

3.5.4 Discussion . 68

3.6 Experiments . 69

3.6.1 Settings . 69

3.6.2 Performances of Snapshot Queries 70

3.6.3 Performances of Continuous Queries 72

3.6.4 Screenshots . 73

4 Combination Skyline Queries 76

4.1 Motivation . 76

4.2 Problem . 77

4.3 Related Work . 78

4.3.1 Combination Skyline Queries . 78

4.3.2 Other Combination Queries . 78

4.3.3 Quoted Work . 80

4.3.4 Summary . 80

4.4 Preliminaries . 81

Contents vii

4.5 PBP Algorithm . 82

4.5.1 Object-Selecting Pattern . 82

4.5.2 Basic PBP Algorithm . 85

4.6 Optimized PBP Algorithm . 86

4.6.1 Pattern-Pattern Pruning . 87

4.6.2 Pattern-Combination Pruning . 88

4.6.3 Pattern Expansion Reduction . 89

4.6.4 Complete Algorithm . 93

4.7 Variations of PBP Algorithm . 93

4.7.1 Incremental Combination Skyline 93

4.7.2 Constrained Combination Skyline 95

4.8 Experiments . 97

4.8.1 Settings . 97

4.8.2 Experiments on Synthetic Datasets 98

4.8.3 Experiments on Real Datasets . 105

4.8.4 Summary . 107

5 Conclusions and Future Work 110

5.1 Conclusions . 110

5.1.1 DBS Queries . 111

5.1.2 Combination Skyline Queries . 112

5.2 Future Work . 113

5.2.1 DBS Queries . 113

5.2.2 Combination Skyline Queries . 113

A Appendix for DBS Queries 115

A.1 Processing of Continuous kNN Queries . 115

A.2 Details of Dominance Checking . 117

A.3 Details of Termination Checking . 119

A.3.1 Function G . 120

A.3.2 Function H . 121

A.4 Proofs of Property 8 and Property 9 . 123

Bibliography 124

List of Figures

1.1 Decision support query . 2

1.2 An example of DBS queries . 4

1.3 An example of combination skyline queries 6

1.4 The position of our work . 9

2.1 Motivating example of DBS queries . 12

2.2 Example of an E-DBS query (θ = π/3) . 13

2.3 Example of a continuous E-DBS query (θ = π/3) 14

2.4 Visible nearest neighbor query . 15

2.5 Suppositive obstacles of E-DBS queries . 16

2.6 Nearest surrounder query . 17

2.7 Location-based skyline query . 18

2.8 Two observations . 25

2.9 Processing of snapshot DBS query (θ = π/3) 26

2.10 Example of a continuous E-DBS query . 29

2.11 Process tree for continuous DBS query . 31

2.12 Change of direction order . 35

2.13 Change of dominance relationship . 38

2.14 Case A: a = (2, 3)′, b = (1, 4)′ . 42

2.15 Case B: a = (1, 3)′, b = (4, 1)′ . 42

2.16 Case C: a = (1, 3)′, b = (3, 5)′ . 43

2.17 Performance of snapshot queries w.r.t. θ 46

2.18 Screenshot of snapshot queries . 47

2.19 Performance of snapshot queries for data sets with different distributions 49

2.20 Number of change moments of continuous queries w.r.t. θ 50

2.21 Tree sizes and CPU costs of continuous queries vs. θ w.r.t. time interval
[0, 30] . 51

2.22 Tree depths of continuous queries . 52

2.23 Performance of continuous queries for data sets with different distributions 53

3.1 Example of an R-DBS query . 55

3.2 Example of a continuous R-DBS query . 55

3.3 Path nearest neighbour query . 57

3.4 Näıve algorithm for snapshot R-DBS queries 61

3.5 Optimized algorithm for snapshot R-DBS queries 62

3.6 Example of a continuous R-DBS query . 64

3.7 Property 7 of continuous R-DBS queries 66

3.8 Properties 8 and 9 of continuous R-DBS queries 67

viii

List of Figures ix

3.9 The special case for continuous R-DBS queries 69

3.10 Performance of snapshot R-DBS queries w.r.t. the number of objects . . . 70

3.11 Performance of snapshot R-DBS queries w.r.t. the object category 71

3.12 Performance of continuous R-DBS queries w.r.t. the number of objects . . 72

3.13 Performance of continuous R-DBS queries w.r.t. the object category . . . 73

3.14 Screenshot of a snapshot R-DBS query . 74

3.15 Screenshots of a continuous R-DBS query 75

4.1 Object layout and R-tree . 83

4.2 Pattern tree . 85

4.3 Pattern-pattern pruning (grey patterns are pruned using Theorem 1) . . . 87

4.4 Priority queue and query result . 89

4.5 Pattern-combination pruning (grey patterns are pruned using Theorem 2
and the patterns beginning with × are pruned using both Theorem 1 and
Theorem 2) . 90

4.6 Pattern expansion reduction matrix . 91

4.7 Incremental combination skyline query . 94

4.8 Constrained combination skyline . 96

4.9 Constraint-based pruning . 96

4.10 Distribution of combinations and skyline combinations 99

4.11 PBP versus BBS on small datasets . 99

4.12 PBP performance for different distributions 101

4.13 PBP performance for different cardinalities 102

4.14 PBP performance for different number of attributes 103

4.15 PBP performance for different fanouts of R-tree 105

4.16 PBP performance for different cardinalities on real datasets 106

4.17 PBP performance for different number of attributes on real datasets . . . 107

A.1 Candidate area for the next nearest object 116

List of Tables

2.1 Related work of E-DBS queries . 20

2.2 Incremental maintenance of direction order lists 36

2.3 Decision table for case A . 43

2.4 Decision table for case B . 43

2.5 Decision table for case C . 44

2.6 Datasets . 45

3.1 Related work of R-DBS queries . 58

4.1 Related work of combination skyline queries 81

x

Abbreviations

DBS Direction-Based Surrounder

POI Point Of Interest

E-DBS Direction-Based Surrounder in two-dimensional Euclidean spaces

R-DBS Direction-Based Surrounder in Road networks

kNN k Nearest Neighbor

VNN Visible Nearest Neighbor

NS Nearest Surrounder

CNN Continuous Nearest Neighbor

MOO Multi-Objective Optimization

MOCO Multi-Objective Combinatorial Optimization

MOKP Multi-Objective Knapsack Problem

CSP Constraint Satisfaction Problem

MBR Minimum Bounding Rectangle

PBP Pattern-Based Pruning

xi

Symbols

−→pi Vector from q to pi in E

SP (q, pi) Shortest path from q to pi in R

di (dpi) Distance of pi: it is set to the length of −→pi in E (dpi = |−→pi |)

or the length of SP (q, pi) in R (dpi = |SP (q, pi)|)

O Multi-attribute object set

A Attribute set

c = {o1, . . . , ok} A k-item combination

c.Aj Attribute value of combination c

fj Monotonic aggregate function

ri An MBR

obj(ri) The set of objects enclosed by ri

(ri, ki) A rule

〈p1, p2, · · · , pk〉 Direction order list of the objects {p1, p2, · · · , pk}

ωi (ωpi) Direction of pi: it is set to the angle between −→pi and (1, 0) in E

or the shortest path SP (q, pi) in R

θ Threshold for an acceptable angle

λij (λpipj) Included angle between pi and pj

ϕij (ϕpipj) Partition angle between pi and pj

(·, ·)′ Transposition of the vector (·, ·)′

xii

Chapter 1

Introduction

1.1 Research Background

Nowadays, we are facing a flood of data due to the development of computer technologies.

This flood brings us much more information than ever before and changes our lives even

when we are not aware of it. The volume of data grows dramatically and comes in

various forms, such as scientific tables, commercial records, stock charts, hypertexts,

and multimedia. In the 1940s, when the first electronic digital computer appeared, we

learned not only to process data efficiently, but also to store data on smaller and smaller

storage disks rather than heavy stacks of books. The development of the Internet, which

began in the 1960s, created another information explosion. Through the Internet, we

can obtain and share data in more convenient and faster ways than reading books in

libraries or writing letters for communications. Ubiquitous computing, which started in

about 1988, has come into full bloom and is pushing the data flood right under our noses.

Ubiquitous computing techniques make it possible to capture and collect data from almost

any physical object, for example, cars, mobile phones, or even animals, by using just a

small sensor chip. In 2010, a report predicted that there will be more data generated in

the next four years than in all of history [1]. Can we surf this data flood and acquire more

knowledge than our predecessors?

Possessing an enormous amount of data is meaningless if we cannot acquire knowledge

from it. Good knowledge can help us make correct decisions and further discover truths.

One way to convert data to knowledge is to extract small quantities of useful data as

1

Chapter 1. Introduction 2

choices or knowledge for decision-making. Motivated by this purpose, over the past few

decades a lot of work has focused on exploiting such useful data from the data flood [2–4].

As an example, search engines such as Google can find those documents most related to

the keywords from a good number of Web pages [3]. Our proposed approaches can help

people in a similar way. One application scenario of our work is that we can recommend

nearby drug stores from among all known drug stores. Another scenario is that we can

recommend a good portfolio created from all the issued stocks. Generally speaking, we

retrieve the desired data from a large-scale data set in order to help users make decisions

(Fig. 1.1).

Figure 1.1: Decision support query

Whether data are desirable depends on the users query. Users convey their demands

by submitting queries to computers. For search engines, the queries are the keywords

input by users and the desirable data returned are relevant documents containing those

keywords. Unlike search engines designed for exploiting text data, our first work exploits

spatial data and our second exploits multi-attribute data. The spatial data, also called the

points of interests (e.g., drug stores), are characterized by their two-dimensional physical

coordinates. A typical query for the spatial data is “show me nearby drug stores.” The

desirable data returned for the query would be several of the nearest drug stores, or those

within walking distance. Most existing works focus on such spatial closeness (e.g., [5], [6],

[7]); however, our research focuses on directions, which are also important features of the

spatial data but have not been sufficiently studied [8, 9].

Our second work studies how to find the desired data from multi-attribute data. Multi-

attribute data, that is, records or tuples, are characterized by two or more attributes.

For example, stock data might have attributes including price, risk, and profit. The

queries are the user’s demands pertaining to several attributes or all of the attributes.

For example, “recommend me several stocks (or portfolios) with high profits but low

Chapter 1. Introduction 3

risks.” The desirable data returned would be those stocks (or portfolios) that can satisfy

the demands regarding profits and risks. Most existing works (e.g., [10], [11]) focus on

only selecting desirable records individually (e.g., stocks). Our research, however, focuses

on selecting desirable combinations of records (e.g., portfolios) of which the studies are

rather limited [12, 13].

1.2 Research Objectives and Contributions

The most popular query for the spatial data is the nearest neighbor query [5]. The nearest

neighbor query is to find k nearest points of interest (POIs) given the user’s position. As

an example, in Fig. 1.2, there are seven drug stores and user q. Since drug store a is

the nearest one to the user, it is the answer to the nearest neighbor query with k = 1.

Based on spatial closeness, there are many variations of the nearest neighbor query, such

as visible nearest neighbor queries [14–16], the nearest surrounder queries [8, 9], and the

reverse nearest neighbor queries [17–19]. Different from the existing works, we propose

a new variation called the direction-based surrounder (DBS) query considering not only

closeness but also direction. The directions to objects are also worth consideration. One

reason is that the objects in all different directions can reflect neighborhood information.

Another reason is that in some scenarios, for example, a user is driving on a one-way road,

only the objects in a specific direction are useful. Example 1 illustrates the DBS query.

Example 1. The user wants to know the nearest drug stores in all directions in order to

capture an overview of the surroundings. In Fig. 1.2, the arrows −→qa and
−→
qb show the

directions of drug store a and drug store b with respect to user q. Since angle ∠aqb

is rather small, drug store a and drug store b would be regarded as being in the same

direction. Comparing the two drug stores in the same direction, drug store a is more

recommendable due to its closeness. Motivated by the user’s preference for closeness and

direction, we would recommend the three drug stores a, d, and f . The reason is that

drug store a (or d, f) is nearer than the ones {b, g} (or {c}, {e}), located in the same

direction.1

1Assume that the user regards two drug stores as being located in the same direction if their included
angle is not larger than a threshold 60◦ as the dotted lines show. The threshold is a small angle that is a
default setting or an angle input by the user.

Chapter 1. Introduction 4

Figure 1.2: An example of DBS queries

Conventional nearest neighbor queries consider only the distance aspect, while DBS

queries consider not only the distance aspect but also the direction aspect. Certainly,

the computation cost of a DBS query is more than the cost of a nearest neighbor query,

but our experimental results show that the DBS queries could be answered promptly

enough. More importantly, the DBS queries have advantages over the nearest neighbor

queries in two main aspects. A quite straightforward advantage is that DBS queries can

provide multiple choices in all directions, instead of limited ones in some specific direc-

tions. DBS queries are especially important when the user is not willing to move in the

direction of the nearest POI. Another advantage is that DBS queries can present neighbor-

hood information around the user, as Example 1 showed. In short, our DBS queries can

recommend adequate POIs when users desire to make decisions considering both distance

and direction, whereas the existing queries cannot support such demands.

DBS queries are mainly applied to location-based services (LBSs) [20]. As an example,

consider a tourist who wants to go sightseeing in an unfamiliar city. Using a nearest

neighbor query, the tourist could find only the nearest spots that might be gathered

in some specific direction. However, using a DBS query, the tourist could find all the

nearest spots that lie in different directions. In this way, the tourist would obtain a full

neighborhood view and have more options for sightseeing. As another example, let us

consider a driver who wants to refuel. Using a nearest neighbor query, the driver could

Chapter 1. Introduction 5

find which gas stations are nearby, but they may not all be in an appropriate direction.

An extreme case is when the gas stations suggested are all in the opposite direction of

a one-way street. In contrast, using a DBS query the driver would obtain the nearest

gas stations that lie in all directions. It is then possible to choose an appropriate one.

Certainly, some may argue that we can issue a nearest neighbor query with a large k

such that the objects returned could cover all different directions. However, this approach

is not practical because it is difficult to decide an adequate k before issuing the query.

Therefore, DBS queries can overcome the disadvantages of nearest neighbor queries.

Answering DBS queries seems quite simple in Example 1, but it is not trivial when

there are a huge number of POIs. In practice, it is common that thousands of POIs are

available to choose from. To decide which POIs should be recommended to the user, a

naive approach is to check every POI by comparing it with all other POIs, but this is

rather time-consuming. If we cannot answer DBS queries in a short time, users will be

unsatisfied. For this reason, we propose fast algorithms to answer DBS queries by doing

a very small number of comparisons.

With the development of the mobile computing technology [21], continuous nearest neigh-

bor queries [6, 7, 22] along with its variations [14, 19] attract more and more attention. In

such continuous queries, the user, or the POIs (e.g., cars), or both are moving. We only

study DBS queries issued when the user is moving along a straight line. The challenge

of answering continuous queries is that both the distances and directions of the POIs are

changing due to the user’s movement. For this challenge, we propose an algorithm to

answer such continuous DBS queries by updating the result set when it changes.

Besides studying the DBS queries in two-dimensional Euclidean space, we also study the

problem in road networks, about which practical spatial data is available. There are

numerous works regarding nearest neighbor queries in road networks [23–25]. Like these

studies, we also set the distance of a POI to the length of the shortest path from the

user to the POI. Since our DBS queries also consider the direction of a POI, we set the

direction to the shortest path itself. We study both the snapshot and continuous DBS

queries in road networks.

For the spatial data, our contributions are summarized below.

Chapter 1. Introduction 6

• We propose a new query for exploiting spatial data, called a DBS query, which can

recommend POIs considering not only spatial closeness but also direction.

• We define DBS queries both in two-dimensional Euclidean space (E-DBS queries)

and in road networks (R-DBS queries).

• We propose efficient algorithms for answering both snapshot and continuous E-DBS

queries.

• We propose efficient algorithms for answering both snapshot and continuous R-DBS

queries.

• We conduct extensive experiments on both synthetic and real datasets to evaluate

the algorithms for E-DBS queries and R-DBS queries.

There are two popular ways to exploit multi-attribute data: top-k queries and skyline

queries. Top-k queries [11] retrieve the k records with the highest scores. The scores of

the records are computed according to some aggregation function. What the aggregation

function looks like depends on the user’s preferences on the attributes. However, we exploit

the multi-attribute data in another way, which is called a skyline query [10, 26–28].

Figure 1.3: An example of combination skyline queries

Instead of comparing records by their scores, skyline queries compare the records by their

dominance relationships. One record dominates another record if it is better in at least one

attribute and not worse in any other attribute. A record is on the skyline if it cannot be

dominated by any other records. Such non-dominated records are also called the skyline

Chapter 1. Introduction 7

records. According to the users preferences on attributes, the skyline records are selected

and recommended to the user. Figure 1.3 shows that among seven stocks {A, . . . , G},

the stocks {A,B,D} are on the skyline because they cannot be dominated by any other

stocks for users who prefer low cost and low risk. On the other hand, stocks {C,E, F,G}

are not on the skyline, for example, because stock B(2, 4) dominates stock C(3, 5) because

it is better in both of the two attributes. When users intend to make trade-off decisions

considering their preferences on different attributes, they can use skyline queries to acquire

all the records deserving their attention.

Skyline queries have attracted considerable interest [26–28] following the seminal paper

by Börzsönyi et al. [10], but most studies focus on retrieving records individually (e.g.,

individual stocks). In contrast, our work retrieves combinations of records (e.g., portfolios

composed of several stocks). We call this a combination skyline query, about which there

are few related studies [12, 13]. Example 2 shows a simple query of this type.

Example 2. The user desires three-item portfolios with low risk and low cost. The risk

and cost of the portfolios are the sums of their components’ risks and costs. In the

rightmost chart of Fig. 1.3, some three-item portfolios are shown as points in the cost-risk

space.2 Considering the user’s preference, the portfolios {ABC,ABD,BCD} cannot be

dominated by any other portfolio, and thus will be recommended as the answers to the

combination skyline query.

Since combinations of objects are common in practice, combination skyline queries could

apply to various domains. Besides forming ideal portfolios, we can use combination skyline

queries to form other good combinations that are on the skyline, for example, a basketball

team consisting of the right players, an attractive gift basket consisting of appropriate

gifts, and a well-balanced meal consisting of reasonable dishes. Note that in this paper we

consider combinations made up of only a fixed number of objects. A combination should

have the same attributes as its components. The attribute values are calculated by some

monotonic aggregation function that takes the components as the inputs.

For the combination skyline query problem, the number of combinations is
(|O|
k

)
for a

data set containing |O| records when we select combinations of size k. This poses serious

algorithmic challenges when compared with the traditional skyline problem. As Exam-

ple 2 shows,
(
7
3

)
= 35 possible combinations are generated from only seven records. Even

2To make the chart concise and clear, the other points are omitted.

Chapter 1. Introduction 8

for a small database with thousands of entries, the number of combinations of records is

prohibitively large. For this reason, we propose a pattern-based pruning (PBP) algorithm

to answer the combination skyline queries without enumerating all the combinations. The

PBP algorithm retrieves the skyline combinations following the object-selecting patterns.

Indexing the objects using an R-tree [29], we can use an object-selecting pattern to rep-

resent the number of objects selected from each minimum bounding rectangle (MBR).

Our contributions are summarized below.

• We propose the combination skyline problem, a new variation of the skyline problem

that prevalently exists in daily applications and poses technical challenges.

• We devise the PBP algorithm to tackle the major technical issue.

• We discuss two variations of the combination skyline problem, incremental com-

bination skylines and constrained combination skylines, which can be solved by

extending the PBP algorithm.

• We conduct extensive experimental evaluations both on synthetic and real data sets

to demonstrate the efficiency of the proposed algorithm.

1.3 Related Work

In order to help users make decisions, typically we can recommend a handful objects in

two ways. One way is to use top-k queries. The other way is to use multi-objective

optimization queries (i.e., skyline queries).

In the top-k query processing research area, a common ranking method is to score the

objects using a function f : ~v 7→ 〈~α,~v〉, where ~v is the attribute values of an object

and ~α weighs the attribute importance [11]. However, asking the users to define scoring

functions is not reasonable because some users are not experts and are not good at defining

functions. In light of this disadvantage of top-k queries, skyline queries were proposed by

Börzsönyi et al. [10]. The skyline queries can retrieve all the objects that users might be

interested in without asking them to input any scoring functions.

In database research, the skyline query has received considerable attention. It is also

called the multi-objective optimization (MOO) problem [30, 31] in other fields. Since [10]

Chapter 1. Introduction 9

was published, many subsequent algorithms have been proposed to improve performance

from different aspects. Well-known centralized algorithms include the branch-and-bound

skyline algorithm (BBS) [28], sort-filter-skyline (SFS) [26], and linear elimination sort

for skyline (LESS) [27]. Recently, distributed and parallel skyline processing algorithms

(e.g., [32], [33]) have received growing interest with the improvements to mobile processing

capabilities and the development of wireless networks. Many variations and extensions

are derived from the classical skyline [10] with respect to different research aims, such as

location-based skyline queries in spatial databases (e.g., [34], [35]). The main disadvantage

of skyline queries is that the number of the results cannot be controlled, because skyline

queries retrieve every object that may interest the user.

Figure 1.4: The position of our work

Generally speaking, our DBS queries and combination skyline queries belong to the skyline

query category. The characteristics of such queries are as follows:

• The queries retrieve desired objects according to the multiple interests of a user in

order to help make decisions.

• Objects that cannot be dominated are selected. The dominance relationships are

determined by multiple interests.

DBS queries find POIs considering both geographical closeness and direction. Combina-

tion skyline queries find record combinations considering the users’ demands regarding

different attributes. Fig. 1.4 illustrates the position of our work on decision support

queries. Note that the E-DBS query does not have the transitive property3, as do the

other skyline queries.

3The transitive property means that if object o dominates object o′ and o′ dominates object o′′ then
o certainly dominates o′′.

Chapter 1. Introduction 10

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the DBS queries

in two-dimensional Euclidean spaces. In Chapter 3, we introduce the DBS queries in

road network spaces. In Chapter 4, we introduce the combination skyline queries. In

Chapter 5, we summarize this work and propose several areas of future study.

Chapter 2

Direction-Based Surrounder

Queries in the Euclidean Space

2.1 Motivation

In location-based services such as mobile recommendations and car navigation, a mobile

user often receives the recommendations of POI (point of interest) objects based on

spatial closeness and the user’s preference [20] using some popular mobile queries (e.g.,

nearest neighbour queries and range queries). For example, “show me the eight nearest

convenience stores” is a top-8 nearest neighbour query and “show me the convenience

stores within 400 meters” is a circular range query. However, such conventional spatial

queries may not be helpful when the user wants to know the neighbourhood information.

An example is depicted in Fig. 2.1. Fig. 2.1(a) shows the result of a top-8 query. It is

observed that all the returned POI objects are located in the north east of q. If the user

intends to move to the reverse direction (e.g., south), the answer objects are not useful

at all. In other words, the usefulness of returned POI objects not only depends on their

distances to the user but also their directions to the user. To support object evaluation

based on both proximity and direction of POI objects w.r.t. a specified query point, we

propose direction-based surrounder (DBS) queries in this paper. As an example a DBS

query depicted in Fig. 2.1(b) returns the three nearest objects surrounding q. Compared

with top-k search, DBS retrieves objects that are located in different directions of q and

hence it provides a better overview of the surrounding area.

11

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 12

q

object
user

top-8

(a) Top-k query (k = 8)

object
user

DBS

q

(b) DBS query

Figure 2.1: Motivating example of DBS queries

As shown in Fig. 2.1(b), a DBS query evaluates objects based on not only their distances

to the query point but also their direction relationships with the query point. The basic

idea is that, for a given query point q, an object pi is a better candidate than another

object pj if pi is closer to q and they are directional close w.r.t. q.

We consider DBS queries in a vector space E. For the vector space E, we assume that

objects of interest are in the two dimensional Euclidean space and the corresponding

queries are called E-DBS queries. For E-DBS queries, we measure the distance and the

direction of an object pi w.r.t. q using the vector which originates from q and ends in pi.

2.2 Problem

2.2.1 Snapshot E-DBS Queries

Before presenting the formal definition of a DBS query, we use Example 3 to illustrate

DBS queries in the Euclidean space E. It also serves as the running examples in this

paper.

Example 3 (Snapshot E-DBS Queries). In Fig. 2.2, there are seven POIs (a to g) around

the user O. We use the vectors −→a , . . . ,−→g originating from O to denote the distance di

and the direction ωi of a POI object i w.r.t. O. We assume two POI objects i and j

are directional close if the included angle ∠iOj is bounded by θ (= π/3) specified by the

user. For example, a and b are directional close as |ωa − ωb| = 26◦ < π/3, but objects a

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 13

a

b

c

d

e f
g(-4,-6) (0,-6)

O

y
object
user

DBS

x

(-3,6)

(3,4)

(2,1)

(-5,2)

(10,-5)

pi di ωi

a
√

5 27◦

b 5 53◦

d
√

29 158◦

f 6 270◦

c
√

45 117◦

e
√

52 236◦

g
√

125 333◦

pi: object;

di: distance;

ωi: direction.

Figure 2.2: Example of an E-DBS query (θ = π/3)

and d are not. Given two objects i and j, i dominates j iff they are directional close and

i has a shorter distance to the user than j does, i.e., di < dj . The E-DBS query retrieves

all the POI objects that are not dominated by others. Notice that the number of objects

returned is affected by the value of θ. In our example, objects a, d, and f are the result.

A DBS query is a new multi-objective optimization problem focusing on the spatial con-

text. We evaluate the dominance relationship between objects based on both distances

and directions. Its formal definition will be presented in Section 2.4. In order to support

DBS query in both the static scenario and the dynamic mobile scenario, we form snapshot

DBS queries and continuous DBS queries.

A snapshot DBS query finds out the DBS objects according to the user’s current position.

Example 3 presents examples of snapshot DBS queries in the Euclidean space E. The

purpose of snapshot DBS queries is to provide the user with the current “best view” and

to enable the user to identify the best POI for each direction. A näıve solution is to

check objects one by one to determine whether they are dominated by others. However,

this brute force based approach is very inefficient as it needs to consider the entire object

set. Alternatively, we propose new approaches which can answer snapshot DBS queries

efficiently by utilizing some unique properties of DBS.

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 14

2.2.2 Continuous E-DBS Queries

On the other hand, a continuous DBS query retrieves the DBS objects while the user

is moving linearly. It is typically used to predict when and how the best view (i.e., the

DBS) changes while the user is moving. Example 4 is extended from original Example 3

to illustrate the idea of continuous E-DBS queries.

b

c

d

e f g

a

O

y object
user

x

60

user pi λ

(0, 0)′ a, g 54◦

(60, 0)′ a, g 148◦

(0, 0)′ a, d 131◦

(60, 0)′ a, d 4◦

Figure 2.3: Example of a continuous E-DBS query (θ = π/3)

Example 4 (Continuous E-DBS Queries). As shown in Fig. 2.3, we assume a user currently

located at the position (60, 0)′ is moving linearly along the x-axis. We list the included

angle (denoted as λ) between object a and object g and that between object a and object d

when the user is at (0, 0)′ and (60, 0)′, respectively in Fig. 2.3 to demonstrate the dynamic

nature of the included angles when user keeps moving.

Object g, which is dominated by a when the user locates at (0, 0)′, is not dominated by

a when user moves to (60, 0)′ because they are in the different direction w.r.t. the user.

On the other hand, object d, which is an DBS object when the user locates at (0, 0)′, is

dominated by a when user moves to (60, 0)′. Thus, DBS points (i.e., {a, g}) corresponding

to (60, 0)′ are different from those (i.e., {a, d, f}) corresponding to (0, 0)′.

A critical problem in supporting continuous queries is how to update the DBS while the

user is moving. A näıve solution is to issue a snapshot query whenever the user moves to

a new position. However, it is impractical and is quite costly. Our alternative approach is

to predict DBS changes based on pre-computations when the query is submitted. Thus,

we can update the DBS result whenever the user arrives at the change position, which is

predicted by the algorithm proposed in this paper.

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 15

In the following, we formalize the snapshot DBS query and continuous DBS query in the

Euclidean space E, and present the corresponding query processing algorithms.

2.3 Related Work

2.3.1 Direction-Based kNN Queries

In the two-dimensional Euclidean space, most existing nearest neighbor queries focus on

the geographical closeness (e.g., [5], [6], [7]), however, there are also several studies that

consider the direction properties. Among them, visible nearest neighbor (VNN) queries

[14–16] and nearest surrounder (NS) queries [8, 9] are most related to our DBS queries.

Visible Nearest Neighbor Queries. Visible nearest neighbor queries are to find nearest

objects that are visible (i.e., not blocked by any obstacle) to the query point [14–16], as

Fig. 2.4 shows. The concept of the invisible area shares some similarity with the dominance

region. To be more specific, an invisible area corresponding to an obstacle o is a region

within which any object is not visible to the user due to the existence of o. Similarly, the

dominance region of an object i is a region where all the objects are dominated by i. In

other words, a VNN query does not consider objects falling inside the invisible area of

any obstacle.

Figure 2.4: Visible nearest neighbor query

We can regard an E-DBS query, proposed in this paper, as a special type of VNN queries.

We consider each data point as an obstacle and derive its suppositive dominance region

as a sector shape defined by the angular parameter θ. An E-DBS query does not consider

objects falling inside of the dominance region of any object. Consider, for example,

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 16

Fig. 2.5(a). For point a, its dominance region is defined by the angle θ = π/31. For

the presentation purpose, assume that there is an suppositive arc-shaped obstacle oa for

point a. Objects b and g are invisible from the query point O because they are within

the invisible region of oa. For each POI object i considered by the E-DBS query, we can

form its suppositive obstacle oi in a similar manner. Thus, we can transform an E-DBS

query to a VNN query.

a

b

c

d

e
f g

π/3

π/3

y

x

(a) Obstacles w.r.t. query O

b
c

d

e f g

a

(b) Obstacles w.r.t. query O′

Figure 2.5: Suppositive obstacles of E-DBS queries2

However, we cannot directly apply the algorithms proposed for VNN queries [14–16]

to DBS queries. The main reason is that the existing VNN query methods consider

rectangular (or polygonal) obstacles. In Section 2.5, we will explain how to exploit the

properties of arcs to handle our problem efficiently. Additionally, in the continuous case,

the shapes of the arc obstacles are changing due to the movement of the user. As shown

in Fig. 2.5(b), the positions of suppositive arc obstacles change when the user moves

from O to O′. Even if we can use VNN search algorithms directly to tackle our problem,

we have to issue new VNN queries periodically according to the user’s movement which

obviously is not practical. Hence, we propose algorithms to update the DBS continuously

in Section 2.6.

