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Abstract

Einstein’s general relativity is a theory of space-time, gravity. Quantum me-

chanics governs small scale physics. An attempt to unify general relativity and

quantum mechanics called quantum gravity is a long standing mystery in theoret-

ical physics. Approaching a concrete description of quantum gravity, we explore

the space-time physics adopting the fundamental foliation structure built-in as a

guiding principle. Once the space-time foliation acquires a physical meaning, it

fits the notion of causality, although a part of space-time gauge symmetry ought

to be broken. We consider the causality as a fundamental property quantum

gravity should possess at the cost of giving up the space-time gauge invariance.

In this thesis, we examine two kinds of models in which the foliation structure

plays an important role: a non-perturbative Lorentzian lattice gravity called

causal dynamical triangulation (CDT for short); an effective theory of quantum

gravity dubbed as n-DBI gravity.

In CDT, working on 2-dimensional model, we proceed analytic computations.

Firstly, we formulate the matter-coupled CDT; the matter here is hard dimers. At

the critical point, the model becomes the gravity-dressed non-unitary conformal

field theory with the central charge c = −22/5; we compute physical observables.

Secondary, we scout out possible extensions of CDT without changing the scaling

dimension of space-time using the method called string field theory. We find the

matrix model description yielding the same result obtained by the string field

theory.

In n-DBI gravity, we examine a role of foliation and its effects on physics.

Firstly, we show that any solution of Einstein’s general relativity with a particular

curvature property is a solution of n-DBI gravity. We also observe the breakdown

of Birkhoff’s theorem triggered by the physical foliation. Secondary, we nail the

existence of scalar graviton produced by the physical foliation based on Dirac’s

theory of constrained system. We study potential pathologies associated with

the scalar mode as well.
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... I am inclined to believe from this that four-dimensional symmetry is not a fundamen-

tal property of the physical world.

— P. A. M. Dirac in his paper, “The Theory of Gravitation in Hamiltonian Form.”
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Part I

Introduction
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1 Overview

Lots of unsolved fundamental problems in theoretical physics are closely related to the lack

of a complete quantum theory of gravity. Once the quantum gravity is established, it should

provide us transparent answers to simple questions even children ask their parents such as

“What is time?, ” and “Why is the Universe the way it is? ” However, as the history tells,

the quantization of gravity is an issue that defies any attempt at a quick and simple solution.

One difficulty in formulating quantum gravity is the weakness of the gravitational force. To

observe quantum gravity effects, one needs to approach the Planck scale, 1019GeV, which is

far from the energy scale achieved by current collider experiments. Thus, it is hard to use

experimental data as hints to construct quantum gravity. The other difficulty is the non-

renormalizability of the Einstein-Hilbert action, according to conventional power-counting

arguments of the Newton constant. Anyhow extracting the truth of nature from the small

amount of information, theoretical physicists are approaching to the correct answer or going

away from it, although every physicist expects the former scenario more or less. In the case

of the author, the space-time foliation seems to be an essential part in quantum gravity. The

reason can be found below.

1.1 A role of foliation

In 1983, Teitelboim proposed a quite impressive work about the path-integral of gravitational

theories [1]. In the paper, he insisted that one should choose either the causality or gauge

invariance when quantizing gravity via the path-integral: the two notions can not coexist.

His argument does not rely on any specific model of quantum gravity, but still one can learn

important aspects quantum gravity may have. We start with reviewing his idea. We firstly

clarify the notion of space-time. As claimed by Wheeler [2], space-time is the classical history

of codimension-1 spatial geometry. In this sense, the path-integral of gravity is nothing but

summing up probable classical histories (paths) of the codimension-1 spatial geometry. One

knows from general relativity (GR) that a classical geometry is the pseudo-Riemannian

manifold with the causality built-in. Through the sum over space-time histories, quantum-

mechanical nature of space-time emerges: in particular, a notion of time disappears. As

what is fundamental in the path-integral of a point particle is not the quantum-mechanical

amplitude but each classical path of a point particle, each classical history of space-time is an

elementary concept in the path-integral of gravity. The issue is how to include the causality

in each history. For preparation to answer this, we mention the most important lesson we

have learned from GR, i.e., general covariance. If the time derivative of the metric is of

first order at most, one can move onto the Hamiltonian formalism; if the action has general

covariance, the corresponding Hamiltonian density can be written as a linear combination
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of first class constraints (see Section 3)1:

H = NΦ4 +NiΦ
i
5, (1.1)

where N and Ni are the lapse and shift functions; Φ4 and Φ5 are the first class constraints

called Hamiltonian constraint and momentum constraints, respectively. We then consider

the amplitude of the spatial geometry. A convenient gauge choice is the proper-time gauge:

Ṅ = 0, Ni = 0, (1.2)

where the dot means the time derivative. Denoting the initial and final spatial geometries

as Σ1 and Σ2, those become arguments of the amplitude:

A[Σ2,Σ1] =

∫
[Df ][DT ]〈h(2)| exp

(
−i
∫
dx THeff

)
|h(f(1))〉. (1.3)

In the following, we explain ingredients in the amplitude (1.3). h(1) (h(2)) is the eigenvalue

of the spatial metric hij on the spatial geometry Σ1 (Σ2); the |h(1)〉 (|h(2)〉) is the eigen-

state of hij with the eigenvalue h(1)(h(2)). f is the spatial diffeomorphism acting on the

initial geometry, x→ f(x); [Df ] is its diffeomorphism-invariant measure. dx is an abstract

description of the spatial measure. T is the proper time defined as

T (x) = (t2 − t1)N(x), (1.4)

where x is the coordinate of the final spatial geometry Σ2. The measure [DT ] is defined as

the infinite product of dT (x)/T (x). Integrating over T (x) generates all possible locations

of the final spatial geometry associated with each initial geometry h(f(1)). The effective

Hamiltonian density Heff includes the ghost Hamiltonian arising from choosing the proper-

time gauge in addition to the original one H. We then put the causality into the amplitude

in such a way that Σ2 lies on the future of Σ1. This can be realized by restricting the range

of T such that

T (x) > 0. (1.5)

We denote the amplitude with only positive proper time as A+[Σ2,Σ1]. We call it causal

amplitude. According to Dirac’s theory of constrained system, the Hamiltonian constraint

and momentum constraints are generators of the gauge transformation, i.e., diffeomorphism

(see Section 3). Acting the momentum constraint Φi
5 on A+, one finds

Φi
5A+[Σ2,Σ1](h(1)) = 0, or Φi

5A+[Σ2,Σ1](h(2)) = 0. (1.6)

1As for the notation of constraints, see Section 3.
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From this, one finds that the causal amplitude is invariant under the spatial diffeomorphism.

On the other hand, acting the Hamiltonian constraint on the causal amplitude leads

Φ4A+[Σ2,Σ1](h(1)) 6= 0, or Φ4A+[Σ2,Σ1](h(2)) 6= 0. (1.7)

Thus, the causal amplitude breaks the gauge invariance associated with the surface defor-

mation (see Section 3). If restoring the range of the proper time, one obtains

Φ4A[Σ2,Σ1](h(1)) = 0, or Φ4A[Σ2,Σ1](h(2)) = 0. (1.8)

Therefore, we conclude that the causality, Σ2 lies on the future of Σ1, can not coexist with

the gauge invariance. This is not an unnatural consequence because in the case of quantum

mechanics for a scalar particle, one finds the similar situation [1].

If taking the causality rather than gauge invariance as a fundamental property quantum

gravity ought to possess, space-time has the spatial foliation structure built-in; each leaf of

the foliation never touch each other and flows to the future. This situation can be naturally

realized as the Lorentzian lattice quantum gravity called causal dynamical triangulation

(CDT for short) [3]. CDT partially has answered the question raised above, “Why is the

Universe the way it is? ”: summing up all the classical geometries by the CDT method, a de-

Sitter universe has been obtained as a low-energy realization [4]. Another logical possibility

to include the foliation structure compatible with the causality is to introduce a time-like

vector field coupled to gravity, like æther. A well-known example is the Einstein-æther

theory (see [5] for recent review). At low energies, the time-like vector field, called æther, is

effectively decoupled: this is only possible because gravity is so week. In the Einstein-æther

theory, the time-like vector field is an external degree of freedom from the point of view

of gravity. In fact, it is possible to introduce the time-like vector field as a component of

geometry; it is the recently proposed n-DBI gravity [6, 7]. The time-like vector field in n-DBI

gravity, n, serves as a clock specifying the direction of time. One witching feature of n-DBI

gravity is to drive inflation without introducing any scalar field agent.

1.2 Summary and outline

In this thesis, we explore the physics of space-time with the foliation built-in based on two

theories: causal dynamical triangulation (CDT) and n-DBI gravity. The full gauge symmetry

is broken by a particular choice of foliation. Nevertheless, we can find no pathological

behavior in both theories within our analysis. If such a physical foliation exists in nature, it

is responsible for picking up the preferred direction of time; it turns out that a notion of time

is quite different from that of space at the very fundamental level, although its difference
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is effectively concealed at low energies. In CDT, adopting the positive proper time on the

lattice results in the breakdown of gauge invariance. On the other hand, in n-DBI gravity,

reducing the full gauge symmetry to the foliation preserving one, the foliation structure

becomes a physically observable quantity. It is, in fact, unclear if the symmetry of CDT is

the foliation preserving diffeomorphism as well. This is because whatever symmetry CDT

possesses, this statement only has its meaning at low energies, the field theory limit, but

the low energy effective theory of CDT is still missing. Anyhow, to judge the validity of the

physical foliation structure, we ought to detect its small effects by accurate observations in

the future. Through such experiments, we may have a chance to answer the question raised

in the beginning: “What is time? ”

The organization of the thesis is as follows. In Section 2, we provide the basic knowledge

about lattice quantum gravities and lead the readers to CDT. In Section 3, we explain

important topics associated with n-DBI gravity focusing on the canonical structure. In

Chapter II, our works related to the 2-dimensional CDT are explained [8, 9]. Especially, in

Section 4, the first analytic example of matter-coupled CDT is proposed based on [8]. In

Section 5, we consider the possible extension of CDT [9]. Chapter III is devoted to our works

concerning n-DBI gravity. In Section 6, we give interesting black hole solutions in n-DBI

gravity [7]. In Section 7, we squeeze out the scalar graviton in n-DBI gravity and argue its

potential pathologies [10]. We provide several Appendices as supplements for reading this

thesis as well. Hope that readers will enjoy the author’s journey to quantum gravity during

his Ph.D.

2 Quantum gravity without coordinates

2.1 General relativity without coordinates

Field theory carries, in general, infinite number of degrees of freedom because it can be seen

as an infinitely many-body system, and therefore, divergence is its built-in nature. This

implies necessity of introducing the cut-off in momentum space Λ, or equivalently the lattice

spacing ε = Λ−1 as the smallest probing length scale. Imposing the cut-off or lattice spacing

can be seen as a coarse graining of degrees of freedom. If the theory is renormalizable,

after removing the regulator, i.e., Λ → ∞ or ε → 0, one can obtain renormalized finite

physical quantities. In lattice theories, translating the scale defined by the lattice spacing

ε to physical quantities, say physical mass, one needs to tune coupling constants to some

value where correlation lengths diverge. The correlation length is the smallest length in the

unit of lattice spacing which does not change qualitative nature of the system. For instance,

if one defines two operators located on lattice cites, nε and mε, as φ(nε) and φ(mε), and
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considers the large separation, |n−m| � 1, then the correlation function behaves as

〈φ(nε)φ(mε)〉 ∼ e−|n−m|/ξ(g), (2.1)

where ξ(g) is the correlation length as a function of some coupling constant g. If approaching

the critical value of g, say gc, then the correlation length diverges as

ξ(g) ∝ 1

|g − gc|ν
. (2.2)

Simultaneously if tuning the lattice spacing in such a way that

ε(g) ∝ |g − gc|ν , (2.3)

one can introduce the physical mass, mp = 1/ξ(g)ε(g), and the physical length, |xn −
xm| = ε(g)|n − m|, as fixed quantities when g → gc. This procedure is called continuum

limit2. In the Wilsonian renormalization group, the point (or more generally co-dimension

surface) characterized by the critical coupling constant(s) is the fixed point (surface) under

the renormalization group flow. Therefore, in the lattice theory, if one can find the fixed

point (surface) of the renormalization group, physical quantities can be extracted at the

long-distance scale where the lattice spacing is small enough to be neglected.

General relativity is a field theory, and so its lattice formulation can be anticipated. The

lattice formulation of general relativity ought to discribe the dynamics of the space-time

lattice. This has been done by Regge in 1961 [12]. He imposed the lattice structure on a

curved space-time manifold using simplices and investigated its dynamics. Such regularized

manifold is called simplicial manifold. Let us explain the basic idea of Regge’s formulation

of lattice gravity. For simplicity, we work on a Euclidean d-dimensional manifold. In d di-

mensions, the fundamental building block (lattice structure) is the d-simplex (see Fig.1 for

example). The d-simplex consists of (d− 1)-, (d− 2)-, · · · , 1- and 0-simplices. For instance,

Figure 1: Simplices in several dimensions. Starting from the left, these are the 0-simplex
(vertex), 1-simplex (edge), 2-simplex (triangle), 3-simplex (tetrahedra) and 4-simplex.

