ナノスケールMOSFETにおけるキャリアの 弾道・準弾道輸送解析モデリングに関する研究

沼田 達宏

目 次

第1章	序論 1
1.1	研究の背景 1
1.2	スケーリング則
1.3	短チャネル効果
	1.3.1 Threshold Voltage Roll-off
	1.3.2 Drain-Induced Barrier Lowering $\ldots \ldots \ldots \ldots \ldots \ldots \ldots $ 8
	1.3.3 離散不純物揺らぎ 10
1.4	新構造 MOSFET 10
	1.4.1 MuG(Multi-Gate) MOSFET $\dots \dots \dots$
	1.4.2 自然長: λ
1.5	弾道・準弾道輸送13
	1.5.1 α 乗則モデル
1.6	電気伝導
	1.6.1 Drudeの理論
	1.6.2 Kuboの理論
	1.6.3 Landauer の理論 19
1.7	研究の目的及び流れ 20
第11	章まとめ
笛の音	(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
77 4 早 9 1	
<i>,</i> , ,	Landauar の公式 28
2.1	Landauer の公式
2.1	Landauerの公式 28 2.1.1 構造 28 2.1.2 T = 0 30
2.1	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33
2.1	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35
2.1	Landauer の公式 28 2.1.1 構造 7 = 0 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35
2.1	Landauer の公式 28 2.1.1 構造 7 = 0 2.1.2 T = 0 30 2.1.3 T $\neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 露流モデル 36
2.2	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41
2.2 2.3	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43
2.2 2.3	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 44
2.1 2.2 2.3 第 2 ⁵	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 43
2.2 2.3 第 2 1	Landauer の公式 28 2.1.1 構造 28 2.1.2 T = 0 30 2.1.3 T ≠ 0 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 44 章まとめ 45
2.1 2.2 2.3 第 2 第 3 章	Landauer の公式 28 2.1.1 構造 28 2.1.2 T = 0 30 2.1.3 T ≠ 0 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 43 こ3.2 準弾道輸送電流 43 シンパクトモデル 49
2.1 2.2 2.3 第 2 ⁵ 第 3 章 3.1	Landauer の公式 28 2.1.1 構造 28 2.1.2 $T = 0$ 30 2.1.3 $T \neq 0$ 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 44 章まとめ 45 コンパクトモデル 49 モデルデバイス・モデルポテンシャル 49
2.2 2.3 第 2 章 3.1 3.2	Landauer の公式 28 2.1.1 構造 28 2.1.2 T = 0 30 2.1.3 T ≠ 0 33 Natori の式 33 Natori の式 35 2.2.1 構造 35 2.2.2 電流モデル 36 NW MOSFET への拡張 41 2.3.1 弾道輸送電流 43 2.3.2 準弾道輸送電流 44 章まとめ 45 コンパクトモデル 49 マイヤ断面内の Schrödinger 方程式 52

	3.2.2 二準位近似による解法 59
	3.2.3 ワイヤ断面内の閉じ込めエネルギー 61
3.3	弾道・準弾道輸送電流 62
	3.3.1 表面ポテンシャル 62
3.4	線電荷密度の方程式63
	3.4.1 静電学に基づく電荷密度 64
	3.4.2 量子統計に基づく電荷密度 64
3.5	精度検証
	3.5.1 計算条件
	3.5.2 比較対象
	3.5.3 検証:線電荷密度 67
	3.5.4 検証:電子の閉じ込めエネルギー
	3.5.5 検証:弾道輸送電流
	3.5.6 他グループのコンパクトモデルとの差異
第3	章まとめ
第4章	完全な解析モデル 79
4.1	$\Delta U_{\rm G}$ の解析モデル
4.2	キャパシタンスモデル
4.3	問題点及び解決手法92
	4.3.1 ドレイン電圧依存性
	4.3.2 励起準位の影響
	4.3.3 DIBL
第 4	章まとめ
笋ょ咅	回路シミュレーション 191
わり早 5 1	回面ノニュレーノヨノ 121 n type NW MOSFET 121
5.1 5.2	
0.2	$131101 \text{ Morelog } \Lambda $
	5.2.1 verified-A
5.2	0.2.2 回面ノニュレ ノ温の匹の $1.1.1$
0.0	凹町ノニュレーノヨノ · · · · · · · · · · · · · · · · · ·
	5.5.1 且加附们の关门 · · · · · · · · · · · · · · · · · · ·
笛口	0.0.2 過波時間の実1」120 音まとめ
7 0	早よこの
第6章	結論 133
6.1	研究の成果
	6.1.1 第一段階:数値計算を含むコンパクトモデル
	6.1.2 第二段階:明示的な解析モデル
	6.1.3 第三段階:回路シミュレーション組み込み
6.2	残された課題
	6.2.1 第一段階に残る課題
	6.2.2 第二段階に残る課題 136
	6.2.3 第三段階に残る課題 137

6.3	今後の方針
付録A A.1 A.2 A.3	Verilog-A スクリプト 141 電流源 141 過渡電流 144 constants.vams 147
謝辞	149
業績	151

第1章 序論

1.1 研究の背景

今日の情報化社会は、エレクトロニクスの発展により支えられている.そして、今後の 更なる高度情報化社会の実現は、今もなお急激な成長を続ける情報技術にかかっていると いっても過言ではない.情報技術の成長は、半導体の集積化技術の成長によるところが大 きい.我々の生活は、日常生活から社会システムの構築に至るまで様々な電子機器に依存 しており、半導体集積回路の導入により、高度な制御・機能を実現している.その一例とし て、携帯電話・パソコンはもちろんのこと、電子レンジや冷蔵庫など我々の日常生活におい てなじみ深い電化製品も集積回路により精密に制御され、各用途に合わせた様々な機能を 実現している.このように、身の回りの隅々まで集積回路は浸透しており、我々の生活を豊 かにし、情報化社会の成長を支えている[1].

集積回路が生活に浸透してきた背景として、1947年の点接触形トランジスタの発明に始 まる半導体技術の発展がある [2]. 半導体技術の発展に伴い、半導体デバイスを集積する技 術が生まれ、その結果として半導体集積化技術の向上をもたらした.そして、今もなお半導 体の微細化は進み、集積回路の性能は向上し続けている.この性能の向上により、従来より 高速かつ高度な情報処理が可能となり、より複雑な機能を実現している.半導体の微細化 を進めることは、集積回路の処理速度の高速化だけでなく、デバイス単位の消費電力の削 減という観点からも注目されている.また、デバイス単体の縮小が進むことで、1枚の基板 からより多くの素子、チップを作成可能であることからコスト面でも重要である.このよ うに、今後のより良い生活環境の構築において、集積回路の更なる進歩は必要不可欠であ り、集積回路を形作る電子デバイスの更なる研究・進化が求められる.

集積回路を構成する基本素子の一つは、金属-酸化膜-半導体電界効果トランジスタ(Metal-

図 1.1: MOSFET の基本構造. (a) 全体図. (b) ゲート電極直下の奥行き方向に関する断 面図.

図 1.2: MOSFET の基本電流特性の模式図. (a) ドレイン電流-ドレイン電圧特性及び (b) ドレイン電流-ゲート電圧特性.

Oxide-Semiconductor Field-Effect Transistor, MOSFET) と呼ばれる素子である. 図 1.1 にn型 MOSFET の構造を示す. MOSFET はゲート, ソース, ドレインという三つの電極 を持つ. また、図 1.1(b) に示すように、ゲート電極直下に金属 (ゲート)-酸化膜-半導体 (基 板)の積層構造を持ち、ゲート電極に印加する電圧を調整することで酸化膜-半導体界面に 誘起される伝導キャリアを制御する. このように、酸化膜-半導体界面に形成され、ソース-ドレイン方向に広がるキャリア層 (キャリアの通り道) をチャネル (channel) と呼ぶ. チャネ ルが形成された状態でドレイン-ソース間に電圧を印加することで、電流がドレイン-ソー ス間に流れる、このように、ゲート電極の印加電圧により伝導キャリア数を制御すること で、ドレインからソースへ流れる電流を制御する。簡潔ではあるが、これが MOSFET の基 本動作である. MOSFET の動作原理に関するより詳しい説明は、参考文献に挙げる教科書 [3, 4] 等を参照されたい. MOSFET の基本電流特性の模式図を図 1.2 に示す. MOSFET に流れる電流の On/Off を決める電圧は閾値電圧 (threshold voltage, V_{TH}) と呼ばれる.本 論文において、電流が Off になる領域をサブスレッショルド (subthreshold) 領域、On に なる領域を反転 (inversion) 領域と呼ぶ. また、閾値近傍のどっちつかずの領域を弱反転 (weak inversion)領域と呼ぶことにする. 集積回路における電子デバイスの集積度の向上 は、MOSFET のサイズが縮小されることで実現される.そして、現在もなお MOSFET の サイズは縮小し続けている。その一例として、最新のマイクロプロセッサの一つである Intel core i シリーズ第三世代である「Ivy Bridge」では CPU の製造プロセスとして 22 nm プ ロセスが採用されている.ドレイン-ソース間のチャネルが形成される長さはゲート長と 呼ばれるが (図 1.1(a)), 「Ivy Bridge」では, MOSFET のゲート長はおよそ $26 \sim 30$ nm 程度まで縮小され,消費電力の低減,グラフィック性能などの機能強化を実現している.こ のように、トランジスタサイズの縮小により、集積回路の高速化、デバイスの低消費電力化、 チップの小型化などが実現される.

MOSFET サイズの縮小は良い面だけではなく悪い面も存在する.その代表的なものが 短チャネル効果 (short-channel effect) である. MOSFET の微細化の中でも,特にゲート長 の微細化が進むことで生じるトランジスタの特性を劣化させる現象が問題視されており, それを総称して短チャネル効果と呼ぶ.この短チャネル効果の抑制が,更なるトランジス タの微細化を目指す上での課題の一つである.図1.2 に MOSFET の基本電流特性を示し た.破線が短チャネル効果を含まない理想的な特性を表わし,実線が短チャネル効果の影

響を含む特性と考えていただきたい.理想的な MOSFET のドレイン電流–ドレイン電圧 特性では、あるゲート電圧に対し一定以上のドレイン電圧を加えると電流が飽和する.し かし、ゲート長が短くなることでドレイン電流が飽和しなくなる (図 1.2(a)). また、サブ スレッショルド領域における速やかな電流値の減少が MOSFET の特性を決定する指標の 一つであるが、ゲート長が十分に長い MOSFET に対し、短いゲート長の MOSFET はサ ブスレッショルド領域における電流値の減少の傾きが緩やかになるという問題がある(図 1.2(b)), これらが短チャネル効果により引き起こされる特性劣化の具体例である。短チャ ネル効果は、ゲート長の縮小に伴いゲート電圧によるチャネル内の静電ポテンシャルの制 御性が減少し、チャネル領域に対するドレイン及びソース電極近傍の空乏層による影響が 無視できないほど大きくなることで生じる.したがって、ゲート電圧で制御されるはずの 酸化膜直下の電子状態がドレイン電圧の影響を強く受けてしまうのである.従来、短チャ ネル効果の抑制方法として、基板半導体を高濃度にドーピングする方法が用いられてきた. しかし、ゲート長が極端に短くなると、基板を高濃度にドーピングしたとしてもチャネル 領域周辺の不純物原子の数は数個程度となり、離散的に分布してしまう、そのため、各不 純物原子がソース-ドレイン間のポテンシャル分布に悪さをし、その影響により MOSFET の特性が変化してしまう可能性がある.このような問題を避け、ゲート電圧によるチャネ ル領域の静電ポテンシャル制御性を取り戻すために、ゲート酸化膜をチャネル領域上部だ けでなく、その周囲を三次元的にゲート酸化膜で囲むマルチゲート (Multi-Gate, MuG) 構造が考案されている.従来の MOSFET の酸化膜と向かい合わせにゲート酸化膜を追 加したエスオーアイ (Silicon-on-Insulator, SOI) MOSFET, ダブルゲート (Double-Gate, DG) MOSFET, さらに側面にゲート酸化膜を追加したフィン (Fin) FET, トライゲート (Tri-Gate, TG) MOSFET, そして、チャネル領域全体を酸化膜で囲んだゲートオールアラ ウンド (Gate-All-Around, GAA) MOSFET などがあり, 広く活発に研究されている. 特 に、マルチゲート構造の中でも GAA-MOSFET は最も短チャネル効果を抑制することが でき、次世代の CMOS 技術の代替技術として大変注目されている. GAA-MOSFET の模 式図を図 1.3 に示す.図 1.1 に示した従来の MOSFET はバルク MOSFET と呼ばれるの に対し、このような構造を持つ MOSFET は量子細線 (nanowire, NW) MOSFET などと も呼ばれ、本論文ではNW MOSFET と呼ぶことにする.

国際半導体技術ロードマップ (International Technology Roadmap for Semiconductors, ITRS)[5] によれば、NW MOSFET を用いた集積回路が実際に製品に導入されるのは、およそ 2020 年代からと予想されており、それに向けてデバイス単体から回路構築に至るまで 幅広く実験、理論の両面から研究が進められている.今後、このような新構造デバイスの研究、設計を進めていくためには、デバイス内の物理現象、特に電気伝導の詳細を明らかにし

図 1.3: (a)NW MOSFET の模式図. (b) 断面図.

ておく必要がある. NW MOSFET のチャネル内において、伝導キャリアはソース-ドレイ ン方向に一次元的に伝導する。キャリアの一次元伝導により、量子細線 MOSFET が他の 構造と比べて優れたキャリア伝導性を示すことが Sakaki により予期されている [6]. 従来, MOSFET 内部の電気伝導を考える際,電子が数えきれないほどの散乱を受けることが大 前提としてある. それは、ゲート長がキャリアの平均自由行程 (mean free path)と比べて 十分に長いことに起因する. このように、電子散乱を基本としたドレイン電流の計算に用 いられる伝導モデルはドリフト拡散 (drift-diffusion) モデルと呼ばれる. しかし、キャリア の移動距離が平均自由行程程度、またはそれよりも短い場合、そこでキャリアが受ける散乱 回数は急激に減少し、散乱を受けずに伝導するキャリアが存在するようになる. 散乱を受 けずに伝導することは弾道輸送 (ballistic transport) と呼ばれる.近年, MOSFET のゲー ト長の縮小が著しく, 数十 nm 程度まで縮小化が進むことで, ソース-ドレイン間をキャリ アが弾道輸送することが Natori により予測された [7,8,9]. 全てのキャリアが散乱を受け ずに伝導するとした場合、弾道輸送に基づくドレイン電流は、全キャリアが散乱を受けな いことからデバイスの上限特性を示す、このように、弾道輸送するキャリアの増加が電流 特性に影響することから、弾道・準弾道 (quasi-ballistic) 輸送による電気伝導の重要性が議 |論されている. ここで,弾道輸送は全てのキャリアが散乱を受けずに伝導する場合,準弾道 輸送は弾道輸送するキャリアと散乱を受けるキャリアが混在する伝導機構を表わす.新構 造デバイスの NW MOSFET は、ゲート長が数十 nm またはそれ以下での市場導入が見込 まれていることから、弾道・準弾道輸送を考慮した特性解析が重要視されている、近年で は、ゲート長が5nmまで縮小されることで、ドレイン電流中の弾道輸送成分が70%程度 まで増加するという数値シミュレーション結果もあり [10], 実際に NW MOSFET におけ る弾道輸送電流成分を検出したという実験報告例もある[11].

以上の流れから、NW MOSFET におけるキャリアの弾道・準弾道輸送を考える必要が あると言える. NW MOSFET や弾道・準弾道輸送のような従来とは異なる構造及び現象 を理解するには、様々な実験とともに現象の数値シミュレーション及びそれに基づく現象 の考察が大きな意味を持つ.弾道・準弾道輸送に基づいた NW MOSFET の特性数値計算 は、非平衡 Green 関数法 (non-equilibrium Green's function formalism, NEGF)、モンテ カルロ法などを用いて広く議論されている [12, 13, 14, 15]. 実際のデバイスも活発に作製 されており、量子細線を複数個用いた回路の報告もある[16]. このように、NW MOSFET の集積回路の実現に向けた研究が急速に進んでいる。そこで、将来的に必要になる可能性 のあるものが、NW MOSFET を用いた集積回路の特性を事前評価するためのデバイスお よび回路モデルである、デバイス単体または複数個程度ならば、先述した数値計算技法を 用いたシミュレーションでも問題ない.しかし、量子輸送に基づくデバイス特性の数値計 算には膨大な時間を要し、専門的な知識、プログラムが必要である.この計算時間が、回路 解析のように一度に多くのトランジスタの計算が要求される作業では致命的となる、した がって、NW MOSFETの市場導入を考えるには、回路解析等において速く、簡単に、かつ 高い精度で数値シミュレーション及び実験測定値を再現するコンパクトモデルが求められ る. また、NW MOSFET はゲート電圧による制御性の高さから、センサーなどへの応用研 究もされており [17], 個々の素子の特性評価に関しても簡単かつ高速に特性が計算可能な コンパクトモデルの有用性は非常に高い.現在,NW MOSFET の弾道輸送に基づくドレ イン電流のコンパクトモデルは複数報告されている[18, 19, 20, 21, 22, 23, 24]. これらの コンパクトモデルは、複数のフィッティングパラメータを用いる、未定のパラメータを決定 するために方程式を数値計算により計算する必要があるなどの問題点があり、回路シミュ

図 1.4: スケーリング則において MOSFET 構造を規定する四つの寸法を示す. ゲート長を $L_{\rm G}$, チャネル幅を W, 酸化膜厚を $t_{\rm ox}$, 接合深さを $x_{\rm i}$ とする.

レーションが要求するレベルの解析化は未だなされていない.本研究では、電子の弾道・ 準弾道輸送に基づく NW MOSFET のデバイス特性を表わすコンパクトモデルを提案し, 回路シミュレータ組み込みを可能とするレベルの解析化を目標とする.また,それを実現 することにより達成される成果物として,実際に回路シミュレータにモデルを組み込み,回 路シミュレーションを実現する.本章の残りの節を用いて,本研究において重要となる事 柄について簡単に説明する.

1.2 スケーリング則

パラメータ	スケーリング比
ゲート 長 <i>L</i> _G	1/k
チャネル幅 W	1/k
酸化膜厚 t _{ox}	1/k
接合深さ $x_{ m j}$	1/k
基板不純物濃度 NA	k
電圧 V	k
容量 C	1/k
電流 I	1/k
遅延時間 CV/I	1/k
消費電力 VI	$1/k^{2}$
単位面積当たりのデバイス数 $1/LW$	k^2
単位面積当たりの消費電力 VI/LW	1

表 1.1: スケーリング則に関するパラメータ.

MOSFET の微細化を進める背景として、先述したとおり回路の集積度を高めるだけで

はなく、回路の高速動作及び消費電力削減を実現できることがある. 微細化による性能向上の指針として、スケーリング則が広く知られている [25, 26]. ゲート長、チャネル幅、酸化 膜厚、接合深さの各寸法を 1/k にし、電源電圧を 1/k に、基板の不純物濃度を k 倍にスケーリングした際の電気特性を表 1.1 に示す. 単位面積当たりのトランジスタ数が k^2 に、回路の遅延時間が 1/k に、消費電力が $1/k^2$ になることが分かる. したがって、スケーリング則 に従ったトランジスタの微細化により、回路の集積度の向上だけでなく、回路の高速動作 及び消費電力削減が実現されることが分かる.

このようなスケーリング則を指針として、現在まで MOSFET の微細化が精力的に推進 されてきた.しかし、近年の急激な MOSFET のゲート長の微細化に伴い、スケーリング則 から外れる閾値電圧の変化や電流の増加といったデバイス特性としては好ましくない効果 が生じる.これらの効果は短チャネル効果と呼ばれ、次節においてその解説を行う.

1.3 短チャネル効果

短チャネル効果は、ゲート長の寸法の縮小が進むことでデバイス特性が劣化する効果の 総称である [4].本節では、短チャネル効果の中でも重要かつ本研究に関係するものを中心 に解説する.

ゲート長が十分に長い場合, ソース, ドレイン電極から生じるデバイス特性への影響は 無視でき, 酸化膜・半導体界面に垂直方向の1次元のみを考えれば十分であった.しかし, ゲート長が短くなることで, ソース-ドレイン方向を含む2次元もしくは3次元の電界, 電 位分布を考える必要性がでてきた.この電界, 電位分布の広がりにより特性劣化を引き起 こす現象が短チャネル効果である.また, 厳密には短チャネル効果ではないが, デバイス寸 法の縮小が引き起こす離散不純物揺らぎに関する概要も本節で解説する.以上の影響によ り引き起こされる現象は次のようなものである.

閾値電圧の変動

- サブスレッショルド特性の劣化
- 特性ばらつき

上記に示した劣化を引き起こす代表的なものとして、閾値電圧ロールオフ (threshold voltage roll-off), サブスレッショルド領域特性の劣化を引き起こす DIBL(drain-induced barrier lowering), 特性ばらつきを引き起こす離散不純物揺らぎなどがある. これらの影響を、いかにして抑制するかが更なる微細化を進める上での課題となる.本節では、n型 MOSFET を例に解説する.

1.3.1 Threshold Voltage Roll-off

閾値電圧ロールオフとは、n型の MOSFET の場合、ゲート長が短くなることで閾値が 減少することである.反対に、p型の場合には閾値が増加する.閾値電圧ロールオフは 一般的に図 1.5 に示すチャージシェアモデル (charge-sharing model)を用いて説明される [27, 28].ゲート長が十分に長い場合、空乏層領域は十分にゲート電圧のみで制御されるた め、図 1.5(a)のように広がる.ソース、ドレイン付近において、ゲート電圧により酸化膜直 下に形成される空乏層領域と、ソース、ドレイン結合近傍の空乏層が重なり合う部分があ る. ゲート長が縮小されることにより、空乏層の重なる部分の割合がゲート電圧制御化に ある空乏層領域に対して増加する (図 1.5(b)). この空乏層の重なる領域を幾何学的に近似 し、閾値への影響をモデル化したものがチャージシェアモデルである. 話を簡単にするた め、ここではドレイン電圧 $V_{\rm DS} = 0$ として説明する. 一般的に、MOSFET の閾値は次の式 で与えられる.

$$V_{\rm TH} = V_{\rm FB} + 2\Psi_{\rm B} + \frac{Q_{\rm Dep}}{C_{\rm ox}} \tag{1.1}$$

ここで、 $V_{\rm FB}$ はフラットバンド電圧、 $\Psi_{\rm B}$ は基板の Fermi 準位と真性 Fermi 準位の差、 $C_{\rm ox}$ は単位面積当たりの酸化膜容量、そして $Q_{\rm Dep}$ は単位面積当たりの空乏層電荷を表わす。空 乏層電荷は、図 1.5(b) において酸化膜直下の台形部分の電荷量を表わす。ゲート長 $L_{\rm G}$ が 十分に長い場合は、 $(L_{\rm G} - L'_{\rm G})/2$ が $L_{\rm G}$ に比べて十分に小さくなることから、その場合の MOSFET の単位面積当たりの空乏電荷 $Q_{\rm Dep,long}$ は、

$$Q_{\rm Dep,long} = q N_{\rm A} W_{\rm m} \tag{1.2}$$

$$W_{\rm m} = \sqrt{\frac{2\varepsilon_{\rm ch}(2\Psi_{\rm B})}{qN_{\rm A}}} \tag{1.3}$$

図 1.5: チャージシェアモデルを表わす MOSFET の断面図. (a) 長チャネル. (b) 短チャ ネル.

となる. ここで, q は素電荷量, N_A は基板のドーピング濃度, ε_{ch} は基板材料の誘電率を表わす. 短チャネルにおける $Q_{Dep,short}$ を求める. ゲート電圧により決まる空乏領域は, 図 1.5(b) で示した通り台形で近似されており, $Q_{Dep,short}$ が単位面積当たりの空乏層の電荷量であることから,

$$Q_{\text{Dep,short}}L_{\text{G}} = qN_{\text{A}}W_{\text{m}}\frac{L_{\text{G}} + L_{\text{G}}'}{2}$$

$$(1.4)$$

と近似的に定める.また、ドレイン端の曲率を点Cを中心とした円形であると仮定すると、 ABC で形成される三角形から、三平方の定理により次の関係が得られる.

$$\left(\frac{L_{\rm G} - L_{\rm G}'}{2} + r_{\rm j}\right)^2 + W_{\rm m}^2 = (r_{\rm j} + W_{\rm m})^2 \tag{1.5}$$

式 (1.4), (1.5) から次の表式が得られる.

$$\frac{Q_{\text{Dep,short}}}{Q_{\text{Dep,long}}} = \left[1 - \frac{r_{\text{j}}}{L_{\text{G}}} \left(\sqrt{1 + \frac{2W_{\text{m}}}{r_{\text{j}}}} - 1\right)\right]$$
(1.6)

これはチャージシェア係数と呼ばれ、短チャネル効果の影響によるゲートが制御する空乏 層電荷の減少の割合を表わす.したがって、短チャネルにおける閾値の減少を意味する(式 (1.1)).ゲート長が十分に大きい場合、式(1.6)は1に近づき、十分に長いゲート長におけ る空乏層電荷量に近づくため閾値は変化しない.一方、ゲート長が小さくなることで、式 (1.6)の右辺第2項の値が大きくなるため、チャージシェア係数が小さくなる.すなわち、空 乏層電荷が小さくなる.その影響により、閾値の空乏層電荷に関する項が小さくなること から閾値が減少する.以上がゲート長縮小に伴う閾値ロールオフの仕組みである.

1.3.2 Drain-Induced Barrier Lowering

前項では、ドレイン電圧が低い状況下における閾値の変化に関して説明した.しかし、ドレイン電圧が大きくなることで閾値の変化量も増大し、またサブスレッショルド領域における電流特性も劣化する.このようなドレイン電圧の増加に伴う特性劣化を引き起こす原因の一つが DIBL である.本項では、DIBL の概要を説明する.

DIBL について説明するには、図 1.6 に示すポテンシャル分布図を利用するのが便利であ る. ゲート長が十分に長い場合、チャネル領域内のポテンシャル障壁の高さはドレイン電 圧に依存せず一定である.一方、ゲート長が短い場合、ドレイン電圧の大きさに応じてポテ ンシャル障壁の高さが下がる.ポテンシャル障壁が下がることは、その分チャネル領域に 誘起される電子数が増加することを意味する.したがって、ドレイン電圧が線形領域から 飽和領域に突入しても、ドレイン電圧が増加するとともにポテンシャル障壁が下がり、誘起 される電子が増加するため、ドレイン電流が飽和せずに少しずつ増加し続ける(図 1.2(a)). また、図 1.6 の同じドレイン電圧印加状態における異なるゲート長のポテンシャル分布に 注目すると、ゲート長が短くなることで同じドレイン電圧下においてもポテンシャル障壁 の高さが低くなることが分かる.そのため、サブスレッショルド領域において短いゲート 長を持つ MOSFET に流れる電流は、長いゲート長を持つ MOSFET と比べて大きくなる. 図 1.2(b) におけるサブスレッショルド領域の電流傾きの低下が、この DIBL によるサブス レッショルド領域の特性劣化である.この効果の原因は、閾値電圧ロールオフと同様の説

図 1.6: 同じゲート電圧印加時の各ゲート長に関する MOSFET の表面電位の横方向分布 の模式図.

明が出来る.前項では、ドレイン電圧が十分に小さい状況下におけるソース、ドレイン結合 近傍の空乏層からの影響を考えた.ドレイン電圧が増加することで、ドレイン電極近傍の 空乏層の領域はより広がる.そのため、十分にゲート長が短い場合、より一層ドレイン結合 付近の空乏層によるチャネル領域への影響が増し、ソース結合近傍の空乏層とドレイン結 合近傍の空乏層の間での電界染み出しがチャネル領域のポテンシャルに影響し、電流特性 が変化する.このような DIBL を議論するためのパラメータとして、サブスレッショルド 係数 (subthreshold swing, SS) と呼ばれる *S* 値があり、バルク MOSFET における *S* 値は 次のように与えられる.

$$S = \frac{k_{\rm B}T}{q} \ln 10 \left(1 + \frac{C_{\rm D}}{C_{\rm ox}} \right) \tag{1.7}$$

ここで、 $k_{\rm B}$ は Boltzmann 定数, T (K) は温度, $C_{\rm D}$ は単位面積当たりの空乏層容量を表わ す. サブスレッショルド係数は、酸化膜容量が空乏層容量と比べて十分に大きい場合、

$$S = \frac{k_{\rm B}T}{q} \ln 10 \tag{1.8}$$

となり, 理想的には MOSFET の構造によらず, およそ 60 mV/decade となる. この値は, サブスレッショルド領域において電流が一桁小さくなるのに必要なゲート電圧を意味し, 式 (1.8) が理論最小値である. したがって, サブスレッショルド特性の劣化は, サブスレッ ショルド係数が大きくなることを意味する.

スイッチング素子である MOSFET にとって、ドレイン電流の On/Off 比が十分にとれるこ とが性能の指標となる.相互コンダクタンスを十分大きくとれることが高性能な MOSFET の前提にあるためである.しかし、DIBL の影響は閾値の変化だけでなく、この On/Off 比 の劣化にも直接影響するため、その抑制は重要な課題である.

1.3.3 離散不純物揺らぎ

現在、1つのチップには億単位のトランジスタが集積されており、MOSFETのゲート長 は100 nm以下である.この微細化技術の発展によるゲート長の縮小が、短チャネル効果 を引き起こすことを説明してきた.しかし、微細化が進むことにより短チャネル効果とは 異なる新たな問題が生じている.特性ばらつきである.特性ばらつきとは、同じ設計、プロ セス条件下で作成された同じサイズのトランジスタであるにも関わらず、閾値やドレイン 電流に関して異なる特性を示すことである.その結果として、各トランジスタは正常に動 作するにも関わらず、回路が設計通りの特性を示さないといった問題を引き起こす.特性 ばらつきの原因としては、製造装置、プロセス条件など、様々な原因が考えられる.その中 で、最も重要な原因の一つが離散不純物揺らぎである.

離散不純物揺らぎは、MOSFET の空乏層の中に不純物がランダムかつ離散的に分布す ることで、トランジスタごとに空乏層中の不純物の個数や分布の仕方が異なり引き起こさ れるデバイス特性のばらつきを指す。ランダムに分布している不純物の数は、統計的にポ アソン分布に従うことが知られている。不純物の個数の平均をn 個とすると、その分布の 標準偏差 σ は \sqrt{n} で与えられる。従来、MOSFET の寸法が十分に大きい場合は、基板に十 分な数の不純物が存在することから、平均個数に対するばらつきの割合 $\sigma/n = 1/\sqrt{n}$ は十 分に小さくなり、不純物の影響を平均的に扱うことができるため、ばらつきによる影響は 問題ではなかった。しかし、ゲート長が数百から数十 nm 程度まで縮小されたことにより、 チャネル領域に存在する不純物の数が数個程度まで減少している。そのため、平均個数に 対するばらつきの割合 $(1/\sqrt{n})$ が大きくなることから、その個数及び分布の仕方にもばら つきが生じると考えられ、その結果として離散不純物揺らぎの影響が顕在化する。閾値の 揺らぎに関しては、式 (1.1) から離散的不純物の影響が分かる。空乏層電荷で決まる項は空 乏層内の不純物の数で決まる。したがって、不純物が少ない場合、数個の違いにより閾値に 違いが生じることになる。概略ではあるが、以上が離散的不純物揺らぎの仕組みである。

1.4 新構造 MOSFET

1.4.1 MuG(Multi-Gate) MOSFET

1.3 節を用いて短チャネル効果について説明した.短チャネル効果は MOSFET の特性 を劣化させるものである.そのため、いかにして抑制するかが今後のデバイスの微細化を 進めるための課題である.一般的に、スケーリング則に従い縮小化されるバルク MOSFET では、短チャネル効果を抑制するために基板に高濃度ドーピングを行い、チャネル領域に 高密度の不純物を導入する.それにより、ソース、ドレイン電極近傍の空乏層のチャネル領 域への広がりを抑制する.しかし、これには問題点がある.一つは、基板ドーピング濃度が 高くなるため、閾値が大きくなることである.閾値が大きくなることにより、低電圧での駆 動電流が稼げなくなる.また、基板ドーピング濃度には基本的に限界値があるため、不純物 濃度増加による短チャネル効果の抑制には限界があることになる.そのため、ゲート長の 縮小に伴い、チャネル内に存在する不純物の数が数個程度になり、それが離散的に分布し、 離散不純物揺らぎによる特性ばらつきが顕在化する.離散不純物揺らぎによる特性ばらつ きは、チャネル内の不純物を無くすことができれば抑制できる.しかし、従来の短チャネル 効果抑制方法と矛盾し、閾値ロールオフやDIBLを抑制できなくなる.このように、スケー リング則に従ったトランジスタの微細化には限界が近付いている.そこで、短チャネル効 果,離散不純物揺らぎを防ぎ、更なる微細化を進めるために、従来とは異なる新しい構造の MOSFET が様々考案されている.本節では、MuG MOSFET の構造を紹介するとともに、 短チャネル効果抑制に有効である根拠を示す.

DG(Double-Gate) MOSFET

図 1.7: DG MOSFET の模式図

DG MOSFET の構造を図 1.7 に示す.酸化膜を従来のバルク MOSFET の酸化膜の対 面の基板中に埋め込み、その酸化膜の下に更にゲート電極を追加したものである [29]. 一 般的に、このようなマルチゲート構造はソース、ドレイン電極からの空乏層の広がりを抑 えるためにチャネル領域全てを空乏化することを要求する.このような完全空乏型 (fully depleted, FD)の MOSFET を FD MOSFET と呼ぶことがある.完全空乏型でない場合、 上下の酸化膜-半導体界面に通常通りチャネルが形成される.それは、単純に MOSFET 二 つが並列している特性と酷似し、DG 型の特性を生かしきれず、それほど短チャネル効果抑 制を望めないために、完全空乏型の MuG MOSFET が理想である.DG MOSFET 構造で は、チャネル内の空乏層は各ゲート電極に印加される電圧に従い制御される.このように、 構造的に空乏層の広がりを抑えられることが MuG MOSFET の利点である.

TG(Tri-Gate) MOSFET

TG MOSFET の構造を図 1.8 に示す. TG 型は, DG 型から更に側面に酸化膜, ゲート電 極を追加したものである. TG 型の一つである Fin FET は, 近年 intel core i シリーズ第三 世代である「Ivy Bridge」に導入されている. Fin FET は, 横方向に比べ縦方向はある程 度高い構造になっており, 強い静電制御性は横方向に実現され, 縦方向に伸ばすことで駆 動電流を稼ぐ構造である. また, 図 1.8(b) に示すように, TG 型の MOSFET には単純なト ライゲート (Triple 型) だけでなく, Π 型, Ω 型があり, 少しずつ静電制御性に違いが生ま れる.

図 1.8: (a) TG MOSFET の模式図. (b) チャネル領域の断面図.

NW(Nanowire) MOSFET

NW MOSFET の構造は図 1.3 に示した通りである. チャネル領域の周りを全て酸化膜 により囲むことで、最も高い静電制御性を期待され、MuG MOSFET の究極構造と言われ ている. ワイヤの断面構造としては、図 1.9 に示すように円形断面だけでなく四角形断面 に関する研究も広く行われている. また、チャネルを酸化膜で囲むことにより、半導体の形 状が従来の板状から線状に変わることから、量子細線と呼ばれ、それを利用した MOS トラ ンジスタであることから、量子細線 MOSFET と呼ばれる.

1.4.2 自然長:λ

短チャネル効果について議論するには、自然長と呼ばれる Yan により提唱されたデバイ ス構造で決まるパラメータを利用すると便利である [30]. 自然長は、ドレイン電極からチャ ネル領域への電界の染み出し距離を表わす. したがって、自然長が小さいほど、ドレイン電 極近傍の空乏層のチャネル領域への広がりが抑制され、短チャネル効果をより抑制できる ことを意味する. ゲート長を少なくとも自然長の 6–10 倍程度大きくすることで、短チャネ ル効果が抑制できる. 自然長を含む各新構造に関するスケーリングの研究は広く研究され ているが [30, 31, 32, 33]、構造の複雑さから定式化されていない構造もある. しかし、定式 化されている構造と、それらの自然長の式の類似性を基に、MuG MOSFET の自然長に限 り、次のように一般的な式が与えられている [34].

図 1.9: NW MOSFET の断面図.

ここで、 ε_{ox} は酸化膜材料の誘電率、 t_{ch} はチャネルの厚み、 t_{ox} は酸化膜厚を表わす.また、 *n*はゲート数による自然長への影響を表わし (effective number of gates),解析的又は数値 シミュレーションから抽出されるパラメータである.同様に、MuG MOSFET に関する閾 値も*n*について、次のように一般化されている [34].

$$V_{\mathrm{TH},n} = V_{\mathrm{FB}} + 2\Psi_{\mathrm{B}} + \frac{qN_{\mathrm{A}}}{C_{\mathrm{ox}}}\frac{t_{\mathrm{ch}}}{n}$$
(1.10)

以上の式により、どの構造が最も短チャネル効果抑制に優れているかが定性的に説明できる.

チャネル膜厚 *t*_{ch} がある程度小さい場合, DG MOSFET の自然長及び閾値は次のように 定式化されている [35].

$$\lambda_2 = \sqrt{\frac{\varepsilon_{\rm ch}}{2\varepsilon_{\rm ox}} \left(1 + \frac{\varepsilon_{\rm ox} t_{\rm ch}}{4\varepsilon_{\rm ch} t_{\rm ox}}\right) t_{\rm ch} t_{\rm ox}} \tag{1.11}$$

$$V_{\rm TH,2} = V_{\rm FB} + 2\Psi_{\rm B} + \frac{qN_{\rm A}}{C_{\rm ox}}\frac{t_{\rm ch}}{2}$$
(1.12)

これらの式は, n = 2 における式 (1.9),(1.10) に対応する. また, チャネル幅 t_{ch} が酸化膜 t_{ox} に比べてある程度小さい時, NW MOSFET における自然長及び閾値は次のように定式 化される [36].

$$\lambda_4 = \sqrt{\frac{\varepsilon_{\rm ch}}{4\varepsilon_{\rm ox}} \left(1 + \frac{\varepsilon_{\rm ox} t_{\rm ch}}{4\varepsilon_{\rm ch} t_{\rm ox}}\right) t_{\rm ch} t_{\rm ox}} \tag{1.13}$$

$$V_{\rm TH,4} = V_{\rm FB} + 2\Psi_{\rm B} + \frac{qN_{\rm A}}{C_{\rm ox}} \frac{t_{\rm ch}}{4}$$
(1.14)

これは、式 (1.9),(1.10) の n = 4 の場合に対応する. このように、DG MOSFET、NW MOSFET の場合は自然長、閾値の解析式が得られている. 一方、TG MOSFET の解析式 は未だ得られていない. しかし、数値シミュレーション結果と比較することにより、TG 型 の n が抽出されている [34]. 一般的な TG 型の場合は n = 3, Π 型の場合は n = 3.14, Ω 型 の場合は n = 3.4 が得られている. このように、チャネル領域と接する酸化膜領域が増加 するにつれ、n は増加し、その結果として自然長が短くなることが分かる. これは、そのま ま短チャネル効果を抑制する能力が高いことを意味し、NW MOSFET が最も静電制御性 の優れた構造であることが分かる.

以上により、新構造の MOSFET が短チャネル効果の抑制に有効であることが分かる. また、ゲート長が極めて小さい状況での市場導入が望まれることから、離散不純物揺らぎの 影響が顕著に表れる可能性がある. しかし、真性半導体をチャネル材料に用いたとしても 高い短チャネル効果の抑制が期待できることから、チャネル領域へのドーピングは必要な いと考えられている. そのため、不純物揺らぎの影響は考える必要がない. むしろ、いかに してチャネル領域に不純物が混合されないようにするかが課題となる.

1.5 弾道·準弾道輸送

ゲート長の微細化がキャリアの平均自由行程と同程度まで進むと、キャリアがソースか らドレインに伝導する際、チャネル領域で生じる散乱の回数が数回程度まで減少し、極限

図 1.10: ゲート長とキャリア伝導の関係図.

的には一回も散乱を受けずにドレインまで伝導するキャリアが存在すると考えられており, そのように散乱を受けずに伝導することを弾道輸送という.シリコンにおける電子の平均 自由行程は~10 nm 程度と言われていることから,ゲート長が10 nm に近づくことでキャ リアの散乱回数が急激に減少する可能性がある.弾道輸送では,散乱を前提としている従 来のドリフト拡散伝導における移動度という概念が無くなる.そのため,弾道輸送が影響 しだす程度のゲート長を持つ,極短ゲート長 MOSFET に適用する伝導モデルは,従来の 移動度を用いるドリフト拡散伝導モデルから弾道輸送モデルへの変更が必要となる.

全ての電子が散乱を受けずに伝導する場合, ソースからチャネルに注入された電子が全 てドレインに到達する. このドレイン電流はソース端でのキャリアの注入速度及びキャリ ア密度の積で表わされる [8]. したがって, 全キャリアが弾道輸送する場合のドレイン電流 はゲート長には依存しない. また, 弾道輸送に基づく特性は MOSFET の理想的な上限特 性を示す. そのため, 弾道輸送が実現すれば, スケーリング則とは外れた部分での電流駆動 力の増大が期待できる. 図 1.10 に各伝導機構とゲート長の関係を示す. 実際には有限の長 さを持つ MOSFET において, 完全な弾道輸送を実現することは非常に困難である [13]. し たがって, 弾道輸送する電子と, 複数回散乱を受ける電子の両方を考える必要があり, この 伝導機構を準弾道輸送という. このように, ゲート長が平均自由行程に近づくことで電流 駆動力の増加が期待される. 弾道・準弾道輸送に基づく MOSFET のドレイン電流の解析 式の導出は第2章に託すことにし, MOS トランジスタの特性を実験的に測定する場合, 弾 道輸送とドリフト拡散伝導の違いを検討する手法として注目されている α 乗則モデルを紹 介する.

1.5.1 *α* 乗則モデル

回路動作の解析や特性の予測によく用いられるのが α 乗則モデルである [37]. その解析 的取り扱いの容易さから,回路解析に最もよく使用される MOSFET 解析モデルの一つで あり、広く応用されている. ドレイン電圧が十分に大きい飽和領域におけるドレイン電流 に関する α 乗則モデルを以下に示す.

$$V_{\rm DS,SAT} = K \left(V_{\rm GS} - V_{\rm TH} \right)^m \tag{1.15}$$

$$I_{\rm DS,SAT} = \frac{W}{L_{\rm G}} B \left(V_{\rm GS} - V_{\rm TH} \right)^{\alpha} \tag{1.16}$$

ここで, K, m は線形領域の特性に関するパラメータ, B, α は飽和領域の特性に関するパ ラメータである. この α により, 飽和領域に関する電流の挙動が表わされる. また, $\alpha = 2$ とすることで, 最も単純で基本的な MOSFET の回路解析モデルの形になる [38]. 弾道輸送 極限では, α 乗則モデルにおいて $\alpha = 1.5$ になると言われており [39], 弾道輸送を実験的に 証明する手段として注目されている.

1.6 電気伝導

本節では、NW MOSFET(1次元系)における弾道・準弾道輸送を考える際に基本となる 電気伝導理論に関して解説する.まず、固体物理学の発展において重要な役割を果たした Drudeにより提唱された金属内の電気伝導に関する理論から説明を始める [40].続いて、現 在までに提唱され、今でも広く応用されている電気伝導の基礎理論として、Kubo 理論及び Landauer 理論を紹介する.これら2つの理論は1957年頃に発表され [41, 42]、複雑ではあ るが汎用性を持つのが Kubo の理論、応用対象に制限はあるが直観的で簡潔な公式を与え るのが Landauer の理論である.

電気伝導と言われて思いつく最もなじみ深いものはオームの法則である.断面積 S,長 さ L の金属の両端に電圧 V を印加したときに流れる電流を I とする.オームの法則によ り,電圧と電流の関係は抵抗値 R を用いて,

 $V = RI \tag{1.17}$

と定義される.抵抗値 R は、単位長さ、単位断面積当たりの抵抗値を表わす比抵抗 ρ を用いて.

$$R = \rho \frac{L}{S} \tag{1.18}$$

で定義される物質定数である.したがって,ある金属の両端に電圧 V を印加したときに流れる電流を決定するのが比抵抗 ρ である.電子がどのように物質内を伝導するかは物質定数 ρ に集約される.そのため,比抵抗が電気伝導を議論するための一つの指標である.

1.6.1 Drudeの理論

Drude 理論の特徴は、金属内を伝導する電子の集まりが電子の気体であると仮定した上で、電気伝導、熱伝導の理論を気体運動論を応用して提案したことにある.最も簡単な気体は一つの原子から成ると言えるが、金属は二つの構成要素から成ると考えられる.一つは電子である.電子は負の電荷を持っている.しかし、金属は電気的に中性であるため、中性状態を保つために正の電荷を担うものが存在するはずである.Drudeは、中性状態を補償する正の電荷は、電子に比べて重い粒子が持っており、それは動かないものであると仮定

図 1.11: 金属の Drude モデル

している. すなわち, Drude のモデルでは原子が集まって金属を構成するとき, 価電子は遊離して金属内を自由に動き回り, 金属イオンが動かない正電荷を持つ粒子として働く. 図 1.11 に Drude の原子モデルを示す. 一つの原子は, 電荷 eZ_a の原子核を持っており, 核の周りに総電荷 $-eZ_a$ を持つ電子群が存在するものと仮定する. ここで, Z_a は原子番号を表す. この中で, Z 個の電子は原子核から比較的弱い束縛を受けている価電子とする. 一方, $Z_a - Z$ 個の電子は強く原子核に束縛されており, 化学反応などには寄与せず, 芯電子と呼ばれる. 一つ一つの原子が集まり金属を構成するとき, 芯電子は原子核とともに金属イオンを作る. 価電子は元の原子から離れて自由に動き回ることができる. これらの電子は伝導電子と呼ばれる. 各電子の質量を $m \ge 0$, 電子の集合体を気体であると仮定し, それに気体運動論を適用する. 気体運動論を適用する際の基礎仮定を以下に示す:

- 電子が一度散乱を受け、次の散乱が起こるまでの間に生じる他の電子との相互作用や、イオンとの相互作用は無視する.この仮定により、電磁場が存在しない場合、電子は直線的に一様に運動する.また、何かしらの外場が存在する場合も Newton の運動方程式に従い運動する.このように、電子と電子の相互作用を無視する近似を独立電子近似という.また、電子とイオンの相互作用を無視する近似を自由電子近似という.
- 電子の散乱は、電子の速度を瞬間的に変える現象として扱う. Drudeは、電子の散乱 を、電子が進入することのできない金属イオンによって跳ね返される現象であると 仮定している.図1.12に、この散乱の様子を示した模式図を示す.この散乱の様子 は、実際の印象とはかけ離れている.しかし、結果的に伝導度を導出するという目的 にとって問題にはならない.このように、Drude 理論において金属の電気伝導を定性 的に説明する際に重要なことは、ある散乱機構があるということであり、機構そのも のが何であるかは問題としない.
- 一個の電子が単位時間当たりに 1/τ の確率で散乱を受けると仮定する.すなわち,無限小に近い時間間隔 dt の間に電子が散乱を受ける確率が dt/τ であることを意味する.この時間 τ は,緩和時間または平均自由時間などと呼ばれ (ここでは緩和時間と呼ぶことにする),ある一つの電子が一度散乱を受けた後,次の散乱を受けるまでに平均して τ という時間かかることを意味する.また,Drude は緩和時間 τ が電子の位置や速度に無関係であると仮定している.

図 1.12: Drude の伝導モデル.

電子は散乱を通してのみ周囲と熱平衡になるものと仮定する.すなわち,散乱によって局所的な熱力学的平衡を維持する.各々の散乱後すぐに,電子は散乱を受ける直前の速度とは無関係の速度と方向に,散乱の起こる領域の温度に応じた速さを持って出てくるものと仮定する.

以上の基礎仮定に基づき、金属の直流電気伝導度を導く.