Nearest Surrounder Queries. Lee et al. [8, 9] studied the nearest surrounder (NS)

query for retrieving objects, each of which is a nearest neighbor of a query point according

to an associated angular range. Fig. 2.6 shows an example of an NS query with a query

1Assume that the user sets the threshold θ to be π/3.
2The acronym “w.r.t.” is short for the phrase “with respect to”.

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 17

point (O) and several data objects (a to i). The result set is {〈a, [α1, α2)〉, 〈b, [α2, α3)〉,

〈c, [α3, α4)〉, 〈d, [α4, α5)〉, 〈e, [α5, α6)〉, 〈f, [α6, α1)〉}. It means that a to f are nearest

neighbors of O within their associated angles. The motivation of our E-DBS query is

related to this idea. Both of them focus on providing a whole picture of nearest objects

around the user. However, an E-DBS query treats point objects and receives the angle

threshold θ, while an NS query assumes rectangular data objects. [8, 9] proposed efficient

algorithms to answer NS queries for a moving query point and moving data objects, but

they do not consider the linear movement of the user.

Figure 2.6: Nearest surrounder query

Other Direction-Based Queries. Patroumpas et al. proposed the notion of an

orientation-based query which finds objects moving towards the query point [36]. Ex-

ample queries include “finding the trucks moving towards the port from the west at a

distance less than 2km”. The basic idea is to use a polar tree to index the moving objects

by their directions and retrieve the objects within the required direction and distance

ranges. To the best of our knowledge, our work is the first study of direction-based

surrounder queries considering distance and direction attributes.

2.3.2 Location-Based Skyline Queries

In spatial databases, where the geographical data are stored, the notion of a skyline query

provides a new perspective for realizing a location-based service which considers multiple

factors including spatial and/or non-spatial attributes. As Fig. 2.7 shows, the user wants

to find hotels both near (i.e., spatial interest) and cheap (i.e., non-spatial interest). Spatial

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 18

interests or attributes (e.g., distance) are different from other static attributes (e.g., price)

because they depend on the query point (e.g., location of the mobile user) which moves

continuously in most location-based applications.

Figure 2.7: Location-based skyline query

Single Point. In the single point category, approaches [34, 35] focus on a dynamic

spatial attribute (Euclidean distance) and static non-spatial attributes. For example,

[37, 38] focus on both the distance information and some static non-spatial attributes,

and [39] focuses on two static spatial attributes, i.e., spatial network distance and detour.

Huang et al. [34] present skyline points for a continuously moving user (query point)

considering distance and static non-spatial attributes. Among the objects given, some are

permanent skyline points no matter where the user is as they are dominating static non-

spatial values; while some are volatile skyline points because their dominance properties

depend on the distances to the moving query point. However, the observation is that their

dominance properties do not change abruptly while a user moves with a constant speed.

A change of the dominance property happens when the distances of two data points share

the same distance to the query point. In this work, the authors proposed a method to

predict when two objects actually share the same distance to the query point and perform

updates at these moments only.

Zheng et al. [35] proposed approaches to present skyline points for a dynamic query

point without assuming that the query point moves with a constant speed and the spatio-

temporal coherence exists as in [34]. Observing distributions of data points, they derive

a valid scope wherein all query points will receive an identical skyline. The skyline is

updated if a new query point falls outside of the valid scope of the original query point.

However, those algorithms [34, 35] that consider distances only cannot be directly applied

to answer DBS queries because we consider not only distances but also directions.

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 19

Single Point with Multiple Dynamic Attributes. The skyline problem becomes

more complicated when we take multiple dynamic attributes into account [37, 38]. Chen et

al. [37] predict a new skyline at a moment after the start moment for a moving query point

considering a dynamic distance, non-spatial dynamic attributes (time-parameterized), and

static attributes. Data points are indexed by an extended TPS-tree which integrates non-

spatial dynamic attributes and static attributes as well as dynamic distances indexed by

traditional TPS-tree [40]. Skyline points are found out by using a time-parameterized

BBS algorithm on the extended TPS-tree. We can issue a new query at each moment by

using the predictive skyline query processing algorithms in [37] to update skylines while

a query point moves.

Lee et al. [38] proposed alternative algorithms to update skylines continuously for a mov-

ing query point with dynamic distances and dynamic non-spatial attributes. They assume

the query point moves with a constant speed and dynamic non-spatial attributes values

also change linearly. By following the filter-and-refinement principle, they first select can-

didates which could possibly qualify as skyline points and then trace changes of skylines

by only evaluating those candidates. During the candidates selection phase, they derive

the candidate region while filtering out the permanently dominated regions and further

reduce the candidate set according to some pruning rules. The method efficiently answers

continuous skyline queries for moving objects with dynamic attributes. However, it is

impossible to directly use that algorithm to solve E-DBS queries as the dynamic direction

attribute is different from other dynamic attributes which usually can be described as

time-parameterized linear or quadratic functions.

Huang et al. [39] proposed another interesting spatial skyline query problem in road

network scenarios. In their work, data points represent intermediate locations (e.g., gas

station) that a user wants to visit temporarily on his way to a given destination. Skyline

points are found to balance distances of intermediate locations and detours arose by

visiting intermediate locations.

Multiple Points. In multiple point category, approaches [41, 42] focus on the context

where there are several query points. In the Euclidean space, Sharifzadeh et al. [41] find

out skyline points (e.g., meeting places) which can minimize traveling distances for several

query points (e.g., a group of mobile users) and proposed algorithms B2S2 and V S2. Son

Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 20

et al. [42] noticed the incompleteness of the V S2 algorithm and proposed alternative

algorithms to answer skyline queries.

2.3.3 Quoted Work

In order to facilitate continuous E-DBS query algorithms, we borrow some ideas from

continuous nearest neighbor (CNN) queries proposed by Tao et al. in [7] and we also

employ the basic idea of the work presented by Raptopoulou et al. in [43] to make use of

the intersections of distance functions to find changes of nearest neighbors.