2See, for instance, [11].
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the 2-simplex (triangle) consists of 1-simplex (edge) and 0-simplex (vertex). All links and

faces in the d-simplex are straight and flat, respectively. Discretizing the d-dimensional man-

ifold by d-simplices is called simplicial decomposition or triangulation. In the d-dimensional

triangulation, each building block, d-simplex, holds (d − 1)-simplices in common with its

adjacent d-simplices, and the lattice spacing is the length of 1-simplex (edge). As in the

case of lattice gauge theory, information originating with the distance shorter than the lat-

tice spacing is coarse-grained. One important difference is that the d-dimensional simplicial

manifold is generically curved, but each building block consists of straight edges, i.e., infor-

mation of the curvature at the scale shorter than the lattice spacing is also coarse-grained,

and is translated into “something”. And then, what is “something” or where is the in-

formation of curvature? In general, the curvature is defined by the deviation of a vector

under an infinitesimal parallel translation along a closed path. And the translation along

the infinitesimal closed path is a notion related to the 2-dimensional plane in any dimensions

larger than or equal to 2. Therefore, the curvature in the d-dimensional simplicial manifold

is supposed to be measured by the translation of a vector around the co-dimension 2 object,

(d − 2)-simplex. In general, such a (d − 2)-simplex is called hinge. In addition, since each

simplex consists of straight lines and flat faces, it seems that the curvature is concentrated

on hinges, i.e., information of the curvature is pushed onto the hinge. To explain the state-

ment above in detail and to read off the curvature structure around the hinge, taking the

4-dimensional case as an example, we try to reconstruct the simplicial manifold by rotating

a vertex around the hinge. See Fig.2. Firstly, we pick up a 2-simplex, which is the hinge in 4

dimensions, and then add a vertex colored red away from the 2-dimensional plane where the

hinge is embedded. Thereby, we can connect the vertex colored red with each vertex of the

hinge to construct a 3-simplex. This 3-simplex is written in the upper-left of Fig.2. Next,

we rotate the red-colored vertex certain degrees around the hinge in a direction toward the

extra dimension proportional to the 3-dimensional hyperplane where the 3-simplex is em-

bedded. This situation is described in the upper-right of Fig.2. Through this step, it turns

out that we have obtained the 4-simplex. Therefore, in fact the 4-simplex is constructed by

a rotation of a vertex around the hinge. Rotating the vertex some degrees repeatedly, one

can reconstruct the 4-dimensional simplicial manifold. In addition, depending on how to

choose the rotational plane, the curvature seems to be changed and expressed by a conical

singularity at the hinge. Generally, in d dimensions, one observes the conical singularity at

the location of the hinge by rotating a vertex around the hinge (see Fig.3). The existence

of conical singularity implies the deficit angle (see Fig.3). This is a special feature of the

simplicial manifold.

Next, let us step into more rigorous discussion and describe geometrical quantities on

the lattice. Especially, we will derive the lattice-analogue of the Riemann tensor without

13
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coordinate. Again, look at Fig.3. From now, we depict the d-simplex as σd. As can be seen

from the figure, the deficit angle δσd−2 around the hinge σd−2 is described as follows:

δσd−2
a

= 2π −
∑
b

θ(σdb , σ
d−2
a ), (2.4)

where a and b label simplices, σdb ’s include σd−2
a as the sub-simplex, and θ(σdb , σ

d−2
a ) is the

dihedral angle of σdb associated with the hinge σd−2
a . From now, we try to rewrite the Riemann

tensor Rijkl (i, j, k, l = 1, 2, · · · , d) based on quantities in the simplicial manifold. Since the

region outside hinges is flat, we define the inner product by the flat metric and write all

tensorial quantities so as to carry lower indices. Firstly, we define the generator of rotation

whose rotational plane is orthogonal to the hinge σd−2
a :

Sij =
1

(d− 2)!Vσd−2
a

εijk1···kd−2
lk1 · · · lkd−2

, (2.5)

where Vσd−2
a

is the volume of σd−2
a , εij,k1···kd−2

is an anti-symmetric tensor defined by ε12···d = 1,

and lk1 , · · · , lkd−2
are vectors shaping the hinge σd−2

a . The Riemann tensor can be obtained

through a parallel translation along an infinitesimal path surrounding the hinge. To define

the vector in a rigorous manner on the 2-dimensional plane, we introduce the local continuum

limit. See Fig.4. In the d-dimensional simplicial manifold, we take a minimal surface which

hinge

Figure 4: Local continuum limit.

surrounds one hinge σd−2
a . Here we consider inserting the same hinges into the minimal

surface, and define the density of hinges as ρσd−2 . If we take the limits, ρσd−2 → ∞ and

δσd−2 → 0, simultaneously under the quantity ρσd−2δσd−2 is fixed, then the minimal surface

becomes smooth. We call this limit local continuum limit. On this continuous surface, we

can define the vector. We denote this surface and its area element as Σ and Σij, respectively.

Additionally, we define a closed path C as the boundary of Σ. Here we define the number

of hinges inside Σ as follows:

Nσd−2 =
1

2
ρσd−2ΣijSij. (2.6)

Letting the vector ξi go around Σ along the path C, one observes that the vector is rotated
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Nσd−2δσd−2 degree comparing the configurations of the vector before and after the parallel

translation. The infinitesimal variation of ξi induced by this parallel translation can be

written as follows:

δξi = Nσd−2δσd−2Sijξj. (2.7)

This quantity can be also written in terms of the Riemann tensor:

δξi =
1

2
ΣlmRlmijξj. (2.8)

Comparing (2.7) and (2.8), one finds the Riemann tensor:

Rijkl = ρσd−2δσd−2SijSkl. (2.9)

Remember that the quantity ρσd−2δσd−2 has been fixed under the local continuum limit.

Therefore, one can rewrite this quantity based on the language in the simplicial manifold,

i.e.,

Rijkl = δ2(σd−2
a )δσd−2

a
SijSkl, (2.10)

where δ2(σd−2
a ) is the 2-dimensional delta-function whose support is located at the hinge

σd−2
a . This expression does not depend on coordinates. Moreover, contracting indices, one

finds the Ricci scalar:

R = Rijij = 2δ2(σd−2
a )δσd−2

a
. (2.11)

Finally, we have arrived at the geometric quantities with coordinate-independent descrip-

tions: the Riemann tensor and Ricci scalar depend not on the metric but on the location

of the hinge. In particular, we again stress that the Ricci scalar is expressed as the conical

singularity at the hinge, which is a remarkable property for the simplicial manifold. The

lattice formulation of general relativity is quite useful especially for investigating the quan-

tum mechanical nature of gravity. It is widely known that the Einstein-Hilbert action suffers

from its non-renormalizability by the power-counting argument. It would be premature that

from this argument use of Einstein-Hilbert action yields pathologies. Strong reasons why we

stick to the Einstein-Hilbert action is that it ensures the unitarity and “in Riemann’s space,

R is the sole invariant that contains the derivatives of the gµν only to the second order (by

Weyl [13]).” If there exists a non-Gaussian ultraviolet fixed point, then the conventional

argument of power counting cannot be applied anymore. The existence of such a non-trivial

fixed point has been recently reported by the authors in [14, 15, 16, 17, 18], using the exact

renormalization group approach. This is called aymptotic safety scenario of gravity started

by Weinberg [19] and developed by Reuter [20]. An alternative way of searching for such a

non-Gaussian ultraviolet fixed point is a non-perturbative quantum gravity on the lattice,
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especially (causal) dynamical triangulation. Since the lattice regularization allows us to

conduct the path-integral non-perturbatively, there is a possibility to find the non-Gaussian

fixed point. In the following, we will explain the idea of (causal) dynamical triangulation.

2.2 (Causal) dynamical triangulation

Next, let us see the quantum-mechanical formulation of the lattice gravity. In general, two

possible formulations are known depending on the choice of the dynamical variable. First one

is called Regge calculus in which the link length becomes dynamical in a fixed triangulation

of the manifold, which has been established classically by [12]. Quantum-mechanical for-

mulation of the Regge calculus called quantum Regge calculus has been launched by Pozano

and Regge [21] and later by Turaev and Viro [22]. This line of study is ongoing as spin foam

model or loop quantum gravity. There is an alternative formulation which is called dynamical

triangulation (DT) firstly introduced in [23, 24, 25]. In DT, the triangulation is chosen as

the dynamical variable when link lengths of simplces forming a manifold are fixed as the

same lattice spacing ε. This program has been developed into so-called causal dynamical

triangulation (CDT) started by Ambjørn and Loll [3]. In the following, we will explain the

idea of DT and CDT3.

To begin, we construct the gravitational action of DT. Remember the Einstein-Hilbert

action with Euclidean signature on the manifold M:

S = − 1

16πGd

∫
M
ddx
√
g (R− 2Λ) , (2.12)

where Gd and Λ are the Newton constant and cosmological constant, respectively. Plugging

the Ricci scalar (2.11) into the action (2.12), one arrives at the following lattice action with

the lattice spacing ε:

SDT = − 1

16πGdε2

∑
σd−2
a ∈T

(
2δσd−2

a
Vσd−2

a
− 2ΛV (σd−2

a )
)
, (2.13)

where T is a triangulation ofM, Vσd−2
a

is the volume of σd−2
a , and V (σd−2

a ) is defined by the

volume of d-simplex Vσd as

Vd(σ
d−2
a ) =

2

d(d+ 1)

∑
σd3σd−2

a

Vσd . (2.14)

In (2.14), the factor 2/d(d + 1) appears because each d-simplex has d(d + 1)/2 hinges, so

that when summing over (d− 2)-simplices in (2.13) it turns out one counts Vd redundantly,

3There is a nice review of CDT [11]; in this thesis, we follow the notation appeared there.
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and the redundant number is d(d + 1)/2. The action (2.13) is called Regge action. In DT,

the path-integral of the metric g weighted by the Einstein-Hilbert action S,

Z =

∫
1

V (Diff)
[Dg]e−S[g], (2.15)

is replaced by the sum over triangulations T weighted by the Regge action SDT:

Zε =
∑
T

1

CT
e−SDT[T ], (2.16)

where V (Diff) is the gauge volume of diffeomorphism group, CT is the order of the automor-

phism group of T and ε in Zε is the lattice spacing of T . In 4 dimensions, DT could not

produce any physically interesting phase4.

So far, we argued in the Euclidean setup. From now, we shall introduce CDT as a

Lorentzian realization of DT. Firstly, we define the Lorentzian version of Regge action:

SCDT = − 1

16πGdε2

∑
σd−2
a ∈T

(
2δσd−2

a
Vσd−2

a
− 2ΛV (σd−2

a )
)
, (2.17)

where

δσd−2
a

=

(
2π −

∑
b

θ(σdb , σ
d−2
a )

)
eiφ(σd−2). (2.18)

We will explain ingredients in (2.17). Firstly, a Lorentzian d-simplex is defined in a following

way: one prepares simplices in Euclidean space and then connects two Euclidean simplices by

time-like vectors so that it forms a d-simplex. See Fig.5. Red and black lines indicate time-

like and space-like edges. Lengths of time-like and space-like edges, lL and lE, are defined in

Figure 5: 4-simplices with Lorentzian signature.

such a way that l2L = −αε2, l2E = ε2. Here α is a positive parameter. All ingredients in (2.17)

coincides with those in Euclidean case except for two following things. Firstly, a volume of

each simplex is computed using time-like vectors for time-like edges and space-like vectors

4However, recently in [26], adding an additional parameter in the gravitational measure, the phase like a
de-Sitter phase of CDT has been obtained.
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for space-like edges. Secondary, a deficit angle (2.18) has a phase φ(σd−2). φ is defined so

that φ = 0 for space-like hinges, and φ = −π/2 for time-like hinges. This phase factor

ensures the reality of deficit angle. A partition function of CDT is then defined as

Zε =
∑
T

1

CT
eiSCDT[T ;α]. (2.19)

Because of a reality condition for volume of simplices, the parameter α is confined to some

range [27]. We summarize three important requirements in CDT. First, one discretizes

the space-time using simplices with Lorentzian signature. Second, a proper-time slicing is

imposed on the regularized space-time in such a way that time does not go backwards.

Third, one prohibits spatial topology change. The first requirement ensures that the space-

time has Lorentzian signature. Each geometry in the sum should be a classical discretized

geometry as each trajectory in the path-integral of a point particle is a classical path [1]. Each

classical discretized geometry should have causality built-in, thus the second requirement has

been imposed. The third requirement means that in CDT baby universe contributions are

integrated out. Without this requirement, one observes infinite creation of baby universes

at instant time, which causes problems at low energies. Although at first sight this third

requirement seems to be strong, at least in 1 + 1 dimensions, it has been shown that one

can relax it to allow for a CDT with the creation of baby universes [28]. Thus, the third

requirement could be removed for 3 + 1 dimensions as well. One attractive feature of CDT

is that one can implement the discrete-analogue of path-integral non-perturbatively. This

makes it possible to find a non-Gaussian fixed point where the conventional power counting

argument cannot be applied. In (3+1)-dimensional CDT, at low energies a de Sitter Universe

has been obtained via computer simulations [4].

For running computer simulations, one needs a well-defined Boltzmann weight. In CDT,

one can map a Lorentzian simplicial manifold to a Euclidean one changing α to −α. This

procedure looks like a conventional Wick rotation, but this map is a strict bijection between

Lorentzian and Euclidean simplicial geometries. Through this map, the partition function

can be altered into a Euclidean one:

Zε =
∑
T

1

CT
e−S

(e)
CDT[T,−α], (2.20)

where S
(e)
CDT[T ;−α] is a Euclidean action with negative value of α5. This partition function

is different from the partition function of DT, i.e., each simplicial geometry has the causality

built-in. Euclidean quantum gravity suffers from the action unbounded from below. The

5In 2 dimensions the difference of α can be absorbed into the redefinition of the cosmological constant,
so that one can set α = 1 without loss of generality
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CDT Euclidean action S
(e)
CDT[T ;−α] is also unbounded from below, but it can be cured by

entropic reasons. To see what it is and how it works, we replace the sum over triangulations

by the sum over simplicies in the partition function:

Zε =
∑
N

e−S
(e)
CDT[N,−α]

∑
T (N)

1

CT (N)

=
∑
N

e−S
(e)
CDT[N,−α]+logwN , (2.21)

where N means the number of every kind of simplex in a simplicial manifold, and wN is the

number of triangulations under a fixed N . The logarithm of wN is an entropy for a fixed N .

This entropy factor is designed to suppress rare configurations in the sum. In CDT, a large

negative value of the action is really suppressed by entropic reasons in the continuum limit,

ε→ 0 [29].

2.3 Exactly solvable models

We explain the (1 + 1)-dimensional model of CDT. Since the (1 + 1)-dimensional CDT can

be solved analytically, one can pointedly understand basics and unsolved problems of CDT

in some depth through this toy model. As explained in 2.2, in CDT there is an exact

map between individual Euclidean and Lorentzian simplicial geometries. Therefore, from

now we work on Euclidean geometries with the causality built-in. First of all, 2-dimensional

gravity has no degrees of freedom. This fact implies that 2-dimensional gravity is topological.

Integrals of curvature in both continuous and discrete geometries become a constant called

Euler number : ∫
M
d2x
√
gR = 4πχ(M) = 4πχ(T ) =

∑
σ0
a∈T

2δσ0
a
Vσ0

a
, (2.22)

where χ(M) and χ(T ) are the Euler number of a manifold M and triangulation T . This is

called Gauss-Bonnet theorem. If introducing matter fields, one can see non-trivial dynamics.