抵抗 R は、導体の断面積及び長さに依存するが、電流及び電圧には依存しない. Drude 理論により、抵抗 R を見積もる. 金属の両端に電位差 V を与え、導体内に電界 E を印加す る. このとき、金属内部の電子が電界から受ける力は F = -eE と表わせるため、運動方程 式は、

$$\boldsymbol{F} = m \frac{d^2 \boldsymbol{r}}{dt^2} = m \frac{d\boldsymbol{v}}{dt} = -e\boldsymbol{E}$$
(1.19)

となる.電位差を与えない場合,電子は互いにでたらめな方向に動き,その平均速度が0となり,正味の電流が0になる.導体内に電場 Eが生じることで,電子は電場とは逆の方向に平均速度 v_{avg} を持つとする.電子を一つ取り出して考え,最後の散乱から時間 tだけ経過しているものとする.散乱直後の速度を v_0 とすると,時刻 tにおける速度は式 (1.19)より, v_0 に-eEt/mを足したものとなる.各電子は散乱によりでたらめな方向に出ていくことから,速度 v_0 は平均速度に影響しないと考えられる.したがって,最後の散乱からtだけ時間が経過した時の電子の平均速度は-eEt/mの平均で与えられる.しかし,電子が散乱を受けるまでのtの平均は緩和時間 τ であるため,電子の平均速度は,

$$\boldsymbol{v}_{\text{avg}} = -\frac{e\boldsymbol{E}\tau}{m} \tag{1.20}$$

と考えられる.単位体積当たりの電子密度をnとし、これらの電子が電荷-eを平均速度 v_{avg} で運ぶとすると、金属内を流れる電流密度jは次のように記述できる.

$$\boldsymbol{j} = n(-e)\boldsymbol{v}_{\text{avg}} \tag{1.21}$$

また, j は比抵抗 ρ の逆数で表わされる電気伝導度 $\sigma = 1/\rho$ を用いることで,

$$\boldsymbol{j} = \sigma \boldsymbol{E} \tag{1.22}$$

となる.式 (1.21), (1.22) から, 電気伝導度 σ が次のように決まる.

$$\sigma = \frac{ne^2\tau}{m} \tag{1.23}$$

17

以上により, Drude 理論に基づいてオームの法則を導出し, 電気伝導度を求めることがで きた. Drude 理論は, 電気伝導度 σ を緩和時間 τ 以外全て分かっている量を使って見積も ることが可能であることを示している. したがって, ある導体の比抵抗の実測値を使うこ とで, 緩和時間の大きさを大雑把に見積もることできる.

1.6.2 Kuboの理論

Kuboの理論とは、一般の線形応答の定式化を表わし、ある系にゆるやかに外力を加えた 場合の応答に関する理論である.そのため、厳密には Kuboの理論は電気伝導に関する理 論ではないが、その最も有用な応用例として電気伝導に関するものがあり、Kuboの公式と いうと電気伝導率の表式を指すことも多い.

Kubo の公式の優れたところは、式の導出過程及び式そのものは非常に複雑であり、その 理解には数学的知識や技巧を必要とするが、ひとまずそれを計算すれば電気伝導率が得ら れるところである.本項では、電気伝導率の表式を紹介する程度に留め、細かい導出過程は 参考文献等を参考されたい [41, 43, 44].

電気伝導に Kubo の理論を応用する際, ある導体にかかる外力は電界 E(t) であり, その ハミルトニアン H_{ext} は,

$$H_{\text{ext}}(t) = -\sum_{i} e_{i} \boldsymbol{r}_{i} \boldsymbol{E}(t)$$
(1.24)

となる. ここで, *i* は *i* 番目の電子を表わし, その位置を r_i が表わす. Kubo の理論による 線形応答の基本的な考え方は摂動論であり, 電流の期待値を電界の1次の摂動の範囲で計 算する. しかし, 電流が流れている状態は非平衡状態であることから, H_{ext} を平衡状態の ハミルトニアンに足し合わせて電流の期待値を計算するわけにはいかない. そこで, 時刻 $t = -\infty$ において導体は熱平衡状態であるとし, そこから $e^{\delta t}$ ($\delta \rightarrow +0$) に比例して少しず つ電界が導体に印加されるとしている (adiabatic switching). また, 直流を考える際, 導体 の大きさを無限大として考えるため, r_i はいくらでも大きくなる. したがって, E が十分 に小さいとしても摂動 H_{ext} が小さくなるとは限らない. この問題に関しては, 数学的操作 により巧みに回避されている. 以上の考え方を基本として, 電気伝導率は以下に示すよう に導出される.

$$\rho_{\nu\mu}(\omega) = \int_0^\infty ds \exp\left(-i\omega s\right) \left\langle \int_0^\beta d\lambda \boldsymbol{j}_\nu(-i\hbar\lambda) \boldsymbol{j}_\mu(s) \right\rangle \tag{1.25}$$

ここで、 j_{ν} 及び j_{μ} はそれぞれ ν 、 μ 方向の電流演算子を表わし、 $\langle ... \rangle$ は H_{ext} を含まないハミルトニアンの熱平均を表わす.また、直流電気伝導の場合、電気伝導率は、

$$\rho_{\nu\mu} = \int_0^\infty ds \langle \int_0^\beta d\lambda \boldsymbol{j}_\nu(-i\hbar\lambda) \boldsymbol{j}_\mu(s) \rangle$$
(1.26)

となる. 以上が Kubo の理論を用いて得られる電気伝導率である. また,式 (1.26) を用いることで 1.5.1 節の Drude の理論により得られた電気伝導率を導出できることも確認されている.

以上が Kubo の理論の概要であるが,式(1.26)は無限に大きい導体を考えており,電界を 印加する電極が及ぼす電気伝導への影響は考慮していない.しかし,メゾスコピック系に 関して言えば,導体内の電気伝導が各電極の影響を受ける可能性がある.また,式(1.26)で 得られる電気伝導率は局所的な電流密度と電界の比を表わすが、メゾスコピック系までサ イズの縮小が進むと、局所的な電気伝導率にはあまり意味がなく、むしろ導体だけでなく電 極を含めるデバイス全体を考慮したコンダクタンス (conductance) が重要になる.低次元 系の電気伝導について、電極の影響まで含んだ電気伝導に関して言及したものが Landauer の理論であり、それについて次項で解説する.

1.6.3 Landauerの理論

図 1.13: Landauer の手法の説明に用いられるデバイスモデル.

本項では Landauer の理論について概要を説明する. 詳しい内容は第2章にて解説する が,より詳しい説明を必要とする場合は参考文献 [45, 46] を参照して頂きたい. Landauer の理論が Kubo の理論と大きく異なる点は,無限大の試料は仮定せず,試料の両端に電子 の蓄積層 (Electrode1, Electrode2) を付けたことである. 図 1.13 にそのデバイスモデルを 示す. 電気伝導率を計りたい対象試料内における電子伝導が,両電極の影響を受ける系で の電気伝導を考える. Landauer の理論は,低次元系,特に一次元系において絶大な力を発 揮する. そのため,図 1.13 に示したデバイスモデルは x 方向に関する一次元系であると仮 定する. そして, Landauer の理論は両端子の状態が試料内の電気伝導に影響を及ぼすよう なメゾスコピック系の理論である. このように, Landauer の理論は,電気伝導が低次元系 であること,メゾスコピック系を対象とするなどの制限を持つが,これらの制限が近年に なって Landauer の理論が注目を浴びている理由である. すなわち,1.1 節で述べたとおり, 半導体デバイスのサイズがナノスコピック系とでも言えるようなナノサイズまで縮小され ていること,また DG MOSFET や NW MOSFET のような低次元系の電気伝導を実現す るデバイスが作製可能となったためである.

モデルデバイス (図 1.13) において, 試料内部の電気伝導を考えるために様々な仮定が置かれる. 試料 S はリード線 1, 2 によって蓄積層 1, 2 に繋がれている. 電流を駆動するのは, 試料内にかかる電界ではなく両端子の化学ポテンシャル μ_1 , μ_2 の差である. 各蓄積層は十分に大きく, 十分な量の電子をリードへ供給し, 電子の出入りによって各蓄積層内の状態 は変わらないものとする. また, 各リード線は理想的なものであり, その内部では電子の散乱は起こらないものとする. 電流が流れている状態では各リード内部も非平衡状態である ため, そこでの化学ポテンシャルを考えることは難しい. あくまで μ_1 , μ_2 は蓄積層内部の 化学ポテンシャルである. 以上がモデルデバイスに関する仮定である.

計算するものは試料内を流れる電流である.電流を求めるために Landauer は大胆な仮 定を置き,直観的に電流を導出した.その結果として,非常に簡単な式が得られ,この点が Kuboの理論と異なる. Landauerの置いた仮定は以下のとおりである. 話を簡単にするために、ここでは絶対零度の場合を扱う.

- 各蓄積層において µ1, µ2 よりも低いエネルギーは全て電子に占有されている.
- 各リード及び試料の中では、µ2 以下の状態が全て電子に占有されている。
- リード1内において、+x方向の速度でµ1以下の状態は全てリード1から注入される電子に占有されている。
- 蓄積層2にµ2より大きいエネルギーを持つ電子が入った場合,即座にエネルギーが 緩和され,µ2直上の状態に遷移する.

以上の仮定を基に、試料Sに流れる電流 Iを計算すると、

$$I = \frac{e(\mu_1 - \mu_2)}{\pi\hbar} M_1 T_{\rm r}$$
(1.27)

となる. ここで, M_1 はリード 1 内のエネルギー準位のモード数, T_r は試料 S に関する電子の透過率を表わす. また, $\hbar = h/2\pi$ であり, h は Planck 定数を表わす. このように, 非常に簡単な表式で試料 S 内部の電流を導出したのである. また, 蓄積層 1, 2 にかかる電位差は $V = (\mu_1 - \mu_2)/e$ であるため, コンダクタンス G は,

$$G = \frac{1}{V}$$

$$= \frac{2e^2}{h} M_1 T_r$$
(1.28)

となる. 前項では伝導率を示し, ここではコンダクタンスを示した. メゾスコピック系では, 局所的な伝導率には意味がないため, このようにコンダクタンスとして議論されることが一般的である.

以上により、Landauer の理論に基づく電流の考え方の概要を示した. この手法を MOS-FET に適用することで、弾道・準弾道輸送に基づく電流の解析式が導出できる (第2章). また、式 (1.27) より、弾道・準弾道輸送に関する情報は全て透過率 *T*_r に集約されているこ とが分かる.

1.7 研究の目的及び流れ

本研究では、弾道・準弾道輸送に基づく四角形断面を持つ NW MOSFET の特性解析コ ンパクトモデルを導出する.また、導出した解析モデルを回路シミュレータに組み込み、実際に回路シミュレーションを実現する.このように、NW MOSFET 単体の特性を表わす 解析モデルの作製から、回路シミュレータ組み込みへの道筋を作ることが本研究の目的で ある.以上の目的を達成するために、段階的にコンパクトモデルを作製していく

第一段階として,解析モデルを作成するための基本となるモデルを作成する.弾道・準弾 道輸送に基づく NW MOSFET のドレイン電流は Landauer の手法を用いることでチャネ ル内のソース-ドレイン方向に関するバリア障壁のエネルギー最大値を取る場所における ワイヤ断面内の電子の閉じ込めエネルギーの関数として解析的に表すことができる.その ため、ワイヤ断面内の閉じ込めエネルギーを解析的に求める.この段階のモデルは複数報告 されており [18, 19, 20, 21, 22, 23, 24], それぞれが異なる方法で閉じ込めエネルギーを決 定している.本論文では、数値計算を必要としない完全な解析モデルの作製を念頭に置き、 ワイヤ断面内の電子の閉じ込めエネルギーの解析式の導出を摂動法及び二準位近似を用い て試みる.導出した閉じ込めエネルギーとドレイン電流の解析式により、NW MOSFET の特性を表わすコンパクトモデルを作製する.これらのコンパクトモデルは一つの共通の 変数の関数として得られる.それを決定するためには条件式を一つ解く必要があり、その 際に数値計算を一度必要とする.したがって、第一段階のモデルは簡単な数値計算を一回 含む.

第二段階として、数値計算を必要としない完全且つ明示的な解析モデルを作製する. 基本モデルにおいて NW MOSFET の各特性は共通の変数の関数として導出され、その変数を決定するために条件式を数値的に解いた. この条件式を独自の手法により近似的に解くことで、未定変数の解析近似式を導出し、それにより NW MOSFET のデバイス特性を表わす完全な解析モデルが得られる.

三つ目の段階として、導出した解析モデルをアナログ回路に関するモデリング標準言語 である Verilog-A により記述し、回路シミュレータに組み込む. そして、回路シミュレー ションを実行する. 以上が本研究の大筋であり、このような流れで NW MOSFET の特性 解析モデルを作製し、回路シミュレータに組み込むまでの基本的な流れを構築する.

本論文の構成を示す.まず,弾道・準弾道輸送に基づく NW MOSFET のドレイン電流 の解析式を第2章で導出する.続いて,簡単な数値計算を含む NW MOSFET の特性コン パクトモデルを第3章にて解説し,続く第4章で数値計算を含むコンパクトモデルの完全 な近似解析化手法について説明する.また,解析モデルを回路シミュレータに組み込む際 に問題となる点,デバイス単体のモデルに関する問題点についても第4章でまとめて解説 する.そして,第5章において作製した解析モデルを回路シミュレータに組み込み,回路シ ミュレーションを実現する.最後の6章において,本研究の成果,今後の方針について述べ, 本研究の総括とする.

第1章まとめ

本章では、本研究の背景、概要について述べた.以下に要点を示す.

- 半導体集積回路の進化は、その基本構成素子である MOSFET の進化に伴う.
 - スケーリング則に従い、MOSFET の微細化は進められてきた.
 - スケーリング則に従うことで、回路の集積度の向上、高速動作、低消費電力が実現されてきた。
- MOSFET のゲート長の縮小は短チャネル効果と呼ばれる特性劣化を引き起こす.
 - 閾値ロールオフ
 - DIBL
 - 離散不純物揺らぎ

- MuG MOSFET 構造の導入により短チャネル効果は抑制される.
 - チャネルとゲート酸化膜の接する面を増やすことにより、閾値ロールオフ、DIBL を抑制できる.
 - チャネル領域の完全空乏型を実現することでチャネルドーピングが不必要になり、離散不純物揺らぎを抑制できる.
 - MuG MOSFET 構造の究極形はチャネルを酸化膜で囲う NW MOSFET である.
- ゲート長の縮小はチャネル内に関するキャリア伝導機構を変える可能性がある。
 - ゲート長がキャリアの平均自由行程に近づくことで、散乱を受けずにチャネル 内を伝導するキャリアが増加する.
 - 散乱を受ける電子と受けない電子が混在する伝導機構は準弾道輸送と呼ばれる。
 - ゲート長が更に縮小され、全ての電子が散乱を受けない伝導機構が実現された
 とすると、それは弾道輸送と呼ばれる.
- キャリア伝導の基礎理論は Kubo の理論と Landauer の理論である.
 - メゾスコピック系の電子デバイスに関して Landauer の理論が非常に有用であり、弾道・準弾道輸送に基づく MOSFET の電流を導く基礎理論となる.
- 最後に、本論文の構成を示した. この構成に従い、解説を進めていく.

参考文献

- [1] 牧本次生, デビッド・マナーズ, "デジタル革命 半導体が開くマルチメディア社会," 日経 BP 社, 1996.
- [2] 飯田清人, "IT 革命からナノテクノロジーへ 半導体技術の創造と進化,"丸善株式会 社, 2002.
- [3] 水谷孝, 前澤宏一, 中里和郎, 江川孝志, "電子デバイス,"新インターユニバーシティ, オーム社, 2009.
- [4] S. M. Sze, "Semiconductor Devices: Physics and Technology," 2nd Edition Wiley, 2001.
- [5] International Technology Roadmap for Semiconductors homepage. [Online]. Available: http://www.itrs.net/.
- [6] H. Sakaki, "Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures," Japanese Journal of Applied Physics, vol. 19, pp. L735–L738, 1980.
- [7] K. Natori, "Scaling limit of the MOS transistor –A ballistic MOSFET–", IEICE Trans. Electron., vol. E84-C, no. 8, pp. 1029-1036, 2001.
- [8] K. Natori, "Ballistic metal-oxide-semiconductor field effect transistor," J. Appl. Phys., vol. 76, no. 8, pp. 4879-4890, 1994.
- [9] K. Natori, T. Shimizu, and T. Ikenobe, "Multi-subband effects on performance limit of nanoscale MOSFETs," Jpn. J. Appl. Phys., vol. 42, no. 4B, pp. 2063-2066, 2003.
- [10] K. Natori, "Ballistic/quasi-ballistic transport in nanoscale transistor," Appl. Surf. Sci., no. 19, pp. 6194-6198, 2008.
- [11] K. H. Cho, K. H. Yeo, Y. Y. Yeoh, S. D. Suk, M. Li, J. M. Lee, M.-S. Kim, D.-W. Kim, D. Park, B. H. Hong, Y. C. Jung, and S. W. Hwang, "Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors," Appl. Phys. Lett., vol. 92, 052102, pp. 1–3, 2008.
- [12] G. Mil'nikov, N. Mori, Y. Kamakura, and T. Ezaki, "R-matrix theory of quantum transport and recursive propagation method for device simulations," J. Appl. Phys., vol. 104, 044506, pp. 1–14, 2008.

- [13] H. Tsuchiya, K. Fujii, T. Mori, and T. Miyoshi, "A quantum-corrected monte carlo study on quasi-ballistic transport in nanoscale MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2965–2971, 2006.
- [14] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, "On the validity of the parabolic effective-mass approximation for the *I-V* calculation of silicon nanowire transistors," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1589–1595, 2005.
- [15] K. Nehari, N. Cavassilas, J. L. Autran, M. Bescond, D. Munteanu, and M. Lannoo, "Influence of band structure on electron ballistic transport in silicon nanowire MOSFET's: An atomistic study," Solid-State Electron., vol. 50, no. 4, pp. 716–721, 2006.
- [16] S. C. Rustagi, N. Singh, W. W. Fang, K. D. Buddharaju, S. R. Omampuliyur, S. H. G. Teo, C. H. Tung, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, "CMOS inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach," IEEE Electron Device Lett., vol. 28, no. 11, pp. 1021–1024, 2007.
- [17] I. Park, Z. Li, X. Li, A. P. Pisano, and S. Williams, "Towards the silicon nanowirebased sensor for intracellular biochemical detection," Biosensors and Bioelectronics, vol. 22, no. 9–10, pp. 2065–2070, 2007.
- [18] K. Natori, "Compact modeling of ballistic nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2877–2885, 2008.
- [19] K. Natori, "Compact modeling of quasi-ballistic silicon nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 79–86, 2012.
- [20] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Unified compact model for the ballistic quantum wire and quantum well metal-oxidesemiconductor field-effect-transistor", Journal of Applied Physics, vol. 94, pp. 1061-1068, 2003.
- [21] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Modeling of nanoscale gate-all-around MOSFETs", IEEE Electron Device Letters, vol. 25, no. 5, pp. 314-316, 2004.
- [22] B. Iñiguez, Tor A. Lázaro, F. Danneville, and M. Jamal Deen, "Compact-modeling solutions for nanoscale double-gate and gate-all-around MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2128–2142, 2006.
- [23] B. C. Paul, R. Tu, S. Fujita, M. Okajima, T. H. Lee, and Y. Nishi, "An analytical compact circuit model for nanowire FET," IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1637–1644, 2007.
- [24] J. Chen, "A circuit-compatible analytical device model for ballistic nanowire transistors," Moicroelectron. Journal, vol. 39, pp. 750–755, 2008.

- [25] R. H. Dennard, F. H. Gaensslen, L. Kuhn, and H. N. Yu, "Design of micron MOS switching devices," IEEE International Electron Devices Meeting, 1972.
- [26] R. H. Dennard, F. H. Gaensslen, H. N. Yu, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.
- [27] H. C. Poon, L. D. Yau, R. L. Johnston, and D. Beecham, "DC model for shortchannel IGFET's," in IEDM Tech. Dig., pp. 156–159, 1974.
- [28] 岸野正剛, 小柳光正, "電子材料シリーズ: VLSI デバイスの物理," 丸善株式会社, 1986.
- [29] T. Sekigawa, Y. Hayashi, K. Ishii, and S. Fujita, "MOS transistor for a 3D-IC," Int. Conf. Solid State Devices and Materials, Tokyo, 1985; Abstract, C-3-9 LN, pp. 14–16.
- [30] R.-H. Yan, A. Ourmazd, and K. F. Lee, "Scaling the si MOSFET: from bulk to SOI to bulk," IEEE Transactions on Electron Devices, vol. 39, no. 7, pp. 1704–1710, 1992.
- [31] 遠藤哲郎, 森雅朋, 桜庭弘, 舛岡富士雄, "完全空乏型 Double-Gate SOI MOSFET の 短チャネル効果の解析及びスケーリング理論の提案,"電子情報通信学会論文誌, vol. J2-C-I, no. 2, pp. 94–95, 1999.
- [32] W. Yang, Z. Yu, and L. Tian, "Scaling theory for finFETs based on 3-D effects investigation," IEEE Transactions on Electron Devices, vol. 54, no. 5, 2007.
- [33] H. A. E. Hamid, B. Iñiguez, and J. R. Guitart, "Analytical model of the threshold voltage and subthreshold swing of undoped cylindrical gate-all-around-based MOSFETs," IEEE Transactions on Electron Devices, vol. 54, no. 3, 2007.
- [34] C.-W. Lee, S.-R.-N. Yun, C.-G. Yu, J.-T. Park, and J.-P. Colinge, "Device design guidelines for nano-scale MuGFETs," Solid-State Electron., vol. 51, pp. 505–510, 2007.
- [35] K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, "Scaling theory for double-gate SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 40, no. 12, pp. 2326–2329, 1993
- [36] C. P. Auth and J. D. Plummer, "Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFETs," IEEE Electron Device Letters, vol. 18, no. 2, pp. 74–76, 1997.
- [37] T. Sakurai and A. R. Newton, "A simple MOSFET model for circuit analysis," IEEE Transactions on Electron Devices, vol. 38, no. 4, 1991.
- [38] B. Razavi, "Design of Analog CMOS Integrated Cirsuits," International Edition McGRAW-HILL, 2001.

- [39] 名取研二, "バリスティック MOS から準バリスティック MOS へ," ゲートスタック研 究会--材料・プロセス・評価の物理-第14回研究会ショートコース, 2009.
- [40] N. W. Ashcroft and N. D. Mermin, "Solid state physics," Thomson Learning, 1976.
- [41] R. Kubo, "Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems," Journal of the Physical Society of Japan, vol. 12, no. 6, 1958.
- [42] R. Landauer, "Spatial variation of currents and fields due to localized scatterers in metallic conduction," IBM Journal, 1958.
- [43] 塚田捷, 川畑有郷, 藤原毅夫, 土井正男, 福田敦夫, 多々良源, "大学院物性物理 3 -新 物質と新概念-", 講談社, 1996.
- [44] 川畑有郷, "電子相関," 丸善株式会社, 1992.
- [45] S. Datta, "Electronic Transport in Mesoscopic Systems," Cambridge University Press, Cambredge, UK, 1995.
- [46] 川畑有郷, "電気伝導の理論-ランダウアーの公式-,"日本物理学会誌, vol. 55, no. 4, pp. 256-263, 2000.

第2章 弾道・準弾道輸送

ある一次元系の電子デバイスに関して弾道・準弾道輸送に基づいた解析を行う際,その デバイスを流れる電流は解析式としてすでにモデル化されており,様々なデバイスに応用 されている.本章では,本研究で提案するコンパクトモデルの基本となる,弾道・準弾道輸 送に基づく電流の考え方から MOSFET の電流式の導出までの流れを解説する.

学生時代に物理を学んだ人であれば、オームの法則を知らない人はいないだろう、オー ムの法則には電気抵抗という電流の流れ方を決めるパラメータがあり、これは固体特有の 性質を表わすパラメータの一つである.また、学生実験などにおいて電気抵抗を測定した という人も多いのではないだろうか. このように、電気伝導は非常になじみ深い物理現象 の一つである.しかし、電気伝導を理論的に扱うことは非常に難しい. 電気伝導は非平衡 状態を扱う現象であり、平衡系を扱う熱力学の範囲では扱いきれないためである.現在ま でに報告されている電気伝導の基礎理論は二つある。一つは Kuboの理論 [1] であり、もう 一つが Landauer の理論 [2] である. Landauer の理論は 2.1 節にて示すが、一次元系のデバ イスに対して大変有用な手法である。一次元系の電気伝導は、三次元系を扱うよりも変数 が少なく、簡単になるということもあり研究が進んできた、近年では、半導体微細化技術の 向上などに伴い、一次元系の電気伝導を実現する電子デバイスが実用化されつつある.ま た、一次元系特有の物理現象などが注目され、それを活かしたデバイスが広く研究されて いる、そのため、一次元系において力を発揮する Landauer の理論が広く注目されるよう になった [3]. また, 前章で示した通り, 本研究で扱う NW MOSFET は一次元系のデバイ スである. そこで、本章では、Landauerの理論に焦点を当てて NW MOSFET における弾 道・準弾道輸送に基づくドレイン電流を考える.

本章の構成を示す.まず、2.1 節において、簡単な二端子の一次元系電子デバイスにおけ る弾道・準弾道輸送電流の定式化を Landauer の手法に基づき行う.続いて、2.1 節にて導 出した電流式を基に、MOSFET の弾道・準弾道輸送に基づく電流式を 2.2 節及び 2.3 節に て導出する.

図 2.1: 二端子デバイスの模式図.

図 2.2: 電極1からリード1に電子が注入される様子を導出するための仮想的な一端子デバイス. リード1の長さ *L* は十分に長いものとする.

2.1 Landauer の公式

ここでは、弾道・準弾道輸送の基本的な計算手法を Landauer の手法に基づき解説する. また、MOSFET への拡張を行う際に基本となる簡単な二端子の電子デバイスに的を絞り 説明することにする.より広義の詳しい説明を必要とする際は、参考書 [4] などの教科書を 参考されたい.

2.1.1 構造

図 2.1 に示す簡単な一次元のデバイスモデルを使用して、電気伝導を考える. デバイス 中央にある試料Sが電気伝導度を測定したい試料を表わし、リード1及びリード2を通し て各電極に繋がれている. 各リード線は理想的な物であると仮定し、線内において電子は 全く散乱を受けないものとする. また、各電極は十分な量の電子をリード内に供給する理 想的な電子の蓄積層と仮定する. ゲート長(リード線及び試料Sを合わせたものを指す) を L_G とし、チャネル幅を W とする.

この構造において、電子はチャネル内の y 方向に関して閉じ込められており、エネルギー 準位が離散的に分布している. そのため、電子の運動は x 方向のみの自由度を持つ 一次元 系として扱うことができる. このような系は「量子細線」と呼ばれる.

図 2.1 に示したデバイスのチャネル内に流れる電流の導出方法を説明する前に、図 2.2 に 示すような構造に流れる電流の説明を行う.図 2.2 では、電極は左側にのみ存在するため、 電子は電極 1 からリード 1 に向かってのみ供給される.すなわち、+k 成分を持つ電子のみ がリード内を伝導する.

図 2.2 のモデルに流れる電流 *I* を式で導出する.電子は y 方向に関して量子化され,エネ ルギーが離散的に分布しており,図 2.3 にその電子のエネルギー *E* と波数 k の分散関係の 模式図を示す.各分散関係の k = 0 における各エネルギーはカットオフエネルギー (cut-off energy) と呼ばれ,

$$\varepsilon_N = E(N, k = 0), \tag{2.1}$$

と記述する. 各カットオフエネルギーはそれぞれが異なる分散関係上にある. この各分散 関係をモード (mode) と呼ぶ. ある一つのモードを考えるとき, そのモードに対応するカッ トオフエネルギーよりも低いエネルギーを持つ電子状態はそのモード上には存在しない. したがって, 電子がエネルギー *E* を持つとき, その電子状態を取りうるモードの数は *E* よ

図 2.3: エネルギー E と伝導方向の波数 k_x の分散関係の模式図.

りも低いカットオフエネルギーの数を数えることで分かる. そこで, *E* を取りうる分散関 係の数 *M*(*E*) を次のように定義する.

$$M(E) \equiv \sum_{N} \vartheta(E - \varepsilon_N) \tag{2.2}$$

$$N \in \mathbb{Z}_+ \tag{2.3}$$

ここで、 \mathbb{Z}_+ は正の整数の集合とし、 ϑ は単位ステップ関数を表わす.まず、あるモード *N* を通して流れる電流を考える.電荷量 *e* を持つ単位長さ当たり *n* 個の電子が導体の中を速度 *v* で運動するとき、電流 *I* は、

$$I = env \tag{2.4}$$

と書ける.電子は Fermi 粒子であるため, Pauli の排他律から一つの電子状態に一つの粒子 しか存在することを許されない.したがって,一つのモードに存在する電子数は,そのモー ドの状態数を数えることで求めることができる.任意の量子状態に電子が存在する確率を $f(k_x)$ とすると, $+k_x$ 成分を持つチャネル内の単位長さ当たりの電子密度は,

$$n = \frac{1}{L} \sum_{k_x > 0} f(k_x)$$
(2.5)

と表わすことができる.また,速度 v はエネルギーと波数の関係から,

$$v = \frac{1}{\hbar} \frac{\partial E}{\partial k_x} \tag{2.6}$$

となる. したがって, あるモード N に流れる電流 I_N は次のように書ける.

$$I_N = \frac{e}{L} \sum_{k_x > 0} \frac{1}{\hbar} \frac{\partial E}{\partial k_x} f(k_x)$$
(2.7)

ここで、*k*_x空間における状態数の和を次のように変形する.

$$\sum_{k_x} = \sum_{k_x} \frac{L}{2\pi} \Delta k_x \tag{2.8}$$

29

$$\Delta k_x = \frac{2\pi}{L} \tag{2.9}$$

ここで、Lはゲート長を表わす (図 2.2) と同時に、最大波長を表わす. ある隣り合う波数 $k_{x1} \geq k_{x2}$ の間隔が $2\pi/L \geq 0$ て与えられるため、それを $\Delta k_x \geq 0$ て記述した. また、この Δk_x は一次元系の状態密度を表わす. 図 2.2 に示すような十分に長い一次元系の導体を考 えたとき、すなわち Lが十分に大きいと考えたとき、 Δk_x は十分に小さくなり波数が連続 的に分布すると考えられる. したがって、 k_x 空間における状態数の和を、以下に示すよう に積分に変形することができる.

$$\sum_{k_x>0} \frac{L}{2\pi} \Delta k_x = 2 \times \frac{L}{2\pi} \int_0^\infty dk_x \tag{2.10}$$

電子は2種類のスピンを持つことを許されるため,スピン縮退度2が式(2.10)の右辺に係 数として付いている.状態数の和を式(2.10)のように変換することで,式(2.7)を次のよう に変形できる.

$$I_{N} = \frac{e}{L} \sum_{k_{x}>0} \frac{1}{\hbar} \frac{\partial E}{\partial k_{x}} f(k_{x})$$

$$= \frac{e}{L} \left(2 \times \frac{L}{2\pi} \int_{0}^{\infty} dk_{x} \right) \frac{1}{\hbar} \frac{\partial E}{\partial k_{x}} f(k_{x})$$

$$= \frac{e}{\pi \hbar} \int_{\varepsilon_{N}}^{\infty} f(E) dE$$
 (2.11)

この式が, あるモード N による電流を表わす. 実際に流れる電流は, 各モードによる電流 を足し合わせることで求めることができる. そのため, 全電流 I は次のように書くことが できる.

$$I = \sum_{N} I_{N}$$

$$= \frac{e}{\pi \hbar} \sum_{N} \int_{\varepsilon_{N}}^{\infty} f(E) dE$$

$$= \frac{e}{\pi \hbar} \int_{\varepsilon_{N}}^{\infty} f(E) M(E) dE$$
(2.12)

以上により,図 2.2 に流れる電流を導出することに成功した.式 (2.12) を利用して,図 2.1 に示したデバイスモデルに流れる電流を導出する.

2.1.2 T = 0

絶対零度において、電子が図 2.1 に示したモデルデバイス内をどのように伝導するかを 説明する. 電極1及び電極2の化学ポテンシャルをそれぞれ μ_1, μ_2 とする. 図 2.4 に示す ように、絶対零度では各電極内において化学ポテンシャルが電子の持つエネルギーの中で 最も高いエネルギーになる. 電極1と電極2の間に電圧 V を印加した時、電子1つを電極 1から電極2まで運ぶために必要なエネルギーの最低値は $\mu_1 - \mu_2$ となる. そのため、二つ の電極間に印加された電位差は、

$$V = \frac{\mu_1 - \mu_2}{e}$$
(2.13)

図 2.4: T = 0 での電極 1 及び電極 2 における電子の存在確率の模式図. T = 0 では全ての 電子が化学ポテンシャル以下のエネルギー帯に存在確率 1(f(E) = 1) で存在する.

と表わすことができる. この電位差によって駆動される電流を導出するために, いくつか の仮定を置く. 最初に, デバイス全体を通じて µ2 より低い固有状態の全てを電子が占有し ている.第二に、リード1のエネルギー状態で $\mu_2 < E < \mu_1$ を満たす正の波数成分は全て 電子によって占有されている. すなわち、電極1より流入してくる電子によって占有されて いるものと仮定する.また、電子伝導を考えるとき、試料Sに関する重要な情報は電子が試 料Sを通り抜ける透過確率 Tr だけである. この Tr は電子が試料を透過する平均確率を表 わす.そこで、図2.5に示すように、試料Sを透過係数で置き換えることにする.以上の仮 定から,絶対零度における電流を計算する.まず,図2.5に示すように,電極1からリード 1 に流入する電子による電流成分を I_1^+ 、この電子群の一部が、 T_r に従って試料Sによって 反射され、電極1に戻ることで決まる電流成分を I_1^- とする. 一方、残りの電子が試料Sを 通り抜けてリード 2 を通過し、電極 2 に入る. この電流成分を I_2^+ とする. 電極 2 に入った 電子はエネルギーを失い、即座に μ2 直上の状態に遷移するものと仮定する. すなわち、電 極2に流入した後,散乱によりリード2に戻る電子は存在しない.このとき,リード2の中 で $\mu_2 < E < \mu_1$ のエネルギー範囲の中に存在する電子は電極1から注入され、試料Sを通 り抜けてきたものだけである. 仮定した通り, 電極2の µ2より低いエネルギー状態は, 正 負のどちらの速度成分を持つ状態も全て電子によって満たされているため、これらの電子 による電流は流れない.したがって、デバイスを流れる電流は μ_1 と μ_2 の間のエネルギー を持つ電子によって決まる.式 (2.12)より, *I*⁺₁は,

$$I_1^+ = \frac{e}{\pi\hbar} \int_{\mu_2}^{\mu_1} f_1(E) M_1(E) dE$$
(2.14)

ここで, $f_1(E)$ 及び $M_1(E)$ は, 電極 1 からリード 1 に供給される電子に関するあるモード での電子の存在確率及びモードの数を表わす. 絶対零度では, 各電極内において化学ポテ ンシャル以下の電子状態は全て電子によって占有されているため, 式 (2.14) のエネルギー 範囲では $f_1(E) = 1$ となる. また, エネルギー範囲 $\mu_2 < E < \mu_1$ 内のカットオフエネル ギーの数を定数 M_1 とすると, 式 (2.14) は次のように変形できる.

$$I_1^+ = \frac{e}{\pi\hbar} M_1 \left(\mu_1 - \mu_2\right) \tag{2.15}$$

図 2.5: *T* = 0 におけるデバイス内の電子伝導の様子を表わす模式図. 電流を構成する電子 がどのエネルギー帯に存在するかを表わす.

電流 I_1^+ は、試料 S に流れ込む際に、透過係数 T_r に従いその一部が反射され、残りがリード 2 へ透過する. すなわち、

$$I_{1}^{-} = (1 - T_{\rm r})I_{1}^{+}$$

= $\frac{e}{\pi\hbar}M_{1}(1 - T_{\rm r})(\mu_{1} - \mu_{2})$ (2.16)

$$I_{2}^{+} = T_{\rm r} I_{1}^{+} = \frac{e}{\pi \hbar} M_{1} T_{\rm r} \left(\mu_{1} - \mu_{2} \right)$$
(2.17)

となる.以上により,T = 0において図 2.4 に流れる電流 Iは,

$$I = I_1^+ - I_1^-$$

= I_2^+
= $\frac{e}{\pi\hbar} M_1 T_r (\mu_1 - \mu_2)$ (2.18)

と記述できる. この電流を用いてオームの法則を考える. 印加した電圧 V を電流 I で割れ ば電気抵抗が求められる. 一般的にメゾスコピック系のように局所的な抵抗率を考えるこ とが難しい系での抵抗を扱う場合, その逆数で定義されるコンダクタンス G を扱うことが 多い. 電圧 V は式 (2.13) で与えられるため, 式 (2.18) からコンダクタンス G は,

$$G = \frac{I}{V}$$

$$= \frac{e^2 M_1 T_r}{\pi \hbar}$$
(2.19)

と求めることができる. この式が一般的に Landauer の公式と呼ばれる (実際のところ, Landauer の原論文にこの公式は出てこないが, この呼び方が定着している). 電流の流れ る導体が十分に大きいと仮定したとき, コンダクタンスは,

$$G = \sigma \frac{W}{L_{\rm G}} \tag{2.20}$$

となり、導体の幅及び長さに大きく依存する.しかし、導体の長さが十分に短く、電子のエネルギー準位が離散化するほどに幅が小さいようなメゾスコピック系では、コンダクタンスはチャネル幅及びゲート長ではなく、モードの数及び試料の透過係数に依存することがLandauerの公式より明らかになった.以上により、*T* = 0 におけるモデルデバイスに流れる電流及びそのコンダクタンスを求めることが出来た.

2.1.3 $T \neq 0$

図 2.6: $T \neq 0$ での電極 1 及び電極 2 における電子の存在確率及びデバイス内での電子伝 導の様子を表わす模式図. $T \neq 0$ では化学ポテンシャルより高いエネルギー帯にも f(E)に従って電子が存在する. そのため, 電極 2 から電極 1 へ向かう電子も存在する.

続いて, $T \neq 0$ におけるモデルデバイスに流れる電流を考える.図2.6 に, $T \neq 0$ におけるモデルデバイス内の電子伝導の様子を示す.絶対零度の場合と同様に,各電極の化学ポテンシャルを μ_1, μ_2 とする.各電極において,電子があるエネルギー Eを占有する確率をそれぞれ $f_1(E), f_2(E)$ と仮定する.図2.6 に示すように, $T \neq 0$ の場合, $f_1(E)$ 及び $f_2(E)$ に従って各電極で化学ポテンシャルよりも高いエネルギー準位に電子が励起されることがあるため,電気伝導は $\mu_2 < E < \mu_1$ よりも広いエネルギーの範囲で生じる.したがって,T = 0の場合とは異なり,電極2からリード2への電子の流入を考える必要がある.電極1からリード1へ流入する電子で決まる電流 I_1 は,式(2.12)を用いて,

$$I_1 = \frac{e}{\pi\hbar} \int_{\varepsilon_1}^{\infty} f_1(E) M_1(E) dE$$
(2.21)

と表わすことができ、単位エネルギー当たりの電流量 *i*₁ は、

$$i_1 = \frac{e}{\pi\hbar} f_1(E) M_1(E)$$
 (2.22)

となる.同様に、電極2からリード2へ流入する電子により決まる電流量 I_2 は、

$$I_2 = \frac{e}{\pi\hbar} \int_{\varepsilon_1}^{\infty} f_2(E) M_2(E) dE$$
(2.23)

となるため、単位エネルギー当たりの電流量 i2 は、

$$i_2 = \frac{e}{\pi\hbar} f_2(E) M_2(E)$$
 (2.24)

と表わすことができる. 以上の電流成分を用いて, モデルデバイスに流れる電流を考える. 透過係数 T_r は, 実際のところ試料内の伝導方向に関するポテンシャル分布に大きく依存する. つまり, エネルギー E に依存する (図 2.6 において $T_r(E)$ と書いてあるのはそのためである). そのため, あるエネルギー状態 E において, 電子がリード 1 からリード 2 へ透過する確率を T_{r1} , リード 2 からリード 1 へ透過する確率を T_{r2} とする. リード 1 を +x 方向に流して 3 について 3 についいて 3 について 3 について 3 について 3 についいて 3 についいて 3 について 3 についいて 3 についい 3 につい 3 につい 3 についい 3 につい 3 につい 3 についい 3 につい 3

$$i_{1}^{+} = i_{1}$$

$$= \frac{e}{\pi\hbar} f_{1}(E) M_{1}(E)$$
(2.25)

となり、-x方向に流れる単位エネルギー当たりの電流量 i_1 は、

$$i_{1}^{-} = (1 - T_{r1}(E))i_{1} + T_{r2}(E)i_{2}$$

= $\frac{e}{\pi\hbar} \left[(1 - T_{r1}(E))f_{1}(E)M_{1}(E) + T_{r2}(E)f_{2}(E)M_{2}(E) \right]$ (2.26)

となる. 同様にリード $2 \varepsilon_{+x}$ 方向に流れる単位エネルギー当たりの電流量 i_2^+ は,

$$i_{2}^{+} = T_{r1}(E)i_{1} + (1 - T_{r2}(E))i_{2}$$

= $\frac{e}{\pi\hbar} [T_{r1}(E)f_{1}(E)M_{1}(E) + (1 - T_{r2}(E))f_{2}(E)M_{2}(E)]$ (2.27)

となり、-x方向に流れる単位エネルギー当たりの電流量 i_2 は、

$$i_{2}^{-} = i_{2}$$

= $\frac{e}{\pi\hbar} f_{2}(E) M_{2}(E)$ (2.28)

となる.したがって,デバイスを流れる単位エネルギー当たりの電流 i は,

$$i = i_1^+ - i_1^-$$

= $i_2^+ - i_2^-$
= $\frac{e}{\pi\hbar} [T_{r1}(E)f_1(E)M_1(E) - T_{r2}(E)f_2(E)M_2(E)]$ (2.29)

と表わすことができる.したがって、デバイス内を流れる全電流 I は、

$$I = \int_{0}^{\infty} idE$$

= $\frac{e}{\pi\hbar} \int_{0}^{\infty} [T_{r1}(E)f_{1}(E)M_{1}(E) - T_{r2}(E)f_{2}(E)M_{2}(E)] dE$ (2.30)

となる. ここで, 各リード内のモード数が等しい, すなわち,

$$M_1(E) = M_2(E) (2.31)$$

と仮定する.また、試料Sの内部において非弾性散乱が生じず、電位差Vも十分に小さい ものと仮定すると、

$$T_{\rm r1}(E) = T_{\rm r2}(E) \tag{2.32}$$

が成り立つ.以上の仮定により、デバイス内を流れる電流は、

$$I = \frac{e}{\pi\hbar} \int_0^\infty T_{\rm r1}(E) M_1(E) \left[f_1(E) - f_2(E) \right] dE$$
(2.33)

となり、この式が弾道・準弾道輸送に基づいた MOSFET の電流式を求める際の基本式で ある.式 (2.33)において、試料内における電子の散乱の情報は全て透過確率 $T_{r1}(E)$ に集約 されている.そのため、試料内で生じる電子の散乱現象を再現するように透過係数を決定 することで、式 (2.33)は準弾道輸送に基ついた電流式を表わす.一方で、 $T_r(E) = 1$ とする と、電子は試料を通過する際に散乱を全く受けないことを意味し、全ての電子が電極1から 電極2、または電極2から電極1へ向かって弾道的に伝導する.つまり、弾道輸送を表わす. 以上により、 $T \neq 0$ において図 2.6 に示したモデルデバイス内を流れる電流を導出できた.

2.2 Natoriの式

2.2.1 構造

図 2.7 に、本節で対象とする SOI MOSFET 構造を示す [8]. SOI 構造では、その静電ポテ ンシャル制御性の高さから不純物を含まない真性チャネルが利用できるため、弾道輸送の 実現に有効な構造の一つとして考えられている. ソース及びドレインが、図 2.1 に示した モデルの電極 1 及び電極 2 に対応する. また、電気伝導を考える対象がチャネルであるた め、チャネル全体が試料 S に対応する. ソース及びドレインは理想的な電子の蓄積層であ り、チャネル内に十分な量の電子を供給するものと仮定する. チャネルに流れる電流を考 えるとき、そこでのポテンシャル分布は非常に重要である. 図 2.8 に、各方向のポテンシャ ル分布の模式図を示す. まず、図 2.8(a) に示すように、x 方向のチャネル幅 t_x は十分に小

図 2.7: SOI-MOSFET の模式図.

図 2.8: SOI-MOSFET 内の各方向に関するポテンシャル分布の模式図. (a) 金属-酸化膜-半導体構造を形成しており,酸化膜-半導体界面において電子のエネルギー準位が離散化さ れている. (b) y 方向に関するポテンシャル分布. (c) 伝導方向に関するポテンシャル分布. 各電極の Fermi 準位 (前節の化学ポテンシャルに対応) を *E*_{FS}, *E*_{FD}(= *E*_{FS} - *eV*_{DS}) とする.

さく、エネルギー準位は*x*方向に関して量子化しており、それを E_{n_x} と表わす. 量子数 n_x は、エネルギー準位の番号を表わす. *y*方向に関しては、図 2.8(b) に示すようなポテンシャ ル分布を想定している. ここで、 t_y は十分に大きく、波数 k_y は連続的に分布しているもの とする. エネルギー準位 E_{n_x} は、ドレイン電圧 V_{DS} を印加することで、*z*方向に関して各量 子化されたエネルギー準位が、図 2.8(c) に示すように分布する. チャネルとソースの接合 付近に形成されるポテンシャル最大値を取る座標 z_{max} はボトルネック (Bottleneck) と呼 ばれる. ゲート電極に印加する電圧により、 z_{max} におけるポテンシャルの高さを調節する ことができ、それによりドレインからソースに流れる電流を制御することからボトルネッ クと呼ばれるようになった. 以上の構造に関して、チャネル内に流れる電流を考える.

2.2.2 電流モデル

図 2.9: SOI-MOSFET 内の電子伝導の様子を表わす模式図. ソース内の波動関数がドレイン内に伝搬する様子を表わす.

