Design of Chiral Bronsted Acid Catalysts for Proton-Induced Enantioselective Reactions and Development of Catalytic Dehydrative Condensation of Phosphoric Acid with Alcohols

Masayuki Sakuma

Graduate School of Engineering, Nagoya University
Nagoya, 2013

Contents

Chapter 1 Introduction and General Summary 1
Chapter 2 Chiral Lewis Base-Assisted Brønsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols 25
Chapter 3 Kinetic Resolution of Racemic Carboxylic Acids Catalyzed by Chiral Lewis Base-Assisted Brønsted Acid (LBBA) through Asymmetric Protolactonization 55
Chapter 4 Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)-Catalyzed Dehydrative Condensation of Phosphoric Acid with Alcohols 77
Publication List 91
Acknowledgments 93

Chapter 1

Introduction and General Summary

1-1 Design of Chiral Lewis Base-Assisted Bronsted Acids (Chiral LBBAs)

Protons $\left(\mathrm{H}^{+}\right)$are the simplest and most versatile catalysts for organic reactions, and mediate an extraordinary range of biological and synthetic transformations. ${ }^{1}$ Although protons can not be rendered chiral, enantioselective Brønsted acid catalysis can be achieved through the influence of the conjugate base and through the application of a coordination complex. With respect to asymmetric catalysis, a variety of useful chiral Brønsted acids have been designed and developed; for example, chiral phosphoric acids, ${ }^{2} N$-triflyl phosphoramides, ${ }^{3}$ aryl sulfonic acids, ${ }^{4}$ bis(amidine)-based protic acid salts, ${ }^{5}$ and Lewis acid- ${ }^{6}$ or thiourea-assisted Brønsted acids ${ }^{7}$ (Figure 1.1).

Figure 1.1. Examples of chiral Brønsted acids.

A representative approach, which involves the use of chiral Brønsted acids, generally employs hydrogen-bonding interaction between a protonated substrate and the chiral conjugate base of the chiral Brønsted acid (Scheme 1.1). ${ }^{2 \mathrm{~d}}$ This hydrogen bonding serves as a linker to keep the chiral information close to the reactive electrophile, and also contributes to a molecular organization that favors one particular diastereomeric transition state. Although several structurally diverse strong Brønsted acid catalysts have been developed, the highly enantioselective reactions that have been reported to date are restricted to the activation of electrophilic carbon-heteroatom or heteroatom-heteroatom multiple bonds, usually imines or carbonyls.

Scheme 1.1. Asymmetric Reaction Induced by the Conjugate Base of a Chiral Brønsted Acid

Another strategy usually involves the application of a coordination complex, which can provide chiral protons. For example, a chiral Brønsted acid can be generated by the complexation of an achiral protic solvent with a Lewis acid that includes a chiral ligand, which significantly enhances the acidity of the original proton source (Scheme 1.2). ${ }^{8}$ This approach leads to the generation of chiral protons with a variety of structures and acidities through the combination of a protic reagent and an activating species for asymmetric reactions. Although several coordination complexes can give strong Brønsted acids, they require the use of expensive transition metals or strong Lewis acids, which limits the range of suitable substrates.

Scheme 1.2. Asymmetric Reaction through the Application of a Coordination Complex

Although the chiral Brønsted acid catalyses that have been developed thus far are remarkably effective for activating polarized functional groups, it is not clear whether Brønsted acids can catalyze the highly enantioselective transformation of nonpolarized carbon-carbon multiple bonds. The active intermediates generated in the protonation of nonpolarized multiple bonds are different from those generated in the protonation of polarized multiple bonds (Scheme 1.3). The protonation of an imine or carbonyl generates a species that can create a hydrogen-bonding interaction with the conjugate base of a chiral Brønsted
acid, as shown above. On the other hand, the protonation of a simple alkene leads to a carbocation. Although the conjugate base of the chiral acid can still be placed in proximity to the carbocation through electrostatic interactions, the lack of rigidity in this association presumably results in poor recognition between the enantiotopic faces of the carbocation. Therefore, it is difficult to achieve the desired enantioselective reaction of alkenes catalyzed by chiral Brønsted acids.

Scheme 1.3. Protonation of an Imine or an Alkene

Many complicated natural products have been synthesized based on significant advances in organic chemistry. ${ }^{9}$ However, it is not easy to synthesize optically active natural products, which are needed for both pharmacological and biological applications. Therefore, asymmetric synthesis is still one of the most important subjects in organic chemistry. Although several enzyme-induced enantioface-selective reactions of prochiral alkenyl compounds are known in biosynthetic chemistry, ${ }^{10}$ a chiral Brønsted acid with suitable acidity, like an enzyme, is not easily available. In addition, stereoselective generation of the carbocation is highly important in asymmetric carbon-carbon bond formations, since the absolute and relative stereochemistries of the structure can be determined in that step with control over the conformation of the substrate. ${ }^{11}$ Therefore, this thesis focuses on the development of a newly designed chiral Brønsted acid for the highly enantioselective transformations of unactivated carbon-carbon multiple bonds. In particular, asymmetric induction in the protonation of an isoprenyl group would provide optically active isoprenoid derivatives through biomimetic cyclization (Scheme 1.4).

Scheme 1.4. Recognition of an Enantioface of an Isoprenyl Group

In this thesis, the author designed Lewis base-assisted Brønsted acids (LBBAs), phosphonium salts, ${ }^{12}$ which were prepared from a chiral phosphorus(III) compound with an achiral Brønsted acid (HX) (Scheme 1.5). ${ }^{13}$ The chiral phosphorus(III) compound as a Lewis base could coordinate to the proton of the achiral Brønsted acid, to provide phosphonium salts. Since the active proton of that phosphonium salt is surrounded by the chiral environment of the chiral phosphorus(III) compound, the author envisioned that this catalytic system might facilitate a highly enantioselective transformation. Notably, the Brønsted acidity of chiral LBBAs should strongly depend on the structure of the chiral phosphorus(III) compound. Therefore, chiral LBBAs with suitable acidity should appropriately control asymmetric induction in the protonation of the isoprenyl group through the biomimetic cyclization of simple isoprenoids.

Scheme 1.5. Design of Chiral Lewis Base-Assisted Brønsted Acids (Chiral LBBAs)

Chapters 2 and 3 describe chiral LBBA-catalyzed asymmetric protocyclization reactions accompanied by the recognition of an enantioface of a terminal isoprenyl group.

1-2 Chiral Lewis Base-Assisted Brønsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols

Terpenoids are metabolite products that are commonly found in nature and have a variety of biological activities. According to the Stork-Eschenmoser hypothesis, many polycyclic isoprenoids are biosynthesized via cationic polyene cyclization, which is considered to one of the most complex carbon-carbon bond-forming reactions in nature. ${ }^{14}$ The complicated polycyclic structures of isoprenoids, which have many chiral centers including quaternary carbons, are stereoselectively constructed by cyclase in a single step (Scheme 1.6). ${ }^{10 \mathrm{a}, 15}$

Scheme 1.6. Enzymatic Polyene Cyclization

Optically active polycyclic compounds have a broad range of useful properties, which makes them valuable for industrial and pharmacological applications. For example, $(-)$-Ambrox ${ }^{\circledR}$ has a strong amber-like aroma. It is used in place of one of the constituents of ambergris, which is a metabolic product found in the gut of sperm whale. ${ }^{16}$ Some marine natural secondary metabolites, such as (-)-chromazonarol, ${ }^{17}$ 8-epi-(+)-puupehedione, ${ }^{18}$ and their derivatives, are also known to show a wide range of potent biological activities, including cytotoxic, antiviral, antifungal, and immunomodulatory properties (Figure 1.2). ${ }^{19}$

(-)-Ambrox ${ }^{\circledR}$

(-)-Chromazonarol

8-epi-(+)-Puupehedione

(+)-4a-epi-Ugonstilbene B

Figure 1.2. Optically active polycyclic compounds.

The stereoselective formation of polycyclic isoprenoids by the enzyme-catalyzed cyclization of polyprenoids is one of the most remarkable steps in biosynthesis because this reaction results in the formation of several new quaternary and tertiary stereocenters and new rings in a single step. The use of biomimetic cyclization with artificial cyclase is the most ideal chemical method for the synthesis of these polycyclic isoprenoids. Several studies on the synthesis of a multiply cyclized structure via non-enzymatic polyene cyclization have been reported. ${ }^{20}$ However, these methods generally show low reactivity and low stereoselectivity since it is difficult to recognize the enantioface of a simple olefin and regioselectively generate a carbocation through the protonation of polyprenoids. In addition, despite extensive studies on asymmetric polyene cyclizations, catalytic promotion of the enantioselective processes remains challenging.

Our group previously overcame these difficulties with a Lewis acid-assisted chiral Brønsted acid (LBA) system. ${ }^{5 a}$ The coordination of a Lewis acid to a Brønsted acid restricts directional access of a substrate to the proton and increases the Brønsted acidity. When LBAs are prepared from chiral Brønsted acids, the active protons are placed in chiral environments. Therefore, chiral LBAs are highly effective chiral proton donors for enantioselective protonation ${ }^{21}$ and enantioselective polyene cyclization (Scheme 1.7). ${ }^{22}$ Although the enantioselective cyclization of polyprenoids induced by stoichiometric amounts of chiral LBAs has already been developed, its catalytic version is still challenging. ${ }^{23}$

Scheme 1.7. Enantioselective Polyene Cyclization Induced by Chiral LBAs

Our group has also developed a chiral Lewis base-promoted enantioselective iodocyclization of isoprenoids (Scheme 1.8). ${ }^{24}$ The chiral nucleophilic phosphoramidite reacts with N-iodosuccinimide (NIS) to generate the corresponding phosphonium salt as an active species.

Scheme 1.8. Enantioselective Iodocyclization Induced by Chiral Phosphoramidite

Since the pioneering work on chiral LBAs, some elegant studies on enantioselective polyene cyclizations have been reported. ${ }^{25}$ For example, MacMillan's group reported the first catalytic enantioselective cyclization strategy for accessing steroidal and terpenoidal frameworks using organocatalysis. ${ }^{25 \mathrm{~d}}$ This strategy represents an ambient-temperature
protocol, which is unprecedented in SOMO activation catalysis with respect to carbon-carbon bond formation (Scheme 1.9).

Scheme 1.9. Enantioselective Polyene Cyclization via Organo-SOMO Catalysis

Furthermore, Jacobsen's group reported the development of a new thiourea catalyst for the enantioselective bicyclization of hydroxylactams. ${ }^{25 c}$ The enantioselective cationic polycyclization reactions catalyzed by bifunctional thiourea derivatives appear to engage stabilizing cation- π interactions as a principal element of enantioselectivity (Scheme 1.10).

Scheme 1.10. Enantioselective Thiourea-Catalyzed Cationic Polycyclization

Although some catalytic enantioselective polyene cyclizations have been reported, they are accomplished through the use of substrates with the appropriate functional groups on the reactive sites, such as aldehydes and hydroxylactams. Therefore, these methods can not be applied to the enantioselective cyclization of simple isoprenoids with a terminal isoprenyl group.

Based on these results, the author explored the enantioselective cyclization of simple isoprenoids catalyzed by chiral Brønsted acids, and sought to achieve a short-step synthesis of natural compounds using chiral cyclization products. First, the author designed chiral Lewis base-assisted Brønsted acids (LBBAs) as new chiral Brønsted acid catalysts for enantioselective cyclization. As a result of this investigation, the author found that chiral phosphonium salts prepared from a chiral phosphorus(III) compound and an achiral Brønsted acid catalyzed the enantioselective cyclization of 2-geranylphenols (Scheme 1.11). ${ }^{13}$

Scheme 1.11. Enantioselective Cyclization of 2-Geranylphenols Catalyzed by Chiral LBBAs

Next, the author conducted a short-step synthesis of natural compounds using this LBBA-catalyzed cyclization system. Cyclized products were useful chiral building blocks for the synthesis of various bioactive natural compounds. ${ }^{26}$ The four-step conversion of chiral cyclized products gave 4a-epi-ugonstilbene B (Scheme 1.12). ${ }^{27}$

Scheme 1.12. Synthesis of 4a-epi-Ugonstilbene B

1-3 Kinetic Resolution of Racemic Carboxylic Acids Catalyzed by Chiral Lewis

 Base-Assisted Brønsted Acid (LBBA) through Asymmetric ProtolactonizationThe synthesis of optically active carboxylic acids and lactones is a very important subject in medicinal and pharmaceutical chemistry (Figure 1.3). Proteogenic and non-proteogenic α-amino acids constitute one of the five most important families of natural products and are essential molecules in many scientific areas. ${ }^{28}$ Optically active carboxylic acids are found in a wide range of bioactive compounds. For example, DX-9065a ${ }^{29}$ was developed as an inhibitor of factor Xa , which accelerates the conversion of prothrombin to thrombin, and JNJ-40418677 ${ }^{30}$ acts as a potent γ-secretase modulator, and thus represents a promising therapeutic approach for Alzheimer's disease. In addition, several bioactive natural products, such as $(+)$-discodermolide, ${ }^{31}(-)$-dysoxylumstatin $\mathrm{A},{ }^{32}$ and their derivatives, which exhibit cytotoxic or antimicrobial activities, contain chiral lactone units. For the synthesis of these compounds, efficient methods for obtaining chiral building blocks that contain chiral carboxylic acids and lactones are needed.

The intramolecular cyclization of unsaturated carboxylic acids is one of the most straightforward routes to the synthesis of lactones, and leads directly to the desired products. In general, electrophilic reagents such as iodine, phenylselenium chloride, and mercuric or palladium salts promote this cyclization. ${ }^{33}$ However, a second step is necessary to remove the reagent. Although the cyclization of unsaturated carboxylic acids promoted by a Brønsted acid is a well-known reaction, it occurs mostly with more than stoichiometric quantities of a Brønsted acid. ${ }^{34}$ On the other hand, it was reported that a variety of substituted γ - and δ-lactones could be easily prepared from unsaturated carboxylic acids in excellent yields using trifluoromethanesulfonic acid (TfOH) as a catalyst (Scheme 1.13). ${ }^{35}$ However, applications of this method, such as an asymmetric version, are limited because these reactions require harsh conditions. While there is a growing number of chiral Brønsted acid catalysts, the chiral proton-induced lactonization of unsaturated carboxylic acids is still rare. ${ }^{21 \mathrm{c}}$ This is mainly due to the low nucleophilicity of the carboxyl group and the higher proton affinity of a carboxyl group compared to unactivated alkenes.

Bioactive Compounds Including Chiral Carboxylic Acids

Natural Products

 Including Chiral Lactones

Figure 1.3. Optically active compounds containing carboxylic acids and lactones.

Scheme 1.13. Cyclization of Unsaturated Carboxylic Acids Catalyzed by TfOH

Some chiral resolving agents have been developed for the derivatization of racemic carboxylic acids to form pairs of diastereomers, which can be separated by conventional methods such as recrystallization. However, in some cases, this process requires several repetitions of salt formation between a carboxylic acid and an amine followed by recrystallization and subsequent separation of the chiral auxiliaries from the acid component to obtain a pure enantiomer. On the other hand, the conversion of a racemic substrate to enantioenriched products, commonly referred to as a kinetic resolution, is also an established method with broad applications. ${ }^{36,37}$ Our group previously developed the kinetic resolution
of racemic α-substituted carboxylic acids bearing a pyrrolidine- or pyrroline-1-carbonyl group via asymmetric acylation by L-histidine-derived organocatalysts (Scheme 1.14). ${ }^{38}$ When a carboxylic acid is activated with DCC in situ, subsequent kinetic resolution of the carboxylic acid may occur at the generation of the acylammonium salt with or without an enantioselective hydrogen bonding interaction between the substrate and catalyst.

Scheme 1.14. Kinetic Resolution of Racemic Carboxylic Acids Using L-Histidine-Derived Organocatalysts

Other groups have also reported the kinetic resolution of racemic carboxylic acids using achiral alcohols with acid anhydrides and chiral acyl-transfer catalysts (Scheme 1.15). ${ }^{39}$ For example, Shiina and colleagues developed a method for providing optically active 2-arylalkanoic acids and their esters by kinetic resolution with modified benzotetramisole-type catalysts. ${ }^{39 a}$ Although these methods can be used for kinetic resolution to give a variety of optically active carboxylic acids and esters, the reactions require generation of the mixed anhydrides followed by transacylation. Therefore, they are associated with the generation of byproducts derived from condensation reagents or acid anhydrides.

Scheme 1.15. Kinetic Resolution of Racemic Carboxylic Acids Using Benzotetramisole Derivative Catalysts

Based on the author's previous work (Scheme 1.11), the author explored the enantioselective reaction catalyzed by a chiral Lewis base-assisted Brønsted acid (chiral LBBA), which could recognize an enantioface of a terminal isoprenyl group. With regard to asymmetric protocyclization reactions, the author envisioned that the chiral LBBA-promoted method could be applied to the kinetic resolution of racemic unsaturated carboxylic acids via asymmetric protolactonization. Such a reaction system could lead to a novel and effective approach for providing optically active carboxylic acids and lactones without the generation of byproducts derived from activating reagents. As a result of this investigation, the author found that chiral LBBA promoted the kinetic resolution of racemic α-substituted carboxylic acids through asymmetric protolactonization (Scheme 1.16). This reaction gave cyclization products (lactones) and the recovered starting materials (carboxylic acids) with high selectivities and high S values.

Scheme 1.16. Kinetic Resolution of Racemic Carboxylic Acids Catalyzed by Chiral LBBAs

The next challenge is the application of the present method to the desymmetrization of meso-unsaturated carboxylic acids. The desymmetrization of meso-carboxylic acids catalyzed by chiral LBBAs through asymmetric protolactonization gave the desired lactones in good yield with good enantioselectivity (Scheme 1.17).

Scheme 1.17. Desymmetrization of meso-Carboxylic Acids Catalyzed by Chiral LBBAs

1-4 Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)-

 Catalyzed Dehydrative Condensation of Phosphoric Acid with AlcoholsPhosphoric acid esters are among the most important substances in materials and medicinal chemistry, as well as in many other fields (Figure 1.4). Many phosphoric acid esters are currently synthesized on an industrial scale and are widely used in everyday life. ${ }^{40,41}$ As is well known, many bioactive substances contain phosphoric acid diesters. ${ }^{42}$ For example, deoxyribonucleic acid (DNA) is the central storehouse of genetic information in each cell of most living organisms, and is composed of nucleotides bound together by phosphoric acid esters in a long chain. Phosphatidylcholine is usually the most abundant phospholipid in animal and plants, and is the key building block of membrane bilayers. Phosphoric acid diesters are also important substances as liquid ion exchangers for the recovery of valuable metals from waste liquors. ${ }^{43}$ In addition, cyclic phosphoric acid diesters have recently been widely used in the fields of organic synthesis, materials chemistry, and so on. For example, cyclic phosphoric acid diesters of BINOL derivatives are useful chiral Brønsted acid catalysts for asymmetric synthesis. ${ }^{2 c}$ Amphiphilic cyclic phosphoric acid diesters are useful surfactants with biological activities. ${ }^{44}$ From the perspective of green chemistry, the direct catalytic condensation of phosphoric acid with alcohols is attractive for the synthesis of phosphoric acid esters. ${ }^{45}$

Amphiphilic Cyclic Phosphates

Figure 1.4. Several examples of phosphoric acid diesters.

Many methods for preparing phosphoric acid esters have been reported. ${ }^{41}$ However, from the perspective of green chemistry, there are some problems with the methods that are currently used. Phosphoryl chloride $\left(\mathrm{POCl}_{3}\right)$ and phosphorus pentoxide are some of the most widely used phosphorylating reagents for alcohols. However, the reaction of phosphoryl chloride with alcohols in the presence of water and pyridine provides phosphoric acid monoesters along with pyridine hydrochloride as a byproduct (Scheme 1.18). In this case, an excess amount of the reagent is required for the selective synthesis of phosphoric acid monoesters because these phosphorylating reagents are very reactive.