2.3.4 Summary

Table 2.1: Related work of E-DBS queries

`````````````̀query point
interest spatial non-spatial

distance +obstacle +direction +(price, etc.)
snapshot [5], etc. [14], etc. [44] and [45] [35], etc.

continuous [7], etc. [14], etc. [44] and [45] [35], etc.

Table 2.1 summarizes the related work of E-DBS queries and illustrates the position of

our work. The interests of the users can be divided into two categories, namely, spatial

interests and non-spatial interests. According to the state of the query point, the queries

can be divided into two categories, namely, the snapshot queries and the continuous

queries. There are a lot of work considering only distances in both snapshot scenarios

([5], etc.) and continuous scenarios ([7], etc.). There are several papers considering not

only distances but also spatial obstacles in both snapshot and continuous scenarios ([14],

etc.). In addition, there are also some work considering distances as well as some non-

spatial attributes in both snapshot and continuous scenarios ([35], etc.). Our study is the

first one considering distances and directions in both snapshot and continuous scenarios

([44] and [45]).

2.4 Preliminaries

In this section, we formalize DBS queries. There is a set of target objects P = {p1, . . . , pn}

and a query object q in a two-dimensional Euclidean space E. DBS queries recommend



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 21

nearest objects around q considering their distances di and directions ωi w.r.t. q. Com-

paring two objects pi and pj , pi represents a better candidate than pj if di < dj and they

are directional close. We consider DBS queries in a vector space E. In the vector space

E, we compare objects using Euclidean distances and directions.

2.4.1 Dominance Relationship and E-DBS Query

Before defining the DBS problem formally, we would like to define the dominance rela-

tionship first.

Definition 1 (Dominance Relationship). In a two-dimensional Euclidean space E, if two

objects pi and pj are directional close and pi is closer to q than pj (i.e., di < dj), we say

that pi dominates pj , denoted as pi ≺ pj . 2

Note that objects that are not directional close are not comparable. We will define the

direction closeness in the vector space E (Section 2.4.2). Accordingly, DBS queries are

defined in Definition 2.

Definition 2 (E-DBS Query). Given a set of POI objects P = {p1, . . . , pn} and a query

point q in a space E, the objects that are not dominated by any other object are direction-

based surrounder points (DBS points). A direction-based surrounder (DBS ) query, de-

noted as DBS(q, θ) in E, is to find all the direction-based surrounder points, i.e., {pi |

pi ∈ P,@pj(6= pi) ∈ P, pj ≺ pi}. 2

2.4.2 Directional Closeness

Assume that a set of target objects P = {p1, . . . , pn} and a query object q are in a two-

dimensional Euclidean space E. The vector −→pi from q to pi is used to capture both the

distance and direction of pi w.r.t. q. To be more specific, the distance of pi to q is

represented by dpi (= |−→pi |) which is the Euclidean distance between pi and q and the

direction of pi w.r.t. q is represented by ωpi (∈ [0, 2π)) that is the angle between vector −→pi

and the unit vector (1, 0)′. We use the abbreviations di and ωi to refer to pi’s distance and

direction if the context is clear. For example, the vector −→a in Fig. 2.2 has the distance

da = |−→a | =
√

5 and the direction ωa = 27◦.

Now we explain how E-DBS actually evaluates objects by considering both the distance

and direction. Intuitively, two objects pi and pj are in the same direction if their directions



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 22

w.r.t. q happen to be the same (i.e., ωi = ωj). This definition, however, is too strict in

practice. Alternatively, we consider that two objects are almost in the same direction if

their directions are almost equivalent (ωi ≈ ωj). Towards this, we introduce a threshold

θ (∈ [0, π2 )), namely an acceptable angle, which can be specified by the user in the query

time to evaluate the direction closeness. Given two objects pi and pj , their included angle

formed by vectors −→pi and −→pj can capture their angular difference, mathematically defined

as follows:

λij = arccos
−→pi · −→pj
|−→pi | · |−→pj |

. (2.1)

Objects pi and pj are directional close w.r.t. a query point q and a threshold θ iff their

included angle λij is bounded by θ. Its formal definition is given in Definition 3.

Definition 3 (Directional Close in E). For the given target objects pi and pj , we say that

pi and pj are directional close w.r.t. q and a given threshold θ iff the condition 0 ≤ λij ≤ θ

holds. 2

As we have shown in Example 3 (Fig. 2.2), given θ = π/3 and q, object b is directional

close to a since the included angle λab between their vectors is smaller than θ. On the

other hand, object d is not directional close to a due to the fact that λad > θ.

2.4.3 Two Minor Issues

Before we present the detailed search algorithms for DBS queries, we would like to mention

two minor issues and their solutions for E-DBS queries.

1. In the following discussions, we consider the case of 0 < θ < π/2 but omit the case

of θ = 0. This is because as θ = 0, the majority of target objects are not dominated

as an object pi can only be dominated by objects pj lying along the radial line from

q to pi (i.e., ωi = ωj). In the case that all the objects have different directions w.r.t.

q, all the objects are E-DBS objects. This contradicts the main objective of our

searches which is to find a small set of dominative objects out of a large object set

to ease objects selection/analysis process.

2. We assume a query will not be issued at a target object pi. In other words, the query

can only be issued from a position that is different from any the target objects, i.e.,



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 23

∀q, @pi ∈ P, dpi = 0. The reason behind is that when dpi = 0, pi actually dominates

all the other target objects in all the directions, and becomes the only E-DBS object.

2.5 Processing of Snapshot Queries

In this section, we present the snapshot E-DBS query and its corresponding search algo-

rithms. When a direction-based surrounder query is issued at a fixed query point q, it

is a snapshot DBS query. As mentioned in Section 2.1, a snapshot DBS query finds the

“best view” objects based on the user’s current position.

A näıve solution to support snapshot queries is to compare every object with all the other

objects. If the object is not dominated by any other object, it is a DBS point. This

approach is developed directly based on the definition of a snapshot DBS query, and has

O(n2) time complexity with n = |P | where P is the set of target objects. Although we

can improve the performance by saving the comparison of an object pj against others

once it is detected to be dominated by some object pi, it is still inefficient. In the next

subsections, we present some efficient search algorithms to support E-DBS queries.

At first, we introduce two observations based on which an efficient search algorithm is

developed to answer snapshot DBS queries. Notice that our search algorithm examines

the target objects of P based on ascending distance order w.r.t. q, i.e., nearby objects are

evaluated earlier3.

2.5.1 First Observation: Search Space Pruning

Given an object pj ∈ P , it can only be dominated by another object pi that is directional

close to pj . Consequently, there is no need to evaluate objects that are not directional

close to pj as they certainly will not dominate pj . In other words, the search space for

a dominative object pi can be pruned based on directional closeness. In our algorithm,

objects are evaluated based on ascending order of their distances to q. pj can only be dom-

inated by those objects visited earlier and meanwhile are directional close to pj . In order

3To simplify the presentation, we assume all the objects have different distances to query point q.
However, our algorithm can be easily adjusted to cater for the cases where multiple objects have the same
distances to the query point.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 24

to facilitate the checking of directional closeness, we introduce the notions of a direction

order list and adjacent objects defined in Definition 4 and Definition 5, respectively.

Definition 4 (Direction Order List). Given a set of objects P ′ and a query point q, its

direction order list LP ′ = 〈p1, p2, · · · pk〉 is formed by the objects of P ′ based on ascending

order of their directions w.r.t. q, i.e., i) ∀pi, pi+1 ∈ LP ′ , ωpi ≤ ωpi+1 ; ii) ∀pi ∈ LP ′ , pi ∈ P ′;

and iii) |LP ′ | = |P ′|. 2

Definition 5 (Adjacent Object). Given a set of objects P ′ = {p1, p2, · · · pk} and a query

point q, objects pi and pj are adjacent to each other iff they are next to each other in the

corresponding direction order list LP ′ , i.e., there is no other object pm in LP ′ such that

ωpi < ωpm < ωpj . Notice that the head entry of LP ′ is adjacent to tail entry of LP ′ due

to the circular aspect of this notion. 2

For each object pi in P ′, it has two adjacent objects, i.e., the predecessor located ahead

of pi in LP ′ , denoted as p−i and the successor located right after pi, denoted as p+i . Due

to the circular aspect of adjacency, the head entry of LP ′ has the tail entry of LP ′ as

its predecessor and similarly, pk, the tail entry of LP ′ has the head entry of LP ′ as its

successor. Please refer to Example 5 for the detailed explanation.

Example 5. Let us consider the example in Fig. 2.2 again. Assume objects are evalu-

ated based on ascending order of their distances to q, and those objects that have been

evaluated constitute the set P ′ = {a, b, d} with LP ′ = 〈a, b, d〉, as shown in Fig. 2.8(a).

Object a is adjacent to b and d. Object b has object a as its predecessor and has d as

its successor, i.e., b− = a and b+ = d. Suppose we are now evaluating object f . As f

certainly will not be dominated by any object that has not been evaluated due to shorter

distance to q, we only need to consider objects in P ′. As objects in P ′ are closer to q than

f , they certainly satisfy the distance requirement specified in the dominance relationship

of DBS queries. Therefore, we only need to consider the directional closeness. Obviously,

the object in P ′, which has the smallest included angle with f , must be either d or a, i.e.,

the predecessor and successor of f if we consider the set of objects P ′ ∪ {f}. Therefore,

by comparing λaf and λdf with θ, we can decide whether f is dominated.

Based on this observation, we develop the following property to prune away objects that

do not need evaluation when we evaluate an object pi.

Property 1. Let object pi be the target object currently evaluated, and suppose set P ′

maintains all the objects evaluated (i.e., those objects being closer to q compared with



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 25

a

b

d

f

O

y

xλfd
λfa

(a) Observation 1

a

b

d

f

y

x

φab
φbd

φdf φfa

c

e g

(b) Observation 2

Figure 2.8: Two observations

pi). Assume pj and pk are the predecessor and successor of pi. Object pi is a DBS object

iff both included angles λij and λik are larger than θ. 2

2.5.2 Second Observation: Early Termination

The second observation is that the directional closeness enables us to terminate the object

evaluation process earlier without examining all the objects in P . We use Example 6 to

explain the basic idea. Notice that a new concept partition angle is used in Example 6

and its formal definition is presented in Definition 6.

Definition 6 (Partition Angle). Given a set of objects P ′, let pj ∈ P ′ be the successor

object of pi ∈ P ′. The partition angle ϕij is defined based on pi and its successor pj , as

expressed in Eq. (2.2):

ϕij = (ωj − ωi) mod 360◦. (2.2)

2

Example 6. Let us continue our running example. Assume that we have checked the

objects a, b, d, and f already, i.e., P ′ = {a, b, d, f}. As shown in Fig. 2.8(b), four partition

angles are formed. They are ϕab = 26◦, ϕbd = 105◦, ϕdf = 112◦, and ϕfa = 117◦. In

other words, the 2π angular range is partitioned by the objects of P ′ into four sub-angular

regions. For a new object, it certainly will be located into one sub-angular region, and

have objects {a, b} (or {b, d}, or {d, f}, or {f, a}) as its adjacent objects. Given the fact



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 26

that all the partition angles are smaller than or equal to 2θ = 120◦, the new object will

be definitely dominated by at least one of its adjacent objects, as stated in Property 2.

Property 2. If all the partition angles formed by the checked objects are not larger than

2θ, the remaining objects that have not been evaluated are dominated and the evaluation

can be terminated safely. 2

2.5.3 Algorithm

The algorithm to answer snapshot DBS queries is developed based on the above two

observations. Before we explain the details of the search algorithm, we first use Example 7

to illustrate the basic idea.

a

b

c

d

e f g

O
x

y

(a) Checking a

a

b

c

d

e f

O

y

g

x

(b) Checking b

a

b

c

d

e f g

xO

y

(c) Checking d

a

b

c

d

e f g

x
O

y

(d) Checking f

Figure 2.9: Processing of snapshot DBS query (θ = π/3)

Example 7. Given P = {a, b, c, d, e, f, g}, a snapshot DBS query is issued at point O

with θ = π
3 . Objects are evaluated based on ascending order of their distances to O.

Consequently, a is evaluated first, and it can be output as a DBS object immediately, as



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 27

depicted in Fig. 2.9(a). After the evaluation of a, P ′ = {a}, and ϕaa = 04. Next, the

algorithm checks the second-nearest object b, as illustrated in Fig. 2.9(b). As λab < θ,

it is dominated by a. Since there is one partition angle ϕba > 2θ, the early termination

condition is not satisfied and the procedure continues. Then, the algorithm examines

object d, the third nearest object to O, as depicted in Fig. 2.9(c). It can be returned as

a DBS object as its two adjacent objects (i.e., a and b) are not directional close to d, i.e.,

λdb > θ and λda > θ. After the evaluation, P ′ = {a, b, d}, and partition angles ϕab (≤ 2θ),

ϕbd (≤ 2θ), and ϕda (> 2θ) are formed. The procedure continues and we examine object

f , as shown in Fig. 2.9(d). It is also a DBS object as it is not dominated by its adjacent

objects, and meanwhile the procedure terminates since all the partition angles (i.e., ϕab,

ϕbd, ϕdf , and ϕfa) are smaller than 2θ. All the DBS objects (i.e., a, d, f) are found.

Algorithm 1 lists the pseudo-code of the snapshot DBS query processing algorithm. First,

we invoke an existing NN search algorithm to retrieve the nearest neighbor object using

a spatial index (lines 3 -4). This object is certainly a DBS object as it is closer to q than

any other object. After initializing variables, we check the target objects according to

the increasing distance order (lines 8-15). In the algorithm, we maintain all the objects

that have been checked in P ′, sorted by their directions w.r.t. q. Whenever a new

object p is evaluated, it is first inserted into P ′, and its predecessor and successor are

retrieved, denoted as p− and p+ respectively (line 10). Based on Property 1, we compare

included angles of p and its adjacent objects to decide whether p is dominated (lines

11-12). Thereafter, we update the partition angle set (line 14). The process repeats

until early termination condition is satisfied (based on Property 2) or all the objects are

evaluated (line 15).

Now we analyze the time complexity of Algorithm 1. The cost of the algorithm comes

from the loop (lines 8-15), if we ignore the costs of function InitNNQuery and function

GetNext. In the best case, the loop will terminate after checking d2π/2θe nearest

neighbors. In the worst case, the loop will terminate after checking all objects (e.g.,

all of them are on some ray originating from the user) which is rather uncommon. In

general, the time complexity of the loop is O(1). The experimental results of snapshot

queries shown in Section 2.7.2 also demonstrate the efficiency of Algorithm 1 in supporting

snapshot DBS queries.

4Notice that we use Property 2 as a termination condition when we have checked more than one object.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 28

Algorithm 1: SnapshotDBSQuery (q, θ)

1 S ← ∅;
2 InitNNQuery(q); // Initialize the NN query

3 p← GetNext(); // Get the first NN object

4 S ← {p}; // result set

5 P ′ ← [p]; // Initialize the evaluated object set

6 Φ← {ϕpp}; // Initialize the partition angle set

7 repeat
8 p← GetNext(); // Get the next NN object

9 〈p−, p+〉 ← P ′.insert(p);
// Insert p to P ′ and get its adjacent objects

10 if λpp− ≥ θ ∧ λpp+ ≥ θ then
11 S ← S ∪ {p}; // p is on the DBS

12 end if
13 Φ← (Φ− {ϕp−p+}) ∪ {ϕp−p, ϕpp+} // Update the partition angle set

14 until ϕ ≤ 2θ (∀ϕ ∈ Φ) or all the objects are processed ;
15 return S;

2.6 Processing of Continuous Queries

In this section, we extend the original DBS queries to a dynamic scenario. In addition

to considering snapshot DBS queries issued at fixed query points, we consider the case

that users keep moving when issuing DBS queries. Accordingly, we form continuous DBS

queries to represent the processing of DBS queries when the query point keeps moving.

As pointed out in Section 2.2.2, a continuous DBS query presents up-to-date DBS objects

while the user keeps moving. Naturally, we can issue a new snapshot DBS query when-

ever the user changes his/her position. In other words, a continuous DBS query can be

converted to snapshot DBS queries. However, this simple approach is not preferred as

a large number of snapshot DBS queries will be generated and many of them share the

same results. Alternatively, we propose a prediction-based approach, i.e., predicting when

and how the DBS objects change in the near future.

In a dynamic moving environment, the user’s position keeps changing with different move-

ment patterns. Our goal is to develop flexible algorithms which can support continuous

DBS queries issued by mobile users with various movement patterns. As the first step,

this work focuses on the prediction of the future locations of mobile users moving in a

constant speed. To be more specific, let t = 0 be the current time, and the location of

the user at a future time t (≥ 0), denoted as −→q = (xq, yq)
′, is mathematically expressed



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 29

in Eq. (2.3).

−→q =

 xq

yq

 =

 xv

yv

 t+

 x̄q

ȳq

 , (2.3)

where the user moves from (x̄q, ȳq)
′ with a constant velocity (xv, yv)

′.

Accordingly, a continuous DBS query is formally defined in Definition 7. Note that the

following definition can be easily extended to an interval-based DBS query that is based

on a given time interval [ts, te], instead of the time duration [0, τ ]. For R-DBS queries, we

assume the user moves on the road network within the time duration [0, τ ]. For E-DBS

queries, users can move freely.

Definition 7 (Continuous DBS Query). In a space X ∈ {E,R}, a continuous DBS query

with parameter τ (τ > 0), which is issued by a user at position (x̄q, ȳq)
′ moving in constant

velocity (xv, yv)
′, locates all the DBS points corresponding to the user locations during

the time interval [0, τ ]. 2

In order to illustrate the concept of continuous E-DBS queries, we extend our running

example, as shown in Example 8.

a (20,10)

b (30,40)

c (-30,60)

d (-50,20)

e (-40,-60)
f (0,-60)

O

x

y

0 100v

g (100,-50)

Figure 2.10: Example of a continuous E-DBS query

Example 8. Let us extend our example of snapshot E-DBS queries to the continuous case.

Fig. 2.10 illustrates that the user is moving from position (0, 0)′ with a constant speed

(1, 0)′. The user issues a continuous DBS query for the time interval [0, 100] with θ = π/3.

It means that we need to predict the changes of DBS during [0, 100]. The result will be



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 30

as follows:

DBS =



{a, d, f} t ∈ [0, 4)

{a, d, f, g} t ∈ [4, 23)

{a, f, g} t ∈ [23, 59)

{a, g} t ∈ [59, 100].

(2.4)

The output indicates that initially, objects a, d and f are the DBS points. These three

objects remain as the only DBS points until user reaches (4, 0)′ at t = 4. At that point,

object g becomes new DBS object and hence the result set is changed to {a, d, f, g}. It

remains in the same state until the user moves to (23, 0)′ at t = 23 at which the DBS

object d is dominated by a and hence removed from the result set. Finally, DBS object f

is also removed from the result set at t = 59 when the user reaches (59, 0)′.

Based on this example, we understand that although the user keeps changing his/her

position from t = 0 to t = 100, the change of the DBS points happens only at t = 4, t = 23,

and t = 59. We therefore name those moment as change moments, and a continuous DBS

query can be easily converted to snapshot DBS queries issued from user’s locations at

those change moments. For example, if we can detect that t = 4, t = 23, and t = 59 are

the only three change moments corresponding to our example continuous query, we can

issue 4 snapshot DBS queries w.r.t. the user’s positions at time t = 0, t = 4, t = 23,

and t = 59. Consequently, our algorithm focuses on how to predict the change moments

effectively.

2.6.1 Basic Idea

The solution to continuous DBS queries shares the same framework as snapshot DBS

queries. In processing snapshot queries, we check the target objects one by one based

on ascending order of their distances to the fixed query point. For each target object pi

evaluated, we compare its included angles formed with its adjacent objects against the

angular threshold θ to evaluate if pi is dominated, according to Property 1. The evaluation

process can be safely terminated if all the partition angles formed by examined objects

are bounded by 2θ or all the target objects have been evaluated.

Similarly, a continuous DBS query intends to evaluate those objects nearer to the query

point earlier. However, the user, who issued a continuous query, keeps moving and hence



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 31

the distance from a target object to the user’s current location keeps changing. Like in

Example 8, object a is nearest to q when t = 0 and object g becomes nearest when t = 75.

How to determine the ordering of objects based on their distance to the query point (i.e.,

user’s current location) in a dynamic scenario is critical. In our work, we propose a process

tree to facilitate the ordering.

, (0,100)

, (0,75)a , (75,100)g

, (0,71)b , (71,75)g

, (0,7)d , (7,45)f , (45,71)g

, (7,32)d , (32,45)g, (0,7)f , (45,71)f

, (71,75)b

, (71,75)f

, (75,100)a

, (75,100)b

, (75,100)f

...

-

...............

n00

n11 n12

n21 n22 n23

n31 n32 n33 n34 n35

n41 n42 n43 n44 n45 n46

Figure 2.11: Process tree for continuous DBS query

As illustrated in Fig. 2.11, a process tree is in tree structure, and the height of the tree

is bounded by the number of target objects considered. Its root node n00 includes the

time interval [0, τ ] considered by the given continuous DBS query (e.g., (0, 100) in our

example). Let the root node be at level 0, its immediate child nodes (e.g., n11) be at level

1, its immediate grand-child nodes (e.g., n21) be at level 2, and so on. Each child node nij

at level i actually corresponds to an ith nearest neighbor to q within certain time interval.

Consequently, each non-root node nij is in the format of 〈pk, Ipk〉 with pk being the ith

nearest neighbor to q within the time duration Ipk = (t1, t2) ⊆ [0, τ ]. For example, as

shown in Fig. 2.11, node n22 at level 2 has its content 〈g, (71, 75)〉, meaning that object

g is the second nearest neighbor to q during the interval (71, 75), and node n33 at level 3

has its content 〈g, (45, 71)〉 which means object g is the third nearest neighbor to q during

the interval (45, 71).

Note that given a parent node nij = 〈pk, Ipk〉 and a child node n(i+1)j′ = 〈pm, Ipm〉,

the interval associated with the child node n(i+1)j′ is always bounded by the interval

associated with the parent node nij , i.e., Ipm ⊆ Ipk . In order to fulfill this requirement,

for an object pi that is the jth nearest neighbor to q at duration Ii, multiple nodes 〈pi, Iik〉

might have to be generated at level j with each corresponding to a sub-interval Iik of Ii



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 32

(∪kIik = Ii). For example, nodes n34 and n35 at level 3 both correspond to object b

with n34 associated with interval (71, 75) and n35 associated with interval (75, 100), and

nodes n44, n45, n46 at level 4 all correspond to object f , with n44 associated with time

interval (45, 71), n45 associated with time interval (71, 75), and node n46 associated with

time interval (75, 100). We will explain the reason behind this design when we illustrate

how to utilize process trees to conduct continuous DBS searches below.

Given the process tree, we can conduct the continuous DBS search by evaluating the

target objects one by one based on ascending order of their distances to q. Initially, the

nodes at level 1 will be evaluated. As they are the nearest objects to q (corresponding to

different time intervals), they are DBS objects. As shown in Fig. 2.11, object a is nearest

to q (and hence a DBS object) during the time interval (0, 75), and object g is nearest

to q (and hence a DBS object) during the rest time interval (i.e., (75, 100)). Since there

are two objects at level 1, the continuous DBS query is split into two sub-queries q11 and

q12, each of which corresponds to time intervals (0, 75) and (75, 100), respectively. The

reason we split the query into sub-queries associated with disjointed time intervals is to

facilitate the distance-based ordering of objects.

Consider to process sub-query q11. We need to evaluate objects that are the second nearest

to q during interval (0, 75). Based on the process tree, we can understand that objects

b and g are the second nearest objects during intervals (0, 71) and (71, 75), respectively.

Hence, the sub-query q11 is further split into two sub-queries q21 and q22, each of which

is associated with time intervals (0, 71) and (71, 75), respectively. For q21, it has its

own set of examined objects P ′21 = {a, b}, and q22 also has its own set of examined

objects P ′22 = {a, g}. Based on Property 1, we can decide whether b (or g) is dominated

by comparing its included angle with its adjacent objects5. Thereafter, we can form

the partition angles, as in a snapshot DBS query processing, and safely terminate the

processing of the subquery if the early termination condition is satisfied. Otherwise, we

need to find out the next nearest neighbor within the time interval associated with the

current sub-query (e.g., (0, 71) of q21) by visiting the child nodes (e.g., n31, n32, n33), and

continue the above process.

Based on this example, we understand that actually each node of the process tree corre-

sponds to a sub-query of the initial continuous DBS query. Take node n42 as an example.

5How to locate the adjacent objects for a given object when q keeps changing will be explained next.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 33

It corresponds to sub-query q42 with time interval (7, 32). Within this interval, q has a,

b, f , and d as the top-4 nearest objects, which are captured by node n42 and its ancestor

nodes (i.e., n32, n21, and n11).

Now we understand how the process tree can facilitate the ordering of objects based on

their distances to q. The next issue we have to address is how to construct a process tree.

The construction of process tree is an incremental process and the tree is generated level

by level. We regard the user’s moving trajectory as the query line segment, and invoke

an existing continuous nearest neighbor (CNN) search algorithm to find all the nearest

neighbors (or k nearest neighbors). Naturally, the retrieved nearest objects will form the

nodes of level 1. After evaluating all those nearest objects, we can invoke the CNN search

algorithm to find the second nearest neighbors to form the nodes of level 2. The process

continues until the continuous DBS query processing terminates. As to be presented next,

the expansion of the process tree is well integrated with the processing of continuous DBS

queries.

Algorithm 2: ContinuousEDBSQuery (~q, θ, I)

// I is the target time interval: I = [0, τ ].
1 begin
2 r ←CreateRootNode(); // Create a root node

3 S ← ∅;
4 FindDBS(−→q , I, 1, r, S);
5 return S;

6 end

7 FindDBS(~q, I, k, n, S)
8 begin
9 forall 〈p, Ip〉 ∈ CNNQuery(−→q , I, k) do

// Find k-th NN object(s) while I
10 A ← FindAdjacentObj(p, Ip);

// Find p’s adjacent objects while Ip.
11 forall 〈p−, p+, I ′〉 ∈ A do
12 DomCheck(p, 〈p−, p+, I ′〉, S); // Check dominance.

13 S ← UpdateDBS(S);

14 end for
15 if CannotTerminate(p, Ip) then

// Termination condition is not satisfied.

16 FindDBS(−→q , Ip, k + 1, S); // Expand the child nodes.

17 end if

18 end for

19 end



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 34

Algorithm 2 presents the pseudo-code of the continuous DBS query processing algorithm.

It invokes function FindDBS recursively following the expansion of the process tree ex-

plained above. Function FindDBS first invokes function CNNQuery to retrieve the k-th

nearest neighbor objects 〈p, Ip〉 for the moving query point −→q within the time interval

I and expands the process tree accordingly6 (line 8). For each 〈p, Ip〉, it then invokes

function FindAdjacentObj to locate the adjacent objects of p and invokes function

DomCheck to decide whether p is dominated based on Property 1 (lines 9-12). Notice

that 〈p, Ip〉 may correspond to multiple nodes in the process tree, i.e., time interval Ip is

split into several sub-intervals. This is caused by the design of the process tree that the

time interval of a child node could not be larger than that of the parent node. There-

after, the early termination condition is checked via function CannotTerminate. If it

is not satisfied, the objects evaluation continues by examining the next nearest objects

via function FindDBS (lines 14-15).

In the following subsections, we will explain three major components of above algorithm.

They are i) function FindAdjacentObj to find adjacent objects; ii) function DomCheck

to conduct a dominance test; and iii) function CannotTerminate to evaluate the early

termination condition in the dynamic scenario.

In Algorithm 2, we partition intervals three times. First, we partition the intervals accord-

ing to the process tree as Fig. 2.11 shows. Second, we split one interval into sub-intervals

if the direction order list changes on the interval (Section 2.6.2). Third, we split a sub-

interval further if the dominance relationship changes on the sub-interval (Section 2.6.3).

On every sub-interval, we find DBSs until the termination condition is satisfied (Sec-

tion 2.6.4).

2.6.2 Finding Adjacent Objects

In processing a snapshot DBS query, we form a direction order list L for all the examined

objects w.r.t. q. By simply inserting a new object pi to L, those objects next to pi in

L are the adjacent objects. However, in a dynamic scenario, the position of q and the

direction λpi keep changing. We use Example 9 to demonstrate its complexity.

6In Appendix A.1, we explain how to implement the function CNNQuery by extending the existing
incremental NN algorithm proposed by Tao et al. in [7].



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 35

Example 9. Let us consider our example in Fig. 2.11 again. Assume we are evaluating

sub-query q42 associated with time interval (7, 32), and the object currently evaluated is

d. Based on the process tree, we can know that objects a, b, and f (i.e., those associated

with ancestor nodes of n42) are closer to q than d within interval (7, 32). When t = 7, the

direction order list Lt=7 = 〈a, b, d, f〉 and d’s adjacent objects are b and f , as depicted in

Fig. 2.12(a). When t = 32, the direction order list Lt=32 = 〈b, a, d, f〉 and d’s adjacent

objects are a and f , as shown in Fig. 2.12(b). The change (i.e., a replaces b as the

new adjacent object to d) happens at t = 18 when a and b are co-linear with q (i.e.,

λa = λb). In other words, b and f are adjacent to d during interval (7, 18), and a and f

are adjacent to d during interval (18, 32). Accordingly, we maintain two direction order

lists 〈a, b, d, f〉(7,18) and 〈b, a, d, f〉(18,32).

a

b

c

d

e f
g

7
x

y

0 100

(a) t = 7

a

b

c

d

e f
g

32
x

y

0 100

(b) t = 32

Figure 2.12: Change of direction order

Based on the above observation, we develop Property 3 to guide the detection of the

moment where objects in the direction order list switch their positions.

Property 3. If two objects are in the same side of the user’s moving trajectory, their

direction order changes when they are co-linear w.r.t. the query point. 2

We can employ a sweeping line algorithm to find the point along the moving trajectory −→q

where two objects change their positions in the direction order list L. To be more specific,

let 〈a, b〉 be a pair of objects that lie in the same side of −→q , and let line(a, b) represent a

line passing by both a and b. The intersection between line(a, b) and −→q is the point when

a and b change their positions in L. Thereafter, we can easily derive the time t when the

user reaches the detected intersection point.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 36

Example 9. (Continued) Fig. 2.2 illustrates the process of forming direction order lists

for a sub-query q42. At the beginning, we traverse the node n11 = 〈a, (0, 75)〉 of the

process tree and initialize the direction order list to 〈a〉. Then, we reach its child node

n21 = 〈b, (0, 71)〉, and update the direction order list to 〈a, b〉. However, the objects b

and a are co-linear when t = 18. Thus, we split the interval into two sub-intervals (0, 18)

and (18, 71), and maintain two direction order lists accordingly, with L(0,18) = 〈a, b〉 and

L(18,71) = 〈b, a〉. Next we reach the node n32 = 〈f, (7, 45)〉 and insert f into both list

L(7,18) and list L(18,45). Notice that the time interval corresponding to both lists shrink as

f is the third nearest neighbor only within interval (7, 45). As object f has no co-linear

objects in both lists, no changes are detected. Finally, we reach node n42, and we can

update the direction order lists similarly.

Table 2.2: Incremental maintenance of direction order lists

Tree Node Time Interval Direction Operation
Order List

n11〈a, (0, 75)〉 (0, 75) 〈a〉 insert a

n21〈b, (0, 71)〉 (0, 18) 〈a, b〉 insert b
(18, 71) 〈b, a〉 swap(a, b)

n32〈f, (7, 45)〉 (7, 18) 〈a, b,f〉 insert f
(18, 45) 〈b, a,f〉 insert f

n42〈d, (7, 32)〉 (7, 18) 〈a, b,d, f〉 insert d
(18, 32) 〈b, a,d, f〉 insert d

The detailed algorithm to detect the adjacent objects is shown in Algorithm 3. It takes

a process tree node n = 〈p, Ip〉 as input and returns the adjacent objects of p within Ip.

We assume that the direction order list corresponding to the parent node n is known and

maintained by parameter Dparent. For each list 〈l, I〉 ∈ Dparent, we first insert p into the

list (line 6), and then invoke function ColinearObjList to find out all the objects that

are co-linear with p within the time interval I, maintained in set C in the format of 〈p′, t′〉

where p′ is p’s co-linear object at time t′ (line 7). To ease the update, we assume that

objects in C are sorted based on ascending order of t′.

In the sequel, we evaluate each co-linear object of C and make necessary update to the

direction order list l accordingly (lines 8-13). For a given co-linear object p′ within t′, we

first find out p’s predecessor p− and the successor p+ within the time interval (ts, t
′), and

maintain them in A (line 8). Then, we switch the order of p and p′ in the list l to form

a new direction order list l′, preserved in D (line 10). The process repeats until all the



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 37

Algorithm 3: FindAdjacentObj(p, Ip)
// p: object, Ip = 〈Is, Ie〉: time interval.

1 A ← ∅; // Set of p’s adjacent objects while Ip.
2 D ← ∅; // Set of p’s direction order lists while Ip.
3 forall 〈l, I〉 ∈ Dparent do

// Dparent is the direction lists of p’s parent node.

4 ts ← Is;
5 l← l.Insert(p); // Insert p into l.
6 C ← ColinearObjList(p, l, I);

// C carries p’s co-linear objects and moments.

7 forall 〈p′, t′〉 ∈ C do // p′ is co-linear with p at t′.
// Process items in increasing order of t′.

8 A ← A∪ {〈p−, p+, (ts, t′)〉};
// Add p’s adjacent objects while (ts, t

′).
9 l′ ← l.Swap(p, p′) ; // Create a new list by swapping p and p′.

10 D ← D ∪ {〈l′, (ts, t′)〉} ; // Add the new list to D.
11 ts ← t′;

12 end for
13 A ← A∪ {〈p−, p+, (ts, Ie)〉};
14 D ← D ∪ {〈l, (ts, Ie)〉};
15 end for
16 Attach D to the tree node 〈p, Ip〉;
17 return A;

co-linear objects are evaluated. We deal with the last subinterval (t′, Ie) at line 13 and

line 14. We then attach D, the set of direction order list of p within interval Ip, to the tree

node 〈p, Ip〉 which will be used for function FindAdjacentObj. Finally, the algorithm

terminates by returning A.

Let us consider the time complexity of Algorithm 3. Assume before processing the target

tree node 〈p, Ip〉, the number of checked objects in the branch is m. In the worst case,

the outer loop (lines 3 to 15) will be executed
(
m
2

)
+ 1 times, because m objects may have

at most
(
m
2

)
co-linear moments which separate the interval into

(
m
2

)
+ 1 sub-intervals.

Lines 5 and 6 have O(m) cost respectively in the worst case. The inner loop executes m

times in the worst case in which the target object becomes co-linear with all the checked

objects. Therefore, the time complexity of Algorithm 3 is O((
(
m
2

)
+ 1)× 3m) = O(m3) in

the worst case. Although the time complexity in the worst case is high, in general there

is no need to expand the processing tree to a very deep level due to the early termination

strategy in Section 2.6.4.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 38

2.6.3 Checking Dominance

After confirming the adjacent objects of the target object during a certain time interval,

the next step is to determine the dominance relationships between the target object and

its adjacent objects, i.e., function DomCheck in Algorithm 2. Unlike in snapshot DBS

query, the included angle between two objects changes while the user moves in the dynamic

environment. Example 10 provides an example to demonstrate the dynamic nature of the

included angle between two objects. Based on the observation made from the example,

Property 4 is developed.

a

b

c

d

e f
g

λ=θ

λ>θ x

y

0 10075 95

(a) t = 75

a

b

c

d

e f
g

λ=θ

95

λ<θ

x

y

0 10075

(b) t = 100

Figure 2.13: Change of dominance relationship

Example 10. Take Fig. 2.11 as an example again. Assume that we are evaluating sub-

query q46 associated with time interval (75, 100), and the object evaluated currently is f .

We have known that the adjacent objects of f is a and g during (75, 100), returned by

the function FindAdjacentObj, and we want to evaluate whether f is dominated by a

and/or g. Take the evaluation of g as an example. As shown in Fig. 2.13(a), when t = 75,

λfg > θ = π/3. However, as shown in Fig. 2.13(b), when t = 100, λfg < θ. The change

happens at the moment t = 95 when λfg = θ. In other words, f is not dominated by g

during (0, 95), but it is dominated by g during (95, 100). The dominance relationship of

two adjacent objects changes when their included angle equals to θ.

Property 4. Object pi is not dominated by its adjacent object pj during the time interval

when their included angle λij ≥ θ, i.e.,

λij = arccos
−→p i · −→p j
|−→p i||−→p j |

≥ θ (0 ≤ λij ≤ π). (2.5)



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 39

2

Note that −→p i and −→p j are time-parameterized vectors that change with parameter t. To

obtain the time intervals for which the formula holds, we need to find out the critical

moments when λij = θ. Since λij is a continuous function, these critical moments divide

the time interval into two sub-intervals where λij > θ in one sub-interval and λij < θ in

the other. In fact, the equation λij = θ is a quartic equation with variable t ∈ [ts, te] and

the solutions ti ∈ [ts, te] (i = 1, . . . , 4) of the equation returned by GNU Scientific Library

[46] (see Appendix A.2 for details) form the critical moments. We use the midpoints of

every sub-intervals to determine whether λij ≥ θ or λij < θ, namely,

λab(t)|t=[tjs,t
j
e]∈Ij

 ≥ θ, if cosλab(
tjs+t

j
e

2 ) ≤ cos θ

< θ, if cosλab(
tjs+t

j
e

2 ) > cos θ
, (2.6)

where [tjs, t
j
e] represents a sub-interval Ij .

For object p, we need to consider two adjacent objects p− and p+. We calculate the time

intervals I− and I+ when λpp− ≥ θ and λpp+ ≥ θ, respectively. Then we take their

intersection to obtain the time interval while p is on the DBS.

Algorithm 4: DomCheck(p, 〈p−, p+, I〉)
1 I− ← UndomInterval(p, p−, I);

// Set of intervals where p is not dominated by p−

2 I+ ← UndomInterval(p, p+, I);
// Set of intervals where p is not dominated by p+

3 Idbs ← I− ∩ I+ ; // Set of intervals where p is on the DBS

4 S ← S ∪ {〈p, Idbs〉} ; // Add p and its intervals to DBS set S
5 return S;

The pseudo-code of DomCheck is depicted in Algorithm 4. It invokes the function

UndomInterval to find out the un-dominated intervals I− and I+ for object p where

λpp− ≥ θ or λpp+ ≥ θ. Then, the intersection of two interval sets I− and I+ is derived.

The time complexity of Algorithm 4 is O(1).

2.6.4 Checking Termination Condition

Property 2 allows us to terminate the processing of the snapshot DBS query when all the

partition angles are smaller than 2θ. In the dynamic scenario, a continuous DBS query



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 40

is split into disjoint sub-queries qi with each corresponding to a certain time interval.

Similarly, we can safely terminate the processing of a sub-query qi if all the partition

angles are smaller than 2θ.

Consider Example 10 again. After evaluating sub-query q46 corresponding to (75, 100), if

the four partition angles ϕba, ϕaf , ϕfg and ϕgb are all smaller than 2θ during (75, 100),

we can terminate the checking process on this branch.

A partition angle ϕab formed by two objects a = (xa, ya)
′ and b = (xb, yb)

′ changes with

the time parameter t ∈ I. We want to decide whether ϕab is always smaller than 2θ

within the interval I = [Is, Ie]. To simplify the problem, we transform the coordinates by

setting the user’s start position (x̄q, ȳq)
′ to the origin (0, 0)′, then we get −→q = (xv, yv)

′t.

This does not change the essence of the problem. The vectors from q to a and b are given

as follows:

−→a =

 xa

ya

−
 xv

yv

 t (2.7)

−→
b =

 xb

yb

−
 xv

yv

 t. (2.8)

We analyze the variation of ϕab by observing the properties of function cosϕab. The

detailed derivations are in Appendix A.3.

• Case A: It corresponds to the case when a and b are on the same side of the user’s

trajectory and
−→
ab is not parallel to −→q . The condition is expressed as follows:

(
−→
ab ×−→q 6= 0) ∧ ((−→a ×−→q )(

−→
b ×−→q ) > 0). (2.9)

The notation −→a × −→q represents the outer product of −→a and
−→
b 7. The condition

(
−→
ab×−→q 6= 0) represents that

−→
ab is not parallel to −→q . The condition ((−→a ×−→q )(

−→
b ×

−→q ) > 0) means that a and b are on the same side of the user’s trajectory. In this

7The outer product of two vectors −→v = (vx, vy)′ and −→w = (wx, wy)′ in the two-dimensional case is
defined as

−→v ×−→w = vxwy − vywx = |−→v ||−→w | sin η,
where η is the angle between two vectors.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 41

case, cosϕab takes a local maximum 1 at

t =
−→a ×

−→
b

−→
ba ×−→q

, (2.10)

and takes two local minima at

t =
−|−→q |(−→a ×

−→
b )± |

−→
ab|
√

(−→a ×−→q )(
−→
b ×−→q )

|−→q |(
−→
ab ×−→q )

. (2.11)

• Case B : It is the case when a and b are on the opposite sides of the user’s trajectory,

namely,

(
−→
ab ×−→q 6= 0) ∧ ((−→a ×−→q )(

−→
b ×−→q ) < 0). (2.12)

In this case, cosϕab takes a local minimum −1 at

t =
−→a ×

−→
b

−→
ba ×−→q

. (2.13)

• Case C : It corresponds to the case when the vector
−→
ab is parallel to −→q , namely,

−→
ab ×−→q = 0. (2.14)

The function cosϕab takes a local minimum at

t =
(|−→a |2

−→
b − |

−→
b |2−→a )×−→q

2|−→q |2(
−→
b ×−→a )

. (2.15)

Note that the situation that a (or b) is on the user’s trajectory, where (−→a ×−→q )(
−→
b ×−→q ) = 0,

does not happen in our problem setting.

Example 11. Let us consider examples of cases A, B, and C. We assume that the query

vector is given as −→q = (1, 1)′t.

• Case A: In Fig. 2.14, cosϕab takes a local maximum at t = 2.5 and two local minima

at t = 1.63 and t = 3.67.

• Case B : In Fig. 2.15, cosϕab takes a local minimum t = 2.2.

• Case C : In Fig. 2.16, cosϕab takes a local minimum t = 3.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 42

b (1, 4)

a (2, 3)

x

y

(a) Point layout

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

-2  0  2  4  6  8

co
s

t

a=(2,3), b=(1,4)

(b) Function cosϕab

Figure 2.14: Case A: a = (2, 3)′, b = (1, 4)′

b (4, 1)

a (1, 3)

x

y

(a) Point layout

-1

-0.5

 0

 0.5

 1

-10 -5  0  5  10  15

co
s

t

a=(1,3), b=(4,1)

(b) Function cosϕab

Figure 2.15: Case B: a = (1, 3)′, b = (4, 1)′

Then we need to check whether cosϕab > cos 2θ holds during the given time interval

I = [Is, Ie]. In order to check this condition, we calculate the minimum value of cosϕab

for the given interval I. If the minimum value is greater than cos 2θ, the condition holds.

Otherwise, the condition does not hold. We summarize the minimum values and their

corresponding conditions in decision tables shown in Tables 2.3, 2.4, and 2.5.

Note that, the constitution of the partition angles changes when the user moves. In Ex-

ample 9, the sub-query q42 generates two direction lists L(7,18) = 〈a, b, d, f〉 and L(18,32) =

8Note: t1 and t3 are two t-values when cosϕab takes two local minima of cosϕab (Eq. (2.11)), and t2
is the t-value when cosϕab takes the local maximum of cosϕab (Eq. (2.10)).

9Note: t∗ is the t-value when cosϕab takes a local minimum (Eq. (2.13))
10Note: t∗ is the t-value when cosϕab takes a local minimum (Eq. (2.15)).



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 43

b (3, 5)

a (1, 3)

x

y

(a) Point layout

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-4 -2  0  2  4  6  8  10

co
s

t

a=(1,3), b=(3,5)

(b) Function cosϕab

Figure 2.16: Case C: a = (1, 3)′, b = (3, 5)′

Table 2.3: Decision table for case A8

Condition Minimum Value

Ie ≤ t1 cosϕab|t=Ie

(Is ≤ t1) ∧ (t1 < Ie ≤ t2) cosϕab|t=t1

(Is ≤ t1) ∧ (t2 < Ie ≤ t3) min{cosϕab|t=t1 , cosϕab|t=Ie}
(Is ≤ t1) ∧ (t3 < Ie) min{cosϕab|t=t1 , cosϕab|t=t3}

(t1 < Is < t2) ∧ (Ie = t2) cosϕab|t=Is

(t1 < Is < t2) ∧ (t2 < Ie ≤ t3) min{cosϕab|t=Is , cosϕab|t=Ie}
(t1 < Is < t2) ∧ (t3 < Ie) min{cosϕab|t=Is , cosϕab|t=t3}
(t2 ≤ Is < t3) ∧ (Ie ≤ t3) cosϕab|t=Ie

(t2 ≤ Is ≤ t3) ∧ (Ie > t3) cosϕab|t=t3

t3 < Is cosϕab|t=Is

Table 2.4: Decision table for case B9

Condition Minimum Value

Ie ≤ t∗ cosϕab|t=Ie

(Is < t∗) ∧ (t∗ < Ie) −1

t∗ ≤ Is cosϕab|t=Is

〈b, a, d, f〉 as shown in Fig. 2.2. Their partition angle sets are Φ(7,18) = {ϕab, ϕbd, ϕdf , ϕfa}

and Φ(18,32) = {ϕba, ϕad, ϕdf , ϕfb}, respectively. The procedure can terminate when all

angles in Φ(7,18) and Φ(18,32) are bounded by 2θ during (7, 18) and (18, 32), respectively.

Therefore, we need to check partition angles for every list in order to determine whether

we have found out all DBS objects.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 44

Table 2.5: Decision table for case C10

Condition Minimum Value

Ie ≤ t∗ cosϕab|t=Ie

(Is < t∗) ∧ (t∗ < Ie) cosϕab|t=t∗

t∗ ≤ Is cosϕab|t=Is

For checking, we examine whether all ϕ’s in every direction order list are bounded by

2θ within the time interval attached to the tree node. Assume that we are given a

direction list ΦI (e.g., Φ(7,18) = {ϕab, ϕbd, ϕdf , ϕfa}). Obviously, if |ΦI | < 2π/2θ, the

termination condition is not satisfied because the angles in the list cannot cover 2π angles.

If |ΦI | ≥ 2π/2θ, we need to check whether each partition angle ϕ in the list satisfies ϕ ≤ 2θ

while the time interval I = [Is, Ie].

Algorithm 5: CannotTerminate(p, Ip)
1 forall 〈l, I〉 ∈ D do

// Each list in list set D of node 〈p, Ip〉.
2 cnt← 0 ; // Counter for valid ϕ’s.
3 forall i← 1 to |l| do // Fetch every object oi in l.
4 if ϕIi,(i+1) ≤ 2θ then // ϕIi,(i+1) is formed by oi and oi+1.

// Assume that ϕI|l|,|l|+1 = ϕI|I|,1.

5 cnt← cnt+ 1 ; // Increment cnt.

6 end if

7 end for
8 if cnt 6= |l| then
9 return true ; // Not all ϕ’s are valid. Cannot terminate.

10 end if

11 end for
12 return false ; // All ϕ’s are valid. We can terminate.

The pseudo-code of the algorithm to check the termination condition (i.e., function

CannotTerminate) is listed in Algorithm 5. We process every direction order list

of the tree node 〈p, Ip〉 using the outer loop (lines 1-11). The counter cnt is the number

of valid partition angles which are bounded by 2θ during the time interval I. The inner

loop (lines 3 - 7) processes (|l| − 1) partition angles formed by every two adjacent objects

from o1 to o|l| in the list l. If some partition angles are larger than 2θ, we return true

directly to indicate that we cannot terminate on this branch (line 9). After checking all

direction lists and we do not return in the outermost loop (line 9), we return false to

indicate that we can terminate on this branch.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 45

The time complexity of Algorithm 5 depends on the number of direction lists of the tree

node and the number of objects in every direction list. Assume that every direction list

has l objects. In the worst case, the number of direction lists is (
(
l
2

)
+ 1) as analyzed

in Section 2.6.2. Thus, the time complexity of the algorithm is O((
(
l
2

)
+ 1) × l) = O(l3)

in the worst case. In fact, however, the number of lists in practice is very small; we can

always consider it as a constant.

2.7 Experiments

In this section, we report the experimental evaluation. In the following, we first explain

the detailed settings of the experimental study, and then present the experimental results

in the Euclidean space E.

2.7.1 Settings

In the Euclidean space E, we use both real and synthetic datasets, with their properties

summarized in Table 2.6. For the real dataset, denoted as Real, we consider the road

line segments of Long Beach in the TIGER database [47], and extract the midpoint for

each road line segment to form a point dataset. It in total consists of 50, 747 points

normalized in [0, 1000] × [0, 1000] space. The synthetic datasets, denoted as Synρ%, are

generated based on the uniform distribution in the [0, 1000]×[0, 1000] spaces, with density

ρ indicating the average number of points falling into [0, 1]× [0, 1] unit. All the datasets

are indexed in R∗-trees [48] with the page size set to 8, 192 bytes. All the algorithms are

implemented in GNU C++ and conducted on an Intel Core2 Duo 2.40 GHz PC with 2.0

GB RAM running Ubuntu Linux 2.6.31.

Table 2.6: Datasets

Dataset Cardinality Density (ρ)

Real 50, 747 −
Syn8% 80, 000 0.08

Syn5% 50, 000 0.05

Syn2% 20, 000 0.02



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 46

2.7.2 Performances of Snapshot Queries

First, we evaluate the performance of snapshot E-DBS queries. We consider the number

of DBS objects, the number of checked nearest neighbors, and the CPU costs, denoted as

DSS, checked NN, and CPU, as the performance metrics. The performance of snapshot

queries under different θ values for different datasets is depicted in Fig. 2.17.

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(a) Real

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(b) Syn8%

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(c) Syn5%

 0

 10

 20

 30

 40

 50

 60

 70

15° 25° 35° 45° 55° 65° 75° 85°
 0

 0.2

 0.4

 0.6

 0.8

 1
number time (sec)

DSS
checked NN

CPU

(d) Syn2%

Figure 2.17: Performance of snapshot queries w.r.t. θ

As shown in Fig. 2.17, the total number of DBS objects changes when θ varies in the

range of [15◦, 85◦]. The number decreases while θ increases. The reason behind is that

an object can dominate larger angle ranges given a larger θ and hence more objects are

dominated and excluded from the DBS result. On the other hand, we also observe that

the number of DBS objects is not affected by the densities of datasets.

The number of checked NN also changes with different θ’s. It decreases when θ increases

because it is easier to reach the early termination condition with a larger θ. Consequently,



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 47

fewer nearest neighbors are approached to obtain the final results. We also observe that

the number of NNs evaluated is much smaller than the total number of the objects in

the dataset, as roughly only 0.14% of data points are evaluated. These results show that

our algorithms can respond to snapshot queries promptly and have good performance.

Additionally, the number reduces fast when θ is small (θ < π/4) and reduces steadily

when θ is relatively large (θ > π/4). It means that our algorithms can achieve more

stable performance with relatively larger θ’s.

The CPU cost depends on the number of checked nearest neighbors. It decreases when θ

increases, but the CPU cost is independent of the densities of the datasets.

(a) θ = 15◦ (b) θ = 30◦

(c) θ = 45◦ (d) θ = 45◦ (q varies)

Figure 2.18: Screenshot of snapshot queries



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 48

We also capture some screenshots of the DBS points corresponding to different θ’s and

user position for the snapshot case, as depicted in Fig. 2.18. The triangular shape point

in the center refers to the user’s position (i.e., q), the red solid points are the DBS objects,

and the blue hollow ones are the checked nearest neighbors. Fig. 2.18(a), Fig. 2.18(b) and

Fig. 2.18(c) refer to the case that the user position is fixed but θ value changes. We can

observe that as θ increases, both the number of DBS objects and the number of checked

NN objects are reduced. On the other hand, Fig. 2.18(c) and Fig. 2.18(d) demonstrate

the case that θ value is fixed at 45◦ but user positions change.

In addition, we also evaluate the influence of data distributions on the search performance.

Three synthetic datasets (denoted as Corr, Anti and Uni) are generated with each consisting

of 10, 000 objects in [0, 1000]×[0, 1000] space. Corr simulates correlated distribution with a

correlated coefficient 0.6, Anti simulates the anti-correlated distribution with a correlated

coefficient −0.6, and data set Uni simulates the uniform distribution. 100 random queries

are issued and the average performance is reported in Fig. 2.19. We observe that the

average number of DBSs, the number of checked NNs, and the CPU cost are not affected

by the object distributions.

To sum up, we have the following findings after the experiments on the snapshot queries:

• The DBS objects are few in number, i.e., less than twenty.

• The number of DBS objects is influenced by the threshold θ, i.e., it gets fewer when

the θ gets larger, but not influenced by the size nor the density of the dataset.

• The proposed algorithm can answer a snapshot query promptly, i.e., in less than

one second.

• The query cost is influenced by the threshold θ, i.e., it decreases when θ gets larger,

but not influenced by the size nor the density of the dataset.

2.7.3 Performances of Continuous Queries

In the experiments of continuous DBS queries, we evaluate the number of change moments,

the size and the depth of the process tree, and the CPU cost under different θ values. We

consider the scenario such that the user randomly selects a position as the starting point



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 49

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(a) No. of DBS in Uni

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(b) Performance in Uni

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(c) No. of DBS in Corr

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(d) Performance in Corr

 0

 2

 4

 6

 8

 10

 12

20° 40° 60° 80°

DBS

(e) No. of DBS in Anti

 0

 10

 20

 30

 40

 50

 60

20° 40° 60° 80°
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

number time (sec)
CPU

checked NN

(f) Performance in Anti

Figure 2.19: Performance of snapshot queries for data sets with different distributions

and then keeps moving with a constant speed of 0.06 unit distance per unit time11 along

the positive x-axis during different time intervals (i.e., [0, 10], [0, 20] and [0, 30]).

Fig. 2.20 shows the number of change moments under different θ’s and different time

11We simulate the user’s moving speed as human’s average walking speed 1 m/s. In the space of our
datasets, 1 unit distance equals to 1 kilometer approximately and we regard 1 unit time as 1 minute.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 50

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(a) Real

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(b) Syn8%

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(c) Syn5%

 0

 1

 2

 3

 4

 5

 6

30° 40° 50° 60° 70° 80°

number
[0,10]
[0,20]
[0,30]

(d) Syn2%

Figure 2.20: Number of change moments of continuous queries w.r.t. θ

intervals of different datasets. It is observed that in general the number of change moments

decreases while θ increases in a small θ-range, but it keeps steady once θ reaches a large

value. This is because an object pi can dominate all the objects pj with pj ∈ [wi−θ, wi+θ]

and dj > di. Given a large θ, the range [wi − θ, wi + θ] does not change much when the

user moves. It also means that the result of a continuous DBS query becomes stable for a

large θ. We also observe that the number of change moments becomes smaller when the

dataset has a lower density. When the dataset has less objects, each DBS point dominates

less points and hence the user’s movement causes less changes on the objects dominated

by p. Last but not least, the number of change moments also decreases while the time

interval becomes shorter.

Fig. 2.21 illustrates the sizes of the process trees and the CPU costs under different θ’s

when the time interval is fixed at [0, 30]. In general, the process tree reduces its size

when θ increases; because the larger the θ is, the easier the termination condition is



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 51

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(a) Real

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(b) Syn8%

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(c) Syn5%

 0

 100

 200

 300

 400

 500

 600

 700

30° 40° 50° 60° 70° 80°
 0

 0.5

 1

 1.5

 2

 2.5

number time (sec)
tree nodes

CPU

(d) Syn2%

Figure 2.21: Tree sizes and CPU costs of continuous queries vs. θ w.r.t. time interval
[0, 30]

achieved. It is observed that only a small number of objects (in average around 1.4%

of the dataset) require evaluations. It demonstrates that our termination strategy works

well for continuous queries and it is possible to respond to continuous queries promptly.

Additionally, the object density has a direct influence on the size of the process tree. This

is because the process tree is constructed based on the distance order of objects, and the

order changes less frequently when the dataset density is smaller.

The CPU cost depends on the size of the process tree and thus it has the same tendency

as the tree size—the query cost also decreases when θ grows and/or the object density

decreases.

In Fig. 2.22, we also present tree depths for continous queries under different θ’s and

different time intervals. The tree depth decreases when θ grows because we can terminate

the query procedure earlier when θ is larger. On the other hand, the tree depth is not



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 52

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(a) Real

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(b) Syn8%

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(c) Syn5%

 0

 5

 10

 15

 20

 25

30° 40° 50° 60° 70° 80°

level
[0,10]
[0,20]
[0,30]

(d) Syn2%

Figure 2.22: Tree depths of continuous queries

affected by object density. It means that the growth of the tree size is caused by the

increase of the branches. In addition, the tree depth is not affected by the length of the

time interval. Therefore, our algorithms for continuous DBS queries are stable enough for

different object densities and different time interval lengths.

We also evaluate performance of continuous DBS queries using data sets Uni, Corr and Anti

with different object distributions. Fig. 2.23 (a) shows the numbers of change moments

for the three data sets with different object distributions. Fig. 2.23 (b) shows the CPU

costs for the three data sets. The number of change moments and the CPU costs are not

influenced by object distributions obviously.

To sum up, we have the following findings after the experiments on the continuous queries:

• The change moments are few in number, i.e., less than three within 600 meters.



Chapter 2. Direction-Based Surrounder Queries in Euclidean Spaces 53

 0

 0.5

 1

 1.5

 2

30° 50° 70° 90°

Uni
Corr
Anti

(a) No. of Change Moments

 0

 0.2

 0.4

 0.6

 0.8

 1

30° 50° 70° 90°

Uni
Corr
Anti

(b) CPU Cost (second)

Figure 2.23: Performance of continuous queries for data sets with different distributions

• The number of change moments is influenced by the threshold θ, i.e., it gets fewer

when θ gets larger, and also influenced by the density of the dataset, i.e., it gets

fewer when the density gets lower.

• The proposed algorithm can answer a continuous query promptly, i.e., in less than

2.5 second.

• The query cost is influenced by the threshold θ, i.e., it decreases when θ gets larger,

and also influenced by the density of the dataset, i.e., it decreases when the density

gets lower.



Chapter 3

Direction-Based Surrounder

Queries in Road Networks

In this chapter, we assume that the objects are in a road network and the corresponding

queries are called R-DBS queries. For R-DBS queries, we measure the distance and the

direction of an object pi w.r.t. q based on the shortest path from q to pi. Typically, when

an exact road network is available, an R-DBS query is an appropriate choice for the user.

When road network information is not available or not useful (e.g., shopping in a small

city area), an E-DBS query would be a good choice.

3.1 Problem

3.1.1 Snapshot R-DBS Queries

Before presenting the formal definition of an R-DBS query, we use Example 12 to illustrate

DBS queries in a road network R. It also serves as the running example in this chapter.

Example 12 (Snapshot R-DBS Queries). In Fig. 3.1, a road network is represented by a

graph with six vertices V = {v1, · · · , v6} and nine edges. The shortest path from q to a

passes vertex v6 first and then vertex v3 to reach a, i.e., q → v6 → v3 → a, denoted as

SP (q, a) = {v6, v3}. Here, the distance of a to q is set to the length of the shortest path,

and the direction of a to q is set to the shortest path itself. Following previous notations,

di and ωi of object pi are illustrated in Fig. 3.1.

54



Chapter 3. Direction-Based Surrounder Queries in Road Networks 55

a b
c

d

q

v1

v2

v3v4

v5

v6

pi di ωi

a 9 {v6, v3}
b 10 {v6, v3}
c 5 {v4}
d 9 {v4, v5}

Figure 3.1: Example of an R-DBS query

We assume two objects are directional close if their shortest paths overlap. Object a

dominates object b, because they are directional close and meanwhile |SP (q, a)| (= 9) <

|SP (q, b)|(= 10); but object c does not dominate a because they are not directional close.

Objects a, c, and d are the R-DBS objects.

3.1.2 Continuous R-DBS Queries

Example 13 is an extension of Example 12 to illustrate the idea of continuous R-DBS

queries.

Example 13 (Continuous R-DBS Queries). As shown in Fig. 3.2, a user is moving from v6

to v4 along the edge e(v6, v4). The shortest path from q to a is SP (q, a) = {v6, v3} when

the user starts at v6. However, it changes to {v4, v3} when the user locates at v4. Object

a, which is not dominated by c when the user locates at v6, is dominated by c when the

user reaches v4. Consequently, the DBS objects {c, d} w.r.t. v4 are different from the

DBS objects {a, c, d} w.r.t. v6.

q

a b
c

d

v1

v2

v3v4

v5

v6

Figure 3.2: Example of a continuous R-DBS query

In the following, we formalize the snapshot DBS query and continuous DBS query in the

road network R, and present the corresponding query processing algorithms.



Chapter 3. Direction-Based Surrounder Queries in Road Networks 56

3.2 Related Work

3.2.1 kNN Queries in Road Networks

Our R-DBS query presents all nearest objects around a query position q considering both

network distances and network directions. Nearest neighbour queries in road networks

are well studied in the database area, however, these studies recommend POI objects

considering the network distances only.

Snapshot kNN Queries in Road Networks The snapshot R-DBS query is related

to kNN queries in road networks. Papadias et al. [49] proposed a flexible architecture

for spatial network databases in order to answer spatial queries including kNN queries.

Their IER/INE algorithms find out kNN objects by performing network expansions which

are inspired with the Dijkstra’s algorithm [50]. Kolahdouzan et al. [51] proposed VN3

algorithms to answer kNN queries by partitioning a spatial network into smaller Voronoi

polygons over objects and pre-computing some network distances. Hu et al. [25, 52] built

indexes to facilitate kNN search in road networks. In [25], they performed kNN searches

by retrieving a set of interconnected trees which are generated from the road network. In

[52], they use distance signatures to maintain approximate network distances and build

an index based on the distance signatures in order to speed up kNN searches. Lee et

al. [53] pruned the kNN search space by skipping Rnet which is subspaces containing no

objects.

Continuous kNN Queries in Road Networks The continuous R-DBS query is re-

lated to continuous kNN queries for a moving query position on a query path [23, 54].

Kolahdouzan et al. [54] proposed IE/UBA algorithms to find out kNN candidates first

and then split the query path into sub-paths where the kNN objects are the same. Cho et

al. [23] proposed UNICONS algorithms which divide the query path into valid intervals

considering the network distance functions of objects w.r.t. a moving query position. In

the valid intervals, the kNNs are the same no matter where the query position is. The

continuous R-DBS query is different from the continuous kNN queries for a query path.

Dynamic kNN Queries in Road Networks There are many studies for dynamic kNN

queries which are different from the continuous kNN queries. The dynamic kNN queries

have dynamic objects of interest or even dynamic road networks as well as a dynamic query

position. Shahabi et al. [55] focused on kNN queries for moving objects. Their RNE



Chapter 3. Direction-Based Surrounder Queries in Road Networks 57

algorithms convert a road network to a higher-dimensional space and retrieve approximate

answers in the new space with an acceptable precision. Jensen et al. [56] proposed a

framework and also implemented a prototype to answer kNN queries for moving objects

and a moving position. Mouratidis et al. [57] proposed IMA/GMA algorithms which

update results when the changes on objects, query positions, and edges may influence the

current results. Demiryurek et al. [58] proposed more efficient algorithms to solve the

same problems in [57]. Their ER-CkNN algorithms avoid blind network expansions in

[58] by finding candidates which are selected based on their Euclidean distances to the

query position. Samet et al. [59] proposed efficient algorithms to answer kNN queries

when many different queries are issued or different sets of objects are used for static road

networks. They proposed the shortest path quad tree to avoid repeatedly calculating

shortest paths between two vertices for different query positions.

3.2.2 Path Nearest Neighbor Query

Chen et al. identified the path nearest neighbor query which retrieves the nearest neighbor

along the user’s moving path [24]. As Fig. 3.3 shows, the route of the user is from the

start point to the end point. Along her route, the nearest object is object b. Thus, object

b is the answer to the query.

Figure 3.3: Path nearest neighbour query

3.2.3 Quoted Work

In order to facilitate snapshot R-DBS query algorithms, we use the basic idea of the

well-known Dijkstra algorithms to find out shortest paths [50, 60, 61].



Chapter 3. Direction-Based Surrounder Queries in Road Networks 58

3.2.4 Summary

Table 3.1 summarizes the related work of R-DBS queries and illustrates the position of our

work. In road networks, we can also divide the interests of the users into two categories,

namely, spatial interests and non-spatial interests. Considering the state of the query

point, we also divide the queries into two types, namely, snapshot queries and continuous

queries. There are a lot of work considering distances only in both snapshot queries

([49], etc.) and continuous queries ([23], etc.). Especially, there is one paper considering

not only distances but also the route of the user [24]. Our work [45] is the first study

considering distances as well as directions in road networks.

Table 3.1: Related work of R-DBS queries