Polyakov succeeded in formulating a non-trivial 2-dimensional gravity integrating out free

scalars minimally coupled to gravity [32]. This theory is called Liouvulle field theory6. In the

Liouville field theory, the number of scalers c, central charge of matters, is a parameter built-

in. If setting the parameter as zero, then observables in the Liouville field theory coincide

with those of DT in the continuum limit. If considering matter-coupled DTs, it holds up to

c = 1. DT coupled to matters can be constructed using a powerful tool called matrix model.

In the following, we show that DT and CDT can be unified in 2-dimensions firstly pointed

out in [34]. This is only possible because configurations of CDT are included in those of DT.

6For a good review of the Liouville field theory, see [33]
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First, we simply investigate DT by combinatorics and then extract information of CDT. We

start with the following boundary-to-vacuum amplitude with sphere topology:

A(l;λ) =
∑
Tl

1

CTl
e−SDT[Tl], (2.23)

where

SDT = λn(Tl). (2.24)

In the above, we eliminated ε-dependence introducing a dimensionless bulk cosmological

constant λ. We denoted the number of triangles in a triangulation with fixed boundary

edges Tl and the number of boundary edges as n(Tl) and l, respectively. Because of the

Gauss-Bonnet theorem, the curvature term is trivial. Therefore, we ignored it. Although it

is possible to sum over different kinds of topology in the partition function, it might cover

what we stress on here. We thus focus only on sphere topology. For computational reasons,

we introduce a generating function of boundary:

w(λ, µ) =
∞∑
l=1

A(l;λ)e−µl, (2.25)

where µ is a boundary cosmological constant. If changing the sum over triangulations to the

sum over the number of triangles, one finds

w(g, z) =
∞∑
n=0

∞∑
l=0

wn,lg
nz−l−1, (2.26)

where g = e−λ, z = eµ and we have redefined l so that it starts from 0. In the above,

wn,l is the number of triangulations with fixed n and l. Information distinguishing DT and

CDT should be included in wn,l. Remember that important things to construct CDT are the

proper-time slicing and suppression of baby universes. To extract CDT configurations from

the full DT configurations, we introduce a 2-gon called double link consists of 2 edges. We

discretize geometries using triangles and double links as building block. Such an extended

triangulation is called unrestricted triangulations. Since ordinary triangulations and unre-

stricted triangulations yield same physics in the continuum limit, universality, one can use

unrestricted triangulations without loss of generality. Marking a point on one of boundary

edges, one can find a recursion relation:[
w(g, z)− w0(g)

z

]
=

[
gz

(
w(g, z)− w0(g)

z
− w1(g)

z2

)]
+

[
1

z
w(g, z)2

]
, (2.27)
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where

wm(g) =
∞∑
n=0

wn,mg
n. (2.28)

This equation means that when marking a point on one of boundary edges there are two

possibilities: a marked edge belongs to a triangle or double link. The left-hand side of (2.27)

stands for all possible configurations. The term w0(g)
z

is subtracted because if there is no

edge, this recursion relation does not hold. The first term in the right-hand side of (2.27)

means the case that a marked edge belongs to a triangle. The terms, w0(g)
z

and w1(g)
z2

, are

subtracted because if there is no edge and triangle, this recursion does not hold. The second

term of the right-hand side of (2.27) means the case that a marked edge belongs to a double

link. If one peels triangles or double links attached to the boundary like peeling an apple,

one can obtain a new boundary and construct the same kind of recursion relation. One can

consider new boundaries arising from successive peeling procedure as proper-time slicing in

CDT without loss of generality. If doing so, spatial topology change only happens if one

encounters a double link in the peeling. Therefore, imposing a weight on double links, one

can control a creation of baby universes (see Fig.6). We denote such a wight as gs and call it

double link

marked edge

Figure 6: Peeling method.

string coupling constant. Adding this weight to the recursion relation (2.27), one finds (see

Fig.7): [
w(g, z)− w0(g)

z

]
=

[
gz

(
w(g, z)− w0(g)

z
− w1(g)

z2

)]
+gs

[
1

z
w(g, z)2

]
. (2.29)

setting w0(g) = 1 as normalization, one can rewrite (2.29) as

gsw(g, z)2 = V ′(z)w(g, z)−Q(z), (2.30)
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= + gs

Figure 7: Loop equation. Each term in (2.29) corresponds to each graph in this figure.

where

V (z) =
1

2
z2 − g

3
z3, Q(z) = 1− g(w1(g) + z). (2.31)

(2.30) is called loop equation. More generally, one can discretize geometries using any poly-

gons: 1-gon, 2-gon (double link), ..., n-gon. Corresponding loop equation is equivalent to

(2.30) except that

V (z) =
1

2
z2 − g

n∑
m=1

tm
m
zm, Q(z) = 1− g

n∑
j=2

tj

j−2∑
m=0

zmwj−2−m(g), (2.32)

where tmg is the weight of m-gons. For technical reasons, we extends a real z to complex

variable. The solution of the loop equation is then obtained

w(g, z) =
V ′(z)−

√
V ′(z)2 − 4gsQ(z)

2gs
, (2.33)

where the minus sign in front of the square root was chosen such that w(g, z) asymptotes

to 1/z for large |z| (see (2.26)). An important point here is that the following quantity is a

polynomial of degree n− 1:

σ(z) =
√
V ′(z)2 − 4gsQ(z). (2.34)

We assume that branch cuts are located on the real axis and w(z) is an analytic function

in the complex z-plane except for vicinity of cuts. One can then choose the branch-cut

structure of σ(z):

σ(z) = M(z)
n−k∏
i=1

√
(z − ci+)(z − ci−), (k = 1, 2, · · · , n− 1), (2.35)
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where M(z) is a polynomial of degree k − 1, and ci+ and ci− are end points of cuts such

that ci+ > ci−. The asymptotic behavior of w(z) in |z| � ci+ − ci− is powerful enough to

determine all coefficients in M(z), ci+ and ci− as functions of gs and tmg’s. To see critical

behaviors of w(g, z), one needs to focus on zeros of M(z): one can see critical behaviors

when some roots of M(z) approach to ci+ or ci−. At such critical points, differentiating ci+

or ci− w.r.t. g yields a singularity. In the following discussion, we focus on a single cut for

simplicity. To explain the idea of critical phenomena in both DT and CDT and how the

continuum limit can be taken, we introduce efficient variables called moments [30]:

Mk =

∮
C

dω

2πi

V ′(ω)

(ω − c+)k+1/2(ω − c−)1/2
, (2.36)

Jk =

∮
C

dω

2πi

V ′(ω)

(ω − c+)1/2(ω − c−)k+1/2
, (2.37)

where k ≥ 1 and C is a contour enclosing the branch cut (see Fig.8). Remember that V (z)

Cz

C

Cinf

Figure 8: Contours enclosing the cut, z and infinity on the complex ω-plane.

is a polynomial of degree n. For k ≥ n, one can move the integration contour C to infinity

and obtains Mk = Jk = 0 for k ≥ n. Since w(g, z) asymptotes to 1/z for |z| � c+ − c−, one

finds

M(z) =

∮
Cinf

dω

2πi

M(ω)

ω − z
=

∮
Cinf

dω

2πi

V ′(ω)

ω − z
1√

(ω − c+)(ω − c−)
, (2.38)

where Cinf is a contour enclosing the branch cut and the point z (see Fig.8). From (2.3), one

finds that M(z) can be expanded in terms of moments:

M(z) =
n−1∑
k=1

Mk(z − c+)k−1 =
n−1∑
k=1

Jk(z − c−)k−1. (2.39)
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If expanding σ(z) by Mk, one finds

σ(z) =
n−1∑
k=1

Mk(z − c+)k−1
√

(z − c+)(z − c−). (2.40)

If setting,

M1 = 0, (2.41)

the root of M(z) approaches to the end point of the branch cut, c+. Let us summarize what

we have seen so far. Firstly, we have imposed the following requirements (for a single branch

cut):

1. w(g, z) asymptotes to 1/z in |z| � c+ − c−.

2. w(g, z) is analytic except for vicinity of the branch cut.

3. The branch cut is located on the real axis in the complex z-plane.

We then have found the solution:

w(g, z) =
1

2gs

(
V ′(z)−

n−1∑
k=1

Mk(z − c+)k−1
√

(z − c+)(z − c−)

)
, (2.42)

where all coefficients in principle can be obtained via the requirement 1 as functions of cou-

pling constants of polygons and gs. If setting M1 = 0, one can find the critical point where

w(g, z) becomes singular after differentiating w.r.t. g with suitable times. Tuning coupling

constants but gs to their critical values and moving z to the end point of the branch cut

(w(g, z) is non-analytic for vicinity of the branch cut), one can obtain the disk function

of Liouville field theory. This is a well-established discrete-vs.-continuum structure of DT

and Liouville field theory. One can, in fact, obtain another scaling limit corresponding to

the continuum limit of CDT by tuning gs as well [31]. We will close this section by giving

examples of two kinds of continuum limits for DT and CDT.

Continuum limit of DT

We pick up the following simple V (z):

V (z) =
1

2
z2 − g

4
z4. (2.43)

From now we call V (z) potential. We choose gs = 1 without loss of generality. Since the
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potential is symmetric, V (z) = V (−z), one obtains

w(g, z) =
1

2

(
V ′(z)−

3∑
k=1

Mk(z − c)k−1
√

(z2 − c2)

)
. (2.44)

Considering the asymptotic expansion of w(g, z) in |z| � 2c, one finds the following equa-

tions:

M1 = −3

2
c2g + 1, M2 = −2cg, M3 = −g, (2.45)

3gc4 − 4c2 + 16 = 0. (2.46)

Plugging values of moments (2.45) into (2.44), one obtains

w(g, z) =
1

2

[
z − gz3 +

(
1

2
c2g + gz2 − 1

)√
(z2 − c2)

]
. (2.47)

If solving (2.46) w.r.t. c2, one gets

c2 =
2− 2

√
1− 12g

3g
, (2.48)

were we have chosen the double sign such that c2 is analytic for g = 0. The critical coupling

gc can be obtained plugging (2.48) into the equation, M1 = 0:

gc =
1

12
. (2.49)

In addition, the critical value of end point of the cut becomes cc = c(gc) = 2
√

2. To take the

continuum limit, one ought to tune g and z to their critical values as follows:

g = gce
−Λε → 1

12
(1− Λε2), z = cce

Zε → 2
√

2
(

1 +
ε

12
Z
)
, (2.50)

where ε is the lattice spacing, Λ and Z are the bulk and boundary renormalized cosmological

constants. Plugging the fine-tuned values into w(g, z), one obtains

w(g, z) = non-scaling terms +
2

3
ε3/2WDT(Z) +O(ε5/2), (2.51)

where

WDT(Z) = (Z −
√

Λ)

√
Z +
√

Λ. (2.52)

WDT is the continuum limit of the generating function of DT. This is noting but the disk

function in Liouville field theory. An important point is that the potential term does not
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scale at all in DT.

Continuum limit of CDT

We start with the following potential:

V (z) =
1

2
z2 − gz − 1

3
gz3. (2.53)

We have chosen 1-gons, double links and triangles as building blocks of the regularized

geometry. This choice of building blocks allows us to take the continuum limit easier and

nothing more. One then finds the following generating function:

w(g, z) =
1

2gs

(
V ′(z)−

2∑
k=1

Mk(z − c+)k−1
√

(z − c+)(z − c−)

)
. (2.54)

From the asymptotic behavior of w(g, z) for |z| � c+ − c−, one obtains a set of equations:

M1 = 1− g

2
(3c+ + c−), M2 = −g, (2.55)

gs =
1

16

[
M1(c+ − c−)2 +

1

2
M2(c+ − c−)3

]
, (2.56)

g =
1

2
M1(c+ + c−) +

1

8
M2(c2

− − 6c+c− − 3c2
+). (2.57)

Remember that gs weights creation of baby universes (double links). If one can take the

critical point such that the creation of baby universes is suppressed, the arising continuum

theory is expected to be CDT. Let’s see how it works. We set the following condition to

obtain the critical values:

M1 = gs = 0. (2.58)

From this condition, one finds the critical values:

g∗ = g(gs = 0) =
1

2
, c∗ = c±(gs = 0) = 1. (2.59)

At the critical point, one finds that c+ = c−. See (2.56). If two end points of the cut are

approaching each other (the cut-length shrinks to zero), gs → 0. One then tunes gs such

that

gs = ε3Gs, (2.60)

where Gs is the renormalized string coupling constant. Solving (2.57), we can derive sub-

leading terms of g and c± around the critical values in the perturbation of gs. We write them
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gc and cc, respectively:

gc(gs) = g∗ −
3

4
G2/3
s ε2, cc(gs) = c∗ +G1/3

s ε. (2.61)

We then renormalize g and z as follows:

g = gc(gs)− ε2Λ, z = cc(gs) + εZ, (2.62)

where Λ and Z are conventional renormalized bulk and boundary cosmological constants.

Plugging these fine-tuned quantities into w(g, z), the continuum generating function can be

obtained [31]:

w(g, z) = ε−1WGCDT(Zcdt) +O(ε0), (2.63)

where

WGCDT(Zcdt) =
Λcdt − 1

2
Z2

cdt + (Zcdt −H)
√

(Zcdt +H)2 − 4Gs

H

2Gs

, (2.64)

and

Λcdt = Λ +
3

2
G2/3
s , Zcdt = Z +G1/3

s , 2ΛcdtH −H3 = 2Gs. (2.65)

Λcdt and Zcdt are renormalized bulk and boundary cosmological constants in CDT. The

subscript, GCDT, in WGCDT stands for generalized CDT. This is because WGCDT is the

continuum generating function allowing mild spatial topology change weighted by Gs, but

it lives in a universality class different from Liouville field theory. We call such a theory

generalized CDT. To obtain the CDT result, one needs to take the limit, Gs → 0. Under

this limit, one finds the CDT generating function:

WGCDT(Zcdt)→ WCDT(Zcdt) =
1

Zcdt +
√

2Λcdt

. (2.66)

This result coincides with the CDT generating function derived in terms of the so-called

transfer matrix approach [3].

3 Geometrodynamics

3.1 ADM formalism

Diffeomorphism invariance is a guiding principle of Einstein’s general relativity. This means

that if transforming coordinates at individual space-time points, its physics is unchanged.

Therefore, diffeomorphism is a local transformation, i.e., gauge symmetry. Because of the
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gauge invariance, true degrees of freedom reduces to 2 in 3 + 1 dimensions. In the following,

to squeeze out gauge degrees of freedom, we introduce the canonical formulation of general

relativity.