Scheme 1.18. Synthesis of Phosphoric Acid Monoesters Using Phosphoryl Chloride

Condensation reagents are also commonly used to prepare phosphoric acid esters. For example, the esterification of alkylphosphates is carried out with diethyl azodicarboxylate (DEAD) and triphenylphosphine (Scheme 1.19). This condensation is applicable to the phosphorylation of pyrimidine nucleosides. Although this condensation method can provide various types of phosphoric acid esters under mild conditions, it is associated with the generation of byproducts.

Scheme 1.19. Synthesis of Phosphoric Acid Diesters Using Condensation Reagents

Our group previously reported that a catalytic amount of perrhenic acid efficiently promoted the dehydrative condensation of phosphoric acid with equimolar amounts of alcohols in the presence of dibutylamine (Scheme 1.20). ${ }^{46}$ This reaction is usually conducted under azeotropic reflux conditions, and selectively gives phosphoric acid monoesters in excellent yields. On the other hand, a catalytic method for the selective synthesis of phosphoric acid diesters has not yet been developed, except for the method that
uses condensation reagents as shown above. Therefore, the author explored the catalytic dehydrative condensation of phosphoric acid to give phosphoric acid diesters.

Scheme 1.20. Catalytic Direct Condensation for Phosphoric Acid Monoesters

After intensive studies, the author found that phosphoric acid diesters were generated under catalytic dehydrative condensation for the synthesis of phosphoric acid monoesters, depending on the reaction conditions. Based on this result, the author envisioned that phosphoric acid diesters could be selectively obtained under the appropriate reaction conditions. First, the author examined the catalytic activities of various metal oxides and organic bases that were suitable for the selective synthesis of phosphoric acid diesters. As a result, the selective synthesis of phosphoric acid diesters was achieved through the oxorhenium(VII)-catalyzed dehydrative condensation of phosphoric acid with two equivalents of alcohols (Scheme 1.21). In particular, the present reaction was useful for the synthesis of cyclic phosphoric acid diesters. The combination of phosphoric acid with an equimolar amount of diols gave cyclic phosphoric acids in almost quantitative yields. ${ }^{47}$

Scheme 1.21. Catalytic Synthesis of Phosphoric Acid Diesters

References and Notes

1. Egen, M. Angew. Chem. Int. Ed. Engl. 1964, 3, 1.
2. (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.
(b) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2004, 126, 11804. (c) Akiyama, T. Chem. Rev. 2007, 107, 5744. (d) Terada, M. Synthesis 2010, 1929.
3. Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
4. Hatano, M.; Maki, T.; Moriyama, K.; Arinobe, M.; Ishihara, K. J. Am. Chem. Soc. 2008, 130, 16858.
5. Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418.
6. (a) Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179

Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed. 2005, 44, 1924.
7. (a) Weil, T.; Kotke, M.; Kleiner, C. M.; Schreiner, P. R. Org. Lett. 2008, 10, 1513. (b) Klausen, R. S.; Jacobsen, E. N. Org. Lett. 2009, 11, 887.
8. For a selected example, see: Cheon, C. H.; Kanno, O.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 13248.
9. Nicolaou, K. C.; Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem. Int. Ed. 2000, 39, 44.
10. (a) Poulter, C. D., Comprehensive Natural Products Chemistry, Vol. 5, ed. by Derek, D.; Nakanishi, K.; Methcohen, O., Pergamon, Oxford, 1999. (b) Cane, D. E., Comprehensive Natural Products Chemistry, Vol. 2, ed. by Derek, D.; Nakanishi, K.; Methcohen, O., Pergamon, Oxford, 1999.
11. (a) Harring, S. R.; Livinghouse, T. Tetrahedron 1994, 50, 9229. (b) Vlad, P. E. Pure Appl. Chem. 1993, 65, 1329. (c) Saito, A.; Matsushita, H.; Kaneko, H. Chem. Lett. 1984, 591.
12. For the use of triphenylphosphonium triflate as a Brønsted acid catalyst, see: Iwahashi, H.; Oka, T.; Abiko, A. Chem. Lett. 2008, 37, 708.
13. Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130.
14. (a) Woodward, R. B.; Bloch, K. J. Am. Chem. Soc. 1953, 75, 2023. (b) Stork, G.; Burgstahler, A. W. J. Am. Chem. Soc. 1955, 77, 5068. (c) Eshenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890. (d) van Tamelen, E. E. Pure Appl. Chem. 1981, 53, 1259. (e) Johnson, W. S. Tetrahedron 1991, 47, xi.
15. Abe, I.; Rohmer, M.; Prestwich, G. D. Chem. Rev. 1993, 93, 2189.
16. (a) Ohloff, G.; The Fragrance of Ambergris. In Fragrance Chemistry; Theimer, E. T., Ed.; Academic Press: New York, 1982; pp 535-573. (b) Mookherjee, B. D.; Patel, R. R. In Proceedings of the 7th International Congress on Essential Oils; Kyoto, 1977; p 479. (c) Stoll, M.; Hinder, M. Helv. Chim. Acta 1950, 33, 1251. (d) Hinder, M.; Stoll, M. Helv. Chim. Acta 1950, 33, 1308. (e) Decorzant R.; Vial, C.; Naf, F.; Whitesides, G. M. Tetrahedron 1987, 43, 1871. (f) Coste-Maniere, I. C.; Zahra, J. P.; Waegell, B. Tetrahedron Lett. 1988, 29, 1017. (g) Verstegen-Haaksma, A. A.; Swarts, H. J.; Jansen, B. J. M.; Groot, A. Tetrahedron 1994, 50, 10095. (h) Barrero, A. F.; Altarejos, J.; Alvarez-Manzaneda, E. J.; Ramos, J. M.; Salido, S. J. Org. Chem. 1996, 61, 2215. (i) Bolster, M. G.; Lagnel, B. M. F.; Jansen, B. J. M. Tetrahedron 2001, 57, 8369.
17. (a) Fenical, W.; McConnel, O. Experientia 1975, 31, 1004. (b) Cimino, G.; DeStefeano, S.; Minale, L. Experientia 1975, 31, 1117. (c) Djura, P.; Stiele, D. B.; Sullivan, B.; Faulkner, J.; Arnold, E.; Clardy, J. J. Org. Chem. 1980, 45, 1435. (d) Rodriguez, J.; Quinoa, E.; Riguera, R.; Peters, B. M.; Abrell, L. M.; Crewa, P. Tetrahedron 1992, 48, 6667.
18. Barrero, A. F.; Alvarez-Manzaneda, E. J.; Chahboun, R.; Cortes, M.; Armstrong, V. Tetrahedron 1999, 55, 15181.
19. (a) Rodriguez, J.; Quinoa, E.; Riguera, R.; Peters, B. M.; Abrell, L. M.; Crewa, P. Tetrahedron 1992, 48, 6667. (b) Hamann, M. T.; Scheuer, P. J.; Kelly-Borges, M. J. J. Org. Chem. 1993, 58, 6565. (c) Navi, B. N.; Perzanowski, H. P.; Ross, R. A.; Erdman, T. R.; Scheuer, P. J.; Finer, J.; Clardy, J. Pure Appl. Chem. 1979, 51, 1893. (d) Nasu, S. S.; Yeung, B. K. S.; Hamann, M. T.; Scheuer, P. J.; Kelly-Borges, M. J. Goins, K. J. Org. Chem. 1995, 60, 7290.
20. (a) van Tamelen, E. E. Acc. Chem. Res. 1968, 1, 111. (b) Johnson, W. S. Angew. Chem. Int. Ed. Engl. 1976, 15, 9. (c) Nishizawa, M.; Takenaka, H.; Hayashi, Y. J. Org. Chem. 1986, 51, 806. (d) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730.
21. For reports on asymmetric catalysis with chiral LBAs, see: (a) Cheon, C. H.; Imahori, T.; Yamamoto, H. Chem. Commun. 2010, 46, 6980. (b) Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132, 14418. (c) Upar, K. B.; Mishra, S. J.; Nalawade, S. P.; Singh, S. A.; Khandare, R. P.; Bhat, S. V. Tetrahedron: Asymmetry 2009, 20, 1637. (d)

Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481. (e) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem., Int. Ed. 2005, 44, 1546. (f) Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24. (g) Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120. (h) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854. (i) Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179.
22. For asymmetric polyene cyclizations with LBA, see: (a) Uyanik, M.; Ishihara, K.; Yamamoto, H. Bioorg. Med. Chem. 2005, 13, 5055. (b) Uyanik, M.; Ishibashi, H.; Ishihara, K.; Yamamoto, H. Org. Lett. 2005, 7, 1601. (c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122. (d) Kumazawa, K.; Ishihara, K.; Yamamoto, H. Org. Lett. 2004, 6, 2551. (e) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 3647. (f) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505. (g) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131. (h) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.
23. For catalytic enantioselective polycyclization with LBA prepared from SbCl_{5}, see: Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11994.
24. (a) Sakakura, A.; Shomi, G.; Ukai, A.; Ishihara, K. Heterocycles 2011, 82, 249. (b) Sakakura, A.; Ishihara, K. Chim. Oggi-Chem. Today 2007, 25, 9. (c) Sakakura, A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
25. (a) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242. (b) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276. (c) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030. (d) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027. (e) Mullen, C. A.; Campbell, A. N.; Gagn_e, M. R. Angew. Chem., Int. Ed. 2008, 47, 6011. (f) Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N.-Y. Angew. Chem., Int. Ed. 2002, 41, 3014.
26. For selected recent examples, see: (a) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem. Soc. 2010, 132, 14303. (b) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2009, 131, 13928.
27. Chen, C.-C.; Huang, Y.-L.; Yeh, P.-Y.; Ou, J.-C. Planta Med. 2003, 69, 964.
28. (a) Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry, Volume 1,

Origins and Synthesis of Amino Acids, Wiley, Weinheim, 2009. (b) For a selected review of the catalytic asymmetric synthesis of α-amino acids, see: Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584.
29. For selected examples, see: (a) Fujii, Y.; Kanamaru, T.; Kikuchi, H.; Yamashita, S.; Sakuma, S. Eur. J. Pharm. Sci. 2011, 42, 392. (b) Nagahara, T.; Yokoyama, Y.; Inamura, K.; Katakura, S.; Komoriya, S.; Yamaguchi, H.; Hara, T.; Iwamoto, M. J. Med. Chem. 1994, 37, 1200.
30. Broeck, B. V.; Chen, J.-M.; Tréton, G.; Desmidt, M.; Hopf, C.; Ramsden, N.; Karran, E.; Mercken, M.; Rowley, A. Br. J. Pharmacol. 2011, 163, 375.
31. Lemos, E. d.; Agouridas, E.; Sorin, G.; Guerreiro, A.; Commerçon, A.; Pancrazi, A.; Betzer, J.-F.; Lannou, M.-I.; Ardisson, J. Chem. Eur. J. 2011, 17, 10123.
32. Hu, J.; Wang, X.; Shi, X. Eur. J. Org. Chem. 2011, 7215.
33. (a) Ohfune, Y.; Kurokawa, N. Tetrahedron Lett. 1985, 26, 5307. (b) Larnck, R. C.; Hightower, T. R. J. Org. Chem. 1993, 58, 5298. (c) Kang, S. H.; Lee, J. H.; Lee, S. B. Tetrahedron Lett. 1998, 39, 59. (d) Jonasson, C; Horvath, A.; Baeckvall, J. E. J. Am. Chem. Soc. 2000, 122, 9600. (e) Chavan, S. P.; Shamia, A. K. Tetrahedron Lett. 2001, 42, 4923. (f) Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C. Synlett 2001, 1767. (g) GruUadauria, M.; Aprile, C; Noto, R. Tetrahedron Lett. 2002, 43, 1669. (h) Curini, M.; Epifano, F.; MarcoiuUio, M. C; Montanari, F. Synlett 2004, 2, 368.
34. (a) Anscll, M. F.; Palmer, M. H. Q. Rev. (London) 1964, 18, 211. (b) TIecco, M.; Testaferri, L.; Tingoli, M. Tetrahedron 1993, 49, 5351. (c) Mali, R. S.; Babu, K. N. Helv. Chim. Acta 2002, 85, 3525. (e) Miura, K.; Hayashida, J.; Takahashi, T.; Nishikori, H.; Hosomi, A. J. Organomet. Chem. 2003, 686, 242. (f) Zhou, Y.; Woo, L. K.; Angelici, R. J. Appl. Catal., A: General 2007, 333, 238.
35. Coulombel, L.; Duñach, E. Synth. Commun. 2005, 35, 153.
36. For selected examples, see: (a) Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry, Vol. 18, ed. by Eliel, E. L.; Wilen, S. H., Wiley, New York, 1988, pp 249-330. (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N.; Adv. Synth. Catal. 2001, 343, 5. (c) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471. (d) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50, 6012. (e) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109. (f) Vedejs, E.; Jure, M. Angew.

Chem. Int. Ed. 2005, 44, 3974.
37. For recent advances, see: (a) Peschiulli, A.; Procuranti, B.; O’Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380 . (b) Bumbu, V. D.; Birman, V. B. J. Am. Chem. Soc. 2011, 133, 13902. (c) Čorić, I.; List, B. Nature 2012, 483, 315. (d) Wang, Y.; Zheng, K.; Hong, R. J. Am. Chem. Soc. 2012, 134, 4096.
38. (a) Ishihara, K.; Kosugi, Y.; Umemura, S.; Sakakura, A. Org. Lett. 2008, 10, 3191. (b) Sakakura, A.; Umemura, S.; Ishihara, K. Synlett 2009, 1647.
39. (a) Shiina, I.; Nakata, K.; Ono, K.; Onda, Y.; Itagaki, M. J. Am. Chem. Soc. 2010, 132, 11629. (b) Shiina, I.; Nakata, K.; Onda, Y. Eur. J. Org. Chem. 2008, 5887. (c) Yang, X.; Birman, V. B. Adv. Synth. Catal. 2009, 351, 2301. See also other non-enzymatic enantioselective acyl transfer reactions: (d) Narasaka, K.; Kanai, F.; Okudo, M.; Miyoshi, N. Chem. Lett. 1989, 1187. (e) Notte, G. T.; Sammakia, T.; Steel, P. J. J. Am. Chem. Soc. 2005, 127, 13502. (f) Notte, G. T.; Sammakia, T. J. Am. Chem. Soc. 2006, 128, 4230. (g) Yang, X.; Lu, G.; Birman, V. B. Org. Lett. 2010, 12, 892.
40. (a) Tadros, T. F. Applied Surfactants: Principles and Applications, Wiley, Weinheim, 2005. (b) Toy, A. D. F.; Walsh, E. N. Phosphorus Chemistry in Everyday Living, American Chemical Society, Washington, DC, 2nd ed., 1987.
41. For reviews of the synthesis of phosphoric acid esters, see: (a) Hayakawa, Y., Comprehensive Organic Synthesis, Vol. 6, ed. by Trost, B. M.; Fleming, I.; Winterfeldt, E., Pergamon, Oxford, 1991, pp 601-630. (b) Reese, C. B. Org. Biomol. Chem. 2005, 3, 3851.
42. (a) Sankawa, U., Comprehensive Natural Products Chemistry, Vol. 1, ed. by Derek, D.; Nakanishi, K.; Methcohen, O., Pergamon, Oxford, 1999, pp 285-302. (b) Kool, E. T., Comprehensive Natural Products Chemistry, Vol. 7, ed. by Derek, D.; Nakanishi, K.; Methcohen, O., Pergamon, Oxford, 1999. (c) For a recent review of phosphatidylcholine, see: Cole, L. K.; Vance, J. E.; Vance, D. E. Biochim. Biophys. Acta 2012, 1821, 754.
43. Kurosaki, T.; Nishikawa, N., DE Patent, 3325337, 1984.
44. (a) Buwalda, R. T.; Wagenaar, A.; Engberts, J. B. F. N. Liebigs Ann./Recueil, 1997, 1745. (b) Shinitzky, M., WO Patent, 2003075902, 2003.
45. Anastas, P. T.; Warner, J. C., Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.
46. Sakakura, A.; Katsukawa, M.; Ishihara, K. Angew. Chem. Int. Ed. 2007, 46, 1423.
47. Sakakura, A.; Sakuma, M.; Ishihara, K. Heterocycles 2008, 76, 657.

Chapter 2

Chiral Lewis Base-Assisted Brønsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols

Abstract

Chiral Lewis base-assisted Brønsted acids (Chiral LBBAs) have been designed as new organocatalysts for biomimetic enantioselective cyclization. A salt of a chiral phosphonous acid diester with $\mathrm{FSO}_{3} \mathrm{H}$ catalyzes the enantioselective cyclization of 2-geranylphenols to give the desired trans-fused cyclized products with high diastereo- and enantioselectivities (up to 98:2 dr and 93\% ee).

2-1 Introduction

Biomimetic polyene cyclization of isoprenoids is a highly powerful method for constructing polycyclic structures of terpenoids. Considerable effort has been focused on the development of enantioselective polyene cyclizations using a chiral artificial cyclase. Since the pioneering work on Lewis acid-assisted Brønsted acid (LBA) catalysis by Yamamoto and Ishihara, ${ }^{1-3}$ some elegant studies on enantioselective polyene cyclizations have been reported. ${ }^{4}$

Figure 2.1. Chiral Lewis base-assisted Brønsted acids (Chiral LBBAs, $1 \cdot \mathrm{HX}$) and proposed catalytic cycle for the LBBA-catalyzed cyclization of 2-geranylphenols $\mathbf{2}$.

We recently developed a chiral Lewis base-promoted enantioselective iodocyclization of isoprenoids. ${ }^{5,6}$ The chiral nucleophilic phosphoramidite, prepared from a binaphthol bearing triphenylsilyl groups at the 3,3 '-positions, reacts with N-iodosuccinimide (NIS) to generate the corresponding phosphonium salt as an active species. This chiral Lewis base-promoted method can also be applied to the Brønsted acid-induced cyclization of isoprenoids. Thus, we pursued the design of new chiral Brønsted acids: Lewis base-assisted

Brønsted acids (LBBAs), phosphonium salts ${ }^{7}$ prepared from a chiral phosphorus(III) compound 1 with an achiral Brønsted acid (HX) (Figure 2.1). We report here the chiral LBBA-catalyzed enantioselective cyclization of 2-geranylphenols.