まず, V_{DS} を印加しない状態, すなわち平衡状態におけるソース内の波動関数を次のように定義する.

$$\Psi_{n_x}(\mathbf{r}) = \frac{1}{\sqrt{L^2}} \psi_{n_x}(x) \exp\left(ik_y y\right) \exp\left(ik_z z\right)$$
(2.34)

この波動関数により表わされるソース内の電子波が、図 2.9 に示すように振幅 t_{sd} でドレインに透過すると考える.このときに流れる電流密度 J_{sd} を考える.まず、確率流密度を定義する.確率密度 $\rho = \Psi^* \Psi = |\Psi|^2$ の時間変化は一般的に次式で与えられる.

$$\frac{\partial\rho}{\partial t} = \frac{\partial\Psi^*}{\partial t}\Psi + \Psi^* \frac{\partial\Psi}{\partial t} = \frac{i\hbar}{2m} \left(\Psi^* \nabla^2 \Psi - \Psi \nabla^2 \Psi^*\right)$$
(2.35)

粒子の散乱による軌道変化などが無い場合,確率密度は常に保存され,次の連続の式を満 たさなければならない.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{S} = 0 \tag{2.36}$$

式(2.36)において、Sが一つの電子に関する確率流密度を表わし、次のように定義される.

$$\boldsymbol{S} = -\frac{i\hbar}{2m} \left(\boldsymbol{\Psi}^* \nabla \boldsymbol{\Psi} - \boldsymbol{\Psi} \nabla \boldsymbol{\Psi}^* \right) = \frac{\hbar}{m} \operatorname{Im}(\boldsymbol{\Psi}^* \nabla \boldsymbol{\Psi}) \tag{2.37}$$

電流密度 J は、一つの電子に関する確率流密度 S に Fermi-Dirac 分布関数 $f_{FD}(E, E_F)$ を 掛けて、全電子状態の和を取ることで求めることができる.

$$\boldsymbol{J}(\boldsymbol{r}) = e \sum_{\boldsymbol{k}} f_{\rm FD}(E, E_{\rm F}) \boldsymbol{S}(\boldsymbol{r})$$
(2.38)

$$f_{\rm FD}(E, E_{\rm F}) = \frac{1}{1 + \exp\left(\frac{E - E_{\rm F}}{k_{\rm B}T}\right)} \tag{2.39}$$

ここで、 $E_{\rm F}$ は Fermi 準位を表わす.以上の定義を利用して、図 2.7 に流れる弾道・準弾 道輸送に基づく電流を導出する.図 2.9 から分かるように、ソース内の電子を表わす波動 関数 $\Psi_{n_x}(\mathbf{r})$ は振幅 $t_{\rm sd}$ を持ってチャネルを透過し、ドレインへ伝搬する.したがって、電 流としてソースからドレインへ流れる電子の波動関数は、ドレインへ伝搬する波動関数 $t_{\rm sd}(k_z)\Psi_{n_x}(\mathbf{r})$ と考えることができる.伝導方向の確率流密度 $S_{k_z}(\mathbf{r})$ は、

$$S_{k_{z}}(\mathbf{r}) = \frac{\hbar}{m} \operatorname{Im} \left[(t_{\mathrm{sd}}(k_{z}) \Psi_{n_{x}}(\mathbf{r}))^{*} \frac{\partial}{\partial z} t_{\mathrm{sd}}(k_{z}) \Psi_{n_{x}}(\mathbf{r}) \right]$$

$$= \frac{\hbar}{mL^{2}} \operatorname{Im} \left[(t_{\mathrm{sd}}(k_{z}))^{*} (\psi_{n_{x}}(x))^{*} \exp\left(-ik_{y}y\right) \exp\left(-ik_{z}z\right) \times \frac{\partial}{\partial z} t_{\mathrm{sd}}(k_{z}) \psi_{n_{x}}(x) \exp\left(ik_{y}y\right) \exp\left(ik_{z}z\right) \right] \qquad (2.40)$$

$$= \frac{\hbar}{mL^{2}} \operatorname{Im} \left[ik_{z} |t_{\mathrm{sd}}(k_{z})|^{2} |\psi_{n_{x}}(x)|^{2} \right]$$

$$= \frac{\hbar k_{z}}{mL^{2}} T_{\mathrm{sd}}(k_{z}) |\psi_{n_{x}}(x)|^{2}$$

となる. ここで、 $|t_{sd}(k_z)|^2 = T_{sd}(k_z)$ と定義した. $T_{sd}(k_z)$ は透過確率を表わし、前節の T_r に対応する. ドレイン内部で、ソースからドレインへ透過した波動関数に対応するエネルギー準位に電子が存在しない確率は $1 - f_{FD}(E, E_{FD})$ である. ソース内部で、そのエネルギー準位に電子が存在する確率は $f_{FD}(E, E_{FS})$ である. そのため、ソースからドレインに電子が透過した際、ドレイン内部においてその波動関数に対応するエネルギー準位 E に電

子が存在する確率は $f_{\rm FD}(E, E_{\rm FS}) \times (1 - f_{\rm FD}(E, E_{\rm FD}))$ である. ソースからドレインへ透 過する電子が構成する電流密度 $J_{\rm sd}$ は式 (2.38) より,

$$J_{\rm sd}(x) = e \sum_{n_x} \sum_{k_y} \sum_{k_z > 0} f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) \left[1 - f(E_{\rm tot}, E_{\rm FD}) \right] \boldsymbol{S}_{k_z}(\boldsymbol{r})$$

$$= \frac{e}{L^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \sum_{k_y} \sum_{k_z > 0} \frac{\hbar k_z}{m} T_{\rm sd}(k_z) f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) \left[1 - f(E_{\rm tot}, E_{\rm FD}) \right]$$
(2.41)

となる.式 (2.10)を用いて式 (2.41)を変形すると、

$$J_{\rm sd}(x) = \frac{2e}{(2\pi)^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \times \int_{-\infty}^{\infty} dy \int_0^{\infty} dk_z \frac{\hbar k_z}{m} T_{\rm sd}(k_z) f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) (1 - f_{\rm FD}(E_{\rm tot}, E_{\rm FD}))$$
(2.42)

となる. また, Fermi-Dirac 分布関数に含まれる電子の全エネルギー E_{tot} は,

$$E_{\text{tot}} = E_{n_x} + E_y + E_z \tag{2.43}$$

$$E_y = \frac{\hbar^2 k_y^2}{2m_y} \tag{2.44}$$

$$E_z = \frac{\hbar^2 k_z^2}{2m_z} \tag{2.45}$$

であるため、

$$dE_y = \frac{\hbar^2 k_y}{m_y} dk_y \tag{2.46}$$

$$dE_z = \frac{\hbar^2 k_z}{m_z} dk_z \tag{2.47}$$

を満たす.これを式 (2.42) に代入すると、電流密度は次のように変形できる.

$$J_{\rm sd}(x) = \frac{e}{2\pi^2\hbar^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \\ \times \int_{-\infty}^{\infty} dE_y \int_0^{\infty} dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm sd}(E_z) f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) \left[1 - f_{\rm FD}(E_{\rm tot}, E_{\rm FD})\right] \\ = \frac{e}{\pi^2\hbar^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \\ \times \int_0^{\infty} dE_y \int_0^{\infty} dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm sd}(E_z) f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) \left[1 - f_{\rm FD}(E_{\rm tot}, E_{\rm FD})\right]$$
(2.48)

同様の手順により、ドレインからソースへ流れる電子によって構成される電流密度 J_{ds} は、

$$J_{\rm ds}(x) = -\frac{e}{\pi^2 \hbar^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \\ \times \int_0^\infty dE_y \int_0^\infty dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm ds}(E_z) f_{\rm FD}(E_{\rm tot}, E_{\rm FD}) \left[1 - f_{\rm FD}(E_{\rm tot}, E_{\rm FS})\right]$$
(2.49)

となる.式 (2.48) と (2.49) を用いることで、実際にチャネル内を流れる電流密度 J_{DS} は、

$$J_{\rm DS}(x) = J_{\rm sd}(x) + J_{\rm ds}(x) = \frac{e}{\pi^2 \hbar^2} \sum_{n_x} |\psi_{n_x}(x)|^2 \times \int_0^\infty dE_y \int_0^\infty dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm ds}(E_z) \left[f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD}) \right]$$
(2.50)

となる. ただし、前節と同様に $T_{sd}(E_z) = T_{ds}(E_z)$ としている. デバイス内を流れる全ドレイン電流 I_{DS} は、式 (2.50) を x 方向に積分することで、以下に示すように導出できる.

$$I_{\rm DS} = \int_0^{t_x} J_{\rm DS}(x) dx = \frac{e}{\pi^2 \hbar^2} \sum_{n_x} \int_0^\infty dE_y \int_0^\infty dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm ds}(E_z) [f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD})]$$
(2.51)

式 (2.51) から明らかなように、ドレイン電流はソース内の Fermi-Dirac 分布関数とドレイン内の Fermi-Dirac 分布関数の差で決まる.式(2.51)は、ソース及びドレイン内部の電子状態から求めた電流式である.MOSFETは、チャネルに流れる電流をゲート電極に印加する電圧によって制御する.そのため、チャネル内は熱平衡状態ではない.一方、ソース及びドレイン電極内部の電子状態は理想的にはゲート電圧に依存しない.そのため、理想的な各電極内は熱平衡状態である.これらのことから、式(2.51)を MOSFET のチャネル内を流れる電流として使うには疑問が残る.そこで Natori は以下のような仮定を置いた.

- 図 2.8 において、ボトルネック (z = z_{max}) に流れる電流を考える.
- ソース内の電子は熱平衡状態であり、ソースから正の速度を持つ電子がボトルネック に熱平衡状態を保ちながら注入される.

以上の仮定によると、電子はソースではなくボトルネックからチャネルに供給されるよう に見える. そのため、ボトルネックをバーチャルソース (virtual source) と呼ぶこともある. ボトルネックに流れる電流を考える. 式 (2.51) を利用することで、ボトルネックに流れる 電流は、

$$I_{\rm DS} = \frac{e}{\pi^2 \hbar^2} \sum_{n_x} \int_0^\infty dE_y \int_0^\infty dE_z \sqrt{\frac{m_y}{2E_y}} T_{\rm ds}(E_z) [f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD})]$$
(2.52)

$$E_{\rm tot} = E_{n_x}(z_{\rm max}) + E_y + E_z$$
 (2.53)

となる.ここから先, E_{n_x} は $E_{n_x}(z_{\max})$ を意味するものとする.チャネル内の伝導方向に 関するポテンシャル分布が十分に滑らかであるとする.すなわち,チャネル内における電 子波の反射は無視でき,電子の散乱も無視できるとすると,透過係数 $T_{ds}(E_z)$ は次のように なる.

$$T_{\rm ds}(E_z) = \begin{cases} 1 & (E_{n_x}(z_{\rm max}) + E_y + E_z > E_{n_x}(z_{\rm max})) \\ 0 & (\text{otherwise}) \end{cases}$$
(2.54)

よって、式 (2.52) は.

$$I_{\rm DS} = \frac{e}{\pi^2 \hbar^2} \sum_{n_x} \int_0^\infty dE_y \int_0^\infty dE_z \sqrt{\frac{m_y}{2E_y}} \left[f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD}) \right] \quad (2.55)$$

となる. この式が、2次元系の MOSFET に流れる弾道輸送に基づいた電流を表わす.式 (2.55) をより一般的な形に変形する.式 (2.55)の第一項を例に、変形を進めていく.

(式 (2.55): 右辺第一項)

$$= \int_{0}^{\infty} dE_{y} \int_{0}^{\infty} dE_{z} \sqrt{\frac{1}{E_{y}}} f_{\text{FD}} \left(E_{\text{tot}}, E_{\text{FS}} \right)$$

$$= \int_{0}^{\infty} dE_{y} \sqrt{\frac{1}{E_{y}}} \int_{0}^{\infty} dE_{z} \frac{1}{1 + \exp\left(\frac{E_{nx} + E_{y} + E_{z} - E_{\text{FS}}}{k_{\text{B}}T}\right)}$$

$$= \int_{0}^{\infty} dE_{y} \sqrt{\frac{1}{E_{y}}} \left[-k_{\text{B}}T \ln \left[1 + \exp\left(-\frac{E_{nx} + E_{y} + E_{z} - E_{\text{FS}}}{k_{\text{B}}T}\right) \right] \right]_{0}^{\infty}$$

$$= k_{\text{B}}T \int_{0}^{\infty} \frac{d(2\sqrt{E_{y}})}{dE_{y}} dE_{y} \ln \left[1 + \exp\left(-\frac{E_{nx} + E_{y} - E_{\text{FS}}}{k_{\text{B}}T}\right) \right] \right]_{0}^{\infty}$$

$$= k_{\text{B}}T \left[(2\sqrt{E_{y}}) \ln \left[1 + \exp\left(-\frac{E_{nx} + E_{y} - E_{\text{FS}}}{k_{\text{B}}T}\right) \right] \right]_{0}^{\infty}$$

$$- k_{\text{B}}T \int_{0}^{\infty} \frac{(2\sqrt{E_{y}})}{-k_{\text{B}}T} \frac{1}{1 + \exp\left(\frac{E_{nx} + E_{y} - E_{\text{FS}}}{k_{\text{B}}T}\right)} dE_{z}$$

$$= 2 \int_{0}^{\infty} \frac{\sqrt{E_{y}}}{1 + \exp\left(\frac{E_{nx} + E_{y} - E_{\text{FS}}}{k_{\text{B}}T}\right)} dE_{z}$$

式 (2.55) の第二項も同様に変形すると、式 (2.55) は以下に示すようになる.

$$I_{\rm DS} = \frac{2e}{(\pi\hbar)^2} \sum_{n_x} \sqrt{\frac{m_z}{2}} \left[\int_0^\infty \frac{\sqrt{E_z}}{1 + \exp\left(\frac{E_{n_x} + E_y - E_{\rm FS}}{k_{\rm B}T}\right)} dE_z - \int_0^\infty \frac{\sqrt{E_z}}{1 + \exp\left(\frac{E_{n_x} + E_y - E_{\rm FD}}{k_{\rm B}T}\right)} dE_z \right]$$
(2.57)

ここで、 $E_y = k_{\rm B}T\varepsilon_y$ と変数変換することで、式 (2.57) は、

$$I_{\rm DS} = \frac{2e \, (k_{\rm B}T)^{\frac{3}{2}}}{(\pi\hbar)^2} \sum_{n_x} \sqrt{\frac{m_z}{2}} \Biggl[\int_0^\infty \frac{\sqrt{\varepsilon_y}}{1 + \exp\left(\varepsilon_y - \frac{E_{\rm FS} - E_{n_x}}{k_{\rm B}T}\right)} d\varepsilon_y - \int_0^\infty \frac{\sqrt{\varepsilon_y}}{1 + \exp\left(\varepsilon_y - \frac{V_{\rm FD} - E_{n_x}}{k_{\rm B}T}\right)} d\varepsilon_y \Biggr]$$
(2.58)

となり、Fermi 積分 (Fermi-integral) $F_n(u)$ を用いることで、

$$I_{\rm DS} = \frac{2e \left(k_{\rm B}T\right)^{\frac{3}{2}}}{(\pi\hbar)^2} \sum_{n_x} \sqrt{\frac{m_y}{2}} \left[F_{\frac{1}{2}} \left(\frac{E_{\rm FS} - E_{n_x}}{k_{\rm B}T} \right) - F_{\frac{1}{2}} \left(\frac{E_{\rm FD} - E_{n_x}}{k_{\rm B}T} \right) \right]$$
(2.59)

$$F_n(u) = \int_0^\infty dy \frac{y^n}{1 + \exp(y - u)}$$
(2.60)

となる.以上により,図 2.7 に示した SOI-MOSFET のチャネル内を流れる弾道輸送電流の一般的な式を導出した.また,ボトルネックにおける面電荷密度を *Q* とすると,

$$Q = \frac{ek_{\rm B}T}{2\pi\hbar^2} \sum_{n_x} \sqrt{m_y m_z} \times \ln\left\{ \left[1 + \exp\left(\frac{E_{\rm FS} - E_{n_x}(z_{\rm max})}{k_{\rm B}T}\right) \right] \times \left[1 + \exp\left(\frac{E_{\rm FD} - E_{n_x}(z_{\rm max})}{k_{\rm B}T}\right) \right] \right\}$$
(2.61)

と表わすことができ、弾道輸送電流と面電荷密度から、注入速度 v_{inj} (injection velocity) という概念を考えることができる. 注入速度 v_{inj} は、式 (2.59) と (2.61) を用いて、

 $I_{\rm DS} = v_{\rm inj}Q \tag{2.62}$

という関係式から見積もることが出来る. ある MOSFET を考えたとき, ゲート電圧及び ドレイン電圧一定の条件下では, ボトルネックに誘起される電荷量は一定である. そのた め, 式 (2.62) からわかるように, 高い電流駆動の本質はソースからの高い注入速度にある ことが分かる. この Natori モデルは, 弾道輸送極限におけるドレイン電流と注入速度を与 えるものであり, デバイスの極限性能を示す有用な理論である. 以上を Natori の式に関す る解説とする.

2.3 NW MOSFET への拡張

図 2.10: NW MOSFET の模式図.

本節では、2.2.2 項にて導出した弾道・準弾道輸送に基づく電流式を、一次元系の NW MOSFET に流れる電流式 [9, 10] へ拡張する. 図 2.10 に対象とする NW MOSFET の模式 図を示す. チャネル幅 t_x 及びチャネル高さ t_y はそれぞれ十分に小さく、各方向に関して電子のエネルギー準位は離散化しているものと仮定する. この一次元系での弾道・準弾道輸送に基づいた電流式は、2.2.2 項と全く同様の手順で導出できる. ソース内の電子の波動関数を次のように定義する.

$$\Psi_{n_x,n_y}(\mathbf{r}) = \frac{1}{\sqrt{L}} \psi_{n_x}(x) \psi_{n_y}(y) \exp\left(ik_z z\right)$$
(2.63)

この波動関数を用いて、チャネル内を流れる電流密度 J_{DS} は以下に示すようになる.

$$J_{\rm DS}(x,y) = \frac{e}{\pi\hbar} \sum_{n_x} \sum_{n_y} |\psi_{n_x}(x)|^2 |\psi_{n_y}(y)|^2 \times \int_0^\infty dE_z T_{\rm sd}(E_z) \left(f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD}) \right)$$
(2.64)

$$E_{\text{tot}} = E_{n_x} + E_{n_y} + E_z \tag{2.65}$$

エネルギー準位 E_{n_x} , E_{n_y} は, それぞれ量子数 n_x , n_y で番号付けされた各方向に離散化しているエネルギー準位を表わす.したがって, デバイス内を流れる全ドレイン電流 I_{DS} は,式 (2.64) をワイヤ断面内で積分することで,

$$I_{\rm DS} = \int_0^{t_x} dx \int_0^{t_y} dy J_{\rm DS}(x, y) = \frac{e}{\pi \hbar} \sum_{n_x} \sum_{n_y} \int_0^\infty dE_z T_{\rm sd}(E_z) \left(f_{\rm FD}(E_{\rm tot}, E_{\rm FS}) - f_{\rm FD}(E_{\rm tot}, E_{\rm FD}) \right)$$
(2.66)

と導出できる.この式が、NW MOSFET の弾道・準弾道輸送に基づくドレイン電流の式 を表わす.

デバイス内を流れる電流成分について簡単に説明する.図 2.11 に量子化されたエネル ギー準位 E_{n_x,n_y} の z 方向に関する分布の概略図を示す.量子輸送を考えたときに、考えな ければならない電流成分は二つある.一つは、ここまで説明してきた弾道・準弾道輸送電 子による電流成分である.もう一つは、ソース・ドレイン間のポテンシャル障壁をトンネ ルする電子によるトンネル電流成分である.図 2.11 に示すように、ソースからドレインに 透過する電子の中で、ボトルネックにおけるエネルギー準位 $E_{n_x,n_y}(z_{\max})$ より高いエネル ギーを持つ電子が弾道・準弾道輸送電流を構成し、 $E_{n_x,n_y}(z_{\max})$ 以下のエネルギーを持つ 電子がトンネル電流を構成する.

従来, MOSFET のゲート長 L_G は十分に長く, ソース・ドレイン間のトンネル電流成分は 無視できた.しかし, 弾道・準弾道輸送を研究する背景として, MOSFET のゲート長がキャ リアの平均自由行程程度まで縮小されていることがある.そのため, ゲート長 L_G がキャリ アの平均自由行程に近づくことで,トンネル電流も無視できなくなる.NW MOSFET に おいて, ゲート長が 20 nm より短くなることで,電流特性がトンネル電流により急激に劣 化することが報告されている [11].特に,サブスレッショルド領域ではそれが顕著であり, ゲート長が 10 nm 程度では弾道・準弾道輸送電流成分とトンネル電流成分が同程度流れ る.量子輸送を考える上で,トンネル電流は弾道・準弾道輸送と同様に重要な伝導機構で ある.そのため,トンネル電流のモデル化は必須であり,本研究の今後の重要な課題の一つ であることは間違いない.しかし,ここでは弾道・準弾道輸送に焦点を当てるため,トンネ ル電流は扱わないものとする.

図 2.11: NW MOSFET 内に流れる電流成分の模式図.

コンパクトモデルの作成という観点から、式 (2.66) をさらに変形する.本研究における 目標は、NW MOSFET の特性を解析的に表すことである.式 (2.66) を用いて電流を計算 するためには、電子のエネルギー準位 E_{n_x,n_y} と透過係数 $T_{sd}(E_z)$ を決定する必要がある. 透過係数はエネルギーの関数であり、一般的に、数値計算などから求めた透過係数を用い て、式 (2.66) より電流を計算する.コンパクトモデルにとって、この数値計算はあまり好ま しくない、そこで、コンパクトモデルの観点から透過係数をどのように扱うか解説する.

2.3.1 弹道輸送電流

弾道輸送を考えるには、式 (2.54) と同じ仮定をすればよい. すなわち、ソース及びドレイン電極からチャネル内に入ってくる電子波の反射は無視でき、電子の散乱も無視する. これは、透過係数 T_{ds}(*E_z*) が以下に示すように仮定されていることを指す.

$$T_{\rm ds}(E_z) = \begin{cases} 1 & \left(E_{n_x}(z_{\rm max}) + E_{n_y}(z_{\rm max}) + E_z > E_{n_x}(z_{\rm max}) + E_{n_y}(z_{\rm max}) \right) \\ 0 & (\text{otherwise}) \end{cases}$$
(2.67)

図 2.12 に伝導方向に関するポテンシャル分布と透過係数の対応を表わす概略図を示す.式 (2.67)の仮定は、一つの離散準位に関する伝導方向の分布を考えたときに、ソース内にお いて $E_{n_x,n_y}(z_{\max})$ 以上のエネルギーを持つ全ての電子がソースからドレインに流れ込み、 $E_{n_x,n_y}(z_{\max})$ 以下のエネルギーを持つ全ての電子はバリア障壁に反射され、電流には寄与 しないことを表わしている. この $E_{n_x,n_y}(z_{\max})$ 以下のエネルギーを持つ電子がトンネル 電流を構成する電子である.式(2.67)の仮定により、トンネル電流を無視し、弾道輸送電 流のみ考慮することを宣言している.電流式(式(2.66))、透過係数の仮定(式(2.67))及び Fermi-Dirac 分布関数(式(2.39))より、弾道輸送に基づくドレイン電流は次のように求め ることができる.

$$I_{\rm DS} = \frac{e}{\pi\hbar} \sum_{n_x} \sum_{n_y} \int_0^\infty dE_z \left[\frac{1}{1 + \exp\left(\frac{E_{\rm tot} - E_{\rm FS}}{k_{\rm B}T}\right)} - \frac{1}{1 + \exp\left(\frac{E_{\rm tot} - E_{\rm FD}}{k_{\rm B}T}\right)} \right]$$
$$= \frac{ek_{\rm B}T}{\pi\hbar} \sum_{n_x} \sum_{n_y} \ln\left\{ \frac{1 + \exp\left[\left(E_{\rm FS} - E_{n_x,n_y}(z_{\rm max})\right)/k_{\rm B}T\right]}{1 + \exp\left[\left(E_{\rm FD} - E_{n_x,n_y}(z_{\rm max})\right)/k_{\rm B}T\right]} \right\}$$
(2.68)

図 2.12: 弾道輸送電流を考える際の透過係数の近似及び電流成分の対応.

図 2.13: 準弾道輸送電流を考える際の透過係数の近似及び電流成分の対応.

この式が、NW MOSFET の弾道輸送に基づいたドレイン電流の解析式である.

2.3.2 準弾道輸送電流

考え方は弾道輸送と全く同じである. チャネル内において, 実際には全ての電子散乱が 無くなることはない. チャネル内を伝導する電子の中で, 散乱を受ける電子が電流特性に 影響を及ぼす. 電子の散乱機構は多種多様であり, それらの影響を解析的に透過係数に反 映することは難しい. コンパクトモデルでは, 一つの考え方として, 各散乱機構を別々に扱 うことはせず, その影響を電子の後方散乱係数 R_{n_x,n_y} に押し込める. 透過係数 T_{sd} を以下 のように定義する.

$$T_{\rm ds}(E_z) = \begin{cases} 1 - R_{n_x, n_y} & \left(E_{n_x}(z_{\rm max}) + E_{n_y}(z_{\rm max}) + E_z > E_{n_x}(z_{\rm max}) + E_{n_y}(z_{\rm max}) \right) \\ 0 & (\text{otherwise}) \end{cases}$$

(2.69)

図 2.13 に, 伝導方向に関するポテンシャル分布と透過係数の対応を表わす. 弾道輸送電流 と同様に $E_{n_x,n_y}(z_{max})$ 以下のトンネル電流成分は無視している. 一方で, $E_{n_x,n_y}(z_{max})$ 以 上のエネルギーを持つ電子は $1 - R_{n_x,n_y}$ の確率によりソースからドレインへ透過すると 考えることができる. 後方散乱係数 R_{n_x,n_y} に, 量子数が添え字として付いている. これは, 離散化されたエネルギー準位ごとに透過係数が異なる可能性があることによる. 以上の仮 定を用いて, 電流式 (式 (2.66)), 透過係数の仮定 (式 (2.69)) 及び Fermi-Dirac 分布関数 (式 (2.39)) から準弾道輸送電流を導出する.

$$I_{\rm DS} = \frac{e}{\pi\hbar} \sum_{n_x} \sum_{n_y} \int_0^\infty dE_z \left(1 - R_{n_x, n_y} \right) \left[\frac{1}{1 + \exp\left(\frac{E_{\rm tot} - E_{\rm FS}}{k_{\rm B}T}\right)} - \frac{1}{1 + \exp\left(\frac{E_{\rm tot} - E_{\rm FD}}{k_{\rm B}T}\right)} \right]$$
$$= \frac{ek_{\rm B}T}{\pi\hbar} \sum_{n_x} \sum_{n_y} \left(1 - R_{n_x, n_y} \right) \ln\left\{ \frac{1 + \exp\left[\left(E_{\rm FS} - E_{n_x, n_y}(z_{\rm max})\right) / k_{\rm B}T\right]}{1 + \exp\left[\left(E_{\rm FD} - E_{n_x, n_y}(z_{\rm max})\right) / k_{\rm B}T\right]} \right\}$$
(2.70)

以上が、NW MOSFET の準弾道輸送に基づいたドレイン電流の解析式を表わす. しか し、この電流式には後方散乱係数をどのように決定するかという問題が残る. 今まで、DG MOSFET 構造に関する後方散乱係数の数値計算による研究は広く行われている [12, 13]. また、NW MOSFET 構造の後方散乱係数の扱いに関する研究も徐々に進んでいる [14, 15]. 今後は、数値シミュレーションや電流の実験値両面からの後方散乱係数抽出の手法を確立し ていくことが、本研究領域の共通の課題と言える. また、当然のことではあるが、式 (2.70) において $R_{n_x,n_y} = 0$, すなわち、全ての電子が後方散乱を受けずにドレインまで伝導する と、式 (2.70) は式 (2.68) と一致する. 式 (2.68) 及び式 (2.70) から明らかなように、ボトル ネックにおける電子の閉じ込めエネルギーが分かれば電流を計算できる. 次の章で、ボト ルネックにおける電子の閉じ込めエネルギーの導出方法を解説する.

第2章まとめ

本章では、電子の弾道・準弾道輸送を考えたとき、電子デバイス内を電流がどのように 流れるかを Landauer の手法に基づき導出した.以下に、要点を示す.

- Landauer の手法に基づき,理想的な二端子デバイスに流れる電流を調べた.
 - T = 0 において、二端子デバイスに流れる電流を導出した.
 - 絶対零度では、流れる電流は試料内の電子状態ではなく、そこでの透過係数、二端子に印加された電位差及び電極の化学ポテンシャル µ で決まる.
 - *T* ≠ 0 において, 二端子デバイスに流れる電流を調べた.
 - *T* ≠ の条件下では、電子があるエネルギー状態を占有する二つの電極内の確率 分布の差で決まる。
- Natori の手法に基づき, SOI-MOSFET に流れる電流を調べた.
 - 二次元系の SOI-MOSFET のチャネル内を流れる電流を導出した.
 - 導出した電流式は、ソースからボトルネックに注入される電子は熱平衡状態を 保持しながら伝導するという仮定に基づく.
- NW MOSFET に流れる電流を調べた.
 - SOI-MOSFET のドレイン電流の導出手法と同じ手順により, NW MOSFET の
 弾道・準弾道輸送に基づくドレイン電流を導出した.
 - 弾道・準弾道輸送に基づく電流は、ボトルネックにおける離散化された電子の 閉じ込めエネルギーにのみ依存する。

参考文献

- R. Kubo, "Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems," Journal of the Physical Society of Japan, vol. 12, no. 6, 1958.
- [2] R. Landauer, "Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction," IBM Journal, 1958.
- [3] パリティ編集委員会 (勝本信吾責任編集): "メゾスコピック村のアリス –ナノスケー ル物理の驚きと快感–", 丸善株式会社, 2003.
- [4] S. Datta, "Electronic Transport in Mesoscopic Systems," Cambridge University Press, Cambredge, UK, 1995.
- [5] K. Natori, "Ballistic MOSFET reproduces current–voltage characteristics of an experimental device," IEEE Electron Device Lett., vol. 23, pp. 655–657, 2002.
- [6] K. Natori, "New solution to high-field transport in semiconductors: I. Elastic scattering without energy relaxation," Jpn. J. Appl. Phys., vol. 48, pp. 034503-1–034503-9, 2009.
- [7] K. Natori, "New solution to high-field transport in semiconductors: II. Velocity saturation and ballistic transmission," Jpn. J. Appl. Phys., vol. 48, pp. 034504-1– 034504-13, 2009.
- [8] K. Natori, "Ballistic metal-oxide-semiconductor field effect transistor," J. Appl. Phys., vol. 76, no. 8, pp. 4879-4890, 1994.
- [9] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Unified compact model for the ballistic quantum wire and quantum well metal-oxidesemiconductor field-effect-transistor", Journal of Applied Physics, vol. 94, pp. 1061-1068, 2003.
- [10] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Modeling of nanoscale gate-all-around MOSFETs", IEEE Electron Device Letters, vol. 25, no. 5, pp. 314-316, 2004.
- [11] M. Shin, "Quantum simulation of device characteristics of silicon nanowire FETs," IEEE Trans. Nanotech., vol. 6, no. 2, pp. 230–237, 2007.
- [12] M. Lundstrom, "Elementary scattering theory of the MOSFET," IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.

- [13] M. Lundstrom, "Essential physics of carrier transport in nanoscale MOSFETs," IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133–141, 2002.
- [14] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, "Quasi-ballistic transport in nanowire field-effect transistors," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2918–2930, 2008.
- [15] K. Natori, "Compact modeling of quasi-ballistic silicon nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 79–86, 2012.

第3章 コンパクトモデル

前章では、NW MOSFET に流れる弾道・準弾道輸送電流の式を Landauer の手法に基づ き導出した. MOSFET に関して弾道・準弾道輸送の考え方を適用すると、その電流はソー ス、ドレイン方向に関するバリア障壁のボトルネックにおける高さにのみ依存することが 分かった. しかし、前章ではソース(ドレイン)からドレイン(ソース)に伝搬する波動 関数を基本として電流式を導出したため、ボトルネックにおけるバリア障壁の高さが何に 依存し、どのように決まるかについては触れなかった. MOSFET はゲートに印加する電 圧によってチャネル内の電荷密度を制御し、ドレイン電流の大きさを決定する素子である. すなわち、ボトルネックにおける電子状態はゲート電圧によって制御されると考えられる. したがって、ゲート電圧によりチャネル内のバリア障壁の高さを制御することで、ソースか ら注入される電子数を調整し、結果としてドレイン電流を制御すると考えればよい.

ボトルネックにおけるバリア障壁の高さを決定するには NW MOSFET の構造全体に関 する三次元の Schrödinger-Poisson 方程式を解く必要があり、その数値計算手法は複数報告 されている [1, 2, 3, 4]. 非平衡 Green 関数法(non-equilibrium Green's function formalism, NEGF) やモンテカルロ法(Monte Carlo Approach)を用いた手法がそれである。しか し、これらの計算手法は膨大な計算時間及び専門的な知識を必要とする.このような問題 点が、個々のデバイスの高速計算を要求する回路シミュレータや短時間にデバイス特性を 知る必要がある場合の妨げとなる.また、NW MOSFET の特性を表わすコンパクトモデ ルも複数報告されている [5, 6, 7, 8, 9, 10, 11].しかし、全バイアス条件を表わす明示的な 解析モデルは未だ報告されておらず、複数のフィッティングパラメータを含む、簡単ではあ るが数値計算を含むなどの問題点を持つ.本章では、完全かつ明示的な解析モデルを作成 する際に基本となる数値計算を含むコンパクトモデルを提案する [12].ボトルネックにお けるワイヤ断面内の電子状態に着目し、まずそれを解析的に導出する.そして、ワイヤ断面 内の電子状態及び弾道・準弾道輸送電流式を用いた NW MOSFET の特性を表わすコンパ クトモデルを提案し、その精度を検証する.

本章の構成を示す.まず、3.1 節にて計算対象とする構造を定義し、ボトルネックにおけ る電子状態を近似的に導出するために必要な仮定を説明する.続いて、3.2 節にてボトル ネックにおける電子状態の近似的な導出方法を解説する.残りの節で、導出した電子のエ ネルギーに関する解析式と前章で導出した弾道・準弾道輸送電流の解析モデルを用いて電 流を計算する方法を解説する.最後に、数値計算による NW MOSFET の特性計算結果と コンパクトモデルを比較し、本モデルの精度を検証する.

3.1 モデルデバイス・モデルポテンシャル

計算対象とする NW MOSFET のモデルを図 3.1 に示す.四角形断面を持つ NW MOS-FET を計算対象とする.ソース及びドレイン電極内部の電子状態はゲート電圧には依存し ないものとし,各電極はチャネル内に十分な量の電子を供給する理想的なキャリアの蓄積

図 3.1: デバイスモデルの模式図. (a) 計算対象とする NW MOSFET の模式図. 四角形の ワイヤ断面を想定し、ゲート長を $L_{\rm G}$ とする. (b) ワイヤ断面構造. チャネル幅 t_x 、チャネ ル高さ t_y 、酸化膜厚を $t_{\rm ox}$ とする.

層であると仮定する. NW MOSFET はゲート (G), ソース (S), ドレイン (D) 電極を持つ 三端子デバイスであり, 各端子に印加する電圧をそれぞれ $V_{\rm G}, V_{\rm S}, V_{\rm D}$ とする. また, 各端 子の電圧の差は $V_{\rm GS}(=V_{\rm G}-V_{\rm S}), V_{\rm DS}(=V_{\rm D}-V_{\rm S}), V_{\rm GD}(=V_{\rm G}-V_{\rm D})$ とする. 以上のモデ ルデバイスに流れるドレイン電流を考える.

ボトルネックにおける電子の閉じ込めエネルギーを導出するために次の仮定を置く.

ボトルネックにおけるワイヤ断面内の電子状態はゲート電圧により十分制御される.

この仮定は、ボトルネックにおける電子状態がソース-ドレイン方向に関するポテンシャル 分布による影響を受けないことを表わし、ドレイン電圧による影響を無視することを意味 する.以上の仮定は、ボトルネックにおける電子状態を知るにはワイヤ断面内(*x-y*平面) における二次元のSchrödinger-Poisson方程式を解けば十分であり、デバイス構造全体の 三次元のSchrödinger-Poisson方程式を解く必要はないという仮定であることを意味する. しかし、実際にはゲート長が20 nmよりも短くなるとき、ボトルネックのバリア障壁の高 さはDIBLによる影響を受け、ドレイン電流特性を劣化させる.そのため、ドレイン電圧依 存性を導入することは必須になる.この依存性に関する事項は、4.3.3 項にて説明する.

以上の仮定を置くことで、三次元ではなくワイヤ断面内の二次元の Schrödinger-Poisson 方程式を解けばよいと述べたが、実際には二次元の Schrödinger-Poisson 方程式であっても 厳密かつ解析的に解くことは非常に難しい、図 3.1(b) のワイヤ断面内のチャネル領域に関 する静電ポテンシャル分布を w(x,y) としたとき、ワイヤ断面内の離散的閉じ込めエネル ギー E_n^q と静電ポテンシャル分布 w は以下に示す二次元の Schrödinger 方程式を満たす.

$$\left[-\frac{\hbar^2}{2m^*}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) - ew(x,y)\right]\psi_n(x,y) = E_n^{\mathbf{q}}\psi_n(x,y) \tag{3.1}$$

図 3.2: ワイヤ断面内のポテンシャル分布の模式図.本研究ではエネルギーは全てソースのフェルミ準位を基準値とする.

ここで、 ψ_n は電子の波動関数を表わし、n は量子数、 m^* は電子の有効質量を表わす、閉じ込めエネルギーの添え字'q'は、そのエネルギーがワイヤ断面内の伝導帯端を基準として測られていることを意味する、式 (3.1) から分かるように、Schrödinger 方程式を解くにはワイヤ断面内の静電ポテンシャル分布に関する情報が必要である。一方、ワイヤ断面内の電荷密度分布 $\rho_{ch}(x,y)$ と静電ポテンシャル w は以下に示す二次元の Poisson 方程式を満たす。

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)w(x,y) = -\frac{\rho_{\rm ch}(x,y)}{\varepsilon_{\rm ch}}$$
(3.2)

ここで、 *ε*_{ch} はチャネル材料の誘電率を表わす.式 (3.2) から分かるように、 Poisson 方程式 を考える際にもワイヤ断面内の静電ポテンシャル分布が重要になる.そのため、ワイヤ断 面内の静電ポテンシャル分布 *w* を適切に選ぶことで、これら二つの方程式を簡単に解くこ とができないか考える.

図 3.2 にワイヤ断面内のポテンシャル分布の模式図を示す. この静電ポテンシャル分布 をどのように与えるかが問題である. 近似的に与えるとはいえ, 各ゲート電圧条件におけ る二次元の静電ポテンシャル分布を一つの式で与えることは困難である. そこで, 近似的 に二次元の静電ポテンシャル分布を各閉じ込め方向, すなわち, *x* 及び*y* 方向の静電ポテン シャル分布の重ね合わせにより表わせると仮定する. そして, ワイヤ断面内の静電ポテン シャルを以下に示すように二次関数で近似的に与える.

$$w(x,y) = w_{\rm s} - 4\Delta U_{\rm G}g(x,y) \tag{3.3}$$

$$g(x,y) = \frac{x}{t_x + t_y} \left(1 - \frac{x}{t_x}\right) + \frac{y}{t_x + t_y} \left(1 - \frac{y}{t_y}\right)$$
(3.4)

ここで、 w_{s} は $(x, y) = (0, 0), (t_{x}, 0), (0, t_{y}), (t_{x}, t_{y})$ における静電ポテンシャルを、 ΔU_{G} は $(x, y) = (0, 0) \geq (\frac{t_{x}}{2}, \frac{t_{y}}{2})$ の間の静電ポテンシャル差を表わし、 ΔU_{G} によりワイヤ断面内の静電ポテンシャル形状が決まる.近似的に与えた静電ポテンシャル (式 (3.3))をモデルポテンシャルと呼ぶことにする.図 3.3 にワイヤ断面内のy = 0における x 方向の静電ポテンシャル分布を示す.モデルポテンシャルは、x 方向に関して酸化膜–チャネル界面で以下に示す境界条件を満たす必要がある.

$$V_{\rm GS} - \phi_{\rm GC} = w(x,0) - w_{\rm FB} + V_{\rm ox,y}$$
(3.5)

図 3.3: ワイヤ断面 y = 0 における x 方向の静電ポテンシャル分布の模式図. 基準値を E_{FS}/e とする. (a) フラットバンド状態. (b) 反転領域.

ここで、 $\phi_{GC}(= \phi_G - \phi_C)$ はゲート材料とチャネル材料の仕事関数の差を表わし、 $w_{FB}(= \chi_{ch} - \phi_C)$ はフラットバンド状態における伝導帯端の値を表わし、チャネル材料の電子親和力と仕事関数の差で決まる.したがって、

$$\phi_{\rm GC} - w_{\rm FB} = \phi_{\rm G} - \chi_{\rm ch} \tag{3.6}$$

を得る.ここで、 $V_{\text{ox},y}$ は酸化膜にかかる x 方向の電位差を表わす. 同様に、モデルポテンシャルはワイヤ断面内の x = 0 における y 方向に関して酸化膜–チャネル界面で以下に示す境界条件を満たす.

$$V_{\rm GS} - \phi_{\rm GC} = w(0, y) - w_{\rm FB} + V_{\rm ox, x}$$
(3.7)

ここで、 $V_{\text{ox},x}$ は酸化膜にかかる y 方向の電位差を表わす. ワイヤ断面内の静電ポテンシャ ル分布は、式 (3.5) 及び (3.7) で与えられる境界条件を満たすようにモデルポテンシャルか ら決まる. ここで、 w_{s} 、 ΔU_{G} , $V_{\text{ox},x}$, $V_{\text{ox},y}$ は具体的に求めていない. これらに関する詳しい 説明は本章の後半で行う. 以上で示したモデルポテンシャルを用いて、ワイヤ断面内の二 次元の Schrödinger-Poisson 方程式を近似的に解く.

3.2 ワイヤ断面内の Schrödinger 方程式

3.1 節で定義したモデルポテンシャルを用いて、ワイヤ断面内の Schrödinger 方程式を解 く近似手法を解説する. ワイヤ断面内の Schrödinger 方程式は、正確には式 (3.4) を用いて 次のように書ける.

$$\left[-\frac{\hbar^2}{2m^*}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + 4e\Delta U_{\rm G}g(x,y)\right]\psi_n(x,y) = E_n^{\rm q}\psi_n(x,y) \tag{3.8}$$

この式において、電子の波動関数 ψ_n 及び閉じ込めエネルギー E_n^q を次のように仮定する.

$$\psi_n(x,y) = \phi_{n_x}(x)\phi_{n_y}(y) \tag{3.9}$$

$$E_n^{q} = E_{n_x}^{q} + E_{n_y}^{q} \tag{3.10}$$

ここで、 n_x 及び n_y はそれぞれ x 及び y 方向に関する量子数を表わす.以上の仮定により、 式 (3.8) を変数分離できる.式 (3.9) 及び (3.10) により、ワイヤ断面内の Schrödinger 方程 式は、

$$\left(-\frac{\hbar^2}{2m^*}\phi_{n_y}(y)\frac{\partial^2}{\partial x^2}\phi_{n_x}(x) + 4e\Delta U_{\rm G}g(x,0)\phi_{n_x}(x)\phi_{n_y}(y)\right) \\
+ \left(-\frac{\hbar^2}{2m^*}\phi_{n_x}(x)\frac{\partial^2}{\partial y^2}\phi_{n_y}(y) + 4e\Delta U_{\rm G}g(0,y)\phi_{n_x}(x)\phi_{n_y}(y)\right) \\
= \left(E_{n_x}^{\rm q} + E_{n_y}^{\rm q}\right)\phi_{n_x}(x)\phi_{n_y}(y) \tag{3.11}$$

と変形でき、両辺を $\phi_{n_x}(x)\phi_{n_y}(y)$ で割ることで、

$$\left(-\frac{\hbar^2}{2m^*\phi_{n_x}(x)}\frac{\partial^2}{\partial x^2}\phi_{n_x}(x) + 4e\Delta U_{\rm G}g(x,0)\right) + \left(-\frac{\hbar^2}{2m^*\phi_{n_y}(y)}\frac{\partial^2}{\partial y^2}\phi_{n_y}(y) + 4e\Delta U_{\rm G}g(0,y)\right) = E_{n_x}^{\rm q} + E_{n_y}^{\rm q}$$
(3.12)

となる. 左辺左側の括弧内は *x* の関数であり, 左辺右側の括弧内は *y* の関数である. 右辺 は定数であるため, この方程式が任意の *x*, *y* において成り立つには, 左辺の各括弧内は定 数にならなければならない. したがって, 式 (3.12) は次のように分離できる.

$$\left(-\frac{\hbar^2}{2m_x^*}\frac{\partial^2}{\partial x^2} + 4e\Delta U_{\rm G}g(x,0)\right)\phi_{n_x}(x) = E_{n_x}^{\rm q}\phi_{n_x}(x) \tag{3.13}$$

$$\left(-\frac{\hbar^2}{2m_y^*}\frac{\partial^2}{\partial y^2} + 4e\Delta U_{\rm G}g(0,y)\right)\phi_{n_y}(y) = E_{n_y}^{\rm q}\phi_{n_y}(y) \tag{3.14}$$

ここで、各方向に関する電子の有効質量をそれぞれ m_x^* 、 m_y^* と書き直している.式 (3.13) と式 (3.14) を解くことで、ワイヤ断面内の電子状態が決まる.また、 $g(x,0) \ge g(0,y)$ は式 (3.4) で定義したように同じ式の形をしているため、式 (3.13) 及び (3.14) は完全に同じ形 の方程式である.したがって、どちらの方程式も同じ手法で解くことができる.そこで、式 (3.13) を例にとり近似解法の説明を行う.

式 (3.13) を解くために二通りの近似解法を説明する. 一つは, 摂動法である [13]. もう一 つは二準位近似である [14]. 二準位近似は摂動法に非常に近い手法ではあるが, より精度 よく式 (3.13) を解くことができる. 以上の手法に基づき, 電子の閉じ込めエネルギーを導 出する. まず, 各手法に共通する手順を説明する. 使用する近似手法ではワイヤ断面内の 電子の波動関数を適当な基底系を用いて展開する. すなわち, 任意の基底系を用いてワイ ヤ断面内の電子の波動関数を次のように定義する.

$$\phi_{n_x}(x) = \sum_{i_x} a_{n_x, i_x} \phi_{i_x}^0(x) \tag{3.15}$$

ここで、 a_{n_x,i_x} は展開の係数を、 $\phi_{i_x}^0$ は基底系の関数を表わす.添え字 i_x は基底系の取り方によって物理的意味が異なる。本研究では、完全直交系をなす一次元の無限に深い井戸型ポテンシャルにおける電子の波動関数を基底系として選択するため、 i_x はそこでの量子数を表わす。基底系として選択した無限に深い井戸型ポテンシャルにおける電子の波動関数

を導出する. すなわち, 以下に示すポテンシャル場における Schrödinger 方程式を考えればよい.

$$V(x) = \begin{cases} 0 & (0 < x < t_x) \\ \infty & (\text{otherwise}) \end{cases}$$
(3.16)

電子の波動関数 $\phi_{i_x}^0$ は $V(x) = \infty$ の領域において 0 になるため, $0 < x < t_x$ の領域で以下 の Schrödinger 方程式を解けばよい.

$$-\frac{\hbar^2}{2m_x^*}\frac{\partial^2}{\partial x^2}\phi_{i_x}^0(x) = E_{i_x}^{q0}\phi_{i_x}^0(x)$$
(3.17)

ここで、 $E_{i_x}^{q0}$ は基底系の電子の閉じ込めエネルギーを表わす.式 (3.16) で構成されるポテンシャル場における Schrödinger 方程式の一般解は次のように与えられる.

$$\phi_{i_x}^0(x) = A\cos(k_x x) + B\sin(k_x x)$$
(3.18)

$$k_x = \frac{\sqrt{2m_x^* E_{i_x}^{q0}}}{\hbar}$$
(3.19)

ここで, k_x は x 方向に関する波数と呼ばれる.式 (3.18) は井戸型ポテンシャルの境界で $\phi_{i_x}^0(0) = \phi_{i_x}^0(t_x) = 0$ を満たすため,

$$A = 0 \tag{3.20}$$

$$B\sin\left(k_x t_x\right) = 0\tag{3.21}$$

となる. 式 (3.21) において B = 0 とすると、波動関数が恒等的に 0 となるため解として適当ではない. したがって、式 (3.21) を満たす条件として、

$$k_x = \frac{(i_x + 1)\pi}{t_x}$$
(3.22)

 $i_x \in \mathbb{N} \tag{3.23}$

が得られる. ただし、自然数の集合 \mathbb{N} は 0 を含むものとする. 以上により、電子の波動関数 $\phi_{i_x}^0$ は、

$$\phi_{i_x}^0(x) = B \sin\left(\frac{\pi \left(i_x + 1\right)}{t_x}x\right) \tag{3.24}$$

となる.係数 B は規格化条件,

$$\int_{0}^{t_{x}} dx \left[\phi_{i_{x}}^{0}(x)\right]^{*} \phi_{i_{x}}^{0}(x) = 1$$
(3.25)

により,

$$B = \sqrt{\frac{2}{t_x}} \tag{3.26}$$

図 3.4: ワイヤ断面 *y* = 0 における *x* 方向のポテンシャル分布の模式図. (a) フラットバン ド状態. (b) 反転領域.

と求めることができ、一次元の無限に深い井戸型ポテンシャル内の電子の波動関数が次の ように得られる.

$$\phi_{i_x}^0(x) = \sqrt{\frac{2}{t_x}} \sin\left(\frac{\pi (i_x + 1)}{t_x}x\right)$$
(3.27)

この波動関数に対応する電子の固有エネルギー E_{i-}^{q0} は、式 (3.19) 及び式 (3.22) より、

$$E_{i_x}^{\mathbf{q}0} = \frac{\pi^2 \hbar^2 (i_x + 1)^2}{2m^* t_x^2} \tag{3.28}$$

となる.以上により、ワイヤ断面内の電子の波動関数を展開するための基底系を導出した. 式 (3.27)を基底系として展開したワイヤ断面内の波動関数を用いて Schrödinger 方程式を 解く.