In the canonical formalism, one needs to specify the quantization axis (direction of time).

One intuitive and instructive approach started by Arnowitt, Deser and Misner is called ADM

decomposition [35]. This ADM decomposition of space-time allows us to pick up one specific

time direction without breaking the symmetry. Namely, how to choose time is nothing

but the gauge symmetry. We explain its idea and explore the dynamics. We start with a

space-time manifoldM equipped with a coordinate (t, xi) where i = 1, 2, 3, and the geodesic

distance is measured by the metric gµν . We then introduce a time-like normal vector field

nµ. This can be realized by the following condition:

gµνn
µnν = −1. (3.1)

We decompose the M into the direct product space Σ × R in such a way that the Σ is

orthogonal to nµ. An orthogonality can be defined because we have introduced the metric

gµν :

nµgµi = 0. (3.2)

Here Σ is the spatial hyper surface characterized by t. We then define the induced metric

on the Σ:

hµν = gµν + nµnν . (3.3)

If one picks up a space-time point P , then at the vicinity of P , one can define basis vectors

(∂t, ∂i) so as to satisfy the following equation:

∂t = Nnµ∂µ +N i∂i, (3.4)

where N and N i are called lapse function and shift vector, respectively. Using this notation

P

∂t

∑ ∂i

∂µ

Ni

Nnµ

Figure 9: ADM decomposition.
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of basis vectors, one can write the metric as follows:

gµν =

[
g(∂t, ∂t) g(∂t, ∂j)

g(∂i, ∂t) g(∂i, ∂j)

]
=

[
−N2 + hmnN

mNn hmjN
m

himN
m hij

]
. (3.5)

We introduce a device to measure how the Σ is embedded in the M. It is called extrinsic

curvature defined as

Kµν =
1

2
£nhµν , (3.6)

where £n is the Lie derivative for the vector nµ, and in the ADM parametrization, it can be

written as

£n =
1

N
(£t −£N), (3.7)

where £t and £N are the Lie derivatives for time and the shift vector. Therefore, the extrinsic

curvature can be written like

Kij =
1

2N
(ḣij −∇iNj −∇jNi), (3.8)

where the dot means the time derivative and ∇i is the covariant derivative associated with

the hij. As is clear from the definition (3.6), the extrinsic curvature captures how the spatial

metric responds to the change along the vector nµ orthogonal to the hyper surface. Namely,

the shape of the hypersurface (foliation) is determined by the extrinsic curvature. Remember

the Einstein-Hilbert action with cosmological constant term:

S = − 1

16πG4

∫
M
d4x
√
−g
(

(4)

R− 2Λ
)
, (3.9)

where G4,
(4)
R and Λ are the Newton constant, Ricci scalar and cosmological constant. In

the ADM formalism, this action can be written as the following form up to total derivative

terms:

SADM =

∫
dtLADM = − 1

16πG4

∫
Σ×R

d4xN
√
h(KijKij −K2 +R− 2Λ), (3.10)

where K = hijKij, the R is the 3-dimensional Ricci scalar associated with hij and LADM is

the Lagrangian. We completed our preparations for the canonical formalism. In passing to

the Hamiltonian formalism, we set the notation for the canonical conjugate momenta as

LADM

(
(hij, ḣij), (N, Ṅ), (Ni, Ṅi)

)
→ HADM

(
(hij, p

ij), (N, pN), (Ni, p
i
~N
)
)
. (3.11)
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However, the time derivatives of N and Ni are absent . Thus we have the primary constraints,

Φ1 ≡ pN = 0, Φi
2 ≡ pi~N = 0. (3.12)

Denoting the Lagrangian density by LADM, the Hamiltonian density is given by

H(0)
ADM ≡ pijḣij − LADM

=
√
hNj

(
− 2√

h
∇ip

ij

)
+

√
hN

κ

[
−κ

2

h

(
pijpij −

1

2
p2

)
+R− 2Λ

]
, (3.13)

where

pij ≡ δLADM

δḣij
= −
√
h

κ
(Kij − hijK), (3.14)

and κ = 16πG4. The basic non-vanishing Poisson brackets are given by

{pij(y), hkl(x)} =
1

2
(δikδ

j
l + δilδ

j
k)δ(y − x), (3.15)

{pN(y), N(x)} = δ(y − x), (3.16)

{pi~N(y), Nj(x)} = δijδ(y − x). (3.17)

The time flow of the constraints are generated by the extended Hamiltonian density

H(1)
ADM = H(0)

ADM + λ1Φ1 + λ2iΦ
i
2, (3.18)

where λ1 and λ2i are the Lagrange multipliers. Thus the primary constraints evolve in time

as

Φ̇1(x) =

∫
d3y{H(0)

ADM(y),Φ1(x)}+

∫
d3y{Φ1(y),Φ1(x)}λ1 +

∫
d3y{Φi

2(y),Φ1(x)}λ2i

= −
√
h

κ

[
−κ

2

h

(
pijpij −

1

2
p2

)
+R− 2Λ

]
≡ Φ4(x), (3.19)

Φ̇i
2(x) =

∫
d3y{H(0)

ADM(y),Φi
2(x)}+

∫
d3y{Φ1(y),Φi

2(x)}λ1 +

∫
d3y{Φj

2(y),Φi
2(x)}λ2j

= 2∇jp
ij ≡ Φi

5(x), (3.20)
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Therefore, in addition to the primary constraints (3.12), we have the secondary constraints7

Φ4 = ṗN ≈ 0 , Φi
5 = ṗi~N ≈ 0. (3.21)

Herein ≈ means ‘weakly equal’ as standard in Dirac’s theory. One notices that the Hamil-

tonian density can be written by constraints:

H(1)
ADM = −(NΦ4 +NiΦ

i
5) + λ1Φ1 + λ2iΦ

i
2. (3.22)

It is clear that the Φ1 and Φi
2 commute with all constraints. From the explicit computations,

one finds

{Φ4(y),Φ4(x)} = Φk
5(y)∂ykδ(y − x)− Φk

5(x)∂xkδ(y − x) ≈ 0, (3.23)

{Φ4(y),Φ5j(x)} = Φ4(x)∂yjδ(y − x) ≈ 0, (3.24)

{Φ5i(y),Φ5j(x)} = Φ5i(x)∂yjδ(y − x)− Φ5j(y)∂xiδ(y − x) ≈ 0. (3.25)

The set {Φ1,Φ
i
2,Φ4,Φ

i
5} is complete. Namely, the time flows of the secondary constraints do

not give rise to any new constraints:

Φ̇4(x) =

∫
d3y{H(0)

ADM (y),Φ4(x)}+

∫
d3y{Φ1(y),Φ4(x)}λ1 +

∫
d3y{Φi

2(y),Φ4(x)}λ2i ≈ 0,

(3.26)

Φ̇5j(x) =

∫
d3y{H(0)

ADM (y),Φ5j(x)}+

∫
d3y{Φ1(y),Φ5j(x)}λ1 +

∫
d3y{Φi

2(y), Φ̃5j(x)}λ2i

≈ 0. (3.27)

All Poisson brackets among constraints yield linear combinations of constraints. Thus, fol-

lowing Dirac’s theory of constrained systems, one finds

#(phase-space variables) = #(hij, p
ij, N, pN , Ni, p

i
~N
) = 2(6 + 1 + 3) = 20,

#(2nd-class constraints) = 0,

#(1st-class constraints) = #(Φ1,Φ2j,Φ4,Φ5j) = 1 + 3 + 1 + 3 = 8.

Consequently, the number of physical degrees of freedom (DOF) in general gravity reads

DOF =
1

2
(20− 0− 2× 8) = 2. (3.28)

7The subscripts of constraints may seem to be weird, say why does not Φ3 exist? This convention has
been made for the later convenience.
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DOF coincides with that of spin-2 graviton. Following general nomenclatures, we call Φ4

and Φi
5, Hamiltonian constraint and momentum constraint, respectively.

In the following. we will check the relation between first-class constraints and gauge

transformations. We introduce smooth test vector fields, ξµ = (ξ0, ξi) and ηµ = (η0, ηi),

which fall off fast enough to suppress all the boundary contributions [36]. Henceforth, we

define the smeared constraints:

Φ̂Σ(ξ0) =

∫
d3xξ0(x)Φ4(x), Φ̂h(ξ

i) =

∫
d3xξi(x)Φ5i(x). (3.29)

The generator G(ξi) of the diffeomorphism acts on a phase-space variable A as

{A(y),G(ξi)} = £ξA(y). (3.30)

If considering the reduced set of phase-space variables, (hij, p
ij), by solving the primary

constraints, Φ1,Φ
j
2. one finds that the spatial diffeomorphisms for this set are generated by

(Φh,−Φh). To see the effect of Φ̂Σ, we consider the following bracket:

{hij(y), Φ̂Σ(ξ0)} = ξ0£nhij(y). (3.31)

From this expression, one can understand that Φ̂Σ(ξ0) deform the foliation Σ toward its

orthogonal direction nµ with degree ξ0. Thus, Φ̂Σ(ξ0) is the generator of the hypersur-

face (foliation) deformation. The Poisson bracket among two Φ̂Σ’s gives us more concrete

understanding for the surface deformation:

{Φ̂Σ(ξ0), Φ̂Σ(η0)} = Φ̂h

(
hij[ξ0∂jη

0 − η0∂jξ
0]
)
≡ Φ̂h(S

i). (3.32)

Fig.10 is the graphical expression of (3.32) [37]. As is clear from this figure, if the ξ0 is a

ξ0

ξ0

η0

η0

∑

Si

foliation preservingdeformation of foliation

Figure 10: Hypersurface (foliation) deformation.

33



function of xi, the initial foliation Σ can be deformed by the Φ̂Σ(ξ0). Conversely, if the ξ0

is a constant on the foliation, the foliation is unchanged by the Φ̂Σ(ξ0) (see Fig. 10). As a

consequence, we understand the following: the Φ̂h changes the intrinsic quantities, hij and

pij. On the other hand, the Φ̂Σ deforms the extrinsic quantity, foliation. Thanks to the

Φ̂Σ, the freedom of how to choose the quantization axis is translated into gauge degrees of

freedom, hypersurface deformation.

3.2 Hořava-Lifshitz gravity

Recently, Hořava proposed a quantum theory of gravity at a Lifshitz point called Hořava-

Lifshitz gravity [38]. Expecting an ultraviolet Gaussian fixed point where space and time

scale in a different manner such that

xi → bxi, t→ bzt, (3.33)

he tried to make gravity power-counting renormalizable so as to avoid the unitarity violation

perturbatively. The exponent z in (3.33) is called dynamical critical exponent. Setting z large

enough, one can obtain the gravitational coupling constant with non-negative mass dimen-

sions, i.e., power-counting renormalizable. The unitarity can be preserved if keeping time

and space derivatives are of first order and of z-th order at most in the action, respectively:

the re-summed graviton propagator includes no ghost excitations. Since Hořava-Lifshitz

(HL) gravity has the built-in asymmetry between space and time, it fits well with the ADM-

like variables and so with the foliation. Thus, the action of HL gravity in 3 + 1 dimensions

is given by

SHL = −1

κ

∫
dtd3x

√
hN

(
KijK

ij − λK2 − V [hij]
)
, (3.34)

where κ and λ are the gravitational coupling constant analogous to 16πG4 in general relativity

and a dimensionless constant, respectively; hij is the spatial metric on the foliation; Kij is

the extrinsic curvature defined by the “lapse function” N and the “shift vector” N i as

Kij =
1

2N
(ḣij −∇iNj −∇jNi). (3.35)

In this regard, the dot means the time derivative and∇i is the covariant derivative associated

with the hij. We call V [hij] potential because it is made of hij and spatial derivative terms

and is invariant under the spatial diffeomorphism. Notice that if setting the dimension of

space such that [xi] = −1, the dimension of the gravitational coupling constant is

[κ] = z − 3. (3.36)
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Therefore, if z ≥ 3, the action (3.34) is power-counting renormalizable. In z = 3, ingredients

of the potential are

V [hij] = σ + ζR + αR2 + βRijRij + γR∆R + · · · , (3.37)

where σ, ζ, α, β and γ are a constant with dimension 6, 4, 2 and 0, respectively; ∆ is the

Laplacian: ∆ = hij∇i∇j. According to the Wilsonian renormalization group, one should

include all possible terms made of hij compatible with the spatial diffeomorphism into the

potential. The symmetry of the HL action (3.34) is the foliation preserving diffeomorphism:

xi → xi + ξi(t, xi), t→ t+ ξ0(t). (3.38)

The original motivation of HL gravity is to anticipate the action (3.34) effectively reduces

to the Einstein gravity at low energies:

SHL → −
1

κ

∫
dtd3x

√
hN

(
KijK

ij − λK2 − σ − ζR
)
, (3.39)

where λ is expected to approach 1 along the renormalization group flow: the full diffeo-

morphism can be approximately recovered at low energies. However, it is unclear if the

parameter λ really flows to 1. Besides, in HL gravity the full diffeomorphism is explicitly

broken by the anisotropic scaling, so that the extra digrees of freedom (DOF) in addition

to DOF of the traceless and transverse mode, i.e., spin-2 graviton. Thus, one should care

about behaviors of the extra mode at low energies. Before explaining behaviors of the extra

mode, we clarify how it appears based on the Hamiltonian formalism. In passing to the

Hamiltonian formalism, we set the notation for the canonical conjugate momenta as

LHL

(
(hij, ḣij), (N, Ṅ), (Ni, Ṅi)

)
→ HHL

(
(hij, p

ij), (N, pN), (Ni, p
i
~N
)
)
, (3.40)

where SHL =
∫
dtLHL. As in general relativity, the time derivatives of N and Ni are absent.

Thus we have the primary constraints,

Φ1 ≡ pN = 0, Φi
2 ≡ pi~N = 0. (3.41)

Imposing the consistency of the primary constraints under the time flow, one finds

[descendants of pN = 0] Φ1 = 0→ Φ̇1 = Φ4 ≈ 0→ Φ̇4 = Φ8 ≈ 0; (3.42)

[descendants of p ~N = 0] Φi
2 = 0→ Φ̇i

2 = Φi
5 ≈ 0. (3.43)
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One finds that the set, {Φ1,Φ
i
2,Φ4,Φ

i
5,Φ8}, is complete. The class of each constraint is as

follows:

#(phase-space variables) = #(hij, p
ij, N, pN , Ni, p

i
~N
) = 2(6 + 1 + 3) = 20,

#(2nd-class constraints) = #(Φ1,Φ4,Φ8) = 1 + 1 + 1 = 3,

#(1st-class constraints) = #(Φ2j,Φ5j) = 3 + 3 = 6.