`````````````̀query point
interest spatial non-spatial

distance +route +direction +(price, etc.)
snapshot [49], etc. - [45]

continuous [23], etc. [24] [45]

3.3 Preliminaries

In the metric space R, we compare objects using network distances and directions. Before

defining the DBS problem formally, we would like to define the dominance relationship

first.

3.3.1 Dominance Relationship and R-DBS Query

Definition 8 (Dominance Relationship). In a road network space R, if two objects pi and

pj are directional close and pi is closer to q than pj (i.e., di < dj), we say that pi dominates

pj , denoted as pi ≺ pj . 2

We will define the direction closeness in the road network space R (Section 3.3.2). Ac-

cordingly, DBS queries in road networks are defined in Definition 9.

Definition 9 (R-DBS Query). Given a set of POI objects P = {p1, . . . , pn} and a query

point q in a road network space R, the objects that are not dominated by any other object

Chapter 3. Direction-Based Surrounder Queries in Road Networks 59

are direction-based surrounder points (DBS points). A direction-based surrounder (DBS)

query, denoted as DBS(q,G) in R, is to find all the direction-based surrounder points,

i.e., {pi | pi ∈ P,@pj(6= pi) ∈ P, pj ≺ pi}. 2

3.3.2 Directional Closeness

Formally, a road network G = (V,E) consists of a set of vertices vi ∈ V , and a set of

edges e ∈ E with each e(vi, vj) connecting nodes vi and vj . We assume the query issuing

position q and a set of POI objects P = {p1, . . . , pn} are all located at some edges, i.e.,

∀p ∈ q ∪ P , ∃e ∈ E ∧ p ∈ e. Let SP (q, pi) = {sp1, · · · spj} be the shortest path from user

q to a POI object pi with {sp1, · · · spj} representing the ordered set of vertices in V that

SP (q, pi) passes sequentially, i.e., SP (q, pi) starts from q, then visits vertices sp1, sp2,

· · · , spj , and finally reaches the destination pi. In Fig. 3.1, SP (q, a) = {v6, v3} means

that the shortest path from q to a passes vertex v6 and v3 to reach a.

As explained previously, an R-DBS query is based on both distance and direction, we

strategically reformat the shortest path SP (q, pi) as a two-tuple vector (di, ωi). Here, di
1

refers to the distance from q to pi (i.e., the length of the shortest path from q to pi), and

ωi denotes the direction of pi which is represented by the set of nodes passed by SP (q, pi)

(i.e., sp1, sp2, · · · , spj). Therefore, SP (q, a) = (9, v6v3), and SP (q, b) = (10, v6v3) in

Fig. 3.1.

Two objects are directional close on the road network R iff their shortest paths from q

overlap. Specifically, one object pi must be on the shortest path of another object pj in

order to be directional close to pi, as defined in Definition 10. Based on this definition,

in Fig. 3.1, objects a and b are directional close as SP (q, a).ωa = SP (q, b).ωb, and a is

located on the shortest path SP (q, b).

Definition 10 (Directional Close in R). On the road network G = {V,E}, two tar-

get objects pi and pj are directional close w.r.t. q iff SP (q, pi).ωi ⊆ SP (q, pj).ωj or

SP (q, pj).ωj ⊆ SP (q, pi).ωi. 2

1In this paper, both |SP (q, pi)| and SP (q, pi).di refer to the shortest distance from q to pi on a road
network.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 60

3.4 Processing of Snapshot Queries

In this section, we first present a näıve algorithm to answer snapshot R-DBS queries, and

then propose an optimized algorithm based on the näıve one.

3.4.1 Property

As the dominance relationship in R relies on distance metric and directional closeness

that are different from those in E, a new search algorithm is needed. We will first define

an important property to facilitate the process, and then explain the search algorithm.

Property 5. Given a DBS query issued at point q on a road network G(V,E), object pi

dominates another object pj iff pi is on the shortest path from q to pj , i.e., if pi ∈ SP (q, pj),

pi ≺ pj . 2

In the following, we use Example 14 to illustrate the property.

Example 14. In Fig. 3.1, suppose all the shortest paths from q to p ∈ P = {a, b, c, d}

are known, i.e., SP (q, a) = (9, v6v3), SP (q, b) = (10, v6v3), SP (q, c) = (5, v4), SP (q, d) =

(9, v4v5). As object a locates on the path SP (q, b) and is closer to q than b, a is a DBS

point. On the other hand, c and d are the only points located on their shortest paths and

they are also DBS points. Consequently, DBS(q,G) = {a, c, d}.

3.4.2 Näıve Algorithm

Property 5 inspires a simple approach to answer a snapshot DBS query on a road network.

Given the fact that shortest path searches have been well studied in [50, 60, 61], we

assume the shortest path from q to each vertex v ∈ V is identified by some existing search

algorithm (e.g., the Dijkstra algorithm [50]).

Given an object p ∈ P on an edge e ∈ E, the shortest path from q to p either passes v1

(i.e., {q, · · · , v1, p}) or passes v2 (i.e., {q, · · · , v2, p}), where v1 and v2 are the end nodes

of the edge e. Comparing the lengths of the two paths, the shorter one should be the

shortest path from q to p. If there is no other object on the shortest path, object p is a

DBS, otherwise, it is dominated. In order to find all DBSs, we go through all the edges

Chapter 3. Direction-Based Surrounder Queries in Road Networks 61

p1
v1

q

v2p2

Figure 3.4: Näıve algorithm for snapshot R-DBS queries

and check the objects on them. The non-dominated objects would be selected as the

answers.

Additionally, we can check only a set of promising objects rather than all. As Fig. 3.4

shows, when checking the objects on an edge e(v1, v2), we only need to consider the nearest

object p1 to the end node v1 and the nearest object p2 to the end node v2. The reason is

that p1 and p2 are on the shortest paths from q to the other objects on the edge e, thus,

the other objects are definitely dominated either by p1 or by p2. Algorithm 6 summarizes

this näıve approach.

Algorithm 6: SnapshotRDBSQueryNäıve(G(V,E), P , q)

1 for each v ∈ V do
2 Calculate the shortest path spv from q to v using Dijkstra algorithm;
3 end for
4 for each e(v1, v2) ∈ E do
5 p1 ← the nearest object to v1;
6 p2 ← the nearest object to v2;
7 sp1 ← the shortest path from q to p1;
8 sp2 ← the shortest path from q to p2;
9 if @p ∈ P − {p1} locates on sp1 then DBS ← DBS ∪ {p1};

10 if @p ∈ P − {p2} locates on sp2 then DBS ← DBS ∪ {p2};
11 end for
12 return DBS;

3.4.3 Optimized Algorithm

In the näıve algorithm, we have to calculate the shortest paths from q to all the vertices

on the road network, however, it is not necessary. The reason is that some objects can

be determined to be definitely dominated without calculating their shortest paths. Let

us define the dominance of a vertex first.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 62

Definition 11. Given a vertex v ∈ V , if there is any object on the shortest path from q to

v, the vertex v is dominated. 2

As Fig. 3.5 shows, there is an object on the shortest path from q to v1, thus, the vertex

v1 is dominated. In the same way, the vertex v2 is also dominated. Consider an edge

v1

q

v2{
Pe

dominate
dominate

Figure 3.5: Optimized algorithm for snapshot R-DBS queries

e(v1, v2) with objects Pe on it. We can determine whether the objects Pe are dominated

using Property 6 below.

Property 6. Given an edge e ∈ E with the end nodes v1 and v2, the objects Pe on e are

dominated if both v1 and v2 are dominated. 2

As Fig. 3.5 shows, the objects Pe are dominated because both v1 and v2 are dominated.

In Dijkstra algorithm [50], we commonly use a set Q to maintain the vertices that have

been visited. In the initialization step, the distance of the initial node q2 is set to zero, the

distances of the other vertices are set to infinity, and the initial node is added to the empty

set Q. Next, we process the vertex v ∈ Q with the minimum distance everytime. The

procedure includes to determine the shortest path from q to v, to update the distances of

v’s neighbors, and to add the neighbors to Q if they are not in Q. The process continues

until the set Q becomes empty.

In our approach, in order to make the Dijkstra algorithm terminate earlier, when pro-

cessing a vertex v, we also determine whether it is dominated or not. In addition, if its

neighbor’s distance has been updated, the neighbor’s dominance status should be set to

the same status as v’s. The Dijkstra algorithm will terminate when all the vertices in Q

are dominated. It also means that the unvisited vertices are definitely dominated. Thus,

we only need to check the objects that are on the edges having at least one non-dominated

end node. Algorithm 7 summarizes the optimized approach.

2For simplicity, we assume that the user is at a vertex on the road network.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 63

Algorithm 7: SnapshotRDBSQueryOpt(G(V,E), P , q)

1 v ← q;
2 v.dist← 0.0; // Set the distance of v.
3 Q← {v}; // Add v to the empty set Q.
4 CE ← ∅; // Use CE to maintain the checked edges.

5 while ∃v ∈ Q is not dominated do
6 spv ← the shortest path from q to v;
7 if ∃p ∈ P locates on spv then // Set the dominance status of v.
8 v.domed← true ;
9 else

10 v.domed← false;
11 end if
12 for each neighbor u of v do // Update neighbors

13 alt← v.dist+ |e(u, v)|;
14 if alt < u.dist then
15 u.dist← alt; // Update the distance.

16 u.prev ← v;
17 u.domed← v.domed; // Update the dominance status.

18 end if
19 CE ← CE ∪ {e(v, u)}; // Add the checked edge to CE.
20 if u /∈ Q then Q← Q ∪ {u}; // Add the neighbor to Q.

21 end for
22 Q← Q− {v}; // Remove v from Q.
23 v ← the vertex in Q with the minimum distance ;

24 end while
25 for each e(v1, v2) ∈ CE do
26 Set the dominance status of p1 and p2; // p1 and p2 are the NNs to v1 and v2.
27 if p1 is not dominated then DBS ← DBS ∪ {p1};
28 if p2 is not dominated then DBS ← DBS ∪ {p2};
29 end for
30 return DBS;

3.5 Processing of Continuous Queries

In this section, we propose the algorithms to answer the R-DBS queries. At first, we extend

our running example in order to illustrate the concept of continuous R-DBS queries.

Example 15. Let us extend our snapshot R-DBS query example to the continuous case.

Fig. 3.6 shows that the user q is moving along the edge e(v6, v4) from v6 to v4 with a

constant speed (1, 0)′. The user issues a continuous query for the time interval [0, 6]. The

continuous DBS query predicts the changes of DBS during [0, 6]. The result will be:

DBS =

 {a, c, d} t ∈ [0, 3.5)

{c, d} t ∈ [3.5, 6]
(3.1)

Chapter 3. Direction-Based Surrounder Queries in Road Networks 64

{a,c,d}

{c,d}

q'

a b
c

d

v1

v2

v3v4

v5

v6

Figure 3.6: Example of a continuous R-DBS query

The result indicates that when the user at his/her start position v6, objects a, c, and d

are DBS objects. These three objects remain as DBS objects until the user reaches q′ at

t = 3.5. After that position, object a becomes dominated by object c and hence the result

set is changed to {c, d}. It remains the same until the user reaches v4.

3.5.1 Basic Idea

Snapshot R-DBS queries are to retrieve DBS points based on a fixed query point. However,

query points might move along road networks. For example, users who carry mobile

devices may submit DBS queries even when they are moving. Consequently, we propose

continuous R-DBS queries to support DBS query processing when the location of the

query point q keeps changing in a road network. Given a road network G = {V,E}, and a

set of POI objects P = {p1, . . . , pn} located on the edges of G, a continuous R-DBS query

specifies an edge e(vi, vj) as the moving trajectory of a user, and wants to find out all the

objects p ∈ P that are not dominated by any other object w.r.t. any point q ∈ e(vi, vj).

To simplify our discussion, we assume q moves only along an edge e of the road network,

and the algorithm developed can naturally support the case where q moves along multiple

edges.

Similar to continuous E-DBS queries, we need to find out the change moments where the

DBS results change, and then convert the continuous DBS query to snapshot DBS queries

corresponding to those change moments. However, unlike a continuous E-DBS query

which has a time interval parameter τ , a continuous R-DBS query uses the position along

the moving trajectory e to indicate the moments when DBS results change, i.e., change

positions to be distinguished from change moment used by continuous E-DBS queries.

The change positions partition the moving trajectory e into disjoint sub-segments e′ ⊆ e

Chapter 3. Direction-Based Surrounder Queries in Road Networks 65

with DBS queries corresponding to the points of one sub-segment sharing the same result.

In other words, the answer set DBS(q,G) = ∪e′(e′.l,e′.r)⊆e〈DBS(e′.l, G), e′〉 where

(i) e′.l and e′.r refer to the left and right endpoints of the sub-segment e′;

(ii) ∪e′ = e(vi, vj);

(iii) ∀e′ ∧ ∀q ∈ e′, DBS(q,G) = DBS(e′.l, G).

In the following, we first identify three important properties related to continuous R-DBS

query, and then present the search algorithm.

3.5.2 Properties

As observed that as long as query point q moves along the edge e(vi, vj), the shortest path

from q to an object p located outside e definitely passes either vi or vj as the first vertex

sp1, i.e., ∀q ∈ e(vi, vj) ∧ p /∈ e(vi, vj), SP (q, p).sp1 ∈ {vi, vj}. In other words, p changes

its direction w.r.t. q only when SP (q, p) changes its first vertex from vi to vj , vice versa.

Property 7 is thereafter developed to locate the position sp along e(vi, vj) that p changes

its direction.

Property 7. Given a query point q moving on an edge e(vi, vj) from vertex vi to vertex

vj and an object p, p changes its direction only when q reaches point sp along e with

dist(vi, sp) expressed in Equation (3.2)3.

dist(vi, sp) =
1

2
· (|e|+ ||SP (vj , p)| − |SP (vi, p)||), (3.2)

where |e| is the length of edge e, and |SP (vi, p)| and |SP (vj , p)| are the shortest distances

from vi, vj to p, respectively. Specifically, object p does not change its direction while q

moves from vi to sp along e. 2

Example 16. An example is depicted in Fig. 3.7. Assume q moves along edge e(v6, v4).

Since |SP (v6, a)| = 6, |SP (v4, a)| = 7, and |e(v6, v4)| = 6, dist(v6, sa) = 1
2 ·(6+7−6) = 3.5.

Based on Property 7, we understand that when q moves along the sub-segment (0, 3.5), the

shortest path SP (q, a) takes v6 as the first vertex; when q moves along the sub-segment

(3.5, 6), the shortest path SP (q, a) takes v4 as the first vertex. In other words, a remains

3To simplify the presentation, we assume edge e(vi, vj) aligns with x-axis, and vi is located at the
origin. Consequently, the position of sp can be represented by dist(vi, sp).

Chapter 3. Direction-Based Surrounder Queries in Road Networks 66

q

v1

v2

v3v4

v5

v6

a b
c

d

Figure 3.7: Property 7 of continuous R-DBS queries

its direction w.r.t. q when q moves along the sub-segment (0, 3.5), then it changes the

direction when q reaches 3.5, and remains its direction w.r.t. q again when q moves along

(3.5, 6).

We also observe that the dominance relationship has the continuity property as presented

in Properties 8 and 9, respectively.

Property 8. Given an object p and a query point q moving on an edge e(vi, vj), if p is

dominated when q is located at vi, and p is dominated when q is located at vj , object p

is guaranteed to be dominated when q is located at any point on the edge e(vi, vj). 2

Property 9. Given an object p and a query point q moving on an edge e(vi, vj), if p is a

DBS point when q is located at vi, and p is a DBS point when q is located at vj , object p

is guaranteed to be a DBS point when q is located at any point on the edge e(vi, vj). 2

Due to the space limitation, the proofs for Property 8 and Property 9 are presented in

Appendix A.4.

Example 17. An example is depicted in Fig. 3.8. When q = v6, SP (q, a) = (6, v6v3),

SP (q, b) = (7, v6v3) and thus a ≺ b. When q = v4, SP (q, a) = (7, v4v3), SP (q, b)

= (8, v4v3) and hence a ≺ b. Based on Property 8, b is dominated when q is located at

any point on the edge e(v6, v4), and hence b will not be a DBS point when q moves along

e(v6, v4). On the other hand, c is a DBS point w.r.t. q = v6 and q = v4. Consequently,

based on Property 9, c is the DBS point w.r.t. q located at any position along e(v6, v4).

However, a is a DBS point w.r.t. q = v6, but is not a DBS point w.r.t. q = v4.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 67

q

v1

v2

v3v4

v5

v6

a b
c

d

(a)

d

v1

v2

v3

v6

v5

v4 a
b

cq
(b)

Figure 3.8: Properties 8 and 9 of continuous R-DBS queries

3.5.3 Algorithms

Given a continuous DBS query issued at edge e(vi, vj), Property 8 guarantees that objects

dominated w.r.t. q = vi and q = vj are excluded from the answer set, and Property 9

guarantees that DBS points w.r.t. both q = vi and q = vj are certainly DBS points w.r.t.

q located at any position of e(vi, vj). In other words, DBS(vi, G) ∪ DBS(vj , G) forms

the superset of the answer set, i.e., candidates of DBS points w.r.t. q ∈ e(vi, vj) must

be in DBS(vi, G) ∪ DBS(vj , G). Consequently, we can first issue two snapshot R-DBS

queries on points vi and vj . Based on the returned results DBS(vi, G) and DBS(vj , G),

two sets, denoted as Sint and Sdif , are derived. Here, set Sint refers to the intersection of

DBS(vi, G) and DBS(vj , G), i.e., Sint = DBS(vi, G) ∩ DBS(vj , G); and set Sdif refers

to the rest, i.e., Sdif = DBS(vi, G) ∪ DBS(vj , G) − Sint. Based on Property 9, all the

objects in Sint must be DBS points for any point along trajectory e(vi, vj) and hence only

objects in Sdif require evaluations. For each object p ∈ Sdif , we find the position sp along

e(vi, vj) that p changes its direction based on Property 7. If p ∈ DBS(vi, G), p is a DBS

point when q moves along subsegment (0, sp). Otherwise, p ∈ DBS(vj , G), and p is a

DBS point when q moves along subsegment e′(sp, |e(vi, vj)|).

Let us consider our example again. We issue two snapshot R-DBS queries at the end-

points of e(v6, v4), and then obtain DBS(v6, G) = {a, c, d} and DBS(v4, G) = {c, d}.