3.2.1 摂動法による解法

本項では摂動法を用いて Schrödinger 方程式を解く [13]. まず,何を摂動とみなすかを説明する.図 3.4 に y = 0 における x 方向のポテンシャル分布を示す.図 3.4(a) に示すフラットバンド状態を無摂動状態であると考える.一方,外部からゲート電圧を印加することで図 3.4(b) に示すようにバンド曲がりが生じる.このバンド曲がりを無摂動状態への摂動とみなす.ハミルトニアン H を用いて,式 (3.13) を,

$$H\phi_{n_x}(x) = E_{n_x}^{\mathbf{q}}\phi_{n_x}(x) \tag{3.29}$$

$$H = H_0 + H' (3.30)$$

$$H_0 = -\frac{\hbar^2}{2m_x^*} \frac{\partial^2}{\partial x^2} \tag{3.31}$$

$$H' = 4e\Delta U_{\rm G}g(x,0) \tag{3.32}$$

と表わし、*H*₀ と *H'* がそれぞれ無摂動状態及び無摂動状態への摂動を表わすハミルトニアンである.以上の考えのもとに、式 (3.29)を摂動法を用いて近似的に解く.その準備として、Schrödinger 方程式を次のように書き直す.

$$H_{\lambda}\phi_{n_x}(x,\lambda) = E_{n_x}^{\mathbf{q}}(\lambda)\phi_{n_x}(x,\lambda) \tag{3.33}$$

$$H_{\lambda} = H_0 + \lambda H' \tag{3.34}$$

ここで、 λ は任意の定数を表わし、 $E_{n_x}^{q}$ と ϕ_{n_x} を、

$$E_{n_x}^{q}(\lambda) = E_{n_x}^{q0} + \lambda E_{n_x}^{q1} + \lambda^2 E_{n_x}^{q2} + \dots$$
(3.35)

$$\phi_{n_x}(x,\lambda) = \sum_{i_x} a_{n_x,i_x}(\lambda)\phi_{i_x}^0(x)$$
(3.36)

$$a_{n_x,i_x}(\lambda) = a_{n_x,i_x}^{(0)}(\lambda) + \lambda a_{n_x,i_x}^{(1)}(\lambda) + \lambda^2 a_{n_x,i_x}^{(2)}(\lambda) + \dots$$
(3.37)

と定義し直している. 係数 a_{n_x,i_x} の定義にある上付き添え字の数字は, 何階微分なのかでは なく何番目の係数であるかを意味する. ハミルトニアン H_{λ} は, $\lambda = 0$ のときの無摂動状態 を表わす. 図 3.4 から分かるように, 酸化膜のポテンシャル障壁は有限であり, チャネル内 は無限に深い井戸型ポテンシャルではない. しかし, 無摂動状態における電子状態が近似 的に基底系である井戸ポテンシャルのそれと同一であると仮定する. この仮定は, 摂動法 において係数 $a_{n_x,i_x}^{(0)}$ を決定する際に必要なものである. 式 (3.36) を式 (3.33) に代入すると,

$$H_{\lambda} \sum_{i_x} a_{n_x, i_x}(\lambda) \phi_{i_x}^0(x) = E_{n_x}^{q}(\lambda) \sum_{i_x} a_{n_x, i_x}(\lambda) \phi_{i_x}^0(x)$$
(3.38)

となり、両辺に $\left[\phi_{l_x}^0(x)\right]^*$ を掛けることで、

$$\sum_{i_x} a_{n_x, i_x}(\lambda) \left[\phi_{l_x}^0(x)\right]^* H_\lambda \phi_{i_x}^0(x) = E_{n_x}^q(\lambda) \sum_{i_x} a_{n_x, i_x}(\lambda) \left[\phi_{l_x}^0(x)\right]^* \phi_{i_x}^0(x)$$
(3.39)

となる. この式を $0 < x < t_x$ の範囲で積分すると, 基底系の正規直交性により次のように 変形できる.

$$\sum_{i_x} a_{n_x, i_x}(\lambda) \int_0^{t_x} dx \left[\phi_{l_x}^0(x)\right]^* H_\lambda \phi_{i_x}^0(x) = E_{n_x}^{q}(\lambda) \sum_{i_x} a_{n_x, i_x}(\lambda) \delta_{l_x, i_x}$$
(3.40)

$$\delta_{l_x,i_x} = \int_0^{t_x} dx \left[\phi_{l_x}^0(x)\right]^* \phi_{i_x}^0(x) = \begin{cases} 1 & (l_x = i_x) \\ 0 & (l_x \neq i_x) \end{cases}$$
(3.41)

式 (3.17) 及び (3.31) を利用して式 (3.40) の左辺をさらに変形すると、

$$(\vec{\mathbf{x}} (3.40) \, \underline{\mathbf{x}} \underline{\mathcal{D}}) = \sum_{i_x} a_{n_x, i_x}(\lambda) \int_0^{t_x} dx \left[\phi_{l_x}^0(x) \right]^* \left(H_0 + \lambda H' \right) \phi_{i_x}^0(x) = \sum_{i_x} a_{n_x, i_x}(\lambda) \left\{ \int_0^{t_x} dx \left[\phi_{l_x}^0(x) \right]^* E_{i_x}^{\mathbf{q}0} \phi_{i_x}^0(x) + \lambda \int_0^{t_x} dx \left[\phi_{l_x}^0(x) \right]^* H' \phi_{i_x}^0(x) \right\}$$
(3.42)
$$= \sum_{i_x} a_{n_x, i_x}(\lambda) \left(E_{i_x}^{\mathbf{q}0} \delta_{l_x, i_x} + \lambda H_{l_x, i_x} \right)$$

となる. パラメータ H_{l_x,i_x} は行列要素 (Matrix element) を表わし、次のように定義した.

$$H_{l_x,i_x} = \int_0^{t_x} dx \left[\phi_{l_x}^0(x)\right]^* H' \phi_{i_x}^0(x)$$
(3.43)

以上により, x 方向の Schrödinger 方程式は,

$$\sum_{i_x} a_{n_x,i_x}(\lambda) \left(E_{i_x}^{q0} \delta_{l_x,i_x} + \lambda H_{l_x,i_x} \right) = E_{n_x}^q(\lambda) \sum_{i_x} a_{n_x,i_x}(\lambda) \delta_{l_x,i_x}$$
(3.44)

となり、この方程式を解くことで x 方向に関する電子状態が分かる. 先ほど、 $\lambda = 0$ における 波動関数 (電子状態) $\phi_{n_x}(x)$ は基底系のそれに一致すると要請したため、 $a_{n_x,i_x}^{(0)}(\lambda) = \delta_{n_x,i_x}$ となる. このとき式 (3.44) に式 (3.35)–(3.37) を代入すると、

$$\sum_{i_{x}} \left(\delta_{n_{x},i_{x}} + \lambda a_{n_{x},i_{x}}^{(1)}(\lambda) + \lambda^{2} a_{n_{x},i_{x}}^{(2)}(\lambda) + \ldots \right) \left(E_{i_{x}}^{q0} \delta_{l_{x},i_{x}} + \lambda H_{l_{x},i_{x}} \right)$$

$$= \sum_{i_{x}} \left(E_{n_{x}}^{q0} + \lambda E_{n_{x}}^{q1} + \lambda^{2} E_{n_{x}}^{q2} + \ldots \right) \left(\delta_{n_{x},i_{x}} + \lambda a_{n_{x},i_{x}}^{(1)}(\lambda) + \lambda^{2} a_{n_{x},i_{x}}^{(2)}(\lambda) + \ldots \right) \delta_{l_{x},i_{x}}$$
(3.45)

となり、この式を λ に関して整理すると、

. 1

$$\sum_{i_{x}} \left[H_{l_{x},i_{x}} \delta_{n_{x},i_{x}} + a_{n_{x},i_{x}}^{(1)}(\lambda) \left(E_{l_{x}}^{q0} - E_{n_{x}}^{q0} \right) \delta_{l_{x},i_{x}} - E_{n_{x}}^{q1} \delta_{n_{x},i_{x}} \delta_{l_{x},i_{x}} \right] \lambda$$

$$+ \sum_{i_{x}} \left[a_{n_{x},i_{x}}^{(1)}(\lambda) H_{l_{x},i_{x}} + a_{n_{x},i_{x}}^{(2)}(\lambda) \left(E_{l_{x}}^{q0} - E_{n_{x}}^{q0} \right) \delta_{l_{x},i_{x}} - E_{n_{x}}^{q1} a_{n_{x},i_{x}}^{(1)}(\lambda) \delta_{l_{x},i_{x}} - E_{n_{x}}^{q2} \delta_{n_{x},i_{x}} \delta_{l_{x},i_{x}} \right] \lambda^{2} \qquad (3.46)$$

$$+ \sum_{i_{x}} [...] \lambda^{3} + ...$$

$$= 0$$

となる. 式 (3.46) が恒等的に成り立つためには, λ のべき乗の各係数が 0 になればよい. すなわち,

$$H_{l_x,n_x} + a_{n_x,l_x}^{(1)}(\lambda) \left(E_{l_x}^{q0} - E_{n_x}^{q0} \right) - E_{n_x}^{q1} \delta_{n_x,l_x} = 0$$
(3.47)

$$\sum_{i_x} a_{n_x, i_x}^{(1)}(\lambda) H_{l_x, i_x} + a_{n_x, l_x}^{(2)}(\lambda) \Big(E_{l_x}^{q0} - E_{n_x}^{q0} \Big) - E_{n_x}^{q1} a_{n_x, l_x}^{(1)}(\lambda) - E_{n_x}^{q2} \delta_{n_x, l_x} = 0$$
(3.48)

を解けばよい. 3.5.4 項にて示すが, λ^2 に関する係数までしか考慮していないのは本研究で 扱うワイヤ断面のスケールでは二次の摂動まで考えれば十分な精度を示すためである. 基 底系の一次元の無限に深い井戸ポテンシャルでは電子状態は縮退していないため, 式 (3.47) 及び式 (3.48) を解くのは容易である. まず, $n_x = l_x$ の状態から,

$$E_{n_x}^{q_1} = H_{n_x,n_x}$$

$$E_{n_x}^{q_2} = \sum_{i_x} H_{n_x,i_x} a_{n_x,i_x}^{(1)}(\lambda) - E_{n_x}^{q_1} a_{n_x,n_x}^{(1)}(\lambda)$$

$$= \sum_{i_x} H_{n_x,i_x} a_{n_x,i_x}^{(1)}(\lambda) - H_{n_x,n_x} a_{n_x,n_x}^{(1)}(\lambda)$$

$$= \sum_{i_x \neq n_x} H_{n_x,i_x} a_{n_x,i_x}^{(1)}(\lambda)$$
(3.49)
(3.49)
(3.49)

と決まり、 $\sum_{i_x \neq n_x}$ は $i_x = n_x$ 以外の i_x に関して和を取ることを表わす. 一方、 $n_x \neq l_x$ の状態から、

$$a_{n_x,l_x}^{(1)}(\lambda) = \frac{H_{n_x,l_x}}{E_{n_x}^{q0} - E_{l_x}^{q0}}$$
(3.51)

が決まる. 式(3.50)及び(3.51)から $E_{n_x}^{\mathrm{q2}}$ も次のように決まる.

$$E_{n_x}^{q2} = \sum_{i_x \neq n_x} \frac{|H_{n_x, i_x}|^2}{E_{n_x}^{q0} - E_{i_x}^{q0}}$$
(3.52)

以上により,式(3.35)の閉じ込めエネルギーが以下に示すように近似的に導出された.

$$E_{n_x}^{q}(\lambda) = E_{n_x}^{q0} + \lambda H_{n_x, n_x} + \lambda^2 \sum_{i_x \neq n_x} \frac{|H_{n_x, i_x}|^2}{E_{n_x}^{q0} - E_{i_x}^{q0}}$$
(3.53)

最後に定数 $\lambda = 1$ と置くことで, x 方向に関する電子の閉じ込めエネルギーは近似的に,

$$E_{n_x}^{\mathbf{q}} = E_{n_x}^{\mathbf{q}0} + H_{n_x, n_x} + \sum_{i_x \neq n_x} \frac{|H_{n_x, i_x}|^2}{E_{n_x}^{\mathbf{q}0} - E_{i_x}^{\mathbf{q}0}}$$
(3.54)

と表わせる.以上が摂動法による解法である.

行列要素 H_{n_x,i_x} について触れておく. 式 (3.54)の H_{n_x,i_x} は、基底系の波動関数 (式 (3.27)) とモデルポテンシャル (式 (3.4))を式 (3.42) に代入することで解析的に表すことができる. 以下にその計算過程を示す.

$$H_{n_{x},i_{x}}(\Delta U_{G}) = \int_{0}^{t_{x}} dx \left[\phi_{n_{x}}^{0}(x)\right]^{*} \left[4e\Delta U_{G}g(x,0)\right] \phi_{i_{x}}^{0}(x)$$

$$= \frac{8e\Delta U_{G}}{t_{x}(t_{x}+t_{y})}$$

$$\times \int_{0}^{t_{x}} dx \left[\sin\left(\frac{\pi(n_{x}+1)}{t_{x}}x\right)\right]^{*} x \left(1-\frac{x}{t_{x}}\right) \sin\left(\frac{\pi(i_{x}+1)}{t_{x}}x\right)$$

$$= \frac{4e\Delta U_{G}}{t_{x}(t_{x}+t_{y})}$$

$$\times \int_{0}^{t_{x}} dx \left[\cos\left(\frac{\pi(n_{x}-i_{x})}{t_{x}}x\right) - \cos\left(\frac{\pi(n_{x}+i_{x}+2)}{t_{x}}x\right)\right] x \left(1-\frac{x}{t_{x}}\right)$$

$$= \frac{4e\Delta U_{G}t_{x}}{\pi^{2}(t_{x}+t_{y})} \left[\frac{1+\cos\left((n_{x}+i_{x}+2)\pi\right)}{(n_{x}+i_{x}+2)^{2}} - \frac{1+\cos\left((n_{x}-i_{x})\pi\right)}{(n_{x}-i_{x})^{2}}\right]$$
(3.55)

式 (3.55) は、量子数 n_x、 i_x の条件に応じて、

$$H_{n_x,i_x}(\Delta U_{\rm G}) = \begin{cases} \frac{e\Delta U_{\rm G}t_x}{t_x + t_y} \left[\frac{2}{3} + \frac{2}{(1+n_x)^2 \pi^2}\right] & (n_x = i_x) \\ -\frac{16e\Delta U_{\rm G}t_x}{\pi^2 (t_x + t_y)} \left[\frac{(n_x + 1) (i_x + 1) \left(1 + (-1)^{n_x + i_x + 2}\right)}{(n_x - i_x)^2 (n_x + i_x + 2)}\right] & (n_x \neq i_x) \end{cases}$$

 $\mathbf{58}$

(3.56)

となり, $\Delta U_{\rm G}$ の関数として解析的に得られる. そのため, 式 (3.54) の閉じ込めエネルギー は $\Delta U_{\rm G}$ に関する関数である. 閉じ込めエネルギーが $\Delta U_{\rm G}$ にどのように依存するかを分 かりやすくするために、

$$\widetilde{H}_{n_x,i_x} = \begin{cases} \frac{t_x}{t_x + t_y} \left[\frac{2}{3} + \frac{2}{(1 + n_x)^2 \pi^2} \right] & (n_x = i_x) \\ -\frac{16t_x}{\pi^2 (t_x + t_y)} \left[\frac{(n_x + 1) (i_x + 1) \left(1 + (-1)^{n_x + i_x + 2} \right)}{(n_x - i_x)^2 (n_x + i_x + 2)} \right] & (n_x \neq i_x) \end{cases}$$
(3.57)

と定義する.これにより, x 方向に関する電子の閉じ込めエネルギーは,

$$E_{n_x}^{q}(\Delta U_{\rm G}) = E_{n_x}^{q0} + (e\Delta U_{\rm G})\widetilde{H}_{n_x,n_x} + (e\Delta U_{\rm G})^2 \sum_{i_x \neq n_x} \frac{\left|\widetilde{H}_{n_x,i_x}\right|^2}{E_{n_x}^{q0} - E_{i_x}^{q0}}$$
(3.58)

となり, x 方向の閉じ込めエネルギーは摂動法を用いることで $\Delta U_{\rm G}$ の二次関数として得られることが分かる. 行列要素 H_{n_x,i_x} は摂動法だけでなく, 次項で解説する手法でも必要となる.

3.2.2 二準位近似による解法

本項では、参考文献 [14] に記載されている手法を用いて、Schrödinger 方程式を解く.計 算手法は式 (3.44) まで摂動法と同様である. ただし、摂動法のように波動関数や閉じ込めエ ネルギーの再定義はせず、式 (3.13) と式 (3.15) をそのまま使用する. したがって、式 (3.44) は次のように記述できる.

$$\sum_{i_x} a_{n_x, i_x} \left(E_{i_x}^{q0} \delta_{l_x, i_x} + H_{l_x, i_x}(\Delta U_{\rm G}) \right) = E_{n_x}^{\rm q} \sum_{i_x} a_{n_x, i_x} \delta_{l_x, i_x}$$
(3.59)

この式は δ_{l_x,i_x} の特性により,

$$a_{n_x,l_x}\left(E_{l_x}^{q0} - E_{n_x}^q\right) + \sum_{i_x} a_{n_x,i_x} H_{l_x,i_x}(\Delta U_G) = 0$$
(3.60)

と書ける.式 (3.60) から分かるように, $E_{n_x}^{q}$ は基底系のエネルギー準位 $E_{l_x}^{q0}$ と行列要素 H_{l_x,i_x} の和によって表わされている.基底系の電子状態に関する量子数 l_x は任意に選ぶこ とができる.ワイヤ断面内の電子の電子状態,すなわち波動関数を表わすためには,それ と形状の近い基底系の波動関数を用いるのが妥当であると考えられる.また,波動関数の 対称性から,偶数の量子数を持つワイヤ断面内の波動関数は偶数の量子数を持つ基底系の 波動関数によって表わすことができると考えられる.奇数の量子数に関しても同様である.よって,ゲート電圧によるバンド曲がりがそれほど大きくないと考えれば, $l_x = n_x, n_x + 2$ を持つ基底系の電子のエネルギー準位がチャネル内の電子のエネルギー準位に対して最も 有用な値を持つと仮定する.したがって,式 (3.59) の $E_{n_x}^{q}$ は次の二つの式で表せる.

$$a_{n_x,n_x} \left(E_{n_x}^{q0} - E_{n_x}^{q} \right) + \sum_{i_x} a_{n_x,i_x} H_{n_x,i_x} (\Delta U_{\rm G}) = 0$$
(3.61)

図 3.5: 行列要素 $|H_{n_x,i_x}| / |H_{n_x,n_x}|$ の量子数依存性. (a) (n_x,i_x) に関する配列図. (b) $n_x = 4,5$ に関する i_x 依存性.

$$a_{n_x,n_x+2} \left(E_{n_x+2}^{q0} - E_{n_x}^{q} \right) + \sum_{i_x} a_{n_x,i_x} H_{n_x+2,i_x} (\Delta U_{\rm G}) = 0$$
(3.62)

次に行列要素 H_{n_x,i_x} について考える.行列要素は式 (3.56) により解析的に表されている. 行列要素の特性を図 3.5 に示す.図 3.5(a) から明らかな通り, H_{n_x,i_x} は $n_x = i_x$ の対角要素 が最も大きく,そこから外れるほど値が小さくなる.また,図 3.5(b) より, $n_x + i_x$ が奇数 のときに行列要素は 0 になる.以上のことから,式 (3.61) と式 (3.62) における行列要素に 関しても $i_x = n_x, n_x + 2$ のみが有用な値を持つと仮定し,それ以外を無視する.したがっ て,式 (3.61) と式 (3.62) は,

$$a_{n_x,n_x} \left(E_{n_x}^{q0} - E_{n_x}^{q} + H_{n_x,n_x}(\Delta U_{\rm G}) \right) + a_{n_x,n_x+2} H_{n_x,n_x+2}(\Delta U_{\rm G}) = 0$$
(3.63)

$$a_{n_x,n_x}H_{n_x+2,n_x}(\Delta U_{\rm G}) + a_{n_x,n_x+2} \left(E_{n_x+2}^{\rm q0} - E_{n_x}^{\rm q} + H_{n_x+2,n_x+2}(\Delta U_{\rm G}) \right) = 0 \quad (3.64)$$

となる. ここで、考慮している行列要素が量子数 n_x に対応する行列要素 $l_x = n_x, n_x + 2$ だ けで本当に良いのかどうか疑問が残る. 図 3.5 を見る限りでは、他にもある程度大きな値 を持つ要素が存在することは明らかである. しかし、電子の閉じ込めエネルギー $E_{n_x}^q$ を求 めるために、式 (3.63) と式 (3.64) から決まる行列式を解くことになる. その際に、条件式 (式 (3.63) と式 (3.64)) が二つであるため、 $E_{n_x}^q$ を求めるために許される未定係数は a_{n_x,n_x} と a_{n_x,n_x+2} の二つだけである. したがって、より多くの行列要素を考慮するためには、よ り多くの基底系のエネルギー準位を考慮する必要があり、結果として考慮する条件式が増 え、電子の閉じ込めエネルギーの式が複雑になる. これに関しては 3.5.4 項にて触れるが、 本研究で扱うサイズのワイヤ断面であれば二つの基底系のエネルギー準位のみで十分であ ることを確認済みである. 以上により、式 (3.63) 及び (3.64) から、

$$\begin{pmatrix} E_{n_x}^{q0} - E_{n_x}^{q} + H_{n_x,n_x}(\Delta U_{\rm G}) & H_{n_x,n_x+2}(\Delta U_{\rm G}) \\ H_{n_x+2,n_x}(\Delta U_{\rm G}) & E_{n_x+2}^{q0} - E_{n_x}^{q} + H_{n_x+2,n_x+2}(\Delta U_{\rm G}) \end{pmatrix} \begin{pmatrix} a_{n_x,n_x} \\ a_{n_x,n_x+2} \end{pmatrix} = 0$$
(3.65)

が得られる. 係数 a_{n_x,n_x} , a_{n_x,n_x+2} が 0 の場合, 波動関数が恒等的に 0 になってしまい意味 のない解となる. したがって, 式 (3.65) から次の行列式が得られる.

この行列式を $E_{n_x}^{q}$ に関して解くことで、電子の閉じ込めエネルギーを次のように導出できる.

$$E_{n_x}^{q}(\Delta U_{\rm G}) = \frac{1}{2} \left[\varepsilon_{n_x}(\Delta U_{\rm G}) + \varepsilon_{n_x+2}(\Delta U_{\rm G}) \\ \pm \sqrt{\left(\varepsilon_{n_x}(\Delta U_{\rm G}) - \varepsilon_{n_x+2}(\Delta U_{\rm G})\right)^2 + 4H_{n_x,n_x+2}^2(\Delta U_{\rm G})} \right]$$
(3.67)

 $\varepsilon_{n_x}(\Delta U_{\rm G}) = E_{n_x}^{\rm q0} + H_{n_x,n_x}(\Delta U_{\rm G})$

式 (3.67) では解が二通り導出されているが、片方は数学的に導かれる解であり、特に物理的意味を持たないものである. したがって、電子の閉じ込めエネルギー $E_{n_x}^{q}$ は、

$$E_{n_x}^{q}(\Delta U_{\rm G}) = \frac{1}{2} \left[\varepsilon_{n_x}(\Delta U_{\rm G}) + \varepsilon_{n_x+2}(\Delta U_{\rm G}) - \sqrt{\left(\varepsilon_{n_x}(\Delta U_{\rm G}) - \varepsilon_{n_x+2}(\Delta U_{\rm G})\right)^2 + 4H_{n_x,n_x+2}^2(\Delta U_{\rm G})} \right]$$
(3.69)

となる. 以上により, 一次元の Schrödinger 方程式を近似的に解くことができた.

3.2.3 ワイヤ断面内の閉じ込めエネルギー

3.2.1 項及び 3.2.2 項では x 方向の Schrödinger 方程式の近似解法を例として解説した. 一方で, y 方向の Schrödinger 方程式 (3.14) も同様の手法で解くことができ, 閉じ込めエネ ルギー $E_{n_y}^{q}$ も式 (3.54) 又は式 (3.69) と同じ形で得られる. すなわち,

$$E_{n_y}^{q}(\Delta U_{\rm G}) = E_{n_y}^{q0} + (e\Delta U_{\rm G})\widetilde{H}_{n_y,n_y} + (e\Delta U_{\rm G})^2 \sum_{i_y \neq n_y} \frac{\left|\widetilde{H}_{n_y,i_y}\right|^2}{E_{n_y}^{q0} - E_{i_y}^{q0}}$$
(3.70)

または,

$$E_{n_y}^{q}(\Delta U_{\rm G}) = \frac{1}{2} \left[\varepsilon_{n_y}(\Delta U_{\rm G}) + \varepsilon_{n_y+2}(\Delta U_{\rm G}) - \sqrt{\left(\varepsilon_{n_y}(\Delta U_{\rm G}) - \varepsilon_{n_y+2}(\Delta U_{\rm G})\right)^2 + 4H_{n_y,n_y+2}^2(\Delta U_{\rm G})} \right]$$
(3.71)

となる.したがって、ワイヤ断面内の電子の閉じ込めエネルギーは、

$$E_{n_x,n_y}^{\mathbf{q}}(\Delta U_{\mathbf{G}}) = E_{n_x}^{\mathbf{q}}(\Delta U_{\mathbf{G}}) + E_{n_y}^{\mathbf{q}}(\Delta U_{\mathbf{G}})$$
(3.72)

として得られる.以上でワイヤ断面内の電子の閉じ込めエネルギーの解析式が得られた.

(3.68)

3.3 弾道・準弾道輸送電流

NW MOSFET の準弾道輸送に基づくドレイン電流の解析式は 2.3.2 項の式 (2.70) で記述され、ボトルネックにおける電子の閉じ込めエネルギーにのみ依存する. 正確にはボトルネックにおける電子の閉じ込めエネルギーとソースのフェルミ準位の差に依存する. 本研究では、エネルギーの基準をソースのフェルミ準位 ($E_{FS} = 0$) としている. ここまでに導出したエネルギー準位 E_{n_x,n_y}^q は表面ポテンシャル $-ew_s$ を基準として導出したエネルギーである. また、 $-ew_s$ は E_{FS} を基準とする. そのため、ソースのフェルミ準位を基準とした電子の閉じ込めエネルギー E_{n_x,n_y} は次の関係式を満たし、これがそのまま閉じ込めエネルギーとソースのフェルミ準位の差を表わす.

$$E_{n_x,n_y}(\Delta U_{\rm G}) = E^{\rm q}_{n_x,n_y}(\Delta U_{\rm G}) - ew_{\rm s} \tag{3.73}$$

そのため、NW MOSFET の準弾道輸送に基づくドレイン電流は、

$$I_{\rm DS}(\Delta U_{\rm G}, V_{\rm DS}) = \frac{ek_{\rm B}T}{\pi\hbar} \sum_{n_x, n_y} \left(1 - R_{n_x, n_y}\right) \\ \times \ln\left\{\frac{1 + \exp\left[\left(ew_{\rm s} - E_{n_x, n_y}^{\rm q}(\Delta U_{\rm G})\right) / k_{\rm B}T\right]}{1 + \exp\left[\left(ew_{\rm s} - E_{n_x, n_y}^{\rm q}(\Delta U_{\rm G}) - eV_{\rm DS}\right) / k_{\rm B}T\right]}\right\}$$
(3.74)

となる. ここでは w_s が決まっていないが, 3.3.1 項で示すように, w_s も ΔU_G の関数として 導出するため, 電流は ΔU_G の関数として得られる.

3.3.1 表面ポテンシャル

式 (3.74) に示すように、準弾道輸送に基づくドレイン電流を計算するには表面ポテンシャルに関する情報が必要になる.本項では、モデルポテンシャル及びその境界条件から表面ポテンシャルを導出する.まず、境界条件(式(3.5),(3.7))内の *V*_{ox,y} と *V*_{ox,x} をモデルポテンシャルを用いて導出する.酸化膜のキャパシタンスを、

$$C_{\rm ox} = \frac{\varepsilon_{\rm ox}}{t_{\rm ox}} \tag{3.75}$$

としたとき、Gaussの法則により $V_{\text{ox},y}$ 及び $V_{\text{ox},x}$ は次の関係式を満たす.

$$C_{\rm ox}V_{\rm ox,y} = \varepsilon_{\rm ch} \left(-\frac{\partial w(x,y)}{\partial y} \Big|_{y=0} \right)$$
(3.76)

$$C_{\rm ox}V_{\rm ox,x} = \varepsilon_{\rm ch} \left(-\frac{\partial w(x,y)}{\partial x} \bigg|_{x=0} \right)$$
(3.77)

ここで, ε_{ox} は酸化膜材料の誘電率を表わす. モデルポテンシャルを式 (3.76) 及び (3.77) に 代入することで酸化膜にかかる電圧は,

$$V_{\text{ox},y}(\Delta U_{\text{G}}) = \frac{\varepsilon_{\text{ch}}}{C_{\text{ox}}} \left(-\frac{\partial w(x,y)}{\partial y} \Big|_{y=0} \right) = \frac{4\varepsilon_{\text{ch}}\Delta U_{\text{G}}}{C_{\text{ox}}(t_x + t_y)}$$
(3.78)

$$V_{\text{ox},x}(\Delta U_{\text{G}}) = \frac{\varepsilon_{\text{ch}}}{C_{\text{ox}}} \left(-\frac{\partial w(x,y)}{\partial x} \Big|_{x=0} \right) = \frac{4\varepsilon_{\text{ch}}\Delta U_{\text{G}}}{C_{\text{ox}}(t_x + t_y)}$$
(3.79)

62

となる. ここで一つ問題が生じる. 酸化膜にかかる電圧は式 (3.78) 及び式 (3.79) から分か る通り, 酸化膜-チャネル界面の座標には依存せず, ワイヤ断面内の静電ポテンシャル形状 を決定する $\Delta U_{\rm G}$ にのみ依存する. これは, 酸化膜に生じる電界が酸化膜-チャネル界面の 垂直方向に関して一定であることを意味する. しかし, 実際には $V_{{
m ox},y}(V_{{
m ox},x})$ は x 方向 (y方向) の依存性による分布を持つ. この問題は, モデルポテンシャルの定義の仕方上, 避け られないものである. この矛盾を緩和するために, 境界条件 (3.5) 及び (3.7) をワイヤ断面 内の酸化膜-チャネル界面の周囲で積分し, その和をとる. この操作は, 酸化膜-チャネル界 面における境界条件の平均をとるような役目を果たす. したがって,

$$\frac{t_x + t_y}{2} V'_{\rm GS} = \int_0^{\frac{t_x}{2}} dx \left[w(x,0) + V_{\rm ox,y}(\Delta U_{\rm G}) \right] \\ + \int_0^{\frac{t_y}{2}} dy \left[w(0,y) + V_{\rm ox,x}(\Delta U_{\rm G}) \right] \\ = \int_0^{\frac{t_x}{2}} dx \left[w_{\rm s} - 4\Delta U_{\rm G}g(x,0) + V_{\rm ox,y}(\Delta U_{\rm G}) \right] \\ + \int_0^{\frac{t_y}{2}} dy \left[w_{\rm s} - 4\Delta U_{\rm G}g(0,y) + V_{\rm ox,x}(\Delta U_{\rm G}) \right]$$
(3.80)

$$V_{\rm GS}' = V_{\rm GS} - \phi_{\rm G} + \chi_{\rm ch}$$

(3.81)

が得られる. モデルポテンシャル及び酸化膜にかかる電圧を式 (3.80) に代入し, w_s について解くと,

$$w_{\rm s}(\Delta U_{\rm G}) = V_{\rm GS}' + \Delta U_{\rm G} \left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} \right]$$
(3.82)

となり, w_s が ΔU_G の関数として得られた.この表面ポテンシャルを用いることで,準弾道 輸送電流が ΔU_G のみの関数として得られたことになる.

3.4 線電荷密度の方程式

3.3 節までを用いて、NW MOSFET の基本特性であるワイヤ断面内の電子の閉じ込めエネルギー及び弾道・準弾道輸送に基づくドレイン電流を共通のパラメータ $\Delta U_{\rm G}$ の関数として解析的に導出した.そのため、ボトルネックにおけるワイヤ断面内の静電ポテンシャル形状を表わす $\Delta U_{\rm G}$ を各ゲート電圧及びドレイン電圧の条件と矛盾しないように決定することで、NW MOSFET の基本特性を計算することができる.本節では、各バイアス条件下における $\Delta U_{\rm G}$ の決定手法を解説する.

ある一つのパラメータを決定するには、それに関する方程式を一つ立てる必要がある. こ こでは線電荷密度に関する方程式である. ボトルネックにおける線電荷密度を静電学及び 量子統計に基づく二通りの手法により導出し、導出した線電荷密度の方程式を各バイアス 条件下で ΔU_G に関して解く. そうすることで、各バイアス条件と矛盾することなくワイヤ 断面内の静電ポテンシャル形状が決まり、結果として NW MOSFET の特性が計算できる.

3.4.1 静電学に基づく電荷密度

まず,静電学に基づく線電荷密度の導出方法を説明する.式 (3.2) に示した通り,ボトル ネックにおけるワイヤ断面内の電荷密度分布 ρ_{ch} と静電ポテンシャル分布 w は Poisson 方 程式により関係づけられる.しかし、必要な物理量は線電荷密度であって,ワイヤ断面内 の電荷がどのように分布しているかはここではそれほど重要な問題ではない.そこで,式 (3.2) をワイヤ断面内のチャネル領域に関して積分すると次のようになる.

$$\int_{0}^{t_{x}} \int_{0}^{t_{y}} dx dy \rho_{ch}(x, y) = -\varepsilon_{ch} \int_{0}^{t_{x}} \int_{0}^{t_{y}} dx dy \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) w(x, y)$$

$$= 4\varepsilon_{ch} \Delta U_{G} \int_{0}^{t_{x}} \int_{0}^{t_{y}} dx dy \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) g(x, y)$$

$$= -\frac{8\varepsilon_{ch} \Delta U_{G}}{t_{x} + t_{y}} \int_{0}^{t_{x}} \int_{0}^{t_{y}} dx dy \left(\frac{1}{t_{x}} + \frac{1}{t_{y}}\right)$$

$$= -8\varepsilon_{ch} \Delta U_{G}$$
(3.83)

したがって、静電学に基づくワイヤ断面内の線電荷密度をQeとすると、

$$Q_{\rm e}(\Delta U_{\rm G}) = -8\varepsilon_{\rm ch}\Delta U_{\rm G} \tag{3.84}$$

となり、ボトルネックにおける線電荷密度は $\Delta U_{\rm G}$ に比例することが分かる.

3.4.2 量子統計に基づく電荷密度

量子統計に基づく線電荷密度の導出方法を説明する.この導出方法では,弾道・準弾道 輸送に基づくドレイン電流を導出したときと同様の仮定を置く.すなわち,ボトルネック はバーチャルソースであり,そこでの電子は全て熱平衡状態を保ったまま各電極から注入 されている.この仮定により,線電荷密度を計算する際に Fermi-Dirac 分布関数を使用で きる.量子統計に基づく線電荷密度を Q_q とすると,ボトルネックにおける線電荷密度は一 次元系に関する状態密度関数 D_{1d} 及び Fermi-Dirac 分布関数 f_{FD} を用いて次のように与 えられる [15, 16].

$$Q_{q}(\Delta U_{G}) = -\frac{e}{2} \sum_{n_{x}, n_{y}} \int_{0}^{\infty} dE_{z} D_{1d}(E_{z}) [(1 + R_{n_{x}, n_{y}}) f_{FD}(E_{tot}(\Delta U_{G}), E_{FS}) + (1 - R_{n_{x}, n_{y}}) f_{FD}(E_{tot}(\Delta U_{G}), E_{FD})]$$
(3.85)

$$D_{\rm 1d}(E_z) = \frac{1}{\pi\hbar} \sqrt{\frac{2m_z^*}{E_z}}$$
(3.86)

$$E_{\text{tot}}(\Delta U_{\text{G}}) = E_{n_x, n_y}^{\text{q}}(\Delta U_{\text{G}}) + E_z \tag{3.87}$$

ここで、*m*^{*} は *z* 方向に関する電子の有効質量を表わす. ソースの Fermi 準位で決まる分布 関数に従って誘起される電子はソースから注入される電子に対応する. 同様に、ドレイン の Fermi 準位で決まる分布関数に従って誘起される電子はドレインから注入される電子に 対応する.式 (3.85) に各関数を実際に代入することで、見覚えのある形に変形できる.以 下にその手順を示す.

$$Q_{q}(\Delta U_{G}) = -\frac{e\sqrt{2m_{z}^{*}}}{\pi\hbar} \sum_{n_{x},n_{y}} \frac{1}{2} \\ \times \left\{ \left(1 + R_{n_{x},n_{y}}\right) \int_{0}^{\infty} dE_{z} \frac{E_{z}^{-1/2}}{1 + \exp\left(\left[E_{n_{x},n_{y}}(\Delta U_{G}) + E_{z} - E_{FS}\right]/k_{B}T\right)} + \left(1 - R_{n_{x},n_{y}}\right) \int_{0}^{\infty} dE_{z} \frac{E_{z}^{-1/2}}{1 + \exp\left(\left[E_{n_{x},n_{y}}(\Delta U_{G}) + E_{z} - E_{FD}\right]/k_{B}T\right)} \right\}$$
(3.88)

ここで, $E_z \ge E_z = k_B T \varepsilon_z$ のように無次元のパラメータ ε_z に変数変換することで,式(3.88) は次のように変形できる.

$$Q_{q}(\Delta U_{G}) = -\frac{e\sqrt{2m_{z}^{*}k_{B}T}}{\pi\hbar} \sum_{n_{x},n_{y}} \frac{1}{2}$$

$$\times \left\{ \left(1 + R_{n_{x},n_{y}}\right) \int_{0}^{\infty} d\varepsilon_{z} \frac{\varepsilon_{z}^{-1/2}}{1 + \exp\left(\varepsilon_{z} - \left[E_{FS} - E_{n_{x},n_{y}}(\Delta U_{G})\right]/k_{B}T\right)} + \left(1 - R_{n_{x},n_{y}}\right) \int_{0}^{\infty} d\varepsilon_{z} \frac{\varepsilon_{z}^{-1/2}}{1 + \exp\left(\varepsilon_{z} - \left[E_{FD} - E_{n_{x},n_{y}}(\Delta U_{G})\right]/k_{B}T\right)} \right\}$$

$$(3.89)$$

この式は、式 (2.60) で定義した Fermi 積分において $n = -\frac{1}{2}$ とした形と一致する. したがって、式 (3.89) は Fermi 積分を用いて次のように表せる.

$$Q_{q}(\Delta U_{G}) = -\frac{e\sqrt{2m_{z}^{*}k_{B}T}}{\pi\hbar} \sum_{n_{x},n_{y}} \frac{1}{2} \times \left[\left(1 + R_{n_{x},n_{y}}\right)F_{-\frac{1}{2}} \left(\frac{E_{FS} - E_{n_{x},n_{y}}(\Delta U_{G})}{k_{B}T}\right) + \left(1 - R_{n_{x},n_{y}}\right)F_{-\frac{1}{2}} \left(\frac{E_{FD} - E_{n_{x},n_{y}}(\Delta U_{G})}{k_{B}T}\right) \right]$$
(3.90)

以上により、量子統計に基づいてボトルネックにおける線電荷密度が $\Delta U_{\rm G}$ の関数として 導出できた.二つの手法で導出した線電荷密度の方程式 $Q_{\rm e}(\Delta U_{\rm G}) = Q_{\rm q}(\Delta U_{\rm G})$ を各バイ アスごとに解くことで $\Delta U_{\rm G}$ を求めることができる.

3.5 精度検証

3.4.1 項及び 3.4.2 項にて導出した二つの線電荷密度による方程式 $Q_{e}(\Delta U_{G}) = Q_{q}(\Delta U_{G})$ を解くことで各バイアス条件における ΔU_{G} が決まり, 結果として NW MOSFET のドレ イン電流も決まる.本節では,実際に線電荷密度の方程式を解き, NW MOSFET の特性を 計算する.また,数値シミュレータを用いて計算した数値計算上厳密な NW MOSFET の 特性と比較することで本モデルの精度検証を行う.実際に計算する前に,本論文を通して 扱う材料及び計算結果比較に用いる数値シミュレータに関する説明を行う.

3.5.1 計算条件

計算対象とするデバイスの各領域の材料であるが、チャネル材料を真性 Si とし、酸化膜 材料を SiO₂ とする. そのため、チャネルおよび酸化膜の誘電率はそれぞれ $\varepsilon_{ch} = 11.9\varepsilon_0$ 、 $\varepsilon_{ox} = 3.9\varepsilon_0$ とする. ただし、 ε_0 は真空中の誘電率であり、 $\varepsilon_0 = 8.85418 \times 10^{-12}$ F/m とする. チャネル材料のエネルギーバンド構造を考えるとき、電子は存在するバレーま たは面方位によって異なる有効質量を持つ可能性がある. 本モデルはエネルギー準位を 有効質量近似の範囲内で導出しているため、特性計算には電子の有効質量が必須である. 計算に使用する Si のバンド構造と、各波数成分 (k_x, k_y, k_z) との対応を図 3.6 に示す [17]. 図 3.6 に示した通り、横有効質量 (transverse effective mass) $m_t = 0.19m_0$ 、縦有効質 量 (longitudinal effective mass) $m_1 = 0.91m_0$ としたとき、各バレー番号 n_v と各方向 の電子の有効質量は (n_v, m_x^*, m_y^*, m_z^*) = ($1, m_1, m_t, m_t$), ($2, m_1, m_t, m_t$), ($3, m_t, m_1, m_t$), ($4, m_t, m_1, m_t$), ($5, m_t, m_t, m_1$), ($6, m_t, m_t, m_1$) と対応する. 以上で示した通り、ワイヤ断 面内の電子状態は電子の存在するバレーによって異なる. この依存性を表わすために、バ レー番号を表わす n_v をそれに関係する各パラメータに添え字として追加する. すなわち、 n_v を通してどのバレーに存在する電子成分を考えているかを指定する. 以上が材料に関す る説明とする.

3.5.2 比較対象

ここでは、本モデルの計算精度を検証するために使用する二つの数値シミュレータに関 して解説する.本研究で使用する数値シミュレータは、基本的に共同研究者の方々から支 給されたものであるため、その細部に至るまで理解できてはいない.そのため、本項では各 数値シミュレータの概要説明に留める.各数値シミュレータの詳しい情報が必要な場合は 参考文献 [1, 2, 18] 等を参考にしていただきたい.
一つ目の数値シミュレータは、ワイヤ断面内の二次元の Schrödinger-Poisson 方程式を数 値的に解くシミュレータである. このシミュレータは SP(Schrödinger-Poisson) シミュレー タと呼ぶことにする (図面内では SP と記述). 3.2 節で導出した閉じ込めエネルギーの解析 式はワイヤ断面内の二次元の Schrödinger 方程式を近似的に解くことで導出した. この閉 じ込めエネルギーを用いて実際に電流を計算する前に、本手法により二次元の Schrödinger 方程式が精度よく解かれているかを確認する必要がある. そこで、ワイヤ断面内の電子状 態を数値的に正確に計算できる SP シミュレータを用いることで、近似手法そのものの適 性を検証する.

二つ目の数値シミュレータは NW MOSFET 構造全体の三次元の Schrödinger-Poisson 方程式を非平衡 Green 関数法に基づき数値的に解くシミュレータである. このシミュレー タは NEGF (non-equilibrium Green's function formalism) シミュレータと呼ぶことにする (図面内では NEGF と記述). 閉じ込めエネルギーの検証の後に必要なことは、それを用い て計算された電流の検証である. すなわち、電子伝導方向の効果を無視するという仮定に 基づき計算された電流が精度よく計算できているかどうかを検証する必要がある. そこで、 デバイス構造全体の電子状態を正確に計算できる NEGF シミュレータを用いることで、本 コンパクトモデルの精度を検証する.

3.5.3 検証:線電荷密度

ここでは、実際に $Q_{\rm e}(\Delta U_{\rm G}) = Q_{\rm q}(\Delta U_{\rm G})$ の線電荷密度の方程式を解き、 $\Delta U_{\rm G}$ を求める. また、求めた $\Delta U_{\rm G}$ を用いて線電荷密度も計算する.まず、各バイアス条件毎に $\Delta U_{\rm G}$ を決定するため、以下に示す線電荷密度の方程式 $Q_{\rm e} = Q_{\rm q}$ を解くことを考える.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2k_{\rm B}T}}{\pi\hbar} \sum_{n_v, n_x, n_y} \frac{1}{2}\sqrt{m_{z, n_v}^*} \times \left[\left(1 + R_{n_v, n_x, n_y}\right) F_{-\frac{1}{2}} \left(\frac{E_{\rm FS} - E_{n_v, n_x, n_y}(\Delta U_{\rm G})}{k_{\rm B}T}\right) + \left(1 - R_{n_v, n_x, n_y}\right) F_{-\frac{1}{2}} \left(\frac{E_{\rm FD} - E_{n_v, n_x, n_y}(\Delta U_{\rm G})}{k_{\rm B}T}\right) \right]$$
(3.91)

この式の右辺は、Fermi 積分を n_v , n_x 及び n_y に関して和を取るという複雑な式である. そのため、式 (3.91) を $\Delta U_{\rm G}$ に関して解析的に解くことは非常に困難である.そこで、本 節では式 (3.91) を数値的に解く.本論文では、式 (3.91) を数値的に解く場合のモデルを NC(numerical compact) モデルと呼ぶことにし、近似的に解く場合を FA(fully analytic) モデルと呼ぶことにする.近似的に解く手法は第4章を参照して頂きたい.式 (3.91) を解 く際、後方散乱係数 R_{n_v,n_x,n_y} を決定する必要があるが、現段階において R_{n_v,n_x,n_y} を的確 に決定する手法を持ち合わせていない.また、比較対象の一つである NEGF シミュレータ は完全な弾道輸送を想定して計算を実行するものを使用している.そのため、本コンパク トモデルを用いて計算する際は、断りがない限り完全な弾道輸送 ($R_{n_v,n_x,n_y} = 0$)を想定し て計算する.

図 3.7 に各ワイヤ断面構造における $\Delta U_{\rm G}$ の計算結果を示す.電子の閉じ込めエネルギー は二種類の近似手法により導出したため、各解析式 (3.54) 及び (3.69) を用いて方程式 (3.91) を数値計算により解き、その両方の結果を図 3.7 に示している. 各手法の結果はほとんど 同様な特性曲線を描く.そのため、各解析式が同程度の精度を示すことが予想できる (各

図 3.7: 線電荷密度の方程式を数値的に解くことにより求めた $\Delta U_{\rm G}$ の結果例. ここで, n_s は方程式を解く際に考慮するサブバンド数を表わす. (a) $\Delta U_{\rm G}-V_{\rm GS}$ 特性. (b) $\Delta U_{\rm G}-V_{\rm DS}$ 特性.

解析式の精度に関する議論は次項で行う). 図 3.7 において、しきい値は $V_{GS} = 0$ 周辺である. ゲート電圧が閾値より大きくなると、バンド曲がりが大きくなり、急激にチャネル内に電子が誘起される. それに伴い、 ΔU_{G} が大きくなる. 一方、サブスレッショルド領域では電子がチャネル内にほとんど存在しないため、そこでの静電ポテンシャル分布は平らに近づく. そのため、サブスレッショルド領域における ΔU_{G} はほとんど0 である. このように、 ΔU_{G} は直感的なワイヤ断面内の静電ポテンシャル形状の挙動と矛盾しない. しかし、 ΔU_{G} はモデルポテンシャルを与えるために都合よく定義したパラメータであるため、数値シミュレーション結果と比較することにあまり意味はない. むしろ、このパラメータを用いて解析的に表わされている物理量の精度が重要になる.

図 3.8 に各ワイヤ断面構造に関する線電荷密度 Q_q の計算結果を示す. 比較対象は SP シ ミュレータによる数値シミュレーション結果である. 計算条件は図 3.7 と同様である. ま た, $Q_e = Q_q$ を数値的に解くことで ΔU_G を決定しているので,図 3.8 の Q_q は Q_e と等価 である. 式 (3.84) が示すように,線電荷密度は ΔU_G に比例するため,図 3.8 は図 3.7 の曲 線の定数倍の特性曲線を描いている. また, SP シミュレータの計算結果と比較すると, NC

図 3.8: $Q_q(Q_e) - V_{GS}$ 特性の比較結果.

モデルが非常に高い精度で数値計算結果を再現していることが分かる. このように,本モ デルは少なくともワイヤ断面内の線電荷密度を高い精度で再現することが分かる. ただし, これだけではワイヤ断面内の閉じ込めエネルギーを精度よく再現できるかはまだ分からな い. そこで,次項では電子の閉じ込めエネルギーの精度の検証を行う.

3.5.4 検証:電子の閉じ込めエネルギー

手順は 3.5.3 項と同様である.図3.7 に示されている $\Delta U_{\rm G}$ を用いて、式(3.54) 及び(3.69)を用いて式(3.73)から電子の閉じ込めエネルギーを計算する. そして、その結果を SP シ ミュレータの数値計算結果と比較する。各ワイヤ断面構造に関する計算結果を図 3.9 に示 す.図において、E_{1.0.0}はワイヤ断面内の基底準位を、E_{1.1.0}は第一励起準位を、E_{5.0.0}は第 二励起準位を表わす、すなわち、ワイヤ断面内においてエネルギーの低い方から順に三本 の閉じ込めエネルギーを表示したものである.また、図3.9には数値計算以外に三種類の計 算結果が示されている.一つは解析式(3.69)による計算結果である.もう二つは摂動法に より求めた閉じ込めエネルギーの解析式 (3.54) を使用する際に、一次の摂動項までしか考 えない場合と二次の摂動項まで考慮した場合の各計算結果を示している. 図 3.9 から明ら かなように、各モデルは非常に良い精度で数値計算結果を再現している、このことから、各 近似手法によりワイヤ断面内の二次元の Schrödinger 方程式が精度良く解かれていること が分かる.また、モデルポテンシャルの定義も適当であると言える.図3.9(b)は基底準位 に関する各モデルと SP シミュレータによる計算結果の誤差を示す. 各手法の計算精度の 違いであるが、実際のところそれほど精度に差はない、全ての構造に関して最も高い精度 を示すのは、強いて挙げるなら式(3.69)による閉じ込めエネルギーである. しかし、二次の 摂動まで考慮した摂動法によるモデルも各構造に関してほとんど同等の精度を示す. 問題 は二次の摂動項を無視したモデルである. 断面サイズが 3 nm/3 nm 及び 4 nm/4 nm では 精度にそれほど差はない. しかし,断面サイズ及びゲート電圧が大きくなることで誤差が 徐々に大きくなる. 誤差が大きくなる原因は至って簡単である. 摂動法では $\Delta U_{
m C}$ がフラッ トバンド状態への摂動であるとして計算している.図3.7から分かる通り、同じゲート電 圧条件において $\Delta U_{
m C}$ は断面サイズが大きいほど大きくなる. その分フラットバンド状態

図 3.9: NC モデルと SP シミュレータによる数値計算結果の比較結果. (a) E_{n_v,n_x,n_y} - V_{GS} 特性. (b) $E_{1,0,0}$ の計算結果に関する誤差のゲート電圧依存性. $t_x/t_y = (a-1,b-1) 3 \text{ nm}/3 \text{ nm}$, (a-2,b-2) 4 nm/4 nm, (a-3,b-3) 5 nm/5 nm の断面構造に対応する.