Consequently, DOF in HL gravity reads [39]

DOF =
1

2
(20− 3− 2× 6) = 2 +

1

2
. (3.44)

Thus, the extra DOF is 1/2. Getting one half DOF might not necessarily be problematic in

itself.8 There are, however, at least three problematic features related to the existence of this

new half degree of freedom in HL gravity. The first problem concerns the absence of dynamics

and is associated to the fact that the extra DOF is halved. For generic asymptotically flat

space-times, the lapse is forced to be zero at spatial infinity [39]. Actually, for particular

values of the couplings, it was shown (and suggested this could be the case for generic values

of the couplings) that the lapse must vanish everywhere. This indicates that there is no

dynamics in HL gravity. The second problem is the short distance instability the extra

mode might trigger (if the dynamics was not frozen). Looking at perturbations around

generic backgrounds, it was found in [40] that the high frequency modes of the extra DOF

develop an imaginary part and the perturbations can grow very swiftly in time.9 The third

problem is the self-coupling of the scalar mode which remains strong to very low energy

scales [40, 41]. This implies that the extra mode never decouples and thus HL gravity does

not flow to general relativity in the infrared as it was hoped.

To avoid the pathologies related to the one half DOF, Blas, Pujolas and Sibiryakov

proposed the so-called healthy extension of HL gravity [42]. To make HL gravity “healthy”,

they introduced the following 3-vector:

ai =
∂iN

N
; (3.45)

they added gauge (foliation preserving diffeomorphism) invariant quantities constructed by

ai’s into the potential. This non-linear lapse dependence cures the pathologies. Especially,

we will explain how the most serious problem, i.e., the vanishing “lapse” problem, can be

8A well-known example is a chiral boson.
9The first two issues are apparently contradictory: if the lapse must collapse everywhere, there would

be no way to develop an exponentially growing mode involving the lapse. We will, however, discuss the
instabilities of the n-DBI model which evades the first issue.
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cured in the healthy extension. Because of the lapse dependence from ai, the time-flow of

the Hamiltonian constraint Φ4 does not create further constraint and it simply determines

the Lagrange multiplier of Φ1. In the original HL gravity, the constraint equation, Φ8 ≈ 0,

is linear in the lapse; always one obtains N = 0 as the solution. In fact, this is the origin of

the vanishing lapse problem. The healthy extension of HL gravity succeeded in evading the

issue. As shown in [10], the model called n-DBI gravity naturally includes the non-linear

lapse dependence, which makes n-DBI gravity “healthier” than the original HL gravity at

least on this point.

3.3 n-DBI gravity

According to the Big Bang theory [43], the Universe started from enormously hot and dense

state. It was about 13.75 billion years ago. Around 10−43 seconds after the birth, called

Planck time, gravitational force began to be week and the Universe was filled with a single

scalar field called inflaton. At the Planck time or more later, say 10−35 seconds, i.e., the scale

of grand unified theory (GUT), the Universe went through an exponential growth driven by

the inflaton. This phenomenon is called inflation [44, 45, 46, 47, 48]. Lots of observations of

the cosmic microwave background radiation (CMBR) suggest the approximate scale invari-

ance of spatial variations in energy at the early stage of the Universe. The inflation scenario

naturally explains this nearly scale-invariant spectrum. Searching for candidates of the in-

flaton from would-be fundamental theories is a natural direction one should take. However,

so far no one could single out one scalar field as the inflaton from a bunch of candidates.

Herdeiro and Hirano proposed an alternation of Einstein’s gravity using the scale invari-

ance as a guiding principle [6]. It is dubbed as n-DBI gravity. This model was designed to

yield non-eternal inflation spontaneously without introducing any scalar field. n-DBI gravity

was named after two characteristic features: first, it becomes a Dirac-Born-Infeld (DBI) type

conformal scalar theory when the Universe is conformally flat and a conformal mode of the

metric plays the role of the scalar field agent of inflation; second, it contains the space-time

foliation provided by an everywhere time-like vector field n, which couples to the gravita-

tional sector of the theory, but decouples in the small curvature limit. The scale invariance is,

indeed, a nice guiding principle to investigate cosmological issues. Before explaining n-DBI

gravity, we will show how the scale invariance works for cosmological problems. We start

with the Einstein-Hilbert action with cosmological constant term:

S = − 1

16πG4

∫
M
d4x
√
−g(R− 2Λ), (3.46)

where G4 and Λ are the Newton constant and cosmological constant, respectively. We
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consider the conformally flat metric ansatz:

gµν = l2pφ(t, xi)2ηµν , (3.47)

where φ is a conformal mode, lp(=
√
G4) is the Planck length and ηµν is the flat Minkowski

metric. Plugging this conformally flat metric into (3.46), one finds the classically conformal

action:

S =
3

4π

∫
d4x

[
−1

2
ηµν∂µφ∂νφ+

1

6
G4Λφ4

]
, (3.48)

which holds up to total derivative terms. After a suitable Wick rotation, this action can be

seen as the λφ4 theory where λ = G4Λ. Because of the infrared triviality of the λφ4 theory,

the cosmological constant reduces to 0 along the renormalization group flow [49]. We stress

that the λφ4 theory is classically conformal and therefore scale invariant. Thus, the scale

invariance answers why the cosmological constant is so small to some extent. It has been

known that the conformal scalar theory has a unique generalization [50]:

SCFT = −TD3

∫
d4xλφ4

(√
1 +

ηµν∂µφ∂νφ

λφ4
− q

)
, (3.49)

where λ and q are arbitrary dimension-less constants can not be fixed by conformal invari-

ance. If considering the type IIB superstring theory on AdS5×S5, this is the DBI action of

a single D3-brane, with tension TD3, stuck in AdS5×S5 where φ is the AdS radial coordinate

in the Poincaré patch. If the φ is large, then the SCFT reduces to the λφ4 theory. One can

ask, “What is the gravitational theory reducing to the SCFT by a suitable metric ansatz, if it

exists?” It indeed exists: n-DBI gravity. Here we give the action of n-DBI gravity without

matter [6, 7]:

SnDBI = − 3λ

4πG2
4

∫
M
d4x
√
−g

{√
1 +

G4

6λ

(
(4)R +K

)
− q

}
, (3.50)

where G4 is the Newton constant, q, λ are the two dimensionless parameters of the theory

and
(4)
R is the four dimensional Ricci scalar. To completely define the theory a foliation

structure must be chosen. Let n be a unit time-like vector field, everywhere orthogonal to

the leaves of such foliation; we set that hµν = gµν + nµnν and Kµν = 1
2
£nhµν . Then K in

(3.50) has been defined as

K ≡ − 2√
h

£n(
√
hK) , K ≡ Kµνh

µν . (3.51)

This scalar quantity is closely related to the Gibbons-Hawking-York boundary term [51, 52].

38



However, since the K is in the square root, it can not become a boundary term: the vector

field n couples to the bulk gravity via K. Because of this fact, the full diffeomorphism

is broken in n-DBI gravity. If plugging conformally flat and homogeneous metric ansatz,

gµν = l2pφ(t)2ηµν , into the action of n-DBI gravity (3.50), one can obtain the DBI scalar

action (3.49) up to an overall constant. The role of K is to convert the second-order time

derivative of φ in
(4)
R into the first-order derivative. Namely,

(4)

R =
6

l2p
· φ̈
φ3
,

(4)

R +K = − 6

l2p
· φ̇

2

φ4
, (3.52)

where we have plugged the conformally flat and homogeneous metric. Thereby, the anisotropy

among space and time shows up. Therefore, as claimed before n-DBI gravity does not possess

the full diffeomorphism. The symmetry of n-DBI gravity is the so-called foliation preserving

diffeomorphism:

t→ t+ ξ0(t), xi → xi + ξi(t, xi), (3.53)

where ξ0(t) and ξi(t, xi) are infinitesimal and arbitrary. Since ξ0 depends only on t, the form

of foliation can not be changed. One may ask, “Do you have any plausible reasons to break

the space-time symmetry?” The answer is yes. “There are reasons to suspect that the vacuum

in quantum gravity may determine a preferred rest frame at the microscopic level. However,

if such a frame exists, it must be very effectively concealed from view (by Jacobson in the

paper about Einstein-æther gravity [5]).” However, as mentioned by Jacobson implicitly, in

the infrared regime, the full diffeomorphism ought to be recovered to a very good accuracy.

n-DBI gravity can pass this condition naturally: if expanding the action (3.50) by small

G4, one can obtain the Einstein-Hilbert action with a cosmological constant term and the

Gibbons-Howking-York bounday term at the lowest level. Alternatively, one can consider

the following conventional limit:

λ→∞, q → 1, (3.54)

under the quantity λ(1− q) is fixed [6, 7]. This limit is called Einstein gravity limit because

one succeeds in letting n decoupled completely and obtains

SnDBI → S = − 1

16πG4

∫
M
d4x
√
−g(

(4)

R− 2ΛEinstein) +
1

8πG4

∫
∂M

d3x
√
hK, (3.55)

where

ΛEinstein =
6λ(q − 1)

G4

. (3.56)

For later convenience, we will show alternative expressions of n-DBI gravity [10].

ADM form
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Performing the Arnowitt-Deser-Misner (ADM) decomposition [35]

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
, (3.57)

where N and Ni, respectively, are the lapse and shift functions, and hij with i, j = 1, 2, 3 is

the spatial metric, the action (3.50) becomes

S = − 3λ

4πG2
4

∫
dtd3x

√
hN

[√
1 +

G4

6λ
(R +KijKij −K2 − 2N−1∆N)− q

]
, (3.58)

where R is the Ricci scalar of hij. In particular, observe the lapse term N−1∆N . As sug-

gested in [42], adding analogous terms can provide a consistent extension of Hořava-Lifshitz

(HL) gravity. Indeed, as we shall see later, this term plays a crucial role in evading the

pathologies that afflicted HL gravity.

Linearlized form with auxiliary field

As it is known in various contexts, square root type actions may be linearized by introducing

auxiliary fields. A well known example is the classical equivalence between the Polyakov and

Nambu-Goto actions in string theory, via the introduction of an auxiliary metric (the world

sheet metric). A similar reformulation for the Eddington inspired Born-Infeld gravity was

provided recently [53], for which the auxiliary variable is the “apparent” metric. In our case,

with the introduction of an auxiliary scalar field e, the action (3.50) becomes10

Se = − 1

16πG4

∫
d4x
√
−ge

[
(4)

R− 2ΛC(e) +K
]
, ΛC(e) =

3λ

G4

(
2q

e
− 1− 1

e2

)
. (3.59)

For constant field e, this is the Einstein-Hilbert action with a cosmological constant (in

exactly the form found in [7] in terms of the integration constant C therein) with the Gibbons-

Hawking-York boundary term [51, 52]. For generic e, the theory resembles general relativity

in a Jordan frame (but indeed it is quite different).

It is worth noting that we can rewrite the action (3.59) in the Einstein frame by per-

forming a Weyl transformation:

gµν → e−1gµν . (3.60)

10We thank Soo-Jong Rey and Takao Suyama for suggesting this formulation.
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Redefining the auxiliary field e ≡ exp (2χ), the action becomes, up to boundary terms,

SEinstein = − 1

16πG4

∫
d4x
√
−g
[
(4)

R− 6
(
nαnβ + hαβ

)
∂αχ∂βχ+ 2Kχ+ V (χ)

]
, (3.61)

with the potential

V (χ) =
6λ

G4

exp (−4χ)
[
(exp (χ)− exp (−χ))2 + 2(1− q)

]
. (3.62)

There is a caveat: it is misleading to regard the Einstein frame theory as a scalar-tensor

theory (the scalar being χ). Despite the appearance of the kinetic term, the scalar field χ is

still an auxiliary field and does not give rise to an independent degree of freedom. As we will

see, the extra scalar mode is furnished in the metric and the scalar field χ is only related to

it through the equations of motion.

Covariant form with Stückelberg field

n-DBI gravity breaks Lorentz invariance due to the coupling of gravity to the unit time-

like vector field n, which defines a preferred space-time foliation. Full general covariance can

be restored by introducing a Stückelberg field φ(xµ), such that its gradient is everywhere

time-like and non-vanishing:

nµ = − ∂µφ√
−X

, gµνnµnν = −1, X ≡ gµν∂µφ∂νφ. (3.63)

By definition the theory is invariant under φ→ f(φ), where f(φ) is an arbitrary function of φ.

Note that the original non-covariant form is recovered when φ = t for which n = (−N, 0, 0, 0),

and the symmetry reduces to the time reparametrization t → f(t). A similar treatment in

the case of HL gravity has been performed in [40]. The extrinsic curvature becomes

Kµν =
1

2
[nαDαhµν + hµαDνn

α + hναDµn
α] , K = Dαn

α. (3.64)

It then follows that

K = −2Dα

(
nαDβn

β
)
. (3.65)

Thus, the n-DBI action may be rewritten in the covariant form

Sc = − 3λ

4πG2
4

∫
d4x
√
−g

{√
1 +

G4

6λ

(
(4)R− 2Dα

[
∂αφ√
−X

Dβ

(
∂βφ√
−X

)])
− q

}
. (3.66)

In contrast to the Einstein frame theory, this covariant theory can be thought of as a scalar-
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tensor theory. Indeed, in this form, the scalar field φ does yield an independent degree

of freedom. Put differently, the scalar mode in the metric is entirely transferred to the

Stückelberg field φ.

Clearly, this can be linearised again by introducing the auxiliary field e,

Sec = − 1

16πG4

∫
d4x
√
−ge

{
(4)

R− 2ΛC(e)− 2Dα

[
∂αφ√
−X

Dβ

(
∂βφ√
−X

)]}
. (3.67)

In these formulations, general covariance gets spontaneously broken by the scalar field φ

acquiring the vev 〈φ〉 = t. It should be noted that this has a certain bearing on the ghost

condensation of [54].
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Part II

Causal Dynamical Triangulation
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4 Matter-coupled CDT

In physics, when one encounters a recondite issue, it is often very effective to introduce

a simple toy model. This ought to capture its nature and substance by getting rid of

extraneous data. In the case of profound quantum gravity, one promising toy model is the 2-

dimensional theory. A method called dynamical triangulation (DT) nicely expresses physics

of 2-dimensional Euclidean quantum gravity. Especially multicritical models of DT have been

designed to describe 2-dimensional Euclidean quantum gravity coupled to matter by Kazakov

[55]. On this line of thought, Staudacher has succeeded in identifying the first multicritical

point with a rational minimal conformal field theory characterized by a negative central

charge, c = −22/5, coupled to 2-dimensional Euclidean quantum gravity [56]. A possible

way to mount the next step is to investigate a Lorentzian model for 2-dimensional quantum

gravity. One of the candidates is causal dynamical triangulation (CDT) [3]. In [8], we have

proposed new multicritical models which naturally capture physics of matter-coupled CDT

in a continuum limit. In the following, we indict its essence.

