

・ 超高層大気長期変動の全球地上ネットワーク観測・研究
 Inter-university Upper atmosphere Global Observation NETwork

CUIの使い方(後編):calcコマンド、get_dataや store_dataの使い方、時系列データのフィルター 処理、スペクトル解析方法

堀 智昭 (名古屋大STE研)

Hori, IUGONETデータ解析講習会 @RISH

・UDAS環境をリセットしてください

- 入門編・CUIの使い方(前編)では、データのロード、プロットの 基礎を行った。
- CUIの使い方(後編)では…
 - UDAS上での汎用データ形式である "tplot変数" の中身について 理解し、各自の手持ちのデータから独自の tplot変数 を生成する 方法を学ぶ。
 - 非常に便利なtplot変数を使った演算について学ぶ。
 - スムージング、バンドパスフィルター、周波数スペクトル導出な ど、よく用いられる時系列解析のやり方を覚える。

GUIよりCUI(コマンドラインでの操作)の方が自由度が高く、UDAS に慣れてくるとコマンドを使う方が断然便利!

tplot変数の取り扱いと演算

- UDASのベースになっているTDAS (THEMIS Data Analysis Software)での、汎用時系列データ形式。
- IDL上では単なる文字列だが、tplot等のいわゆるtコマン ドに与えると、tplot変数名に紐付けられた時系列データの実体に対して、コマンド処理が実行される。

IUGONET get_data を使ってtplot変数の中身を見る

THEMIS> help , d, /struct	
** Structure <5bd10a0>, 2	2 tags, length=138240, data length=138240, refs=1:
X DOUBLE A	Array[4320]
Y DOUBLE A	Array[4320, 3]

tplot変数の実体のデータ構造体 (今の場合は d) は X, Y という2つのメンバーを持っている。

X: 倍精度浮動小数点で表したUnix time (1970年1月1日0時0分0秒UTからの積算秒数) この例では 4320個の1次元配列。つまりデータのtime frame は4320個ある。 このデータは1分値で3日分なので、1日=1440分 x 3 日分 で 4320。

Y: 実際にデータが入っている配列

この場合、4320 x 3 の2次元配列。ちなみに第2次元の3 は地磁気H, D, Z の3成分。

IUGONET get_data を使ってtplot変数の中身を見る

```
THEMIS> help, dl, /struct
** Structure <5b83c18>, 4 tags, length=952, data length=950, refs=2:
                   -> <Anonymous> Array[1]
 CDF
          STRUCT
                                         Dlimits構造体にはメタデータ(データに
 SPEC
           BYTF
                   0
                                         関する各種情報)が格納される。
 LOG BYTE
                   0
                                         例えば CDF はこれ自体も構造体であり、
 YSUBTITLE
             STRING
                     '[nT]'
                                         元データファイルであるCDFファイルの
                                         情報(ファイルのセーブ場所など)が格
    もっと他にも入ることがある
                                         納されている。
THEMIS> help, lim, /struct
** Structure <5b6b178>, 3 tags, length=48, data length=44, refs=2:
                  Array[3]
 COLORS
             INT
                                      lim 構造体の方には主にプロッ
 LABELS
                    Array[3]
            STRING
                                      ト等に可視化する際に必要な
 LABFLAG INT
                      1
                                      情報が入っている。
                                      例えば tplot コマンドがtplot変
                                       数をプロットする場合、ここの情
                                      報を参照して、線の色や縦軸
                                       のラベル、凡例等を描画する。
```


time: データの時刻ラベルを倍精度浮動小数点のUnix time の配列にしたもの 1次元配列 [N] N: 時刻ラベル数

val: データの配列。スカラーデータの場合は [N] (timeと同じサイズ)、1次元ベクトル データの場合は [N][J] (J がベクトルの成分数) という配列。

というような time, val を用意すればtplot変数を作成できる。

(前ページの続きで)

```
THEMIS> time = d.x
```

```
THEMIS> val = d.y / 2.0
```

THEMIS> store_data, 'mm210_mag_rik_1min_hdz_half', data = { x:time, y:val }

Creating tplot variable: 3 mm210_mag_rik_1min_hdz_half

THEMIS> tplot, ['mm210_mag_rik_1min_hdz', 'mm210_mag_rik_1min_hdz_half']

実際にtplotでプロッ

トして確認してみる

store_dataで新規tplot変数を作成

THEMIS> tplot, ['mm210_mag_rik_1min_hdz', 'mm210_mag_rik_1min_hdz_half']

IUGONET

Hori, IUGONETデータ解析講習会 @RISH

calc, ' "新**t**plot 変数名" = ... 計算式 ... ' (例) calc, ' "newvar" = "mm210_mag_rik_1min_hdz" + 40. '

時系列データであるtplot変数全体を使った演算を、直感的にわかり易い形で書いて 実行することができる!