への摂動が大きくなり、高次の摂動項がよりフラットバンド状態へ影響しやすくなる.すなわち、断面サイズまたはゲート電圧が大きくなることが摂動による影響が大きくなる条件になる.したがって、一次の摂動項まででは対応しきれずに誤差が大きくなる.また、図3.9(b-3)から明らかなように、この程度の断面サイズであれば二次の摂動項まで考慮すれば十分な精度を示す.そのため、より広い断面サイズまで対応させる意味を込めて本モデルでは二次の摂動項まで考慮すれば良いことにする.実際、ITRSのロードマップに従うのであれば、断面サイズはおよそ図3.9にて計算したサイズ程度のデバイスから導入が期待されており、ゲート電圧の範囲もおよそ電源電圧 $V_{DD} = 1V$ 程度で十分と考えられる.その点からみても、二次の摂動までで十分であると考えられる.

次に、3 nm/3 nmよりもワイヤ断面が小さい場合について触れておく.ワイヤ断面が小さくなると、あるバイアス条件における $\Delta U_{\rm G}$ の値は小さくなる (図 3.7) ことから、式 (3.58)、 (3.69) における摂動項の影響はその分小さくなる.したがって、閉じ込めエネルギーの解析 式の精度は 3 nm/3 nm の断面サイズの場合と同程度の精度を示すものと考えられる.ま た、断面サイズが 3 nm/3 nm 以下まで小さくなることにより、電子の有効質量が大きく変 化するという問題点がある [19, 20]. この問題に関しては、有効質量を実際に計算している もの [21]、有効質量の変化の仕方をモデル化したもの [22] などが報告されていることから、 それを用いて NC モデルにより閉じ込めエネルギーを計算することで解決できると考えて いる.以上により、ワイヤ断面が図 3.9 で示した条件より小さい場合でも、本モデルは良い 精度を示すと考えられる.また、それを確認するためにも、今後 SP シミュレータを用いた 計算結果との比較が必要である.

図 3.10: 弾道輸送に基づく NW MOSFET の電流電圧特性. (a) $I_{ds}-V_{DS}$ 特性. (b) $I_{DS}-V_{GS}$ 特性. $t_x/t_y = (a-1,b-1) 2 \text{ nm}/4 \text{ nm}$, (a-2,b-2) 3 nm/4 nm, (a-3,b-3) 4 nm/4 nm の断面 構造に対応する.

以上により、3.4節で示した近似解法を用いることで二次元の Schrödinger 方程式を精度 よく解けることを示せた.次節において、本モデルを用いた弾道・準弾道輸送に基づくド レイン電流の精度を検証する.

3.5.5 検証: 弾道輸送電流

NC モデルによる弾道輸送電流の精度を検証する.弾道輸送に基づくドレイン電流は,式 (3.74)で表わされる.ここに,各閉じ込めエネルギーの解析式を代入することで電流を計 算する.比較対象はNEGFシミュレータによる数値シミュレーション結果である.図3.10 に電流の計算結果を示す.図3.10から明らかなように,本モデルは各断面構造,各バイア ス条件に関して良い精度で数値シミュレーション結果を再現していることが分かる.しか

図 3.11: $E_{1,0,0}-V_{\text{GS}}$ 特性. コンパクトモデルと NEGF シミュレータによる数値計算結果の 比較. $t_x/t_y = (a-1) 2 \text{ nm}/4 \text{ nm}, (a-2) 3 \text{ nm}/4 \text{ nm}, (a-3) 4 \text{ nm}/4 \text{ nm}$ の断面構造に対応 する.

図 3.12: NEGF シミュレータによる各断面構造に関する励起準位の電流占有率.

し、断面サイズが4 nm/4 nmの場合、 $V_{\text{DS}} = 0.8 \text{ V}$ 且つ $V_{\text{GS}} = 0.5 \text{ V}$ のバイアス条件にお いて 25% 近い誤差を生じる. このように、断面構造が大きくなるほど誤差が大きくなる. そのため、断面サイズを更に大きくした場合に、より誤差が生じることは想像に難くない. 弾道輸送に基づく電流はボトルネックにおける電子の閉じ込めエネルギーにのみ依存する ため、電流に関する誤差の原因は閉じ込めエネルギーの精度にあると考えられる.図 3.11 に NEGF シミュレータを用いて計算したボトルネックにおけるワイヤ断面内の電子の基 底準位と本モデルの比較結果を示す. SP シミュレータに関する比較結果と同様に、本モデ ルは NEGF シミュレータに対しても高い精度を示している. しかし, 4 nm/4 nm 断面の比 較結果から分かるように、基底準位の誤差そのものは小さいが、NCモデルとNEGFシミュ レーションの間の誤差の挙動は、図 3.10(b-3)の V_{DS} = 0.8 V における誤差の挙動と一致す る. すなわち, $V_{GS} = 0.4$ V 付近で NEGF シミュレータによる計算結果と NC モデルによ る計算結果が交差し、そこから誤差が大きくなっていく.また、図3.9から明らかなように、 ワイヤ断面積が大きくなるほど基底準位と励起準位の間のエネルギー差が小さくなり、よ り多くの電子が励起準位に存在しやすくなる.図 3.12 に示すように、4 nm/4 nm 断面では $V_{\rm GS} = 0.5$ Vでは全体のおよそ 20% 程度の電流を励起準位に存在する電子 (I_{110}, I_{310}) が 担っていることが分かる.したがって、図 3.11(a-3) に示すように、一つの準位ごとの誤差 は小さいが、断面サイズが大きくなることで励起準位に関する NEGF シミュレータと NC モデルの間の誤差も蓄積されるため、電流に関する誤差がその分顕著に見えている.

SPシミュレータの数値シミュレーション結果との比較で示したように、ワイヤ断面内の 二次元の Schrödinger 方程式は高精度に解くことができている.そのため、図 3.10 で生じ ている電流の誤差は Schrödinger 方程式を解く手法が原因ではない.SPシミュレータと NEGF シミュレータの一番の違いは NW MOSFET の電子伝導方向 (*z* 軸)を考慮してい るかしていないかである.すなわち、NEGF シミュレータはソース及びドレイン電極が及 ぼすボトルネックの電子状態への影響を考慮しているという点である.この事実は、SPシ ミュレータの結果が理想的に (ソース及びドレイン電極の影響を無視できるほどに) 長い ゲート長を持つ NW MOSFET の特性を表わし、NEGF シミュレータの結果が短いゲート 長の影響を反映した特性を示すと考えられる.以上のことから、図 3.12 の誤差はソース及 びドレイン電極の影響により生じる伝導方向のポテンシャル変化が原因であると考えられ る.図 3.13 に電子伝導方向に関して、電子の感じるバリア障壁がどのように分布するかを

図 3.13: チャネル内伝導方向に関する基底準位分布.

ゲート電圧毎に示す.サブスレッショルド領域ではボトルネックの位置はゲート長の中心 近くである. そのため, ソース及びドレイン電極の影響は受けづらく, ゲート電圧によって ボトルネックの電子状態は完全に制御されていると考えられ、NEGF シミュレーション結 果とNCモデルとの間にほとんど誤差を生じない. 一方、ゲート電圧を徐々に増加させ、反 転領域に入るとボトルネックの位置が徐々にソース近傍に近づくことが分かる.その結果、 反転領域ではボトルネックにおける電子状態がソース電極の影響を受ける.本モデルは伝 導方向に関する情報を含まないことから誤差が生じると考えられる. この問題はソースか らドレインへのポテンシャル分布をモデルに取り入れることで改善できる、それにはソー ス及びドレイン電極内の電子状態も計算しなければならないため、デバイス構造全体を表 わす三次元 Schrödinger-Poisson 方程式を解析的に解く必要がある。しかし、本モデルを作 成する大前提として、三次元の Schrödinger-Poisson 方程式を解析的に解くことは非常に困 難であるために二次元の Schrödinger-Poisson 方程式を解くという近似をしている. また, 本モデルは、本論文内で扱っている断面サイズに関してある程度の精度を示している. こ れらのことから、現段階では本モデルは十分な精度を持つものとし、後章では本モデルを 基礎として話を進める、ただし、伝導方向に関する物理は電流に関して重要な要因であり、 その影響をモデルに何らかの形で導入することは今後の重要な課題の一つである。

このように、伝導方向に関するポテンシャル分布は電流特性にとって重要な要因である ことが分かる.また、伝導方向のポテンシャル分布に起因して電流特性を変化させてしま う現象が他にも存在する.序章でも触れたが、DIBLがその一つである.DIBLのモデル化 は基本的には今後の課題であるが、非常に重要な現象であることから、第4章4.3.3項にて モデル化の方針を説明する.

3.5.6 他グループのコンパクトモデルとの差異

本章の冒頭で述べたとおり,弾道輸送に基づく NW MOSFET の数値計算を含むコン パクトモデルは複数報告されていることから,本論文で提案したモデルと他グループのモ デルを差別化する必要がある.我々のモデルを含め,各グループのモデルの導出方針は基 本的には同じである.ソース-ドレイン方向に関するポテンシャル分布はボトルネック付 近では緩やかであると仮定し,ボトルネックにおけるワイヤ断面内の電子状態のみを解析

的に扱うのである。各コンパクトモデルで主に異なるのは、ワイヤ断面内の電子の閉じ込 めエネルギーの扱い方である. 式 (3.16) で示したような無限に深い井戸型ポテンシャル 内における電子の閉じ込めエネルギーを全バイアス条件に適応するモデル[7.8.9]、また、 NW MOSFET 構造を原子論に基づき数値シミュレーションして求めた電子のバンド構造 をフィッティングし,それを特性計算に使用するモデルなどがある[5,11]. 我々のモデル は、ワイヤ断面内の静電ポテンシャル分布を近似的に与え(式(3.3))、それを用いて断面内 の Schrödinger 方程式を解くことで電子の閉じ込めエネルギーを導出した。 各モデルには それぞれ利点、欠点がある. 無限に深い井戸型ポテンシャルにおける電子の閉じ込めエネ ルギーを使用する場合,各量子数に対応するエネルギー準位の差(例えば E_n – E_n) はバイ アス条件に寄らず一定値を取る.しかし、図3.9に示したように、実際には各量子数に対応 するエネルギー準位の差はゲート電圧に依存して変化する. 無限に深い井戸型ポテンシャ ル内の電子の閉じ込めエネルギーでは、この依存性を再現できない、ただし、この閉じ込 めエネルギーは非常に簡単な式で表わされることから、導出及び計算面における負担は非 常に少ない. 一方,原子論または有効質量近似に基づく数値シミュレーション結果をフィッ ティングして求めた電子のエネルギーを使用する場合は、最も厳密にワイヤ断面内の電子 |状態を扱うことができる. しかし,数値シミュレーション結果をフィッティングすることか ら、どうしてもフィッティングの際に経験的に決定する必要のあるパラメータが増えてし まう. また, 各構造, バイアス条件におけるバンド構造の数値シミュレーション結果が必要 である、以上のことから、モデルの導出及び数値シミュレーション結果を必要とするとこ ろでひと手間を必要とする. 我々の手法はどうであろうか. 本モデルは、図3.9 に示すよう に、各エネルギー準位のゲート電圧依存性を上手く再現することができる. その点で、無限 に深い井戸型ポテンシャル内の電子の閉じ込めエネルギーより優れていると言える. ただ し、式の簡単さでは劣る.また、ワイヤ断面内の電子状態の精度に関する厳密さでは原子論 に基づき計算したバンド構造をフィッティングした閉じ込めエネルギーには敵わない.し かし,我々のモデルは、予め数値シミュレーションを必要とせず、余分なフィッティングパ ラメータを含まない点で、モデルの扱いやすさに優れている.このように、コンパクトモデ ルは各モデルごとに一長一短があり、優劣を付けがたいものである、そのため、使用用途を 考えてモデルを選択する必要がある.

第3章まとめ

本章では、NW MOSFET の特性を表わすコンパクトモデルについて、その導出方法を提案した.以下にその要点をまとめる.

- MOSFET の弾道・準弾道輸送に基づくドレイン電流は、ボトルネックで電子が持つ エネルギーとソース、ドレイン電極内の各 Fermi 準位 *E*_{FS}, *E*_{FD} のエネルギー差及び 後方散乱係数 *R_{nv,nx,ny}* によって決まる.
 - ボトルネックの電子状態を導出するために、NW MOSFET のワイヤ断面内の 電子状態を調べた.
 - ワイヤ断面内の静電ポテンシャル分布を、一つの未定変数を用いて二次関数で
 近似し、モデルポテンシャルとして与えた。
 - モデルポテンシャルを用いることでワイヤ断面内の二次元の Schrödinger 方程 式を摂動法及び参考文献 [14] の手法を参考に近似的に解いた.

- ボトルネックにおけるワイヤ断面内の閉じ込めエネルギーが未定変数の関数として求まった。
- 未定変数は線電荷密度に関する方程式をバイアス条件毎に解くことで決まる。
 - Gauss の法則に基づき、ワイヤ断面内の線電荷密度を未定変数に比例する形で 導出した.
 - 量子統計に基づき、ワイヤ断面内の線電荷密度を Fermi 積分を用いて求めた.
 - 2 通りの手法で求めた線電荷密度の方程式を各バイアス条件毎に解き、未定変数を決定できる.
 - 線電荷密度の方程式を数値計算により解き、未定変数を決定し、それを用いて解 析式からデバイス特性を計算した.
 - 現時点で後方散乱係数 R_{n_v,n_x,n_y} を適切に決定する手段を持たないため、本論文 内では $R_{n_v,n_x,n_y} = 0$ という完全な弾道輸送を想定して計算を進めた.
- ワイヤ断面内の電子状態の計算結果.
 - NC モデルの比較対象として、ワイヤ断面内の Schrödinger-Poisson 方程式を数 値的に解くシミュレータによる計算結果を用いた.
 - 摂動法で導出した閉じ込めエネルギーの解析式は、数値シミュレーション結果
 を高精度に再現した.
 - モデルポテンシャル及び摂動法が適切であることが確認できた.
- NW MOSFET のデバイス特性の計算結果.
 - NC モデルの比較対象として、デバイス構造全体の Schrödinger-Poisson 方程式 を数値的に解くシミュレータによる計算結果を用いた.
 - NC モデルはデバイス特性の数値シミュレーション結果を良く再現した.
 - NC モデルを完全な解析モデルを作成する上での基本モデルとする.

参考文献

- [1] ミリニコフゲナディ, 森伸也, 鎌倉良成, 江崎達也, "粗視化手法を用いた極微細 MOS-FET の量子輸送シミュレーション," 電子情報通信学会技術研究報告. SDM, シリコン 材料・デバイス, vol. 107, no. 297, pp. 11–14, 2007.
- [2] G. Mil'nikov, N. Mori, Y. Kamakura, and T. Ezaki, "R-matrix theory of quantum transport and recursive propagation method for device simulations," J. Appl. Phys., vol. 104, 044506, pp. 1–14, 2008.
- [3] H. Tsuchiya, K. Fujii, T. Mori, and T. Miyoshi, "A quantum-corrected monte carlo study on quasi-ballistic transport in nanoscale MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2965–2971, 2006.
- [4] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, "On the validity of the parabolic effective-mass approximation for the *I-V* calculation of silicon nanowire transistors," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1589–1595, 2005.
- [5] K. Natori, "Compact modeling of ballistic nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2877–2885, 2008.
- [6] K. Natori, "Compact modeling of quasi-ballistic silicon nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 79–86, 2012.
- [7] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Unified compact model for the ballistic quantum wire and quantum well metal-oxidesemiconductor field-effect-transistor", Journal of Applied Physics, vol. 94, pp. 1061-1068, 2003.
- [8] D. Jiménez, J. J. Sáenz, B. Iñiquez, J. Suñé, L. F. Marsal, and J. Pallarès: "Modeling of nanoscale gate-all-around MOSFETs", IEEE Electron Device Letters, vol. 25, no. 5, pp. 314-316, 2004.
- [9] B. Iñiguez, Tor A. Lázaro, F. Danneville, and M. Jamal Deen, "Compact-modeling solutions for nanoscale double-gate and gate-all-around MOSFETs," IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2128–2142, 2006.
- [10] B. C. Paul, R. Tu, S. Fujita, M. Okajima, T. H. Lee, and Y. Nishi, "An analytical compact circuit model for nanowire FET," IEEE Trans. Electron Devices, vol. 54, no. 7, pp. 1637–1644, 2007.

- [11] J. Chen, "A circuit-compatible analytical device model for ballistic nanowire transistors," Moicroelectron. Journal, vol. 39, pp. 750–755, 2008.
- [12] T. Numata, S. Uno, J. Hattori, G. Mil'nikov, Y. Kamakura, N. Mori, and K. Nakazato, "A self-consistent compact model for ballistic nanowire MOSFETs with rectangular cross sections", IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 856–862, 2013.
- [13] 原康夫, "量子力学," 岩波基礎物理シリーズ, 1994.
- [14] M. Ferrier, R. Clerc, G. Pananakakis, G. Ghibaudo, F. Boeuf, and T. Skotnicki, "Analytical compact model for quantization in undoped double-gate metal oxide semiconductor field effect transistors and its impact on quas-ballistic current," Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3088–3096, 2006.
- [15] A. Rahman and M. Lundstrom, "A compact scattering model for the nanoscale double-gate MOSFET," IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 481–489, 2002.
- [16] M. Lundstrom and J. Guo, "Nanoscale transistors device physics, modeling and simulation," Springer Science+Business Media, Inc. 2006.
- [17] K. Nehari, J. L. Autran, D. Munteanu, and M. Bescond, "A compact model for the threshold voltage of silicon nanowire MOS transistors including 2D-quantum confinement effects," Proc. Int. Conf. Modeling and Simulation of Microsystems, p. 175, 2005.
- [18] A. Marchi, E. Gnani, S. Reggiani, M. Rudan, and G. Baccarani, "Investigating the performance limits of silicon nanowire and carbonnanotube FETs," Solid State Electronics, vol. 50, pp. 78–85, 2006.
- [19] Y. Zheng, C. Rivas, R. Lake, K. Alam, T. B. Boykin, and G. Klimeck, "Electronic properties of silicon nanowires," IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1097–1103, 2005.
- [20] N. Neophytou, A. Paul, M. S. Lundstrom, and G. Klimeck, "Bandstructure effects in silicon nanowire electron transport," IEEE Trans. Electron Devices, vol. 55, no. 6, pp. 1286–1297, 2008.
- [21] J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M. Lundstrom, "On the validity of the parabolic effective-mass approximation for the I-V Calculation of silicon nanowire transistors," IEEE Trans. Electron Devices, vol. 52, no. 7, pp. 1589–1595.
- [22] K. Nehari, N. Cavassilas, J. L. Autran, M. Bescond, D. Munteanu, and M. Lannoo, "Influence of band structure on electron ballistic transport in silicon nanowire MOSFET's: An atomistic study," Solid-State Electron. vol. 50, pp. 716–721, 2006.

第4章 完全な解析モデル

前章において、ワイヤ断面内の電子状態を解析的に記述することで、弾道輸送に基づく NW MOSFET の特性を表わす数値計算を含むコンパクトモデルを提案し、NEGF シミュ レータを用いて計算した特性結果との比較を通して良い精度を示すことを確認した. コン パクトモデルにおいて NW MOSFET の各特性は一つの共通の未定変数 $\Delta U_{\rm G}$ の関数とし て導出されており、それを各バイアス条件と矛盾しないように求めるためにはボトルネッ クにおける線電荷密度の方程式を解く必要がある. この方程式が非常に複雑であり、 $\Delta U_{\rm G}$ の解析解の導出が非常に困難であるため、前章では方程式を各バイアス条件毎に数値的に 解き、 $\Delta U_{\rm G}$ を決定した. コンパクトモデルの一つの用途として、回路シミュレーションへ の応用があるが、回路シミュレーションのように一度に大量の数のデバイス特性の計算を 要求するようなシミュレーションでは、一つ一つのデバイス特性の計算時間を極力抑える 必要がある. そのため、数値計算を含むコンパクトモデルは数値計算に要する計算時間の 面で回路シミュレーションには適さない. 現在、集積回路には億単位の電子デバイスが集積 され、各デバイスの特性を高速に処理する必要があり、計算時間に対する要求はより重要に なる. 以上の理由から、数値計算を必要としない $\Delta U_{\rm G}$ の解析式を導出し、NW MOSFET の特性の高速計算を可能とするモデルが求められる.

未定変数 $\Delta U_{\rm G}$ を求めるには、線電荷密度の方程式を $\Delta U_{\rm G}$ に関して解けばよい.しかし、 それが困難であるために前章では数値計算により処理した.特に量子統計により導かれる 線電荷密度の式の複雑さが方程式を解くことを難しくしている.本章では、線電荷密度の 方程式を解くために、幾つかの大胆な仮定を置く.さらに、サブスレッショルド領域と反 転領域に方程式を分け、各方程式に更なる近似仮定を置くことで各領域の線電荷密度方程 式を $\Delta U_{\rm G}$ に関して解く.そのようにして導出された2つの $\Delta U_{\rm G}$ の解析解を、平滑化関数 (smoothing function)を用いて一つの式に統一する.得られた $\Delta U_{\rm G}$ の統一式を用いるこ とで、NW MOSFET の特性の完全な解析モデルが得られ、その精度を前章で使用した数値 計算を含むコンパクトモデルの結果と比較することでモデルの検証を行う.

本章の構成を示す.最初に 4.1 節にて線電荷密度方程式の近似解法に関して解説する.そこから求まる $\Delta U_{\rm G}$ の解析モデルを用いて NW MOSFET の特性精度を検証する.4.2 節では、NW MOSFET のキャパシタンスについての考察を行う.これは、回路シミュレーション組み込みを考える際、交流解析及び過渡解析を行うために必須のパラメータである.また、未定パラメータ $\Delta U_{\rm G}$ の解析式は、様々な近似仮定を前提に導出するため、その使用範囲に強い制限が加わる.その制限を緩和する手法の一例を残りの節を使い紹介する.

4.1 $\Delta U_{\mathbf{G}}$ の解析モデル

本節では、線電荷密度の方程式を $\Delta U_{\rm G}$ に関して近似的に解く手法を説明する.ここで、線電荷密度の方程式をもう一度示す.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2k_{\rm B}T}}{\pi\hbar} \sum_{n_v, n_x, n_y} \frac{1}{2}\sqrt{m_{z, n_v}^*} \times \left[\left(1 + R_{n_v, n_x, n_y}\right) F_{-\frac{1}{2}} \left(u_{n_v, n_x, n_y}(\Delta U_{\rm G})\right) + \left(1 - R_{n_v, n_x, n_y}\right) F_{-\frac{1}{2}} \left(u_{n_v, n_x, n_y}(\Delta U_{\rm G}) - \frac{V_{\rm DS}}{k_{\rm B}T}\right) \right]$$

$$u_{n_v, n_x, n_y}(\Delta U_{\rm G}) = \frac{E_{\rm FS} - E_{n_v, n_x, n_y}(\Delta U_{\rm G})}{k_{\rm B}T}$$
(4.2)

この方程式を $\Delta U_{\rm G}$ に関して解くことは非常に困難であるため、 いくつかの近似仮定を置 ζ [1]. 仮定を以下に示す.

- ボトルネックに存在する全ての電子は基底準位 $(n_v, n_x, n_y) = (1, 0, 0)$ に存在する.
- ドレイン電圧は十分に大きいものとし $(eV_{DS} \gg k_BT)$, ドレイン電極からボトルネックに注入される電子数は無視できるほど十分に少ない.

この仮定に従い式 (4.1) を変形すると,

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})\frac{1}{2}g_1F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)$$
(4.3)

となる. ここで, $g_{n_v}(g_1)$ は n_v に対応するバレーの縮退数を表わすし, 基底準位が $n_v = 1$ と番号付けされているため g_1 と記述している. これだけ大胆な近似をしても, 式 (4.3) を $\Delta U_{\rm G}$ に関して解くことは困難である. 次に, 式 (4.3) をサブスレッショルド領域と反転領 域に分けて考える. Fermi 積分は変数の大きさに応じて次のように近似できることが知ら れている [2].

$$F_n(u) = \begin{cases} \Gamma(n+1)\exp(u) & (u \ll -1) \\ \frac{u^{n+1}}{n+1} & (u \gg 1) \end{cases}$$
(4.4)

図 4.1: Fermi 積分及び u の値に応じた Fermi 積分の近似式の特性.

80

式 (4.4) で示した各近似式が MOSFET のどの電圧領域に対応するかを直観的に示すため、 式 (4.4) の特性を図 4.1 に示す.式 (4.3) から,線電荷密度は Fermi 積分に比例する.その ため、式 (4.4) において $u \ll -1$ の領域が MOSFET のサブスレッショルド領域に, $u \gg 1$ の領域が反転領域に対応する.式 (4.4) に従って式 (4.3) をサブスレッショルド領域と反転 領域に分けて記述すると、

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})\frac{1}{2}g_1\Gamma\left(\frac{1}{2}\right)\exp\left(u_{1,0,0}\left(\Delta U_{\rm G}\right)\right)$$
(4.5)

(subthreshold region)

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar} (1+R_{1,0,0})g_1 \left(u_{1,0,0} \left(\Delta U_{\rm G}\right)\right)^{\frac{1}{2}}$$
(4.6)

(inversion region)

となる.更に,サブスレッショルド領域ではボトルネックにおけるワイヤ断面内に電子は ほとんど誘起されないため,線電荷密度はほとんど0であると仮定する.したがって,サブ スレッショルド領域に関する方程式は,

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = 0 \tag{4.7}$$

となり、この式は考えるまでもなく、

$$\Delta U_{\rm G} = 0 \tag{4.8}$$

を導く. この近似は, ワイヤ断面内の静電ポテンシャル分布が完全に平らであると仮定していることを表わす. 次に式 (4.6)を解くために,式 (3.54)及び (3.82)を用いて u_{n_v,n_x,n_y} を次のように変形しておく.

$$u_{n_v,n_x,n_y}(\Delta U_{\rm G}) = \frac{E_{\rm FS} - E_{n_v,n_x,n_y}(\Delta U_{\rm G})}{k_{\rm B}T}$$

$$= \frac{ew_{\rm s}(\Delta U_{\rm G}) - E_{n_v,n_x,n_y}^{\rm q}(\Delta U_{\rm G})}{k_{\rm B}T}$$

$$= -a_{n_v,n_x,n_y}\Delta U_{\rm G}^2 - b_{n_x,n_y}\Delta U_{\rm G} + c_{n_v,n_x,n_y} + \frac{eV_{\rm GS}'}{k_{\rm B}T}$$

$$(4.9)$$

$$a_{n_v,n_x,n_y} = \frac{e^2}{k_{\rm B}T} \left(\sum_{i_x \neq n_x} \frac{\left| \tilde{H}_{n_x,i_x} \right|^2}{E_{n_v,n_x}^{\rm q0} - E_{n_v,i_x}^{\rm q0}} + \sum_{i_y \neq n_y} \frac{\left| \tilde{H}_{n_y,i_y} \right|^2}{E_{n_v,n_y}^{\rm q0} - E_{n_v,i_y}^{\rm q0}} \right)$$
(4.10)

$$b_{n_x,n_y} = \frac{e}{k_{\rm B}T} \left(\widetilde{H}_{n_x,n_x} + \widetilde{H}_{n_y,n_y} - \left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} \right] \right)$$
(4.11)

$$c_{n_v,n_x,n_y} = -\frac{1}{k_{\rm B}T} \left(E_{n_v,n_x}^{\rm q0} + E_{n_v,n_y}^{\rm q0} \right)$$
(4.12)

以上の変形に従い、式 (4.6) を $\Delta U_{\rm G}$ に関して整理すると、

$$(a_{\rm L} + a_{1,0,0}) \Delta U_{\rm G}^2 + b_{0,0} \Delta U_{\rm G} - \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0}\right) = 0$$
(4.13)

図 4.2: $\Delta U_{\rm G}-V_{\rm GS}$ 特性. 線電荷密度の方程式を数値計算により解いた NC モデルと解析式 (4.8) 及び (4.16) の比較結果.

$$a_{\rm L} = \left[\frac{8\pi\hbar\varepsilon_{\rm ch}}{e(1+R_{1,0,0})g_1}\right]^2 \frac{1}{2m_{z,1}^*k_{\rm B}T}$$
(4.14)

となり、 $\Delta U_{\rm G}$ に関する二次方程式であることが分かる.この変形手順では、摂動法により 導出した電子の閉じ込めエネルギーの解析式を使用している.摂動法を用いることで、閉 じ込めエネルギーの解析式が $\Delta U_{\rm G}$ の二次関数という簡単な形で得られたためである.そ の結果として、ここで説明した方程式の変形が可能となる.二準位近似法で求めた閉じ込 めエネルギー(式 (3.69)) は複雑な形をしているため、このような方程式の簡単化はできない.以上により簡単化された式 (4.13) は $\Delta U_{\rm G}$ に関して容易に解ける.解の公式により式 (4.13)の解は、

$$\Delta U_{\rm G}(V_{\rm GS}) = \frac{-b_{0,0}}{2(a_{\rm L} + a_{1,0,0})} \left[1 \pm \sqrt{1 + \frac{4(a_{\rm L} + a_{1,0,0})}{b_{0,0}^2} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0}\right)} \right]$$
(4.15)

と求めることができる. ここで, $\Delta U_{\rm G}$ は $V_{\rm GS}$ の関数として得られることから $\Delta U_{\rm G}(V_{\rm GS})$ と記述している. 解が2通り導出されているが, 片方は数学的に導出された解であり, 物理 的意味はない. 実際に使用する解は,

$$\Delta U_{\rm G}(V_{\rm GS}) = \frac{-b_{0,0}}{2(a_{\rm L} + a_{1,0,0})} \left[1 - \sqrt{1 + \frac{4(a_{\rm L} + a_{1,0,0})}{b_{0,0}^2} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0}\right)} \right]$$
(4.16)

である.以上により、サブスレッショルド及び反転領域における $\Delta U_{\rm G}$ の解がそれぞれ得られた.これらの解が各領域の $\Delta U_{\rm G}$ を再現しているか検証する.図 4.2 に $\Delta U_{\rm G}$ - $V_{\rm GS}$ 特性の計算結果を示す.比較対象は NC モデルである.図 4.2 において、構造条件 $t_x/t_y = 2$ nm/4 nm及びバイアス条件 $V_{\rm DS} = 0.8$ Vを選択した理由は、本節の最初に行った仮定が良い結果を示す条件だからである.図 3.12 から明らかな通り、断面サイズが $t_x/t_y = 2$ nm/4 nmでは基底サブバンドに存在する電子が電流の大半を占めることが明らかであり、仮定が良い近似になることが分かる.また、 $V_{\rm DS} = 0.8$ V も十分に大きいとする (0.8 V $\gg k_{\rm B}T/e = 0.025852$).様々な断面構造及びバイアス条件の場合に生じる仮定の不具合は後ほど詳しく述べるため、まずはこの都合の良い条件にて比較を行う.図 4.2 から明らかな通り、各ゲート電圧領域に

図 4.3: 平滑化関数の特性.

関する $\Delta U_{\rm G}$ を表わす解析式は非常に良い精度を示す.したがって、問題はサブスレッショ ルド領域と反転領域の間の弱反転領域をどう表わすかである.弱反転領域における線電荷 密度の方程式を解析的に解くことは困難である.そこで、サブスレッショルド及び反転領 域の 2 つの式 (4.8), (4.16) を滑らかに繋ぎ、一つの統一的な式で表わすことで、全ゲート電 圧領域に対応する $\Delta U_{\rm G}$ の解析式を作成する.二つの解析式を滑らかに結合するために以 下に示す平滑化関数を使用する [1, 3].

$$Y(X) = \alpha \ln \left[1 + \exp\left(\frac{1}{\alpha}X\right) \right]$$
(4.17)

ここで、 α はフィッティングパラメータである. この平滑化関数の特性を図 4.3 に示す. 平 滑化関数 Y は、X が小さい時0 に近づき、大きくなることで Y = X に近づく. また、フィッ ティングパラメータ α が大きいほど平滑化関数の値が0 から X にゆっくり変化する. 逆 に、 α が小さいほど平滑化関数の値は急激に0 から X に変化することが図 4.3 から分かる. このように、 α は平滑化関数の値が0 から X に変化する際の傾きを調整するパラメータで ある. この関数を上手く式 (4.16) に組み込むことで、 $\Delta U_{\rm G}$ の値がゲート電圧が小さくなる ことで式 (4.8) に近づき、大きくなることで式 (4.16) に近づくように変形する. 式 (4.16) の ゲート電圧部分に、平滑化関数を以下に示すように組み込む.

$$\Delta U_{\rm G}(V_{\rm GS}) = \frac{-b_{0,0}}{2(a_{\rm L} + a_{1,0,0})} \times \left[1 - \sqrt{1 + \frac{4(a_{\rm L} + a_{1,0,0})}{b_{0,0}^2} \alpha \ln\left\{ 1 + \exp\left[\frac{1}{\alpha} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0}\right)\right] \right\}} \right]$$
(4.18)

この式は、ゲート電圧が小さくなることで指数関数部分が0に近づき、対数関数の内部が1 に近づくため、 $\Delta U_{\rm G}$ が0に近づく、したがって、サブスレッショルド領域では0に近づく、 一方、ゲート電圧が大きくなることで、対数関数部分が $eV'_{\rm GS}/k_{\rm B}T + c_{1,0,0}$ に漸近する、そ のため、反転領域では式 (4.16)に近づく、このように、サブスレッショルド及び反転領域に 関する $\Delta U_{\rm G}$ は問題なく再現できるように思えるが、問題は弱反転領域の $\Delta U_{\rm G}$ を上手く表 わせるかどうかである、これは、平滑化関数次第であるため、実際に特性比較してみないと 分からない、図 4.4 に式 (4.18)を用いた $\Delta U_{\rm G}$ - $V_{\rm GS}$ 特性の計算結果を示す、解析式 (4.18)

図 4.4: ΔU_G-V_{GS} 特性. NC モデルと解析式 (4.18) の比較結果.

図 4.5: *E*_{1,0,0}-*V*_{GS} 特性. NC モデルと FA モデルの比較結果.

は予想通りサブスレッショルド及び反転領域において良い精度を示す.また,弱反転領域 に関しても良い精度で NC モデルを再現する.したがって,平滑化関数 (式 (4.17)) は本モ デルにおいて適当な働きをしている.また,図 4.4 において平滑化関数は, $\alpha = 1$ でよく弱 反転領域を再現している.この α は,弱反転領域に関して,NC モデルと式 (4.18)の間に大 きく誤差が生じる場合に,それを修正するためのフィッティングパラメータである.しか し, α は物理的な意味を持たず,経験的に決定されるパラメータである.また,図 4.4 にお いては, $\alpha = 1$ で十分な精度を示していることから極力その値を変更することなく話を進 める.以上により,式 (4.18)を全ゲート電圧領域を表わす $\Delta U_{\rm G}$ の完全な解析式として導 出できた.今後,このように完全に解析化された解析式を使用するモデルを完全な解析モ デル (fully analytic model, FA model)と呼ぶ.

FA モデルによる各特性の計算結果を図 4.5, 4.6 に示す. 図 4.5 に $E_{1,0,0}-V_{GS}$ 特性の計 算結果を示す. FA モデルは良い精度で NC モデルを再現している. 電子の閉じ込めエネル ギーは ΔU_{G} のみの関数として導出されていることから,閉じ込めエネルギーに関しても FA モデルが ΔU_{G} と同程度の再現性を示す. 同様のことが電流にも言える (図 4.6). 図 4.6 から明らかなように, FA モデルは電流特性に関しても NC モデルを良く再現している. 電

図 4.6: NC モデルと FA モデルの比較結果. (a) I_{DS}-V_{GS} 特性. (b) I_{DS}-V_{DS} 特性.

子の閉じ込めエネルギーと同様に、弾道輸送電流は $\Delta U_{\rm G}$ のみの関数として導出したためである.しかし、線電荷密度の方程式を近似的に解く際、ドレイン電圧は十分に大きいものと仮定し、その影響を無視したにも関わらず、図 4.6(b) に示す $I_{\rm DS}-V_{\rm DS}$ 特性のドレイン電圧が低い領域まで良い精度で再現している.これは、線電荷密度の方程式ではドレイン電圧の依存性を無視して $\Delta U_{\rm G}$ を導出したが、それはあくまで線電荷密度の方程式に対してであり、電流式(式(3.74))に関してはドレイン電圧依存性を無視していない.そのため、電流式そのものが持つドレイン電圧依存性によりドレイン電圧依存性が十分に再現されている.式(3.74) から分かるように、 $V_{\rm DS} = 0$ のときはどんなゲート電圧条件であっても正味の電流は0になる.したがって、 $V_{\rm DS}$ が十分に小さい時の電流は、 $\Delta U_{\rm G}$ の解析モデルの精度にそれほど依存せず、式(4.18)を用いることでNCモデルを良く再現する.

ここまでは、定常状態における NW MOSFET の特性を表わす解析モデルを導出した. しかし、NW MOSFET の過渡特性や交流特性を計算するためには NW MOSFET のキャ パシタンスモデルが必要になる.また、それは回路シミュレータへの組み込みを考える際 に必要不可欠なパラメータである.次節では、NW MOSFET のキャパシタンスに関して 説明する.

図 4.7: NW MOSFET の等価回路モデル. ゲート–ソース間及びゲート–ドレイン間のキャ パシタンス部分にたまる電荷量をそれぞれ Q_{GS} , Q_{GD} とし, 各端子をそれぞれ G, D, S と する.

4.2 キャパシタンスモデル

本節では、NW MOSFET の過渡及び交流特性を計算する際に必要不可欠なキャパシタンスモデルを提案する. MOSFET のキャパシタンスを考える際、一般的に図 4.7 に示す MOSFET の等価回路を利用する [4]. 図に示す電流源が前節までに求めた定常状態におけ る弾道輸送電流 (式 (3.74)) に対応し、ソース端子に流れる電流を $I_{\rm S}(t)$ 、ドレイン端子に流れる電流を $I_{\rm D}(t)$ とする. 各キャパシタンスにたまる電荷量の時間変化が各キャパシタン スに流れる NW MOSFET の過渡電流である. この MOS の等価回路を利用して、ソース に流れる電流 $I_{\rm S}$ 及びドレインに流れる電流 $I_{\rm D}$ を考える. まず、ソースに流れる電流を考える. ゲート–ソース間に流れる過渡電流は、電荷量 $Q_{\rm GS}$ の時間に関する偏微分で決まる. したがって、電流源 $I_{\rm SUP}$ と電荷量 $Q_{\rm GS}$ を用いてソースに流れる電流 $I_{\rm S}$ は、

$$I_{\rm S}(t) = I_{\rm SUP}(t) - \frac{\partial}{\partial t} Q_{\rm GS}(t)$$
(4.19)

と考えられる. このゲート-ソース間にたまる電荷量 Q_{GS} は参考文献 [4] に従うと,

$$Q_{\rm GS}(t) = -e \int_0^{L_{\rm G}} dz' \left(1 - \frac{z'}{L_{\rm G}}\right) n_{\rm e}(z', t)$$
(4.20)

と求められ、ここで、 $n_{e}(z,t)$ はある時間 tにおけるチャネル内の線電荷密度のソース-ドレイン方向に関する分布を表わす.このように、ソースに流れる電流は電流源とゲート-ソース間の過渡電流の関数として得られる.同様に、ドレインに流れる電流 I_{D} は電流源 I_{SUP} と電荷量 Q_{GD} を用いて次のように表すことができる.

$$I_{\rm D}(t) = I_{\rm SUP}(t) + \frac{\partial}{\partial t} Q_{\rm GD}(t)$$
(4.21)

$$Q_{\rm GD}(t) = -e \int_0^{L_{\rm G}} dz' n_{\rm e}(z',t) - Q_{\rm GS}(t)$$

= $-e \int_0^{L_{\rm G}} dz' \frac{z'}{L_{\rm G}} n(z',t)$ (4.22)

86

電荷量 $Q_{\rm GD}$ の表記は $Q_{\rm GS}$ と同様に参考文献 [4] の記述を参考にした. これらの電流式は 時間依存性を含んでいる. この依存性は各端子にかかる電圧の時間変化によるものである. したがって,式 (4.19) 及び (4.21) は各端子のバイアス条件 $V_{\rm G}$, $V_{\rm S}$, $V_{\rm D}$ を用いて次のよう に記述できる [5].

$$I_{\rm S}(t) = I_{\rm SUP}(t) - \left(\frac{\partial Q_{\rm GS}(t)}{\partial V_{\rm G}}\frac{\partial V_{\rm G}}{\partial t} + \frac{\partial Q_{\rm GS}(t)}{\partial V_{\rm S}}\frac{\partial V_{\rm S}}{\partial t} + \frac{\partial Q_{\rm GS}(t)}{\partial V_{\rm D}}\frac{\partial V_{\rm D}}{\partial t}\right)$$
(4.23)

$$I_{\rm D}(t) = I_{\rm SUP}(t) + \left(\frac{\partial Q_{\rm GD}(t)}{\partial V_{\rm G}}\frac{\partial V_{\rm G}}{\partial t} + \frac{\partial Q_{\rm GD}(t)}{\partial V_{\rm S}}\frac{\partial V_{\rm S}}{\partial t} + \frac{\partial Q_{\rm GD}(t)}{\partial V_{\rm D}}\frac{\partial V_{\rm D}}{\partial t}\right)$$
(4.24)

各式の各端子にかかるバイアス成分の時間偏微分の係数が図 4.7 に示した等価回路のキャ パシタンス成分になる、以上のことから、式 (4.23) 及び (4.24) をキャパシタンスを用いて 次のように記述する.

$$I_{\rm S}(t) = I_{\rm SUP}(t) - \left(-C_{\rm GS,G}\frac{\partial V_{\rm G}}{\partial t} + C_{\rm GS,S}\frac{\partial V_{\rm S}}{\partial t} + C_{\rm GS,D}\frac{\partial V_{\rm D}}{\partial t}\right)$$
(4.25)

$$I_{\rm D}(t) = I_{\rm SUP}(t) + \left(-C_{\rm GD,G} \frac{\partial V_{\rm G}}{\partial t} + C_{\rm GD,S} \frac{\partial V_{\rm S}}{\partial t} + C_{\rm GD,D} \frac{\partial V_{\rm D}}{\partial t} \right)$$
(4.26)

ここで、各キャパシタンス成分の符号は、キャパシタンス成分が正の値を取るように決定した. 例として、ゲート電圧 V_G に対応するキャパシタンスの計算手法について説明する. 改めて式 (4.25) 及び (4.26) のキャパシタンス C_{GS,G},C_{GD,G} を記述すると、

$$C_{\rm GS,G} = -e \int_0^{L_{\rm G}} dz' \left(1 - \frac{z'}{L_{\rm G}}\right) \frac{\partial}{\partial V_{\rm G}} n_{\rm e}(z',t) \tag{4.27}$$

$$C_{\rm GD,G} = -e \int_0^{L_{\rm G}} dz' \frac{z'}{L_{\rm G}} \frac{\partial}{\partial V_{\rm G}} n_{\rm e}(z',t)$$
(4.28)

となり,線電子密度 n_eをモデル化すればキャパシタンスが決まる.チャネル内において唯 ー,ボトルネックにおける線電荷密度 Q_e(式 (3.84))はすでに導出されている.そのため, ボトルネックにおける単位長さ当たりのキャパシタンスは以下に示すように導出できる [6].

$$C_{\text{eff,G}} = -\frac{\partial Q_{\text{e}}}{\partial V_{\text{G}}}$$

$$= 8\varepsilon_{\text{ch}} \frac{\partial \Delta U_{\text{G}}}{\partial V_{\text{G}}}$$
(4.29)

ここで、*C*_{eff,G} は *V*_G が変化した場合のボトルネックにおける実効的なキャパシタンスを表わす.このように、ワイヤ断面内の線電荷密度を直接ゲート電圧で微分することにより、酸化膜によるキャパシタンスだけでなく、酸化膜のキャパシタンスに直列に接続する形で含まれる量子キャパシタンスによる寄与も計算されている.したがって、*C*_{eff,G} は次のように定義できる.

$$C_{\rm eff,G} = \left(\frac{1}{C_{\rm ox,wire}} + \frac{1}{C_{\rm q}}\right)^{-1} \tag{4.30}$$

ここで, *C*_q が量子キャパシタンスを表わす. また, *C*_{ox, wire} は四角形断面形状における酸 化膜の単位長あたりのキャパシタンスを表わし, ここでは次のように与えるものとする [7].

$$C_{\text{ox,wire}} = \frac{2 \times \frac{5}{4} \varepsilon_{\text{ox}}}{\ln\left(1 + \frac{5}{4} \frac{t_{\text{ox}}}{t_x}\right)} + \frac{2 \times \frac{5}{4} \varepsilon_{\text{ox}}}{\ln\left(1 + \frac{5}{4} \frac{t_{\text{ox}}}{t_y}\right)}$$
(4.31)

図 4.8: NW MOSFET のキャパシタンス特性.

式 (4.29) より, NW MOSFET の単位長さ当たりの実効的なキャパシタンスは $\partial \Delta U_{\rm G}/\partial V_{\rm G}$ に比例する. パラメータ $\Delta U_{\rm G}$ は式 (4.18) のように解析的に表されているため, $C_{\rm eff,G}$ の解析式は容易に導出可能である.実際に,式 (4.18) を式 (4.29) に代入すると,

$$C_{\rm eff,G} = \frac{8e\varepsilon_{\rm ch}}{k_{\rm B}T} \left[\left\{ 1 + \exp\left[-\frac{1}{\alpha} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0} \right) \right] \right\} \left(b_{0,0} + 2(a_{\rm L} + a_{1,0,0}) \Delta U_{\rm G} \right) \right]^{-1}$$
(4.32)

となり、 $C_{\text{eff},G}$ が解析的に得られる.図4.8に式 (4.32)とNCモデルによる計算結果を示す. 式 (4.29)より、キャパシタンスは $\partial \Delta U_G / \partial V_G$ に比例するため、 $\Delta U_G - V_G$ 特性の精度と同様の精度がキャパシタンスに対しても望め、図4.8に示した通り、FAモデル(式(4.32))が良くNCモデルを再現していることが分かる.しかし、弱反転領域において多少誤差を生じている.これは、サブスレッショルド領域と反転領域における各 ΔU_G を繋いでいる平滑化関数の問題である。そのため、平滑化関数の α の値を少し変更する程度で精度の改善が可能であり、図 4.8(a)における $\alpha = 1.54$ の特性が改善されたものである。このように、 α の値を調整することで弱反転領域における誤差は改善できる。今後、特に断りがない場合は、 $\alpha = 1$ として計算しているものとする。NW MOSFET の $C_{\text{eff},G}$ とともに、式(4.30)、(4.31)を用いて計算した量子キャパシタンス C_q の計算結果も図 4.8に載せている。実効的キャパシタンス $C_{\text{eff},G}$ は、反転領域において徐々に減少する。また、 C_q は $C_{\text{eff},G}$ よりも弱反転領域にかけて急激に減少し、その挙動は低温であるほど顕著である。こ

図 4.9: *T* = 0 における Fermi 積分と一次元状態密度の関係を表わす模式図.

の挙動は一次元状態密度 (式 (3.86)) によるものである. キャパシタンス C_{eff,G} は線電荷密 度を V_G で微分したものである. また, 線電荷密度は式 (4.3) に示すように Fermi 積分に比 例する.式 (2.60) で与えられる Fermi 積分は、本計算では一次元状態密度と Fermi-Dirac 分布関数から決まる.したがって、C_{eff.G}は Fermi 積分の V_G 偏微分に比例する.図 4.9 に 示すように、温度が低くなるにつれて Fermi-Dirac 分布関数の値は Fermi 準位近傍で、よ り速やかに1から0へ変わる。絶対零度の場合、その変化は1から0へステップ関数のよ うに変化する.したがって,絶対零度における Fermi 積分の値は,図4.9の一次元状態密度 の面積部分に対応し、その値は一次元状態密度のエネルギー E_z による0から E_F までの定 積分で決まる.そのため、低温であるほど Fermi 積分は一次元状態密度の挙動を反映する ようになる.図4.10に温度条件毎のFermi積分の特性を示す.温度が低いほど,弱反転領 域から反転領域にかけて Fermi 積分が急激に増加し、そこでの V_G に関する傾きが大きく なることが分かる.一方,更に VG が増加したとしても, Fermi 積分の値そのものは大きく なるが、傾きは減少する.その結果として、図 4.8 に示したように $C_{\rm eff,G}$ の値は弱反転領域 から急激に増加し、そこから徐々に減少する. また、式 (4.30) に従い、 Ceff,G から一定値で ある $C_{\text{ox,wire}}$ 成分を差し引くことで, C_{q} が $C_{\text{eff,G}}$ よりも急激に減少することになる. この 特性は、参考文献 [8,9] などに示されているキャパシタンスの挙動と一致することから、式

図 4.10: Fermi 積分 F_{-1/2}の温度条件毎のゲート電圧依存性.

(4.32) による NW MOSFET の単位長さ当たりのキャパシタンス *C*_{eff,G} は適当にモデル化 されている.しかし,図 4.8 は NC モデルとの比較である.今後,精度の妥当性を確立する ために,数値シミュレーションや実験値との比較・検討・必要があればモデルの修正を行 う必要性があり,これは今後の課題の一つである.