4.1 Causal random geometries coupled to dimers

In 2.3, we have introduced the unrestricted triangulations as geometries discretized by any

kinds of polygons. Following this thought, we introduce the potential:

V (z) =
1

2
z2 − gz − g

3
z3 − g3ξ

2
z4. (4.1)

This potential generates geometries discretized by 1-gons, triangles and squares. Viewing

each square as two triangles, one can think of the squares as part of the triangulation, but

with a dimer placed on the diagonal, with a fugacity ξ̃ = gξ. In this way the model describes

dimers put on random triangulations in a special way, such that there is at most one dimer

per triangle. On the graph dual to the triangulation the dimers are precisely hard dimers:

one dimer is allowed to be attached to each vertex at most. We will call them hard dimers

also on the triangulation, even if the rule of putting down the dimers is slightly different from

the standard hard dimer rule. Similarly we will denote ξ the fugacity of the dimers, although

it is strictly speaking ξ̃ which serves as the fugacity. If considering the sphere topology and

imposing the single-cut structure, the solution of the loop equation becomes

w(g, z) =
1

2gs

(
V ′(z)−

3∑
k=1

Mk(z − a)k−1
√

(z − a)(z − b)

)
, (4.2)

where w(g, z) is the generating function for the boundary loop (resolvent or disk function),

gs is the string coupling constant and (a, b) are end points of the cut. From now we call the
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Figure 11: Dimers on a triangulation: Blue edges stand for dimers.

w(g, z) resolvent. From the asymptotic behavior of the w(g, z) in |z| � |a− b|, one obtains

a set of equations:

M3 = −2g3ξ, (4.3)

M2 = −g +
M3

2
(5a+ b), (4.4)

M1 = 1 +
M2

2
(3a+ b) +

M3

8
(b2 − 10ab− 15a2), (4.5)

gs =
1

16

[
M1(b− a)2 +

1

2
M2(b− a)3 +

5

16
M3(b− a)4

]
, (4.6)

g =
M1

2
(a+ b) +

M2

8
(b2 − 6ab− 3a2) +

M3

16
(b3 − 5ab2 + 15a2b+ 5a3). (4.7)

Remember the moments (2.36). The moments can be written as follows:

Mk =

∮
C

dω

2πi

V ′(ω)

(ω − a)k+1/2(ω − b)1/2

=

∮
C̄

dω̄

2πi

[
ω̄k−1

(1− ω̄a)k+1/2(1− ω̄b)1/2

]
V ′(1/ω̄), (4.8)

where ω̄ = 1/ω and the path C̄ enclosing 0 in the ω̄-patch. If ξ > 0, one can only set

the M1 as zero. However, if ξ < 0, one can set not only the M1 but also M2 as zero. A

critical point characterized by M1 = M2 = 0 is an example of the multicritical points. Let

us investigate the multicritical behavior of this model. To begin, we impose the condition

for the multicritical point:

M1 = M2 = 0. (4.9)
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Plugging (4.9) into the equations, (4.3) − (4.7), we find

a =
1

6

[(
−128gs

5g3ξ

)1/4

− 1

g2ξ

]
, b =

1

6

[
−5

(
−128gs

5g3ξ

)1/4

− 1

g2ξ

]
, (4.10)

b3 − 5ab2 + 15a2b+ 5a3 − 8(5a+ b) = 0, 4 = g3ξ(b2 − 10ab− 15a2). (4.11)

For every value of gs except for 0, approaching the critical point defined by (4.9) yields the

Liouville field theory with the central charge c = −22/5. What we are interested in is the

“CDT” point specified with gs = 0. If one can find a non-trivial scaling relation around

that point outside of the universality class of the plain CDT or the Liouville theory with the

negative central charge, it turns out that one has succeeded in formulating CDT coupled to

dimers. It has been achieved in [8]. Imposing the condition,

M1 = M2 = gs = 0, (4.12)

the critical values can be obtained:

a∗ = b∗ =
√

3, g∗ =
1

a∗
, ξ∗ = −a∗

6
. (4.13)

Then we renormalize the string coupling constant as follows:

multicritical point

M2=0 

gs=0

M1=0

Figure 12: Multicritical point in 3-dimensional coupling constant space (g, ξ, gs).

gs = Gsε
4, (4.14)

where Gs is the renormalized string coupling constant and ε is the lattice spacing. Sitting

on the critical line M1 = M2 = 0, one can expand g, ξ and a:

gc(gs) = g∗

(
1−
√

5

9
G1/2
s ε2 − 16

√
5

27
G3/4
s ε3

)
+O(ε4), (4.15)

46



ξc(gs) = ξ∗

(
1−
√

5

9
G1/2
s ε2 +

16
√

5

27
G3/4
s ε3

)
+O(ε4), (4.16)

ac(gs) = a∗

(
1 +

2

3 · 51/4
G1/4
s ε

)
+O(ε2). (4.17)

The perturbation away from gc(gs), ξc(gs) which leads to the potential V ′(a, g, ξ) of order

ε3, assuming the boundary cosmological constant is perturbed as z = ac(gs) + εZ, can be

parametrized as

g = g∗ + Λ̃ε2 − Λ ε3, ξ = ξ∗ −
1

2
Λ̃ε2. (4.18)

As in the ordinary multicritical model situation one finds a two-parameter set of solutions

depending on Λ, Λ̃. Let us choose a convenient “background”, using the notation from

ordinary matrix models [57], which we call CDT-background, namely Λ̃ = 0. By this choice

of the background, one finds

V ′(z; g, ξ) =

(
Λ +

1

9
Z3 +

1

3
αZ2G1/4

s +
1

3
α2ZG1/2

s

)
ε3 +G3/4

s

(
γ +

1

9
α3

)
ε3 +O(ε4),

(4.19)

where

α =
2

51/4
√

3
, γ =

32
√

5

27
√

3
. (4.20)

If applying the CDT variables, (Zcdt,Λcdt, Λ̃cdt), defined by

Z = Zcdt − αG1/4
s , Λ = Λcdt − γG3/4

s , (4.21)

then, (4.19) becomes drastically simpler:

V ′(z; g, ξ) =

(
Λcdt +

1

9
Z3

cdt

)
ε3 +O(ε4). (4.22)

One can now calculate w(g, z) in the CDT limit Gs → 0 where any creation of baby universes

is suppressed:

w(g, z) = ε−1W
(3)
CDT(Zcdt) +O(ε0), (4.23)

where

W
(3)
CDT(Zcdt) =

1

Zcdt + Λ
1/3
cdt

. (4.24)

Next, let us take a look at observables. A leading singularity of the free energy F at the
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critical point provides the so-called string susceptibility, γstr:

F = N2f0(g − g∗)2−γstr +O(N), (4.25)

where f0 is some constant. The disk function (4.24) in the limit Zcdt →∞ is nothing but the

genus-zero free energy with a marked point: because of the limit, the boundary loop shrinks

to zero yielding the sphere with an infinitesimal boundary, a marked point (see (2.26)); to

mark a point on the sphere, one needs to act the derivative with respect to g. If picking up

the first non-analytic structure of the disk function in the limit Zcdt →∞, one finds

W
(3)
CDT ∼ (g − g∗)1−γstr , (4.26)

where

γstr =
2

3
. (4.27)

In the plain CDT, γstr = 1/2 [3]; one can find the same value in the so-called branched

polymer phase of DT. On the other hand, (4.27) coincides with γstr of the branched polymer

coupled to dimers [8, 58]. One can compute another exponent called edge singularity, σ,

defined as
d log g∗
dξ

∼ (ξ − ξ∗)σ. (4.28)

From (4.18), one finds

σ =
1

2
. (4.29)

This is the same as that of DT in the first multicritical point11.

4.2 Field theory arising from CDT scaling

We will show that the field-theoretic description can be obtained via the loop equation [59]

(and implicitly shown in [8]). The loop equation with the potential (4.1) can be written as

∂2
z

(
gsw(g, z)2 − V ′(z)w(g, z)

)
= 4g3ξ. (4.30)

Plugging the scaling relations, (4.18) and (4.21), into the loop equation (4.30) and taking

the limit, ε→ 0, one obtains

∂2
Zcdt

[
GsW

(3)
GCDT(Zcdt)

2 − ∂Zcdt

(
lim
ε→0

V (z)

ε4

)
W

(3)
GCDT(Zcdt)

]
= −2

9
, (4.31)

11This value is considered to be the gravity-dressed edge singularity of the dimer model [56]. In the dimer
model, σ = 1/6.
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where

∂Zcdt

(
lim
ε→0

V (z)

ε4

)
= Λcdt +

1

9
Z3

cdt ≡ ∂Zcdt
V(Zcdt); (4.32)

w(g, z) = ε−1W
(3)
GCDT(Zcdt) +O(ε0). (4.33)

This implies the existence of field theory defined by the potential V(Zcdt). Thus, the loop

equation in the continuum limit becomes

GsW
(3)
GCDT(Zcdt)

2 = ∂Zcdt
V(Zcdt)W

(3)
GCDT(Zcdt)−Q(Zcdt), (4.34)

where Q(Zcdt) is a polynomial of degree 2. The solution of the loop equation (4.34) is

the continuous disk function of generalized CDT coupled to dimers. If prohibiting spatial

topology change, i.e., Gs → 0, one can recover the continuous disk function of CDT coupled

to dimers (4.24). The loop equation (4.34) can be obtained by the matrix model in the

large-N limit having the following free energy:

F = log

∫
dφ exp

(
−N
Gs

trV(φ)

)
, (4.35)

where φ is an N × N hermitian matrix. From this matrix model, the corresponding string

field theory can be constructed [59] (see 5.1.1 for the string field theory of CDT).

4.3 Discussion

The multicritical model of CDT discussed in this section is the first analytic example of CDT

coupled to matter12. Overviewing some unsolved problems in DT and CDT, we will mention

the status of our model.

Only a few riddles are left in 2d Euclidean quantum gravity coupled to matter. One of

them is the behavior of the Hausdorff dimension dh as a function of the central charge c of

the conformal theory coupled to gravity. A formula was derived by Watabiki some years ago

[61]

dh = 2

√
49− c+

√
25− c√

25− c+
√

1− c
. (4.36)

Most likely this formula is correct for c ≤ 0. For c = 0 agrees with what is known to be

the correct answer [62, 63, 64]. For c = −2 there are very reliable computer simulations

which show agreement with the formula [65, 66]. Finally for c→ −∞ it gives 2, something

one would indeed expect from semiclassical Liouville theory. However, for 0 < c ≤ 1 the

12While completing the article [8] we were informed by Stefan Zohren that he and Max Atkin have obtained
results which are identical to some of our results [60]. We thank Stefan for informing us of these results prior
to publication.
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numerical agreement is less conclusive [67, 68], and the possibility that dh = 4 in this range

was pointed out, and the idea has recently been resurrected [69]. For c > 1 the Liouville

formulas become complex and expressions like (4.36) are not valid, but it is believed that

there is a universal phase where the world sheet degenerates to branched polymers (BP).

Surprisingly we have a somewhat similar situation in CDT: from numerical simulations dh

seems unchanged (and equal 2) when matter with central charge 0 ≤ c ≤ 1 is coupled to the

CDT ensemble [78, 79, 80] and recently it was shown that there might be a kind of universal

phase for c > 1 [70]. However, to the extent we can really view the hard dimer models as

corresponding to conformal field theories, it seems that for c < 0 the matter systems can

change fractal structure of the CDT ensemble. Qualitatively the changes are like in the full

Euclidean models, dh decreases with decreasing c. In the c = 0 case the CDT model can be

understood as an effective Euclidean model, where baby universes have been integrated out.

Whether such an interpretation is possible also when matter is coupled to CDT is presently

unknown, but since the multicritical model captures the critical behavior of both CDT and

ordinary 2d Euclidean quantum gravity coupled to certain matter systems, depending on

how we scale gs, we have a chance to answer this question in the context of analytic models

like the one discussed here.

5 Extended interactions in CDT

We quested for possibilities to extend the generalized CDT without changing the scaling

dimensions of space and time in 2 dimensions [9]: we extended the generalized CDT applying

the method in the non-critical string field theory (SFT) techniques in [71] and [72]. We solved

the Schwinger-Dyson equation (SDE) for the disk amplitude by the perturbation w.r.t. the

string coupling constant; we discovered dual matrix models in the continuum limit as well.

The aim of this work is to propose the CDT coupled to the Ising model.

5.1 Generalized CDT

5.1.1 From string field theory

We review the non-critical string field theory (SFT) of the generalized CDT formulated in

[73]. This model reproduces the disk amplitude derived in the continuum limit of CDT in

the case that the string coupling constant is zero. The model requires closed strings with

length L are created and annihilated from the vacuum, |0〉 (〈0|) by operators, ψ†(L) and

ψ(L), respectively:

〈0|ψ†(L) = ψ(L)|0〉 = 0. (5.1)
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These creation and annihilation operators obey the following commutation relations:

[ψ(L), ψ†(L′)] = δ(L− L′), (5.2)

and others are zero. The string world-sheet can be seen as the Universe in 2 dimensions.

Corresponding Hamiltonian can be written as follows:

H0 =

∫ ∞
0

dLψ†(L)H0(L,Λcdt)ψ(L) +Gs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†(L1)ψ†(L2)ψ(L1 + L2)(L1 + L2)

+ αGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†(L1 + L2)ψ(L2)ψ(L1)L2L1 −

∫ ∞
0

dLδ(L)ψ(L), (5.3)

where

H0(L,Λcdt) = −L∂2
L + ΛcdtL. (5.4)

Gs and Λcdt are the renormalized string coupling constant and bulk cosmological constant,

respectively (see Fig.13). The parameter α in (5.3) was introduced to count the number of

propagator branching marging tadpole

Gs αGs

Figure 13: Hamiltonian of generalized CDT

genus. In the following discussion we will take α = 0, which suppresses the creation of genus.