Accordingly, we have Sint = {c, d}, and Sdif = {a}. As object a is the only point

in Sdif , we derive sa = 3.5 based on Eq (3.2) and thus a is a DBS point along sub-

segment (0, 3.5). Consequently, the continuous DBS query issued at edge e(v6, v4) has

Chapter 3. Direction-Based Surrounder Queries in Road Networks 68

{〈{a, c, d}, (0, 3.5)〉, 〈{c, d}, (3.5, 6)〉} as the answer set. Algorithm 8 presents the proce-

dure of continuous R-DBS Queries.

Algorithm 8: ContinuousRDBSQuery(G,P ,eq(v1, v2))

1 DBSv1 ← SnapshotRDBSQuery(v1, G, P);
// DBS objects when q is at v1

2 DBSv2 ← SnapshotRDBSQuery(v2, G, P);
// DBS objects when q is at v2

3 X ← ∅; // positions where an object’s direction changes

4 forall p ∈ DBSv1 ∪DBSv2 −DBSv1 ∩DBSv2 do
5 distv1,p ← Dist(v1, p);

// the length of the shortest path from v1 to p
6 distv2,p ← Dist(v2, p);

// the length of the shortest path from v2 to p
7 x← (|eq|+ |distv2,p − distv1,p|)/2;

// the position where p’s direction changes

8 X ← X ∪ x; // Add x into X.

9 end for
10 SG← GetSubSegments(eq, X) ; // sub-segments split by X
11 forall ei ∈ SG do
12 DBSmidi ← SnapshotRDBSQuery(midi, G, P);

// DBS objects when q is at the midpoint midi of ei.
13 DBS ← DBS ∪ {〈DBSmidi , ei〉} ; // Add {〈DBSmidi , ei〉} to DBS.

14 end for
15 return DBS;

3.5.4 Discussion

Until now, we have discussed the case that the user is moving on an edge where no object

exists. However, when the user is moving on an edge where objects exist, Algorithm 8

cannot find the correct answers. The reason is that Property 9 does not hold. Given a

user moving on an edge e(v1, v2) where an object p′ exists, even if an object p, which is

a DBS with respect to v1 and v2 but not on the edge e(v1, v2), can be dominated by the

object p′ if it has a direction change moment on the edge.

To answer the queries in this special case, we divide the query edge e(v1, v2) into three

kinds of intervals using the objects Pe = {p1, · · · , pk} on it. For every kind of intervals,

we use different approaches to find the answers.

• Case 1: when the user moves from v1 to p1, we obtain DBSv1 w.r.t. v1 and DBSp1 =

{p1} w.r.t. p1 by regarding p1 as a vertex. Next, we use Algorithm 8 to find the

answers on the edge (v1, p1).

Chapter 3. Direction-Based Surrounder Queries in Road Networks 69

• Case 2: when the user moves from pi to pi+1 (i ∈ [1, k − 1]), DBS = {pi, pi+1}.

• Case 3: when the user moves from pk to v2, we obtain DBSv2 w.r.t. v2 and DBSpk =

{pk} w.r.t. pk by regarding pk as a vertex. Next, we use Algorithm 8 to find the

answers on the edge (pk, v2).

v1
q

v2p1 p2p3

DBSv1 DBSv2

Figure 3.9: The special case for continuous R-DBS queries

Example 18. Fig. 3.9 shows an example. The user q is moving on the edge e(v1, v2) where

objects Pe = {p1, p2, p3} exist. By posing two snapshot queries at v1 and v2, we could

obtain the results DBSv1 and DBSv2. The edge e could be divided into four intervals:

(v1, p1), (p1, p3), (p3, p2), and (p2, v2). The interval (v1, p1) is in case 1, the intervals

(p1, p3) and (p3, p2) are in case 2, and the interval (p2, v2) is in case 3. We should find the

DBSs according to the respective approaches to the three cases.

3.6 Experiments

In this section, we first explain the detailed settings of the experimental study, and then

report the experimental results of the R-DBS queries.

3.6.1 Settings

We evaluate the performance of R-DBS queries on both synthetic datasets and real

datasets. When making the synthetic datasets, we adopt the map of Oldenburg (OL)

with 6105 nodes and 7035 edges as the road network which is obtained from [62] and

also used in [63]. Six object sets with different cardinalities4 are generated via randomly

extracting the points from the line segments of the road network.

4The six datasets contain 1K, 2K, 3K, 4K, 5K, 6K objects, respectively.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 70

The seven real datasets are extracted from the points of interest on California road network

which are obtained from [64] and also used in [65]. The map of California (CA) contains

21048 nodes and 21693 edges. The seven datasets are the 824 hospitals (H), 899 towers

(T), 1766 flats (F), 6531 parks (P), 7587 churches (C), 10902 schools (S), and 11055 locales

(L).

All the algorithms are implemented in GNU C++ and the experiments are conducted on

an Intel(R) Core2 Duo CPU 3.16 GHz PC (4.0 GB RAM) with a Fedora Linux 2.6.32.

3.6.2 Performances of Snapshot Queries

In the experiments of snapshot R-DBS queries on the synthetic datasets, 200 queries are

generated randomly on the road network OL, and the average performance under different

object set cardinalities is reported in Fig. 3.10. As Fig. 3.10 (a) shows, the number of

DBSs decreases while the size of object set increases. This is because an object is more

likely to be dominated if there are more objects. On the other hand, as Fig. 3.10 (b)

shows, the cardinality does not have a significant influence on the CPU cost of the näıve

algorithm, while the CPU cost of the optimized algorithm decreases with the cardinality.

The reason is that the termination condition of the optimized algorithm is more likely

to be satisfied if there are more objects. Fig. 3.10 (b) also shows that the optimized

algorithm is always faster than the näıve algorithm. The maximum speedup is three

orders of magnitude, achieved when the dataset size is 5K.

 2

 4

 6

 8

 10

 12

 14

 16

1K 2K 3K 4K 5K 6K

N
um

be
r

of
 D

B
S

s

Number of Objects

(a)

10-5

10-4

10-3

10-2

10-1

1K 2K 3K 4K 5K 6K

C
P

U
 C

os
t (

S
ec

on
d)

Number of Objects

naive optimized

(b)

Figure 3.10: Performance of snapshot R-DBS queries w.r.t. the number of objects

In the experiments of snapshot R-DBS queries on the real datasets, 200 queries are gen-

erated randomly on the road network CA, and the average performance under different

Chapter 3. Direction-Based Surrounder Queries in Road Networks 71

object categories is reported in Fig. 3.11. Under the horizontal axis, every label shows

the category name and the number of objects in this category. As Fig. 3.11 (a) shows,

there are more DBSs in small datasets (i.e., H, T, and F) than in large datasets (i.e.,

P, C, S, and L). In Fig. 3.11 (b), the vertical axis is the CPU cost which is in the log

scale. As observed, the optimized algorithm is always faster than the näıve algorithm.

The maximum speedup is almost three orders of magnitude, achieved when the objects

are the locales (L). The reasons of the observations are the same with the reasons of the

experimental results on the synthetic datasets.

 2

 4

 6

 8

 10

 12

 14

 16

H
824

T
899

F
1766

P
6531

C
7587

S
10902

L
11055

DBS

(a)

10-4

10-3

10-2

10-1

100

H
824

T
899

F
1766

P
6531

C
7587

S
10902

L
11055

naive optimized

(b)

Figure 3.11: Performance of snapshot R-DBS queries w.r.t. the object category

To sum up, we have the following findings after the experiments on the snapshot queries:

• The DBSs are few in number, i.e., less than 16 in average.

• The number of DBSs is influenced by the dataset size, i.e., smaller for large datasets.

• Both the näıve algorithm and the optimized algorithm can answer the queries

promptly, i.e., less than one second (näıve algorithm) and less than 0.1 second

(optimized algorithm).

• The optimized algorithm performs faster than the näıve algorithm.

• The efficiency of the näıve algorithm is not influenced by the dataset size.

• The efficiency of the optimized algorithm is influenced by the dataset size, i.e., higher

for large datasets.

Chapter 3. Direction-Based Surrounder Queries in Road Networks 72

3.6.3 Performances of Continuous Queries

In the experiments of continuous queries on the synthetic datasets, we issue 200 queries

that are the edges randomly selected from the road network OL. We report the aver-

age number of change moments in Fig. 3.12 (a) and the average CPU cost in Fig. 3.12

(b). The horizontal axis represents the cardinalities of object set varying in the range

of {1K, 2K, . . . , 6K} and the vertical axis represents the number of change moments and

the CPU cost, respectively. As Fig. 3.12 (a) shows, the number of change moments is

smaller for small datasets than for big datasets. Fig. 3.12 (b) shows the CPU cost in the

log scale. As observed, the CPU cost decreases with the dataset size. The main cost of a

continuous query is the sum cost of two snapshot queries that are issued on the endpoints

of the query edge. Since the cost of a snapshot query decreases when the dataset size

increases, the cost of a continuous query also decreases with the size.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1K 2K 3K 4K 5K 6K

N
um

be
r

of
 C

ha
ng

e
M

om
en

ts

Number of Objects

(a)

10-5

10-4

10-3

10-2

10-1

1K 2K 3K 4K 5K 6K

C
P

U
 C

os
t (

S
ec

on
d)

Number of Objects

(b)

Figure 3.12: Performance of continuous R-DBS queries w.r.t. the number of objects

In the experiments of continuous queries on the real datasets, we also issue 200 queries that

are the edges randomly selected from the road network CA. We also report the average

number of change moments and the average CPU cost in Fig. 3.13. The horizontal axis

represents the different categories of objects and the vertical axis represents the number of

change moments and the CPU cost in the log scale, respectively. As Fig. 3.13 (a) shows,

the number of change moments is smaller for small datasets (i.e., H, T, and F) than for

big datasets (i.e., P, C, S, and L). As Fig. 3.13 (b) shows, the CPU cost is larger for small

datasets (i.e., H, T, and F) than for big datasets (i.e., P, C, S, and L). The reason is the

same as that on the synthetic datasets.

To sum up, we have the following findings after the experiments on the continuous queries:

Chapter 3. Direction-Based Surrounder Queries in Road Networks 73

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

H
824

T
899

F
1766

P
6531

C
7587

S
10902

L
11055

Number of Change Moments

(a)

10-3

10-2

10-1

H
824

T
899

F
1766

P
6531

C
7587

S
10902

L
11055

CPU Cost

(b)

Figure 3.13: Performance of continuous R-DBS queries w.r.t. the object category

• The change moments are few in number, i.e., less than two in average.

• The number of change moment is influenced by the dataset size, i.e., smaller for

small datasets.

• The proposed algorithm can answer the queries promptly, i.e., less than 0.1 second.

• The query cost is influenced by the dataset size, i.e., less for large datasets.

3.6.4 Screenshots

In order to illustrate the DBS objects in road network, Fig. 3.14 shows a snapshot query

on the OL road with the object set containing 2000 objects (those represented by hollow

points). The blue square point indicates where the snapshot query q is issued, and the

red circle points are the DBS objects for q.

We also show screenshots of a continuous query at an edge in the OL road network in

Fig. 3.15. When the user moves on the bold segment in Fig 3.15 (a), there are seven DBS

objects (solid points). However, when the user moves on the bold segment in Fig 3.15

(b), there are six DBS objects excluding the object 3 in Fig 3.15 (a).

Chapter 3. Direction-Based Surrounder Queries in Road Networks 74

Figure 3.14: Screenshot of a snapshot R-DBS query

Chapter 3. Direction-Based Surrounder Queries in Road Networks 75

(a) (0, 106.105)

(b) (106.105, 120.439)

Figure 3.15: Screenshots of a continuous R-DBS query

Chapter 4

Combination Skyline Queries

4.1 Motivation

Given a set of objectsO where each oi ∈ O hasm-dimensional attributesA = {A1, . . . , Am},

a skyline query [10] returns the objects that are not dominated by any other objects. An

object dominates another object if it is not worse than the other in every attribute and

strictly better than the other in at least one attribute. Skyline problems exist in vari-

ous practical applications where trade-off decisions are made in order to optimize several

important objectives. Consider an example in the financial field: An investor tends to

buy the stocks that can minimize the commission costs and predicted risks. Therefore,

the goal can be modeled as finding the skyline with minimum costs and minimum risks.

Fig. 1.3 shows seven stock records with their costs (A1-axis) and risks (A2-axis). A, B,

and D are the stocks that are not dominated by any others and hence constitute the

skyline.

Skyline computation has received considerable attention from the database community [26–

28] after the seminal paper [10], yet only a few studies explored the scenario where users

are interested in combinations of objects instead of individuals. For the stock market

example, assume that each portfolio consists of five stocks and its cost (risk) is the sum

of costs (risks) of its components. Users may want to choose the portfolios which are not

dominated by any others in order to minimize the total costs and the total risks.

76

Chapter 4. Combination Skyline Queries 77

4.2 Problem

In this paper we investigate the combination skyline query problem. Its goal is to find

combinations that are not dominated by any other combinations. We focus on the combi-

nations consisting of a fixed number of individual objects, and their attribute values are

the aggregations of those from its members, as what we have illustrated in Example 2.

Few studies have focused on the combination skyline problem. [13] proposed a solution

to find the top-k optimal combinations according to a user-defined preference order of

attributes. However, it is difficult to define a user preference beforehand for some com-

plicated decision making tasks. [12] tries to find the skyline combinations that are on

the convex hull enclosing all the combinations, yet it will miss other many combinations

on the skyline which provide meaningful results. In this paper, we present an efficient

solution that constructs the whole combination skyline, within which the user may select

a smaller subset of his interest [66–68].

A näıve way to answer constrained combination skyline query is to employ the existing

skyline approaches [26–28] by regarding each enumerated combination as a single object.

However, the huge number of enumerations renders them inapplicable for large datasets.

In addition, some prevalent skyline approaches such as the BBS algorithm [28] uses index

structures [29]; it means that we have to create a very large index for the combinations.

In this paper, we propose a pattern-based pruning (PBP) algorithm to solve the com-

bination skyline problem by indexing individual objects rather than combinations in an

R-tree. The PBP algorithm retrieves skyline combinations with a set of object-selecting

patterns organized in a tree that represent the number of objects to be selected in each

MBR. We exploit the attribute value ranges in the MBRs as well as search order, and

develop two pruning strategies so as to avoid generating a large number of unpromising

combinations. We also elaborate how to avoid repeated computations on expanding the

same object-selecting patterns to combinations. The efficiency of the PBP algorithm is

then evaluated with experiments.

Chapter 4. Combination Skyline Queries 78

4.3 Related Work

4.3.1 Combination Skyline Queries

To the best of our knowledge, there is no literature directly targeting the combination

skyline problem. Two closely related topics are “top-k combinatorial skyline queries” [13]

and “convex skyline objectsets” [12].

Top-k Combinatorial Skyline. [13] studied how to find top-k optimal combinations

according to a given preference order in the attributes. Their solution is to retrieve

non-dominated combinations incrementally with respect to the preference until the best k

results have been found. This approach relies on the preference order of attributes and the

limited number (top-k) of combinations queried. Both the preference order and the top-k

limitation may largely reduce the exponential search space for combinations. However,

in our problem there is neither preference order nor the top-k limitation. Consequently,

their approach cannot solve our problem easily and efficiently. Additionally, in practice

it is difficult for the system or a user to decide a reasonable preference order. This fact

will narrow down the applications of [13].

Convex Skyline Objectsets. [12] studied the “convex skyline objectset” problem. It

is known that the points on the lower (upper) convex hull, denoted as CH, is a subset

of the points on the skyline, denoted as SKY. Every point in CH can minimize (max-

imize) a corresponding linear scoring function on attributes, while every point in SKY

can minimize (maximize) a corresponding monotonic scoring function [10]. [12] aimed at

retrieving the combinations in CH, however, we focuses on retrieving the combinations in

CH ⊆ SKY. Since their approach relies on the properties of the convex hull, it cannot

extend easily to solve our problem.

4.3.2 Other Combination Queries

There are some other works [69, 70] focusing on the combination selection problem but

related to our work weakly.

Maximal Combination [69] studied how to select “maximal combinations”. A com-

bination is “maximal” if it exceeds the specified constraint by adding any new object.

Chapter 4. Combination Skyline Queries 79

Finally, the k most representative maximal combinations, which contain objects with

high diversities, are presented to the user. In their problem, the objects only have one

attribute, in contrast to our multiple attribute problem. The approach for single attribute

optimization problem is different from the approach for multiple attributes optimization

problem. Thus, our problem cannot be solved by simple extensions of their approach.

Top-k Profitable Products [70] studied the problem to construct k profitable products

from a set of new products that are not dominated by the products in the existing market.

They constructed non-dominated products by assigning prices to the new products that

are not given beforehand like the existing products. Our problem is very different from

theirs in two aspects. First, they concern whether a single product is dominated or not,

while we concern whether a combination of product is dominated or not. Second, there

exist unfixed attribute values (prices) in their problem, while all the attribute values are

fixed.

MOCO Problem Outside of the database field, the most studies relevant to our problem

is the multi-objective combinatorial optimization (MOCO) problem [71]. The goal is to

find subsets of objects aiming at optimizing multiple objective functions and complying

with a set of constraints. Most approaches for the MOCO problem essentially convert

the multiple objectives to one single objective and find one best answer numerically.

Such numerical approaches are not good at handling large scale datasets in databases.

Furthermore, our problem aims at retrieving optimal combinations without making a

trade-off of multiple objectives by some score functions. For these reasons above, we

cannot use the existing MOCO approaches to solve our problem in databases.

0-1 MOKP Problem Considering the combinatorial structure, which is the way of

aggregating objects, our problem is similar to the 0-1 multi-objective knapsack problem

(0-1 MOKP) [72]. Essentially, the 0-1 MOKP is a special case included in our combination

skyline problems. Similar to our problem, 0-1 MOKP has multiple optimization attributes

(profits). However, the difference is that 0-1 MOKP has only one constraint attribute

(weight), the number of which can be one or more in our problem. Additionally, our

constraints limit the ranges of values, but the 0-1 MOKP constraint limits the upper bound

of the value. Therefore, 0-1 MOKP is a special case of our problem. Thus, our algorithms

can solve 0-1 MOKP, however, the algorithms for 0-1 MOKP cannot fully support our

problem. Using the indexes constructed beforehand, our algorithms can handle the 0-1

Chapter 4. Combination Skyline Queries 80

MOKP on a large amount of objects, which cannot be handled efficiently using MOKP

algorithms. The MOKP algorithms are usually dynamic programming approaches for

exact answer and greedy algorithm for approximate answer. In addition, when the query

changes or there are updates in the dataset, our algorithm does not need to start from

scratch to scan the whole database.

0-1 MMKP Problem Another related problem is the 0-1 multi-dimensional multiple

choice problem (0-1 MMKP) [73]. Given several groups of objects, it is to select exactly

one object from each group to maximize the total profit subject to several constraints.

0-1 MMKP can be solved approximately by heuristic algorithms [73]. Like 0-1 MOKP,

0-1 MMKP is also a special case included in our combination skyline problems. Similar to

our problem, 0-1 MMKP has multiple upper bound constraints. However, 0-1 MMKP has

only one optimization objective, the number of which can be two or more in our problem.

Consequently, algorithms for 0-1 MMKP cannot fully support our problem. However, our

algorithm can efficiently solve 0-1 MMKP on a large amount of objects in databases.

4.3.3 Quoted Work

In our algorithms, we retrieve skyline combinations based on the R-tree structure [29],

which is a proven and widely-used index to handle multi-dimensional data. In order to

prune the search space for constrained combination skyline queries, which is introduced in

Section 4.7.2, we propose the constraint pruning strategy in which the forward checking

approach is employed. The forward checking approach is a common solution for the

constraint satisfaction problems (CSP) [74] and widely used in database field (e.g., [75]).

Additionally, our approach of selecting skyline combinations is inspired by the BBS algo-

rithm [28], which traverses the R-tree using a priority queue with the key as the sums of

the attribute values of each object.

4.3.4 Summary

Table 4.1 summarizes the related work of combination skyline queries and points out the

position of our work ([76] and [77]). There are a lot of existing work focusing on retrieving

individual objects that are on the skyline ([10]). There are two papers focusing on the

combination skyline problem ([12] and [13]). However, both of them can only find specific

Chapter 4. Combination Skyline Queries 81

combinations on the skyline. Our work is the first study that can find all the combination

on the skyline ([76] and [77]).

Table 4.1: Related work of combination skyline queries

individual skyline query
combination skyline query

preference convex complete

[10], etc. [13] [12] [76] and [77]

4.4 Preliminaries

Given a set of objects O with m attributes in the attribute set A, a k-item combination c

is made up of k objects selected from O, denoted c = {o1, . . . , ok}. Each attribute value

of c is given by the formula below

c.Aj = fj(o1.Aj , . . . , ok.Aj), (4.1)

where fj is a monotonic aggregate function that takes k parameters and returns a single

value. For the sake of simplicity, in this paper we consider that the monotonic scoring

function returns the sum of these values; i.e.,

c.Aj =

k∑
i=1

oi.Aj , (4.2)

though our algorithms can be applied on any monotonic aggregate function.

Definition 12 (Dominance Relationship). A combination c dominates another combination

c′, denoted c ≺ c′, if c is not larger than c′ in all the attributes and is smaller than c′ in

at least one attribute; formally, c.Aj ≤ c′.Aj (∀Aj ∈ A) and c.At < c′.At (∃At ∈ A).

Problem 1 (Combination Skyline Problem). Given a dataset O and an item number k,

the combination skyline problem CSKY (O, k) is to find the k-item combinations that are

not dominated by any other combinations.

Chapter 4. Combination Skyline Queries 82

Non-dominated combinations are also called skyline combinations. The combination sky-

line query in Example 2 can be formalized as CSKY ({A, . . . , G }, 3) and the result set

is {ABC,ABD,BCD }. We use the term “cardinality” to denote the item number k if

there is no ambiguity. In this paper, we consider the case that k ≥ 2 because the case

that k = 1 reduces to the original skyline query [10].

In order to solve the combination skyline problem, a näıve approach is to regard the

combinations as “objects” and select the optimal ones using existing skyline algorithms.

However, these algorithms retrieve optimal objects based on either presorting or indexing

objects beforehand. It means that before using such an algorithm we have to enumerate

all possible combinations. Due to the explosive number of combinations generated, the

näıve approach is inapplicable for large data sets. We choose the BBS algorithm [28] as

the baseline algorithm for comparison, and our experiment shows that even for a set of

200 objects and a cardinality of three, it requires an index nearly one gigabyte and spends

thousands of seconds on computing the skyline.

4.5 PBP Algorithm

Unlike the baseline approach, we propose a pattern-based pruning (PBP) algorithm based

on an index on single objects rather than an index on combinations. We choose to index

objects with an R-tree [29] as it is proven to be efficient for organizing multi-dimensional

data. In order to make combinations, we use a set of object-selecting patterns to indicate

the number of objects to be selected within each MBR in the R-tree. The object selecting

patterns are organized in a pattern tree. We retrieve skyline combinations in the order

arranged by a pattern tree that corresponds to the R-tree.

4.5.1 Object-Selecting Pattern

An R-tree is a data structure that hierarchically groups nearby multi-dimensional objects

and encloses them by minimum bounding rectangles (MBRs). Our idea is to create

combinations by selecting objects from the MBRs. The way is to select ki objects from

each MBR ri ∈ R and to make the total number of selected objects equal to k. Each

ki is limited in the range of [0,min(k, |obj(ri)|)], where obj(ri) denotes the set of objects

enclosed by ri. An object-selecting pattern is defined formally below.

Chapter 4. Combination Skyline Queries 83

21 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

A1

A2

A

C

D

G

B

FE

0

r1

r2

r0

r1 r2

r0

A B C D

r1 r3

R-Tree

{[1,8], [3,10]}

{[1,2], [4,6]} {[7,8], [8,10]}

r3

r3

E F G

r2{[3,4], [3,5]}

Figure 4.1: Object layout and R-tree

Definition 13 (Object-Selecting Pattern). Given a cardinality k and a set of MBRs R,

an object-selecting pattern p is { (ri, ki)|ri ∈ R, ki ∈ [0,min(k, |obj(ri)|)] } subject to∑|R|
i=1 ki = k. In addition, each MBR in R appears exactly once in the pattern p; i.e.,

ri 6= rj (i 6= j).

We call the pairs (ri, ki) rules that constitute a pattern. By Definition 13, a rule (ri, ki)

is to select ki objects from the MBR ri.

The attribute values of the combinations obtained from a pattern are within [
∑|R|

i=1 ri.A
⊥
j ·

ki,
∑|R|

i=1 ri.A
>
j · ki] (Aj ∈ A), because we can infer attribute value ranges for the combi-

nations formed using the rule (ri, ki) as [ri.A
⊥
j · k, ri.A>j · k] (Aj ∈ A), where ri.A

⊥
j and

ri.A
>
j are the values of the bottom left and top right corners of ri.

Example 19. Fig. 4.1 shows the R-tree that indexes the objects in Example 1.3. In order

to make 3-item combinations, one of the patterns is { (r1, 2), (r2, 1), (r3, 0) }, consisting of

three rules. Rule (r1, 2) means to select two objects from MBR r1, and rule (r2, 1) means

to select one object from MBR r2. Thus, the pattern can generate the set of combinations

{ABC,ABD } that contains two combinations in total. With the boundaries of the three

MBRs, we can limit the attribute values of the generated combinations within [5, 8] for

A1 and [11, 17] for A2.

Consider a rule (r, k). If r is a leaf node of the R-tree, we can scan the objects contained

and form combinations of size k. If r is an internal node, we need to expand it to child

MBRs, and this will yield a group of patterns that select objects from r’s child MBRs with

Chapter 4. Combination Skyline Queries 84

the total number of objects summing up to k. We call such patterns the child patterns of

the rule (r, k).

Definition 14 (Child Patterns of a Rule). A child pattern of a rule (r, k) is a pattern

that selects k objects from all of r’s child MBRs, formally cp = { (ri, ki)|ri ∈ R, ki ∈

[0,min(k, |obj(ri)|)] } subject to
∑|R|

i=1 ki = k where R is the set of the child MBRs of r.

Note that all the child patterns of rule (r, k) share the same set of MBRs, but differ in the

quantities of selected objects ki. In the R-tree shown in Fig. 4.1, the node r0 has three

child MBRs {r1, r2, r3}. Thus, patterns {(r1, 2), (r2, 1), (r3, 0)}, {(r1, 2), (r2, 0), (r3, 1)},

and so on are the child patterns of the rule (r0, 3), which share the same set of ri’s but

differ in ki’s.

Algorithm 9: ExpandPattern (p)

Input : A pattern p represented in a set of (ri, ki)’s.
Output: The set of child patterns of p.

1 P ← e; // assume e is the identity element of Cartesian product

2 for each (ri, ki) ∈ p do
3 P ′ ← the child patterns of (ri, ki);
4 P ← P × P ′;
5 end for
6 return P ;

Similarly, a pattern can be expanded to a set of child patterns. For each rule in the

pattern, we expand the rule to its child patterns, and perform an n-ary Cartesian product

on all these child patterns. Algorithm 9 presents the pseudo-code of the procedure.

Starting with the root node r0 in the R-tree and its corresponding root pattern p0 =

{ (r0, k) }, if we traverse the R-tree with a breadth-first search, and expand each cor-

responding pattern using its child patterns, we can obtain all possible combinations at

the leaf level. Accordingly, the patterns expanded constitute a pattern tree. Example 20

shows the procedure of constructing a pattern tree with respect to the R-tree in Fig. 4.1.

Example 20. A pattern tree corresponding to the R-tree in Fig. 4.1 is shown in Fig. 4.2.

The root pattern is p0 = { (r0, 3) } where 3 is the required cardinality. Since pattern p0

only has a single rule (r0, 3), the eight child patterns of (r0, 3), {p1, . . . , p8}, are also the

child patterns of p0. Next, we expand the patterns at the second level of the pattern tree.

Consider pattern p1 = { (r1, 2), (r2, 1), (r3, 0) } that contains three rules (r1, 2), (r2, 1) and

(r3, 0). Rule (r1, 2) has one child pattern {AB} and rule (r2, 1) has two child patterns

Chapter 4. Combination Skyline Queries 85

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}

p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}

p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}

p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD

ABE

ABG

ABF

ACD

BCD

AEF

BFG

...

ACE

...

BDG
CDE

CDF

CDG
CEF

DFG

...

EFG

Figure 4.2: Pattern tree

{C,D} and hence the child patterns of p1 is {AB}×{C,D} = {ABC,ABD}. Since these

child patterns contain objects rather than MBRs, we also call them child combinations.

4.5.2 Basic PBP Algorithm

Following the pattern tree, we design a basic PBP algorithm (Algorithm 10). It takes as

an input the set of objects, and first builds an R-tree on the objects. Starting with the

root node r0 and the pattern { (r0, k) }, we traverse the R-tree in a top-down fashion. Note

that the pattern tree is not materialized in the algorithm. Instead, we use a queue Q to

capture the patterns generated while traversing the pattern tree. Each pattern is expanded

to its child patterns (line 7) if the nodes in the pattern are internal nodes; otherwise leaf

nodes are reached and hence we can make combinations in the MBRs according to the

pattern (line 12). The combinations are then checked for dominance relationship with

the candidate skyline combination found so far and vice versa (line 13). The candidates

not dominated by any combinations are returned as the answer after processing all the

expanded patterns.

Compared with the baseline algorithm, the basic PBP algorithm reduces the space con-

sumption by building an R-tree on single objects. However, it suffers from the huge

Chapter 4. Combination Skyline Queries 86

Algorithm 10: BasicPBP (T , k)

Input : T is the R-tree built on O; k is the cardinality.
Output: The skyline combination set S = CSKY (O, k).

1 S ← ∅;
2 r0 ← the root node of T ;
3 Q← { (r0, k) };
4 while Q 6= ∅ do
5 p← Q.pop();
6 if the MBRs in p are internal nodes then
7 P ← ExpandPattern(p);
8 for each p′ ∈ P do
9 Q.push(p′);

10 end for

11 else
12 C ← generate combinations with p;
13 S ← Skyline(S ∪ C);

14 end if

15 end while
16 return S;

number of patterns. Even for a rule (r, k), the number of child patterns is
(
h+k−1
h−1

)
if r has

h child MBRs. We will discuss how to reduce this number and consider only promising

child patterns in the following section.