以上により、ボトルネックにおける単位長さ当たりのキャパシタンスを解析的に表すことができた.しかし、 $C_{GS,G}$ 及び $C_{GD,G}$ を導出するには、式 (4.27)及び (4.28)から分かる通り、チャネル内の伝導方向(z方向)に関する線電荷密度分布の情報が必要である.図4.11にサブスレッショルド領域及び反転領域における伝導方向に関する線電荷密度分布の模式図を示す.チャネル内の電荷密度分布を考えることは、デバイス構造全体の3次元のSchrödinger-Poisson方程式を考えることを意味する.これは、ここまでにも何度か述べたように非常に難しいことであり、その解析化は容易ではない.チャネル領域における線電荷密度分布 (図 4.11)を見ると、およそ線形的に分布している.そのため、線電荷密度分布を線形的に近似する手法は存在する [5].この手法を応用すれば NW MOSFET における線電荷密度分布をモデル化することは可能である.しかし、本章及び次章では NW MOSFET の基本特性を回路シミュレータに組み込む道筋を作ることが主題である.そこで、本論文では図 4.11に示した $V_{DS} = 0.8$ V, $V_{GS} = 0.20$ V におけるチャネル内の z方向に関する電荷密度分布を直線で次のように近似的にフィッティングする.

$$\frac{n_{\rm e}(z)}{n_{\rm e}(\Delta U_{\rm G})} = -\frac{0.44}{L_{\rm G} - 10^{-9}} \left(z - 10^{-9}\right) + 1 \tag{4.33}$$

ここで、 $n_{e}(\Delta U_{G})(=Q_{e}(\Delta U_{G})/e)$ はボトルネックにおける線電子密度である. これを用いて、全バイアス条件下の $C_{GS,G}$ 及び $C_{GD,G}$ を導出することにする. そうすることで、 $C_{GS,G}$ 、 $C_{GD,G}$ を非常に簡単な形で導出できる. このように簡略な電荷分布を考える理由がもうつつある. 実際に NW MOSFET が回路に導入されたと考えると、キャパシタンスとして考慮する必要のあるものは NW MOSFET そのもののキャパシタンス及び NW MOSFET の周りの構造からくる寄生容量がある. 図 4.8 から分かるように、本スケールの NW MOSFET の単位長さ当たりのキャパシタンスは 10^{-9} (F) 程度のオーダーであり、式 (4.27) 及び (4.28)

図 4.11: 伝導方向に関する線電荷密度分布の模式図. $z/L_{\rm G} = 0$ がソース・チャネル端に, $z/L_{\rm G} = 1$ がチャネル・ドレイン端に対応する.

から分かるように実際にはそれにゲート長のオーダーがかかる. つまり, 実際のキャパシ タンスは 10^{-18} (F) 程度という非常に小さくなる可能性があり, 回路特性を考える際, NW MOSFET のキャパシタンスそのものより, インターフェースからくる寄生キャパシタン スが支配的になる可能性がある. そのため, 線電荷密度分布の精度を追求する必要性につ いては疑問が残る. これに関しては, 今後の課題の一つである. 本論文ではキャパシタンス の精度を追求するのではなく, まずは回路シミュレータに組み込むことを念頭にモデル化 を進める. 以上の仮定から, $C_{GS,G} \ge C_{GD,G}$ は式 (4.27)及び (4.28) に式 (4.33) を代入する ことで求まる. すなわち,

$$C_{\rm GS,G} = e \frac{\partial}{\partial V_{\rm G}} n_{\rm e}(\Delta U_{\rm G}) \int_0^{L_{\rm G}} dz' \left(1 - \frac{z'}{L_{\rm G}}\right) \left[1 - \frac{0.44}{L_{\rm G} - 10^{-9}} \left(z - 10^{-9}\right)\right]$$

= $C_{\rm eff,G} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{L_{\rm G}}{3}\right)\right]$ (4.34)

となる. 同様に,

$$C_{\rm GD,G} = e \frac{\partial}{\partial V_{\rm G}} n_{\rm e}(\Delta U_{\rm G}) \int_0^{L_{\rm G}} dz' \frac{z'}{L_{\rm G}} \left[1 - \frac{0.44}{L_{\rm G} - 10^{-9}} \left(z - 10^{-9} \right) \right]$$

= $C_{\rm eff,G} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{2}{3} L_{\rm G} \right) \right]$ (4.35)

となり、等価回路モデルに示した各パラメータが得られた.

以上は, $V_{\rm G}$ の変化に対応するキャパシタンスに関する説明である.他のバイアス条件 $V_{\rm S}, V_{\rm D}$ の変化に対応するキャパシタンス成分に関しても、全く同じ流れで導出できる.まず, $V_{\rm S}$ の時間変化に対応するキャパシタンスであるが、ボトルネックにおける単位長さあ たりのキャパシタンス $C_{\rm eff,S}$ は、

$$C_{\text{eff,S}} = \frac{\partial Q_{\text{e}}}{\partial V_{\text{S}}}$$
$$= \frac{8e\varepsilon_{\text{ch}}}{k_{\text{B}}T} \left[\left\{ 1 + \exp\left[-\frac{1}{\alpha} \left(\frac{eV_{\text{GS}}'}{k_{\text{B}}T} + c_{1,0,0} \right) \right] \right\} \left(b_{0,0} + 2(a_{\text{L}} + a_{1,0,0})\Delta U_{\text{G}} \right) \right]^{-1}$$
(4.36)

となる. 図 4.12 にその特性を示す. ソース電圧 $V_{\rm S}$ が 0.4 V 以上まで増加することで, ソースからボトルネックに流入する電子の数が急激に減少し, 無視できるほど小さくなる. そのため $V_{\rm S}$ の変化に依らず, $C_{\rm eff,S}$ は 0 になる. 一方, $V_{\rm S}$ が小さいところでの $C_{\rm eff,S}$ の挙動は, 図 4.8 に関して説明したのと同様に, 一次元状態密度の影響によるものである. 式 (4.33) のソース-ドレイン方向に関する電子密度分布を用いると,

$$C_{\rm GS,S} = e \int_0^{L_{\rm G}} dz' \left(1 - \frac{z'}{L_{\rm G}} \right) \frac{\partial}{\partial V_{\rm S}} n_{\rm e}(z',t) = C_{\rm eff,S} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{L_{\rm G}}{3} \right) \right]$$
(4.37)

$$C_{\rm GD,S} = e \int_0^{L_{\rm G}} dz' \frac{z'}{L_{\rm G}} \frac{\partial}{\partial V_{\rm S}} n_{\rm e}(z',t) = C_{\rm eff,S} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{2}{3} L_{\rm G} \right) \right]$$
(4.38)

91

図 4.12: ソースのバイアス条件が変化した時の C_{eff.S}-V_S 特性.

となり、 $V_{\rm S}$ の時間変化に対応するキャパシタンス成分が導出できる.問題は $V_{\rm D}$ の時間変化に対応するキャパシタンス成分である.式 (4.18)で表わされる $\Delta U_{\rm G}$ の解析式は $V_{\rm D}$ に関する依存性を持たない.したがって、

$$C_{\text{eff},\text{D}} = \frac{\partial Q_{\text{e}}}{\partial V_{\text{D}}}$$

$$= 0$$

$$(4.39)$$

となり、 V_D の時間変化に対応するキャパシタンス成分 $C_{GS,D}$, $C_{GD,D}$ も0になってしまう. このように、 ΔU_G にドレイン電圧に関する依存性を加えない限り、キャパシタンス $C_{GS,D}$, $C_{GD,D}$ をモデル化することはできない. この ΔU_G へのドレイン電圧依存性の導入手法に 関しては、4.3.1 項にて説明する. 4.3.1 項で説明する手法を利用することで、 V_D の時間変化 に対応するキャパシタンス成分の計算も可能となる. したがって、4.3.1 項において、もう 一度 $C_{\text{eff},D}$ の特性を計算する. 以上がキャパシタンスのモデル化に関する説明である. モ デルの回路シミュレータ組み込みは第5章に託すことにし、本章では残りの節を使って本 モデルの問題点及びその解決方法の一例を提案する.

4.3 問題点及び解決手法

00

NW MOSFET の特性を表わす解析モデルを作成するために, 4.1 節ではいくつかの仮定 を置いた. その仮定をここでもう一度示す.

- ドレイン電極からボトルネックに注入される電子数は無視できるほど十分に少ない. $(eV_{\rm DS} \gg k_{\rm B}T)$
- ボトルネックにおける電子は全て基底準位 $(n_v, n_x, n_y) = (1, 0, 0)$ に存在する.

前節では、この仮定が適切である条件下における特性の比較を行った.しかし、これらは非常に大胆な仮定であり、本モデルの有効範囲を非常に制限している.本節では上記の仮定が崩れる条件下での特性比較を通して、4.1節及び4.2節で導出した解析モデルの問題点を明らかにし、その改善方法を提案する[3].

4.3.1 ドレイン電圧依存性

まず、線電荷密度の方程式においてドレイン電圧依存性を無視することによる問題点を 挙げる. 図 4.13 に示すように、本解析モデルは電流電圧特性を低ドレイン電圧領域も含 め、全バイアス領域下で良く再現している. これは、弾道輸送に基づく電流式そのものが ドレイン電圧依存性を持っており、それにより十分な再現性を持つためである. パラメー タ $\Delta U_{\rm G}$ はどうであろうか. 図 4.14(a) に様々なドレイン電圧下における $\Delta U_{\rm G}$ の特性を示 す. 式 (4.18) で解析的に表された $\Delta U_{\rm G}$ はドレイン電圧依存性を含んでいない. しかし、図 に示したように $\Delta U_{\rm G}$ は大きくドレイン電圧に依存する. この依存性の影響を直接受ける パラメータは 4.2 節で導出したキャパシタンスモデルである. 図 4.14(b) に様々なドレイ ン電圧下における $C_{\rm eff,G}$ の特性を示す. キャパシタンスはドレイン電圧に対して敏感であ り、NW MOSFET のキャパシタンス成分に流れる過渡電流に影響する. また、ドレイン電

図 4.13: NC モデル及び FA モデルの電流特性比較. (a) $I_{DS}-V_{DS}$ 特性. (b) $I_{DS}-V_{GS}$ 特性. $t_x/t_y = (a-1,b-1) 2 \text{ nm}/4 \text{ nm}$, (a-2,b-2) 3 nm/4 nm, (a-3,b-3) 4 nm/4 nm の断面構造に 対応する.

図 4.14: 各ドレイン電圧条件における (a) $\Delta U_{\rm G} - V_{\rm G}$ 特性及び (b) $C_{\rm eff,G} - V_{\rm G}$ 特性.

 $E V_D$ の時間変化に対応する単位長さ当たりのキャパシタンス $C_{\text{eff,D}}$ を導出するためにも、 ドレイン電圧依存性は重要である.このように、ドレイン電圧依存性の導入は過渡電流に とって重要である.

パラメータ: $\Delta U_{\mathbf{G}}$

ドレイン電圧依存性を考慮するためには式(4.1)を ΔU_G に関して解く際に, ドレイン電 圧を含む右辺第二項を考慮すればよい. 基底準位に全ての電子が存在するという仮定はま だ生きているとすると, 以下に示す方程式を考えればよいことになる.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2} \times \left[F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right) + \beta_{1,0,0}F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G}) - \frac{eV_{\rm DS}}{k_{\rm B}T}\right)\right]$$

$$\beta_{1,0,0} = \frac{1-R_{1,0,0}}{1+R_{1,0,0}}$$

$$(4.41)$$

この方程式を ΔU_G に関して解くことで、ドレイン電圧依存性を導入できる. この方程式 を解く手順は基本的には 4.1 節の手法と同様である. まずサブスレッショルド領域を考え る. サブスレッショルド領域では、たとえドレイン電圧が小さく、ドレイン電極から注入さ

れる電子数がソース電極から注入される電子数と同程度であったとしても電荷密度は十分 に小さいと考えられる.したがって,

$$\Delta U_{\rm G} = 0 \tag{4.42}$$

と近似する.問題は反転領域である.式(4.40)右辺の第一項は式(4.4)に従いFermi積分 を近似できるが,第二項はドレイン電圧の大きさに応じて式(4.4)で表わされるサブスレッ ショルド,反転領域のどちらに関するFermi積分の近似式を使えるかが変わる.ドレイン 電圧が十分に大きい時は,ドレイン電極からボトルネックに注入される電子数は十分に小 さくなるため,サブスレッショルド領域の近似式が適当である.一方,ドレイン電圧が十分 に小さい場合,ドレイン電極からの電子数が増加するため,反転領域に関する近似式が適 当になる.このように,反転領域であったとしても,ドレインから注入される電子数はドレ イン電圧に応じて適当なFermi積分の近似式が変化する.まず,ドレイン電圧が十分に小 さく,ドレイン電極からの電子の注入量がソース電極からのそれに近い場合を考える.式 (4.40)を式(4.4)に従い変形すると,

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1 \\ \times \left[\left(u_{1,0,0}(\Delta U_{\rm G})\right)^{\frac{1}{2}} + \beta_{1,0,0}\left(u_{1,0,0}(\Delta U_{\rm G}) - \frac{eV_{\rm DS}}{k_{\rm B}T}\right)^{\frac{1}{2}} \right]$$
(4.43)

となる. この方程式は 4.1 節で定義した式 (4.9) のパラメータを用いると,

$$\sqrt{a_{\rm L}}\Delta U_{\rm G} = \left[\left(-a_{1,0,0}\Delta U_{\rm G}^2 - b_{0,0}\Delta U_{\rm G} + c_{1,0,0} + \frac{eV_{\rm GS}'}{k_{\rm B}T} \right)^{\frac{1}{2}} + \beta_{1,0,0} \left(-a_{1,0,0}\Delta U_{\rm G}^2 - b_{0,0}\Delta U_{\rm G} + c_{1,0,0} + \frac{e\left(V_{\rm GS}' - V_{\rm DS}\right)}{k_{\rm B}T} \right)^{\frac{1}{2}} \right]$$
(4.44)

と書くことができる. この方程式を $\Delta U_{\rm G}$ に関して整理すると,式が大変煩雑になる. それ を避けるために,いくつか新しいパラメータを定義する. そのため,細かい部分の式変形も 示すことにする. 方程式 (4.44)の右辺第一項を左辺に移項し,両辺を二乗すると,

$$\left(a_{\rm L} - a_{1,0,0}'\right) \Delta U_{\rm G}^2 - b_{1,0,0}' \Delta U_{\rm G} + c_{1,0,0}' + \beta_{1,0,0}' \frac{eV_{\rm GS}'}{k_{\rm B}T}$$

$$= 2\sqrt{a_{\rm L}} \Delta U_{\rm G} \left(-a_{1,0,0} \Delta U_{\rm G}^2 - b_{0,0} \Delta U_{\rm G} + c_{1,0,0} + \frac{eV_{\rm GS}'}{k_{\rm B}T}\right)^{\frac{1}{2}}$$

$$(4.45)$$

$$a_{1,0,0}' = a_{1,0,0} - \beta_{1,0,0}^2 a_{1,0,0} \tag{4.46}$$

$$b_{1,0,0}' = b_{0,0} - \beta_{1,0,0}^2 b_{0,0} \tag{4.47}$$

$$c_{1,0,0}' = c_{1,0,0} - \beta_{1,0,0}^2 c_{1,0,0} \tag{4.48}$$

$$\beta_{1,0,0}' = 1 - \beta_{1,0,0}^2 \tag{4.49}$$

と変形できる.式 (4.45) を $\Delta U_{\rm G}$ に関して整理する.

$$\Delta U_{\rm G}^4 + \frac{C_2}{C_1} \Delta U_{\rm G}^3 + \frac{C_3}{C_1} \Delta U_{\rm G}^2 + \frac{C_4}{C_1} \Delta U_{\rm G} + \frac{C_5}{C_1} = 0$$
(4.50)

95

図 4.15: 式 (4.50) の各係数の絶対値比較. 各ゲート電圧下において $\Delta U_{\rm G} = \theta_{\rm G} \Delta \tilde{U}_{\rm G}$ とス ケーリングし, $\Delta \tilde{U}_{\rm G} = 1$ となるように計算した比較結果.

$$C_1 = \left(a_{\rm L} - a_{1,0,0}'\right)^2 + 4a_{\rm L}a_{1,0,0} \tag{4.51}$$

$$C_2 = 4a_{\rm L}b_{0,0} - 2b'_{0,0} \left(a_{\rm L} - a'_{1,0,0}\right) \tag{4.52}$$

$$C_{3} = 2 \left(a_{\rm L} - a_{1,0,0}^{\prime} \right) \left(c_{1,0,0}^{\prime} + \beta_{1,0,0}^{\prime} e V_{\rm GS}^{\prime} / k_{\rm B} T + \beta_{1,0,0} e V_{\rm DS} / k_{\rm B} T \right) + \left(b_{1,0,0}^{\prime} \right)^{2} - 4a_{\rm L} \left(e V_{\rm GS}^{\prime} / k_{\rm B} T + c_{1,0,0} \right)$$

$$(4.53)$$

$$C_4 = -2 \left(c'_{1,0,0} + \beta'_{1,0,0} e V'_{\rm GS} / k_{\rm B} T + \beta_{1,0,0} e V_{\rm DS} / k_{\rm B} T \right) b'_{1,0,0} \tag{4.54}$$

$$C_5 = \left(c_{1,0,0}' + \beta_{1,0,0}' e V_{\rm GS}' / k_{\rm B}T + \beta_{1,0,0} e V_{\rm DS} / k_{\rm B}T\right)$$
(4.55)

となる.式 (4.50) は $\Delta U_{\rm G}$ に関する四次関数であるため、 $\Delta U_{\rm G}$ について解ける.しかし、 式の形が非常に複雑になる.そこで、式 (4.50) の各係数を比較する.図 4.15 に比較結果を 示す.式 (4.50) は反転領域かつドレイン電圧が小さいところでの近似方程式であるため、 それを満たす条件下での係数比較である.図 4.15 から分かるように、係数 $|C_5/C_1\theta_{\rm G}^4|$ は $|1+C_2/C_1\theta_{\rm G}+C_3/C_1\theta_{\rm G}^2|$ に比べて小さい.また、 $R_{nv,n_x,n_y}=0$ の場合、係数 C_4 は0にな る.これらの係数は、 $|1+C_2/C_1\theta_{\rm G}+C_3/C_1\theta_{\rm G}^2|$ と比べて無視できる程度に小さいもので あると仮定することで、式 (4.50) は、

$$\Delta U_{\rm G}^2 + \frac{C_2}{C_1} \Delta U_{\rm G} + \frac{C_3}{C_1} = 0 \tag{4.56}$$

となる. この $\Delta U_{\rm G}$ に関する二次方程式は解の公式により容易に解ける. 式 (4.56) を解くと,

$$\Delta U_{\rm G}(V_{\rm GS}, V_{\rm DS}) = -\frac{C_2}{2C_1} \left(1 \pm \sqrt{1 - 4\frac{C_1 C_3}{C_2^2}} \right)$$

$$= -\frac{C_2}{2C_1} \left\{ 1 \pm \sqrt{1 - 4\frac{C_1 C_6}{C_2^2} \left[\frac{e}{k_{\rm B}T} \left(V_{\rm GS}' + \frac{C_7}{C_6} V_{\rm DS}\right) + \frac{C_8}{C_6}\right]} \right\}$$
(4.57)

$$C_6 = 2 \left(a_{\rm L} - a'_{1,0,0} \right) \beta'_{1,0,0} - 4a_{\rm L} \tag{4.58}$$

$$C_7 = 2 \left(a_{\rm L} - a_{1,0,0}' \right) \beta_{1,0,0} \tag{4.59}$$

図 4.16: 各ドレイン電圧条件における $\Delta U_{\rm G} - V_{\rm GS}$ 特性.

$$C_8 = 2 \left(a_{\rm L} - a'_{1,0,0} \right) c'_{1,0,0} + \left(b'_{1,0,0} \right)^2 - 4a_{\rm L}c_{1,0,0} \tag{4.60}$$

となる. ここで, $\Delta U_{\rm G}$ は $V_{\rm GS}$ 及び $V_{\rm DS}$ の関数となることから $\Delta U_{\rm G}(V_{\rm GS}, V_{\rm DS})$ と記述して いる. 式 (4.15) の場合と同様に, 式 (4.57) で得られる二通りの解の片方は数学的に得られ るだけの物理的には意味のない解である. そのため, 実質的な解は,

$$\Delta U_{\rm G}(V_{\rm GS}, V_{\rm DS}) = -\frac{C_2}{2C_1} \left\{ 1 - \sqrt{1 - 4\frac{C_1 C_6}{C_2^2} \left[\frac{e}{k_{\rm B} T} \left(V_{\rm GS}' + \frac{C_7}{C_6} V_{\rm DS}\right) + \frac{C_8}{C_6}\right]} \right\}$$
(4.61)

である. この解は,式(4.16)で得られた解とほとんど同様な形である. したがって,式(4.17) で示した平滑化関数を利用してサブスレッショルド領域の近似解と滑らかに接続できる. 全ゲート電圧範囲に対応する ΔU_G は平滑化関数を用いて次のように得られる.

$$\Delta U_{\rm G}^{(1)}(V_{\rm GS}, V_{\rm DS}) = -\frac{C_2}{2C_1} \left(1 - \sqrt{1 - 4\frac{C_1 C_6}{C_2^2} \ln\left\{1 + \exp\left[\frac{e}{k_{\rm B} T}\left(V_{\rm GS}' + \frac{C_7}{C_6} V_{\rm DS}\right) + \frac{C_8}{C_6}\right]\right\}} \right)$$
(4.62)

ここで、 $\Delta U_{\rm G}$ に上付き添え字 (1) を付けている.この後詳しく説明するが、式 (4.62) を利 用してもう一度線電荷密度の方程式を $\Delta U_{\rm G}$ に関して解くことになる.そこでの $\Delta U_{\rm G}$ は この $\Delta U_{\rm G}^{(1)}$ とは別のものとして扱うため、混同を避けるために上付き添え字を付けて区別 する.まず、式 (4.62) により、どの程度ドレイン電圧依存性を再現できているか調べる.図 4.16 にその計算結果を示す.式 (4.62) は $V_{\rm DS} = 0.01-0.10$ V の範囲における反転領域で NC モデルを良く再現している.ドレイン電圧が 0.80 V において大きくずれているが、式 (4.62) はドレイン電圧が十分に小さいという仮定に基づき導出した式であることから当然 の結果である.また、式 (4.62) では弱反転領域も上手く再現できておらず、これではドレ イン電圧依存性を導入できたとは言えない.そこで、更なる工夫をする.方程式 (4.40) を 次のように変形する.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2}$$

$$\times F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)\left[1+\beta_{1,0,0}\frac{F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})-eV_{\rm DS}/k_{\rm B}T\right)}{F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)}\right]$$

$$(4.63)$$

図 4.17: 式 (4.62) を用いて計算した (a) $\eta_{\beta,1,0,0}-V_{\text{DS}}$ 特性及び (b) $\eta_{\beta,1,0,0}-V_{\text{GS}}$ 特性.

この式の右辺大括弧の中の第二項は、ソースからボトルネックに注入される基底準位に存 在する電子数とドレインからボトルネックに注入される基底準位に存在する電子数の比を 表わす. ここで $\eta_{\beta,n_v,n_x,n_y}(\Delta U_G)$ を、

$$\eta_{\beta,n_v,n_x,n_y}(\Delta U_{\rm G}) = \beta_{n_v,n_x,n_y} \frac{F_{-\frac{1}{2}} \left(u_{n_v,n_x,n_y}(\Delta U_{\rm G}) - eV_{\rm DS}/k_{\rm B}T \right)}{F_{-\frac{1}{2}} \left(u_{1,0,0}(\Delta U_{\rm G}) \right)}$$
(4.64)

と定義すると、式 (4.63)は、

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{eg_1\sqrt{2m_{z,1}^*k_{\rm B}T}}{2\pi\hbar}(1+R_{1,0,0})F_{-\frac{1}{2}}(u_{1,0,0}(\Delta U_{\rm G}))[1+\eta_{\beta,1,0,0}(\Delta U_{\rm G})] (4.65)$$

となる.ここで、 η_{eta,n_v,n_x,n_y} に着目する.式 (4.62)で表わされる $\Delta U_{
m G}^{(1)}$ はドレイン電圧依 存性を十分に再現できなかったが, $\eta_{eta,1,0,0}$ を計算する際に $\Delta U_{
m G}^{(1)}$ を使用するとどうなるだ ろうか. 図 4.17 に $\Delta U_{\rm G}^{(1)}$ を用いた様々なバイアス条件下における $\eta_{eta,1,0,0}$ の計算結果を示 す. 結論から言うと、全バイアス条件下において非常に良い精度を示す. まず、図 4.17(a) について考える. ゲート電圧が十分に大きく (反転領域) かつドレイン電圧が小さいところ で良い精度を示す.これは、 $\Delta U_{\rm G}^{(1)}$ の導出の際に置いた仮定が最も上手く成り立つバイアス条件だからである.しかし、パラメータ $\Delta U_{\rm G}^{(1)}$ はドレイン電圧が大きいところで無視で きないほどの誤差を持つにも関わらず、図 4.17(a) においてドレイン電圧が大きいところ でも $\Delta U_{\rm C}^{(1)}$ を用いた $\eta_{\beta,1,0,0}$ は高い精度を示す. ドレイン電圧が大きくなることで、ドレ インからボトルネックに注入される電子数はソースから注入される電子数と比べて急激に 少なくなる.これは、ドレイン電極内部の Fermi-Dirac 分布関数が $E_{\rm FD}(=E_{\rm FS}-eV_{\rm DS})$ に 従うため、ドレイン電極内部でチャネル内のバリア障壁を超えるだけのエネルギーを持つ 電子がほとんど存在しなくなるためである. そのため、ドレイン電圧が大きいところでの $\Delta U_{G}^{(1)}$ の大きな誤差にも関わらず,電子数の比は0に収束する.したがって,ドレイン電圧 が大きいところでも良い再現性を持つのである.このように、 $\Delta U_{C}^{(1)}$ を用いて計算された $\eta_{\beta,1,0,0}-V_{\rm DS}$ 特性は高い精度を示す.特性 $\eta_{\beta,1,0,0}-V_{\rm GS}$ に関しても同様の考え方で説明でき る. すなわち、ドレイン電圧が大きいところではドレインからボトルネックに注入される 電子数が十分に小さくなり、ゲート電圧及び解析式の精度によらず $\eta_{\beta,1,0,0}$ はほとんど1と なるため良い精度を示す.一方、ドレイン電圧が小さい場合、 $\Delta U_{
m G}^{(1)}$ そのものが NC モデル

を良く再現するため、 $\eta_{\beta,1,0,0}$ を良く再現しているのである.以上のことから、 $\Delta U_{\rm G}^{(1)}$ を用いて計算した $\eta_{\beta,1,0,0}$ は全バイアス条件下において非常によく NC モデルを再現していることが確認できた.

電子数の比 η_{β,n_v,n_x,n_y} は式 (4.65) において当然 $\Delta U_{\rm G}$ に依存する.そのため、式 (4.65) を解くことは非常に難しい.しかし、図 4.17 で示した通り、 $\eta_{\beta,1,0,0}$ は式 (4.62) で近似的に 求めた $\Delta U_{\rm G}^{(1)}$ を用いることで、全バイアス条件に関して高い精度を確認することができた. また、式 (4.62) を使用することで、 $\eta_{\beta,1,0,0}$ は構造及びバイアス条件のみで決まるパラメー タとして記述でき、 $\Delta U_{\rm G}$ に依存しないパラメータとして扱える.ここで、方程式 (4.65) で 求めたい $\Delta U_{\rm G}^{(2)}$ と置く.そうすることで、方程式 (4.65) は、

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G}^{(2)} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2} \times F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G}^{(2)})\right)\left[1+\eta_{\beta,1,0,0}(\Delta U_{\rm G}^{(1)})\right]$$
(4.66)

と変形できる.この方程式は、ドレイン電圧依存性を含む項の影響が全て $\eta_{\beta,1,0,0}$ に含まれていることを意味し、それが近似的に $\Delta U_{\rm G}^{(1)}$ を使用することで $\Delta U_{\rm G}^{(2)}$ に依存せず、デバイス構造及びバイアス条件のみで決まるパラメータとして扱えることを意味する.したがって、 $\eta_{\beta,1,0,0}(V_{\rm GS}, V_{\rm DS})$ と記述できる.しかし、式 (4.62)の $\Delta U_{\rm G}^{(1)}$ を使用していることを分かるようにするために、 $\eta_{\beta,1,0,0}(\Delta U_{\rm G}^{(1)})$ と記述することにする.この近似により、式 (4.66)は4.1節で解説したのと同様の手法により $\Delta U_{\rm G}^{(2)}$ に関して解くことができる.したがって、反転領域において式 (4.66)を $\Delta U_{\rm G}^{(2)}$ に関して解くと次のようになる.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}, V_{\rm DS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2} + a_{1,0,0}\right\}} \times \left\{1 - \sqrt{\frac{4\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2} + a_{1,0,0}\right\}}{b_{0,0}^{2}}\left(\frac{eV_{\rm GS}^{\prime}}{k_{\rm B}T} + c_{1,0,0}\right)}\right\}}$$
(4.67)

ここで、 $\eta'_{\beta,1,0,0} = 1 + \eta_{\beta,1,0,0}$ としている.このように、式 (4.16) と全く同じ式の形で得られる.この式を平滑化関数を用いてサプスレッショルド領域と繋ぐ前に、反転領域におけるドレイン電圧依存性を再現できているか確認する.図4.18 にその結果を示す.図から明らかなように、 $\Delta U_{\rm G}^{(1)}$ では再現できなかった高ドレイン電圧下における $\Delta U_{\rm G}-V_{\rm GS}$ 特性を $\Delta U_{\rm G}^{(2)}$ により再現でき、広いドレイン電圧条件に対応できる.そこで、式 (4.67)を平滑化関数 (式 (4.17)) を用いてサプスレッショルド領域の $\Delta U_{\rm G}(=0)$ と繋ぐ.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}, V_{\rm DS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2} + a_{1,0,0}\right\}} \times \left(1 - \sqrt{1 + \frac{4\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2} + a_{1,0,0}\right\}}{b_{0,0}^{2}} \alpha \ln\left\{1 + \exp\left[\frac{1}{\alpha}\left(\frac{eV_{\rm GS}^{\prime}}{k_{\rm B}T} + c_{1,0,0}\right)\right]\right\}}\right)$$

$$(4.68)$$

図 4.18: 式 (4.67) によるドレイン電圧毎の $\Delta U_{\rm G}-V_{\rm GS}$ 特性.

図 4.19: 式 (4.68) によるドレイン電圧毎の $\Delta U_{\rm G}-V_{\rm GS}$ 特性.

この式が全ゲート電圧条件においてどのような挙動を示すかを図 4.19 に示す. 図から分 かる通り, 全バイアス条件に関して良く NC モデルを再現しているように見える. 特に, $\Delta U_{\rm G}^{(1)}$ において問題であった高ドレイン電圧下における誤差の改善に成功している. この ように, より良い精度でドレイン電圧依存性を $\Delta U_{\rm G}$ に導入できた. しかし, 弱反転領域に おいて少し誤差が残る. この誤差はフィッティングパラメータ α を調整しても取り除くこ とはできない. そこで, 平滑化関数で $\Delta U_{\rm G}^{(2)}$ を繋ぐ前に式 (4.67)を以下に示すように変形 する.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}, V_{\rm DS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}'(\Delta U_{\rm G}^{(1)})\right]^2 + a_{1,0,0}\right\}} \times \left\{1 - \sqrt{1 + \frac{4\left\{a_{\rm L} + \left[\eta_{\beta,1,0,0}'(\Delta U_{\rm G}^{(1)})\right]^2 a_{1,0,0}\right\}}{\eta_{\beta,1,0,0}'(\Delta U_{\rm G}^{(1)})b_{0,0}^2}} \frac{eV_{\rm GS}'/k_{\rm B}T + c_{1,0,0}}{\eta_{\beta,1,0,0}'(\Delta U_{\rm G}^{(1)})b_{0,0}^2}}\right\}}$$
(4.69)

図 4.20: 式 (4.70) によるドレイン電圧条件ごとの $\Delta U_{\rm G}-V_{\rm GS}$ 特性.

平滑化関数を用いて、この式をサブスレッショルド領域と次のように繋ぐ.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}, V_{\rm DS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} / \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2} + a_{1,0,0}\right\}} \times \left(1 - \sqrt{1 + \frac{4\left\{a_{\rm L} + \left[\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^{2}a_{1,0,0}\right\}}{\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})b_{0,0}^{2}}} \alpha \ln \left\{1 + \exp\left[\frac{1}{\alpha}\left(\frac{eV_{\rm GS}^{\prime}/k_{\rm B}T + c_{1,0,0}}{\eta_{\beta,1,0,0}^{\prime}(\Delta U_{\rm G}^{(1)})}\right)\right]\right\}}\right)$$

$$(4.70)$$

この式による計算結果を図 4.20 に示す. 式 (4.70) を用いることで, 弱反転領域領域における精度が改善されていることが分かる. したがって, $\Delta U_{\rm G}^{(2)}$ によりドレイン電圧依存性が解析的に導入できたと言える. また, $\eta'_{\beta,1,0,0}(\Delta U_{\rm G}^{(1)}) = 1$ とすることでドレイン電圧依存性を含まない $\Delta U_{\rm G}($ 式 (4.18)) と一致するため, 計算条件に応じたドレイン電圧依存性の on, off が非常にわかりやすい.

Fermi 積分の近似手法

式 (4.70) で示したドレイン電圧依存性を含む $\Delta U_{\rm G}$ の解析式には問題点がある.式 (4.64) で定義された各電極からボトルネックに注入される電子数の比 η_{β,n_v,n_x,n_y} が Fermi 積分を 用いて定義されていることである.すなわち, η_{β,n_v,n_x,n_y} を計算するには式 (2.60) で表わ される積分を計算する必要があり,回路シミュレータに組み込む際に障害になる可能性が ある.しかし, Fermi 積分は既に解析式として表わされている [2, 10].それを以下に示す.

$$F_n(u) = \left\{ \frac{(n+1)2^{n+1}}{\left[b+u+(|u-b|^c+a^c)^{1/c}\right]^{n+1}} + \frac{\exp(-u)}{\Gamma(n+1)} \right\}^{-1}$$
(4.71)

$$a = \left[1 + \frac{15}{4}(n+1) + \frac{1}{40}(n+1)^2\right]$$
(4.72)

101

図 4.21: Fermi 積分 (式 (2.60)) と式 (4.71) の近似式による比較結果.

$$b = 1.8 + 0.61n \tag{4.73}$$

$$c = 2 + (2 - \sqrt{2})2^{-n} \tag{4.74}$$

この解析式による Fermi 積分の再現結果を図 4.21 に示す. このように、参考文献 [2, 10] に よる近似手法は非常に良く Fermi 積分を再現する.参考文献 [2] に記載されているが、この 近似手法は誤差がおよそ 5% 以内に抑えられている. この近似手法を利用することで Fermi 積分を解析式で記述することができ、 η_{β,n_v,n_x,n_y} を解析的に与えることができる. したがっ て、 $\Delta U_{\rm C}^{(2)}$ も明示的な解析式として記述できる.

キャパシタンス: $C_{\text{eff},G}$, $C_{\text{eff},S}$, $C_{\text{eff},D}$

ここまで示したように、 $\Delta U_{\rm G}$ へのドレイン電圧依存性の導入に成功した.一方、NW MOSFET の実効的キャパシタンス $C_{\rm eff,G}$, $C_{\rm eff,S}$ はそれぞれ $\partial \Delta U_{\rm G}/\partial V_{\rm G}$, $\partial \Delta U_{\rm G}/\partial V_{\rm S}$ に比 例する.したがって、ドレイン電圧依存性を含む $C_{\rm eff,G}$ 及び $C_{\rm eff,S}$ は、式 (4.70) を $V_{\rm G}$ また は $V_{\rm S}$ で微分することで求めることができる.ただし、式がかなり複雑になること、回路シ ミュレータに組み込む際には $\Delta U_{\rm G}$ を入力ファイルとして記述するのみで過渡電流を計算 可能なことから (第5章),実際にその式は記述しない.図4.22(a),(b) に、式(4.70) を用い た $C_{\rm eff,G}$ 及び $C_{\rm eff,S}$ の計算結果を示す.多少の誤差は残るものの、ドレイン電圧依存性に よる $C_{\rm eff,G}$ の学動の再現に成功している.図4.22(b) に示すように、 $C_{\rm eff,S}$ に関しても良く NC モデルによる計算結果の挙動を良く再現している.ソース電圧 $V_{\rm S}$ が変化することは、 ソースから見るとドレイン電圧が変化しているように見える.したがって、図4.22(b) にお いて FA モデルが良い再現性を示すことは、 $C_{\rm eff,S}$ にもドレイン電圧依存性が導入できてい ると言える.以上により、 $C_{\rm eff,G}$ 及び $C_{\rm eff,S}$ の解析モデルへのドレイン電圧依存性の導入に 成功した.また、 $\Delta U_{\rm G}$ へのドレイン電圧依存性の導入に成功したことで、式(4.39)で表わ される $C_{\rm eff,D}$ が式(4.70) を用いることで、

$$C_{\rm eff,D} = \frac{\partial Q_{\rm e}}{\partial V_{\rm D}}$$

$$= -8\varepsilon_{\rm ch} \frac{\partial \Delta U_{\rm G}^{(2)}}{\partial V_{\rm D}}$$

$$(4.75)$$

図 4.22: ドレイン電圧依存性を含む $\Delta U_{\rm G}$ を用いた各キャパシタンス特性. (a) $C_{\rm eff,G}-V_{\rm G}$ 特性. (b) $C_{\rm eff,S}-V_{\rm S}$ 特性. (c) $C_{\rm eff,D}-V_{\rm D}$ 特性.

と得られる. その計算結果を、図 4.22(c) に示す. 各種バイアス条件に関して、 $C_{\text{eff,G}}$ と同様にある程度の誤差は残すものの、NC モデルの特性の挙動を良く再現していることが分かる. したがって、式 (4.70)を用いることで、 $C_{\text{eff,D}}$ のモデル化も可能となった. この $C_{\text{eff,D}}$

と式(4.33)で表わされるソース-ドレイン方向に関する電子密度分布を用いると、

$$C_{\rm GS,D} = e \int_0^{L_{\rm G}} dz' \left(1 - \frac{z'}{L_{\rm G}}\right) \frac{\partial}{\partial V_{\rm D}} n_{\rm e}(z',t) = C_{\rm eff,D} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{L_{\rm G}}{3}\right)\right]$$
(4.76)

$$C_{\rm GD,D} = e \int_0^{L_{\rm G}} dz' \frac{z'}{L_{\rm G}} \frac{\partial}{\partial V_{\rm D}} n_{\rm e}(z',t) = C_{\rm eff,D} \times L_{\rm G} \left[\frac{1}{2} + \frac{0.22}{L_{\rm G} - 10^{-9}} \left(10^{-9} - \frac{2}{3} L_{\rm G} \right) \right]$$
(4.77)

が得られる.以上により、各端子の電圧 $V_{\rm G}$ 、 $V_{\rm S}$ 、 $V_{\rm D}$ の時間変化に対する各キャパシタンスを求めることができた.

4.3.2 励起準位の影響

ドレイン電圧依存性の導入手法に関して 4.3.1 項を使って解説した.次に考える問題は 励起準位による影響である.解析モデルを作るための仮定として、ボトルネックにおける 電子が全て基底準位に存在するとした、これが解析モデルを作成する上での肝である、し かし、この仮定が本モデルの適用範囲を大きく制限する. 図 3.12 で示したように、ワイヤ 断面積が大きくなるにつれて全電子数に対してワイヤ断面内の閉じ込めエネルギーに関す る励起準位に存在する電子の占める割合が大きくなる. この励起準位に存在する電子がド レイン電圧と同様に $\Delta U_{\rm G}$ の特性に影響する.図4.23にワイヤ断面 $t_x/t_y = 3 \text{ nm}/4 \text{ nm}$ に 関する $\Delta U_{\rm G} - V_{\rm G}$ 及び $C_{\rm eff,G} - V_{\rm G}$ 特性を示す.図に示した特性は、NC モデルを用いて基底 サブバンドのみを考慮した場合と、低いエネルギー準位から順番に十分な数のエネルギー 準位を考慮した計算結果である。ゲート電圧が 0.3 V 程度まで上がると、各特性にずれが 生じていることが分かる. このずれは、図 4.23(a) で示した閉じ込めエネルギーの特性に より説明できる. 断面サイズが $t_x/t_y = 3 \text{ nm}/4 \text{ nm}$ のとき, 励起準位 $E_{1,1,0}$ が $V_{\text{GS}} = 0.3 \text{ V}$ 付近でソースの Fermi 準位と交差する. そのため, E_{1.1.0} に存在する電子が急激に増加し, 基底準位にのみ電子が存在しているという仮定が適切でなくなる. その結果として,線電 荷密度方程式を解く際に、 $(n_y, n_x, n_y) = (1, 1, 0)$ に存在する電子が $\Delta U_{
m G}$ に影響し、その分 ずれが生じる. また, $\Delta U_{\rm G}$ にずれが生じることで, その傾きのずれがそのままキャパシタ ンスに反映されている (図 $4.23(\mathrm{b})$). この影響を ΔU_{G} の解析式に導入できないか本項で考 える.

パラメータ: $\Delta U_{\mathbf{G}}$

励起準位の影響は、4.3.1 項で説明したドレイン電圧依存性の導入手法と全く同じ考え方 で導入可能である.線電荷密度の方程式 (4.1)を解く際に、4.3.1 項ではドレイン電極から 注入される電子数を表わす Fermi 積分の項を追加したが、その項を励起準位に存在する電 子数に対応する Fermi 積分の項にして解けばよい.したがって、励起準位を ΔU_G に考慮

図 4.23: 励起準位を考慮する場合、しない場合の (a) $\Delta U_{\rm G}-V_{\rm G}$ 特性及び (b) $C_{\rm eff,G}-V_{\rm G}$ 特性. するためには以下に示す方程式を解けばよい.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2} \qquad (4.78)$$

$$\times \left[F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right) + \gamma_{n_v,n_x,n_y}F_{-\frac{1}{2}}\left(u_{n_v,n_x,n_y}(\Delta U_{\rm G})\right)\right] \qquad (4.79)$$

$$\gamma_{n_v,n_x,n_y} = \frac{g_{n_v}(1+R_{n_v,n_x,n_y})}{g_1(1+R_{1,0,0})}\sqrt{\frac{m_{z,n_v}^*}{m_{z,1}^*}} \qquad (4.79)$$

ここでは、ドレイン電圧が十分に大きく、ドレインから注入される電子を無視するという 仮定の下で計算を進める.また、第一励起準位ではなく一般的に (n_v, n_x, n_y) を用いて表記 している.極力一般的な式変形を示すためである.例えば、第一励起準位を考慮する場合、 $(n_v, n_x, n_y) = (1, 1, 0)$ とすればよい.その場合、 $\gamma_{1,1,0} = (1 + R_{1,1,0})/(1 + R_{1,0,0})$ となるこ とが式 (4.79)より分かる.

まず、サブスレッショルド領域を考える.励起準位に存在する電子数が基底準位に存在 する電子数より大きくなることはない.そのため、サブスレッショルド領域においてボト ルネックにほとんど電子は存在しないという仮定を変える必要はない.したがって、

$$\Delta U_{\rm G} = 0 \tag{4.80}$$

と近似する.問題はドレイン電圧依存性の場合と同様に反転領域である.励起準位に関する Fermi 積分が式 (4.4)の反転領域における近似式で表わせる領域は基底準位よりも高い

ゲート電圧状態である.そのため,基底準位と励起準位に対して反転領域の近似式が適応 できるタイミングが微妙にずれるのである.基底準位及び励起準位に十分な量の電子が存 在するバイアス条件下において方程式 (4.78) は,

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^{*}k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_{1} \times \left[\left(u_{1,0,0}(\Delta U_{\rm G})\right)^{\frac{1}{2}} + \gamma_{n_{v},n_{x},n_{y}}\left(u_{n_{v},n_{x},n_{y}}(\Delta U_{\rm G})\right)^{\frac{1}{2}} \right]$$
(4.81)

となる. この方程式を, 4.1 節で定義した式 (4.9) のパラメータを用いて次のように変形 する.

$$\sqrt{a_{\rm L}}\Delta U_{\rm G} = \left(-a_{1,0,0}\Delta U_{\rm G}^2 - b_{0,0}\Delta U_{\rm G} + c_{1,0,0} + \frac{eV_{\rm GS}'}{k_{\rm B}T}\right)^{\frac{1}{2}} + \gamma_{n_v,n_x,n_y} \left(-a_{n_v,n_x,n_y}\Delta U_{\rm G}^2 - b_{n_x,n_y}\Delta U_{\rm G} + c_{n_v,n_x,n_y} + \frac{eV_{\rm GS}'}{k_{\rm B}T}\right)^{\frac{1}{2}}$$

$$(4.82)$$

この方程式を ΔU_G に関して整理すると,式が大変煩雑になる.それを避けるために,いく つか新しいパラメータを定義する.そのため,細かい部分の式変形も示すことにする.方 程式 (4.82)の右辺第一項を左辺に移動し,両辺を二乗すると,

$$\left(a_{\rm L} - a'_{n_v, n_x, n_y}\right) \Delta U_{\rm G}^2 - b'_{n_v, n_x, n_y} \Delta U_{\rm G} + c'_{n_v, n_x, n_y} + \gamma'_{n_v, n_x, n_y} \frac{eV'_{\rm GS}}{k_{\rm B}T}$$

$$= 2\sqrt{a_{\rm L}} \Delta U_{\rm G} \left(-a_{1,0,0} \Delta U_{\rm G}^2 - b_{0,0} \Delta U_{\rm G} + c_{1,0,0} + \frac{eV'_{\rm GS}}{k_{\rm B}T}\right)^{\frac{1}{2}}$$

$$(4.83)$$

$$a'_{n_v,n_x,n_y} = a_{1,0,0} - \gamma^2_{n_v,n_x,n_y} a_{n_v,n_x,n_y}$$
(4.84)

$$b'_{n_v,n_x,n_y} = b_{0,0} - \gamma^2_{n_v,n_x,n_y} b_{n_x,n_y}$$
(4.85)

$$c'_{n_v,n_x,n_y} = c_{1,0,0} - \gamma^2_{n_v,n_x,n_y} c_{n_v,n_x,n_y}$$
(4.86)

$$\gamma_{n_v,n_x,n_y}' = 1 - \gamma_{n_v,n_x,n_y}^2 \tag{4.87}$$

と変形できる. この式を $\Delta U_{\rm G}$ に関して整理する.

$$\Delta U_{\rm G}^4 + \frac{D_2}{D_1} \Delta U_{\rm G}^3 + \frac{D_3}{D_1} \Delta U_{\rm G}^2 + \frac{D_4}{D_1} \Delta U_{\rm G} + \frac{D_5}{D_1} = 0$$
(4.88)

$$D_1 = \left(a_{\rm L} - a'_{n_v, n_x, n_y}\right)^2 + 4a_{\rm L}a_{1,0,0} \tag{4.89}$$

$$D_2 = 4a_{\rm L}b_{0,0} - 2b'_{n_v,n_x,n_y} \left(a_{\rm L} - a'_{n_v,n_x,n_y}\right)$$
(4.90)

$$D_{3} = 2 \left(a_{\rm L} - a'_{n_{v}, n_{x}, n_{y}} \right) \left(c'_{n_{v}, n_{x}, n_{y}} + \gamma'_{n_{v}, n_{x}, n_{y}} eV'_{\rm GS}/k_{\rm B}T \right) + \left(b'_{n_{v}, n_{x}, n_{y}} \right)^{2} - 4a_{\rm L} \left(eV'_{\rm GS}/k_{\rm B}T + c_{1,0,0} \right)$$

$$(4.91)$$

$$D_4 = -2\left(c'_{n_v,n_x,n_y} + \gamma'_{n_v,n_x,n_y} eV'_{\rm GS}/k_{\rm B}T\right)b'_{n_v,n_x,n_y}$$
(4.92)

$$D_5 = \left(c'_{n_v, n_x, n_y} + \gamma'_{n_v, n_x, n_y} eV'_{\rm GS}/k_{\rm B}T\right)^2$$
(4.93)

図 4.24: 式 (4.88) の各係数の絶対値比較. 各ゲート電圧下において $\Delta U_{\rm G} = \theta_{\rm G} \Delta \tilde{U}_{\rm G}$ とス ケーリングし, $\Delta \tilde{U}_{\rm G} = 1$ となるように行った計算結果. $(n_v, n_x, n_y) = (1, 1, 0)$ とする.