2-2 Results and Discussion

The Brønsted acidity of the chiral LBBAs should strongly depend on the structure of $\mathbf{1}$. For example, the Brønsted basicities of phosphorous acid triesters are higher than those of corresponding triaryl- and trialkylphosphines [pKa values of conjugate acids: $\mathrm{P}(\mathrm{OPh})_{3}-2.0$, $\mathrm{P}(\mathrm{OMe})_{3} 2.6, \mathrm{PPh}_{3} 2.7$, and $\left.\mathrm{PMe}_{3} 8.7\right] .{ }^{8}$ We first examined the catalytic activities of chiral LBBAs prepared from $\mathbf{1}$ with $\mathrm{Tf}_{2} \mathrm{NH}$. The cyclization of 2-geranylphenol $\mathbf{2 a}$ was carried out in the presence of $1(20 \mathrm{~mol} \%)$ and $\mathrm{Tf}_{2} \mathrm{NH}(20 \mathrm{~mol} \%)$ in toluene at $-78{ }^{\circ} \mathrm{C}$ (Table 2.1). The reaction preferentially gave the corresponding trans-fused product 3a (trans/cis $=\mathrm{ca} .9: 1$). Based on the high trans selectivity, these reactions might proceed through concerted cyclization. Although chiral LBBAs prepared from phosphorous acid triesters $\mathbf{1 a}\left(\mathrm{R}^{1}=\right.$ OPh) and 1b ($\mathrm{R}^{1}=\mathrm{OCy}$) showed good catalytic activities (yields of 61 and 42%), the obtained trans-3a was racemic (entries 1 and 2). Due to the lower basicity of 1a, the corresponding LBBA was thermodynamically unstable, and racemic product was obtained via a background reaction catalyzed by an achiral Brønsted acid (entry 1). LBBA 1b•Tf 2 NH , which was less acidic than $\mathbf{1 a} \cdot \mathrm{Tf}_{2} \mathrm{NH}$, improved the diastereoselectivity, although it did not have enough stability to control the enantioselectivity (entry 2). On the other hand, the use of chiral phosphonous acid diesters $\mathbf{1 c}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ and $\mathbf{1 d}\left(\mathrm{R}^{1}=i\right.$-Pr $)$, which are more basic than 1a and 1b, successfully induced enantioselectivity (22 and 14% ees), albeit the yields of 3a were low (entries 3 and 5). The absolute stereochemistry of the obtained trans-3a was assigned to be $(4 \mathrm{a} R) .{ }^{1 \mathrm{~g}} \quad$ Further investigation revealed that when the reaction was conducted using 1c ($40 \mathrm{~mol} \%$) and $\mathrm{Tf}_{2} \mathrm{NH}(10 \mathrm{~mol} \%) \mathrm{a}-40^{\circ} \mathrm{C}$, both the yield and enantioselectivity were improved (entry 4). The use of excess $\mathbf{1 c}$ should promote rapid regeneration of the phosphonium salt in the catalytic cycle and prevent the background reaction. When the reaction was conducted in the absence of $\mathbf{1}, \mathbf{3 a}$ was obtained in 93% yield with moderate diastereoselectivity ($79: 21 \mathrm{dr}$, entry 6). This result suggested that use of Lewis base $\mathbf{1}$ controlled not only reactivity and enantioselectivity but also diastereoselectivity.

Table 2.1. Enantioselective Cyclization of 2-Geranylphenol (2a) Catalyzed by Chiral LBBAs $1 \cdot \mathrm{Tf}_{2} \mathrm{NH}$

${ }^{a}$ Ee of trans-3a. Determined by HPLC analysis. ${ }^{b}$ Reaction was conducted in the presence of $\mathbf{1 c}(40 \mathrm{~mol} \%)$ and $\mathrm{Tf}_{2} \mathrm{NH}(10 \mathrm{~mol} \%)$ at $-40^{\circ} \mathrm{C}$.
${ }^{c}$ Reaction was conducted in the absence of 1 .

Next, we investigated Brønsted acids (HX) in chiral LBBAs for the cyclization of 2a (Table 2.2). The reaction was conducted in CHCl_{3}, since the use of CHCl_{3} as a solvent generally gave 3a in higher yield and enantioselectivity than with toluene when sulfonic acids were used as Brønsted acids. ${ }^{9}$ As a result of our investigation of various Brønsted acids, we found that the enantioselectivity depended on the steric bulkiness as well as the acidity of Brønsted acids (entries 1-4). The low enantioselectivity of the $\mathbf{1 c} \cdot \mathrm{Tf}_{2} \mathrm{NH}$-catalyzed reaction would be attributed to the background reaction caused by strongly acidic $\mathrm{Tf}_{2} \mathrm{NH}$ (entry 1). The use of sterically less-hindered $\mathrm{FSO}_{3} \mathrm{H}$ as a Brønsted acid gave the highest enantioselectivity (81% ee), albeit the yield of $\mathbf{3 a}$ was moderate (42%, entry 4). The moderate yield of $\mathbf{3 a}$ could mainly be attributed to the fact that $\mathbf{1 c}$ gradually decomposed under the reaction conditions. Thus, the use of $100 \mathrm{~mol} \%$ of $\mathbf{1 c}$ improved the yield of $\mathbf{3 a}$ (60%, entry 5). The use of 1 e bearing two bromine atoms at the 6,6 '-positions also increased the yield of $\mathbf{3 a}$ without a significant loss of enantioselectivity $(86 \%, 78 \%$ ee, entry 6). Importantly, the introduction of electron-withdrawing substituents at the 6,6'-positions reduced the decomposition of $\mathbf{1}$ under the acidic reaction conditions. When the $\mathbf{1} \mathbf{e} \cdot \mathrm{FSO}_{3} \mathrm{H}$-catalyzed cyclization of $\mathbf{2 a}$ was conducted at $-55{ }^{\circ} \mathrm{C}$ for 3 days, the
enantioselectivity was increased to 84% ee without any decrease in the yield of $\mathbf{3 a}$ (entry 7). On the other hand, the introduction of a trifluoromethyl group at the phenyl moiety decreased the yield and enantioselectivity of $\mathbf{3 a}$ (entry 8). The electron-withdrawing substituent of $\mathbf{1 f}$ did not decrease the decomposition of $\mathbf{1}$, but increased the acidity of the corresponding LBBA.

Table 2.2. Optimization of the Reaction Conditions

entry	$1\left[\mathrm{R}^{1}, \mathrm{R}^{2}\right]$	HX	yield (\%)	trans / cis	ee (\%) ${ }^{\text {a }}$
1	1c [$\mathrm{Ph}, \mathrm{H}]$	$\mathrm{Tf}_{2} \mathrm{NH}$	30	97: 3	19
2	1c [Ph, H]	TfOH	77	90:10	75
3	1c [Ph, H]	$\mathrm{ClSO}_{3} \mathrm{H}$	69	94:6	76
4	1c [Ph, H]	$\mathrm{FSO}_{3} \mathrm{H}$	42	98:2	81
5^{b}	1c [Ph, H]	$\mathrm{FSO}_{3} \mathrm{H}$	60	97:3	81
6	1e [$\mathrm{Ph}, \mathrm{Br}]$	$\mathrm{FSO}_{3} \mathrm{H}$	86	85:15	78
7^{c}	1e [Ph, Br]	$\mathrm{FSO}_{3} \mathrm{H}$	86	90:10	84
8	1f [4-CF $\left.{ }_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{H}\right]$	$\mathrm{FSO}_{3} \mathrm{H}$	62	92:8	49

${ }^{\text {a }}$ Ee of trans-3a. Determined by HPLC analysis. ${ }^{b} 100 \mathrm{~mol} \%$ of $\mathbf{1 c}$ was used. ${ }^{c}$ Reaction was conducted at $-55^{\circ} \mathrm{C}$ for 3 days.

With the optimized reaction conditions in hand, we next examined the enantioselective cyclization of 2-geranylphenol derivatives $\mathbf{2}$ using $\mathbf{1 e} \cdot \mathrm{FSO}_{3} \mathrm{H}$ as a catalyst (Table 2.3). The introduction of both electron-donating and electron-withdrawing groups at the 4 - and 5 -positions (R^{1} and R^{2}) did not affect the enantioselectivity ($87-93 \%$ ee), albeit the yields of $\mathbf{3}$ were decreased (entries 1-4). In contrast, the introduction of a substituent at the 3-position $\left(\mathrm{R}^{3}\right)$ slightly decreased the diastereo- and enantioselectivities (entries 5-7). Interestingly, substrate $\mathbf{2 i}$ bearing a hydroxyl group at the 3-position showed high diastereoselectivity (93:7 dr, entry 8). The C_{2} symmetry of $\mathbf{2 i}$ might be suitable for the high-level induction of diastereoselectivity. The use of $100 \mathrm{~mol} \%$ of $\mathbf{1 e}$ and $20 \mathrm{~mol} \%$ of $\mathrm{FSO}_{3} \mathrm{H}$ increased the yield of $\mathbf{3 i}$ without a loss of enantioselectivity (60% yield, entry 9).

Table 2.3. Enantioselective Cyclization of 2-Geranylphenol Derivatives 2 Catalyzed by Chiral LBBA 1e• $\mathrm{FSO}_{3} \mathrm{H}$

entry	$2\left[\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}\right]$	yield (\%)	trans / cis	ee (\%) ${ }^{\text {a }}$
1	2b [H, Me, H]	64	90: 10	93
2	2c [$\mathrm{H}, \mathrm{OMe}, \mathrm{H}$]	43	96:4	88
3	2d [$\mathrm{H}, \mathrm{l}, \mathrm{H}]$	48	97:3	87
4	2e $\left[\mathrm{OCH}_{2} \mathrm{O}, \mathrm{H}\right]$	44	91:9	88
5	2 f [$\mathrm{Me}, \mathrm{H}, \mathrm{Me}$]	80	88:12	72
6	2g [OMe, H, OMe]	65	65:35	79
7	2h [MOM, H, OMe]] 57	80:20	74
8	2 i [MOM, H, OH]	36	93:7	70
$9{ }^{\text {b }}$	2 i [MOM, $\mathrm{H}, \mathrm{OH}]$	60	89:11	69

${ }^{a}$ Ee of trans-3a. Determined by HPLC analysis.
${ }^{b} 100 \mathrm{~mol} \%$ of $\mathbf{1 e}$ and $20 \mathrm{~mol} \%$ of $\mathrm{FSO}_{3} \mathrm{H}$ were used in $\mathrm{CHCl}_{3}(0.02 \mathrm{M})$.

Scheme 2.1. Synthesis of 4a-epi-Ugonstilbene B (6)

Cyclized products 3 were useful chiral building blocks for the synthesis of various bioactive natural compounds. ${ }^{10}$ Thus, after protection of the hydroxyl group of trans-3i with MOM, DDQ oxidation of the MOM group ${ }^{11}$ at the 4-position gave aldehyde 4 in 71% yield (Scheme 2.1). ${ }^{12} \quad$ A subsequent Horner-Emmons-Wadsworth reaction of 4 with phosphonate 5^{13} followed by the removal of MOM groups gave 4a-epi-ugonstilbene B (6) ${ }^{14}$ in 55% yield.

We propose the following mechanism to explain the absolute stereopreference we observed. Structure A in Figure 2.2 is the Newman projection of the chiral LBBA $\mathbf{1} \cdot \cdot \mathrm{FSO}_{3} \mathrm{H}$ viewed along the $\mathrm{H}-\mathrm{P}$ bond. The substrate should approach the active proton of A with the terminal dimethyl group away from the triphenylsilyl groups, avoiding their steric hindrance. As shown in structure \mathbf{C}, the reaction at the si-face would be disfavored because of steric repulsion with the triphenylsilyl group. Therefore, the re-face of the terminal isoprenyl group of the substrates would preferentially approach the active proton (B) to give (4aR)-3 selectively.

$\underset{(4 \mathrm{a} R) \text {-isomer }}{\| \text { favored }}$

Figure 2.2. Proposed transition-state assembles.

2-3 Conclusion

We have developed chiral Lewis base- assisted Brønsted acids (LBBAs) as new chiral Brønsted acid catalysts for the enantioselective cyclization of 2-geranylphenols. Chiral phosphonium salt of $\mathbf{1 e}$ with $\mathrm{FSO}_{3} \mathrm{H}$ catalyzed the cyclization of 2-geranylphenols to give the corresponding trans-fused cyclized products with high diastereo- and enantioselectivities.

References and Notes

1. (a) Uyanik, M.; Ishihara, K.; Yamamoto, H. Bioorg. Med. Chem. 2005, 13, 5055. (b)

Uyanik, M.; Ishibashi, H.; Ishihara, K.; Yamamoto, H. Org. Lett. 2005, 7, 1601. (c) Ishibashi, H.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122. (d) Kumazawa, K.; Ishihara, K.; Yamamoto, H. Org. Lett. 2004, 6, 2551. (e) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 3647. (f) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2001, 123, 1505. (g) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131. (h) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906.
2. For reports on asymmetric catalysis by chiral LBAs, see: (a) Cheon, C. H.; Imahori, T.; Yamamoto, H. Chem. Commun. 2010, 46, 6980. (b) Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Chem. 2010, 132, 14418. (c) Upar, K. B.; Mishra, S. J.; Nalawade, S. P.; Singh, S. A.; Khandare, R. P.; Bhat, S. V. Tetrahedron: Asymmetry 2009, 20, 1673. (d) Rauniyar, V.; Zhai, H.; Hall, D. G. J. Am. Chem. Soc. 2008, 130, 8481. (e) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem. Int. Ed. 2005, 44, 1546. (f) Ishihara, K.; Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 24. (g) Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8120. (h) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 12854. (i) Ishihara, K.; Kaneeda, M.; Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179.
3. For reviews of combined acids, see: (a) Yamamoto, H.; Futatsugi, K. Angew. Chem. Int. Ed. 2005, 44, 1924. (b) Ishibashi, H.; Ishihara, K.; Yamamoto, H. Chem. Rec. 2002, 2, 177.
4. (a) Rendler, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027. (b) Knowles, R. R.; Lin, S.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 5030. (c) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am. Chem. Soc. 2010, 132, 10242. (d) Mullen, C. A.; Campbell, M. A.; Gagné, M. R. Angew. Chem., Int. Ed. 2008, 47, 6011. (e) Yang, D.; Gu, S.; Yan, Y.-L.; Zhao, H.-W.; Zhu, N. Y. Angew. Chem., Int. Ed. 2002, 41, 3014.
5. (a) Sakakura, A.; Shomi, G.; Ukai, A.; Ishihara, K. Heterocycles 2011, 82, 249. (b) Sakakura, A.; Ishihara, K. Chimica Oggi-Chemistry Today 2007, 25, 9. (c) Sakakura,
A.; Ukai, A.; Ishihara, K. Nature 2007, 445, 900.
6. For enantioselective halocyclizations, see: (a) Zhou, Li.; Chen, J.; Tan, C. K.; Yeung, Y.-Y. J. Am. Chem. Soc. 2011, 133, 9164. (b) Hennecke, U.; Müller, C. H.; Fröhlich, R. Org. Lett. 2011, 13, 860. (c) Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B.; Angew. Chem. Int. Ed. 2011, 50, 2593. (d) Murai, K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.; Fujioka, H. Angew. Chem. Int. Ed. 2010, 49, 9174. (e) Veitch, G. E.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2010, 49, 7332. (f) Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. 2010, 107, 20655. (g) Snyder, S. A.; Treitler, D. S.; Schall, A. Tetrahedon 2010, 66, 4796. (h) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B. J. Am. Chem. Soc. 2010, 132, 3298. (i) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664. (j) Kwon, H. Y.; Park, C. M.; Lee, S. B.; Youn, J. H.; Kang, S. H. Chem.-Eur. J. 2008, 14, 1023. (k) Kang, S. H.; Lee, S. B.; Park, C. M. J. Am. Chem. Soc. 2003, 125, 15748.
7. For the use of triphenylphosphonium triflate as a Brønsted acid catalyst, see: Iwahashi, H.; Oka, T.; Abiko, A. Chem. Lett. 2008, 37, 708.
8. Rahman, Md. M.; Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1.
9. The low yield and enantioselectivity in the reaction using $\mathrm{Tf}_{2} \mathrm{NH}$ in CHCl_{3} (entry 1) can be attributed to the rapid decomposition of $\mathbf{1 c}$ due to the high acidity of $\mathrm{Tf}_{2} \mathrm{NH}$.
10. For selected recent examples, see: (a) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem. Soc. 2010, 132, 14303. (b) Corey, E. J.; Surendra, K. J. Am. Chem. Soc. 2009, 131, 13928.
11. Lee-Ruff, E.; Ablenas, F. J. Can. J. Chem. 1989, 67, 699.
12. Topczewski, J. J.; Neighbors, J. D.; Wiemer, D. F. J. Org. Chem. 2009, 74, 6965.
13. Gester, S.; Pietzsch, J.; Wuest, F. R. J. Label. Compd. Radiopharm. 2007, 50, 105.
14. Chen, C.-C.; Huang, Y.-L.; Yeh, P.-Y.; Ou, J.-C. Planta Med. 2003, 69, 964.

Experimental Section

General Methods. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (400 MHz) at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the d scale, multiplicity ($\mathrm{s}=$ singlet; $\mathrm{d}=\operatorname{doublet} ; \mathrm{t}=$ triplet; $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). ${ }^{19} \mathrm{~F}$ NMR spectra (376 MHz) and ${ }^{31} \mathrm{P}$ NMR spectra (162 MHz) were measured on a JEOL ECS-400 spectrometer. High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-10 AD coupled diode array-detector SPD-MA-10A-VP and chiral column of Daicel CHIRALCEL OD-H (4.6 mm $\times 25 \mathrm{~cm}$), Daicel CHIRALCEL OD-3 ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) or Daicel CHIRALCEL OZ-H (4.6 $\mathrm{mm} \times 25 \mathrm{~cm}$) or Daicel CHIRALPAK IA ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. The reactions were carried out under an atmosphere of dry nitrogen. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254} 0.25 \mathrm{~mm}$ or silica gel $\mathrm{NH}_{2} \mathrm{~F}_{254 \mathrm{~S}} 0.25 \mathrm{~mm}$) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385). High resolution mass spectral analysis (HRMS) was performed at Chemical Instrumentation Facility, Nagoya University on JEOL JMS-700 spectrometer. Dry tetrahydrofuran, diethylether, toluene and dichloromethane were purchased from Kanto as the "anhydrous" and stored under nitrogen. Triethylamine were freshly distilled from calcium hydride. Chloroform were freshly distilled from diphosphorus pentoxide, and stored over MS $4 \AA$ under nitrogen in the dark. Other simple chemicals were analytical-grade and obtained commercially.

Preparation of Chiral Phosphorous Compounds 1.

(11bR)-4-Phenoxy-2,6-bis(triphenylsilyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine
(1a): To a solution of (R)-3,3'-bis(triphenylsilyl)-2,2'-binaphthol ${ }^{1}$ ($401 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL}, 2.5 \mathrm{mmol})$ in THF (4.0 mL) was added $\mathrm{PCl}_{3}(52 \mathrm{~mL}, 0.60 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for ca. five minutes, and then at ambient temperature for 1 h . After the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$, a solution of phenol ($52 \mathrm{mg}, 0.55 \mathrm{mmol}$) in THF (1.0 mL) was added. The resultant mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for a few minutes, and then at ambient temperature for 2 h . The reaction mixture was filtered through a Celite pad and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane-toluene 1:1) to give 1a as a colorless solid ($248 \mathrm{mg}, 54 \%$ yield). IR (neat) 1591, 1491, 1428, 1387, 1200, $1108 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{dd}, J=7.3,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.42(\mathrm{~m}, 24 \mathrm{H}), 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.59(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 7.74(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 120.6,122.8,123.1,123.4,123.5,124.76,124.81,125.3,126.8,126.88,126.92$, $127.0,127.6,127.8,128.2,128.4,128.7,129.0,129.3,129.4,130.3,130.7,133.6,134.5$, 134.6, 134.7, 136.5, 136.7, 140.9, 150.6, 152.0, 152.8; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 148.1; HRMS (FAB) calcd for $\mathrm{C}_{62} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{PSi}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 925.2723$, found 925.2739.

(11bR)-4-(Cyclohexyloxy)-2,6-bis(triphenylsilyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphos phepine (1b): Compound 1b was prepared from (R)-3,3'-bis(triphenylsilyl)-2,2'-binaphthol ${ }^{1}$ and cyclohexanol according to the same manner
as 1a. IR (neat) $1567,1489,1428,1388,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.28-0.40(\mathrm{~m}, 1 \mathrm{H}), 0.47-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.65-0.78(\mathrm{~m}, 2 \mathrm{H}), 0.82-1.00(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.22(\mathrm{~m}$, $2 \mathrm{H}), 2.61-2.73(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.41(\mathrm{~m}, 24 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $6 \mathrm{H}), 7.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 23.9,24.0,24.8,33.2,33.7,73.7,122.8,123.29,123.34,124.4,124.5$, 125.3, 126.7, 126.75, 126.82, 126.9, 127.0, 127.5, 127.8, 128.2, 128.6, 129.0, 129.3, 129.4, $130.0,130.5,134.1,134.5,134.7,135.2,136.6,136.9,140.4,140.9,152.6,153.2 ;{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}) d 153.7; HRMS (FAB) calcd for $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{PSi}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 931.3193$, found 931.3198.