4.6 Optimized PBP Algorithm

In a pattern tree, we can decide which patterns should be expanded and which patterns

should not be expanded. For example, in the pattern tree shown in Fig. 4.2, the combina-

tions following pattern p4 must be dominated by the combinations following pattern p1.

Thus, we can prune pattern p4 without further expanding. Another intuition is that if the

combinations from a pattern are guaranteed to be dominated by the current skyline com-

binations, the pattern can be pruned as well. We call these two scenarios pattern-pattern

pruning and pattern-combination pruning. We also observe the existence of multiple ex-

pansions for same patterns in the pattern tree. In the rest of this section, we will study

the two pruning techniques and how to avoid multiple expansions as well.

Chapter 4. Combination Skyline Queries 87

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}

p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}
p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}
p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD
ABE

ABG

ABF

ACD

BCD

ACE
...

BDG

X

X

X

CDE

CDF

CDG

Figure 4.3: Pattern-pattern pruning (grey patterns are pruned using Theorem 1)

4.6.1 Pattern-Pattern Pruning

Patterns can be pruned safely without expanding if they will generate combinations that

are guaranteed to be dominated by others. We first define the dominance relationship

between patterns and capture the idea in Theorem 1.

Definition 15 (Pattern Dominance). A pattern p dominates another pattern p′ if p.A>j ≤

p′.A⊥j (∀Aj ∈ A) and p.A>t < p′.A⊥t (∃At ∈ A), and is denoted as p ≺ p′.

Theorem 1. A pattern p′ cannot generate skyline combinations if it is dominated by

another pattern p.

Proof 1. Any combination c′ following the pattern p′ has values c′.Aj ≥ p′.A⊥j (∀Aj ∈ A).

Any combination c following the pattern p has values c.Aj ≤ p.A>j (∀Aj ∈ A). If p ≺ p′,

c.Aj ≤ c′.Aj (∀Aj ∈ A) and c.At < c′.At (∃At ∈ A). Consequently, c′ is not a skyline

combination because c ≺ c′.

Example 21. Consider the eight patterns {p1, . . . , p8} at the second level of the pattern

tree shown in Fig. 4.3. Pattern p1 with upper bounds (8, 17) can dominate pattern p4

with lower bounds (15, 20), p7 with lower bounds (17, 19), and pattern p8 with lower

bounds (21, 24). Thus, the three patterns p4, p7 and p8 can be safely pruned according

to Theorem 1.

Chapter 4. Combination Skyline Queries 88

4.6.2 Pattern-Combination Pruning

Starting with the root pattern, we expand patterns to child patterns until obtaining

combinations at the leaf level. Unlike BasicPBP in Algorithm 10 that traverses patterns

in a breadth-first way, we can use a priority queue to implement the expansion process in

a key-order way. Inspired by the BBS algorithm [28], the keys for the priority queue are

the mindists of the patterns, and we process the patterns in the priority queue following

the increasing order of their keys.

Definition 16 (Mindist of a Pattern). The mindist p, denoted as p.mindist, is the sum of

its lower bounds in all the attributes A, namely, p.mindist =
∑|A|

j=1 p.A
⊥
j (Aj ∈ A).

Like BBS, we also insert the generated combinations to a priority queue. In the same

way, the mindist of a combination can be defined as the sum of values in A, namely,

b.mindist =
∑|A|

j=1 b.Aj (Aj ∈ A).

Theorem 2. A combination c cannot be dominated by any combinations generated from

a pattern p′ if c.mindist < p′.mindist.

Proof 2. Assume that the combination c can be dominated by c′ which is generated from

p′. According to Definition 12, c′.Aj ≤ c.Aj (∀Aj ∈ A) and c′.At < c.At (∃At ∈ A).

It means that c′.mindist < c.mindist because c′.mindist =
∑|A|

j=1 c
′.Aj and c.mindist =∑|A|

i=1 c.Aj . On the other hand, p′.mindist ≤ c′.mindist because
∑|A|

j=1 p
′.A⊥j ≤

∑|A|
i=1 c

′.Aj .

Consequently, the inequality p′.mindist < c.mindist contradicts the condition c.mindist <

p′.mindist, and thus Theorem 2 is proved.

The advantage of expanding patterns using a mindist-order priority queue is that when

the top element is a combination, according to Theorem 2, it cannot be dominated by

the combinations following the patterns behind it in the queue. It just needs comparisons

with the skyline combinations already found in the result set S = CSKY (O, k). If it

cannot be dominated by any combinations in S, it is a skyline combination and should

be added into S. For the other case where the top element is a pattern, it should be

discarded if it is dominated by any combinations in S; otherwise, it should be expanded

and its child patterns are pushed into the queue. The above process begins with the root

pattern pushed into the queue and ends when the queue is empty. The final S is returned

as the answers. Example 22 illustrates the process.

Chapter 4. Combination Skyline Queries 89

<p0,12> <p1,16><p3,17><p2,25><p5,26><p6,27>

<ABD,20><ABC,21>

...

Result S

∅

∅

{ABD}

...

Priority Queue (Q)

<p1,16><p3,17><p2,25><p5,26><p6,27>

<BCD, 21><ACD,21> ∅

<p6,27>
{ABD,

ABC,

BCD}

∅

<p3,17><ABD,20><ABC,21><p2,25><p5,26><p6,27>

<ABD,20><ABC,21><BCD, 21><ACD,21><p2,25><p5,26><p6,27>

{ABD,

ABC,

BCD}

Figure 4.4: Priority queue and query result

Example 22. Fig. 4.4 shows the process of the combination skyline queries. We initialize

the priority queue Q as {〈p0, 12〉} where p0 is the root pattern and 12 (p0.mindist) is

the key. Next, p0 is popped and its child patterns {p1, p3, p2, p5, p6} are pushed into Q.

Note that other three patterns are pruned according to Theorem 1. We pop the top one

p1 and push its expansions {ABD,ABC} into Q. For the next top element pattern p3,

we pop it and push its expansions {BCD,ACD} into Q. Next, the top element is the

combination ABD, which is popped and becomes the first result in S = CSKY (O, k).

In the same way, we pop the top element and check whether it is dominated by the

skyline combinations in S. If it is dominated, top element is discarded. Otherwise, its

child patterns are pushed into Q. For example, when p6 becomes the top element, it is

dominated by ABD ∈ S. Thus, it is discarded. The process continues until the queue

Q is empty and we obtain the final result set {ABD,ABC,BCD}. Fig. 4.5 shows the

pattern tree after the pattern-combination pruning.

4.6.3 Pattern Expansion Reduction

Another problem with BasicPBP algorithm is that the same rules may appear in multiple

patterns and thus may be expanded multiple times. In Fig. 4.2, among the child patterns

Chapter 4. Combination Skyline Queries 90

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}

p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}
p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}
p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD (7,13)

ACD

BCD

X

X

X

X

X

X

Figure 4.5: Pattern-combination pruning (grey patterns are pruned using Theorem 2
and the patterns beginning with × are pruned using both Theorem 1 and Theorem 2)

expanded from the root pattern p0, patterns p1 and p2 share the same rule (r1, 2), and it

will be expanded twice into the same set of child patterns.

Duplicate expansion is even worse as the algorithm goes deeper in the R-tree. An immedi-

ate solution to address this problem is to perform a lazy expansion if a rule is encountered

multiple times. The intuition is that once the descendant patterns of the first occurrence

reach the object combination level, the generated combinations are kept, and all the mul-

tiple occurrences of the rule can be replaced by the combinations when a dominance check

is invoked. In order to keep the combinations for each rule encountered, we use a matrix

M with MBRs as rows and cardinalities columns.

As the search order shown in Fig. 4.4, pattern p1 comes before pattern p2 in the priority

queue. p2’s child patterns will inherit the rule (r1, 2) from p2, but not expand the rule

immediately. After all the descendant patterns of p1 have been processed to create object

combinations, the cells representing (r1, 2) and its descendants are filled with the combi-

nations. When p2 is expanded and reaches the object level, its component rule (r1, 2) is

replaced by what we stored in the cell for dominance checking.1

The above solution ensures no duplicate expansion of a rule in the algorithm. However, it

is not space-efficient to record the all the combinations for the rules encountered. Thanks

1We assume the descendants of p1 come before those of p2 in the priority queue in this example. For the
general case, once a descendant of (r1, 2) has produced object combinations, other patterns that contain
the rule can avoid redundant computations.

Chapter 4. Combination Skyline Queries 91

1 2 3

is filled when expanding p0.

r0

r1

r2

r3

①

②

②

③

③

①

② is filled when expanding p1.

is filled when expanding p3.③

Figure 4.6: Pattern expansion reduction matrix

to the following theorem, we are able to store only the skyline combinations instead for

each cell in the matrix.

Theorem 3. If a skyline combination c ∈ CSKY (O, k) contains k′ objects in an MBR

r′, the combination consisting of the k′ objects is a skyline combination of obj(r′) with

cardinality k′.

Proof 3. Consider a skyline combination c ∈ CSKY (O, k) that contains k′ objects in an

MBR r′. Assume the k′ objects are o1, . . . , ok′ , and their combination is dominated by

another combination { o′1, . . . , o′k′ } whose objects are also enclosed by r′. According to

the monotonicity of the aggregate function,

c\{ o1, . . . , ok′ } ∪ { o′1, . . . , o′k′ } ≺ c.

It contradicts the assumption that c is a skyline combination of O with cardinality k, and

hence the theorem is proved.

Therefore, we only need to keep CSKY (obj(ri), ki) for each M [ri][ki]. For a rule with a

leaf MBR, we compute it with the objects inside. For a rule with an internal MBR, we

compute M [ri][ki] once all of its child patterns have been expanded to the object level,

and store the skyline over the results obtained from the child patterns. Note that this

skyline computation is a byproduct of generating combinations of size k and checking

dominance, and thus we do not need to compute them separately. Example 23 shows the

process of filling in the matrix M .

Example 23. According to the search order shown in Fig. 4.4, when expanding p0 we fill

M [r0][3] using the child patterns of (r0, 3). Next, we expand p1 containing rules (r1, 2),

(r2, 1), and (r3, 0). The corresponding cells M [r1][2] is filled with the combination {AB}

and M [r2][1] is filled with combinations {C,D} that are not dominated each other. The

Chapter 4. Combination Skyline Queries 92

Cartesian join products {AB}×{C,D} = {ABC,ABD} are the child patterns of p1. The

next pattern expanded is p3 containing rules (r1, 1), (r2, 2), and (r3, 0). The corresponding

cells M [r1][1] = {A,B} and M [r2][2] = {CD}. The join products {A,B} × {CD} =

{ACD,BCD} are the child patterns of p3.

Since pattern-pattern pruning keeps unpromising patterns from the priority queue, not

all the cells in the matrix need to be filled. Considering the sparsity of the matrix, we

implement it with a hash table with an (MBR, cardinality) pair as the key for each entry,

and store the value as

• a set of skyline combinations, if all its child patterns have been expanded to the

object level; and

• otherwise, a list of its child patterns.

Algorithm 11: ExpandPatternOpt (p)

Input : A pattern p represented in a set of (ri, ki)’s.
Output: The set of child patterns of p.

1 P ← e; // assume e is the identity element of Cartesian product

2 for each (ri, ki) ∈ p do
3 switch M [ri][ki] do
4 case has not been initialized do
5 P ′ ← the child patterns of (ri, ki);
6 M [ri][ki]← P ′;

7 end case
8 case is a list of child patterns do
9 P ′ ←M [ri][ki];

10 end case
11 case is a set of skyline combinations do
12 P ′ ← { (ri, ki) }; // (ri, ki) has been explored and replace with

M [ri][ki] when reaching the object level

13 end case

14 endsw
15 P ← P × P ′;
16 end for
17 return P ;

We design a new pattern expansion algorithm in Algorithm 11. It expands a rule under

three different cases. If the rule is encountered for the first time, i.e., the cell in the matrix

has not been initialized, we expand it to its child patterns, and fill the cell in the matrix

with a list of the child patterns (line 5 and line 6). If the rule is encountered multiple

times, but none of the patterns contains it have reached the object level so far, we expand

Chapter 4. Combination Skyline Queries 93

the rule with the stored list of child patterns (line 9). For the third case, as the object

combinations for this rule have been seen before, we keep the rule intact until the patterns

containing it reach the object level, and then it is replaced with the skyline combinations

stored in the cell (line 12).

4.6.4 Complete Algorithm

Applying the three optimization techniques, we summarize the complete pattern-based

pruning (CompletePBP) algorithm in Algorithm 12. The algorithm iteratively pops the

top element p in the priority queueQ (line 5). The top element can be either a combination

or a pattern. For a combination, we insert them into the final result set S after checking

dominance with the current skyline combinations (line 8). For a pattern, if p is dominated

by any skyline combinations found so far, we discard it using with pattern-combination

pruning (line 11). Otherwise we expand it using the optimized pattern expansion algo-

rithm (line 15). If the MBRs involved in P are internal nodes of the R-tree, we push the

non-dominated child patterns to the queue Q (line 18), utilizing pattern-pattern pruning.

Otherwise we generate combinations with the patterns in P , and update the matrix M

to reduce pattern expansion (line 23– 30). The algorithm terminates when the priority

queue is empty.

4.7 Variations of PBP Algorithm

In this section, we discuss two variations of the combination skyline problem and extend

our PBP algorithm to solve the two variations.

4.7.1 Incremental Combination Skyline

We first discuss the incremental combination skyline problem, as a user may want to

increase the cardinality of combinations as he has seen the result of CSKY (O, k). The

problem is defined as follows:

Problem 2 (Incremental Combination Skyline Query). An incremental combination sky-

line query CSKY +(O, k+ ∆k) is to find (k+ ∆k)-item skyline combinations based on an

original query CSKY (O, k) that has already been answered.

Chapter 4. Combination Skyline Queries 94

p0={(r0,4)}

p1={(r1,2), (r2,2), (r3,0)}

Pattern Tree

{[4,32], [12,40]}

{[8,12], [14,22]}

p2={(r1,2), (r2,1), (r3,1)}

{[12,16], [19,27]}

p3={(r1,2), (r2,0), (r3,2)}

{[16,20], [24,32]}
p4={(r1,1), (r2,2), (r3,1)}

{[14,18], [18,26]}

p5={(r1,1), (r2,1), (r3,2)}

{[18,22], [23,31]} p6={(r1,1), (r2,0), (r3,3)}

{[22,26], [28,36]}

p7={(r1,0), (r2,2), (r3,2)}

{[20,24], [22,30]} p8={(r1,0), (r2,1), (r3,3)}

{[24,28], [27,35]}

ABCD (10,18)

1 2 3

r0

r1

r2

r3

①

②

②

③

③

X

X

X

X

X

X

4 (Δk=1)

② is reused when expanding p1

1

1 is filled when expanding p0

X

.

.

Figure 4.7: Incremental combination skyline query

The incremental query CSKY + searches for skyline combinations from the same dataset

O as the original query CSKY , so we can use the same R-tree for the original skyline

query. Starting with the root (r0, k + ∆k), the patterns are processed using the PBP

algorithm. As the matrix M for duplicate expansion reduction has been filled when

processing the original query, if not all of its cells, the contents can be utilized. When the

child patterns of rule (ri, ki) are needed during expansion, we reuse the existing results in

M [ri][ki] if the cell was already calculated. In this way, the repeated calculations for the

same cell can be avoided. Though ∆k empty columns are appended to M at first, this is

not space consuming as M is implemented in a hash table.

Example 24. Fig. 4.7 shows the pattern tree and the matrix M for the incremental query

CSKY +(O, 4) based on the original query CSKY (O, 3) with ∆k = 1. The circled num-

bers in the matrix indicate what we have processed when processing CSKY (O, 3), and

the quads indicate what we are going to fill for processing the incremental query. We start

with expanding the root pattern p0 = { (r0, 4) }, and an empty column is appended to

M . Pattern p0 has three child patterns that survive pattern-pattern pruning: p1, p2, and

p4, sorted by the increasing mindist order. Next we expand pattern p1 consisting of three

Chapter 4. Combination Skyline Queries 95

rules (r1, 2), (r2, 2), and (r3, 0). Both cells M [r1][2] and M [r2][2] were already calculated

when answering the original query. By computing the Cartesian product, a combination

ABCD is obtained for p1. Since ABCD is the first combination found, it is a skyline

combination and we put it into the result set. As the next top elements p2 and p4 are

dominated by the combination ABCD, the process terminates when the queue is empty

and the final result CSKY + = {ABCD } is returned.

4.7.2 Constrained Combination Skyline

For a combination skyline query, we retrieve optimal combinations that have values as

small as possible with respect to all the attributes ∀Aj ∈ A. In practice, however, not

all the attributes are being concerned and there are even some range constraints on the

concerned attributes. We define a constrained combination skyline query that retrieves

for optimal combinations with respect to a set of concerned attributes A∗ ⊆ A subject to

range constraints Vj on attribute Aj ∈ A∗.

Problem 3 (Constrained Combination Skyline Query). A constrained combination skyline

query CSKY ∗ is defined as

CSKY ∗ = {O, k, 〈A1, V1〉, . . . , 〈Am∗ , Vm∗〉}, (4.3)

where 1 ≤ m∗ ≤ m and {A1, . . . , Am∗} ⊆ A. We call A∗ = {A1, . . . , Am∗} constraint

attributes. Vj = [v⊥j , v
>
j] is a range constraint for attribute Aj (Aj ∈ A∗). If we do not

specify a range constraint on attribute Aj , we set an infinite range Vj = [−∞,∞].

The combination skyline query defined in Problem 1 is subsumed in the constrained

combination skyline query CSKY ∗ because CSKY is a special case of CSKY ∗ when

A∗ = A, and subject to Vj = [−∞,∞] (∀Aj ∈ A∗).

Example 25. Let us consider an example of a constrained combination skyline query,

CSKY ∗({A, . . . , G}, 3, 〈A1, [−∞,∞]〉, 〈A2, [5, 13]〉). As Fig. 4.8 shows, since the combi-

nations {ABD,ACD,BCD} are within the range [5, 13] on A2, they are candidates for

skyline combinations. Among the three candidates, combination ACD is dominated by

combination ABD. Thus, the non-dominated combinations {ABD,BCD} are the skyline

combinations for query CSKY ∗.

Chapter 4. Combination Skyline Queries 96

5 30

5

10

15

20

25

30

A2

ABC(6,15)

10 15 20 25

ABD(7,13)

ACD(8,13)

BCD(9,12)

EFG(23,28)AEF(16,26)

AEG(16,24)

A1

0

Figure 4.8: Constrained combination skyline

p0={(r0,3)}

p1={(r1,2), (r2,1), (r3,0)}

Pattern Tree

{[3,24], [9,30]}

{[5,8], [11,17]}

p2={(r1,2), (r2,0), (r3,1)}

{[9,12], [16,22]}

p3={(r1,1), (r2,2), (r3,0)}

{[7,10], [10,16]}

p4={(r1,1), (r2,0), (r3,2)}

{[15,18], [20,26]}
p5={(r1,1), (r2,1), (r3,1)}

{[11,14], [15,21]}
p6={(r1,0), (r2,2), (r3,1)}

{[13,16], [14,20]}

p7={(r1,0), (r2,1), (r3,2)}

{[17,20], [19,25]}p8={(r1,0), (r2,0), (r3,3)}

{[21,24], [24,30]}

ABC

ABD

ACD

BCD

X

X

X

X

X

X

Figure 4.9: Constraint-based pruning

Definition 17 (Feasible Combination). A combination c is feasible if it has valid values in

all the attributes ∀Aj ∈ A∗, namely, c.Aj ∈ [v⊥j , v
>
j], ∀Aj ∈ A∗.

The patterns can be discarded if they cannot generate feasible combinations.

Theorem 4. A pattern p cannot generate feasible combinations if [p.A⊥t , p.A
>
t]∩[v.A⊥t , v.A

>
t] =

∅ (∃At ∈ A∗), where [v.A⊥t , v.A
>
t] is the valid range of values in attribute At.

Proof 4. Any combination c following the pattern p has the value c.At ∈ [p.A⊥t , p.A
>
t] for

attribute At ∈ A∗. If [p.A⊥t , p.A
>
t]∩ [v.A⊥t , v.A

>
t] = ∅, c.At /∈ [v.A⊥t , v.A

>
t]. Consequently,

combination c is not a feasible combination.

Chapter 4. Combination Skyline Queries 97

Example 26. Fig. 4.9 shows the pattern tree for the constrained combination skyline

query CSKY ∗. According to Theorem 4, patterns {p2, p4, p5, p6, p7, p8} can be pruned

with respect to the constraint [5, 13] on attribute A2 because their ranges on attribute A2

are out of the range constraint [5, 13]. Thus, we only need to expand {p1, p3} for query

CSKY ∗ and obtain the final result S = {ABD,BCD}.

Given a pattern p, the sets of MBRs appearing in its child patterns are the same, and

thus only the values of ki’s need to be assigned. We can avoid enumerating useless ones

by employing the forward checking approach, which is a common solution for constraint

satisfaction problems [74] and used for answering spatial database queries [75]. At first,

the possible value of each variable ki is in the range of [0,min(|obj(ri)|, k)], and then we

assign values from k1. Once a ki has been assigned, the ranges of the remaining variables

may shrink due to the attribute constraints, and the new ranges can be determined using

Theorem 4.

Example 26. (continued) If k1 is set as 1, we use forward checking to update the value

ranges of k2 and k3. The range of k2 will be [0, 2], and the range of k3 will be [0, 1]. For

example, if k3 = 2, then the value of the combination on A2 is at least 4 + 8 + 8 = 20,

which violates the constraint [5, 13].

4.8 Experiments

In this chapter, we report experimental results and our analyses.

4.8.1 Settings

We used both synthetic and real datasets in our experiment. We generated synthetic

dataset using the approach introduced in [10] with various correlation coefficients, and we

used the uniform distribution as default unless otherwise stated. For real dataset, we used

the NBA dataset2 which contains the statistics about 16,739 players from 1991 to 2005.

The NBA dataset roughly follows an anti-correlated distribution. The default cardinality

and the number of dimensions are both two.

2http://www.nba.com/

http://www.nba.com/

Chapter 4. Combination Skyline Queries 98

We compare our complete PBP algorithm with the baseline BBS algorithm. Since BBS

cannot handle the explosive number of combinations when the dataset is large, we only

compare PBP and BBS on small synthetic dataset. Both PBP and BBS were implemented

in C++. The R-tree structure was provided by the spatial index library SaIL [78]. All

the experiments were conducted on a Quad-Core AMD Opteron 8378 with 96 GB RAM.

The operating system is Ubuntu 4.4.3. All the data structures and the algorithms were

loaded into/run in main memory.

4.8.2 Experiments on Synthetic Datasets

Fig. 4.10(a) and 4.10(b) show the distributions of 2-item combinations and 3-item combi-

nations, which are generated from a dataset containing 100 objects with two-dimensional

attributes uniformly distributed in the range [0, 1000] × [0, 1000]. In total, there are(
100
2

)
= 4950 combinations and

(
100
3

)
= 161700 combinations shown as points in the two

figures. The numbers of skyline combinations are much smaller; e.g., 13 from the 4950

2-item combinations and 28 from the 161700 combinations, as shown in the areas close to

the horizontal axis and the vertical axis in Fig. 4.10(c) and 4.10(d).

Next, we compare our PBP algorithm with the BBS algorithm, and then study the effi-

ciency of the PBP algorithm with respect to data distribution, cardinality, the number of

attributes (dimensionality), and the fanout of R-tree.

Comparison with the BBS Algorithm

Since BBS cannot find skyline combinations from large datasets in acceptable response

time, we compare the performances of BBS and PBP on small datasets that contain 50,

100, 150, 200 objects. For every data size, we vary the number of attributes in the range

of [2, 6]. The experimental query is to find three-item skyline combinations.

Fig. 4.11(a) shows the size of R-trees used by BBS and PBP. For BBS, the R-tree sizes

grows dramatically with the data size because R-trees have to index all the combinations

that increase in an explosive way. As the figure shows, when the dataset contains 200

objects, the tree size is almost one gigabyte. Even worse, constructing such a huge R-tree

consumes a lot of time, which means that BBS cannot work well when handling a huge

number of combinations in practice. In contrast, PBP uses the R-tree for indexing single

Chapter 4. Combination Skyline Queries 99

(a) 2-Item Combinations (4950) (b) 3-Item Combination (161700)

 0

 1000

 2000

 3000

 0 1000 2000 3000

(c) 2-Item Skyline Combinations (13)

 0

 1000

 2000

 3000

 0 1000 2000 3000

(d) 3-Item Skyline Combinations (28)

Figure 4.10: Distribution of combinations and skyline combinations

104

105

106

107

108

109

 50 100 150 200

R
-T

re
e

S
iz

e
(b

yt
es

)

Dataset Size

BBS PBP

(a) k = 3, |A| = 2

100

101

102

103

104

105

 2 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

Number of Attributes

BBS PBP

(b) k = 3

Figure 4.11: PBP versus BBS on small datasets

objects rather than combinations. Indexing single objects makes the tree size growing

relatively slow. This is also why PBP can handle large datasets. We will show the

experimental results on the large datasets in Section 4.8.2 to Section 4.8.3.

Fig. 4.11(b) shows the running time of BBS and PBP on the 100-object datasets, with

the number of attributes varying from 2 to 6. For BBS, the time is the sum of the time

Chapter 4. Combination Skyline Queries 100

for enumerating combinations and the time consumed by retrieving skyline combinations.

For PBP, the time is the time consumed by retrieving skyline combinations. The time

for constructing R-trees is not included. As the figure shows, PBP outperforms BBS by

at least one order of magnitude. One reason is that PBP executes queries on the R-tree

that is far smaller than the R-tree used by BBS. Another reason is that the time for

enumerating combinations is saved when running PBP.

In conclusion, PBP outperforms BBS in both space and time aspects. PBP consumes

much less space and runs much faster than BBS. Additionally, when the number of objects

increases, the space consumption speed of PBP is much slower than the speed of BBS.

The Effect of Data Distribution

We evaluate PBP on 4K, 8K, 16K, 32K, 64K datasets with different correlation coeffi-

cients −0.9, −0.6, −0.3, 0.0, 0.3, 0.6 and 0.9. The datasets with correlation coefficients

−0.9, −0.6 and −0.3 follow anti-correlated distributions. The datasets with correlation

coefficients 0.9, 0.6 and 0.3 follow correlated distributions. The dataset with correlation

coefficient 0.0 follows uniform distributions. Each dataset has objects with two attributes.

The queries are to select five-item skyline combinations from these datasets.

Fig. 4.12(a) shows the number of skyline combinations and Fig. 4.12(b) shows the running

time. As Fig. 4.12(a) shows, there are more skyline combinations for the anti-correlated

datasets and fewer skyline combinations for the correlated datasets. In the anti-correlated

datasets, some objects are good in one attribute but are bad in the other attribute. In

the correlated datasets, a part of the objects are good in both attributes. It can be

seen that there are more results generated from the anti-correlated datasets than the

results generated from the correlated datasets. This is because the combinations exhibit

distribution features as single objects since their attribute values are the sums of their

component objects’ attribute values.

Fig. 4.12(b) shows the running time of PBP. It spends more time when running PBP on

the anti-correlated datasets than on the correlated datasets. The time depends on the size

of the priority queue and the number of dominance checks. Fig. 4.12(c) and 4.12(d) show

the maximum size of the priority queue and the number of dominance checks, respectively.

Since the patterns also follow the same distributes, there are more patterns which cannot

Chapter 4. Combination Skyline Queries 101

101

102

103

-0.9 -0.6 -0.3 0 0.3 0.6 0.9N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns

Correlation Coefficient

4K 16K 64K

(a)

102

103

104

105

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

E
la

ps
ed

 T
im

e
(m

s)

Correlation Coefficient

4K 16K 64K

(b)

103

104

105

106

107

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Correlation Coefficient

4K 16K 64K

(c)

106

107

108

109

1010

-0.9 -0.6 -0.3 0 0.3 0.6 0.9

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Correlation Coefficient

4K 16K 64K

(d)

Figure 4.12: PBP performance for different distributions

be pruned but have to be pushed into the priority queue for the anti-correlated datasets.

Consequently, more dominance checks occur.

Another observation is that running time does not vary significantly with the sizes of

datasets. The reason is that the performance of PBP is not sensitive to the data sizes for

low dimension cases. Such inference can be seen from the size of the priority queue and

the number of dominance checks.

In conclusion, the number of results increases when the correlation coefficient of the

dataset increases. The PBP algorithm can answer the combination skyline queries faster

in the dataset with a higher correlation coefficient.

The Effect of Cardinality

We run PBP on 8K, 16K, 32K, 64K, and 128K datasets to find skyline combinations of

cardinalities k ∈ [3, 6]. The objects in the datasets have two attributes.

Chapter 4. Combination Skyline Queries 102

101

102

 3 4 5 6N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns

Cardinality k

16K 32K 64K 128K

(a)

101

102

103

104

105

 3 4 5 6

E
la

ps
ed

 T
im

e
(m

s)

Cardinality k

16K 32K 64K 128K

(b)

102

103

104

105

106

 3 4 5 6

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Cardinality k

16K 32K 64K 128K

(c)

104

105

106

107

108

109

1010

 3 4 5 6

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Cardinality k

16K 32K 64K 128K

(d)

Figure 4.13: PBP performance for different cardinalities

Fig. 4.13(a) shows the number of skyline combinations. The number increases with the

cardinality but not in an explosive way. The reason is much more combinations can be

dominated for larger cardinalities. As Fig. 4.10 shows, more combinations are dominated

by the skyline combinations when the cardinality increase from two to three.

Fig. 4.13(b) shows the running time of PBP. The time increases with the cardinality. It

depends on the maximum size of the queue and the number of dominance checks, which

are shown in Fig. 4.13(c) and 4.13(d), respectively. When the cardinality enlarges, the

number of patterns increases. Thus, more patterns are pushed into the queue and more

dominance checks are needed. Another general trend is that the running time increases

with dataset sizes, but the influence is not as significant as that of cardinality. Considering

the number of combination
(|O|
k

)
, it grows faster with the increase of k than with that of

|O|.