この方程式は $\Delta U_{\rm G}$ の四次方程式であるため, $\Delta U_{\rm G}$ に関して解くことが可能である.しかし, その解は非常に煩雑になる.ここで,式 (4.88)の各係数の比較結果を図 4.24 に示す.式 (4.88)は第一励起準位に対応する Fermi 積分が反転領域における Fermi 積分の近似式を用いて記述できる領域において導出されていることから,図はそのゲート電圧領域における範囲での比較結果である.図から分かるように,係数 $|D_4/D_1\theta_{\rm G}^3|$ 及び $|D_5/D_1\theta_{\rm G}^4|$ が $|1 + D_2/D_1\theta_{\rm G} + D_3/D_1\theta_{\rm G}^2|$ よりも,図 4.15 ほど顕著ではないが,小さい.これらの係数が無視できるほど小さいと仮定すると,方程式 (4.88)は,

$$\Delta U_{\rm G}^2 + \frac{D_2}{D_1} \Delta U_{\rm G} + \frac{D_3}{D_1} = 0 \tag{4.94}$$

となり, $\Delta U_{\rm G}$ に関する二次方程式になる. この式を解の公式により解くと,

$$\Delta U_{\rm G}(V_{\rm GS}) = -\frac{D_2}{2D_1} \left(1 \pm \sqrt{1 - 4\frac{D_1 D_3}{D_2^2}} \right)$$

$$= -\frac{D_2}{2D_1} \left[1 \pm \sqrt{1 - 4\frac{D_1 D_6}{D_2^2} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + \frac{D_7}{D_6}\right)} \right]$$
(4.95)

$$D_6 = 2\left(a_{\rm L} - a'_{n_v, n_x, n_y}\right)\gamma'_{n_v, n_x, n_y} - 4a_{\rm L}$$
(4.96)

$$D_7 = 2\left(a_{\rm L} - a'_{n_v, n_x, n_y}\right)c'_{n_v, n_x, n_y} + \left(b'_{n_v, n_x, n_y}\right)^2 - 4a_{\rm L}c_{1,0,0} \tag{4.97}$$

となる.ここまでに何度か述べたとおり,得られた二通りの解の片方は数学的に得られる だけの物理的には意味のない解である.そのため,式(4.95)の実質的な解は,

$$\Delta U_{\rm G}(V_{\rm GS}) = -\frac{D_2}{2D_1} \left[1 - \sqrt{1 - 4\frac{D_1 D_6}{D_2^2} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + \frac{D_7}{D_6}\right)} \right]$$
(4.98)

図 4.25: 式 (4.99) を用いた $\Delta U_{\rm G} - V_{\rm GS}$ 特性.

である.この解を,式 (4.17) で示した平滑化関数を利用してサブスレッショルド領域の近 (4.17) に示した平滑化関数を利用してサブスレッショルド領域の近 (4.17) になったうに得られる.

$$\Delta U_{\rm G}^{(1)}(V_{\rm GS}) = -\frac{D_2}{2D_1} \left\{ 1 - \sqrt{1 - 4\frac{D_1 D_6}{D_2^2} \ln\left[1 + \exp\left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + \frac{D_7}{D_6}\right)\right]} \right\}$$
(4.99)

ここで、上付き添え字(1) は 4.3.1 項の式(4.62)の場合と同様の意味を持つ. この式が NC モデルに対してどの程度の精度を持つか図 4.25 に示す. 式(4.99) はサブスレッショルド及 び反転領域で良い精度を示すが、弱反転領域においてある程度の誤差を残してしまう. 式 (4.81)が第一励起準位にも十分な電子が存在するという仮定の下で変形された方程式であ るため、この仮定が適当ではない弱反転領域ではそれほど有効ではない仮定であることが 分かる. これでは、励起準位の影響を $\Delta U_{\rm G}$ へ導入できたとは言えない. そこで、ドレイン 電圧依存性を導入した場合と同様の工夫を行う. すなわち、方程式(4.78)を次のように変 形する.

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2}$$

$$\times F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)\left[1+\gamma_{n_v,n_x,n_y}\frac{F_{-\frac{1}{2}}\left(u_{n_v,n_x,n_y}(\Delta U_{\rm G})\right)}{F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)}\right]$$
(4.100)

この方程式の右辺第二項は、ソースからボトルネックに注入される基底準位に存在する電子数とある励起準位に存在する電子数の比を表わす.ここで、 $\eta_{\gamma,n_v,n_x,n_y}(\Delta U_{\rm G})$ を、

$$\eta_{\gamma,n_v,n_x,n_y}(\Delta U_{\rm G}) = \gamma_{n_v,n_x,n_y} \frac{F_{-\frac{1}{2}}\left(u_{n_v,n_x,n_y}(\Delta U_{\rm G})\right)}{F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)}$$
(4.101)

と定義すると、方程式 (4.100) は、

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G} = -\frac{e_{\sqrt{2}m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2}$$

$$\times F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G})\right)\left[1+\eta_{\gamma,n_v,n_x,n_y}(\Delta U_{\rm G})\right]$$
(4.102)

図 4.26: 式 (4.99) を用いて計算した $\eta_{\gamma,1,0,0}-V_{\text{GS}}$ 特性.

となる. ここで、 $\eta_{\gamma,n_v,n_x,n_y}$ に着目する. 式 (4.99) は $\Delta U_{\rm G}^{(1)}$ に関して第一励起準位の影響 を十分には再現できなかったが、 $\eta_{\gamma,n_v,n_x,n_y}$ を計算する際に $\Delta U_{\rm G}^{(1)}$ を使用するとどうなる だろうか. 図 4.26 に、 $\Delta U_{\rm G}^{(1)}$ (式 (4.99))を用いた $\eta_{\gamma,1,1,0}$ の計算結果を示す. 結論から言う と、非常に良く NC モデルによる計算結果を再現している. ゲート電圧が大きいところで は、式 (4.81) に関する仮定が適当な領域であるため良い精度を示す. 一方、ゲート電圧が 小さくなるにつれて、徐々にワイヤ断面内の閉じ込めエネルギーに関する励起準位に存在 する電子数は減少し、基底準位に存在する電子数と比べて十分に小さくなる. したがって、 ゲート電圧が小さくなると励起準位に存在する電子数は、基底準位のそれと比べて十分に 小さくなることから、必ず 0 に収束する. そのため、弱反転領域に関して、 $\Delta U_{\rm G}^{(1)}$ がある程 度誤差を持っていたとしても、問題なく $\eta_{\gamma,1,0,0}$ を再現する.

基底準位と励起準位の電子数の比 $\eta_{\gamma,n_v,n_x,n_y}$ は方程式 (4.102) において当然 $\Delta U_{\rm G}$ に依存 する.そのため、方程式 (4.102) を $\Delta U_{\rm G}$ に関して解くことは難しい.しかし、図 4.26 で示し たように、 $\eta_{\gamma,n_v,n_x,n_y}$ は式 (4.99) の $\Delta U_{\rm G}^{(1)}$ を使用することで良く再現されることが分かっ た.また、 $\Delta U_{\rm G}^{(1)}$ を用いることで、 $\eta_{\gamma,n_v,n_x,n_y}$ は構造及びバイアス条件のみで決まるパラ メータとして表わされ、近似的に $\Delta U_{\rm G}$ に依存しないパラメータとして扱える.ここで、式 (4.102) を解くことで求めたい $\Delta U_{\rm G}$ を $\Delta U_{\rm G}^{(2)}$ と置く.そうすることで、方程式 (4.102) は、

$$-8\varepsilon_{\rm ch}\Delta U_{\rm G}^{(2)} = -\frac{e\sqrt{2m_{z,1}^*k_{\rm B}T}}{\pi\hbar}(1+R_{1,0,0})g_1\frac{1}{2} \times F_{-\frac{1}{2}}\left(u_{1,0,0}(\Delta U_{\rm G}^{(2)})\right)\left[1+\eta_{\gamma,n_v,n_x,n_y}(\Delta U_{\rm G}^{(1)})\right]$$
(4.103)

となる.この方程式は,励起準位に関する情報を含む項の影響が全て $\eta_{\gamma,n_v,n_x,n_y}$ に含まれており,そのパラメータが $\Delta U_{\rm G}^{(1)}$ を使用することで $\Delta U_{\rm G}^{(2)}$ に依存せず,デバイス構造及びバイアス条件のみで決まるパラメータとして扱えることを意味する.したがって, $\eta_{\gamma,n_v,n_x,n_y}(V_{\rm GS})$ と記述できるが, $\Delta U_{\rm G}^{(1)}$ を利用していることを分かるようにするために, $\eta_{\gamma,n_v,n_x,n_y}(\Delta U_{\rm G}^{(1)})$ と書く.また,式 (4.103)は4.3.1項で示した方程式(4.66)と完全に同じ形の方程式である.

図 4.27: 式 (4.105) を用いた $\Delta U_{\rm G} - V_{\rm GS}$ 特性.

そのため、方程式 (4.66) を近似的に解いた手法と同様の手法で $\Delta U_{G}^{(2)}$ について解ける.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} \Big/ \left[\eta_{\gamma,n_v,n_x,n_y}'(\Delta U_{\rm G}^{(1)})\right]^2 + a_{1,0,0}\right\}} \times \left\{1 - \sqrt{\frac{4\left\{a_{\rm L} \Big/ \left[\eta_{\gamma,n_v,n_x,n_y}'(\Delta U_{\rm G}^{(1)})\right]^2 + a_{1,0,0}\right\}}{b_{0,0}^2}} \left(\frac{eV_{\rm GS}'}{k_{\rm B}T} + c_{1,0,0}\right)}\right\}$$
(4.104)

ここで、 $\eta'_{\gamma,n_v,n_x,n_y} = 1 + \eta_{\gamma,n_v,n_x,n_y}$ としている.式 (4.104) を平滑化関数 (式 (4.17)) を用いて、4.3.1 項の場合と同様の手順でサブスレッショルド領域における $\Delta U_{\rm G}(=0)$ と滑らかに繋ぐと次のようになる.

$$\Delta U_{\rm G}^{(2)}(V_{\rm GS}) = -\frac{b_{0,0}}{2\left\{a_{\rm L} / \left[\eta_{\gamma,n_v,n_x,n_y}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^2 + a_{1,0,0}\right\}} \times \left(1 - \sqrt{1 + \frac{4\left\{a_{\rm L} + \left[\eta_{\gamma,n_v,n_x,n_y}^{\prime}(\Delta U_{\rm G}^{(1)})\right]^2 a_{1,0,0}\right\}}{\eta_{\gamma,n_v,n_x,n_y}^{\prime}(\Delta U_{\rm G}^{(1)}) b_{0,0}^2} \alpha \ln\left\{1 + \exp\left[\frac{1}{\alpha}\left(\frac{eV_{\rm GS}^{\prime}/k_{\rm B}T + c_{1,0,0}}{\eta_{\gamma,n_v,n_x,n_y}^{\prime}(\Delta U_{\rm G}^{(1)})}\right)\right]\right\}}\right)$$

$$(4.105)$$

式 (4.105) を用いた $\Delta U_{\rm G}$ の計算結果を図 4.27 に示す.式 (4.105) はエネルギー準位を 2 本考慮した ($n_{\rm s} = 2$) ものであるため、エネルギー準位を 2本のみ考慮した NC モデルと非 常に良く一致する.ゲート電圧 0.5 V において、 $n_{\rm s} = 16$ の場合における NC モデルの計算 結果との間にわずかに誤差が生じるのは、2本目の励起準位が Fermi 準位に近づき、その準 位に多数の電子が存在し始め、 $\Delta U_{\rm G}$ の特性に影響するためである.式 (4.105) を導出した 手法は、反復的に繰り返すことで何本でも励起準位を $\Delta U_{\rm G}$ の解析式に導入可能であり、図 4.27 の $V_{\rm GS} = 0.5$ V における誤差は修正可能である.しかし、本手法は一回反復するごと に急激に $\eta_{\gamma,n_v,n_x,n_y}$ の式が複雑になる.そのため、本手法は精度と計算式の複雑さの間に 強いトレードオフの関係を持つ. 以上により, 第一励起準位の影響を $\Delta U_{
m G}$ に導入できたと する.

4.3.1 項及び本項で示した各依存性の導入手順をまとめる.式 (4.3)の右辺に,追加した い励起準位またはドレイン電圧依存性を含む Fermi 積分の項を足し合わせる.その方程式 を,式 (4.3)の近似解法と同様の手法により解き、 $\Delta U_{\rm G}^{(1)}$ を導出する.この $\Delta U_{\rm G}^{(1)}$ を用い て,基底準位に関してソースからボトルネックに関して注入される電子数と、考慮したい励 起準位に対応する Fermi 積分が表わす電子数の比を計算する.比を意味する η_{n_v,n_x,n_y} は、 $\Delta U_{\rm G}^{(1)}$ を用いることで、バイアス条件の関数として求まる.この η_{n_v,n_x,n_y} を線電荷密度方 程式に代入し、線電荷密度方程式を式 (4.3)と同様の解法で解きなおすことにより、考慮し たい依存性が導入された形で $\Delta U_{\rm G}^{(2)}$ が導出できる.以上が、各依存性導入の流れである. また、本計算手法を繰り返し用いることで、考慮したいエネルギー準位数を制限なく増や すことができる.すなわち、 η を用いて表わされる方程式に更に考慮したいエネルギー準位 に対応する Fermi 積分を足し合わせ、全く同様の手順を踏むことで、何本でもエネルギー 準位を増やせる.しかし、この計算手順を繰り返し行うと、 $\eta_{\beta(\gamma),n_v,n_x,n_y}$ が非常に複雑にな る.そのため、考慮するエネルギー準位数と式の複雑さの間にトレードオフが存在する.

4.3.3 DIBL

ここまでに説明したモデルは全て、ワイヤ断面内の電子状態のみを考え、導出している. そのため、チャネル内のソース-ドレイン方向に関するポテンシャル分布の情報をモデルに 導入しておらず、短チャネル効果、特に DIBL の導入に関して課題が残る.図4.28 に NEGF シミュレータを用いて計算したソース-ドレイン方向のバリア障壁及びドレイン電流の計 算結果を示す.DIBL はゲート長が短くなることで、ドレイン電圧の影響によりバリア障 壁の高さが長いゲート長のバリア障壁よりも低くなることで生じる.図4.28(a)から分か る通り、サブスレッショルド領域ではゲート長が短くなることにより、同じバイアス条件で あってもチャネル内の障壁が低くなっていることが分かる.一方、反転領域ではドレイン 電圧が大きくなっても、ゲート長が短い場合とそうでない場合ではボトルネックにおける エネルギーの高さにそれほど差を生じない.また、電流特性からも分かるように、ゲート長 が短くなることで、DIBL の影響によりサブスレッショルド領域の電流特性が顕著に劣化 するのに対し、反転領域ではそれほど変化しない.したがって、DIBL はサブスレッショル

図 4.28: NW MOSFET の各ゲート長ごとのデバイス特性. (a) 各ゲート電圧に関するソー ス-ドレイン方向のポテンシャル障壁. (b) *I*_{DS}-*V*_{GS} 特性.

ド領域において重要な現象と言える.特に、サブスレッショルド領域におけるゲート電圧 に対する電流の傾き (S値) への影響が重要視されており、NW MOSFET のデバイスサイ ズとS値がどのような関係性を持つか熱心に研究されている [11, 12].そこで、サブスレッ ショルド領域に関して、DIBL による特性変化の解析モデルへの導入を考える.DIBL をモ デルに導入するためには、ソース-ドレイン方向のポテンシャル分布を考慮する必要があ り、それには以下に示すチャネル領域に関する三次元の Poisson 方程式を解く必要がある.

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)w(x, y, z) = -\frac{\rho_{\rm ch}(x, y, z)}{\varepsilon_{\rm ch}}$$
(4.106)

この方程式を解くことは非常に難しい.しかし、サブスレッショルド領域にのみ限れば、この三次元の Poisson 方程式を解く手法が報告されている [13].本項ではその手法に従い、式 変形を進める.まず、Poisson 方程式を解く前提として、サブスレッショルド領域において チャネル領域には電子は存在しないものと仮定する.すなわち、式 (4.106) は、

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)w(x, y, z) = 0$$
(4.107)

となり、Laplace 方程式を表わす. この方程式を解くことで、サブスレッショルド領域の ソース-ドレイン方向に関するバリア障壁の情報をモデルに導入する. まず、式 (4.107)を 解くために、モデルポテンシャル (式 (3.3))を z 方向に関して拡張する. 断面内の静電ポ テンシャル分布は、変わらず二次関数により近似する. そこで、伝導方向に関する情報は $\Delta U_{\rm G}$ に持たせる. すなわち、モデルポテンシャルを次のように記述し直す.

$$w(x,y,z) = V'_{\rm GS} + \Delta U_{\rm G}(z) \left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} - 4g(x,y) \right]$$
(4.108)

表面ポテンシャルは式 (3.82) を用いている. このモデルポテンシャルを Laplace 方程式に 代入し、 $\Delta U_{\rm G}(z)$ に関して解く. ワイヤ断面中心の電子伝導方向に関するポテンシャル分 布を $w_{\rm c}(z)$ とすると、

$$w_{c}(z) = w\left(\frac{t_{x}}{2}, \frac{t_{y}}{2}, z\right)$$

= $V_{GS}' + \Delta U_{G}(z) \left[\frac{2}{3}\frac{t_{x}^{2} + t_{y}^{2}}{(t_{x} + t_{y})^{2}} - 4\frac{\varepsilon_{ch}t_{ox}}{\varepsilon_{ox}(t_{x} + t_{y})} - 4g\left(\frac{t_{x}}{2}, \frac{t_{y}}{2}\right)\right]$ (4.109)
= $V_{GS}' + \Delta U_{G}(z) \left[\frac{2}{3}\frac{t_{x}^{2} + t_{y}^{2}}{(t_{x} + t_{y})^{2}} - 4\frac{\varepsilon_{ch}t_{ox}}{\varepsilon_{ox}(t_{x} + t_{y})} - 1\right]$

となる. 式 (4.109) から, $\Delta U_{\rm G}(z)$ を $w_{\rm c}$ の関数として表わす.

$$\Delta U_{\rm G}(z) = \left(w_{\rm c}(z) - V_{\rm GS}'\right) \left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} - 1\right]^{-1}$$
(4.110)

この $\Delta U_{\rm G}(z)$ を用いてモデルポテンシャルを書きなおすと,

$$w(x,y,z) = V_{\rm GS}' + \left(w_{\rm c}(z) - V_{\rm GS}'\right) \frac{\left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} - 4g(x,y)\right]}{\left[\frac{2}{3} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} - 1\right]}$$
(4.111)

となり、これを式 (4.107) の Laplace 方程式に代入し、変形することで次の方程式が得られる.

$$\frac{\partial^2}{\partial z^2} w_{\rm c}(z) + \frac{8 \left(w_{\rm c}(z) - V_{\rm GS}' \right)}{t_x t_y \left[\frac{2}{3} \frac{t_x^2 + t_y^2}{\left(t_x + t_y \right)^2} - 4 \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox} \left(t_x + t_y \right)} - 4g(x, y) \right]} = 0 \tag{4.112}$$

この方程式に、ワイヤ断面中心の座標を代入する.

$$\frac{\partial^2}{\partial z^2} w_{\rm c}(z) + \frac{w_{\rm c}(z) - V_{\rm GS}'}{t_x t_y \left[\frac{1}{12} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2} - \frac{1}{2} \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox}(t_x + t_y)} - \frac{1}{8} \right]} = 0$$
(4.113)

ここで、次のようにパラメータを定義する.

$$w'_{\rm c}(z) = w_{\rm c}(z) - V'_{\rm GS}$$
(4.114)

$$\lambda = \sqrt{t_x t_y \left[\frac{1}{8} + \frac{1}{2} \frac{\varepsilon_{\rm ch} t_{\rm ox}}{\varepsilon_{\rm ox} (t_x + t_y)} - \frac{1}{12} \frac{t_x^2 + t_y^2}{(t_x + t_y)^2}\right]}$$
(4.115)

以上により, Laplace 方程式は,

$$\frac{\partial^2}{\partial z^2} w'_{\rm c}(z) - \frac{1}{\lambda^2} w'_{\rm c}(z) = 0 \tag{4.116}$$

となり、この方程式は $w'_{c}(z)$ に関して解くことができる。ソース-チャネル端及びチャネ ルードレイン端におけるワイヤ断面 $((x,y) = (t_x/2, t_y/2))$ の静電ポテンシャルをそれぞれ $w_{c}(0), w_{c}(L_{G})$ とする。このとき、微分方程式 (4.116) は、境界条件 $w'_{c}(0)(=w_{c}(0) - V'_{GS})$ 及び $w'_{c}(L_{G})(=w_{c}(L_{G}) - V'_{GS})$ を用いて次のように $w'_{c}(z)$ に関して解くことができる。

$$w_{\rm c}'(z) = \frac{w_{\rm c}'(0)\sinh\left(\frac{L_{\rm G}-z}{\lambda}\right) + w_{\rm c}'(L_{\rm G})\sinh\left(\frac{z}{\lambda}\right)}{\sinh\left(\frac{L_{\rm G}}{\lambda}\right)}$$
(4.117)

ここで、式 (4.110), (4.114) 及び (4.117) から、 $\Delta U_{\rm G}(z)$ は次のように求まる.

$$\Delta U_{\rm G}(z) = -\frac{t_x t_y}{8\lambda^2} \frac{\left(w_{\rm c}(0) - V_{\rm GS}'\right) \sinh\left(\frac{L_{\rm G} - z}{\lambda}\right) + \left(w_{\rm c}(L_{\rm G}) - V_{\rm GS}'\right) \sinh\left(\frac{z}{\lambda}\right)}{\sinh\left(\frac{L_{\rm G}}{\lambda}\right)} \quad (4.118)$$

式 (4.118) が、キャリア伝導方向に関するバリア障壁の情報を考慮したサブスレッショル ド領域における $\Delta U_{\rm G}$ である.式 (3.58), (4.118) を用いた伝導方向に関するポテンシャル 分布の計算結果を図 4.29 に示す、図から分かる通り、式 (4.118) を用いることで、様々な 条件下におけるバリア障壁の形状を良く再現している。特に、ボトルネックにおけるエネ ルギーを非常に良く再現する。電流はボトルネックにおける閉じ込めエネルギーに依存す ることから、式 (4.118) を用いて計算される電流に関しても良い再現性を持つことが期待

図 4.29: 各ゲート電圧に関するソース-ドレイン方向のポテンシャル障壁.

できる. ボトルネックの座標 z_{max} は, $\partial \Delta U_{\text{G}}/\partial z = 0$ の条件から求めることができる. 式 (4.118) から z_{max} を求めると,

$$z_{\max} = \frac{\lambda}{2} \log \left\{ -\frac{[w_{\rm c}(L_{\rm G}) - V_{\rm GS}'] - [w_{\rm c}(0) - V_{\rm GS}'] \exp\left(\frac{L_{\rm G}}{\lambda}\right)}{[w_{\rm c}(L_{\rm G}) - V_{\rm GS}'] - [w_{\rm c}(0) - V_{\rm GS}'] \exp\left(-\frac{L_{\rm G}}{\lambda}\right)} \right\}$$
(4.119)

と表わされる. したがって、電流を計算する際には、 $\Delta U_{\rm G}(z_{\rm max})$ を用いれば良い. しかし、 式 (4.118) はサブスレッショルド領域における Poisson 方程式の解である. そのため、反転 領域においては妥当な結果を示さない. また、反転領域までゲート電圧を上昇させること で、 $z_{\rm max}$ は虚数の値を取る. そのことからも、反転領域において妥当ではないことが分か る. 全バイアス条件に対して統一的な解析式で表すために、以下に示すような方針を取る.

- 反転領域においても z_{max} が虚数を取らないように、式 (4.119) を調整する.
- サブスレッショルド領域では式 (4.118)の値を取り、反転領域に入るにつれて式 (4.18)の値を ΔU_G が取るように、式 (4.118)と式 (4.18)を滑らかに繋ぐ.

まず,最初の方針であるが, *z*max を以下に示すように調整する.

$$z_{\rm max} = \frac{\lambda}{2} \log \left\{ \frac{0.001 + \sqrt{\left\{ - \left[w_{\rm c}(L_{\rm G}) - V_{\rm GS}' \right] + \left[w_{\rm c}(0) - V_{\rm GS}' \right] \exp\left(\frac{L_{\rm G}}{\lambda}\right) \right\}^2}}{\left[w_{\rm c}(L_{\rm G}) - V_{\rm GS}' \right] - \left[w_{\rm c}(0) - V_{\rm GS}' \right] \exp\left(-\frac{L_{\rm G}}{\lambda}\right)} \right\}} \right\}$$
(4.120)

図 4.30 に, z_{max} のゲート電圧依存性を示す.まず,サブスレッショルド領域に関して,式 (4.120) が式 (4.119) と変わらない計算結果を示すことが分かる.ゲート電圧が反転領域に 入ることで,式 (4.119) は虚数値を持つことから図面にはその値が載っていない.一方,式 (4.120) は反転領域であっても実数値を取ることが分かる.この反転領域における z_{max} の 値は決して適切な値ではない.しかし,二つ目の方針により,反転領域において z_{max} がど んな実数値を取ったとしても $\Delta U_{\rm G}(z_{max})$ の値が 0 に近づくように調整する.そのため,反 転領域における z_{max} の値は問題にならない.

図 4.30: 式 (4.119) 及びそれを調整した式 (4.120) のゲート電圧依存性. 閾値 V_{TH} はおよ $\mathcal{F} V_{\text{GS}} = 0$ V である.

図 4.31: 平滑化関数 (式 (4.121)) のゲート電圧依存性.

二つ目の方針に関して説明する.式 (4.118)を、平滑化関数を利用して反転領域において 0 に近づくようにし、それに式 (4.18)を足し合わせることで反転領域に関する $\Delta U_{\rm G}$ は式 (4.18)の値になるようにする.ここで実際に使用する平滑化関数は以下のものである.

$$h(V_{\rm GS}) = \left(1 + \exp\left\{\beta \left[\frac{eV_{\rm GS}' - \left(E_{1,0_x}^{\rm q0} + E_{1,0_y}^{\rm q0}\right)}{k_{\rm B}T} - \gamma\right]\right\}\right)^{-1}$$
(4.121)

ここで, β 及び γ は式 (4.18), (4.118) を滑らかに繋げるためのフィッティングパラメータ である. 平滑化関数の特性を図 4.31 に示す. この平滑化関数を使って, 次のように $\Delta U_{\rm G}$ を 記述する.

$$\Delta U_{\rm G,DIBL}(V_{\rm GS}) = h(V_{\rm GS})\Delta U_{\rm G}(z) + \Delta U_{\rm G}$$
(4.122)

ここで、 $\Delta U_{G,DIBL}$ は DIBL を考慮した ΔU_{G} のモデルとする. これが、DIBL の影響を考慮した ΔU_{G} の解析モデルである. 式 (4.122)を用いて計算した電流特性を図 4.32 に示す. 図 4.29 において、サブスレッショルド領域におけるボトルネックのエネルギーを良く再現

図 4.32: NW MOSFET の各ゲート長ごとのデバイス特性. I_{DS}-V_{GS} 特性.

していたため、各ゲート長における電流特性に関しても良い精度を示す. また、式 (4.121) に示した平滑化関数により、弱反転領域に関しても上手く滑らかに繋がれていることが分 かる. 以上により、解析モデルへの DIBL の導入に成功した.

本節では、4.1、4.2 節で提案した解析モデルの問題点及びその解決手法を示した. 問題点 を問題点として終わらせるだけでなく、解決可能な問題であることを示すためである. し かし、示した解決手法は一例であり、各問題に対するより有効な手法があるかもしれない [14]. また、紹介した手法に工夫を加えることで改善の余地もある. そのため、各問題をこ れで終わらせるのではなく、今後議論を継続的に続けていく必要がある.

第4章まとめ

本章では、第3章で導出した数値計算を含むコンパクトモデルの数値計算部分をいかに して近似的に解き、完全且つ明示的な解析モデルを作製するかを解説した.以下に要点を まとめる.

- 線電荷密度の方程式の近似解法を提案した.
 - 二つの仮定を置き、方程式を近似的に解いた.
 - 仮定1:ボトルネックにおいて全ての電子は基底エネルギーに存在する.
 - 仮定2:ドレイン電極からボトルネックに注入される電子数は十分に少なく無 視できる。
 - 方程式をサブスレッショルド及び反転領域に分け、仮定に基づき未定変数について解いた。
 - サブスレッショルド及び反転領域で別々に導出した未定変数の近似解を平滑化
 関数で滑らかに繋ぐことで一つの統一式で表わし、全バイアス条件に対応する
 明示的な解析モデルとした.
 - 明示的な解析モデルは全バイアス条件において NC モデルを用いて計算した電
 流特性を良く再現する.

- NW MOSFET の等価回路モデルに基づきキャパシタンスモデルを提案した.
 - 各端子に印加される電圧の変化に対応する各単位長さ当たりの実効的なキャパ シタンスを未定変数の明示的な解析モデルを用いて導出した.
 - 実効的なキャパシタンスを用いて回路シミュレーションに必要なキャパシタン スをモデル化した.
 - - ΔU_Gが仮定2によりドレイン電圧依存性を含まないことから、ドレイン電圧の 変化に対応するキャパシタンスは0になる。
 - $\Delta U_{\rm G}$ へのドレイン電圧依存性の導入が必要である.
- 解析モデルが持つ問題点及びその解析手法の一例を示した.
 - 未定変数の解析モデルは、ドレイン電圧依存性、励起準位からの影響、DIBLを 考慮していないという問題点を持つ.
 - ドレイン電圧依存性及び励起準位の影響に関する問題点は線電荷密度の方程式
 を繰り返し解くことで未定変数に導入できた.
 - ドレイン電圧依存性の ΔU_G への導入の成功により、ドレイン電圧の変化に対応するキャパシタンスの計算に成功した.
 - 各端子に印加された電圧条件の変化に対応する各キャパシタンス成分が得られた。
 - DIBL の影響は、電子伝導方向に関してモデルポテンシャルを拡張し、それを利用してサブスレッショルド領域に関するチャネル内の三次元の Laplace 方程式を解くことで解析モデルに導入できた.
 - DIBL の影響によるサブスレッショルド領域における電流特性の傾きの劣化を 良く再現できた.

参考文献

- T. Numata, S. Uno, Y. Kamakura, N. Mori, and K. Nakazato, "Fully analytic compact model of ballistic gate-all-around MOSFET with rectangular cross section," Proc. 16th Int. Conf. Simulation of Semiconductor Processes and Devices, Osaka, Japan, pp. 39–42, Sept, 2011.
- [2] X. A.-Humet, F. S.-Mestres, and J. Millán, "A generalized approximation of the Fermi-Dirac integrals," J. Appl. Phys., vol. 54, no. 5, pp. 2850–2851, 1983.
- [3] T. Numata, S. Uno, Y. Kamakura, N. Mori, and K. Nakazato, "Analytic circuit model of ballistic nanowire metal-oxide-semiconductor field-effect transistor for transient analysis," Jpn. J. Appl. Phys., vol. **, no. *, pp. ****_***, ****(accepted).
- [4] S.-Y. Oh, D. E. Ward, and R. W. Dutton, "Transient analysis of MOS transistors," IEEE J. Solid-State Circuits, vol. SC-15, no. 4, pp. 636–643, 1980.
- [5] N. Nakayama, H. Ueno, T. Inoue, T. Isa, M. Tanaka, and M. M.-Mattausch, "A selfconsistent non-quasi-static MOSFET model for circuit simulation based on transient carrier response," Jpn. J. Appl. Phys., vol. 42, no. 4B, pp. 2132–2136, 2003.
- [6] J. Chen, "A circuit-compatible analytical device model for ballistic nanowire transistors," Moicroelectron. Journal, vol. 39, pp. 750–755, 2008.
- [7] I. M. T.-Luna, F. J. G. Ruiz, L. Donetti, A. Godoy, and F. Gámiz, "Modeling the equivalent oxide thickness of surrounding gate SOI devices with high-κ insulators," Solid-State Electron., vol. 52, pp. 1854–1860, 2008.
- [8] R. Kim, N. Neophytou, A. Paul, G. Klimeck, and M. S. Lundstrom, "Dimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of onedimensional and two-dimensional ballistic transistors," J. Vac. Sci. Technol. B, vol. 26, no. 4, pp. 1628–1631, 2008.
- [9] Y. Lee, K. Kakushima, K. Natori, and H. Iwai, "Gate capacitance modeling and diameter-dependent performance of nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1037–1045, 2012.
- [10] J. S. Blakemore, "Approximations for Fermi-Dirac integrals, especially the function $F_{1/2}(\eta)$ used to describe electron density in a semiconductor," Solid-State Electron., vol. 25, no. 11, pp. 1067–1076, 1982.

- [11] S. Bangsaruntip, G. M. Cohen, A. Majumdar, and J. W. Sleight, "Universality of short-channel effects in undoped-body silicon nanowire MOSFETs," IEEE Electron Dev. Lett., vol. 31, no. 9, pp. 903–905, 2010.
- [12] L. Zhang, L. Li, J. He, and M. Chan, "Modeling short-channel effect of elliptical gate-all-around MOSFET by effective radius," IEEE Electron Dev. Lett., vol. 32, no. 9, pp. 1188–1190, 2011.
- [13] S. Oh, and H.-S. P. Wong, "A physics-based compact model of III-V FETs for digital logic applications: current-voltage and capacitance-voltage characteristics," IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2917–2924, 2009.
- [14] H. Cheng, S. Uno, T. Numata, and K. Nakazato, "Analytic compact model of ballistic and quasi-ballistic cylindrical gate-all-around MOSFET including two subbands", Jpn. J. Appl. Phys., vol. **, pp. ****_***, ****(accepted).

第5章 回路シミュレーション

第4章では、n型NW MOSFET の特性を表わす完全な解析モデルを作製した.本章で は、前章で作製した解析モデルを実際に回路シミュレータに組み込み、回路シミュレーショ ンを実現するまでの流れを説明し、最後に簡単な回路シミュレーションの例を示す.前章 では、n型NW MOSFET に関するドレイン電流及びキャパシタンスをモデル化した.そ のモデルを用いれば、n型NW MOSFET を使用した回路シミュレーションは実現可能で ある.しかし、CMOS 集積回路にはn型だけではなく、同数程度の p型NW MOSFET が 含まれる.そのため、p型NW MOSFET の解析モデルも必要不可欠である.

解析モデルを回路シミュレータに組み込むためには、各解析式をアナログ回路のモデリ ング標準記述言語である Verilog-A を用いて記述し、それを回路シミュレータに読み込ませ ればよい. そのため、回路シミュレータのスクリプトは従来の文法通りに書くことができ、 MOSFET に関する部分を Verilog-A を用いて記述した NW MOSFET の解析式に置き換 えることができる. このようにして解析モデルを用いた回路シミュレーションを実現する.

本章の構成を示す.最初に、5.1節にて p型 NW MOSFET を本論文内においてどのよう に扱うか解説する.続いて、5.2節ではアナログ回路のモデリング標準記述言語に関する解 説を行い、それを用いた各特性のスクリプトを示す.最後に、5.3節において解析モデルを 用いた回路シミュレーションの例を示す.

5.1 p-type NW MOSFET

回路シミュレーションを実現するためには $p ext{ D NW MOSFET}$ の解析モデルが必須である. 本節では, $p ext{ D NW MOSFET}$ をどのように扱うか, 方針を示す.

図 5.1: 強結合近似 (tight binding, TB) 法により計算された p 型 Si (100) NW MOSFET のバンド構造.

図 5.2: 強結合近似 (tight binding, TB) 法及び放物線近似による p型 Si (100) NW MOS-FET のバンド構造.

図 5.1 に p型 NW MOSFET におけるバンド構造を示す. 一般的に, p型 NW MOSFET のバンド構造は非常に複雑であり, n型 NW MOSFET の解析モデルの前提である有効質 量近似を適用できない [1, 2]. しかし,電流特性の再現という点で見れば,有効質量を調整 すれば十分に再現可能であることが報告されている [3].本論文においては,有効質量近似 の範囲内で p型 NW MOSFET の特性を計算する. したがって, n型 NW MOSFET に関 して提案した解析モデルを,そのまま p型 NW MOSFET に適用することとする. 図 5.1 のバンド構造から正孔の有効質量を抽出する.まず,各分散関係を放物線により近似する (図 5.2). x 及び y 方向に関する正孔の有効質量は, k = 0 で最も高いエネルギー準位に一 致するように,エネルギー準位の解析モデルから決定する.また, x 及び y 方向に関する 有効質量を抽出したエネルギー準位の分散関係に関する近似放物線の曲率から z 方向の有 効質量を抽出する.表 5.1 に抽出した有効質量を示す.この有効質量を用いて, p型 NW MOSFET の特性を計算する.以上が p型 NW MOSFET モデルの方針である.

p型NW MOSFET に対しては新しい提案をしたのではなく, n型NW MOSFET のモ デルをそのまま p型NW MOSFET に応用しているだけあり,有効質量をバンド構造から 抽出しさえすれば特性を計算できるものとした.本来であれば,電流特性を実際に比較し, この方針で問題ないか検討しなければならない.したがって,今後様々な特性比較などを 通してこの方針で問題ないか,それとも新しいモデルの提案が必要かどうか議論していく 必要がある.

表 5.1: 抽出した正孔の有効質量.

	$m_{x,n_v}/m_0$	$m_{y,n_v}/m_0$	$m_{z,n_v}/m_0$
有効質量	0.93	0.37	1.41

5.2 HSPICE 組み込み

5.2.1 Verilog-A

本項では、解析モデルを回路シミュレータに導入する際になぜ Verilog-A を利用するの かを説明する. 従来、半導体デバイスに関するコンパクトモデルは C 言語を用いて記述さ れ、その C コードを用いて回路シミュレータに実装される. しかし、様々なシミュレータ はそれぞれ独自の実装インターフェースを持っている. そのため、一つのコンパクトモデ ルを全てのシミュレータに組み込むには、シミュレータの数に対応するだけのスクリプト を作成しなければならない可能性がある. また、コンパクトモデルはあるデバイスに関し て確固たるモデルが出来上がるまで 徐々に改善されていくため、モデルに修正が入るたび に全てのスクリプトを書き換える必要があり、各シミュレータに対してモデルを維持する だけでも非常に大変である. このような手間が、コンパクトモデルの作成者、シミュレータ の作成者及びシミュレータの使用者にとっての多大な問題点である. そこで、注目されて いるのが Verilog-A を用いたコンパクトモデルのスクリプト作製である. Verilog-A はアナ ログ回路のモデリングにおける標準記述言語であることから [4]、一つスクリプトを作製す れば、各シミュレータの共通のスクリプトとして使用可能である. また、必要に応じて、シ

図 5.3: 解析モデルの回路シミュレータ組み込みの流れ.

ミュレータ使用者レベルでモデルの修正・改善をスクリプトを通して容易にできるという 利点もある.最大の利点は、Verilog-Aによるソースコードは、C言語によるそれよりも非 常に短く済むため、その管理が極めて簡単になることである.一般的に、C言語で記述した ソースコードの10分の1程度で済む.以上の利用により、Verilog-Aスクリプトが広く利 用されており、本論文においても利用する.

5.2.2 回路シミュレータ組み込み

本項では、解析モデルを回路シミュレータに組み込む流れを説明する、本論文では、回路 シミュレータ SPICE(simulation program with integrated circuit emphasis, SPICE) の中 でも HSPICE を使用する. 5.2.1 項において、解析モデルを記述する言語として Verilog-A を紹介した。回路シミュレータに組み込むものは、NW MOSFET の特性であり、その中で も NW MOSFET の等価回路 (図 4.7) に示した電流源及びキャパシタンスに流れる過渡電 流である. これら等価回路構成要素をそれぞれ Verilog-A で記述し、HSPICE のスクリプ ト内でそれを読み込ませる.図 5.3 に回路シミュレーション実行までの流れ及びその際に 使用するモデルの式番号を示す. 図 5.3 の過渡電流に関する項目であるが、キャパシタンス モデルそのものを Verilog-A で記述するのではなく、キャパシタンスに溜まる電荷量 $Q_{\rm GS}$ 、 $Q_{\rm GD}$ を Verilog-A により記述するとした. 過渡電流はキャパシタンスに溜まる電荷量の時 間微分で与えられる (式 (4.19), (4.21)). また, Verilog-A には時間微分を計算する関数が 用意されている.したがって、キャパシタンスに溜まる電荷量を Verilog-A スクリプトと して記述し、時間微分の命令を書き込むだけで過渡電流のシミュレーションは可能となる. 以上の理由により、Verilog-Aを用いる際、キャパシタンスモデルそのものではなくキャパ シタンスに溜まる電荷量のモデルを記述する. 第4章までに導出した NW MOSFET の 各特性は $\Delta U_{\rm C}$ の関数として得られ、 $\Delta U_{\rm C}$ の完全な解析式を導出したことにより各特性の Verilog-A コードの作成が可能となった. 各等価回路構成要素の Verilog-A コードを付録 A に載せる.以上の流れで回路シミュレーションを実行する.

5.3 回路シミュレーション

本節では、第4章で導出した解析モデルを用いて基本的な回路構造の回路シミュレーションを実行する.回路シミュレータへの解析モデル実装の流れは5.2.2項で解説したとおりである.

5.3.1 直流解析の実行

回路シミュレーション組み込みの第一段階として直流解析を行う. 直流解析を行うとは 言え、ある回路の特性を詳しく解析するという意味ではなく、解析モデルを HSPICE に組 み込むことで、正常に直流解析を実行できるか確認することが本項の目的である. これは、 次項の過渡解析の実行に関しても同様である. 直流解析で必要なモデルは、電流源 I_{SUP} に 対応する電流 (式 (3.74))と、それを計算するために必要な ΔU_{G} の解析モデルである. 本 節で示す回路シミュレーションでは、 ΔU_{G} のモデルとしてドレイン電圧依存性を含む式 (4.70)のモデルを使用する. 電流源 I_{SUP} の Verilog-A スクリプトを付録 A.1 に示す. この スクリプトを HSPICE に読み込ませ、NW MOSFET のモデルを HSPICE 内で使用する.

図 5.4: FA モデル及び HSPICE による電流特性の計算結果. (a) $I_{SUP}-V_D$ 特性. (b) $I_{SUP}-V_G$ 特性.

まず、HSPICE 内で Verilog-A スクリプトが正常に機能しているか調べるために、FA モデ ルによる電流特性 (電流源 I_{SUP})の計算結果と HSPICE を用いて計算した電流特性の結果 が一致するか調べる.計算結果を図 5.4 に示す.図から分かるように、各電流特性は一致 し、解析モデルは Verilog-A スクリプトを通して HSPICE 内で正常に計算されていること が分かる. 続いて、組み込みを行ったモデルを用いた回路の直流シミュレーションが正常 に行えるか調べた.シミュレーションを行った回路構造は、図 5.5(a) に示す二段 CMOS イ ンバータ回路である.各 n型 NW MOSFET を nTr₁, nTr₂ とし、各 p型 NW MOSFET を pTr₁, pTr₂ とした.そのシミュレーション結果は、図 5.5(b) に示すように二段 CMOS イン バータ回路の特性を正常に計算している.このように、NW MOSFET の解析モデルを用 いた直流回路シミュレーションに成功した.

図 5.5: (a) 二段 CMOS インバータの回路図. (b) 二段 CMOS インバータの DC シミュ レーション結果.

図 5.6: (a) NW MOSFET の等価回路モデル. (b) 等価回路モデルの過渡シミュレーションによる特性計算結果. (c) 各キャパシタンスに流れる過渡電流特性.

5.3.2 過渡解析の実行

回路シミュレーション組み込みの第二段階として、解析モデルを用いて正常に過渡解析 を実行できるか検証する、過渡解析では、バイアス条件が時間により変化することから過渡 電流を扱う必要がある. これに関しては、5.2.2 項で述べたとおり、Verilog-A には時間微分 を計算する関数が用意されていることから、キャパシタンスの解析式を記述する必要はな く、式 (4.23), (4.24) における Q_{GS} 及び Q_{GD} のみを記述すれば HSPICE 内で過渡電流が計 算できる. NW MOSFET の過渡電流に対応する Verilog-A スクリプトを付録 A.2 に示す. 以上のスクリプトを用いて、HSPICE による過渡解析を実行する.まず、NW MOSFET 単 体のシミュレーション結果を図 5.6 に示す.入力電圧 VIN の立ち上がり時間をピコ秒オー ダーの非常に短いものとしている (図 5.6(b), (c)). 現在, CPU のクロックは数 GHz であ る. そのため、概算ではあるが入力電圧の立ち上がりに要する時間は GHz の逆数からおよ そナノ秒オーダーであると考えられる.したがって、ピコ秒オーダーで立ち上がる入力電圧 は現実的ではない.しかし、本論文で扱う NW MOSFET のキャパシタンスは非常に小さ く、入力電圧の立ち上がりが遅い場合、過渡電流は非常に小さくなる、そこで、作為的では あるが、ひとまず過渡電流の影響を見やすくするために図 5.6 ではピコ秒オーダーの立ち 上がり時間で入力電圧を扱った. NW MOSFET 単体のシミュレーションでは、ゲート電圧 が増加する際、過渡電流はゲートからソース及びゲートからドレイン方向に流れる.した がって、電流源に流れる電流と比べて、ソースに流れる電流は過渡電流の値の分だけ電流値 が大きくなり、ドレインに流れる電流は過渡電流の値の分だけ小さく流れる(図 5.6(c)). デ バイス部分を一つの箱に見立て、そこに流れ込む電流と、そこから流れ出す電流の総和は、 Kirchhoff の第一法則から0になる.図5.6(c)からも確認が取れるように、NW MOSFET

図 5.7: (a) 二段 CMOS インバータの回路図. (b) 一段目の CMOS インバータへの入力 電圧 V_{IN1}, 二段目の CMOS インバータへの入力 V_{IN2}, 出力電圧 V_{OUT} の特性. (c) 二段目 CMOS インバータの n 型 NW MOSFET(nTr₂) に流れる電流 I_G, I_D, I_S 特性. n 型及び p 型 NW MOSFET のデバイスサイズはそれぞれ同じものを使用する.

に流れ込む電流とNW MOSFET から流れ出る電流の総和 $I_{\rm G} + I_{\rm S} + I_{\rm D} = 0$ となること が分かる.ただし、ここではデバイスに流れ込む電流を負に、デバイスから流れ出す電流 を正にとった. また、HSPICEを用いて計算した NW MOSFET の過渡解析結果が解析モ デルによる計算結果と一致することから、過渡電流のモデルも Verilog-A スクリプトを通 して正常に HSPICE に組み込まれていることが分かる. このように, 過渡解析に関しても Verilog-A スクリプトを通して解析モデルが正常に動作している. 続いて、組み込みを行っ たモデルを用いた回路特性の過渡シミュレーションが正常に行えるか調べるために,例と して図 5.7(a) に示す二段 CMOS インバータの過渡シミュレーションを行った. 負荷容量 $C_{\rm L}$ は次段の CMOS インバータのゲート容量を想定している. 4.2 節におけるキャパシタン スの計算結果及び参考文献 [6, 7, 8] などから、本論文で扱う NW MOSFET のキャパシタ ンスはおよそ1 nF/m 程度の値を持つ. 実際には、それにゲート長の値がかかるため 0.01 fF 程度になる. また、図 5.6(a) に示した NW MOSFET の等価回路より、 CMOS インバー タのゲート容量はn型NW MOSFET の二つのキャパシタンス及びp型NW MOSFET の二つのキャパシタンスの計四つのキャパシタンスが並列に接続される.したがって、負 荷容量を 4 × 0.01 fF 程度と設定した. 図 5.7 に示すように、入力電圧 V_{IN1} を与えたとき の二段目 CMOS インバータへの入力電圧 V_{IN2} (一段目 CMOS インバータの出力) 及び 二段目 CMOS インバータの出力 VOUT は正常にシミュレーションされている.続いて,過 渡電流の計算が正常にされているか調べるために、二段目 CMOS インバータの n型 NW MOSFET(nTr₂) に注目する. NW MOSFET 単体のシミュレーションと同様に、nTr₂ を 一つの箱と捉え、そこに流れ込む電流とそこから流れ出す電流の総和 $I_{\rm G} + I_{\rm S} + I_{\rm D}$ を考え る. 図 5.7(c) から分かるように $I_{\rm G} + I_{\rm S} + I_{\rm D} = 0$ となり、過渡電流に関しても正常に計算 されていることが分かる. 以上が、二段 CMOS インバータの計算結果である. このように、 電流源だけでなく過渡電流に関しても Verilog-A を用いた HSPICE 組み込みに成功した.

第5章まとめ

本章では、導出した解析モデルを回路シミュレータ (HSPICE) に組み込む方法について、 その流れを解説し、組み込みを行った解析モデルを用いて HSPICE により回路シミュレー ションを実行した.以下に要点をまとめる.