(11bR)-4-Phenyl-2,6-bis(triphenylsilyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine
(1c): To a solution of (R)-3,3'-bis(triphenylsilyl)-2,2'-binaphthol ${ }^{1}$ ($240 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.17 \mathrm{~mL}, 1.2 \mathrm{mmol})$ in THF (3.0 mL) was added $\mathrm{PhPCl}_{2}(49 \mathrm{~mL}, 0.36 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for ca. five minutes, and then at ambient temperature for 3 h . The reaction mixture was filtered through a Celite pad and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane-toluene 1:1) to give $\mathbf{1 c}$ as a colorless solid ($250 \mathrm{mg}, 83 \%$ yield). IR (neat) 1567 , $1490,1428,1386,1227,1107 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.26(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.86$ (dd, $J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08-7.43(\mathrm{~m}, 31 \mathrm{H}), 7.54$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 7.76$ (d, $J=$ $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 123.1,123.8,123.9,124.5,124.6,125.3,126.4,126.7,126.9,127.0,127.1,127.4,127.7$, $128.2,128.8,129.0,129.2,129.3,130.0,130.7,130.8,130.9,131.2,134.0,134.3,134.4$, 134.6, 136.7, 136.9, 138.5 (d, $J=41 \mathrm{~Hz}$), 140.1, 140.8, 153.5, 154.3; ${ }^{31} \mathrm{P}$ NMR (162 MHz , CDCl_{3}) d 186.7; HRMS (FAB) calcd for $\mathrm{C}_{62} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{PSi}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 909.2774$, found 909.2776.

(11bR)-4-Isopropyl-2,6-bis(triphenylsilyl)dinaphtho $\left[2,1-d: 1^{\prime}, 2 '-f\right][1,3,2]$ dioxaphosphepin e (1d): Compound 1d was prepared from (R)-3,3'-bis(triphenylsilyl)-2, ${ }^{\prime}$ '-binaphthol ${ }^{1}$ and $i-\mathrm{PrPCl}_{2}$ according to the same manner as 1c. IR (neat) $1568,1488,1428,1387,1217,1108$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.28--0.42(\mathrm{~m}, 1 \mathrm{H}),-0.18(\mathrm{dd}, J=7.8,19.7 \mathrm{~Hz}, 3 \mathrm{H})$, 0.04 (dd, $J=6.0,6.4 \mathrm{~Hz}, 3 \mathrm{H}$), $7.07-7.44$ (m, 24H), 7.59 (d, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H}$), 7.73 (d, $J=8.3$, $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.2, \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $15.2,15.5(\mathrm{~d}, J=30 \mathrm{~Hz}), 32.7(\mathrm{~d}, J=37 \mathrm{~Hz}), 121.4,123.38,123.43,124.3$, 124.5, 125.3, $126.2,126.5,126.7,126.9,127.0,127.66,127.72,128.1,128.2$ 128.57, 128.65, 129.0, 129.2, $129.4,129.5,129.9,130.6,134.0,134.2,135.0,135.1,136.4,136.5,136.6,136.8,140.5$, 141.2, 154.8, 155.4; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 216.9; HRMS (FAB) calcd for $\mathrm{C}_{59} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{PSi}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$875.2931, found 875.2915.

(11bR)-9,14-Dibromo-4-phenyl-2,6-bis(triphenylsilyl)dinaphtho[2,1-d:1',2'-ff[1,3,2]dioxa phosphepine (1e): To a solution of (R)-3,3'-bis(triphenylsilyl)-2, ${ }^{\prime}$ '-binaphthol ${ }^{1}(1.6 \mathrm{~g}, 2.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a solution of $\mathrm{Br}_{2}(0.26 \mathrm{~mL}, 5.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for ca. five minutes, and then at $-10{ }^{\circ} \mathrm{C}$ for 3 h . To the reaction mixture was added aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{wt} \%, 40 \mathrm{~mL})$ at $-10^{\circ} \mathrm{C}$, and the mixture was stirred at ambient temperature for 1 h . The resultant mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The combined organic layers were washed with water and brine successively, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 10:1) to give (R)-6,6'-dibromo-3,3'-bis(triphenylsilyl)-2,2'-binaphthol as a pale yellow solid ($277 \mathrm{mg}, 14 \%$ yield). IR (neat) $3519,1576,1484,1428,1349,1109,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 5.27(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.47(\mathrm{~m}, 20 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 12 \mathrm{H})$, $7.81(\mathrm{~s}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 110.6,117.7,125.5$, $125.6,127.9,129.7,130.2,131.0,131.4,133.2,133.7,136.2,141.1,156.7$; HRMS (FAB) calcd for $\mathrm{C}_{56} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Br}_{2} \mathrm{Si}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$959.1012, found 959.0983. To a solution of (R)-6,6'-dibromo-3,3'-bis(triphenylsilyl)-2,2'-binaphthol ($277 \mathrm{mg}, 0.289 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.24 \mathrm{~mL}, 1.73 \mathrm{mmol}$) in THF (6.0 mL) was added $\mathrm{PhPCl}_{2}(60 \mathrm{~mL}, 0.43 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for ca. five minutes, and then at ambient temperature for 3 h . The reaction mixture was filtered through a Celite pad and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane-toluene 1:1) to give $\mathbf{1 e}$ as a colorless solid ($262 \mathrm{mg}, 85 \%$ yield). IR (neat) 1568 , 1481, 1428, 1396, 1213, 1188, 1106, $1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.22(\mathrm{dd}, J=$ $7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (dd, $J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-7.43$ (m, 29H), 7.51 (d, $J=7.3 \mathrm{~Hz}, 6 \mathrm{H}$), $7.73(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 118.7,122.8,123.47$, $123.53,125.3,127.1,127.2,127.5,127.8,128.2,129.0,129.4,129.5,130.38,130.42,130.8$, 131.1, 131.9, 132.5, 132.9, 133.5, 133.9, 136.6, 136.8, 138.2 (d, $J=41 \mathrm{~Hz}$), 139.2, 139.9, 153.8, 154.6; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 188.4; HRMS (FAB) calcd for $\mathrm{C}_{62} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{PSi}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$1065.0984, found 1065.0979.

(11bR)-4-(4-(Trifluoromethyl)phenyl)-2,6-bis(triphenylsilyl)dinaphtho[2,1-d:1',2'-f][1,3, 2]dioxaphosphepine (1f): To a solution of 4-bromobenzotrifluoride ($0.70 \mathrm{~mL}, 5 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added a 1.6 M solution of $n-\mathrm{BuLi}$ in hexane $(3.4 \mathrm{~mL}, 5.5 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , and then at $0^{\circ} \mathrm{C}$ for 1 h . To the mixture was added $\mathrm{ClP}\left(\mathrm{NEt}_{2}\right)_{2}(1.2 \mathrm{~mL}, 5.5 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at ambient temperature for 2 h . The solvent was evaporated under reduced pressure and the resultant residue was extracted with hexane ($20 \mathrm{~mL} \times 3$). Insoluble inorganic salts were removed by filtration. The filtrate was concentrated under reduced pressure to give a crude $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}$ as a yellow oil. To a solution of (R) -

3,3'-bis(triphenylsilyl)-2, 2^{\prime}-binaphthol ${ }^{1}$ ($400 \mathrm{mg}, 0.50 \mathrm{mmol}$) in toluene (5 mL) was added $p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{P}\left(\mathrm{NEt}_{2}\right)_{2}(960 \mathrm{mg}, 3.0 \mathrm{mmol})$ in three portions, and the mixture was refluxed for 3 days. The reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane-toluene $1: 1$) to give $\mathbf{1 f}$ as a colorless solid ($235 \mathrm{mg}, 48 \%$ yield). IR (neat) 1564, 1487, 1428, 1387, 1323, 1170, 1130, $1106,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.32(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 6 \mathrm{H}), 7.06-7.47(\mathrm{~m}, 25 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 7.60(\mathrm{dd}, J=7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 123.1,123.8,124.8,124.9,126.4,126.7,127.0,127.1,127.2,127.5,127.8,128.9$, $129.38,129.45,130.1,130.9,131.1,131.4,132.1,132.4,133.9,134.0,134.2,134.5,136.6$, $136.8,140.4,141.0,142.6(\mathrm{~d}, J=45 \mathrm{~Hz}), 153.0,153.9 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d -62.8 ; 31P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 180.3; HRMS (FAB) calcd for $\mathrm{C}_{63} \mathrm{H}_{45} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{PSi}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 977.2648, found 977.2629.

Preparation of 2-Geranylphenols 2.

(E)-2-(3,7-dimethylocta-2,6-dienyl)phenol (2a): ${ }^{2}$ Compound 2a was prepared from (E)-geranylbromide and phenol according to the reported procedure. ${ }^{2}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.16(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.04-5.11(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1,17.7$, 25.7, 26.4, 29.7, 39.7, 115.7, 120.7, 121.6, 123.8, 126.8, 127.5, 129.9, 131.9, 138.4, 154.4.

(\boldsymbol{E})-2-(3,7-Dimethylocta-2,6-dienyl)-4-methylphenol (2b): To a solution of 4-methylphenol ($541 \mathrm{mg}, 5.0 \mathrm{mmol}$) in toluene (20 mL) was added $\mathrm{Sc}(\mathrm{OTf})_{3}(492$
$\mathrm{mg}, 1.0 \mathrm{mmol})$ at ambient temperature, and then a solution of (E)-geraniol $(1.3 \mathrm{~mL}, 7.5$ $\mathrm{mmol})$ in toluene (8 mL) was added dropwise over a period of 10 h at $0^{\circ} \mathrm{C}$. After stirring for 1 day at the same temperature, the reaction was quenched with saturated aqueous NaHCO_{3} and extracted with ether. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-ether 10:1) to give 2b as pale yellow oil ($363 \mathrm{mg}, 30 \%$ yield). IR (neat) 3446, 1500, $1439,1377,1260,1137,1102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.15(\mathrm{~m}, 4 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=5.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2,17.7,20.5,25.7,26.4,29.9,39.7,115.6,121.8,123.8,126.5$, 127.9, 129.8, 130.5, 131.9, 138.3, 152.2; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}^{+}\left[\mathrm{M}^{+}\right]$244.1827, found 244.1821.

(E)-2-(3,7-Dimethylocta-2,6-dienyl)-4-methoxyphenol
(2c):
Compound 2c was prepared from (E)-geraniol and 4-methoxyphenol according to the same manner as 2b. IR (neat) $3407,1504,1433,1200,1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=3.2,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.2$, $17.7,25.7,26.4,30.0,39.7,55.7,112.0,115.6,116.4,121.4,123.8,128.0,132.0,138.7,148.3$, 153.6; HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{2}^{+}\left[\mathrm{M}^{+}\right]$260.1776, found 260.1793.

(E)-2-(3,7-Dimethylocta-2,6-dienyl)-4-iodophenol
(2d):
Compound 2d was prepared from (E)-geraniol and 4 -iodophenol according to the same manner as 2b. IR (neat) $3441,1480,1443,1405,1261,1162,1102 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~d}, J=7.3$
$\mathrm{Hz}, 2 \mathrm{H}), 5.02-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37-7.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2,17.7,25.7,26.3,29.5,39.6,82.8$, 118.1, 120.7, 123.6, 129.6, 132.1, 136.2, 138.4, 139.3, 154.3; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{IO}^{+}\left[\mathrm{M}^{+}\right] 356.0637$, found 356.0647 .

(E)-6-(3,7-Dimethylocta-2,6-dienyl)benzo[d][1,3]dioxol-5-ol (2e): ${ }^{3}$ Compound 2e was prepared from (E)-geraniol and benzo $[d][1,3]$ dioxol-5-ol according to the reported procedure. ${ }^{3}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.16(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.01-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 16.1, 17.7, 25.6, 26.3, 29.4, 39.6, 98.5, 100.8, 109.1, 118.6, 121.7, 123.8, 132.0, 138.4, 141.2, 146.3, 148.8.

(E)-2-(3,7-Dimethylocta-2,6-dienyl)-3,5-dimethylphenol

Compound $\mathbf{2 f}$ was prepared from (E)-geraniol and 3,5-dimethylphenol according to the same manner as 2b. IR (neat) $3455,1619,1584,1488,1375,1295,1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.99-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.26$ (s, 3H), 3.33 (d, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.96(\mathrm{~s}, 1 \mathrm{H}), 5.05(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.2,17.7,19.9,20.9,25.3$, $25.7,26.4,39.6,114.3,121.9,122.5,123.5,123.9,131.8,136.5,137.2,137.4,154.2$; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}^{+}\left[\mathrm{M}^{+}\right]$258.1984, found 258.1992.

(E)-2-(3,7-Dimethylocta-2,6-dienyl)-3,5-dimethoxyphenol (2g):

Compound 2 g was prepared from (E)-geraniol and 3,5-dimethoxyphenol according to the
same manner as 2b. IR (neat) 3420, 1620, 1594, 1509, 1455, 1202, 1146, $1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.14(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.05(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{~s}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1,17.7,21.7,25.7,26.4,39.7,55.3,55.7,91.4,93.7,107.3,122.3,123.8,131.9,138.1$, 156.2, 158.4, 159.3; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}^{+}\right]$290.1882, found 290.1874.

3-Methoxy-5-(methoxymethyl)phenol: To a solution of 3,5-dihydroxybenzylalcohol ($14.0 \mathrm{~g}, 100 \mathrm{mmol}$) in 4 M aqueous $\mathrm{NaOH}(50 \mathrm{~mL})$ was added isobutyric anhydride ($25.0 \mathrm{~mL}, 150 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at the same temperature, the reaction mixture was diluted with water and acidified with 1 M HCl before extracting with AcOEt. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 1:1) to give 3-hydroxy-5-(hydroxymethyl)phenyl isobutyrate as a colorless oil $(3.9 \mathrm{~g}, 19 \%$ yield). To a solution of 3-hydroxy-5-(hydroxymethyl)phenyl isobutyrate $(3.76 \mathrm{~g}, 17.9 \mathrm{mmol})$ in $\mathrm{MeCN}(180 \mathrm{~mL})$ were added $\mathrm{Ag}_{2} \mathrm{O}(41.5 \mathrm{~g}, 179 \mathrm{mmol})$ and $\mathrm{MeI}(22.3$ $\mathrm{mL}, 358 \mathrm{mmol}$) at room temperature, followed by stirring at the same temperature for 1 day. The mixture was filtered through Celite and concentrated. To a solution of the residue in $\mathrm{MeOH}(300 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(12.4 \mathrm{~g}, 89.5 \mathrm{mmol})$, and the mixture was stirred at room temperature for 3 h . The reaction mixture was diluted with water, acidified by 1 M HCl and extracted with ether. The combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 3:1) to give 3-methoxy-5-(methoxymethyl)phenol as a yellow oil (2.13 g, 71% yield). IR (neat) $3311,1601,1459,1338,1195,1154,1088,1060 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.33(\mathrm{brt}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.2,57.8,74.4,100.9,105.4$, 107.2, 140.1, 157.2, 160.8; HRMS (FAB) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] 169.0865$, found 169.0859 .

(E)-2-(3,7-Dimethylocta-2,6-dienyl)-3-methoxy-5-(methoxymethyl)phenol
Compound 2 h was prepared from (E)-geraniol and 3-methoxy-5-(methoxymethyl)phenol according to the same manner as 2b. 2h: IR (neat) 3336, 1596, 1513, 1452, 1425, 1380, $1166,1095 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$, 2.00-2.14 (m, 4H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{brt}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{brt}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.37(\mathrm{~m}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.1,17.6,22.1,25.6,26.4,39.7,55.7,57.9,74.6,102.3,108.2$, 114.7, 121.9, 123.9, 131.7, 137.2, 137.4, 155.4, 158.0; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}{ }^{+}$ $\left[\mathrm{M}^{+}\right]$304.2038, found 304.2049.

2-Bromo-1,3-bis(methoxymethoxy)-5-(methoxymethyl)benzene:

To a solution of (4-bromo-3,5-bis(methoxymethoxy)phenyl)methanol ${ }^{4}$ ($2.78 \mathrm{~g}, 9.08 \mathrm{mmol}$) in THF (50 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(610 \mathrm{mg}, 60 \%$ in oil, 15.2 mmol) followed by MeI $(0.94 \mathrm{~mL}, 15.2 \mathrm{mmol})$. After stirring at ambient temperature for 5 h , the reaction was quenched by addition of water. The mixture was extracted with AcOEt, and the organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 3:1) to give 2-bromo-1,3-bis(methoxymethoxy)-5-(methoxymethyl)benzene as a white solid ($2.1 \mathrm{~g}, 72 \%$ yield). IR (neat) $1589,1432,1395,1153,1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.40$ (s, $3 \mathrm{H}), 3.52(\mathrm{~s}, 6 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 5.26(\mathrm{~s}, 4 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.4$, 58.3, 74.1, 94.9, 102.4, 108.3, 139.1, 154.8; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{5}^{+}\left[\mathrm{M}^{+}\right]$ 320.0259 , found 320.0265 .

(\boldsymbol{E})-2-(3,7-Dimethylocta-2,6-dienyl)-5-(methoxymethyl)benzene-1,3-diol (2i): To a solution of 2-bromo-1,3-bis(methoxymethoxy)-5-(methoxymethyl)benzene ($640 \mathrm{mg}, 2.0$ $\mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a 1.6 M solution of n - BuLi in hexane $(1.5 \mathrm{~mL}$, 2.4 mmol), and the mixture was stirred at the same temperature for 2 h . $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ complex ($452 \mathrm{mg}, 2.2 \mathrm{mmol}$) was added in one portion. The resulting mixture was stirred for 30 min , and then geranyl bromide ($0.60 \mathrm{~mL}, 3.0 \mathrm{mmol}$) was added dropwise. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for a few minutes and allowed to stir at ambient temperature for 20 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ether. The organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 5:1) to give MOM-protected $\mathbf{2 i}$ as colorless oil ($495 \mathrm{mg}, 65 \%$ yield). To a solution of MOM-protected $\mathbf{2 i}(479 \mathrm{mg}, 1.27 \mathrm{mmol})$ in $\mathrm{MeOH}(26 \mathrm{~mL})$ was added a solution of $12 \mathrm{M} \mathrm{HCl}(0.53 \mathrm{~mL}, 6.33 \mathrm{mmol})$ in $\mathrm{MeOH}(6 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 1 day. The reaction mixture was diluted with saturated aqueous NaHCO_{3} solution, and methanol was removed under reduced pressure before extracting with AcOEt. The organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 3:1) to give $\mathbf{2 i}$ ($297 \mathrm{mg}, 81 \%$ yield). IR (neat) $3348,1598,1432,1382$, $1165,1078,1047 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H})$, $1.99-2.15(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 5.05(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.58(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 16.1, 17.7, 22.3, 25.6, 26.3, 39.7, 57.7, 74.3, 107.6, 113.2, 121.5, 123.7, 132.0, 136.9, 138.8, 155.3; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}^{+}\right]$290.1882, found 290.1911 .

Typical Procedure for the Enantioselective Cyclization of 2-Geranylphenol 2a.

To a solution of $\mathbf{1 e}(42.6 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.8 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{FSO}_{3} \mathrm{H}$ in $\mathrm{CHCl}_{3}(0.20 \mathrm{~mL}, 0.010 \mathrm{mmol})$ at $-55{ }^{\circ} \mathrm{C}$, and the mixture was stirred
for ca. five minutes. To this solution, a solution of $\mathbf{2 a}(23.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ in hexane (0.1 mL) was added dropwise at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for $2-3$ days at $-55^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and the reaction mixture was extracted with ether. The combined organic layers were dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-ether 20:1) to give 3a (19.8 mg , trans $/$ cis $=90: 10,86 \%$ yield) as a diastereomeric mixture.

The corresponding physical and spectroscopic data for $\mathbf{3}$ are as follows.