The Hamiltonian above has been determined under the following scaling dimensions:

[S] = ε, [ψ†(L)] = ε0, [ψ(L)] = ε−1, [Gs] = ε−3, (5.5)

where ε is the scaling dimension of L, and [S] is the scaling dimension of time. A crucial dif-

ference between the Hamiltonian of the non-critical SFT constructed by Ishibashi and Kawai

[71] and that of generalized CDT is the existence of propagator term,
∫
dLψ†(L)H0ψ(L): it

exists in the generalized CDT, but in IK’s theory there is no such a term. This difference

comes from the fact that both theories have quite different definition of time.

The authors in [73] derived the Schwiner-Dyson equation (SDE) for the disk amplitude

Laplace-transformed, WGCDT(Zcdt) =
∫∞

0
dLe−LZcdt〈0|e−SH0ψ†(L)|0〉|S→∞, in the generalized
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CDT as 13:

∂Zcdt

[
(Λcdt − Z2

cdt)WGCDT(Z) +GsWGCDT(Zcdt)
2
]
+1 = 0. (5.6)

The solution was derived by a perturbative expansion w.r.t. the string coupling constant as

well [73]:

WGCDT(Zcdt) =
1

Zcdt +
√

Λcdt

−Gs
Zcdt + 3

√
Λcdt

4Λcdt(Z +
√

Λcdt)3
+O(G2

s). (5.7)

The first term is equivalent to the CDT solution [3]. In this formalism, the contributions

from baby universes are weighted by the string coupling constant Gs.

5.1.2 From matrix model

A new scaling limit of the hermitian N × N matrix model was introduced [31]. We start

with the matrix integral,∫
dφ exp

[
−N
gs

tr

(
1

2
φ2 − gφ− g

3
φ3

)]
=

∫
dφ e−

N
gs

trV (φ), (5.8)

where φ, g and gs are the N × N hermitian matrix, ’tHooft coupling constant and string

coupling constant, respectively. One can expand the coupling constants around the critical

point found in [31], using the lattice spacing ε:

gs =
1

2
ε3Gs, φ = Î − εΦ +O(ε2), g =

1

2

(
1− 1

2
ε2Λcdt +O(ε4)

)
, (5.9)

where Î is the unit N × N matrix, Gs, Φ and Λcdt are corresponding renormalized values.

Substituting the fine-tuned values above into the potential N
gs
V (φ), one finds

N

gs
trV (φ) =

N

Gs

tr

(
1

3
Φ3 − ΛcdtΦ

)
+(terms independent of Φ) +O(ε). (5.10)

Since the potential term scales at the new critical point as well as the “singular term” with

fractional power, a field theory description can be anticipated. One can define it as the

matrix model in the continuum limit [31, 34]. It has the following partition function:

Z =

∫
dΦ exp

[
−N
Gs

tr

(
1

3
Φ3 − ΛcdtΦ

)]
. (5.11)

13The authors derived the more general result with arbitrary α, but here we restricted our situation to
that with α = 0.

52



In the large-N limit, the saddle-point equation coincides with the SDE of the generalized

CDT (5.6)14.

5.2 Generalized CDT with extended interactions

5.2.1 From string field theory

Applying the method in [72], we will construct the non-critical SFT Hamiltonian of the gener-

alized CDT with extended interactions. The propagator term in (5.3),
∫
dLψ†(L)H0(L,Λcdt)ψ(L),

induces causal geometries. Letting this propagator unchanged, one should take the scaling

dimension of space and time as:

[L] = ε, [S] = ε. (5.12)

We extend the non-critical SFT for the generalized CDT such that the scaling above is

unchanged. Since we think that the causality is an identity of CDT, this sort of extension is

meaningful to get some deep understanding of what CDT is. First, we consider strings with

different charges: the (+)-type and (−)-type. The creation and annihilation operators for

the (+)-type string, Ψ†+(L) and Ψ+(L), and for the (−)-type string, Ψ†−(L) and Ψ−(L), are

defined as the following vacuum conditions, respectively:

〈0|ψ†+(L) = ψ+(L)|0〉 = 〈0|ψ†−(L) = ψ−(L)|0〉 = 0. (5.13)

We assume these operators obey the following commutation relations:

[ψ+(L), ψ†+(L′)] = [ψ−(L), ψ†−(L′)] = δ(L− L′), (5.14)

and the others are zero. Additionally, we assume the same scaling dimensions with those of

the generalized CDT:

[ψ†±(L)] = ε0, [ψ±(L)] = ε−1, [Gs] = ε−3, (5.15)

where Gs is the string coupling constant. Under the conditions above, one can extend the

Hamiltonian for the generalized CDT applying the interaction for spin clusters introduced

by Ishibashi and Kawai [72]. Here we call such an interaction IK-type interaction. It is based

on the so-called peeling procedure in a discrete random surface. For example, considering a

randomly triangulated surface coupled to Ising spins with one boundary and then assuming

that triangles attached to the boundary have homogeneous spins (all spins are up-type or

down-type), one peels triangles along with the boundary as if one peels an apple. If one

14In [34], the authors derived the general saddle-point equation beyond the large-N limit. The general
saddle-point equation indeed coincides with the SDE with arbitrary α by the treatment, α = 1/N2.
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continues to peel off triangles over the boundary triangles and one encounters the triangle

carrying a different type of spin, then one surrounds them by the triangles carrying the same

spin as the boundary triangles. In short, the randomly triangulated surface is separated by

domain walls. The SDE in their approach coincides with the loop equation for the chain-type

two-matrix model describing random geometries coupled to Ising spins. We emphasize here

that the above closed strings are not seen as the spin boundary as in the case of IK but seen

as the equal-time hyper surfaces with different charges. If applying the IK-type interaction,

one can write the extended Hamiltonian for the generalized CDT:

Hm =

∫ ∞
0

dLψ†+(L)H0(L,Λcdt)ψ+(L)

+Gs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1)ψ†+(L2)ψ+(L1 + L2)(L1 + L2)

+ bGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1 + L2)ψ†−(L2)ψ+(L1)L1

+ αGs

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
+(L1 + L2)ψ+(L2)ψ+(L1)L2L1

−
∫ ∞

0

dLδ(L)ψ+(L) +

[
ψ+( ψ†+)↔ ψ−( ψ†−)

]
, (5.16)

where α and b are dimension-less constants15 (see Fig.14). For simplicity, we restrict topology

propagator branching marging tadpole

Gs αGs

IK-type

bGs

Figure 14: Hamiltonian of generalized CDT with extended interactions

to the disk. This can be realized by the following Hamiltonian:

HD
m ≡ lim

α→0
Hm. (5.17)

We will then derive the SDE in our model. The SDE corresponds to the Wheeler-DeWitt

equation for the wave function of the Universe. We define the partition function and disk

15In fact, it is possible to include the interactions,
∫
dLψ†−(L)H0(L,Λcdt)ψ+(L) and its spin-flipped term.

However, because of the Z2-symmetry as to the spin reflection, such terms merely cause a constant shift of
the string coupling constant, so that we have not included these terms in the Hamiltonian.
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amplitudes:

Z = lim
S→∞
〈0|e−SHD

m |0〉 ≡ 1, (5.18)

and

W±(L) ≡ lim
S→∞
〈0|e−SHD

mψ†±(L)|0〉. (5.19)

The SDE for W±(L) is

lim
S→∞

∂

∂S
〈0|e−SHD

mψ†±(L)|0〉 = 0. (5.20)

Using the equation, HD
m |0〉 = 0, and the commutation relations (5.14), one can rewrite the

SDE as follows:

0 = −L∂2
LW±(L) + ΛLW±(L)− δ(L) +GsL

∫ ∞
0

dL1 lim
S→∞
〈0|e−SHD

mψ†±(L1)ψ†±(L− L1)|0〉

+ bGsL

∫ ∞
0

dL1 lim
S→∞
〈0|e−SHD

mψ†±(L+ L1)ψ†∓(L+ L1)|0〉. (5.21)

Here we introduce the factorization theorem:

lim
S→∞
〈0|e−SHD

mψ†±(L1)ψ†±(L2)|0〉 = lim
S→∞
〈0|e−SHD

mψ†±(L1)|0〉 lim
S→∞
〈0|e−SHD

mψ†±(L2)|0〉. (5.22)

Applying the above factorization theorem, the SDE (5.22) becomes

0 = −L∂2
LW±(L) + ΛcdtLW±(L)− δ(L) +GsL

∫ ∞
0

dL1W±(L1)W±(L− L1)

+ bGsL

∫ ∞
0

dL1W±(L+ L1)W∓(L1). (5.23)

In fact, our system has Z2-symmetry w.r.t. the spin-reflection. Thus, we focus on a Z2-

symmetric solution of the SDE:

W+(L) = W−(L) ≡ WIK(L). (5.24)

Implementing the Laplace transformation, L[WIK(L)] ≡
∫∞

0
dLe−LZcdtWIK(L) ≡ WIK(Zcdt),

(5.23) becomes

0 = ∂Zcdt

[
(Z2

cdt−Λcdt)WIK(Zcdt)−GsWIK(Zcdt)
2

]
−1+bGsL

[
L

∫
dL1WIK(L+L1)WIK(L1)

]
.

(5.25)
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One notices that the last term diverges in Z → ∞. To regularize this divergence, we

symmetrize the term w.r.t. the reflection, Zcdt ↔ −Zcdt [72, 74]:∫ ∞
0

dL

∫ ∞
0

dL1e
−Zcdt(L+L1)WIK(L+ L1)e+ZcdtL1WIK(L1) + (Zcdt ↔ −Zcdt)

= WIK(Zcdt)WIK(−Zcdt). (5.26)

Subtracting the SDE with the reflection (Z → −Z) from the original SDE (5.25), we get the

finite SDE:

∂Zcdt

[
(Z2

cdt − Λcdt) (WIK(Zcdt) +WIK(−Zcdt))

−Gs

(
WIK(Zcdt)

2 +WIK(−Zcdt)
2 + bWIK(Zcdt)WIK(−Zcdt)

) ]
= 0. (5.27)

Integrating the SDE above over Zcdt yields

(Z2
cdt − Λcdt) (WIK(Zcdt) +WIK(−Zcdt))

−Gs

(
WIK(Zcdt)

2 +WIK(−Zcdt)
2 + bWIK(Zcdt)WIK(−Zcdt)

)
= c. (5.28)

where c is a constant. We calculate a perturbative solution for the SDE above around the

weak coupling region, Gs < 1, expanding the loop amplitude and c like:

WIK(Zcdt) =
∞∑
n=0

Gn
sWn(Zcdt), c =

∞∑
n=0

Gn
s cn. (5.29)

As for W0(Zcdt), we find

W0(Zcdt) =
1

Zcdt +
√

Λcdt

, (5.30)

where we have chosen an overall constant for W0(Z) so as to coincide with that of pure

CDT. Assuming that the disk amplitude behaves as 1/Zcdt in the large value of |Zcdt|, we

can determine that c1 = −(b+ 1)/2Λcdt. Furthermore, we can extract W1(Zcdt) considering

that W1(Zcdt) is analytic in the region, |Zcdt| > 0. Thus, the perturbative solution is

WIK(Zcdt) =
1

Zcdt +
√

Λcdt

−Gs
1

4Λcdt

[
Zcdt + 3

√
Λcdt

(Zcdt +
√

Λcdt)3
+

b

(Zcdt +
√

Λcdt)2

]
+O(G2

s). (5.31)

The solution with b = 0 is equivalent to that of the plain generalized CDT (5.7).
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5.2.2 From matrix model

We start with the following matrix integral:∫
dφ+dφ−e

− N
gs

trV (φ+,φ−), (5.32)

where

V (φ+, φ−) =
1

2
(φ2

+ + φ2
−)− g(φ+ + φ−)− g

3
(φ3

+ + φ3
−) + xφ+φ−. (5.33)

In the integral above, φ±, g, gs and x are N × N hermitian matrices, the ’tHooft coupling

constant, string coupling constant and coupling constant characterizing the interaction, re-

spectively. We then expand the fields and coupling constants w.r.t. the lattice spacing ε as

follows:

φ+ = Î − ε(A+B) +O(ε2), φ− = Î − ε(A−B) +O(ε2), (5.34)

and

gs = ε3Gs, g =
1

2

(
1− 1

2
ε2(Λcdt − 2X) +O(ε4)

)
, x = Xε2, (5.35)

where A and B are N ×N hermitian matrices, Î is the unit matrix, and Gs, Φ, Λ and X are

corresponding renormalized values. This construction implies that the cut-length shrinks to

zero (gs → 0), and the strength of the interaction falls off (x→ 0). The causality induces the

scaling, gs → 0 and taking the limit, x→ 0, the model can be seen as the weakly interacting

model. Substituting the fine-tuned values, one can write the partition function of the matrix

model in the continuum limit:

Z =

∫
dAdB exp

[
−N
Gs

tr

(
1

3
A3 + AB2 − ΛcdtA

)]
. (5.36)

An interesting thing is that in the matrix model having this type of potential, the Gaussian

integral over B can be performed by introducing the eigenvalues λi’s for the matrix A [75]:

Z ∝
∫ ∏

i

dλi
∏
i<j

(λj − λi)2
∏
i,j

(λi + λj)
−1/2e−

N
Gs
V , (5.37)

where

V =
N∑
i=1

V (λi) =
N∑
i=1

(
1

3
λ3
i − Λcdtλi

)
. (5.38)

In the large-N limit, the saddle point equation becomes

2

N

∑
j 6=i

1

λi − λj
=

1

N

∑
j

1

λi + λj
+

1

Gs

V ′(λi), (5.39)
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where V ′(λi) = λ2
i −Λcdt. Here we define the resolvent for A as WIK(Zcdt) ≡ 1

N
tr(Zcdt−A)−1,

and the distribution of eigenvalues as ρ(λ) ≡ 1
N

∑
i δ(λ−λi). Multiplying (5.39) by 1/(Z−λi)

and summing over i, we obtain the loop equation in the large-N limit:

(Z2
cdt − Λcdt) (WIK(Zcdt) +WIK(−Zcdt))

−Gs

(
WΛcdt

(Zcdt)
2 +WIK(Zcdt)WIK(−Zcdt) +WIK(−Zcdt)

2
)

= 2

∫
dλρ(λ)λ. (5.40)

Remember the SDE derived in the non-critical SFT approach (5.31). One can find a great

similarity between the two. Namely, if setting b = 1 in the SDE, then the two equations are

exactly same. Thus, this matrix model in the continuum limit can reproduce the generalized

CDT with extended interactions in b = 1.