In conclusion, the number of results increases when the cardinality increases, but does

not increase in an exponential way. The running time of the PBP algorithm also increases

with the cardinality.

Chapter 4. Combination Skyline Queries 103

The Effect of Dimensionality

We evaluate the effect of dimensionality by varying the number of attributes in the range of

[2, 6]. For each dimensionality, we run PBP on 1K, 2K, 4K, 8K, 16K datasets, respectively.

The query is to find two-item combinations from these datasets.

101

102

103

104

105

 2 3 4 5 6N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns

Number of Attributes

2K 4K 8K 16K

(a)

101

102

103

104

105

106

107

 2 3 4 5 6
E

la
ps

ed
 T

im
e

(m
s)

Number of Attributes

2K 4K 8K 16K

(b)

102

103

104

105

106

107

 2 3 4 5 6

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Number of Attributes

2K 4K 8K 16K

(c)

103
104
105
106
107
108
109

1010
1011
1012

 2 3 4 5 6

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Number of Attributes

2K 4K 8K 16K

(d)

Figure 4.14: PBP performance for different number of attributes

Fig. 4.14(a) shows the number of skyline combinations. The number exhibits a rapid

growth with the dimension. The reason is that when the dimension increases, it is more

likely that two combinations are better than each other in different subsets of the di-

mensions. Thus, one cannot dominate another and the number of skyline combinations

increases. It is also called the curse of dimensionality [79].

Fig. 4.14(b) shows the running time. The time increases with the number of attributes.

It depends on the the maximum size of the priority queue and the total number of dom-

inance checks, which are shown in Fig. 4.14(c) and 4.14(d), respectively. In Fig. 4.14(c)

and 4.14(d), both the size of the queue and the number of dominance checks increase with

the dimension. One reason is that when the dimension increases, the number of nodes in

Chapter 4. Combination Skyline Queries 104

the R-tree grows and more overlap among MBRs is incurred. More patterns are hence

generated, and the pruning power of PBP is reduced as well.

Observing Fig. 4.14(b), the time increases with the size of datasets, and the gap between

two datasets with different sizes is more substantial for higher dimensionality. This is also

due to the increase of nodes and more overlap in the R-tree.

In conclusion, the number of results increases when the number of attributes (i.e., dimen-

sionality) grows. The PBP algorithm can answer the queries faster in the dataset with a

smaller dimensionality. Additionally, for high-dimensional datasets, the query cost grows

quickly with the dataset size.

The Effect of R-Tree Fanout

The structure of R-tree may also impact the performance of PBP. Under the in-memory

setting, the dominant factor of the algorithm’s runtime performance is not I/O but the

number of patterns processed. In addition, a large fanout, which is preferred in a disk-

resident R-tree, is not necessary a good choice.3 As shown below, a small fanout shows

better performance in our problem setting. Consider an R-tree of order (m,M) where each

node must have at most M child nodes and at least m child nodes. Note that m decides

the fanout of the R-tree. There are at most dN/mie nodes at the level i in the R-tree4,

and thus there are at most
(dN/mie+k−1

k

)
≤ (dN/mie+k−1)k

k! patterns at the corresponding

level i in the pattern tree. In the worst case, the total number of patterns is

dlogmNe∑
i=1

(d N
mi e+ k − 1)k

k!
(4.4)

where dlogmNe− 1 is the maximum height of the R-tree. When m increases, the number

of patterns decreases according to Equation 4.4; however, the pruning capabilities of

Theorems 1 and 2 becomes weaker since the lower and upper bounds of a pattern become

looser and less accurate.

We run PBP on the datasets indexed by the different R-tree structures with the fanouts

m ∈ [4, 8]. Fig. 4.15(a) shows the running time on three datasets with dimensions d = 3,

d = 4, and d = 5. Each dataset has 1K objects and the algorithm searches for skyline

3For example, T-tree, an in-memory index for ordered keys has a binary index structure [80].
4Note that level-1 denotes the leaf level and level-(i+ 1) denotes the parent level of level-i.

Chapter 4. Combination Skyline Queries 105

102

103

104

105

 4 5 6 7 8

E
la

ps
ed

 T
im

e
(m

s)

R-Tree Fanout

d=3 d=4 d=5

(a)

102

103

104

105

106

 4 5 6 7 8

E
la

ps
ed

 T
im

e
(m

s)

R-Tree Fanout

k=2 k=3 k=4

(b)

Figure 4.15: PBP performance for different fanouts of R-tree

combinations of cardinality k = 3. For the datasets with dimensions d = 3 and 4, PBP

performs best when m = 4. In our experiments, when m = 4 we enumerate 341.3K

patterns, while when m = 8 we enumerate 690.5K patterns, which showcases the better

pruning power of the proposed algorithm under small fanouts. For the dataset with

dimension d = 5, PBP performs best when m = 7. The reason is that the increase of

dimensionality causes more overlaps between MBRs and thus weaken the pruning power.

We also found that a large fanout, which is preferred in a disk-resident R-tree, usually

results in bad performance. When k = 3 and d = 3, the running time is 41.9s under

a fanout m = 32, 121.5 times slower than under a fanout m = 4. Fig. 4.15(b) shows

the running time on a four-dimensional dataset containing 1K objects. The algorithm

retrieves skyline combinations of cardinalities k = 2, k = 3, and k = 4 and performs best

when m = 4.

In general, we suggest users choose a small fanout, e.g., m = 4, for tasks with low

dimensionality, and a moderately larger fanout, e.g., m = 7, for high-dimensional tasks.

4.8.3 Experiments on Real Datasets

We run PBP on the real datasets. The sizes of our datasets are 2K, 4K, 8K, 16K, and

the number of attributes varies from 2 to 5. We conduct two groups of experiments: one

is to verify the effect of cardinality k, and another is to verify the effect of dimensionality

|A|.

Fig. 4.16 shows the effect of cardinality on real datasets. Fig. 4.16(a) shows the number

of skyline combinations grows with the cardinality. Fig. 4.16(b) shows the running time

Chapter 4. Combination Skyline Queries 106

100

101

102

 2 3 4 5N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns

Cardinality k

2K 4K 8K 16K

(a)

100

101

102

103

104

105

106

 2 3 4 5

E
la

ps
ed

 T
im

e
(m

s)

Cardinality k

2K 4K 8K 16K

(b)

101
102
103
104
105
106
107
108

 2 3 4 5

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Cardinality k

2K 4K 8K 16K

(c)

102
103
104
105
106
107
108
109

1010
1011

 2 3 4 5

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Cardinality k

2K 4K 8K 16K

(d)

Figure 4.16: PBP performance for different cardinalities on real datasets

increases with the cardinality, which is consistent with the increase of the queue size and

the increase of the dominance check number shown in Fig. 4.16(c) and 4.16(d), respec-

tively. A similar trend is observed as we have seen for synthetic datasets, but has a more

rapid growth of running time with the cardinality. This is because the real dataset follows

anti-correlated distribution while the synthetic dataset follows uniform distribution, and

hence fewer combinations are dominated for the former.

Fig. 4.17 shows the effect of dimensionality on real datasets. Fig. 4.17(a) shows the

number of skyline combinations is larger for higher dimensional datasets. Fig. 4.17(b)

shows the running time of PBP on the real datasets with different number of attributes.

Since the time depends on the size of the queue and the total number of dominance checks,

the shapes and trends of the curves in Fig. 4.17(c) and 4.17(d) are consistent with the

appearances of curves in Fig. 4.17(b). When the number of attributes grows, the time

increases and the gap between two datasets with different sizes is enlarged, and is more

substantial than on synthetic data.

In conclusion, the PBP algorithm can answer the experimental queries in real datasets

Chapter 4. Combination Skyline Queries 107

100

101

102

103

104

 2 3 4 5N
um

be
r

of
 S

ky
lin

e
C

om
bi

na
tio

ns

Number of Attributes

2K 4K 8K 16K

(a)

101

102

103

104

105

106

 2 3 4 5

E
la

ps
ed

 T
im

e
(m

s)

Number of Attributes

2K 4K 8K 16K

(b)

101

102

103

104

105

106

107

 2 3 4 5

M
ax

 Q
ue

ue
 S

iz
e

(#
 o

f E
nt

rie
s)

Number of Attributes

2K 4K 8K 16K

(c)

102
103
104
105
106
107
108
109

1010

 2 3 4 5

N
um

be
r

of
 D

om
in

an
ce

 C
he

ck
s

Number of Attributes

2K 4K 8K 16K

(d)

Figure 4.17: PBP performance for different number of attributes on real datasets

at acceptable speeds (i.e., within 1000 seconds). When varying the cardinality and the

dimensionality, the experimental results are consistent with the results on the synthetic

datasets.

4.8.4 Summary

To sum up, we have the following main findings after conducting the experiments on both

synthetic and real datasets.

• The number of skyline combinations is far smaller than the total number of combi-

nations.

• BBS cannot efficiently answer the combination skyline queries in large datasets. 5

• PBP can efficiently answer the queries in large datasets. It outperforms BBS by at

least one order of magnitude, i.e., ten times.

5The word “large” means that the number of objects varies from 1,000 to 128,000.

Chapter 4. Combination Skyline Queries 108

• PBP is influenced by the data distribution, i.e., the query cost is higher on the

anti-correlated dataset than on the correlated dataset.

• PBP is also influenced by the cardinality, the dimensionality, and the data size, i.e.,

the query cost gets higher when the cardinality or/and the dimensionality or/and

the data size gets larger, .

Chapter 4. Combination Skyline Queries 109

Algorithm 12: CompletePBP (T , k)

Input : T is the R-tree built on O; k is the cardinality.
Output: The skyline combination set S = CSKY (O, k).

1 S ← ∅;
2 r0 ← the root node of T ;
3 Q← { (r0, k) };M ← ∅;
4 while Q 6= ∅ do
5 p← Q.pop();
6 if p is a combination then
7 if @c ∈ S, c ≺ p then
8 S ← S ∪ { p };
9 end if

10 else
11 if ∃c ∈ S, c ≺ p then
12 continue;

13 end if
14 if the MBRs in p are internal nodes then
15 P ← ExpandPatternOpt (p);
16 for each p′ ∈ P do
17 if @p′′ ∈ P, p′′ ≺ p′ then
18 Q.push(〈p′, p′.mindist〉);
19 end if

20 end for

21 else
22 C ← e; // e is the identity element of Cartesian product

23 for each (ri, ki) ∈ p do
24 if (ri, ki) is a set of skyline combinations then
25 C ′ ←M [ri][ki];
26 else
27 C ′ ← CSKY (obj(ri), ki);
28 C ← C × C ′;
29 M [ri][ki]← C ′;
30 update (ri, ki)’s ancestor rules in M ;

31 end if

32 end for
33 for each c ∈ C do
34 Q.push(c, c.mindist);
35 end for

36 end if

37 end if

38 end while
39 return S

Chapter 5

Conclusions and Future Work

In this Chapter, we first summarize this thesis in Section 5.1. Next, we present several

interesting extensions that serve as our future work in Section 5.2.

5.1 Conclusions

We have studied two new decision-support queries, DBS queries for geographical data and

combination skyline queries for multi-attribute data. Decision-support queries search for

a handful of desired objects by considering the multiple preferences of a user. The DBS

queries can search for spatial objects considering the user’s preference on distance and

direction. Combination skyline queries can search for object combinations considering the

user’s preferences on different attributes.

There are usually two ways to select appropriate objects to answer decision support

queries. One way is top-k queries, which retrieve objects according to their scores.

Another way is skyline queries, which retrieve the objects with respect to domination

relationships. Generally speaking, both DBS queries and combination skyline queries

fall into the skyline query category, because they select objects according to domination

relationships.

In DBS queries, if two spatial objects are in the same direction, the nearer object dom-

inates the farther object. In combination skyline queries, the combinations consist of a

fixed number of objects and the attribute values are aggregations of their components’

110

Chapter 5. Conclusions and Future Work 111

values. From this perspective, the combinations are also objects with multi-attributes.

One combination dominates another combination if it is better than another one in at

least one attribute and is not worse in any attribute.

The basic ideas of processing DBS queries and combination skyline queries are the same.

The main observation is that the selected objects (i.e., spatial objects, or combinations)

are far fewer than the objects in the whole set. Due to this observation, the design goal

of the algorithms is to find the desired objects as fast as possible by checking an adequate

number of objects rather than checking all the objects. To reach this goal, the algorithms

for processing DBS queries aim at comparing fewer objects and terminating the process

as quickly as possible. The PBP algorithm for processing combination skyline queries

aims at enumerating a small number of combinations that show promise for being among

the final results.

We have conducted experiments to evaluate the performance of the proposed algorithms.

The results of experiments using both synthetic and real data sets demonstrate that every

algorithm proposed can find answers efficiently.

5.1.1 DBS Queries

In particular, we have studied DBS queries in both Euclidean spaces (i.e., E-DBS queries)

and road networks (i.e., R-DBS queries). For the two types of DBS queries, the measures

for distances and directions are different. In E-DBS queries, the distance of an object is

the Euclidean distance between the object and the user, while its direction is the vector

from the user to the object. If the included angle between the directions of two objects

is smaller than a user-defined threshold θ, the two objects are in the same direction. In

R-DBS queries, the distance of an object is the length of the shortest path from the user

to the object, while the direction is set to be the shortest path itself. If the shortest paths

of two objects overlap, the two objects are in the same direction.

Definitions of the domination relationship are the same in both Euclidean spaces and

road networks. For the two types of DBS queries, the nearer object can dominate the

farther object if they are in the same direction. The DBSs are the objects that cannot be

dominated. According to this definition, we studied two types of queries, snapshot queries

Chapter 5. Conclusions and Future Work 112

and continuous queries. A snapshot query finds DBSs with respect to the user’s current

position. The continuous query is to update the DBSs when the user keeps moving.

We developed efficient algorithms for processing snapshot queries and continuous queries,

respectively. The basic idea of algorithms for snapshot queries is to reduce the number

of dominance checks. To answer continuous queries, the idea is to predict the change

moments of the results and to update the results at those moments.

Based on extensive experiments with both real and synthetic data sets, we demonstrated

the performance of our proposed algorithms. Investigating the experimental results, we

found that the number of results and the query cost are influenced by the threshold θ in

E-DBS queries. The number of results and the query cost are influenced by the object

density in R-DBS queries. Experimental results also confirm that the proposed algorithms

can answer both the snapshot case and the continuous case promptly.

5.1.2 Combination Skyline Queries

We have studied the combination skyline problem, a new variation of the skyline problem.

The combination skyline problem is to find combinations consisting of k objects that are

not dominated by others. Due to the exponential number of k-item combinations, the

traditional approaches cannot find the answers efficiently.

Motivated by the inefficiency of the traditional algorithms, we have proposed the PBP

algorithm to answer combination skyline queries efficiently. With an R-tree index, the

algorithm generates combinations with object-selecting patterns organized into a tree. In

order to prune the search space and improve efficiency, we have presented two pruning

strategies and a technique to avoid duplicate pattern expansion.

In addition, we have discussed two variations of the combination skyline queries, i.e.,

incremental combination skyline queries and constrained combination skyline queries. It

is easy to modify the PBP algorithm to answer the two types of queries.

The efficiency of the proposed algorithm was evaluated by extensive experiments using

synthetic and real data sets. The query cost increases when the correlation coefficient

decreases, the cardinality increases, or the dimensionality increases. Investigating the

experimental results on real data sets, we found that the proposed algorithms can answer

queries efficiently.

Chapter 5. Conclusions and Future Work 113

5.2 Future Work

5.2.1 DBS Queries

In the future, we would like to extend DBS queries in the following five directions.

First, we intend to explore other approaches (e.g., using the MBR-trimming method of

[81]) to tackle E-DBS queries. Our current approach is to reduce the search space by

considering the partition angle sizes. Another possible approach is to trim the MBRs

incrementally when the objects are indexed by an R-tree.

Second, we plan to extend our work to consider non-spatial attributes, for example, queries

such as “find inexpensive hotels near me.” In this case, we should consider the non-spatial

attribute “price” as well as the distance and direction.

Third, we can consider the situation of a moving user along with several moving objects.

Suppose a football game is going on and a player wants to pass the ball to a teammate. The

teammates and opponents have different directions and distances according to the players

current position. In this situation all the objects are moving, including the player. We

can help this football player to make a good decision about passing the ball by considering

distance and direction.

Fourth, we can weigh objects according to distance and direction, and recommend objects

with higher weights. Assuming that we can infer the user direction from movement, nearby

objects in the same direction should be assigned higher weights. Thus, we can sort the

objects by weight and return the top ones in the ranking list.

Fifth, we can construct a prototype system to provide DBS query services for mobile

users based on the proposed ideas. When road network information is available, users can

submit R-DBS queries. When the road network information is not detailed enough, or

even when it is not available, the users can submit E-DBS queries.

5.2.2 Combination Skyline Queries

In the future, we would like to extend combination skyline queries towards the following

four directions.

Chapter 5. Conclusions and Future Work 114

First, we intend to propose approximation algorithms for answering combination skyline

queries. Experimental results have shown that the query cost increases steeply when

the cardinality k or the dimensionality m increases. An approximation algorithm would

be able to answer the queries with large k or/and large m values. The approximation

algorithm should run fast and the results returned should be within an acceptable ap-

proximation ratio.

Second, we plan to extend the k-item combination skyline problem to a general version

where the cardinality k varies. It is easy to infer that a combination is dominated by

its sub-combinations. For example, the combination {ABCD} is dominated by its sub-

combination {ABC}. Except in situations where the sub-combination relationships exist,

it is not easy to infer the dominance relationship between a k1-item combination and

a k2-item combination, where k1 6= k2. This creates difficulties and challenges in the

problem.

Third, we plan to solve the problem when the aggregation function is not monotonic. In

the current problem definition, we form a combination by using a monotonic aggregation

function. However, when the monotonic property does not hold, we cannot estimate the

value ranges of the combinations from the patterns. Thus, the two pruning strategies do

not work. To solve the problem, other effective methods are required.

Fourth, we will implement a prototype system to support combination skyline queries

based on the proposed ideas. To help users understand the query results easily, we would

like to explain the superiority of each skyline combination. One possible measurement

of the superiority is the number of combinations dominated by the skyline combination.

Further, by ranking the results in their superiority order, we can present an adequate

number of high-quality results to users when too many skyline combinations have been

found.

Appendix A

Appendix for DBS Queries

A.1 Processing of Continuous kNN Queries

We show how to retrieve k-nearest objects for a linearly moving query point −→q during a

time interval I by extending the idea of [7]. The function CNNQuery in Algorithm 2 is

implemented based on the method. Consider the following example, which is continued

from Example 8.

Example 27. We explain the idea using Fig. A.1. We want to find the nearest neighbor

objects for the time interval I = (0, 100). Initially, we find the nearest neighbor object

of the query point when t = 0. It is object a. Then we try to find out when the nearest

object changes to other objects during (0, 100]. The algorithm proposed in [7] finds the

first change for the current nearest object. The candidates set is made up of objects

whose distances are smaller than a when the query point is at the end position (t = 100).

In other words, the objects falling into the circle in Fig. A.1 are candidates. There is

only one object g in the circle. We calculate the change moment, which is the time when

dg = da. As described below, the time is t = 75. If we have multiple candidates, the one

with the smallest change moment is selected.

In the above example, we have shown how to find the first nearest objects for an interval

I. We can extend this method to find the k-th nearest neighbor objects for an interval I.

For example, if we want to find the second nearest neighbor objects for (0, 75) where the

first nearest one is a, we remove a from the target and reuse the above method. In this

scheme, we can find out k-nearest neighbor objects incrementally.

115

Appendix A. Appendix for DBS Queries 116

a(A)

b

c

d

e f

75

r=|AQ|
QO

x

y

0 100
v

g

Figure A.1: Candidate area for the next nearest object

Algorithm 13 shows function CNNQuery that implements the idea. The function receives

−→q , the location of the time-parameterized query point as shown in Eq. (2.3), and the target

time interval I = (Is, Ie). The function returns k-th nearest neighbor objects with their

corresponding time intervals.

In lines 5 and 6, qs and qe denote the start and end points of the query. In line 7,

we construct the exclusion list E, which consists of the current top (k − 1)-objects for

the time interval I. The construction is easy because we maintain a tree structure as

shown in Fig. 2.11 while the process of a continual query. For example, when we issue

CNNQuery(−→q , (0, 71), 3) in Fig. 2.11, we already know that n1 = a and n2 = b.

In line 10, we use function get NN object() to retrieve the k-th nearest object nk for the

start position qs. The exclusion list E is used for finding the k-th object. In line 13, we

get the candidates for the next change by using function dist query(). We assume that

two functions get NN object() and dist query() are efficiently supported by the spatial

index.

In the while loop (lines 16-26), we incrementally add a k-th nearest neighbor object to

the result R. In line 17, we calculate the change moment between nk, the current k-th

nearest neighbor object, and p, one of the candidates. In line 19, we select the candidate

pc with the minimum change moment tc as the next k-th nearest neighbor object. In line

21, we update R by inserting the information of the current k-th nearest neighbor nk and

Appendix A. Appendix for DBS Queries 117

Algorithm 13: CNNQuery(~q, I, k)

// I = [Is, Ie] is a time interval

// Initialization

1 R← ∅; // Set of k-th NN objects

2 qs ← −→q |t=Is ; // Start point of −→q
3 qe ← −→q |t=Ie ; // End point of −→q
4 E ← {n1, n2, ..., nk−1} ; // Exclusion set: (k − 1)-NN objects for I
// Initialization for loop

5 nk ← get NN object(qs, E);
// Get initial k-th NN object (by excluding E)

6 ts ← Is; // Initialize the start time

7 C ← dist query(qe,dist(nk, qe));
// Get candidates of the next k-th NN object

// Add next k-th NN object to R in each iteration

8 while C 6= ∅ do
9 T ← {〈p, change moment(nk, p)〉 | p ∈ C};

// Compute change moment for each candidate

10 〈pc, tc〉 ← 〈p, t〉 such that t is the smallest in T ;
// pc causes the first change at tc

11 R← R ∪ {〈nk, (ts, tc)〉} ; // Add the new k-th NN object to R
12 nk ← pc;
13 ts ← tc;
14 C ← dist query(qe,dist(nk, qe));

15 end while
16 R← R ∪ {〈nk, (ts, Ie)〉} ; // Add the last one to R
17 return R;

its valid time interval (ts, te). In lines 24 and 25, we update the status, and then continue

the while loop. Finally, in line 27, we add the information for the last time interval.

A remaining problem is how to implement change moment() function. For two points

pi = (xpi , ypi) and pj = (xpj , ypj), their change moment is the solution of the equation

di = dj , where di (dj) is the time-parameterized distance between q and qi (qj). Since the

equation is quadratic in terms of t, it is easily solvable.

A.2 Details of Dominance Checking

Given a query point −→q and two points a = (xa, ya)
′, b = (xb, yb)

′. The vectors of the two

points are:

−→a = −→pa =

 xa

ya

−
 xvt+ xq̄

yvt+ yq̄

 (A.1)

Appendix A. Appendix for DBS Queries 118

−→
b =

−→
pb =

 xb

yb

−
 xvt+ xq̄

yvt+ yq̄

 . (A.2)

.

We consider the problem whether (and when) λab ≥ θ (i.e., cosλab ≤ cos θ) is satisfied

during a certain time interval [ts, te]. For the problem, we consider the equality formula

cosλab = cos θ. The formula can be represented as

Gt2 +Ht+ I√
Gt2 + Jt+K

√
Gt2 + Lt+M

= cos θ, (A.3)

where

G = x2
v + y2

v (A.4)

H = −[(C + E)xv + (D + F)yv] (A.5)

I = CE +DF (A.6)

J = −2(Cxv +Dyv) (A.7)

K = C2 +D2 (A.8)

L = −2(Exv + Fyv) (A.9)

M = E2 + F 2 (A.10)

C = xa − xq̄ (A.11)

D = ya − yq̄ (A.12)

E = xb − xq̄ (A.13)

F = yb − yq̄. (A.14)

Eq. (A.3) can be transformed to a quartic formula

c4t
4 + c3t

3 + c2t
2 + c1t+ c0 = 0, (A.15)

where
c4 = G2(1− T)

c3 = 2GH − (GL+ JG)T

c2 = 2GI +H2 − (GK + JL+GM)T

c1 = 2HI − (KL+ JM)T

c0 = I2 −KMT

T = cos2 θ.

(A.16)

We can solve this quartic formula by using the GNU Scientific Library [46] and get four

solutions ti (i = 1, . . . , 4). Note that a solution of Eq. (A.15) may not be a valid solution

Appendix A. Appendix for DBS Queries 119

of Eq. (A.3) because it gives a negative value cos θ. Thus, we have to verify whether each

solution ti is a real solution for Eq. (A.3). If (Gt2i +Hti + I) and cos θ has the same sign,

namely,

(Gt2i +Hti + I) cos θ ≥ 0, (A.17)

ti is a real solution for Eq. (A.3).

If the real solutions fall into I = [ts, te], they separate the whole time interval into several

sub-intervals. We check cosλab(t) for every sub-interval Ij = [tjs, t
j
e] to judge whether

λab(t) is greater than θ or not. Because cosλab(t) is a continuous function, we can easily

decide as follows:

λab(t)|t∈Ij

 ≥ θ, if cosλab(
tjs+tje

2) < cos θ

< θ, if cosλab(
tjs+tje

2) > cos θ.
(A.18)

A.3 Details of Termination Checking

The function of the partition angle ϕab is cosϕab = A/B , where

A = (xvt− xa)(xvt− xb) + (yvt− ya)(yvt− yb) (A.19)

B =
√

(xvt− xa)2 + (yvt− ya)2
√

(xvt− xb)2 + (yvt− yb)2.

(A.20)

If we consider the semantics of cosϕab, it is clear that cosϕab → 1 when t → ±∞. We

get the derivative of the cosine function

d cosϕab

dt
=
A′B −AB′

B2
, (A.21)

where A′ and B′ are abbreviations for the derivatives. Note that B2 > 0 is always hold

(we do not assume that a and b are on the same locations). Since our concern is the

behavior of cosϕab, we can omit B2. Thus, we focus on the function

C = A′B −AB′

=
2A′DE −A(D′ · E +D · E′)

2D
1
2E

1
2

, (A.22)

Appendix A. Appendix for DBS Queries 120

where

D = (xvt− xa)2 + (yvt− ya)2 (A.23)

E = (xvt− xb)2 + (yvt− yb)2. (A.24)

Since D
1
2E

1
2 > 0, we focus on

F = 2A′DE −AD′E −ADE′ (A.25)

= 2GH, (A.26)

where

G = (xbyv − xayv − ybxv + yaxv)t+ (xayb − yaxb) (A.27)

H = It2 + Jt+K (A.28)

I = (x2
v + y2

v)(xbyv − xayv − ybxv + yaxv) (A.29)

J = 2(x2
v + y2

v)(xayb − yaxb) (A.30)

K = (x2
a + y2

a)(xbyv − ybxv) + (x2
b + y2

b)(yaxv − xayv). (A.31)

A.3.1 Function G

We consider function G (Eq. (A.27)). By taking G = 0, we get

t =
xayb − yaxb

(xa − xb)yv − (ya − yb)xv
. (A.32)

If we use the notation −→v ×−→w for the outer product of vectors −→v and −→w , we get

t =
−→a ×

−→
b

−→
ba ×−→q

, (A.33)

where
−→
ba = (xa − xb, ya − yb)′.

Recall that three cases A, B, and C presented in Section 2.6.4. We observe that this t-

value means that for each case. For case A, an example was shown in Fig. 2.14. Eq. (A.33)

takes the value t = 2.5, and it corresponds to the local maximum. For case B, Eq. (A.33)

corresponds to the minimum value. In Fig. 2.15, the value is t = 2.2. For case C, when
−→
ab is parallel to −→q (

−→
ab ×−→q = 0), t =∞ because the denominator is zero.

Appendix A. Appendix for DBS Queries 121

In summary, we obtained the following properties:

1. In case A (a, b are on the same side and
−→
ab is not parallel to −→q), Eq. (A.33) gives

the t-value at which the cosine function takes the local maximum 1.

2. In case B (a, b are on the different sides), Eq. (A.33) gives the t-value at which the

cosine function takes the local minimum −1.

3. In case C (a, b are on the same side and
−→
ab is parallel to −→q), Eq. (A.33) does not

correspond to the local minimum.

A.3.2 Function H

We want to know the condition when H = 0 holds. Thus, we consider the discriminant

of H in Eq. (A.28):

J2 − 4IK = 4(x2
v + y2

v)[(x2
v + y2

v)(xayb − yaxb)2 −

−(xbyv − xayv − ybxv + yaxv)K]. (A.34)

Since x2v + y2v > 0, it is suffice to analyze

(x2
v + y2

v)(xayb − yaxb)2 − (xbyv − xayv − ybxv + yaxv)K

= |
−→
ba|2(−→a ×−→q)(

−→
b ×−→q), (A.35)

and since |
−→
ab|2 > 0, we consider

M = (−→a ×−→q)(
−→
b ×−→q) = (xayv − yaxv)(xbyv − ybxv). (A.36)

There are four cases.

1. If M = 0, this situation corresponds when xayv − yaxv = 0 or xbyv − ybxv = 0,

namely,
xa
ya

=
xv
yv

or
xb
yb

=
xv
yv
. (A.37)

Each one corresponds to the case that a (or b) is located on the trajectory of the

query object. We can exclude this situation from the consideration.

Appendix A. Appendix for DBS Queries 122

2. If M > 0, firstly consider the case when (xayv− yaxv > 0)∧ (xbyv− ybxv > 0). This

situation corresponds to the case xa/ya > xv/yv and xb/yb > xv/yv. It means that

two points a and b are located on the upper side of the trajectory. Since M > 0,

function H takes zero’s for two different t values. Given values for −→a ,
−→
b , −→q , we

can easily obtain the two t values using the quadratic formula:

t =
−J ±

√
J2 − 4IK

2I

=
−|−→q |(−→a ×

−→
b)± |

−→
ab|
√

(−→a ×−→q)(
−→
b ×−→q)

|−→q |(
−→
ab ×−→q)

. (A.38)

Second, when (xayv−yaxv < 0)∧ (xbyv−ybxv < 0), the situation is the same except

that a and b are located on the lower side of the trajectory. This case corresponds

to case A in Section 2.6.4.