(4aR,9aR)-1,1,4a-Trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (trans-3a): ${ }^{5} \quad[\mathrm{a}]^{23}{ }_{\mathrm{D}}+43.9\left(c=1.92, \mathrm{CHCl}_{3}\right)$ for 84% ee; HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=47.9$ (major, (+)-enantiomer), 74.0 (minor, (-)-enantiomer) min; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.25-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.93-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=13.0,16.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=5.6$, $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $19.78,19.84,20.68,23.25,32.10,33.38,40.00,41.49,48.06,117.01,119.60,122.64,127.10$, 129.63, 153.25. Absolute configuration was assigned to be ($4 \mathrm{a} R, 9 \mathrm{a} R$) by comparing the reported retention time as well as from the sign of measured optical rotation. ${ }^{5}$

(4aS,9aR)-1,1,4a-Trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (cis-3a): ${ }^{5} \quad$ HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=38.6$ (major enantiomer), 30.5 (minor enantiomer) min.

(4aR,9aR)-1,1,4a,7-Tetramethyl-2,3,4,4a,9,9a-hexahydro- $1 H$-xanthene
$[\mathrm{a}]_{\mathrm{D}}^{23}+54.5\left(c 1.51, \mathrm{CHCl}_{3}\right)$ for 93% ee; HPLC (Daicel Chiralcel OD-H $\times 3$, hexane, flow
rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=83.7$ (minor enantiomer), 90.7 (major enantiomer) min; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.72(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 1 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=12.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84-6.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.7,19.8,20.5,20.7,23.2,32.1$, $33.3,40.0,41.5,48.1,77.2,116.7,122.3,127.7,128.7,130.0,150.9$.

(4aS,9aR)-1,1,4a,7-Tetramethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (cis-3b): HPLC (Daicel Chiralcel OD-H $\times 3$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=44.8$ (minor enantiomer), 51.4 (major enantiomer) min.

(4aR,9aR)-7-Methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro- 1 H -xanthene (trans-3c): ${ }^{5}$ $[\mathrm{a}]^{24}{ }_{\mathrm{D}}+51.9\left(c 0.25, \mathrm{CHCl}_{3}\right)$ for 88% ee; HPLC (Daicel Chiralcel OD-H $\times 2$, hexane- i - PrOH 200:1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=30.3$ (major enantiomer), 47.7 (minor enantiomer) min; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.73(\mathrm{~m}, 6 \mathrm{H})$, $1.92-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}$, 3H), 6.59-6.70 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.7,19.8,20.6,23.6,32.1,33.3$, $41.5,48.0,55.7,76.8,113.1,114.1,117.5,123.2,147.2,152.8$.

(4aS,9aR)-7-Methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (cis-3c):
HPLC (Daicel Chiralcel OD-H $\times 2$, hexane- $i-\operatorname{PrOH} 200: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=22.2$ (minor enantiomer), 23.9 (major enantiomer) min.

(4aR,9aR)-7-Iodo-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro- $\mathbf{1 H}$-xanthene
(trans-3d): $[\mathrm{a}]^{24}{ }_{\mathrm{D}}+54.1\left(c 1.62, \mathrm{CHCl}_{3}\right)$ for 87% ee; HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=55.8$ (major enantiomer), 98.9 (minor enantiomer) min; IR (neat) 1569 , $1477,1378,1248,1154,1099,1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}$, $3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=13.3,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.66 (dd, $J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=2.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (br s, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 19.69,19.74,20.6,23.0,32.0,33.4,39.8,41.3$, 47.7, 77.6, 81.5, 119.4, 125.5, 135.9, 138.1, 153.2; HRMS (FAB) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{IO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 357.0715 , found 357.0725 .

(4aS,9aR)-7-Iodo-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene
(cis-3d):
HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=36.4$ (minor enantiomer), 41.8 (major enantiomer) min.

(5aR,9aR)-5a,9,9-Trimethyl-6,7,8,9,9a,10-hexahydro-5aH-[1,3]dioxolo[4,5-b]xanthene (trans-3e): ${ }^{3}[\mathrm{a}]^{23}{ }_{\mathrm{D}}+51.7\left(c 1.18, \mathrm{CHCl}_{3}\right.$) for 84% ee; HPLC (Daicel Chiralcel OD-H, hexane- i - $\operatorname{PrOH} 200: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=26.4$ (minor enantiomer), 36.3 (major enantiomer) min; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, $1.20-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.87-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=13.3,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=5.0$, $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.6,19.7,20.6,23.4,32.1,33.3,39.8,41.5,48.0,77.2,98.8,100.6$, 108.2, 113.9, 140.9, 146.2, 147.6.

(5aS,9aR)-5a,9,9-Trimethyl-6,7,8,9,9a,10-hexahydro-5aH-[1,3]dioxolo[4,5-b]xanthene (cis-3e): HPLC (Daicel Chiralcel OD-H, hexane- $i-\mathrm{PrOH} 200: 1$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}) t_{\mathrm{R}}=$ 14.8 (minor enantiomer), 18.8 (major enantiomer) min.

(4aR,9aR)-1,1,4a,6,8-Pentamethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene
(trans-3f): ${ }^{5}$
$[\mathrm{a}]^{22}{ }_{\mathrm{D}}+29.6\left(c 1.70, \mathrm{CHCl}_{3}\right)$ for 72% ee; HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=47.4$ (major enantiomer), 54.1 (minor enantiomer) min; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.97(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{dd}, J=13.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.1,19.6,19.8,20.6,20.8,21.0$, 32.1, 33.4, 39.9, 41.6, 48.1, 76.3, 115.2, 118.3, 122.2, 136.4, 137.1, 152.9.

(4aS,9aR)-1,1,4a,6,8-Pentamethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (cis-3f): HPLC (Daicel Chiralcel OD-H $\times 2$, hexane, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=28.9$ (minor enantiomer), 32.1 (major enantiomer) min.

(4aR,9aR)-6,8-Dimethoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene
(trans-3g): $[\mathrm{a}]_{\mathrm{D}}^{24}+50.0\left(c=1.05, \mathrm{CHCl}_{3}\right)$ for 79% ee; HPLC (Daicel Chiralcel OD-H and OD-3, hexane- $i-\mathrm{PrOH} 200: 1$, flow rate $0.2 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=80.6$ (minor enantiomer), 101.9 (major enantiomer) min; IR (neat) $1619,1591,1496,1454,1202,1146,1111,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.67(\mathrm{~m}, 6 \mathrm{H})$, $1.92-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (s, $3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.5,19.6,19.8,20.6,32.1,33.5,39.9,41.6,47.8,55.2,55.3,77.2,90.7,93.4,103.8$, 154.2, 158.4, 159.2; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$291.1960, found 291.1956.

(4aS,9aR)-6,8-Dimethoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthene (cis-3g): HPLC (Daicel Chiralcel OD-H and OD-3, hexane- i - PrOH 200:1, flow rate 0.2 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=61.6$ (minor enantiomer), 66.2 (major enantiomer) min .

(4aR,9aR)-8-Methoxy-6-(methoxymethyl)-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-x anthene (trans-3h): $[\mathrm{a}]^{22}{ }_{\mathrm{D}}+49.8\left(c \quad 1.25, \mathrm{CHCl}_{3}\right)$ for 74% ee; HPLC (Daicel Chiralcel OD-H and OD-3, hexane- i - $\operatorname{PrOH} 200: 1$, flow rate $0.2 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=72.8$ (major enantiomer), 88.7 (minor enantiomer) min; IR (neat) 1617, 1587, 1451, 1422, 1377, 1297, 1200, 1154, $1110 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.68$ (m, 6H), 1.92-1.97 (m, 1H), $2.25(\mathrm{dd}, J=13.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=5.0,17.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 18.0,19.6,19.8,20.6,32.1,33.4,39.9,41.6,47.6,55.4,58.0,74.8,77.2,100.6$, 109.3, 110.8, 137.2, 153.6, 157.9; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{3}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$305.2117, found 305.2130.

(4aS,9aR)-8-Methoxy-6-(methoxymethyl)-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-x
anthene (cis-3h): HPLC (Daicel Chiralcel OD-H and OD-3, hexane-i-PrOH 200:1, flow rate $0.2 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=51.8$ (major enantiomer), 53.3 (minor enantiomer) min.

(4aR,9aR)-6-(Methoxymethyl)-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthen-8-o I (trans-3i): $[\mathrm{a}]^{24}{ }_{\mathrm{D}}+35.2\left(c \quad 0.95, \mathrm{CHCl}_{3}\right)$ for 70% ee; HPLC (Daicel Chiralcel OZ-H, hexane- i - $\operatorname{PrOH} 20: 1$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=27.3$ (minor enantiomer), 40.5 (major enantiomer) min; IR (neat) 3339, 1625, 1589, 1429, 1378, 1136, $1100 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 1 \mathrm{H})$, $2.31(\mathrm{dd}, J=13.3,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=5.0,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H})$, 4.79-4.86(m, 1H), $6.355(\mathrm{~s}, 1 \mathrm{H}), 6.364(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8$, 19.6, 19.7, 20.6, 32.1, 33.4, 39.8, 41.5, 47.6, 57.6, 74.5, 77.1, 105.5, 109.0, 109.7, 136.9, 154.1, 154.4; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{3}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$291.1960, found 291.1969.

(4aS,9aR)-6-(Methoxymethyl)-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthen-8-ol (cis-3i): HPLC (Daicel Chiralcel OZ-H, hexane- i-PrOH 20:1, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=$ 17.5 (minor enantiomer), 19.7 (major enantiomer) min.

Synthesis of 4a-epi-Ugonstilbene B (8).

To a solution of $\mathbf{3 i}(20.3 \mathrm{mg}, 0.070 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added $\mathrm{NaH}(28 \mathrm{mg}, 60 \%$ in oil, 0.70 mmol) in one portion at ambient temperature. After stirring at the same temperature for $30 \mathrm{~min}, \mathrm{MOMCl}(0.027 \mathrm{~mL}, 0.35 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The
reaction mixture was warmed up to ambient temperature and stirred for 3 h . After carefully quenching with water, the mixture was extracted with ether, and the organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-ether 10:1) to give MOM-protected $\mathbf{3 i}$ (17.2 $\mathrm{mg}, 74 \%$ yield). To a solution of MOM-protected $\mathbf{3 i}(13.6 \mathrm{mg}, 0.0407 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\mathrm{mL})$ and water $(0.3 \mathrm{~mL})$ at room temperature was added solid DDQ ($56 \mathrm{mg}, 0.25 \mathrm{mmol})$ in two portions. After stirring for 8 h , the reaction was quenched by addition of saturated aqueous NaHCO_{3} and extracted with ether. The organic extract was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-ether 5:1) to give $\mathbf{3 i}$ ($12.4 \mathrm{mg}, 96 \%$ yield) as a diastereomeric mixture.
(4aR,9aR)-8-(Methoxymethoxy)-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthe ne-6-carbaldehyde (4): IR (neat) 1698, 1582, 1437, 1381, 1344, 1298, 1154, 1105, 1060, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.76(\mathrm{~m}, 6 \mathrm{H}), 1.21$ (s, 3H), 1.96-2.02 (m, 1H), 2.36 (dd, $J=13.3,17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=4.8,17.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 18.9,19.6,19.7,20.5,32.0,33.4,39.7,33.4,39.7,41.4,47.2,56.3$, $77.6,94.4,103.8,113.9,119.8,135.8,154.5,156.0,191.9$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{4}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right] 319.1909$, found 319.1913.

To a solution of $4(12.4 \mathrm{mg}, 0.039 \mathrm{mmol})$ and phosphonate $5(25 \mathrm{mg}, 0.080 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at ambient temperature was added 15 -crown-5 ($8 \mathrm{~mL}, 0.040 \mathrm{mmol}$), followed by NaH ($32 \mathrm{mg}, 60 \%$ in oil, 0.80 mmol). After stirring at the same temperature for 1 day, the reaction mixture was quenched by addition of water, and then the mixture was extracted with AcOEt , and the organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-ether 10:1) to give MOM-protected $\mathbf{6}$ ($12.4 \mathrm{mg}, 70 \%$ yield). To a solution of

MOM-protected $6(12.4 \mathrm{mg}, 0.0274 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(52 \mathrm{mg}$, 0.274 mmol) at ambient temperature, and the resulting mixture was stirred at the same temperature for 1 day. The reaction mixture was quenched by addition of saturated aqueous NaHCO_{3}, and methanol was removed under reduced pressure before extracting with AcOEt. The organic extract was washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by column chromatography on silica gel (hexane-AcOEt 3:1) to give $\mathbf{6}$ as a pale yellow solid ($7.9 \mathrm{mg}, 79 \%$ yield) as a diastereomeric mixture.

4a-epi-Ugonstilbene B (6): $[\mathrm{a}]^{26}{ }_{\mathrm{D}}+49.4\left(c \quad 0.79, \mathrm{CHCl}_{3}\right)$ for $69 \% \mathrm{ee}$; HPLC (Daicel Chiralpak IA, hexane-2-propanol 4:1, flow rate $0.5 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=16.5$ (major enantiomer of cis-diastereomer), 18.6 (minor enantiomer of cis-diastereomer), $t_{\mathrm{R}}=32.8$ (major enantiomer of trans-diastereomer), 26.8 (minor enantiomer of trans-diastereomer) min; IR (neat) 3373, $1606,1575,1514,1423,1246,1100,1059,1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}$, $3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.73(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=13.3$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=4.8,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.57(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,19.67$, 19.74, $20.6,32.1,33.5,39.8,41.5,47.6,77.2,104.2,107.5,109.4,115.6,126.2,127.8,127.9,130.2$, 136.9, 154.0, 154.3, 155.2; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$364.2038, found 364.2045 .

References

1. (a) Maruoka, K.; Itoh, T.; Araki, Y.; Shirasaka, T.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1988, 61, 2675. (b) Storer, R. I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006, 128, 84.
2. (a) Tanaka, S.; Ono, F.; Katagiri, T.; Tanaka, J. Bull. Chem. Soc. Jpn. 1977, 50, 750. (b) Bigi, F.; Casiragi, G.; Casnati, G.; Sartori, G. Synthesis 1981, 310.
3. Kumazawa, K.; Ishihara, K.; Yamamoto, H. Org. Lett. 2004, 6, 2551.
4. Chakrapani, L.; Jung, E. M.; Lee, Y. R. Helv. Chim. Acta 2010, 93, 829.
5. (a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 1999, 121, 4906. (b)

Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc. 2000, 122, 8131.

Chapter 3

Kinetic Resolution of Racemic Carboxylic Acids Catalyzed by Chiral Lewis Base-Assisted Brønsted Acid (LBBA) through Asymmetric Protolactonization

Abstract

Chiral Lewis base-assisted Brønsted acids (Chiral LBBAs) catalyze the kinetic resolution of racemic α-substituted carboxylic acids through asymmetric protolactonization. Both the lactones and the recovered carboxylic acids are obtained with high enantioselectivities and high S values. In addition, the desymmetrization of meso-carboxylic acids can also be accomplished via chiral LBBA-catalyzed asymmetric protolactonization.

3-1 Introduction

The synthesis of optically active carboxylic acids and lactones is a very important subject in medicinal and pharmaceutical chemistry. The intramolecular cyclization of unsaturated carboxylic acids is one of the most straightforward routes to the synthesis of lactones, and leads directly to the desired products. In general, electrophilic reagents such as iodine, phenylselenium chloride, and mercuric or palladium salts promote this cyclization. ${ }^{1}$ However, these methods require an additional step to remove the reagent bound to the products. Although the cyclization of unsaturated acids promoted by a Brønsted acid is well-known, it most often occurs with more than a stoichiometric amount of a Brønsted acid. ${ }^{2}$ On the other hand, it has been reported that a variety of α - or β-substituted γ - and δ-lactones can be easily prepared from unsaturated carboxylic acids in excellent yields using trifluoromethanesulfonic acid (TfOH) as a catalyst. ${ }^{3}$ However, applications of this method such as an asymmetric version are limited because these reactions require harsh conditions. While there are a growing number of chiral Brønsted acid catalysts, the chiral proton-induced lactonization (protolactonization) of unsaturated carboxylic acids is still rare, mainly due to the difficulty of controlling the Brønsted acidities of the catalysts and the low nucleophilicity of a carboxyl group toward unactivated alkenes. ${ }^{4}$

The kinetic resolution of racemic compounds through a catalytic asymmetric reaction is a useful method for obtaining optically active compounds. ${ }^{5,6}$ Our group previously reported the kinetic resolution of racemic α-substituted carboxylic acids bearing a pyrrolidineor pyrroline-1-carbonyl group through asymmetric acylation catalyzed by L-histidine-derived organocatalysts (Scheme 3.1). ${ }^{7,8}$ Although these methods can be used for kinetic resolution to give a variety of optically active carboxylic acids and esters, the mixed anhydrides must first be generated, followed by transacylation to achieve the corresponding reactions. Therefore, they are associated with the generation of byproducts derived from acid chlorides or condensation reagents.

Scheme 3.1. Kinetic Resolution of Racemic Carboxylic Acid through Asymmetric Esterification

Recently, we developed chiral Lewis base-assisted Brønsted acids (LBBAs) as new chiral Brønsted acid catalysts for the enantioselective cyclization of 2-geranylphenols (Scheme 3.2). ${ }^{9}$ With regard to the subject of asymmetric protocyclization reactions, we considered that the chiral LBBA-promoted method could be applied to the kinetic resolution of racemic unsaturated carboxylic acids through asymmetric protolactonization (Scheme 3.3). This reaction system could lead to a novel and straightforward approach for providing optically active carboxylic acids and lactones without the generation of byproducts derived from the activating reagents. Here, we describe the kinetic resolution of racemic α-substituted carboxylic acids catalyzed by chiral LBBAs through asymmetric protolactonization.

Scheme 3.2. Chiral Lewis Base-Assisted Brønsted Acids (Chiral LBBAs)

Scheme 3.3. Kinetic Resolution of Racemic Carboxylic Acid through Asymmetric Protolactonization

racemic unsaturated
carboxylic acid

3-2 Results and Discussion

To begin our study, racemic carboxylic acid (\pm)-2 $\mathbf{2 a}$ was chosen as a model substrate for the chiral LBBA-catalyzed kinetic resolution (Table 3.1). Based on our previous study, we envisioned that the use of chiral LBBA $(\mathbf{1} \cdot \mathrm{HX})$ would be key for enantioface selection of the isoprenyl group of $(\pm) \mathbf{- 2 a}$. First, the protolactonization of (\pm) - $\mathbf{2 a}$ was conducted under the same conditions as LBBA-catalyzed polyene cyclization (in the presence of $\mathbf{1}(40 \mathrm{~mol} \%)$ and $\mathrm{TfOH}(10 \mathrm{~mol} \%)$ at $\left.-40^{\circ} \mathrm{C}\right)$ (entry 1). As a result, the reaction gave the corresponding lactone 3a with 95% ee (26% conv.). The unreacted carboxylic acid $\mathbf{2 a}$ was recovered after transformation to the methyl ester $\mathbf{4 a}\left(33 \%\right.$ ee) using $\mathrm{TMSCH}_{2} \mathrm{~N}_{2}$. Therefore, these results gave a selectivity factor ($S=k_{\text {fast }} / k_{\text {slow }}$) of 54 (entry 1). When the reaction was conducted at $-30^{\circ} \mathrm{C}$, the recovered carboxylic acid was obtained with 98% ee (entry 2). The use of $\mathbf{1}$ (20 $\mathrm{mol} \%$) and $\mathrm{TfOH}(5 \mathrm{~mol} \%)$ at $-30^{\circ} \mathrm{C}$ also gave 3a with high enantioselectivity (95% ee) although the conversion was low (17%, entry 3). Next, achiral Brønsted acids (HX) were investigated under these conditions. The use of $\mathrm{FSO}_{3} \mathrm{H}$ gave almost the same results as those obtained with TfOH , although $\mathrm{FSO}_{3} \mathrm{H}$ was the optimal Brønsted acid in the cyclization of 2-geranylphenols (95% ee, 12% conv., entry 4). On the other hand, the use of $\mathrm{ClSO}_{3} \mathrm{H}$ improved the conversion of 3a without a significant loss of enantioselectivity (92% ee, 41% conv., entry 5). To our delight, when $1 \cdot \mathrm{ClSO}_{3} \mathrm{H}$-catalyzed protolactonization was conducted at $-40^{\circ} \mathrm{C}$, the enantioselectivity increased to 94% ee without any decrease in the conversion, which gave the highest selectivity factor $(S=62$, entry 6). Additionally, when the reaction was conducted at $-20^{\circ} \mathrm{C}$, the recovered carboxylic acid was obtained with 95% ee (entry 7). These results suggested that simple control of the reaction temperature could make it possible to easily access optically active carboxylic acids and lactones with high enantioselectivities.