- p型NW MOSFET のデバイス特性をどのように扱うか、その方針を述べた.
 - p型 NW MOSFET の電流特性ならば,正孔の有効質量を調整することで再現 可能であるとする.
 - n型NW MOSFET に関して作製した解析モデルを、そのまま p型NW MOS-FET に適用する.
 - 正孔のバンド構造を放物線で近似し、そこから正孔の有効質量を抽出し、解析モデルから特性を計算する.
- 解析モデルの HSPICE への組み込み手法について, その流れを述べた.
 - Verilog-A はアナログ回路に関するモデリング標準記述言語であり、従来の C コードの 10 分の 1 程度のソースコードでモデルを記述可能である.
 - 解析モデルを Verilog-A で記述し、HSPICE のスクリプト内で読み込むことで、 従来の HSPICE と同様の手順により NW MOSFET を用いた回路シミュレー ションが行える.
- 解析モデルを HSPICE に実装し、その成果として基本的な回路のシミュレーション を行った.
 - NW MOSFET の等価回路における電流源に対応する解析モデルを HSPICE に 実装し、それを用いて直流解析を行った.
 - HSPICE を用いて NW MOSFET の電流源をシミュレーションし、それが解析 モデルによる電流特性の計算結果を再現することを確認した.
 - HSPICE による電流特性の計算により、Verilog-A を通じて電流源に対応する解 析モデルが HSPICE に問題なく組み込まれていることが確認できた.
 - 二段 CMOS インバータ回路の直流解析を行った.
 - 解析モデルを実装した HSPICE により、二段 CMOS インバータの回路特性を 計算できていることが確認できた.
 - NW MOSFET の等価回路におけるキャパシタンスに流れる過渡電流に対応する解析モデルを HSPICE に実装し、それを用いて過渡解析を実行した。

- NW MOSFET 単体の過渡シミュレーションを実行し、各端子に流れる電流を 調べた.
- 各端子に流れる電流の総和が0になることを確認し、また、それが解析モデルを 再現することを確認した.
- HSPICE により過渡電流が正常に計算されていることを確認した.
- 解析モデルを用いて二段 CMOS インバータの過渡シミュレーションを実行し, その出力の計算を確認した.
- 二段目 CMOS インバータの n型 NW MOSFET に流れ込む電流及びそこから 流れ出る電流を検証し、その総和が0になることを確認した.
- 以上により、解析モデルの回路シミュレータ組み込み及びそれを用いた回路シ ミュレーションの実現に成功した.

参考文献

- [1] N. Neophytou, A. Paul, and G. Klimeck, "Bandstructure effects in silicon nanowire hole transport," IEEE Trans. Nanotechnology, vol. 7, no. 6, pp. 710–719, 2008.
- [2] N. Morioka, H. Yoshioka, J. Suda, and T. Kimoto, "Quantum-confinement effect on holes in silicon nanowires: relationship between wave function and band structure," J. Appl. Phys, vol. 109, pp. 064318-1–064318-11, 2011.
- [3] M. Shin, S. Lee, and G. Klimeck, "Computational study on the performance of si nanowire pMOSFETs based on the k • p method," IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2274–2283, 2010.
- [4] K. S. Kundert and O. Zinke, "The designer's guide to Verilog-AMS," 1st Edition Kluwer Academic Publishers, 2004.
- [5] T. Numata, S. Uno, and K. Nakazato, "Circuit simulation model for ultimatelyscaled ballistic nanowire MOSFETs," IEICE Electronics Express, vol. 10, no. 1, pp. 1-8, 2013.
- [6] A. Khakifirooz and D. A. Antoniadis, "MOSFET performance scaling —-part II: future directions," IEEE Trans. Electron Devices, vol. 55, no. 6, pp.1401–1408, 2008.
- [7] Y. Lee, K. Kakushima, K. Natori, and H. Iwai, "Gate capacitance modeling and diameter-dependent performance of nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 1037–1045, 2012.
- [8] R. B. Salazar, S. R. Mehrotra, G. Klimeck, N. Singh, and J. Appenzeller, "Observation of 1D behavior in si nanowires: Toward high-performance TFETs," Nano Lett., vol. 12, pp. 5571–5575, 2012.

第6章 結論

本研究では、短チャネル効果の抑制の観点から NW MOSFET が広く研究されており、 ゲート長の縮小に伴い生じる弾道輸送が注目されていることに着目し、弾道輸送に基づく NW MOSFET の解析モデルの導出を試みた. それを実現するために、弾道輸送に基づく NW MOSFET に関して数値計算を含むコンパクトモデルから、回路シミュレータ組み込 み可能な解析モデルまでの範囲をカバーするモデルの作製を目指した. この目的に対し、三 つの段階を踏んだ. 一つ目は、現在までに報告されている弾道輸送に基づく NW MOSFET の基本的な考え方を基に、明示的な解析モデル作製を念頭に置きながら数値計算を含むコ ンパクトモデルを作製することである. 二つ目は、数値計算を含むコンパクトモデルの数 値計算部分を独自の近似手法を用いることで、数値計算を必要としない明示的な解析モデ ルを作製すること. 三つ目は、導出した解析モデルを回路シミュレータに組み込むことと 定めた. 以上の目標達成に向けて、研究を進めた.

本章では,最初に本研究を通して得られた成果をまとめる.続いて,本研究に残された課 題及び今後の方針について触れ,本論文の締めとする.

6.1 研究の成果

本節では、1.7節で提示した本研究における段階的な目標をどのように達成し、そこから 何が得られたかを述べる.

6.1.1 第一段階:数値計算を含むコンパクトモデル

第一目標は,弾道・準弾道輸送に基づく NW MOSFET の特性を表わす数値計算を含む コンパクトモデルの作製である.弾道・準弾道輸送に基づく NW MOSFET の電流式は既 にモデル化されており,電流がボトルネックにおけるワイヤ断面内の閉じ込めエネルギー にのみ依存することが判明している.この閉じ込めエネルギーの導出手法が問題となる. 実際のところ,閉じ込めエネルギーを近似的に与えた数値計算を含むコンパクトモデルは 複数報告されている.それらのモデルでは,閉じ込めエネルギーとして無限に深い井戸型 ポテンシャルにおける閉じ込めエネルギーや予め数値シミュレータを用いて計算したもの をフィッティングして使用するなどの方法が取られている.また,各方法共通して言える のが,未定変数を一つ含む形で閉じ込めエネルギーを決めるため,それを決定するために 数値計算を必要とする.この点は,本研究も同様である.以上のことから,他グループの研 究と差別化するためには,独自の手法かつ利点を持つ閉じ込めエネルギーの解析式を提案 する必要がある.そこで,ワイヤ断面内の静電ポテンシャル分布をモデルポテンシャルと して近似的に与え,それを用いてワイヤ断面内の Schrödinger 方程式を解く手法を用いた. 無限に深い井戸型ポテンシャルにおける閉じ込めエネルギーを使用すると,基底準位と励 起準位の間の差はバイアス条件に依存せず一定値を取る.また,数値シミュレータ結果を フィッティングする手法では、計算したいバイアス条件毎に必要なエネルギー準位に関す る数値シミュレーションを事前に行う必要がある.本解析モデルを使用することで、基底 準位及び励起準位のゲート電圧依存性を高精度に再現でき(図 3.9)、また一つの解析式で 全ての閉じ込めエネルギー準位を表わすことができる.そのため、本解析モデルはデバイ ス特性の計算だけでなく、四角形ワイヤ断面の電子状態を解析する手段としても優れてい ることが分かる.以上の閉じ込めエネルギーの解析モデルと弾道・準弾道輸送電流の解析 式を使用することで、NW MOSFET の電流特性を表わす数値計算を含むコンパクトモデ ルを提案できた.また、本モデルにより NEGF シミュレータによるデバイス特性の数値計 算結果を良い精度で再現することに成功した.したがって、第一段階の目標は達成できた と言える.

6.1.2 第二段階:明示的な解析モデル

第二段階は、第一段階で作製した数値計算を含むコンパクトモデルを数値計算を含まな い明示的な解析モデルに拡張することである.数値計算を含まない解析モデルの報告例も ある、しかし、それらは経験的または数値シミュレータなどを用いて予め決定する必要の あるパラメータや、物理的意味のないパラメータを複数含むなどの問題点を持つ. そのた め、そのモデルを用いて前準備なしに特性を計算することは難しい、そこで、本研究では 様々な近似仮定を用い、数値計算を含むコンパクトモデルの数値計算部分を極力経験的な パラメータを導入しない形で近似的に解くことで明示的な解析モデルの導出を行った. こ の解析モデルは非常に良く数値計算を含むコンパクトモデルを再現した、また、完全に明 示的な解析モデルであることから、デバイス構造、バイアス条件、材料に関するパラメータ があれば簡単に計算可能である.そして,回路シミュレータへの組み込みにも適している. ただし、大胆な近似仮定を置いたことにより、デバイスのサイズ及びバイアス条件に関す る適用範囲に強い制限が加わる、そこで、各近似仮定を見直し、適用範囲の制限を緩和する 手法を提案した、この手法は、まだ未成熟な部分もあるが、一つの改善手法の報告があるの とないのとでは大きくモデルの価値が異なることから提案した. 以上により、広い適用範 囲に対応可能な明示的な解析モデルの導出に成功し、良い精度で数値計算を含むコンパク トモデルの再現に成功した.したがって、第二段階の目標も達成できたと言える.

6.1.3 第三段階:回路シミュレーション組み込み

第三段階は、第二段階までに導出した解析モデルを回路シミュレータに組み込み、回路 シミュレーションを実現することである.これは、第二段階の明示的な解析モデルが導出 されたことによる成果物として実現される.したがって、解析モデルが提案されれば、回 路シミュレータ組み込みそのものは難しくない.解析モデルをモデリング標準記述言語 Verilog-Aを用いて記述し、回路シミュレータHPSICEに読み込ませることで実現した.こ れにより、弾道・準弾道輸送に基づくNW MOSFETの特性を用いた大規模集積回路シミュ レーションの足がかりとなるコアモデルの作成及び回路シミュレータ組み込みに成功した. 本研究の目標は、NW MOSFET の特性コンパクトモデルの作製から、それを回路シミュ レータに組み込めるレベルまで解析化し、回路シミュレータ組み込みまでの基本的な道筋 を示すことであるため、実際に回路モデルに求められるソース、ドレイン電極内の抵抗な どのより現実的な現象にまでは踏み込んでいない.そのため、今後の研究方針によっては、 実際の回路シミュレータで使えるレベルに対応させるためのインターフェースを整える必要がある.

6.2 残された課題

本節では、前節でまとめた各段階に残された課題について簡単に説明し、最後に今後の 方針について触れ、本論文の締めとする.

6.2.1 第一段階に残る課題

第一段階では,弾道・準弾道輸送に基づく NW MOSFET の特性を表わす数値計算を含むコンパクトモデルを提案した.数値計算を含むコンパクトモデルに関して残る課題をここで説明する.

適用範囲の明確化

数値計算を含むコンパクトモデルに関して今後必要なことの一つは,本モデルが適用可 能なデバイスサイズ及びバイアスの範囲を明確にすることである.コンパクトモデルに とって,適用可能な条件がはっきりしていない場合,どのような条件で使用していいのか分 からず,非常に扱いづらいものとなってしまう.したがって,モデルの適用範囲をはっきり させる必要がある.第3章では,数値計算を含むコンパクトモデルを導出するためにいく つかの段階を踏んでいる.一つ目の段階は,ワイヤ断面内の電子状態を解析的に導出した こと.二つ目の段階は,導出したワイヤ断面内の電子状態と弾道・準弾道輸送電流を表わ す解析式から電流を計算したことである.まず一つ目の段階で導出したワイヤ断面内の電 子状態に関する解析式がどの程度のサイズのワイヤ断面まで使用可能なのかを調べる必要 がある.続いて,この電子状態を表わす解析式を用いて計算した電流が,どの程度のサイズ の NW MOSFET の特性まで上手く表わせるか調べる必要がある.このように,調べるべ き適用範囲は二段階ある.すなわち,ワイヤ断面内の電子状態の解析に使用する際に,モデ ルが対応するワイヤ断面サイズ及び NW MOSFET の電流を計算する際にモデルが対応す るデバイスサイズに関する適用範囲である.

ワイヤ断面内の電子状態に関する解析式であるが、図 3.9 に示した通り、 $3 \times 3 \text{ nm}^2 - 5 \times 5 \text{ nm}^2$ の範囲では解析式が非常に良い精度を示す.ワイヤ断面積が更に小さくなる場合ワイ ヤ断面内の電子状態において、あるバイアス状態における無摂動状態に対する摂動(ΔU_{G}) が小さくなることから、 $3 \times 3 \text{ nm}^2$ 断面の場合と同様の精度が望める.問題はワイヤ断面積 が大きくなることで、摂動が大きくなる場合である.より大きい断面積における解析式の精 度を確認するには、SP シミュレータを用いた計算結果と比較すれば分かりやすいが、その シミュレーションには多大な計算時間を必要とするため、本論文執筆には間に合わなかっ た.そのため、ここでは予測の範囲内で話を続ける.閉じ込めエネルギーの解析式(3.58)、 (3.69) はそれぞれ、摂動法及び二準位近似による近似解法で導出されている.そのため、各 解析式は考慮する摂動項を増やすことで、摂動の影響が増加したとしてもそれに対応可能 である.したがって、ワイヤ断面内の静電ポテンシャルを二次関数で近似したが、この二 次関数の静電ポテンシャル形状が適切な限りは本モデルは良い精度を維持することができ ると考えられる.参考文献 [1] では、DG-MOSFET ではあるが二次関数による静電ポテン シャル形状近似を利用して、チャネル幅7 nm 程度の構造まで良く再現している。そのため、本モデルはワイヤ断面の構造としては7×7 nm²まで対応できるのではないかと考えている。しかし、完全な解析式は二次の摂動項までを考慮することで導出され、それ以上の高次の摂動項を考慮すると完全な解析モデルは実現されない。そのため、二次の摂動までのモデルとして考えると、5×5 nm² 程度が上限である可能性がある。この問題に関しては、今後注意深く調べる必要がある。

次に、NW MOSFET の電流の精度に関してである. 図 3.10 に電流の比較を示した. ワ イヤ断面積 $2 \times 4 \text{ nm}^2$ に関しては非常に良い精度を示している. しかし, $4 \times 4 \text{ nm}^2$ の断面構 造では, $V_{GS} = 0.5 \text{ V}$ 且つ $V_{DS} = 0.8 \text{ V}$ において 25% 程度の誤差を生じてしまう. また、断 面構造が更に大きくなると、この誤差は更に大きくなることが予想される. そのため、NW MOSFET の電流に関する適用範囲としては, $4 \times 4 \text{ nm}^2$ が限界であると考えられる. この ように、電流に関する適用範囲は非常に限られていることから、今後この適用範囲を広げ ることが本研究の課題の一つである.

キャリア伝導方向に関する拡張

NW MOSFET の弾道輸送電流に関して, $4 \times 4 \text{ nm}^2$ 断面の $V_{\text{GS}} = 0.5$ V 且つ $V_{\text{DS}} = 0.8$ V において 25% 程度の誤差を持つと述べた. この原因について, 3.5.5 項にて説明したが, 反転領域ではボトルネックの電子状態がソース電極の影響を受けるためである. これを改善するためには, ソース-ドレイン方向のポテンシャル分布に関する情報を何らかの形でモデルに導入する必要がある. これが, もう 1 つの課題である. ワイヤ断面内の閉じ込めエネルギーを表わす解析式 (3.58), (3.69) は現段階で $5 \times 5 \text{ nm}^2$ 程度までの精度の良さが確認されていることから, 電流に関して少なくとも $5 \times 5 \text{ nm}^2$ の断面サイズまでは高い精度を確保したいと考えている.

6.2.2 第二段階に残る課題

第二段階では、第一段階で導出した数値計算を含むコンパクトモデルを、数値計算を含 まない明示的な解析モデルに拡張した.この解析モデルに関して残る課題を説明する.

キャパシタンスモデル

4.2, 4.3 節を用いてキャパシタンスモデルの導出を試みた. 全てのキャパシタンス成分 に関して言えることではあるが、本論文でのキャパシタンスの比較対象は数値計算を含む コンパクトモデルである. そのため、今後キャパシタンスモデルの精度の検証・改善を行 うためには、数値計算を含むコンパクトモデルではなく、数値シミュレータまたは実験結 果等の値との比較が必要不可欠である. したがって、比較対象の確保、それを用いたキャパ シタンスモデルの妥当性の検証及び必要に応じたモデルの更なる改善が必要である.

トンネル電流

全体を通して言えることであるが、本論文では弾道・準弾道輸送に焦点を当てて話を進めてきた. そのため、ソース-ドレイン間のトンネル電流は無視している. しかし、ゲート

長が10 nm 程度まで短くなることで,無視できないほどのトンネル電流が流れることが数 値シミュレーション結果として報告されている [2]. そのため,今後更なるゲート長の縮小 が進むと考えるならば,トンネル電流のモデル化は必要不可欠である.参考文献 [2] による と,サブスレッショルド領域におけるトンネル電流は,ゲート長が15,10 nm の各場合にお いて,それぞれ全電流のおよそ30,50 % を占めるとされている.しかし,サブスレッショル ド領域におけるトンネル電流のモデル化の方針はある程度想像がつく.それには,4.3.3 項 で導出した伝導方向に関するバリア障壁の形に対応する解析式 (4.118) が利用できる.ト ンネル電流は,ソース-ドレイン方向に関するバリア障壁の形が式で与えられれば,モデル 化の近似手法として WKB 近似などが存在する.そのため,式 (4.118) を利用すればサブス レッショルド領域におけるトンネル電流は計算できると考えられる.ただし,反転領域に おけるバリア障壁の形状に関しては再現できていない.したがって,反転領域におけるト ンネル電流のモデル化に関しては,今後一から考えていく必要がある.

後方散乱係数:*R*

第4章で導出した解析モデルは、後方散乱係数Rを用いることで、式の上では準弾道輸送モデルとして導出されている.しかし、現段階ではまだ後方散乱係数に関して何も議論できておらず、R = 0とすることで完全な弾道輸送として扱っている.実際のデバイスにおいて完全な弾道輸送を実現することは難しい.そのため、準弾道輸送を考えることは必要不可欠であり、後方散乱係数に関する議論及び適切な決定手法を確立する必要がある.後方散乱係数は数値シミュレーションから値を抽出するほかに、モデル化も進められている[3,4,5,6,7].その中で、後方散乱係数を決定する指標として $k_{\rm B}T$ レイヤーと呼ばれるものがある[8,9].ソース-ドレイン方向に関して、ボトルネックから $k_{\rm B}T$ 分エネルギーが下がるところまでのポテンシャル分布が後方散乱係数に関して最も重要な働きをするという考え方である.この $k_{\rm B}T$ レイヤーの長さと電子の平均自由行程を用いて後方散乱係数を決定するという考え方である.この $k_{\rm B}T$ レイヤーの長さと電子の平均自由行程を用いて後方散乱係数を決定するというもに行われている.まずは、現在進められている研究を把握・理解し、今後どのように本モデルにおける後方散乱係数を決定するか議論し、本モデルの後方散乱係数を求める手法の確立が課題となる.

6.2.3 第三段階に残る課題

第三段階では,第二段階で導出した数値計算を含まない明示的な解析モデルを回路シミュ レータに組み込み,簡単な回路構造のシミュレーションを実行した.

この段階では、第4章で導出した解析モデルが Verilog-A コードを用いることで回路シ ミュレータに組み込めることを示した.しかし、第二段階で導出したモデルはチャネル領 域における物理を表わしたものであり、より現実的な回路シミュレーションモデルを目指 すのであれば、より多くのモデル化すべきパラメータがある.例えば、ソース、ドレイン電 極の抵抗値のモデル化、NW MOSFET を作成する際の実際のデバイス構造に基づく周囲 の構造による寄生容量のモデル化などが考えられる.これらをどうするかは、本研究の今 後の方針にもよるが、回路モデルを作成する上での非常に重要な課題である.

6.3 今後の方針

6.2 節において、本研究に残された課題について触れた.本節では、それを踏まえたうえで本研究の今後の方針を述べ、本論文の締めとする.

解析モデルに残された主な課題は、反転領域におけるドレイン電流の精度の改善、トン ネル電流のモデル化、後方散乱係数の決定であることを述べた。第3.5.5項で述べたよう に、反転領域におけるドレイン電流の精度の誤差はコンパクトモデルがソース-ドレイン 方向に関するポテンシャル分布の影響を含んでいないからである。トンネル電流は、ソー ス-ドレイン方向に関するバリア障壁の形状が分かればモデル化できる可能性がある. そ して、後方散乱係数であるが、残された課題で述べたように k_BT レイヤーの長さを用いる ことで後方散乱係数のモデル化が進められている. この k_BT レイヤーの長さも、基をたど ればソース--ドレイン方向に関するポテンシャル分布から得られるパラメータである.こ のように、我々のモデルに残る主な課題はソース-ドレイン方向のポテンシャル分布に関係 する現象であることが分かる、したがって、ソース-ドレイン方向に関するポテンシャル分 布をモデルに導入できれば、各課題を解決できる可能性がある. このポテンシャル分布の 情報はソース-ドレイン方向の Poisson 方程式を解くことで得られる. しかし、それが困難 であるがゆえに、本モデルではワイヤ断面内のみの電子状態を解析式として導出している. 電子伝導方向に関するポテンシャル分布を求めることは非常に難しい課題である、しかし、 何らかの形でポテンシャル分布に関する情報をモデルに導入することは必要不可欠であり、 これが本研究の今後の最も重要且つ難しい課題となる.したがって、本研究の一つの方針 としては、先述した他の各課題を解決しながら、ソース-ドレイン方向に関するポテンシャ ル分布をモデルに導入する手法を模索することである.

もう一つの方針として、数値シミュレーション結果だけではなく、実際に作られた NW MOSFET の特性値との比較を通して、本モデルに足りないものを模索し、改善していくこ とがある.本モデルは、今の段階では完全な弾道輸送を仮定しており、非常に理想的な条件 下における計算をしている.本論文を通して、弾道輸送に基づく NW MOSFET のコンパ クトモデルを回路シミュレーションに組み込めるレベルの解析化に成功した.次の段階と して、解析モデルを現実的なデバイス特性に近付け、今後実用レベルのデバイス・回路モデ ルへの拡張を行う必要がある.それには、数値シミュレーションとの比較だけでなく、実験 値との比較を通して、今後モデル化の必要性があるパラメータを明確にし、そのモデル化 やパラメータ抽出を行い、本モデルを実デバイスレベルで使用可能なモデルへ拡張する必 要がある.それを実現できれば、本解析モデルの価値は格段に上がると考えている.以上 が本研究の今後の方針である.
参考文献

- M. Ferrier, R. Clerc, G. Pananakakis, G. Ghibaudo, F. Boeuf, and T. Skotnicki, "Analytical compact model for quantization in undoped double-gate metal oxide semiconductor field effect transistors and its impact on quasi-ballistic current," Jpn. J. Appl. Phys., vol. 45, no. 4B, pp. 3088–3096, 2006.
- [2] M. Shin, "Quantum simulation of device characteristics of silicon nanowire FETs," IEEE Trans. Nanotech., vol. 6, no. 2, pp. 230–237, 2007.
- [3] M. Lundstrom, "Essential physics of carrier transport in nanoscale MOSFETs," IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 133–141, 2002.
- [4] E. Gnani, A. Gnudi, S. Reggiani, and G. Baccarani, "Quasi-ballistic transport in nanowire field-effect Transistors," IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2918–2930, 2008.
- [5] K. Natori, "Compact modeling of quasi-ballistic silicon nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 79–86, 2012.
- [6] R. Kim and M. Lundstrom, "Physics of carrier backscattering in one- and twodimensional nanotransistors," IEEE Trans. Electron Devices, vol. 56, no. 1, pp. 132–139, 2009.
- [7] S. Martinie, D. Munteanu, G. L. Carval, and J.-L. Autran, "New unified analytical model of backscattering coefficient from low- to high-field conditions in quasiballistic transport," IEEE Electron Device Lett., vol. 29, no. 12, pp. 1392–1394, 2008.
- [8] M. Lundstrom, "Elementary scattering theory of the MOSFET," IEEE Electron Device Lett., vol. 18, no. 7, pp. 361–363, 1997.
- [9] R. Clerc, P. Palestri, and L. Selmi, "On the physical understanding of the kT-layer concept in quasi-ballistic regime of transport in nanoscale devices," IEEE Trans. Electron Devices, vol. 53, no. 7, pp. 1634–1640, 2006.

付録A Verilog-Aスクリプト

A.1 電流源

//はコメントアウトを意味する

'include "disciplines.vams"
'include "constants.vams" //Verilog-A に用意されている物理定数を呼び出す(付録 A.3)
module ngaamosfet(d,g,s);
inout d,g,s; //各 node の宣言
electrical d,g,s; //各 node に静電的性質を付与

//各固有定数の宣言

parameter real gv = 2.0;//valley degeneracy parameter real bulkpar = 11.90; //bulk relative permittivity parameter real oxidepar = 3.90; //oxide relative permittivity parameter real xmass = 0.9160; //x effective mass parameter real ymass = 0.190; //y effective mass parameter real zmass = 0.190; //z effective mass parameter real tx = 2.0; //x width parameter real ty = 4.0; //y width parameter real tox = 0.50; // oxide thickness parameter real thetag = 1.0; parameter real flatbandvol = 0.30; //flatband voltage parameter real flatbandcon = 0.0; //conductionband edge at flatband condition parameter real C_T = 300.0; //temparature parameter real C_M = 9.10940000e-31; //Electron Rest Mass

//使用する定数の定義

//C_- >Constant real C_Al, C_Ar, C_Br, C_Cr, C_Current, C_a, C_b, C_c, EthInv;

//使用する関数の定義

real Ids, Vd, Vg, Vgdash, Vs, Ws, Energy, DeltaUgOne, FermiIntBase, FermiIntVDS, EtaVDS, DeltaUgTwo, WsTwo, EnergyTwo, UDS;

//analog 部分
analog begin

Vg = V(g); Vd = V(d);Vs = V(s);

//各定数の定義

 $//e/k_{\rm B}T$ の定義 EthInv = 'P_Q/('P_K*C_T);

//a_Lの定義

$$\label{eq:C_Al} \begin{split} C_Al &= pow(4.0^{*}`P_EPS0^{*}`P_H/`P_Q,2)^{*}1.0/(2.0^{*}`P_K^{*}C_M^{*}C_T)^{*}pow(bulkpar\ ^{*}thetag,2)/(zmass^*pow(gv,2)); \end{split}$$

//a_{1,0,0}の定義

$$\begin{split} C_Ar &= -^{P_Q} * EthInv^*((8.0 * C_M * 1.0 e-18) / pow(^{P_H}, 2) * pow(16.0 / pow(^{M_P}, 2), 2) \\ * (0.00111209)) * (xmass^* pow(tx, 4) + ymass^* pow(ty, 4)) * pow(thetag, 2) / pow(tx + ty, 2); \end{split}$$

//b0,0の定義

 $C_Br = EthInv^*(4*bulkpar*tox/(oxidepar*(tx+ty))+4.0*tx*ty/(3.0*pow(tx+ty,2)) +2.0/pow('M_PI,2))*thetag;$

//c_{1,0,0}の定義

$$\label{eq:C_Cr} \begin{split} C_Cr &= -(pow(`P_H,2)*1.0e18)/(8.0*`P_K*C_T*C_M)*(1.0/(xmass*pow(tx,2))+1.0 \\ /(ymass*pow(ty,2))); \end{split}$$

$$\label{eq:last_linear} \begin{split} //2ek_{\rm B}T/h \\ {\rm C_Current} &= 2.0^{*`}{\rm P_Q^{*`}P_K^{*}C_T/^{`}P_H}; \end{split}$$

//Fermi 積分の解析式に使用されるパラメータ a, b, c C_a = 2.88125; C_b = 1.495; C_c = 2.82842;

//特性計算

 $//V'_{GS}$ の定義 Vgdash = Vg - Vs - flatbandvol + flatbandcon;

 $//\Delta U_{G}^{(1)}$ の定義 DeltaUgOne = -C_Br/(2.0*(C_Al/4+C_Ar))*(1.0-sqrt(1.0+4.0*(C_Al/4 + C_Ar))/(pow(C_Br,2))*ln(1.0+exp((EthInv*(Vgdash -(Vd-Vs)/2)+C_Cr)))));

$//ew_{ m s}/k_{ m B}T$ の定義

$$\label{eq:Ws} \begin{split} Ws &= EthInv^*(Vgdash-4.0^*bulkpar^*tox/(oxidepar^*(tx+ty))^*thetag^*DeltaUgOne+thetag^*DeltaUgOne^*2.0^*(pow(tx,2)+pow(ty,2))/3.0/pow(tx+ty,2)); \end{split}$$

$//E_{1,0,0}^{q}/k_{B}T$ の定義

$$\begin{split} & Energy = (pow(`P_H,2)/(8.0*C_M*1.0e-18)*(1.0/(xmass*pow(tx,2)) \\ & +1.0/(ymass*pow(ty,2))) + (2.0/3.0+2.0/pow(`M_PI,2))*`P_Q*thetag*DeltaUgOne \\ & -(8.0*C_M*1.0e-18)/pow(`P_H,2)*pow(16.0/pow(`M_PI,2),2)*0.00111209*pow(`P_Q,2) \\ & *pow(thetag,2)*pow(DeltaUgOne,2))/(`P_K*C_T); \end{split}$$

UDS = Ws - Energy;

 $//F_{-1/2}(u_{1,0,0})$ の定義(式 (4.71)を使用) FermiIntBase = 1/(0.707107/sqrt(C_b + UDS + pow(pow(sqrt(pow(UDS-C_b,2)),C_c) + pow(C_a,C_c), 0.353554)) + exp(-UDS)/sqrt('M_PI));

$//F_{-1/2}(u_{1,0,0}-eV_{ m DS}/k_{ m B}T)$ の定義(式(4.71)を使用)

$$\label{eq:constraint} \begin{split} \mbox{FermiIntVDS} &= 1/(0.707107/\mbox{sqrt}(\mbox{C}_{-}\mbox{b} + (\mbox{UDS} - \mbox{EthInv}^*(\mbox{Vd-Vs})) + \mbox{pow}(\mbox{sqrt}(\mbox{pow}(\mbox{c}_{-}\mbox{c}_{$$

 $//\eta_{\beta,1,0,0}$ の定義 EtaVDS = FermiIntVDS/FermiIntBase;

 $//\Delta U_{\rm G}^{(2)}$ の定義 DeltaUgTwo = -C_Br/(2.0*(C_Al/pow(1+EtaVDS,2)+C_Ar))*(1.0-sqrt(1.0+4.0*(C_Al + pow(1+EtaVDS,2)*C_Ar)/((1+EtaVDS)*pow(C_Br,2))*ln(1.0+exp((EthInv*Vgdash + C_Cr)/(1+EtaVDS)))));

 $//\Delta U_{\rm G}^{(2)}$ を用いた $-ew_{\rm s}/k_{\rm B}T$ WsTwo = EthInv*(Vgdash-4.0*bulkpar*tox/(oxidepar*(tx+ty))*thetag*DeltaUgTwo +thetag*DeltaUgTwo*2.0*(pow(tx,2)+pow(ty,2))/3.0/pow(tx+ty,2));

 $//\Delta U_{\rm G}^{(2)}$ を用いた $E_{1,0,0}^{\rm q}/k_{\rm B}T$ EnergyTwo = (pow('P_H,2)/(8.0*C_M*1.0e-18)*(1.0/(xmass*pow(tx,2)) +1.0/(ymass*pow(ty,2)))+(2.0/3.0+2.0/pow('M_PI,2))*'P_Q*thetag*DeltaUgTwo -(8.0*C_M*1.0e-18)/pow('P_H,2)*pow(16.0/pow('M_PI,2),2)*0.00111209*pow('P_Q,2) *pow(thetag,2)*pow(DeltaUgTwo,2))/('P_K*C_T);

//電流の定義

$$\label{eq:lds} \begin{split} Ids &= C_Current^*gv^*(ln((1+exp(WsTwo-EnergyTwo))/(1+exp(WsTwo-EnergyTwo-EnergyTwo-EnergyTwo))); \end{split}$$

I(d,s) < + Ids;

end

endmodule

A.2 過渡電流

ここで示す Verilog-A スクリプトはゲート-ソース間に流れる過渡電流に関するものである. ゲート-ドレイン間に流れる過渡電流のスクリプトはほとんど同じものになるため, 異なる部分のみを適宜 (...) にて示す.

'include "disciplines.vams"
'include "constants.vams"
module ngscapacitance(d,g,s);
(module ngdcapacitance(d,g,s))
inout d,g,s; //各 node の宣言

electrical d,g,s; //各 node に静電的性質を付与

//各固有定数の宣言

parameter real gv = 2.0;//valley degeneracy parameter real bulkpar = 11.90; //bulk relative permittivity parameter real oxidepar = 3.90; //oxide relative permittivity parameter real xmass = 0.9160; //x effective mass parameter real ymass = 0.190; //y effective mass parameter real zmass = 0.190; //z effective mass parameter real tx = 2.0; //x width parameter real ty = 4.0; //y width parameter real tox = 0.50; //oxide thickness parameter real Lg = 20.0e-9; //gate length parameter real thetag = 1.0; parameter real flatbandvol = 0.30; //flatband voltage parameter real flatbandcon = 0.0; //flatband conductionband parameter real C_T = 300.0; //temparature parameter real C_M = 9.10940000e-31; //Electron Rest Mass

//使用する定数の定義

//C_- >Constant real C_Al, C_Ar, C_Br, C_Cr, C_a, C_b, C_c, EthInv;

//使用する関数の定義

real Igs(Igd), Vd, Vg, Vgdash, Vs, Ws, Energy, DeltaUgOne, FermiIntBase, Fermi-

IntVDS, EtaVDS, DeltaUgTwo, WsTwo, EnergyTwo, UDS, QGS(QGD);

//analog 部分 (式等の定義) analog begin

Vg = V(g);Vd = V(d);Vs = V(s);

//各定数の定義 EthInv = 'P_Q/('P_K*C_T);

 $C_Al = pow(4.0^{*}P_EPS0^{*}P_H/P_Q,2)^{*}1.0/(2.0^{*}P_K^*C_M^*C_T)^*pow(bulkpar^{*}thetag,2)/(zmass^*pow(gv,2));$

 $C_Ar = -(P_Q*EthInv*((8.0*C_M*1.0e-18)/pow((P_H,2)*pow(16.0/pow((M_PI,2),2))*(0.00111209))*(xmass*pow(tx,4)+ymass*pow(ty,4))*pow(thetag,2)/pow(tx+ty,2);$

 $C_Br = EthInv^*(4*bulkpar*tox/(oxidepar*(tx+ty))+4.0*tx*ty/(3.0*pow(tx+ty,2)) +2.0/pow('M_PI,2))*thetag;$

$$\label{eq:C_Cr} \begin{split} C_Cr &= -(pow(`P_H,2)*1.0e18)/(8.0*`P_K*C_T*C_M)*(1.0/(xmass*pow(tx,2))+1.0 \\ /(ymass*pow(ty,2))); \end{split}$$

 $C_a = 2.88125;$

 $C_{-}b = 1.495;$

 $C_{-}c = 2.82842;$

//実際の特性計算 Vgdash = Vg - Vs - flatbandvol + flatbandcon;

 $DeltaUgOne = -C_Br/(2.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+4.0^{(C_Al/4+C_Ar)})^{(1.0-sqrt(1.0+3.0^{(1.0-sqrt(1.0+3.0^{(1.0-sqrt(1.0-sqrt(1.0-sqrt(1.0+3.0^{(1.0-sqrt(1.0-sqrt(1.0+3.0^{(1.0-sq$

 $Ws = EthInv^{*}(Vgdash-4.0^{*}bulkpar^{*}tox/(oxidepar^{*}(tx+ty))^{*}thetag^{*}DeltaUgOne+thetag^{*}DeltaUgOne^{*}2.0^{*}(pow(tx,2)+pow(ty,2))/3.0/pow(tx+ty,2));$

$$\begin{split} & Energy = (pow(`P_H,2)/(8.0*C_M*1.0e-18)*(1.0/(xmass*pow(tx,2)) \\ & +1.0/(ymass*pow(ty,2))) + (2.0/3.0+2.0/pow(`M_PI,2))*`P_Q*thetag*DeltaUgOne \\ & -(8.0*C_M*1.0e-18)/pow(`P_H,2)*pow(16.0/pow(`M_PI,2),2)*0.00111209*pow(`P_Q,2) \\ & *pow(thetag,2)*pow(DeltaUgOne,2))/(`P_K*C_T); \end{split}$$

UDS = Ws - Energy;

 $\begin{aligned} & \operatorname{FermiIntBase} = 1/(0.707107/\operatorname{sqrt}(\operatorname{C_b} + \operatorname{UDS} + \operatorname{pow}(\operatorname{pow}(\operatorname{sqrt}(\operatorname{pow}(\operatorname{UDS-C_b}, 2)), \operatorname{C_c}) \\ & + \operatorname{pow}(\operatorname{C_a}, \operatorname{C_c}), \ 0.353554) \) + \operatorname{exp}(\operatorname{-UDS})/\operatorname{sqrt}(\operatorname{'M-PI}); \end{aligned}$

$$\label{eq:constraint} \begin{split} \mbox{FermiIntVDS} &= 1/(0.707107/\mbox{sqrt}(\mbox{C}_b + (\mbox{UDS} - \mbox{EthInv}^*(\mbox{Vd}-\mbox{Vs})) + \mbox{pow}(\mbox{sqrt}(\mbox{pow}(\mbox{udd},\mbox{C}_b,\mbox{c})) + \mbox{pow}(\mbox{sqrt}(\mbox{pow}(\mbox{udd},\mbox{C}_b,\mbox{c})) + \mbox{pow}(\mbox{sqrt}(\mbox{pow}(\mbox{udd},\mbox{c}_b,\mbox{c})) + \mbox{exp}(\mbox{udd},\mbox{c}_b,\mbox{c})) + \mbox{exp}(\mbox{udd},\mbox{udd},\mbox{c}) + \mbox{exp}(\mbox{udd},\mbox{c}_b,\mbox{c})) + \mbox{exp}(\mbox{udd},\$$

EtaVDS = FermiIntVDS/FermiIntBase;

$$\begin{split} DeltaUgTwo &= -C_Br/(2.0^*(C_Al/pow(1+EtaVDS,2)+C_Ar))^*(1.0\text{-}sqrt(1.0+4.0^*(C_Al+pow(1+EtaVDS,2)^*C_Ar)/((1+EtaVDS)^*pow(C_Br,2))^*ln(1.0+exp((EthInv^*Vgdash+C_Cr)/(1+EtaVDS))))); \end{split}$$

//NW MOSFET の等価回路の各キャパシタンスに溜まる電荷量の定義 QGS = -8*0.434*Lg*bulkpar*'P_EPS0*DeltaUgTwo; (QGD = -8*0.357*Lg*bulkpar*'P_EPS0*DeltaUgTwo;)

//過渡電流の定義

Igs = -1.0e3*ddt(QGS); //Verilog-A に用意されている時間微分の命令 ddt(...)(Igd = -1.0e3*ddt(QGD))

I(g,s) < + Igs;(I(g,d) < + Igd;)

end

endmodule

A.3 constants.vams

数学定数		
'M_PI	π	3.14159265358979323846
'M_TWO_PI	2π	6.28318530717958647652
M_PI_2	$\pi/2$	1.57079632679489661923
M_PI_4	$\pi/4$	0.78539816339744830962
$^{\rm M_{-1}}PI$	$1/\pi$	0.31830988618379067154
'M_2_PI	$2/\pi$	0.63661977236758134308
'M_2_SQRTPI	$2/\sqrt{\pi}$	1.12837916709551257390
'M_E	e	2.7182818284590452354
'M_LOG2E	$\log_2 e$	1.4426950408889634074
'M_LOG10E	$\log_{10} e$	0.43429448190325182765
'M_LN2	$\log_e 2$	0.69314718055994530942
'M_LN10	$\log_e 10$	2.30258509299404568402
$^{\rm M}_{\rm SQRT2}$	$\sqrt{2}$	1.41421356237309504880
M_SQRT1_2	$1/\sqrt{2}$	0.70710678118654752440
物理定数		
'P_Q	電気素量	$1.602176462 \times 10^{-19} \text{ C}$
'P_C	光速	$2.99792458 \times 10^8 \ {\rm m/s}$
'P_K	Boltzmann 定数	$1.3806503 \times 10^{-23} \text{ J/K}$
'P_H	Planck 定数	$6.626076 \times 10^{-34} \text{ J} \cdot \text{s}$
'P_EPS0	真空誘電率	$8.854187817 \times 10^{-12} \ \mathrm{F/m}$
'P_U0	真空透磁率	$\pi \times 4.0 \times 10^{-7} \text{ H/m}$
'P_CELSIUS0	0 °C	273.15 K

表 A.1: Verilog-A に用意されている定数.

謝辞

本研究は、名古屋大学大学院工学研究科電子情報システム専攻教授である中里和郎先生 のご指導の下、著者が同専攻博士課程在籍中に行われたものであり、その研究成果をまと めたものになります.中里和郎先生には快適な研究環境を提供して頂くとともに、研究に 対する幅広い視点からのご意見、ご提案を頂きました.ここに深く感謝の意を表します.

本論文の執筆にあたり、学位審査委員の先生方からは本論文の質を向上させるために必 要不可欠なご意見、ご助言を頂きました.学位審査委員を引き受けてくださいました東京工 業大学フロンティア研究機構特任教授の名取研二先生、名古屋大学大学院工学研究科電子 情報システム専攻教授の堀勝先生、同研究科電子情報システム専攻及び量子工学専攻教授 の水谷孝先生、同研究科電子情報システム専攻講師の新津葵一先生に心より感謝致します.

本研究の機会を与えていただき,熱心且つ厳しくも丁寧なご指導を賜りました立命館大 学理工学部電子光情報工学科准教授の宇野重康先生に深く感謝いたします.また,本研究 を進めるにあたり,大阪大学大学院工学研究科電気電子情報工学専攻の森伸也准教授,鎌 倉良成准教授,Gennady Mil'nikov 氏には,活発な議論にお付き合いいただきました.そこ で行った議論は,本研究を遂行するうえでの大変良い刺激となりました.ここに感謝の意 を表します.

名古屋大学大学院工学研究科電子情報システム専攻の中里研究室にて、研究の時間、またそれ以外の時間を通じて有意義な時間を共に過ごした研究室の方々に感謝致します.特に、服部淳一氏、程賀氏には常日頃から本研究についての議論、研究の推進に力添えを頂きましたこと深く感謝致します.また、博士課程同期である金寶濫氏の存在は、互いを高め合い、本研究を進めていくうえで大きな励みとなりました.ここに深く感謝致します.そして、Anna Sawicka 氏、Yusmeeraz Binti Yusof 氏、杉本圭正氏、塚田淳一氏、藤田陽平氏、籠橋裕次氏、亀谷裕輔氏、塚田麻実氏、長谷川淳一氏、松本紘和氏、小澤寛晃氏、新免美緒氏、馬強氏含め、研究室の一人一人に深く感謝致します.

最後になりますが、博士課程に進学する機会を与えてくださり、またあらゆる面で温か く支えてくださった両親に心より深く深く感謝致します.

業績

論文

- Henok Abebe, Ellis Cumberbatch, Hedley Morris, Vance Tyree, Tatsuhiro Numata, and Shigeyasu Uno, "Symmetric and asymmetric double gate MOSFET modeling," Journal of Semiconductor Technology and Science, vol. 9, no. 4, pp. 225–232, 2009.
- Tatsuhiro Numata, Shigeyasu Uno, Kazuo Nakazato, Yoshinari Kamakura, and Nobuya Mori, "Analytical compact model of ballistic cylindrical nanowire metal– oxide–semiconductor field-effect transistor," Japanese Journal of Applied Physics, vol. 49, pp. 04DN05-1–04DN05-6, 2010.
- Tatsuhiro Numata, Shigeyasu Uno, and Kazuo Nakazato, "Circuit simulation model for ultimately-scaled ballistic nanowire MOSFETs," IEICE Electronics Express, vol. 10, no. 1, pp. 1–8, 2013.
- 4. Tatsuhiro Numata, Shigeyasu Uno, Junichi Hattori, Gennady Mil'nikov, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "A self-consistent compact model for ballistic nanowire MOSFETs with rectangular cross sections," IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 856–862, 2013.
- 5. **Tatsuhiro Numata**, Shigeyasu Uno, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "Analytic circuit model of ballistic nanowire metal–oxide– semiconductor field-effect transistor for transient analysis," Japanese Journal of Applied Physics, vol. **, pp. *****_*_*_*, ****(accepted).

国際学会

1. Tatsuhiro Numata, Shigeyasu Uno, Kazuo Nakazato, Gennady Mil'nikov, Yoshinari Kamakura, Nobuya Mori, and Tatsuya Ezaki, "A fully self-consistent compact model of ballistic nanowire mosfet," 2009 Silicon Nanoelectronics Workshop, Kyoto, Japan, June 13th, 2009; Abstract pp. 91–92.

- Tatsuhiro Numata, Shigeyasu Uno, Anna Sawicka, Gennady Mil'nikov, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "Simplified calculation method of electron subband profile in ballistic nanowire MOSFET," 2010 14th International Workshop on Computational Electronics (IWCE), Pisa, Italy, October 28th, 2010; Proceedings, pp. 125–128.
- 4. Tatsuhiro Numata, Shigeyasu Uno, Anna Sawicka, Gennady Mil'nikov, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "Simplified method of electron subband profile calculation in ballistic gate-all-around MOSFET," 2010 Workshop on Innovative Devices and Systems (WINDS), Big Island of Hawai'i, America, December 9th, 2010.
- Tatsuhiro Numata, Shigeyasu Uno, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "Fully analytic compact model of ballistic gate-all-around MOS-FET with rectangular cross section," 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Osaka, Japan, September 8th, 2011; Proceedings pp. 39–42.
- Tatsuhiro Numata, Shigeyasu Uno, Yoshinari Kamakura, Nobuya Mori, and Kazuo Nakazato, "An analytic circuit model of ballistic nanowire MOSFET for transient analysis," 2012 International Conference on Solid State Devices and Materials (SSDM), Kyoto, Japan, September 26th, 2012; Extended Abstract pp. 416– 417.
- He Cheng, Shigeyasu Uno, Tatsuhiro Numata, and Kazuo Nakazato, "Analytic compact model of ballistic and quasi-ballistic cylindrical gate-all-around MOSFET including two subbands," 2012 International Conference on Solid State Devices and Materials (SSDM), Kyoto, Japan, September 26th, 2012; Extended Abstract pp. 668–669.

国内学会

- 1. 服部淳一, 宇野重康, 森伸也, 沼田達宏, 中里和郎, "自立半導体量子細線における電子--変調音響フォノン相互作用に関する理論研究," 第 56 回応用物理学関係連合講演 会, 31a-V-1, 筑波大学, 2009 年 3 月 31 日.
- 2. 沼田達宏, 宇野重康, 中里和郎, ゲナディミリニコフ, 鎌倉良成, 森伸也, "弾道輸送ナ ノワイヤ MOSFET の *I-V* 特性コンパクトモデル,"第 56 回応用物理学関係連合講 演会, 1a-V-7, 筑波大学, 2009 年 4 月 1 日.

- 3. 沼田達宏, 宇野重康, 中里和郎, 鎌倉良成, 森伸也, "円筒 GAA-MOSFET における弾 道輸送 *I-V* 特性コンパクトモデル,"第70回応用物理学会学術講演会, 8p-TB-5, 富 山大学, 2009 年 9 月 8 日.
- 4. 沼田達宏, 宇野重康, 中里和郎, ゲナディミリニコフ, 鎌倉良成, 森伸也, "弾道輸送 GAA-MOSFET における *I-V* 特性コンパクトモデル,"第57回応用物理学関係連合 講演会, 18a-C-7, 東海大学, 2010 年3月19日.
- 5. 沼田達宏, 宇野重康, 中里和郎, ゲナディミリニコフ, 鎌倉良成, 森伸也, "ナノワイヤ MOSFET における電子エネルギー準位の伝導方向プロファイルの簡易モデル,"第 71 回応用物理学会学術講演会, 17a-S-8, 長崎大学, 2010 年 9 月 17 日.
- 沼田達宏, 宇野重康, 中里和郎, ゲナディミリニコフ, 鎌倉良成, 森伸也, "四角形断面 GAA-MOSFET における弾道輸送電流特性コンパクトモデル,"第58回応用物理学 関係連合講演会, 26p-KS-9, 神奈川工科大学, 2011年3月26日.
- 7. 程賀, 宇野重康, 沼田達宏, 中里和郎, "摂動法的な弾道・準弾道円筒形 GAA-MOSFET 解析簡易モデルにおける回路シミュレーション,"応用物理学会分科会シリコンテク ノロジー, SDM, プロセス・デバイス・回路シミュレーションおよび一般, 機械振興 会館, 2011 年 11 月 11 日.
- 8. 程賀, 宇野重康, 沼田達宏, 中里和郎, "円筒形 GAA-MOSFET 弾道・準弾道輸送の 解析コンパクトモデルにおける複数サブバンドの導入,"第73回応用物理学会学術 講演会, 14p-F7-3, 愛媛大学・松山大学, 2012年9月14日.
- 沼田達宏, 宇野重康, 鎌倉良成, 森伸也, 中里和郎, "弾道輸送に基づく GAA-MOSFET の過渡解析モデル,"第73回応用物理学会学術講演会, 14p-F7-4, 愛媛大学・松山大 学, 2012年9月14日.
- 10. 程賀, 宇野重康, 沼田達宏, 中里和郎, "弾道・準弾道輸送円筒形 GAA-MOSFET の 回路コンパクトモデルとシミュレーション,"応用物理学会分科会シリコンテクノロ ジー, SDM, プロセス・デバイス・回路シミュレーションおよび一般, 機械振興会館, 2012年11月16日.

受賞

1. 第 27 回 (2009 年秋季) 応用物理学会講演奨励賞, 2009 年 9 月 8 日.