実は、前頁のstore_data を使ってやったことは、

calc, ' "mm210_mag_rik_1min_hdz_half" = "mm210_mag_rik_1min_hdz" / 2.0 '

と、わずか1行で実行できる!

calc, ' "新tplot変数名" = ... 計算式 ... ' (例) calc, ' "newvar" = "mm210_mag_rik_1min_hdz" + 40. '

- フォーマットは普通の計算式と同じ。全体を単引用符
 (')で囲む。tplot変数は二重引用符(")で囲む。
- 使用可能な演算: 四則(+-*/), べき乗, sin/cos/tan(),exp(), log(), abs(), min(), max(), total(), mean(), median(), …
 注意点
- 複数のtplot変数を演算に使う場合、実体の配列のサイズ・次元が同一でないといけない。データの時刻数が異なる、データの次元が異なる(スカラーデータとベクトルデータの混在など)とエラーになる。

calcの練習

THEMIS> split_vec, 'mm210_mag_rik_1min_hdz' HDZ3成分を別々のtplot変数に分解する

THEMIS> calc, ' "mm210_rik_hd" = sqrt("mm210_mag_rik_1min_hdz_x"^2 + "mm210_mag_rik_1min_hdz_y"^2) '

THEMIS> tplot, ['mm210_mag_rik_1min_hdz' , 'mm210_rik_hd']

Hori, IUGONETデータ解析講習会 @RISH

2013/2/27

<u>オーロラ降下粒子観測から電離圏電気伝導度を導出</u> calc, ' "sigmaP" = 40.* "prep_avgE" * $\Sigma_{p} = \frac{40E}{16 + E^{2}} \Phi_{E}^{1/2}$ sqrt("prep_itgEf") / (16. + "prep_avgE"^2)' prep_avgE: 降下粒子の平均エネルギー(E) [keV]、 prep_itgEf: 積分エネルギーフラックス(Φ_{e}) [mW/m²]

<u>太陽風観測から太陽風動圧を導出</u> calc, ' "Pdyn" = "ace_Np" * "ace_Vp"^2 * 1.6726 * 1e-6 ' ace_Np: 太陽風密度 [/cc]、 ace_Vp: 太陽風速度 [km/s] P_{dynamic}=N_pMV_p²

2つ目の例のace_Np, ace_Vp というデータは、TDASに収録されている ace_swe_load, datatype='h0' というコマンドでロードできる。

tplot変数への各種フィルター処理

IUGONET

tsub_average で平均値を差し引く

tsub_average, 'tplot 变数名'

(例) tsub_average, 'mm210_mag_rik_1min_hdz'

THEMIS> tsub_average, 'mm210_mag_rik_1min_hdz_x'

STORE_DATA(221): Creating tplot variable: 8 mm210_mag_rik_1min_hdz_x-d

THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x', 'mm210_mag_rik_1min_hdz_x-d']

- 元の変数名に -d を付け た新しいtplot変数に結果 が格納される。
- プロットする際にゼロ線
 を揃えたり周波数解析の
 前処理などで多用される。

IUGONET

tsmooth_in_time でスムージング

tsmooth_in_time, 'tplot 变数名', 平均幅[秒]

(例) tsmooth_in_time, 'mm210_mag_rik_1min_hdz', 3600.

THEMIS> tsmooth_in_time, 'mm210_mag_rik_1min_hdz_x', 3600.