Meanwhile, when the reaction was conducted in the absence of $\mathbf{1}$ at $-20^{\circ} \mathrm{C}$, racemic lactone 3a was obtained in 8% yield (entry 8). These results indicated that the use of Lewis base $\mathbf{1}$ controlled not only the stereoselectivity but also the reactivity.

Table 3.1. Kinetic Resolution of (\pm)-2a Catalyzed by Chiral LBBAs

[^0]With the optimized reaction conditions in hand, we next examined the kinetic resolution of racemic carboxylic acids $(\pm)-2$ bearing various α-substituents (Table 3.2). Although the introduction of aromatic rings at the α-position of carboxylic acids gave excellent selectivity $(S=62)$, this method was not effective for alkyl-substituted substrate $\mathbf{2 b}$ such as a benzyl group due to the less steric nature of the primary alkyl substituent (entries 1 and 2). The absolute stereochemistry of the obtained lactone $\mathbf{3 b}$ was assigned to be $(S) .{ }^{10}$ However, substrate 2c bearing an iso-propyl group gave good selectivity ($S=37$, entry 3). The kinetic resolution of racemic tertiary carboxylic acid $\mathbf{2 d}$ did not give a satisfactory level of enantioselectivity (entry 4). These findings suggested that the steric size of the substituents on the chiral center significantly influenced the enantiocontrol.

Table 3.2. Substrate Scope for the Kinetic Resolution of (\pm)- α-Substituted Carboxylic Acids
(

[^1]To explore the scope of the reaction with respect to the substrate, we examined the kinetic resolution of racemic carboxylic acids bearing structurally different alkenes. The asymmetric protolactonization of (\pm) - 5 in the presence of $\mathbf{1}(20 \mathrm{~mol} \%)$ and $\mathrm{ClSO}_{3} \mathrm{H}(5$ mol \%) showed good selectivity ($S=16$, Scheme 3.4). This reaction proceeded through exo-cyclization to give the corresponding 5-membered lactone $\mathbf{6}$ with 83% ee. This result indicated that this chiral LBBA-catalyzed method could also promote the kinetic resolution of racemic α-substituted carboxylic acids bearing 1,1-disubstituted alkenes.

Scheme 3.4. Kinetic Resolution of (\pm)-5 Catalyzed by Chiral LBBAs

Based on the kinetic resolution of racemic α-substituted carboxylic acids, we envisioned that this chiral LBBA-catalyzed system could be used for the desymmetrization of meso-unsaturated carboxylic acids. It could also be used for the synthesis of optically active lactones. When the reaction of $\mathbf{8}$ was conducted in the presence of $\mathbf{1}(40 \mathrm{~mol} \%)$ and $\mathrm{ClSO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$ at $-30^{\circ} \mathrm{C}$, the desired product 9 was obtained in 82% yield with 79% ee (Table 3.3, entry 1). The use of $100 \mathrm{~mol} \%$ of 1 and $20 \mathrm{~mol} \%$ of $\mathrm{ClSO}_{3} \mathrm{H}$ at $-40^{\circ} \mathrm{C}$ slightly increased the yield and the enantioselectivity of 9 (95% yield, 81% ee, entry 2). This reaction gave the corresponding lactone $\mathbf{9}$ with good enantioselectivity, while the selectivity of the kinetic resolution of a racemic carboxylic acid bearing a primary alkyl substituent at the α-position was low.

Table 3.3. Desymmetrization of meso- α-Substituted Carboxylic Acids

We propose the following mechanism to explain the absolute stereopreference we observed (Figure 3.1). Based on our previous study, chiral LBBA $(1 \cdot \mathrm{HX})$ selectively reacts with the $r e$-face of the terminal isoprenyl group, the dimethyl group of which is placed at the least-hindered side in the transition-state assembly (A). ${ }^{9} \quad$ At this point, (S)-carboxylic acid $\mathbf{2}$ immediately undergoes protolactonization through transition state \mathbf{B} to give the corresponding (S)-lactone 3. On the other hand, the reaction of (R)-carboxylic acid 2 through transition state \mathbf{C} is slower than that through \mathbf{B} because of steric repulsion associated with the substituent R with a triphenylsilyl group. Therefore, (R)-carboxylic acid $\mathbf{2}$ is recovered selectively after the reaction.

$(\pm)-2$
$+$

ClSO_{3}

(R)-3 (minor)

Figure 3.1. Proposed mechanism for kinetic resolution.

3-3 Conclusion

We have achieved the kinetic resolution of racemic α-substituted carboxylic acids 2 through asymmetric protolactonization catalyzed by chiral Lewis base-assisted Brønsted acids (Chiral LBBAs). This reaction system may represent a novel and straightforward approach for providing optically active carboxylic acids and lactones. In addition, the desymmetrization of meso-carboxylic acids 5 was also accomplished via chiral LBBA-catalyzed protolactonization. To the best of our knowledge, these are the first successful examples of reactions that give δ-lactones with high enantioselectivities through the chiral Brønsted acid-catalyzed asymmetric protolactonization of unsaturated carboxylic acids.

References and Notes

1. (a) Ohfune, Y.; Kurokawa, N. Tetrahedron Lett. 1985, 26, 5307. (b) Larnck, R. C; Hightower, T. R. J. Org. Chem. 1993, 58, 5298. (c) Kang, S. H.; Lee, J. H.; Lee, S. B. Tetrahedron Lett. 1998, 39, 59. (d) Jonasson, C; Horvath, A.; Baeckvall, J. E. J. Am. Chem. Soc. 2000, 122, 9600. (e) Chavan, S. P.; Shamia, A. K. Tetrahedron Lett. 2001, 42, 4923. (f) Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C. Synlett 2001, 1767. (g) GruUadauria, M.; Aprile, C; Noto, R. Tetrahedron Lett. 2002, 43, 1669. (h) Curini, M.; Epifano. F.; MarcoiuUio, M. C; Montanari, F. Synlett 2004, 2, 368.
2. (a) Anscll, M. F.; Palmer, M. H. Quart. Rev. (London) 1964, 18, 211. (b) TIecco, M.; Testaferri, L.; Tingoli, M. Tetrahedron 1993, 49, 5351. (c) Mali, R. S.; Babu, K. N. Helv. Chim. Acta 2002, 85, 3525. (e) Miura, K.; Hayashida, J.; Takahashi, T.; Nishikori, H.; Hosomi, A. J. Organomet. Chem. 2003, 686, 242. (f) Zhou, Y.; Woo, L. K.; Angelici, R. J. Appl. Catal., A: General 2007, 333, 238.
3. Coulombel, L.; Duñach, E. Synth. Commun. 2005, 35, 153.
4. For the report on the chiral LBA-induced polyene cyclization with a carboxylic group as a terminator, see: Upar, K. B.; Mishra, S. J.; Nalawade, S. P.; Singh, S. A.; Khandare, R. P.; Bhat, S. V. Tetrahedron: Asymmetry 2009, 20, 1637.
5. For selected reviews, see: (a) Kagan, H. B.; Fiaud, J. C. Topics in Stereochemistry, Vol. 18, ed. by Eliel, E. L.; Wilen, S. H., Wiley, New York, 1988, pp 249-330. (b) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N.; Adv. Synth. Catal. 2001, 343, 5. (c) Vedejs, E.; Jure, M. Angew. Chem. Int. Ed. 2005, 44, 3974. (d) Müller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50, 6012. (e) Krasnov, V. P.; Gruzdev, D. A.; Levit, G. L. Eur. J. Org. Chem. 2012, 1471. (f) Taylor, J. E.; Bull, S. D.; Williams, J. M. J. Chem. Soc. Rev. 2012, 41, 2109.
6. For recent examples, see: (a) Peschiulli, A.; Procuranti, B.; O'Connor, C. J.; Connon, S. J. Nat. Chem. 2010, 2, 380 . (b) Bumbu, V. D.; Birman, V. B. J. Am. Chem. Soc. 2011, 133, 13902. (c) Čorić, I.; List, B. Nature 2012, 483, 315. (d) Wang, Y.; Zheng, K.; Hong, R. J. Am. Chem. Soc. 2012, 134, 4096. (e) Zhou, L.; Liu, X.; Ji, Jie; Zhang, Y.; Hu, X.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2012, 134, 17024.
7. (a) Ishihara, K.; Kosugi, Y.; Umemura, S.; Sakakura, A. Org. Lett. 2008, 10, 3191. (b)

Sakakura, A.; Umemura, S.; Ishihara, K. Synlett 2009, 1647.
8. For another example of the asymmetric esterification of racemic carboxylic acids, see: (a) Shiina, I.; Nakata, K.; Ono, K.; Onda, Y.; Itagaki, M. J. Am. Chem. Soc. 2010, 132, 11629. (b) Shiina, I.; Nakata, K.; Onda, Y. Eur. J. Org. Chem. 2008, 5887. (c) Yang, X.; Birman, V. B. Adv. Synth. Catal. 2009, 351, 2301. Also see also other non-enzymatic enantioselective acyl transfer reactions: (d) Narasaka, K.; Kanai, F.; Okudo, M.; Miyoshi, N. Chem. Lett. 1989, 1187. (e) Notte, G. T.; Sammakia, T.; Steel, P. J. J. Am. Chem. Soc. 2005, 127, 13502. (f) Notte, G. T.; Sammakia, T. J. Am. Chem. Soc. 2006, 128, 4230. (g) Yang, X.; Lu, G.; Birman, V. B. Org. Lett. 2010, 12, 892.
9. Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130.
10. The optical rotation of 3b was measured to be $[\alpha]^{24}{ }_{\mathrm{D}}-17.8\left(c 0.65, \mathrm{CHCl}_{3}\right)$ for 49% ee, which can be compared with $[\alpha]^{23}{ }_{\mathrm{D}}+52.6\left(c 1.06, \mathrm{CHCl}_{3}\right)$ for 94% ee of (R) - $\mathbf{3 h}$, see: Matsuo, J.; Kobayashi, S.; Koga, K. Tetrahedron Lett. 1998, 39, 9723.

Experimental Section

General Methods. Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (400 $\mathrm{MHz})$ at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane on the d scale, multiplicity ($\mathrm{s}=$ singlet; $\mathrm{d}=\operatorname{doublet;~} \mathrm{t}=\operatorname{triplet} ; \mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constant (Hz), integration, and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL ECS-400 spectrometer (100 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (deuterochloroform at 77.00 ppm). ${ }^{19} \mathrm{~F}$ NMR spectra (376 MHz) and ${ }^{31} \mathrm{P}$ NMR spectra (162 MHz) were measured on a JEOL ECS-400 spectrometer. High performance liquid chromatography (HPLC) analysis was conducted using Shimadzu LC-20 AD coupled diode array-detector SPD-M20A and chiral column of Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25$ cm), Daicel CHIRALPAK AS-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$), Daicel CHIRALPAK IB-3 $(4.6 \mathrm{~mm} \times$ 250 mm) or Daicel CHIRALPAK IC-3 ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$). Gas-liquid-phase chromatography (GC) was performed with Shimadzu GC-2010 Plus with a flame-ionization detector and a capillary column of CP-Cyclodextrin- $\beta-2,3,6-\mathrm{M}-19$ (i.d. $0.25 \mathrm{~mm} \times 25 \mathrm{~m}$; CHROMPACK; GL Science Inc.) or CHIRALDEX β-TA, γ-TA (i.d. $0.25 \mathrm{~mm} \times 20 \mathrm{~m}$; Tokyo Kasei Kogyo Co., Ltd). Optical rotations were measured on a RUDOLPH AUTOPOL IV digital polarimeter. The reactions were carried out under an atmosphere of dry nitrogen. For thin-layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254} 0.25 \mathrm{~mm}$ or silica gel $\mathrm{NH}_{2} \mathrm{~F}_{254 \mathrm{~S}} 0.25 \mathrm{~mm}$) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385). High resolution mass spectral analysis (HRMS) was performed at Chemical Instrumentation Facility, Nagoya University on JEOL JMS-700 spectrometer. Dry tetrahydrofuran was purchased from Kanto as the "anhydrous" and stored under nitrogen. Chloroform were freshly distilled from diphosphorus pentoxide, and stored over MS $4 \AA$ under nitrogen in the dark. Other simple chemicals were analytical-grade and obtained commercially. Chiral phosphorus(III) compound $\mathbf{1}$ was reported previously. ${ }^{1}$

Preparation of (\pm)- α-Substituted Carboxylic Acids 2 and 5.

(土)-5-Methyl-2-phenyl-4-hexenoic acid (2a): ${ }^{2}$ To a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.7 \mathrm{~mL}, 12 \mathrm{mmol})$ in THF (40 mL) was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexane, $6.9 \mathrm{~mL}, 11$ mmol) dropwise at $-78^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 30 minutes. A solution of ethyl 2-phenylacetate ($1.6 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF (5 mL) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for $1 \mathrm{~h}, 1$-bromo-3-methyl-2-butene ($1.4 \mathrm{~mL}, 12 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. It was then warmed to room temperature and stirred for 5 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with ether. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give ethyl ester of $\mathbf{2 a}(1.97 \mathrm{~g}, 85 \%$ yield) as colorless oil. To a solution of ethyl ester of $\mathbf{2 a}$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added a solution of 2 M aq. $\mathrm{NaOH}(6.8 \mathrm{~mL})$ and refluxed for 1 day. The reaction mixture was cooled, and then concentrated under reduced pressure to remove the solvent. The residue was taken with water and acidized with 1 N HCl . The reaction mixture was extracted with EtOAc, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 2:1) to give of $\mathbf{2 a}(1.72 \mathrm{~g}, 99 \%$ yield) as colorless oil. IR (neat) 3250-2750, 1706, 1495, 1415, $1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.45$ (ddd, $J=7.3,7.8,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (ddd, $J=7.3,7.8,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $5.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 5 \mathrm{H}), 9.68-11.17(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.8,25.7,31.8,51.7,120.5,127.4,128.0,128.6,134.3,138.3,179.5 ;$ HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$205.1229, found 205.1228.

(土)-2-Benzyl-5-methyl-4-hexenoic acid (2b): Compound 2b was prepared from ethyl 3-phenylpropionate and 1-bromo-3-methyl-2-butene according to the same manner as 2a. IR (neat) $3250-2750,1705,1455,1242 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dt}, J=7.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dt}, J=7.3,14.6 \mathrm{~Hz}$, 1H), 2.66-2.75 (m, 1H), 2.78 (dd, $J=6.6,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=8.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$
$(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 9.86-11.22(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,25.8,30.2,37.3,47.6,120.4,126.4,128.4,128.9,134.4,139.1$, 181.7; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$219.1385, found 219.1397.

(\pm)-2-Isopropyl-5-methyl-4-hexenoic acid (2c): ${ }^{3}$ Compound 2c was prepared from methyl isovalerate and 1-bromo-3-methyl-2-butene according to the same manner as 2a. IR (neat) 3250-2750, 1706, 1440, $1223 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.91$ (dsept, $J=$ $6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.35(\mathrm{~m}, 3 \mathrm{H}), 5.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 10.82-11.52(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.6,20.1,20.3,25.8,28.0,30.0,52.9,121.2,133.6,182.4$.

(土)-2,5-Diethyl-2-phenyl-4-hexenoic acid (2d): To a solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.8 \mathrm{~mL}, 13 \mathrm{mmol})$ in THF (10 mL) was added n-BuLi (1.6 M in hexane, 7.8 mL , 12.5 mmol) dropwise at $-7{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 30 minutes. A solution of 2-phenylpropionic acid ($0.68 \mathrm{~mL}, 5 \mathrm{mmol}$) in THF (2.5 mL) was added dropwise at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 2 h . The mixture was then cooled to $0{ }^{\circ} \mathrm{C}$, and 1-bromo-3-methyl-2-butene ($1.4 \mathrm{~mL}, 12.5 \mathrm{mmol}$) was added. It was then warmed to room temperature and stirred for 20 h . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with 0.5 M KOH . Aqueous layer was washed with ether and acidized with 1 N HCl . The product was extracted with ether, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 2:1) to give of $\mathbf{2 d}(0.92 \mathrm{~g}, 84 \%$ yield) as colorless oil. IR (neat) 3250-2750, $1699,1446,1278 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $2.61(\mathrm{dd}, J=7.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=7.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.29 (m, 1H), 7.31-7.42 (m, 4H), 9.82-10.86 (br, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.0, 22.1, 26.0, 37.4, 50.2, 119.3, 126.3, 126.9, 128.4, 135.0, 142.8, 182.4; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$219.1385, found 219.1399.

(土)-4-Methyl-2-phenyl-4-pentenoic acid (5): ${ }^{4}$ Compound 5 was prepared from ethyl 2-phenylacetate and 3-bromo-2-methyl-1-propene according to the same manner as 2a. IR (neat) 3250-2750, 1708, 1452, 1284, $895 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{dd}, J=6.9,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=8.7,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (dd, $J=6.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 5 \mathrm{H}), 10.27-11.36(\mathrm{br}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 22.6,40.7,49.9,112.4,127.5,128.0,128.6,138.0,142.1$, 180.0; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$191.1072, found 191.1050.

Typical Procedure for the Kinetic Resolution of (\pm)-2a.

To a solution of $1(18.2 \mathrm{mg}, 0.020 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.8 \mathrm{~mL})$ was added a 0.05 M solution of $\mathrm{ClSO}_{3} \mathrm{H}$ in $\mathrm{CHCl}_{3}(0.1 \mathrm{~mL}, 0.005 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for ca . five minutes. To this solution, a solution of $\mathbf{2 a}(21.8 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.1 \mathrm{~mL})$ was added dropwise at $-40^{\circ} \mathrm{C}$, and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 day. The reaction was quenched with water $(3 \mathrm{~mL})$ and the reaction mixture was extracted with ether. The combined organic layers were dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane- $\mathrm{CHCl}_{3}-\mathrm{EtOAc} 3: 3: 1$) to give 3a as a pale yellow solid ($8.4 \mathrm{mg}, 40 \%$ yield) and $\mathbf{2 a}(10.6 \mathrm{mg}, 52 \%$ yield). To a stirring solution of the recovered carboxylic acid 2 a in THF (1.0 mL) and $\mathrm{MeOH}(0.25 \mathrm{~mL})$ was added dropwise (trimethylsilyl)diazomethane (2.0 M in diethyl ether, 0.10 mL) at $0^{\circ} \mathrm{C}$. The yellow solution was stirred at the same temperature for 10 minutes. The reaction was quenched with AcOH (ca. 0.10 mL) and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give 4a as pale yellow oil ($9.5 \mathrm{mg}, 85 \%$ yield).

The corresponding physical and spectroscopic data for $\mathbf{3}$ and 4 are as follows.

6,6-Dimethyl-3-phenyltetrahydro-2H-pyran-2-one (3a): [a] ${ }^{23}{ }_{\mathrm{D}}+8.7$
(c $0.42, \mathrm{CHCl}_{3}$) for 95% ee; HPLC (Daicel Chiralpak AS-H, hexane- i-PrOH 4:1, flow rate
$1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=22.2$ (minor enantiomer), 38.3 (major enantiomer) min; IR (neat) 1712, 1284, 1258, 1209, $1120 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.83-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.26(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=6.9,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.30(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.7,28.3,29.9,33.4,47.2,82.9,127.1$, 128.1, 128.8, 139.8, 172.2; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$205.1229, found 205.1241.