3. If M < 0, the situation corresponds to the case (xayv−yaxv > 0)∧(xbyv−ybxv < 0)

or (xayv − yaxv < 0) ∧ (xbyv − ybxv > 0). It means that a and b are located in the

different sides of the trajectory. In this case, since M < 0, function H does not have

solutions. This situation is case B in Section 2.6.4.

Note that if I = (x2v + y2v)(xbyv − xayv − ybxv + yaxv) > 0, namely, if xbyv −

xayv − ybxv + yaxv > 0, H > 0 always holds. On the other hand, if xbyv − xayv −

ybxv + yaxv < 0, H < 0 always holds. Now remember that function F is defined as

F = 2GH and G is defined as G = (xbyv − xayv − ybxv + yaxv)t + (xayb − yaxb).

If xbyv − xayv − ybxv + yaxv > 0, G is a monotonically increasing function and

if xbyv − xayv − ybxv + yaxv < 0, G is a monotonically decreasing function. By

combining these results, we can say that F is a monotonically increasing function.

Thus, cosϕab has one local minimum.

4. If
−→
ab is parallel to −→q , we need to consider an exceptional case. This corresponds to

case C in Section 2.6.4:

xbyv − xayv − ybxv + yaxv = 0. (A.39)

It means that I = 0 (Eq. (A.29)) for function H = It2 + Jt + K (Eq. (A.28)).

Therefore, H = 2|−→q |2(−→a ×
−→
b)t+K is a linear function. In this case, note that G

is a constant: G = −→a ×
−→
b . Therefore, F = 2GH = 2|−→q |2(−→a ×

−→
b)2t+ (−→a ×

−→
b)K

Appendix A. Appendix for DBS Queries 123

and it is a monotonically increasing function. It is concluded that cosϕab has one

local minimum. Thus, F takes a local minimum when H = 0. By taking H = 0, we

get

t =
|−→a |2(

−→
b ×−→q)− |

−→
b |2(−→a ×−→q)

2|−→q |2(
−→
b ×−→a)

. (A.40)

At this t-value, cosϕab takes a local minimum.

A.4 Proofs of Property 8 and Property 9

Proof 5 (Proof of Property 8). Assume object p is dominated by object pi when q is

located at vi, and object p is dominated by object pj when q is located at vj . Based on

Property 5, object pi locates on the shortest path from vi to p, and object pj locates on

the shortest path from vj to p. If Property 8 is not valid, there must be at least one point

q′ of e(vi, vj) such that p is not dominated when q is located at q′. As q′ ∈ e(vi, vj), the

shortest path from q′ to p must pass either vi or vj . If SP (q′, p) passes vi, SP (q′, p) =

SP (q′, vi)∪SP (vi, p) which means object pi still locates on the shortest path from q′ to p,

and hence pi dominates p. The same analysis holds for vj . Consequently, the assumption

that when q locates at q′, object p is not dominated is invalid, and our proof completes.

Proof 6 (Proof of Property 9). Assume Property 9 is invalid, there must be at least one

point q′ ∈ e(vi, vj) such that when q locates at q′, object p is not a DBS point (i.e., ∃p′

such that p′ ≺ p). Based on Property 5, object p′ locates on the shortest path from q′

to p. If SP (q′, p) passes vi, object p′ should locate on the shortest path from vi to p.

Consequently, q′ dominates object p when q = vi which contradicts the fact that p is a

DBS point when q = vi. The same analysis holds for vj . Thus, our assumption is invalid

and the proof completes.

Bibliography

[1] Adrian C. Ott. The 24-Hour Customer: New Rules for Winning in a Time-Starved,

Always-Connected Economy. HarperBusiness, 2010. ISBN 0061798614.

[2] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data (Data-

Centric Systems and Applications). Springer-Verlag, 2006. ISBN 3540378812.

[3] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction

to Information Retrieval. Cambridge University Press, 2008. ISBN 0521865719,

9780521865715.

[4] A. Rajaraman and J.D. Ullman. Mining of Massive Datasets. Cambridge University

Press, 2011. ISBN 9781107015357.

[5] Apostolos N. Papadopoulos. Nearest Neighbor Search: A Database Perspective.

Springer-Verlag, 2004. ISBN 0387229639.

[6] Zhexuan Song and Nick Roussopoulos. K-nearest neighbor search for moving query

point. In Proc. of the Symp. on Spatial and Temporal Databases (SSTD), pages

79–96, 2001.

[7] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor

search. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages 287–

298, 2002.

[8] Ken C. K. Lee, Wang-Chien Lee, and Hong Va Leong. Nearest surrounder

queries. IEEE Trans. Knowl. Data Eng., 22(10):1444–1458, 2010. DOI:

10.1109/TKDE.2009.172.

[9] Ken C. K. Lee, Josh Schiffman, Baihua Zheng, Wang-Chien Lee, and Hong Va

Leong. Round-eye: A system for tracking nearest surrounders in moving object

124

http://dx.doi.org/10.1109/TKDE.2009.172
http://dx.doi.org/10.1109/TKDE.2009.172

Bibliography 125

environments. Journal of Systems and Software, 80(12):2063–2076, 2007. DOI:

10.1016/j.jss.2007.03.007.

[10] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline operator.

In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 421–430, 2001.

DOI: 10.1109/ICDE.2001.914855.

[11] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query

processing techniques in relational database systems. ACM Comput. Surv., 40(4):

11:1–11:58, October 2008. DOI: 10.1145/1391729.1391730.

[12] Md. Anisuzzaman Siddique and Yasuhiko Morimoto. Algorithm for computing convex

skyline objectsets on numerical databases. IEEE Trans. Inf. & Syst., 93-D(10):2709–

2716, 2010. DOI: 10.1587/transinf.E93.D.2709.

[13] I-Fang Su, Yu-Chi Chung, and Chiang Lee. Top-k combinatorial skyline queries. In

Proc. of the Int’l Conf. on Database Systems for Advanced Applications (DASFAA),

pages 79–93, 2010. DOI: 10.1007/978-3-642-12098-5˙6.

[14] Yunjun Gao, Baihua Zheng, Gang Chen, Chun Chen, and Qing Li. Continuous

nearest-neighbor search in the presence of obstacles. ACM Trans. Database Syst., 36

(2):9:1–9:43, 2011. DOI: 10.1145/1966385.1966387.

[15] Yunjun Gao, Baihua Zheng, Gencai Chen, Qing Li, and Xiaofa Guo. Continuous

visible nearest neighbor query processing in spatial databases. The VLDB Journal,

20(3):371–396, 2011. DOI: 10.1007/s00778-010-0200-z.

[16] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Visible nearest neighbor queries.

In Proc. of the Int’l Conf. on Database Syst. for Advanced Applications (DASFAA),

pages 876–883, 2007. DOI: 10.1007/978-3-540-71703-4˙73.

[17] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and Xuefei

Li. Continuous reverse k nearest neighbors queries in euclidean space and in spatial

networks. The VLDB Journal, 21(1):69–95, 2012. DOI: 10.1007/s00778-011-0235-9.

[18] Dimitris Papadias and Yufei Tao. Reverse nearest neighbor query. In Encyclopedia

of Database Systems, pages 2434–2438. 2009. DOI: 10.1007/978-0-387-39940-9˙318.

http://dx.doi.org/10.1016/j.jss.2007.03.007
http://dx.doi.org/10.1016/j.jss.2007.03.007
http://dx.doi.org/10.1109/ICDE.2001.914855
http://dx.doi.org/10.1145/1391729.1391730
http://dx.doi.org/10.1587/transinf.E93.D.2709
http://dx.doi.org/10.1007/978-3-642-12098-5_6
http://dx.doi.org/10.1145/1966385.1966387
http://dx.doi.org/10.1007/s00778-010-0200-z
http://dx.doi.org/10.1007/978-3-540-71703-4_73
http://dx.doi.org/10.1007/s00778-011-0235-9
http://dx.doi.org/10.1007/978-0-387-39940-9_318

Bibliography 126

[19] Wei Wu, Fei Yang, Chee Yong Chan, and Kian-Lee Tan. Continuous reverse k-

nearest-neighbor monitoring. In Proc. of the Int’l Conf. on Mobile Data Management

(MDM), pages 132–139, 2008. DOI: 10.1109/MDM.2008.31.

[20] J.H. Schiller and A. Voisard. Location-Based Services. Morgan Kaufmann Series in

Data Management Systems. Morgan Kaufmann, 2004. ISBN 9781558609297.

[21] R.H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann Series

in Data Management Systems. Elsevier, 2005. ISBN 9780120887996.

[22] Yifan Li, Jiong Yang, and Jiawei Han. Continuous k-nearest neighbor search for

moving objects. In Proc. of the Int’l Conf. on Scientific and Statistical Database

Management (SSDBM), pages 123–126, 2004. DOI: 10.1109/SSDBM.2004.24.

[23] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach to CNN

queries in a road network. In Proc. of the Int’l Conf. on Very Large Data Bases

(VLDB), pages 865–876, 2005.

[24] Zaiben Chen, Heng Tao Shen, Xiaofang Zhou, and Jeffrey Xu Yu. Monitoring path

nearest neighbor in road networks. In Proc. of the ACM SIGMOD Int’l Conf. on Man-

agement of Data (SIGMOD), pages 591–602, 2009. DOI: 10.1145/1559845.1559907.

[25] Haibo Hu, Dik Lun Lee, and Jianliang Xu. Fast nearest neighbor search on road

networks. In Proc. of the Int’l Conf. on Extending Database Technology (EDBT),

pages 186–203, 2006. DOI: 10.1007/11687238˙14.

[26] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with pre-

sorting. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 717–719,

2003. DOI: 10.1109/ICDE.2003.1260846.

[27] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Maximal vector computation in large

data sets. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages

229–240, 2005. DOI: 10.1.1.60.4954.

[28] Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. Progressive skyline

computation in database systems. ACM Trans. Database Syst., 30(1):41–82, 2005.

DOI: 10.1145/1061318.1061320.

http://dx.doi.org/10.1109/MDM.2008.31
http://dx.doi.org/10.1109/SSDBM.2004.24
http://dx.doi.org/10.1145/1559845.1559907
http://dx.doi.org/10.1007/11687238_14
http://dx.doi.org/10.1109/ICDE.2003.1260846
http://dx.doi.org/10.1.1.60.4954
http://dx.doi.org/10.1145/1061318.1061320

Bibliography 127

[29] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.

of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD), pages 47–57,

1984. DOI: 10.1145/602259.602266.

[30] Y. Collette and P. Siarry. Multiobjective Optimization: Principles and Case Studies.

Decision Engineering. Springer, 2004. ISBN 9783540401827.

[31] Kalyanmoy Deb and Deb Kalyanmoy. Multi-Objective Optimization Using Evolu-

tionary Algorithms. Wiley, 2001. ISBN 047187339X.

[32] Zhiyong Huang, Christian S. Jensen, Hua Lu, and Beng Chin Ooi. Skyline queries

against mobile lightweight devices in manets. In Proc. of the IEEE Int’l Conf. on

Data Engineering (ICDE), page 66, 2006. DOI: 10.1109/ICDE.2006.142.

[33] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. Angle-based space par-

titioning for efficient parallel skyline computation. In Proc. of the ACM SIG-

MOD Int’l Conf. on Management of Data (SIGMOD), pages 227–238, 2008. DOI:

10.1145/1376616.1376642.

[34] Zhiyong Huang, Hua Lu, Beng Chin Ooi, and Anthony K. H. Tung. Continuous

skyline queries for moving objects. IEEE Trans. Knowl. Data Eng., 18(12):1645–

1658, 2006. DOI: 10.1109/TKDE.2006.185.

[35] Baihua Zheng, Ken C. K. Lee, and Wang-Chien Lee. Location-dependent skyline

query. In Proc. of the Int’l Conf. on Mobile Data Management (MDM), pages 148–

155, 2008. DOI: 10.1109/MDM.2008.14.

[36] Kostas Patroumpas and Timos K. Sellis. Monitoring orientation of moving objects

around focal points. In Proc. of the Symp. on Spatial and Temporal Databases

(SSTD), pages 228–246, 2009. DOI: 10.1007/978-3-642-02982-0˙16.

[37] Nan Chen, Lidan Shou, Gang Chen, Yunjun Gao, and Jinxiang Dong. Predictive

skyline queries for moving objects. In Proc. of the Int’l Conf. on Database Systems

for Advanced Applications (DASFAA), pages 278–282, 2009. DOI: 10.1007/978-3-

642-00887-0˙23.

[38] Mu-Woong Lee and Seung-won Hwang. Continuous skylining on volatile moving

data. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 1568–

1575, 2009. DOI: 10.1109/ICDE.2009.162.

http://dx.doi.org/10.1145/602259.602266
http://dx.doi.org/10.1109/ICDE.2006.142
http://dx.doi.org/10.1145/1376616.1376642
http://dx.doi.org/10.1145/1376616.1376642
http://dx.doi.org/10.1109/TKDE.2006.185
http://dx.doi.org/10.1109/MDM.2008.14
http://dx.doi.org/10.1007/978-3-642-02982-0_16
http://dx.doi.org/10.1007/978-3-642-00887-0_23
http://dx.doi.org/10.1007/978-3-642-00887-0_23
http://dx.doi.org/10.1109/ICDE.2009.162

Bibliography 128

[39] Xuegang Huang and Christian S. Jensen. In-route skyline querying for location-based

services. In Proc. of the Int’l Symp. on Web and Wireless Geographical Information

Systems (W2GIS), pages 120–135, 2004. DOI: 10.1007/11427865˙10.

[40] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A. Lopez.

Indexing the positions of continuously moving objects. In Proc. of the ACM SIG-

MOD Int’l Conf. on Management of Data (SIGMOD), pages 331–342, 2000. DOI:

10.1145/342009.335427.

[41] Mehdi Sharifzadeh and Cyrus Shahabi. The spatial skyline queries. In Proc. of the

Int’l Conf. on Very Large Data Bases (VLDB), pages 751–762, 2006.

[42] Wanbin Son, Mu-Woong Lee, Hee-Kap Ahn, and Seung-Won Hwang. Spatial skyline

queries: An efficient geometric algorithm. In Proc. of the Symp. on Spatial and

Temporal Databases (SSTD), pages 247–264, 2009. DOI: 10.1007/978-3-642-02982-

0˙17.

[43] Katerina Raptopoulou, Apostolos Papadopoulos, and Yannis Manolopoulos. Fast

nearest-neighbor query processing in moving-object databases. GeoInformatica, 7

(2):113–137, 2003. DOI: 10.1023/A:1023403908170.

[44] Xi Guo, Yoshiharu Ishikawa, and Yunjun Gao. Direction-based spatial skylines.

In Proc. of the Int’l ACM Workshop on Data Engineering for Wireless and Mobile

Access (MobiDE), pages 73–80, 2010. DOI: 10.1145/1850822.1850835.

[45] Xi Guo, Baihua Zheng, Yoshiharu Ishikawa, and Yunjun Gao. Direction-based sur-

rounder queries for mobile recommendations. The VLDB Journal, 20(5):743–766,

October 2011. DOI: 10.1007/s00778-011-0241-y.

[46] GNU. Gnu scientific library. Website, 2011. http://www.gnu.org/software/gsl/.

[47] U.S. Census Bureau. Tiger, u.s. census bureau. Website, 1990. http://tiger.

census.gov/.

[48] Norio Katayama. R∗-tree library. Website, 1997. http://research.nii.ac.jp/

~katayama/homepage/research/srtree/English.html.

[49] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing

in spatial network databases. In Proc. of the Int’l Conf. on Very Large Data Bases

(VLDB), pages 802–813, 2003.

http://dx.doi.org/10.1007/11427865_10
http://dx.doi.org/10.1145/342009.335427
http://dx.doi.org/10.1145/342009.335427
http://dx.doi.org/10.1007/978-3-642-02982-0_17
http://dx.doi.org/10.1007/978-3-642-02982-0_17
http://dx.doi.org/10.1023/A:1023403908170
http://dx.doi.org/10.1145/1850822.1850835
http://dx.doi.org/10.1007/s00778-011-0241-y
http://www.gnu.org/software/gsl/
http://tiger.census.gov/
http://tiger.census.gov/
http://research.nii.ac.jp/~katayama/homepage/research/srtree/English.html
http://research.nii.ac.jp/~katayama/homepage/research/srtree/English.html

Bibliography 129

[50] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[51] Mohammad R. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor

search for spatial network databases. In Proc. of the Int’l Conf. on Very Large Data

Bases (VLDB), pages 840–851, 2004.

[52] Haibo Hu, Dik Lun Lee, and Victor C. S. Lee. Distance indexing on road networks.

In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages 894–905, 2006.

[53] Ken C. K. Lee, Wang-Chien Lee, and Baihua Zheng. Fast object search on road

networks. In Proc. of the Int’l Conf. on Extending Database Technology (EDBT),

pages 1018–1029, 2009. DOI: 10.1145/1516360.1516476.

[54] Mohammad R. Kolahdouzan and Cyrus Shahabi. Alternative solutions for continuous

k nearest neighbor queries in spatial network databases. GeoInformatica, 9(4):321–

341, 2005. DOI: 10.1007/s10707-005-4575-8.

[55] Cyrus Shahabi, Mohammad R. Kolahdouzan, and Mehdi Sharifzadeh. A road net-

work embedding technique for k-nearest neighbor search in moving object databases.

GeoInformatica, 7(3):255–273, 2003. DOI: 10.1023/A:1025153016110.

[56] Christian S. Jensen, Jan Kol’arvr, Torben Bach Pedersen, and Igor Timko. Nearest

neighbor queries in road networks. In Proc. of the ACM SIGSPATIAL Int’l Conf. on

Advances in Geographic Information Systems (ACM SIGSPATIAL GIS), pages 1–8,

2003. DOI: 10.1145/956676.956677.

[57] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis. Con-

tinuous nearest neighbor monitoring in road networks. In Proc. of the Int’l Conf. on

Very Large Data Bases (VLDB), pages 43–54, 2006.

[58] Ugur Demiryurek, Farnoush Banaei-Kashani, and Cyrus Shahabi. Efficient continu-

ous nearest neighbor query in spatial networks using euclidean restriction. In Proc.

of the Symp. on Spatial and Temporal Databases (SSTD), pages 25–43, 2009. DOI:

10.1007/978-3-642-02982-0˙5.

[59] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network

distance browsing in spatial databases. In Proc. of the ACM SIGMOD Int’l Conf. on

Management of Data (SIGMOD), pages 43–54, 2008. DOI: 10.1145/1376616.1376623.

http://dx.doi.org/10.1145/1516360.1516476
http://dx.doi.org/10.1007/s10707-005-4575-8
http://dx.doi.org/10.1023/A:1025153016110
http://dx.doi.org/10.1145/956676.956677
http://dx.doi.org/10.1007/978-3-642-02982-0_5
http://dx.doi.org/10.1007/978-3-642-02982-0_5
http://dx.doi.org/10.1145/1376616.1376623

Bibliography 130

[60] Ning Jing, Yun-Wu Huang, and Elke A. Rundensteiner. Hierarchical encoded path

views for path query processing: An optimal model and its performance evalua-

tion. IEEE Trans. on Knowl. and Data Eng., 10(3):409–432, May 1998. DOI:

10.1109/69.687976.

[61] Fang Wei. Tedi: efficient shortest path query answering on graphs. In Proc. of the

ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD), pages 99–110, 2010.

DOI: 10.1145/1807167.1807181.

[62] Thomas Brinkhoff. A framework for generating network-based moving objects.

GeoInformatica, 6(2):153–180, 2002. DOI: 10.1023/A:1015231126594.

[63] Man Lung Yiu and Nikos Mamoulis. Clustering objects on a spatial network. In

Proc. of the ACM SIGMOD Int’l Conf. on Management of Data (SIGMOD), pages

443–454, 2004. DOI: 10.1145/1007568.1007619.

[64] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and Shang-Hua

Teng. On trip planning queries in spatial databases. In Proc. of the Symp. on Spatial

and Temporal Databases (SSTD), pages 273–290, 2005. DOI: 10.1007/11535331˙16.

[65] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu, and

Shuigeng Zhou. Shortest path and distance queries on road networks: An experi-

mental evaluation. Proceedings of the VLDB Endowment (PVLDB), 5(5):406–417,

2012.

[66] Xuemin Lin, Yidong Yuan, Qing Zhang, and Ying Zhang. Selecting stars: The k

most representative skyline operator. In Proc. of The IEEE Int’l Conf. on Data

Engineering (ICDE), pages 86–95, 2007. DOI: 10.1109/ICDE.2007.367854.

[67] Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, Richard J. Lipton, and

Jun (Jim) Xu. Representative skylines using threshold-based preference distribu-

tions. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 387–398,

2011. DOI: 10.1109/ICDE.2011.5767873.

[68] Yufei Tao, Ling Ding, Xuemin Lin, and Jian Pei. Distance-based representative

skyline. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 892–

903, 2009. DOI: 10.1109/ICDE.2009.84.

http://dx.doi.org/10.1109/69.687976
http://dx.doi.org/10.1109/69.687976
http://dx.doi.org/10.1145/1807167.1807181
http://dx.doi.org/10.1023/A:1015231126594
http://dx.doi.org/10.1145/1007568.1007619
http://dx.doi.org/10.1007/11535331_16
http://dx.doi.org/10.1109/ICDE.2007.367854
http://dx.doi.org/10.1109/ICDE.2011.5767873
http://dx.doi.org/10.1109/ICDE.2009.84

Bibliography 131

[69] Senjuti Basu Roy, Sihem Amer-Yahia, Ashish Chawla, Gautam Das, and Cong

Yu. Constructing and exploring composite items. In Proc. of the ACM SIG-

MOD Int’l Conf. on Management of Data (SIGMOD), pages 843–854, 2010. DOI:

10.1145/1807167.1807258.

[70] Qian Wan, Raymond Chi-Wing Wong, and Yu Peng. Finding top-k profitable prod-

ucts. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE), pages 1055–1066,

2011. DOI: 10.1109/ICDE.2011.5767895.

[71] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliography of

multiobjective combinatorial optimization. OR Spectrum, 22(4):425–460, 2000.

[72] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer,

2004. ISBN 3540402861.

[73] Md. Mostofa Akbar, Mohammad Sohel Rahman, Mohammad Kaykobad, Eric G.

Manning, and Gholamali C. Shoja. Solving the multidimensional multiple-choice

knapsack problem by constructing convex hulls. Computers & OR, 33:1259–1273,

2006. DOI: 10.1016/j.cor.2004.09.016.

[74] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press,

2003. ISBN 0521825830.

[75] Dimitris Papadias, Nikos Mamoulis, and Vasilis Delis. Algorithms for querying by

spatial structure. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),

pages 546–557, 1998.

[76] Xi Guo and Yoshiharu Ishikawa. Multi-objective optimal combination queries. In

Proc. of the Int’l Conf. on Database and Expert Systems Applications (DEXA), pages

47–61, 2011. DOI: 10.1007/978-3-642-23088-2˙4.

[77] Xi Guo, Chuan Xiao, and Yoshiharu Ishikawa. Combination skyline queries. Trans-

actions on Large-Scale Data- and Knowledge Centered Systems VI, 7600:1–30, 2012.

DOI: 10.1007/978-3-642-34179-3˙1.

[78] Marios Hadjieleftheriou, Erik G. Hoel, and Vassilis J. Tsotras. Sail: A spatial index

library for efficient application integration. GeoInformatica, 9(4):367–389, 2005. DOI:

10.1007/s10707-005-4577-6.

http://dx.doi.org/10.1145/1807167.1807258
http://dx.doi.org/10.1145/1807167.1807258
http://dx.doi.org/10.1109/ICDE.2011.5767895
http://dx.doi.org/10.1016/j.cor.2004.09.016
http://dx.doi.org/10.1007/978-3-642-23088-2_4
http://dx.doi.org/10.1007/978-3-642-34179-3_1
http://dx.doi.org/10.1007/s10707-005-4577-6
http://dx.doi.org/10.1007/s10707-005-4577-6

Bibliography 132

[79] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie

Zhang. On high dimensional skylines. In Proc. of the Int’l Conf. on Extending

Database Technology (EDBT), pages 478–495, 2006. DOI: 10.1007/11687238˙30.

[80] Tobin J. Lehman and Michael J. Carey. A study of index structures for main memory

database management systems. In Proc. of the Int’l Conf. on Very Large Data Bases

(VLDB), pages 294–303, 1986.

[81] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse kNN search in arbitrary

dimensionality. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages

744–755, 2004.

http://dx.doi.org/10.1007/11687238_30

List of Publications

Journal Papers

• Xi Guo, Baihua Zheng, Yoshiharu Ishikawa, and Yunjun Gao, “Direction-Based

Surrounder Queries for Mobile Recommendations”, The VLDB Journal, Vol. 20,

No. 5, pp. 743–766, 2011.

• Xi Guo, Chuan Xiao, and Yoshiharu Ishikawa,“Combination Skyline Queries”, Trans-

actions on Large-Scale Data- and Knowledge Centered Systems, VI, LNCS 7600, pp.

1–30, 2012.

International Conference/Workshop Papers

• Kazuki Kodama, Yuichi Iijima, Xi Guo, and Yoshiharu Ishikawa, “Skyline Queries

Based on User Locations and Preferences for Location-Based Recommendations”,

Proceedings of the 2009 International Workshop on Location Based Social Networks

(LBSN 2009), pp.9–16, Seattle, Washington, USA, November, 2009.

• Xi Guo, Yoshiharu Ishikawa, and Yunjun Gao, “Direction-Based Spatial Skylines”,

Proceedings of the 11th International ACM Workshop on Data Engineering for Wire-

less and Mobile Access (MobiDE 2010), pp.73–80, Indianapolis, Indiana, USA, June,

2010.

• Xi Guo and Yoshiharu Ishikawa, “Multi-Objective Optimal Combination Queries”,

Proceedings of the 22nd International Conference on Database and Expert Systems

Applications (DEXA 2011), pp.47–61, Toulouse, France, August, 2011.

• Masanori Mano, Xi Guo, Tingting Dong, and Yoshiharu Ishikawa, “Privacy Preser-

vation for Location-Based Services Based on Attribute Visibility”, Proceedings of the

133

Publications 134

2nd International Workshop on Information Management for Mobile Applications

(IMMoA 2012), pp. 33–41, Istanbul, Turkey, August, 2012.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Research Background
	1.2 Research Objectives and Contributions
	1.3 Related Work
	1.4 Thesis Organization

	2 Direction-Based Surrounder Queries in the Euclidean Space
	2.1 Motivation
	2.2 Problem
	2.2.1 Snapshot E-DBS Queries
	2.2.2 Continuous E-DBS Queries

	2.3 Related Work
	2.3.1 Direction-Based kNN Queries
	2.3.2 Location-Based Skyline Queries
	2.3.3 Quoted Work
	2.3.4 Summary

	2.4 Preliminaries
	2.4.1 Dominance Relationship and E-DBS Query
	2.4.2 Directional Closeness
	2.4.3 Two Minor Issues

	2.5 Processing of Snapshot Queries
	2.5.1 First Observation: Search Space Pruning
	2.5.2 Second Observation: Early Termination
	2.5.3 Algorithm

	2.6 Processing of Continuous Queries
	2.6.1 Basic Idea
	2.6.2 Finding Adjacent Objects
	2.6.3 Checking Dominance
	2.6.4 Checking Termination Condition

	2.7 Experiments
	2.7.1 Settings
	2.7.2 Performances of Snapshot Queries
	2.7.3 Performances of Continuous Queries

	3 Direction-Based Surrounder Queries in Road Networks
	3.1 Problem
	3.1.1 Snapshot R-DBS Queries
	3.1.2 Continuous R-DBS Queries

	3.2 Related Work
	3.2.1 kNN Queries in Road Networks
	3.2.2 Path Nearest Neighbor Query
	3.2.3 Quoted Work
	3.2.4 Summary

	3.3 Preliminaries
	3.3.1 Dominance Relationship and R-DBS Query
	3.3.2 Directional Closeness

	3.4 Processing of Snapshot Queries
	3.4.1 Property
	3.4.2 Naïve Algorithm
	3.4.3 Optimized Algorithm

	3.5 Processing of Continuous Queries
	3.5.1 Basic Idea
	3.5.2 Properties
	3.5.3 Algorithms
	3.5.4 Discussion

	3.6 Experiments
	3.6.1 Settings
	3.6.2 Performances of Snapshot Queries
	3.6.3 Performances of Continuous Queries
	3.6.4 Screenshots

	4 Combination Skyline Queries
	4.1 Motivation
	4.2 Problem
	4.3 Related Work
	4.3.1 Combination Skyline Queries
	4.3.2 Other Combination Queries
	4.3.3 Quoted Work
	4.3.4 Summary

	4.4 Preliminaries
	4.5 PBP Algorithm
	4.5.1 Object-Selecting Pattern
	4.5.2 Basic PBP Algorithm

	4.6 Optimized PBP Algorithm
	4.6.1 Pattern-Pattern Pruning
	4.6.2 Pattern-Combination Pruning
	4.6.3 Pattern Expansion Reduction
	4.6.4 Complete Algorithm

	4.7 Variations of PBP Algorithm
	4.7.1 Incremental Combination Skyline
	4.7.2 Constrained Combination Skyline

	4.8 Experiments
	4.8.1 Settings
	4.8.2 Experiments on Synthetic Datasets
	4.8.3 Experiments on Real Datasets
	4.8.4 Summary

	5 Conclusions and Future Work
	5.1 Conclusions
	5.1.1 DBS Queries
	5.1.2 Combination Skyline Queries

	5.2 Future Work
	5.2.1 DBS Queries
	5.2.2 Combination Skyline Queries

	A Appendix for DBS Queries
	A.1 Processing of Continuous kNN Queries
	A.2 Details of Dominance Checking
	A.3 Details of Termination Checking
	A.3.1 Function G
	A.3.2 Function H

	A.4 Proofs of Property ?? and Property ??

	Bibliography