STORE_DATA(...): Creating tplot variable: 11 mm210_mag_rik_1min_hdz_x_smoothed

THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x', 'mm210_mag_rik_1min_hdz

'mm210_mag_rik_1min_hdz_x_smoothed']

160 140 • 指定された時間幅で移動平均する Ch1 ことでスムージングされた結果が 100 80 …_smoothed という名前の新し いtplot変数に格納される。 160 140 hdz × smoothed [nT]
平均幅を秒数で与える点に注意。 120 Ch1 上の例は3600秒=1時間幅で移動平 100 簡便なローパスフィルターになる 80 均している。 60 Date 01 02 03 04 2007 Jun Hori, IUGO 2013/2/27

thigh_pass_filter でハイパス・フィルター

thigh_pass_filter, 'tplot 变数名', 下限周期[秒]

(例) thigh_pass_filter, 'mm210_mag_rik_1min_hdz', 3600.

THEMIS> **thigh_pass_filter**, 'mm210_mag_rik_1min_hdz_x', 3600.

STORE_DATA(...): Creating tplot variable: 12 mm210_mag_rik_1min_hdz_x_hpfilt

THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x', 'mm210_mag_rik_1min_hdz_x_hpfilt']

- 結果が …_hpfilt という名前の新しいtplot変数に格納される。
- ただしデジタルフィルターではなく、 簡易的なもの。
- 実際は前頁のtsmooth_in_time で ローパスフィルターされたデータ を元データから差し引いている。

2013/2/27

IUGONE

avg_dataで~分値、~時間値に平均

avg_data, 'tplot 变数名', 平均時間幅[秒]

(例) avg_data, 'mm210_mag_rik_1min_hdz', 3600.

THEMIS> avg_data, 'mm210_mag_rik_1min_hdz_x', 3600.

STORE_DATA(...): Creating tplot variable: 12 mm210_mag_rik_1min_hdz_x_avg

THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x',

'mm210_mag_rik_1min_hdz_x_avg']

- 結果が …_avg という名前の 新しいtplot変数に格納される。
- 第2引数に平均の時間幅を与える。3600[秒]にすれば1時間 平均、60にすれば1分平均。
- ・ 元データの時間分解能より小さい
 時間幅を与えると、結果が歯抜け
 データになってしまうので注意。

周波数スペクトル解析

スペクトル解析 tdpwrspc

tdpwrspc, 'tplot 变数名'

窓幅のデータ点数、ハニング窓を使う/使わない、など色々オプションがある

(例) tdpwrspc, 'mm210_mag_rik_1min_hdz_x'

THEMIS> tdpwrspc, 'mm210_mag_rik_1min_hdz_x'

STORE_DATA(...): Creating tplot variable: **12 mm210_mag_rik_1min_hdz_x_dpwrspc**

THEMIS> options, 'mm210_mag_rik_1min_hdz_x_dpwrspc', 'ysubtitle', '[Hz]' THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x', #
離の単位を[Hz]に変更する

'mm210_mag_rik_1min_hdz_x_dpwrspc']

- ハニング窓+FFTでダイナミック スペクトル求め, …_dpwrspc と いう名前のtplot変数に結果を格 納する。
- tplotによりカラーコンターでプ ロットされる。コンターの単位 は元の値の単位の2乗/Hz (元: nT → nT²/Hz)

2013/2/27

スペクトル解析 wav_data

wav_data, 'tplot 变数名'

Wavelet変換で周波数 スペクトルを求める

(例) wav_data, 'mm210_mag_rik_1min_hdz_x'

THEMIS> wav_data, 'mm210_mag_rik_1min_hdz_x'

STORE_DATA(...): Creating tplot variable: **12 mm210_mag_rik_1min_hdz_x_wv_pow**

THEMIS> tplot, ['mm210_mag_rik_1min_hdz_x',

'mm210_mag_rik_1min_hdz_x_wv_pow']

ウェーブレット変換を用いるので、tdpwrspcよりは速い時間変動にも追随できる。
 その代わり処理に時間がかかる。1度に変換するのは1万点くらいにしておいた方

がよい。

- tplot変数とはTDAS上の時系列データ参照の概念であり、 IDLのメモリー上にその実体となるメタデータ付きデー タ構造体がある。
- get_dataおよびstore_data によりIDLの通常の配列との やり取りが可能。
- Calc コマンドによりtplot変数の演算ができる。
- 各種フィルター処理やスペクトル解析を行うことができる。