Methyl 5-methyl-2-phenyl-4-hexenoate (4a): $[\mathrm{a}]^{25}{ }_{\mathrm{D}}-76.3$ (c $0.49, \mathrm{CHCl}_{3}$) for 98% ee; HPLC (Daicel Chiralpak IB-3, hexane- i-PrOH 200:1, flow rate 0.3 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=17.8$ (major enantiomer), 19.3 (minor enantiomer) min; IR (neat) 1738, 1435, $1154 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.44$ (ddd, $J=7.1,7.3$, $14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.76 (ddd, $J=7.3,8.5,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=7.1,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $5.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.34(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,25.7,32.2$, $51.8,51.9,120.8,127.2,127.9,128.5,134.1,139.0,174.3$; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}{ }^{+}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$219.1385, found 219.1413.

(S)-3-Benzyl-6,6-dimethyltetrahydro-2H-pyran-2-one (3b): $\quad[\mathrm{a}]^{24}{ }_{\mathrm{D}}$ $-17.8\left(c 0.65, \mathrm{CHCl}_{3}\right)$ for 49% ee; HPLC (Daicel Chiralpak AS-H, hexane- i - $\mathrm{PrOH} 4: 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$) $t_{\mathrm{R}}=15.6$ (minor enantiomer), 19.0 (major enantiomer) min; IR (neat) 1709, 1454, 1369, 1113, $942 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.59-1.78(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=9.2,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=4.1,13.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,27.8$, $29.9,33.7,37.5,41.5,82.2,126.5,128.5,129.3,138.9,173.4$; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$219.1385, found 219.1382. Absolute configuration was assigned to be (S) by comparing the sign of measured optical rotation. ${ }^{5}$

Methyl 2-benzyl-5-methyl-4-hexenoate (4b): $\quad[a]^{27}{ }_{D}-8.7 \quad(c$ $0.39, \mathrm{CHCl}_{3}$) for 42% ee; HPLC (Daicel Chiralpak IB-3, hexane- i - $\mathrm{PrOH} 200: 1$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=15.1$ (minor enantiomer), 16.4 (major enantiomer) min; IR (neat) 1738, 1436, $1207,1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dt}, J=7.3$, $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dt}, J=7.3,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=6.4,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.93$ (dd, $J=8.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ ($\mathrm{s}, 3 \mathrm{H}$), $5.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.22$ (m, 3H), 7.24-7.29 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.8,25.8,30.5,37.7,47.8,51.4,120.7$, 126.2, 128.3, 128.8, 134.1, 139.5, 175.7; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 233.1542, found 233.1546 .

3-Isopropyl-6,6-dimethyltetrahydro-2H-pyran-2-one (3c): $\quad[a]^{26}{ }_{D}$ -36.3 (c $0.54, \mathrm{CHCl}_{3}$) for 88% ee; GC ($\beta-\mathrm{TA}, 100 \mathrm{kPa}$, column temperature $70^{\circ} \mathrm{C}$ and then warm to $\left.90{ }^{\circ} \mathrm{C}\left(+{ }^{\circ} \mathrm{C} / \mathrm{min}\right)\right) t_{\mathrm{R}}=35.9$ (minor enantiomer), 37.6 (major enantiomer) min; IR (neat) $1719,1461,1375,1284,1114 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.29-2.36(\mathrm{~m}$, 1 H), 2.55 (dsept, $J=3.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.9,17.8,20.0,27.6$, 28.5, 30.2, 34.1, 45.6, 81.4, 173.4; HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right]$193.1204, found 193.1174.

Methyl 2-isopropyl-5-methyl-4-hexenoate (4c): ${ }^{6} \quad[a]^{27}{ }_{D}-11.8$
(c $0.20, \mathrm{CHCl}_{3}$) for 78% ee; GC ($\beta-\mathrm{CP}, 50 \mathrm{kPa}$, column temperature $70^{\circ} \mathrm{C}$ and then warm to $\left.75^{\circ} \mathrm{C}\left(+0.25{ }^{\circ} \mathrm{C} / \mathrm{min}\right)\right) t_{\mathrm{R}}=60.4$ (major enantiomer), 61.4 (minor enantiomer) min; IR (neat) $1736,1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.87$ (dsept, $J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.32(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 5.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.7,20.3,20.4,25.8,28.3,30.3$, 51.1, 53.0, 121.5, 133.3, 175.9.

3,6,6-Trimethyltetrahydro-2H-pyran-2-one (3d): $[\mathrm{a}]^{27}{ }_{\mathrm{D}}+10.1 \quad(c$ $0.53, \mathrm{CHCl}_{3}$) for 62% ee; HPLC (Daicel Chiralpak IC-3, hexane-i-PrOH 9:1, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=18.3$ (minor enantiomer), 20.7 (major enantiomer) min; IR (neat) 1716, 1452, $1302,1275,1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$, $1.65(\mathrm{dd}, J=5.0,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{dt}, J=7.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, J=5.0,14.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.23-7.30 (m, 3H), 7.32-7.37 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.6,28.5,30.1,31.4$, $32.9,47.2,83.4,125.9,126.9,128.7,143.8,175.2$; HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}{ }^{+}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$219.1385, found 219.1384.

Methyl 2,5-diethyl-2-phenyl-4-hexenoate (4d): $\quad[\mathrm{a}]^{27}{ }_{\mathrm{D}}-20.9$ (c $0.61, \mathrm{CHCl}_{3}$) for 33% ee; HPLC (Daicel Chiralpak IC-3, hexane- i-PrOH 200:1, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=8.0$ (minor enantiomer), 9.7 (major enantiomer) min; IR (neat) 1732, 1446, $1236,1100 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.59$ (dd, $J=7.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.79 (dd, $J=7.3,14.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}$), 4.97 (t, $J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.9,22.7,26.0$, $37.5,50.6,52.1,119.5,126.0,126.6,128.3,134.7,143.8,176.6$; HRMS (FAB) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$233.1542, found 233.1534.

5,5-Dimethyl-3-phenyldihydrofuran-2(3H)-one (6): ${ }^{7} \quad[\mathrm{a}]^{27} \mathrm{D}+5.8 \quad(c$ $0.62, \mathrm{CHCl}_{3}$) for 83% ee; HPLC (Daicel Chiralcel OD-H, hexane- i-PrOH 4:1, flow rate 1.0 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=8.4$ (major enantiomer), 9.9 (minor enantiomer) min; IR (neat) 1766, 1456, $1376,1259,1139,1113,952 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{dd}, J=11.9,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=9.2,12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=9.2,11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 26.9,28.9,44.2$, $46.9,82.1,127.5,128.0,128.8,136.9,176.5$; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{2}^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ 191.1072, found 191.1061.

Methyl 4-Methyl-2-phenyl-4-pentenoate (7): $:^{7} \quad[\mathrm{a}]^{27}{ }_{\mathrm{D}}-40.6$ (c
$0.78, \mathrm{CHCl}_{3}$) for 43% ee; HPLC (Daicel Chiralpak IB-3, hexane- i - $\operatorname{PrOH} 200: 1$, flow rate 0.5 $\mathrm{mL} / \mathrm{min}$) $t_{\mathrm{R}}=10.6$ (major enantiomer), 11.3 (minor enantiomer) min; IR (neat) 1739, 1435, $1158,894 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{dd}, J=6.4,14.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.84 (dd, $J=9.2,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (dd, $J=6.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (s, 1H), 4.75 $(\mathrm{s}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.6,41.3,49.9,52.0,112.1$, 127.3, 127.8, 128.6, 138.7, 142.6, 174.1; HRMS (FAB) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}^{+}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$ 205.1229, found 205.1208.

Preparation of meso- α-Substituted Carboxylic Acid 8

5-Methyl-2-(3-methylbut-2-en-1-yl)-4-hexenoic acid (8): To a suspension mixture of NaH (abt. 60% oil suspension, $1.2 \mathrm{~g}, 30 \mathrm{mmol}$) in THF (40 mL) was carefully added a solution of diethyl malonate ($1.5 \mathrm{~mL}, 10 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was then warmed to room temperature and stirred for 2 h . To this suspension, 1-bromo-3-methyl-2-butene ($2.9 \mathrm{~mL}, 25 \mathrm{mmol}$) was added dropwise, and then the reaction mixture was refluxed for 1 day. After cooling to room temperature, the reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was extracted with ether. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give the desired product of as pale yellow oil ($2.52 \mathrm{~g}, 85 \%$ yield). The synthesized disubstituted malonate was dissolved in DMSO (17 mL), followed by addition of $\mathrm{H}_{2} \mathrm{O}(460 \mathrm{~mL}, 25.5 \mathrm{mmol})$ and $\mathrm{LiCl}(720 \mathrm{mg}, 17 \mathrm{mmol})$. The reaction mixture was stirred at $180^{\circ} \mathrm{C}$ for 1 day. After cooling to room temperature, the mixture was diluted with hexane/ether (1:1) and extracted with hexane/ether (1:1). The residue was purified by column chromatography on silica gel (hexane-EtOAc 10:1) to give ethyl ester of $\mathbf{8}$ of as pale yellow oil ($1.49 \mathrm{~g}, 78$ \% yield). To a solution of ethyl ester of $\mathbf{8}$ in $\mathrm{EtOH}(30 \mathrm{~mL})$ was added
a solution of 2 M aq. $\mathrm{NaOH}(5 \mathrm{~mL})$ and refluxed for 1 day. The reaction mixture was cooled, and then concentrated under reduced pressure to remove the solvent. The residue was taken with water and acidized with 1 N HCl . The reaction mixture was extracted with EtOAc, dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane-EtOAc 2:1) to give of 8 ($0.93 \mathrm{~g}, 72 \%$ yield) as colorless oil. IR (neat) $3250-2750,1706,1442,1224 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.61(\mathrm{~s}, 6 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}), 2.21(\mathrm{dt}, J=7.3,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dt}, J=7.3,14.2 \mathrm{~Hz}, 2 \mathrm{H})$, 2.34-2.44 (m, 1H), $5.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.52-11.12(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 17.7,25.8,30.0,46.1,120.9,134.0,182.3$; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$197.1542, found 197.1533.

Typical Procedure for the Desymmetrization of 8.

To a solution of $\mathbf{1}(36.4 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.8 \mathrm{~mL})$ was added a 0.10 M solution of $\mathrm{ClSO}_{3} \mathrm{H}$ in $\mathrm{CHCl}_{3}(0.1 \mathrm{~mL}, 0.010 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$, and the mixture was stirred for ca. five minutes. To this solution, a solution of $\mathbf{8}(19.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.1 \mathrm{~mL})$ was added dropwise at $-40^{\circ} \mathrm{C}$, and the mixture was stirred at $-30^{\circ} \mathrm{C}$ for 1 day. The reaction was quenched with water (3 mL) and the reaction mixture was extracted with ether. The combined organic layers were dried over anhydrous MgSO_{4} and concentrated. The residue was purified by column chromatography on silica gel (hexane- CHCl_{3} - $\mathrm{EtOAc} 3: 3: 1$) to give 9 ($16.0 \mathrm{mg}, 82 \%$ yield).

6,6-dimethyl-3-(3-methylbut-2-en-1-yl)tetrahydro-2H-pyran-2-one (9): [a] $]^{27}{ }_{\mathrm{D}}-34.1$ (c $0.45, \mathrm{CHCl}_{3}$) for 79% ee; GC ($\gamma-\mathrm{TA}, 100 \mathrm{kPa}$, column temperature $90^{\circ} \mathrm{C}$ and then warm to $\left.110{ }^{\circ} \mathrm{C}\left(+{ }^{\circ} \mathrm{C} / \mathrm{min}\right)\right) t_{\mathrm{R}}=35.2$ (minor enantiomer), 36.3 (major enantiomer) min; IR (neat) $1722,1448,1370,1280,1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.85(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.44(\mathrm{~m}, 2 \mathrm{H})$, 2.52-2.60 (m, 1H), $5.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.9,21.9,25.8$, $27.9,29.8,30.0,33.8,40.0,82.0,120.8,134.4,173.8$; HRMS (FAB) calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{+}$
$\left[\mathrm{M}+\mathrm{H}^{+}\right]$197.1542, found 197.1545.

References

1. Sakakura, A.; Sakuma, M.; Ishihara, K. Org. Lett. 2011, 13, 3130.
2. Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am. Chem. Soc. 1993, 115, 8669.
3. Lee-Ruff, E.; Turro, N. J.; Amice, P.; Conia, J. M. Can. J. Chem. 1969, 47, 2797.
4. Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. 2011, 133, 11936.
5. Matsuo, J.; Kobayashi, S.; Koga, K. Tetrahedron Lett. 1998, 39, 9723.
6. Simon, H. L.; Kaufmann, A.; Schinz, H. Helv. Chim. Acta 1945, 29, 1133.
7. Lai, P.-S.; Dubland, J. A.; Sarwar, M. G.; Chudzinski, M. G.; Taylor, M. S. Tetrahedron 2011, 67, 7586.

Chapter 4

Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)Catalyzed Dehydrative Condensation of Phosphoric Acid with Alcohols

Abstract

The selective synthesis of phosphoric acid diesters has been achieved through the direct catalytic dehydrative condensation of phosphoric acid with two equivalents of alcohols. The present method works especially well for the synthesis of cyclic phosphoric acid diesters. The combination of perrhenic acid and N-methylbenzylamine efficiently catalyzes the dehydrative condensation of phosphoric acid with equimolar amounts of diols to give cyclic phosphoric acid diesters in excellent yields.

4-1 Introduction

Many phosphoric acid esters are currently synthesized on an industrial scale and are widely used in everyday life. ${ }^{1,2}$ Phosphoric acid diesters are important substances which have been used as liquid ion exchangers for the recovery of several valuable metals from waste liquors. ${ }^{3}$ In particular, cyclic phosphoric acid diesters have recently been widely used in the fields of organic synthesis, materials chemistry, and so on. For example, cyclic phosphoric acid diesters of BINOL derivatives are useful chiral Brønsted acid catalysts for asymmetric synthesis. ${ }^{4}$ Amphiphilic cyclic phosphoric acid diesters are useful surfactants with biological activities. ${ }^{5,6}$ From the perspective of green chemistry, the direct catalytic condensation of phosphoric acid with alcohols is attractive for the synthesis of phosphoric acid esters. ${ }^{7}$ Previously, we reported that a catalytic amount of perrhenic acid efficiently promoted the dehydrative condensation of phosphoric acid with equimolar amounts of alcohols in the presence of dibutylamine $(20 \mathrm{~mol} \%) .{ }^{8}$ This reaction is usually conducted at $175-180{ }^{\circ} \mathrm{C}$ under azeotropic reflux conditions, and selectively gives phosphoric acid monoesters in excellent yields (Table 4.1). ${ }^{9} \quad$ After intensive studies, we found that yield of phosphoric acid diester 2 increased when the reaction of phosphoric acid with stearyl alcohol (1 equiv) was conducted at a higher reaction temperature ($185-190{ }^{\circ} \mathrm{C}$) $\left({ }^{31} \mathrm{P}\right.$ NMR analysis). ${ }^{10}$ These experimental results implied that phosphoric acid diesters may be selectively obtained when the oxorhenium(VII)-catalyzed condensation of phosphoric acid is conducted with 2 equivalents of alcohols under appropriate reaction conditions.

Table 4.1. Dehydrative Condensation of Phosphoric Acid with Equimolar Amounts of Stearyl Alcohol

${ }^{a}$ Determined by ${ }^{31} \mathrm{P}$ NMR analysis.

4-2 Results and Discussion

In oxorhenium(VII)-catalyzed dehydrative condensation, $20 \mathrm{~mol} \%$ of dibutylamine $\left(\mathrm{Bu}_{2} \mathrm{NH}\right)$ was used to stabilize the oxorhenium(VII) catalyst under the reaction conditions. ${ }^{11}$ Furthermore, we found that tetrakis-[tris(dimethylamino)phosphoranilidenamino]phosphonium hydroxide, a strong organic base, also promoted the dehydrative condensation of phosphoric acid. ${ }^{12}$ It is conceivable that the appropriate selection of organic bases is key for the selective synthesis of phosphoric acid diesters through the oxorhenium(VII)-catalyzed method. We first examined organic bases suitable for the selective synthesis of phosphoric acid diesters (Table 4.2). The condensation of phosphoric acid (0.5 mmol) with stearyl alcohol (2 equiv) was conducted in the presence of perrhenic acid (10 mol \%) and an organic amine ($40 \mathrm{~mol} \%$) in N-methyl-2-pyrrolidone (NMP)- o-xylene ($1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL}$) at azeotropic reflux with the removal of water. The reaction gave phosphoric acid diester 2 along with monoester $\mathbf{1}$ and triester 5. As a result, 2 was selectively produced when a sterically less hindered secondary amine was used. Inparticular, N-methylcyclohexanemethanamine (c - $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{CH}_{2} \mathrm{NHMe}$, 82%), N-methylbenzylamine (BnNHMe, 79\%) and $\mathrm{Bu}_{2} \mathrm{NH}$ (76\%) gave excellent results (entries 1, 2 and 6). Among these, commercially available BnNHMe and
$\mathrm{Bu}_{2} \mathrm{NH}$ were the most suitable. Sterically hindered secondary amines such as N-methyl-tert-butylamine (t-BuNHMe) and dibenzylamine $\left(\mathrm{Bn}_{2} \mathrm{NH}\right)$ gave slightly lower yields of 2 (69 and 65%, entries 7 and 8). Tertiary amines such as tributylamine $\left(\mathrm{Bu}_{3} \mathrm{~N}\right)$ and N, N-dimethylbenzylamine $\left(\mathrm{BnNMe}_{2}\right)$ also gave 2 in lower yield (63 and 61%, entries 9 and 10). It is conceivable that the weaker interaction between these sterically hindered amines and perrhenic acid decreased the stability of the catalyst. When the reaction was conducted with primary amines such as octylamine $\left(n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NH}_{2}\right)$, the yield of $\mathbf{2}$ significantly decreased (21%, entry 11). 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), a strong organic base, gave a very poor result $(9 \%$, entry 12$)$. The strong coordination of DBU to perrhenic acid might significantly decrease the catalytic activity. Therefore, moderate interaction between perrhenic acid and an organic base is a key to stabilizing the catalyst and effectively promoting dehydrative condensation.

Table 4.2. Effect of Organic Amines for the Oxorhenium(VII)-Catalyzed Dehydrative Condensation of Phosphoric Acid with Stearyl Alcohol

[^2]The amount of the amine was also optimized under the reaction conditions in the presence of $1 \mathrm{~mol} \%$ of perrhenic acid. The use of $20-40 \mathrm{~mol} \%$ of BnNHMe gave similar results (entries 3 and 4). However, the yield of 2 significantly decreased when the reaction was conducted with $10 \mathrm{~mol} \%$ of BnNHMe due to significant decomposition of the catalyst (entry 5). The use of $1 \mathrm{~mol} \%$ of perrhenic acid and $20 \mathrm{~mol} \%$ of BnNHMe was the most suitable for the synthesis of $\mathbf{2}$.

Next, we optimized the concentration of phosphoric acid (Figure 4.1). The reaction of phosphoric acid (0.5 mmol) with stearyl alcohol (2 equiv) was conducted with perrhenic acid ($1 \mathrm{~mol} \%$) and BnNHMe ($20 \mathrm{~mol} \%$) in NMP- O-xylene ($1: 1 \mathrm{v} / \mathrm{v}$) at azeotropic reflux with the removal of water. The yield of $2 n-\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}$ increased as the concentration of phosphoric acid decreased in the range of $0.05-0.2 \mathrm{M}$. A lower concentration effectively may have increased the efficiency of dehydration under azeotropic reflux conditions. However, the reaction with 0.02 M of phosphoric acid gave a rather poor result (open circles). The best result was obtained with 0.05 M of phosphoric acid (closed circles).

Figure 4.1. Plot of conversion versus time for the dehydrative condensation of phosphoric acid. Closed squares: 0.2 M of phosphoric acid; open squares: 0.1 M ; closed circles: 0.05 M ; open circles: 0.02 M .

Under the optimized conditions, the condensation reaction of phosphoric acid with stearyl alcohol (2 equiv) gave phosphoric acid diester 2 (77\%) along with monoester 1 (17\%) and triester $5(6 \%)$. This selective production of 2 was attributed to the differences between the reactivities of phosphoric acid, $\mathbf{1}$, and $\mathbf{2}$ with stearyl alcohol (1 equiv). These reactivities are compared in Figure 4.2. The reaction of phosphoric acid with stearyl alcohol proceeded the most rapidly to give $\mathbf{1}$ (circles). In contrast, the reactivity of phosphoric acid diester $\mathbf{2}$ was very low (triangles).

Figure 4.2. Comparison of the reactivities of phosphoric acids, 1 and 2. The reaction was conducted with stearyl alcohol (1 equiv) in the presence of aq. $\mathrm{HOReO}_{3}(1 \mathrm{~mol} \%)$ and BnNHMe (20 mol \%) in NMP-o-xylene ($1: 1 \mathrm{v} / \mathrm{v}$) at azeotropic reflux with the removal of water.

With the optimized conditions in hand, we synthesized several phosphoric acid diesters (Table 4.3). The phosphoric acid diester of diethylene glycol dodecyl ether (6) ${ }^{14}$ could be obtained in 72% yield, albeit with a prolonged reaction time (entry 1). A secondary alcohol, β-cholestanol, was also converted to the corresponding phosphoric acid diester 7 in 66% yield (entry 2). A prolonged reaction time caused decomposition of the product and the yield of 7 did not increase, although phosphoric acid monoester of β-cholestanol was obtained in an excellent yield without any decomposition. ${ }^{8}$

Table 4.3 Synthesis of Phosphoric Acid Diesters

${ }^{a}$ Isolated yield. ${ }^{b}$ Conversion yield (determined by ${ }^{31} \mathrm{P}$ NMR analysis.
${ }^{c}$ Isolated as N -methylbenzylammonium salt. ${ }^{13}$
${ }^{d}$ The reaction was conducted with $40 \mathrm{~mol} \%$ of BnNHMe.
${ }^{e}$ The reaction was conducted in the presence of $10 \mathrm{~mol} \%$ of catecol.

The present reaction conditions worked very well for the synthesis of cyclic phosphoric acid diesters. The condensation of phosphoric acid with equimolar amounts of diols gave cyclic phosphoric acid diesters in almost quantitative yields. 1,2-Decandiol showed high reactivity to give the corresponding five-membered cyclic diester $\mathbf{8}$ in a short reaction time, which could
be isolated as N -methylbenzylammonium form ${ }^{13}$ (entry 3). Catechol was also converted smoothly to the corresponding five-membered cyclic phosphoric acid diester $\mathbf{9}^{15}(>99 \%$ yield, entry 4). However, compound 9 could not be isolated since it was very labile and decomposed during purifications even as its ammonium form. A 1,3-diol such as 9,9-bis(hydroxymethyl)heptadecane was also converted into the corresponding six-membered cyclic diester 10 in 93% isolated yield (entry 5). This double-tailed cyclic phosphate $\mathbf{1 0}$ is in a novel class of phosphate surfactants. ${ }^{5}$ Since the reactivity of BINOL was slightly lower than those of aliphatic alcohols, the condensation of BINOL was conducted with $40 \mathrm{~mol} \%$ of BnNHMe. After a 75 -hour reaction, binaphthylphosphoric acid $\mathbf{1 1}^{16}$ was obtained in 84% isolated yield (entry 6). Based on the good reactivity of catechol and the lability of 9 , we proposed that catechol might promote the dehydrative condensation of phosphoric acid with BINOL. In fact, when the reaction of phosphoric acid with BINOL was conducted in the presence of catechol ($10 \mathrm{~mol} \%$) and $\mathrm{BnNHMe}(40 \mathrm{~mol} \%$), the reaction proceeded smoothly and gave 11 in 90% yield (48 h) (entry 7). Compound 9 might be generated in situ as an active intermediate. ${ }^{17}$

4-3 Conclusion

We have selectively synthesized phosphoric acid diesters through the oxorhenium(VII)-catalyzed dehydrative condensation of phosphoric acid with alcohols. The present reaction was especially useful for the synthesis of cyclic phosphoric acid diesters. The condensation of phosphoric acid with equimolar amounts of diols gave cyclic phosphoric acids in almost quantitative yields.

Reference and Notes

1. (a) Tadros, T. F. Applied Surfactants: Principles and Applications; Wiley: Weinheim 2005. (b) Toy, A. D. F.; Walsh E. N. Phosphorus Chemistry in Everyday Living: American Chemical Society; Washington, DC, 2nd ed, 1987.
2. For reviews of the synthesis of phosphoric acid esters, see: (a) Hayakawa, Y. in Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I.; Winterfeldt, E., Pergamon: Oxford, 1991, 6, pp 601-630. (b) Reese, C. B. Org. Biomol. Chem. 2005, 3, 3851.
3. Kurosaki, T.; Nishikawa, N. DE Patent Application 3325337, 1984. (Chem. Abstr. 1984, 100, 156819).
4. Akiyama, T. Chem. Rev. 2007, 107, 5744.
5. Buwalda, R. T.; Wagenaar, A.; Engberts, J. B. F. N. Liebigs Ann./Recueil 1997, 1745.
6. Shinitzky, M. WO Patent Application 2003075902, 2003 (Chem. Abstr. 2003, 139, 240393).
7. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University: Oxford, 1998.
8. Sakakura, A.; Katsukawa, M.; Ishihara, K. Angew. Chem. Int. Ed. 2007, 46, 1423.
9. Since pyrophosphoric acid esters $\mathbf{3}$ and $\mathbf{4}$ were converted into $\mathbf{1}$ during workup and purification, 1 was obtained in 86% yield (determined by ${ }^{31} \mathrm{P}$ NMR analysis of the crude product).
10. In contrast, a phosphazenium cation-catalyzed method (ref. 11) gave only a trace amount of phosphoric acid diesters (ca. 5\%) even when the reaction of phosphoric acid was conducted with 2 equivalents of an alcohol. This method could scarcely promote the condensation of phosphoric acid monoesters with alcohols.
11. Under the reaction conditions in the absence of dibutylamine, oxorhenium(VII) complexes gradually decomposed to dark insoluble, catalytically inactive species (ref. 8).
12. Sakakura, A.; Katsukawa, M.; Hayashi, T.; Ishihara, K. Green Chem. 2007, 9, 1166.
13. The phosphoric acid form of compound $\mathbf{8}$ gradually decomposed to give a mixture of phosphoric acid monoesters, while the ammonium form of $\mathbf{8}$ was stable.
14. (a) Nishimoto, T.; Takahashi, H.; Nasukawa, M. JP Patent Application 05179186, 1993 (Chem. Abstr. 1993, 119, 228219). (b) Matsufuji, Y. JP Patent Application 57033566, 1982 (Chem. Abstr. 1982, 99, 222497).
15. Groß, H.; Katzwinkel, S.; Gloede, J. Chem. Ber. 1966, 99, 2631.
16. (a) Jacques, J.; Fourquey, C. Org. Synth. 1989, 67, 1. (b) Yamakawa, M.; Ito, J.; Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2007, 129, 6756.
17. The reaction mixture contained a small amount of 9 (ca. 6%, determined by ${ }^{31} \mathrm{P}$ NMR analysis).

Experimental Section

General Methods. IR spectra were recorded on a JASCO FT/IR-460 plus spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian Gemini-2000 spectrometer (300 MHz) or INOVA spectrometer $(500 \mathrm{MHz})$ at ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethysilane on the d scale, multiplicity ($\mathrm{s}=$ singlet; d $=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian Gemini-2000 spectrometer (75 MHz) or INOVA spectrometer (125 MHz). Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 77.0 ppm$) .{ }^{31} \mathrm{P}$ NMR spectra were measured on a Varian Mercury- 300 spectrometer $(121 \mathrm{MHz})$. Chemical shifts were reported as d value in ppm downfield from $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. High resolution mass spectral analysis (HRMS) was performed at Chemical Instrument Room, Nagoya University. All experiments were carried out under an atmosphere of dry nitrogen. Chemical materials were obtained from commercial supplies and used without further purification. A $65-70 \mathrm{w} \%$ aqueous solution of perrhenic acid (HOReO_{3} aq.) and a crystal form of phosphoric acid ($99.999+\%$, Aldrich) were purchased from Aldrich.

Typical procedure for the dehydrative condensation of phosphoric acid with a diol (1 equiv): Synthesis of cyclic phosphoric acid diester 11. ${ }^{16}$

A $30-\mathrm{mL}$, single-necked, round-bottomed flask equipped with a Teflon-coated magnetic stirring bar and a $5-\mathrm{mL}$ pressure-equalized addition funnel [containing a cotton plug and ca. 2 g of molecular sieves $4 \AA$ (pellets)] surmounted by a reflux condenser was charged with phosphoric acid ($49 \mathrm{mg}, 0.50 \mathrm{mmol}$), 1,1'-bi-2-naphthol ($143 \mathrm{mg}, 0.50 \mathrm{mmol}$), N-methylbenzylamine ($26 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) and a $65-75 \mathrm{w} \%$ aqueous solution of perrhenic acid $(0.9 \mu \mathrm{~L}$, ca. $1 \mathrm{~mol} \%)$ in NMP-o-xylene ($1: 1 \mathrm{v} / \mathrm{v}, 10 \mathrm{~mL}$). The mixture was heated for 75 hours under azeotropic reflux conditions with the removal of water. After the reaction mixture was cooled to ambient temperature, solvents were removed in vacuo. A solution of the residue in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}(4: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$ was washed with 1 M aqueous $\mathrm{HCl}(40 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}(4: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL} \times 2)$. The combined organic layers were concentrated under reduced pressure. The residue was purified by
column chromatography on silica gel (20 g) using hexane-EtOAc-MeOH (10:10:1 \rightarrow 1:1:1) as eluents, and the fractions that contained phosphoric diester $\mathbf{1 1}$ were collected and concentrated. A solution of the obtained compound in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CHCl}_{3}(4: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$ was washed with 1 M aqueous $\mathrm{HCl}(40 \mathrm{~mL})$. The combined organic layer was concentrated under reduced pressure to give $\mathbf{1 1}$ ($147 \mathrm{mg}, 84 \%$).

Distearyl phosphate (2). ${ }^{3}$

IR (KBr) 3423, 1655, 1637, 1469, 1263, 1209, 1092, 1067, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl3) $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.16-1.49(\mathrm{~m}, 60 \mathrm{H}), 1.67$ (quint, $J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.01(\mathrm{q}$, $J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$) ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.7,25.5,29.2,29.4,29.6,29.7,29.7$, 30.2, 31.9, 67.6; ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.59$; HRMS (FAB) calcd for $\mathrm{C}_{56} \mathrm{H}_{76} \mathrm{O}_{4} \mathrm{P}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right] 603.5481$, found 603.5494.

Bis[2-(2-dodecyloxy)ethoxy]ethyl phosphate (6). ${ }^{12}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.16-1.46(\mathrm{~m}, 36 \mathrm{H}), 1.58(\mathrm{tt}, J=6.0$ $\mathrm{Hz}, 4 \mathrm{H}), 3.45(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.53-3.79(\mathrm{~m}, 12 \mathrm{H}), 4.10-4.26(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 14.0,22.6,26.0,29.3,29.4,29.5,31.8,66.3,69.9,70.4,71.6 ;{ }^{31} \mathrm{P}$ NMR (121 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.86$.

Dicholestanyl phosphate (7).
IR (KBr) 3416, 1637, 1467, 1383, 1264, 1208, $1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.64$ (s, 6H), $0.81(\mathrm{~s}, 6 \mathrm{H}), 0.858(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.861(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}$,
$6 \mathrm{H}), 0.83-1.42(\mathrm{~m}, 38 \mathrm{H}), 1.42-1.90(\mathrm{~m}, 18 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 6 \mathrm{H}), 4.13-4.31(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0,12.2,18.6,21.2,22.5,22.8,23.9,24.2,28.0,28.3,28.6,29.3$, $32.0,35.3,35.4,35.7,35.8,36.2,36.8,39.5,39.9,42.6,44.7,54.2,56.3,56.4,78.1 ;{ }^{31} \mathrm{P}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.57$; HRMS (FAB) calcd for $\mathrm{C}_{54} \mathrm{H}_{95} \mathrm{NaO}_{4} \mathrm{P}\left[(\mathrm{M}+\mathrm{Na})^{+}\right] 861.6866$, found 861.6891.

Cyclic phosphoric acid diester (8) (N-methybenzylammonium salt).
Compound $\mathbf{8}$ was isolated as follows: After the reaction mixture was cooled to ambient temperature, BnNHMe ($64 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$) was added, and solvents were removed in vacuo. The residue was purified by column chromatography on silica gel $(10 \mathrm{~g})$ using CHCl_{3} with a trace amount of BnNHMe and then a mixture of $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{BnNHMe}$ (2:1:trace) as eluents to give N-methylbenzylammonium salt of $\mathbf{8}$ ($191 \mathrm{mg},>99 \%$); IR $(\mathrm{KBr}) 3416,1639$, $1575,1469,1430,1396,1208,1127,1089,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.18-1.41(\mathrm{~m}, 11 \mathrm{H}), 1.41-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.79(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 3.79 (ddd, $J=4.8,8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{~s}, 2 \mathrm{H}), 4.19$ (ddd, $J=5.7,8.7,16.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31-4.43 (m, 1H), 7.31-7.43 (m, 3H), $7.51(\mathrm{dd}, J=1.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,22.6,25.2,29.2,29.4,31.4,31.8,33.8,52.0,69.7,128.9,130.2,131.2 ;{ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 17.7; HRMS (FAB) calcd for $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{P}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$237.1256, found 237.1246.

Cyclic phosphoric acid diester (9). ${ }^{15}$
${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 13.7.

Cyclic phosphoric acid diester (10).

IR (neat) $1654,1468,1266,1200,1104,1071,1037,1008,989 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.14-1.48(\mathrm{~m}, 28 \mathrm{H}), 4.09(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 14.0,22.6,22.7,29.2,29.3,30.1,30.2,31.8,37.0,37.0,75.2 ;{ }^{31} \mathrm{P}$ NMR (121 MHz, CDCl_{3}) $\delta-3.30$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}\left[(\mathrm{M}+\mathrm{H})^{+}\right] 363.2664$, found 363.2666.

Binaphthylphosphoric acid (11). ${ }^{16}$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 3: 1$) $\delta 7.26-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 3: 1$) $\delta 120.3,121.3,125.4,126.4,126.7,128.2$, 130.8, 131.4, 132.0, 146.9, 147.0; ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD} 3: 1$) $\delta 4.12$.

Publication List

1. "Selective Synthesis of Cyclic Phosphoric Acid Diesters through Oxorhenium(VII)-Catalyzed Dehydrative Condensation of Phosphoric Acid with Alcohols"

Akira Sakakura, Masayuki Sakuma, Mikimoto Katsukawa, Kazuaki Ishihara
Heterocycles 2008, 76(1), 657-665.
2. "Chiral Lewis Base-Assisted Brønsted Acid (LBBA)-Catalyzed Enantioselective Cyclization of 2-Geranylphenols"

Akira Sakakura, Masayuki Sakuma, Kazuaki Ishihara
Org. Lett. 2011, 13(12), 3130-3133.
Highlighted in Synfacts 2011, 8, 899.
3. "Kinetic Resolution of Racemic Carboxylic Acids Catalyzed by Chiral Lewis Base-Assisted Brønsted Acid (LBBA) through Asymmetric Protolactonization" Akira Sakakura, Masayuki Sakuma, Kazuaki Ishihara In preparation.

Acknowledgement

I would like to express my grateful acknowledgment to my supervisors, Professor Kazuaki Ishihara and Professor Akira Sakakura (Okayama University). Their encouragement and helpful suggestions have been indispensable in the completion of the present thesis. The excitement with which they approach synthesis and their dedication to the goal of producing good science is inspiring. Their teaching style in the laboratory and positive attitude for the research work motivated me to be engaged in chemistry. It has been a privilege to work under tutelage of them.

I am indebted to Associate Professor Manabu Hatano and Assistant Professor Muhammet Uyanik for their practical and fruitful discussions. I am also very grateful to Dr. Mikimoto Katsukawa for collaborative research. It is pleasant to express my appreciation to the former and present colleagues in Ishihara's group, especially Drs. Makoto Fushimi, Kazuhiko Nakano, Toshikatsu Maki, Rei Kondo, Takafumi Asai, Atsushi Ukai, Shuhei Umemura, Shinji Suzuki, Yoshiki Koshikari, Katsuhiko Moriyama, Atsuto Izumiseki, Hidefumi Nakatsuji, Messrs. Takuro Ohkubo, Takahiro Horibe, Tomokazu Mizuno, Takeshi Yasui and all of my colleagues in Ishihara's group.

I would like to thank Professors Hiroyuki Asanuma, Takashi Ooi and Toshio Nishikawa for serving on my discussion committee.

I am very grateful to the Fellowships from the Grobal COE Program "Elucidation and Design of Materials and Molecular Functions" and from the Program for Leading Graduate Schools "Integrative Graduate Education and Research in Green Natural Sciences", MEXT, Japan.

Finally, I would like to thank my friends and especially my parents for their true regard and unwavering support during my Ph.D study. Thank you.

January 2013
Masayuki Sakuma

[^0]: ${ }^{a}$ Determined by chiral HPLC. ${ }^{b}$ The conversion was calculated as $C=e_{4} /\left(e_{3}+e_{4}\right)$.
 ${ }^{c}$ The selective factor was calculated as $S=\ln \left[1-C\left(1+\mathrm{ee}_{3}\right)\right] / \ln \left[1-C\left(1-\mathrm{ee}_{3}\right)\right]$.
 ${ }^{d}$ Reaction was conducted in the presence of $1(40 \mathrm{~mol} \%)$ and $\mathrm{TfOH}(10 \mathrm{~mol} \%)$.
 ${ }^{\theta}$ Reaction was conducted in the absence of $\mathbf{1}$. ${ }^{f}$ Isolated yield of 3a.

[^1]: ${ }^{a}$ Determined by chiral HPLC. ${ }^{b}$ The conversion was calculated as $C=e e_{4} /\left(e_{3}+e e_{4}\right)$.
 ${ }^{c}$ The selective factor was calculated as $S=\ln \left[1-C\left(1+\mathrm{ee}_{3}\right)\right] / \ln \left[1-C\left(1-\mathrm{ee}_{3}\right)\right]$.
 ${ }^{d}$ Reaction was conducted in the presence of $1(40 \mathrm{~mol} \%)$ and $\mathrm{CISO}_{3} \mathrm{H}(10 \mathrm{~mol} \%)$.
 ${ }^{e}$ Determined by chiral GC.

[^2]: ${ }^{a}$ Determined by ${ }^{31} \mathrm{P}$ NMR analysis.
 ${ }^{b}$ The reaction was conducted with aq. $\mathrm{HOReO}_{3}(1 \mathrm{~mol} \%)$ and $\mathrm{BnNHMe}(40 \mathrm{~mol} \%)$ for 20 h .
 ${ }^{c}$ The reaction was conducted with aq. $\mathrm{HOReO}_{3}(1 \mathrm{~mol} \%)$ and $\mathrm{BnNHMe}(20 \mathrm{~mol} \%)$ for 20 h .
 ${ }^{d}$ The reaction was conducted with aq. $\mathrm{HOReO}_{3}(1 \mathrm{~mol} \%)$ and $\mathrm{BnNHMe}(10 \mathrm{~mol} \%)$ for 20 h .