One can extend the matrix model in the continuum limit above to the general O(n)

vector model [75] such that:

Z =

∫
dAdB1 · · · dBne

− N
Gs

trU(A,B1,··· ,Bn), (5.41)

where

U(A,B1, · · · , Bn) = A(B2
1 + · · ·+B2

n) +
1

3
A3 − ΛcdtA, (5.42)

and A, B1, . . . , Bn are N × N hermitian matrices. Notice that the previous matrix model

in the continuum limit is O(1) vector model. Integrating out all Bi’s, the loop equation in

the large-N limits is

(Z2
cdt − Λcdt) (WIK(Zcdt) +WIK(−Zcdt))

−Gs

(
WΛcdt

(Zcdt)
2 + nWIK(Zcdt)WIK(−Zcdt) +WIK(−Zcdt)

2
)

= 2

∫
dλρ(λ)λ. (5.43)

The loop equation of the O(n) vector model coincides with the SDE labeled by the free

parameter b (5.28) only if identifying n with b.

5.3 Discussion

We have shown the equivalence between the two different field theories at the level of differen-

tial equations, the Schwinger-Dyson equation in the non-critical SFT and the loop equation

of the matrix model in the continuum limit. In the following, we will examine the extended

models from different point of view.

To begin with, we discuss our model in terms of the SFT approach. Although we have

used the IK-type interaction to construct the extended SFT of the generalized CDT, we

do not understand if our model is on the critical point of the Ising model characterized by
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the Curie temperature. In the following, we try to explain two complications around this

issue. First, at the critical point of Ising spins the spin configuration must be random: spins

are supposed to fluctuate all length scales between the lattice spacing and the correlation

length. Contrary to that, in our model the homogeneous spin (charge) configurations survive

as the propagators. Second, the definition of time associating with our Hamiltonian (5.16) is

different from the would-be generalized CDT coupled to Ising spins. Namely, we consider the

closed strings in our model as not spin-cluster boundaries but spacial boundaries, so that we

pursue the time flow of spatial boundaries. Thus, our time is nothing but the proper time.

This proper time is crucially different from the time defined via the spin-cluster boundary

[76, 77]. Considering our time as the one defined via the spin-cluster boundary is equivalent

to treating our model as the generalized CDT coupled to Ising spins; the scaling dimension

of time may be different from the lattice spacing ε according to [76]. This contradicts our

first setup (5.12). The free parameter b, in one way or another, might be the key to know

what our model is.

In addition, it is possible to extend our non-critical SFT to the multi-“colored” system:

H(n)
m =

n∑
i=1

∫ ∞
0

dLψ†i (L)H0(L,Λcdt)ψi(L)

+Gs

n∑
i=1

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1)ψ†i (L2)ψi(L1 + L2)(L1 + L2)

+Gs

n∑
i=1

n∑
j 6=i

bij

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1 + L2)ψ†j(L2)ψi(L1)L1

+ αGs

n∑
i=1

∫ ∞
0

dL1

∫ ∞
0

dL2ψ
†
i (L1 + L2)ψi(L2)ψi(L1)L2L1

−
n∑
i=1

∫ ∞
0

dLδ(L)ψi(L). (5.44)

One can derive the free parameter b in our model from the multi-“colored” system under the

treatment, W1(L) = · · · = Wn(L) ≡ WΛ(L), bij = 0 for j = i and bij = 1 for j 6= i.

Next, we closely look at our matrix model. We consider the direct product of the two

copies of the potential. Each of them yields the plain generalized CDT. Introducing the

linear combinations of matrices such that Φ+ = A+B and Φ− = A−B, one finds

1

G̃s

(
1

3
Φ3

+ − ΛcdtΦ+ +
1

3
Φ3
− − ΛcdtΦ−

)
=

1

Gs

(
1

3
A3 + AB2 − ΛcdtA

)
, (5.45)

where G̃s = 2Gs. This is nothing but the potential of our O(1) vector model in the continuum

limit. Diagonalizing the matrix A as A = diag(λ1, · · · , λN) and integrating out the matrix
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B, one gets the effective theory for the eigenvalues of A with the potential,[
1

Gs

∑
i

(
1

3
λ3
i − Λcdtλi

)
− 1

N
log
∏
i<j

(λj − λi)2

]
︸ ︷︷ ︸

terms appeared in the plain generalized CDT

+ (terms induced by the integration over B). (5.46)

An important point here is that our model is slightly different from the plain generalized

CDT matrix model because integrating out the matrix B the extra correction is added to

terms appeared in the plain generalized CDT. From the matrix A’s point of view, the matrix

B can be seen like some external field. The strength of such an external field can be bigger

by inserting the integrated-out matrices. It leads to the O(n) vector model in the continuum

limit.
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Part III

n-DBI Gravity
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6 Black hole solutions in n-DBI gravity

Considering the full n-DBI action, we have shown that any solution of Einstein gravity

with a particular curvature property is a solution of n-DBI gravity [7]. Amongst them is

a class of geometries isometric to Reissner-Nordström-(Anti) de Sitter black hole, which is

obtained within the spherically symmetric solutions of n-DBI gravity minimally coupled to

the Maxwell field. These solutions have, however, two distinct features from their Einstein

gravity counterparts: 1) the cosmological constant appears as an integration constant and

can be positive, negative or vanishing, making it a variable quantity of the theory; 2) there

is a non-uniqueness of solutions with the same total mass, charge and effective cosmological

constant. Such inequivalent solutions cannot be mapped to each other by a foliation pre-

serving diffeomorphism. Physically they are distinguished by the expansion and shear of the

congruence tangent to n, which define scalar invariants on each leave of the foliation.

6.1 Solutions with constant R

We start with the action of n-DBI gravity with matter [6, 7]:

S = − 3λ

4πG2
4

∫
dtd3x

√
hN

[√
1 +

G4

6λ
(R +KijKij −K2 − 2N−1∆N)− q

]
−
∫
d4xLmatter,

(6.1)

where G4 is Newton’s constant and Lmatter is the matter Lagrangian density. The theory

includes two dimensionless constants: λ and q (as for other ingredients, see 3.3). Here for

convenience, we choose the following convention:

R +KijK
ij −K2 − 2N−1∆N ≡ R. (6.2)

Taking variations of N , N i and hij, one obtains the Hamiltonian constraint, momentum

constrains and evolution equation, respectively:

Hamiltonian constraint :

1 + G4

6λ
(R−N−1∆N)√
1 + G4

6λ
R

− q − G4

6λ
∆

(
1 +

G4

6λ
R
)−1/2

= − 4πG2
4

3λ
√
h

δLmatter

δN
, (6.3)
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Momentum constraints :

∇j

Kij − hijK√
1 + G4

6λ
R

 = −8πG4√
h

δLmatter

δN i
, (6.4)

Evolution equation:

1

N
(£t −£N)

Kij − hijK√
1 + G4

6λ
R

 = (∇i∇j − hij(∇l lnN)∇l)

(
1 +

G4

6λ
R
)−1/2

+
−Rij +KKij − 2KilKj

l +N−1∇i∇jN + hij(KmnK
mn −N−1∆N)√

1 + G4

6λ
R

+
16πG4

N
√
h

δLmatter

δhij
.

(6.5)

Taking R to be constant, we have found very interesting solutions [7]. We will explain them

in the following. Dubbing
√

1 +G4R/(6λ) ≡ C, the equations of motion (6.3)-(6.5) reduce

to

R−N−1∆N +
6λ

G4

(1− qC) = −8πG4C√
h

δLmatter

δN
, (6.6)

∇j (Kij − hijK) = −8πG4C√
h

δLmatter

δN i
, (6.7)

1

N
(£t −£N)

(
Kij − hijK

)
= hij(KmnK

mn −N−1∆N)

−Rij +KKij − 2KilKj
l +N−1∇i∇jN +

16πG4C

N
√
h

δLmatter

δhij
. (6.8)

The momentum constraints and the dynamical equations are equivalent to those of Einstein

gravity, but with a renormalization of the matter terms by a factor of C. The Hamiltonian

constraint is also equivalent to that of Einstein gravity with, besides the renormalization by

C of the matter term, a cosmological constant

ΛC =
3λ

G4

(2qC − 1− C2). (6.9)

We are thus led to the following theorem and corollary:

Theorem: Any solution of Einstein gravity with a cosmological constant plus some mat-
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ter Lagrangian admitting a foliation with constant R, as defined in (6.2), is a solution of

n-DBI gravity (with an appropriate renormalization of the solution parameters).

Corollary: Any Einstein space (hence solution of the Einstein equations with a cosmo-

logical constant) admitting a foliation such that R − N−1∆N is constant - where R and ∆

are the Ricci scalar and the Laplacian of the 3-metric hij and N is the lapse in the ADM

decomposition - is a solution of n-DBI gravity (with an appropriate renormalization of the

solution parameters).

As shown in [10], this fact can be understood naturally through the linearlized n-DBI

action (3.59):

Se = − 1

16πG4

∫
d4x
√
−ge

[
(4)

R− 2ΛC(e) +K
]
,

where

ΛC(e) =
3λ

G4

(
2q

e
− 1− 1

e2

)
. (6.10)

If solving the equation of motion of the auxiliary field e, one finds the following solution:

e = ±
(

1 +
G4

6λ
R
)−1/2

. (6.11)

Therefore, e = ±1/C. Picking up + in the double sign, one finds that two cosmological

constants, (6.9) and (6.10), coincide as advocated before. The constantRmeans the constant

e, so that (3.59) becomes equivalent to the Einstein-Hilbert action with cosmological constant

ΛC and the Gibbons-Hawking-York term up to an overall coefficient. This is the reason why

the theorem holds.

6.2 Spherically symmetric solutions

The most generic spherically symmetric line element reads

ds2 = −gTT (R, T )dT 2 + gRR(R, T )dR2 + 2gTR(T,R)dTdR + gθθ(R, T )dΩ2. (6.12)

Defining a new radial coordinate r2 = gθθ(R, T ) and a new time coordinate t = t(R, T ) it is

possible to transform this line element into a standard diagonal form, with only two unknown

functions: gtt(t, r) and grr(t, r). Then, the vacuum Einstein equations yield, as the only

solution, the Schwarzschild black hole, and as a corollary Birkhoff’s theorem, namely that

spherical symmetry implies staticity. In n-DBI gravity, however, only foliation preserving

diffeomorphisms are allowed. Thus, only t = t(T ) is allowed. As a consequence, the most
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general line element compatible with spherical symmetry is

ds2 = −N2(t, r)dt2 + e2f(t,r)
(
dr + e2g(t,r)dt

)2
+ r2dΩ2. (6.13)

To include the possibility of charge, we take

Lmatter = − 1

16π

√
−gFµνF µν , (6.14)

where F = dA is the Maxwell 2-form. To find solutions, we impose two assumptions: we

consider the case with

1. only r dependence for the three metric functions (static).

2. pure electric

A = A(r)dt ⇒ Lmatter =
r2 sin θe−f

8πN
(A′)2. (6.15)

To directly solve the equations of motion (6.3)-(6.5) is quite tedious. It proves more conve-

nient to consider the reduced system obtained by specializing the action (6.1) to our ansatz.

One obtains the effective Lagrangian density:

Leff = λr2efN

[√
1 +

GN

6λ
R− q

]
+
G2
N

6N
r2e−f (A′)2, (6.16)

whose equations of motion are a subset of the full set of constraints (6.3)-(6.5).16 These

equations of motion can be solved with full generality (see Appendix B), but it turns out

that the most interesting solutions are the subset with R constant. These are given by

ds2
1 =−

(
1− 2G4M1

r
+
CQ2

r2
+
C3

r4
− G4Λ1r

2

3

)
dt2

+

 dr√
1− 2G4M1

r
+ CQ2

r2
+ C3

r4
− G4Λ1r2

3

+

√
2G4M2

r
+
C3

r4
+
G4Λ2r2

3
dt

2

+ r2dΩ2,

(6.17)

where

Λ1 ≡
2λ

G4

(qC − 1) , Λ2 ≡
λ

G4

(
4qC − 1− 3C2

)
, (6.18)

16One should check that the final solution satisfies the equations of motion (6.3)-(6.5), which is indeed the
case.
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and Q,C,M1,M2, C3 are integration constants. Moreover, as expected,

Λ1 + Λ2 = ΛC , (6.19)

where ΛC is defined in (6.9). This family of solutions is therefore characterized by these five

integration constants and the two dimensional constants of the theory (λ, q).

6.2.1 Analysis of the solutions

To understand the physical meaning of the solution (6.17), we perform a coordinate trans-

formation t→ T = T (t, r),

dT = dt− 1

1− 2G4M
r

+ CQ2

r2
− G4ΛCr2

3

√√√√ 2G4M2

r
+ C3

r4
+ G4Λ2r2

3

1− 2G4M1

r
+ CQ2

r2
+ C3

r4
− G4Λ1r2

3

dr, (6.20)

where M ≡ M1 + M2. Somewhat surprisingly, the line element (6.17) becomes recogniz-

able as the Reissner-Nordström-(Anti)-de-Sitter solution with mass M , charge
√
CQ and

cosmological constant ΛC :

ds2
2 = −

(
1− 2G4M

r
+
CQ2

r2
− G4ΛCr

2

3

)
dT 2 +

dr2

1− 2G4M
r

+ CQ2

r2
− G4ΛCr2

3

+ r2dΩ2.

(6.21)

Observe the renormalization of the charge, as anticipated in 6.1. One can confirm that this

line element is a solution of n-DBI gravity as well.

Geometrically, the solution we have found is nothing but this standard solution of Einstein

gravity, written in an unusual set of coordinates that can be thought of as a superposition

of Gullstrand-Painlevé,

ds2
GP = −dt2 +

(
dr + e2g(r)dt

)2
+ r2dΩ2, (6.22)

and Schwarzschild coordinates,

ds2
Sch = −f(r)2dt2 + g(r)2dr2 + r2dΩ2. (6.23)

The coordinate transformation (6.20) is not, however, a foliation preserving diffeomorphism.

Thus, in n-DBI gravity, (6.17) and (6.21) describe the same solution if and only if M2 =

C3 = Λ2 = 0. Otherwise they are two distinct solutions with different physical invariants

(discussed below) which happen to be mapped by a non-foliation preserving diffeomorphism.
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Namely, we can schematically describe the situation as follows:

ds1
Diff→ ds2 ⇒ ds1 and ds2 are NOT physically equivalent,

ds1
DiffF→ ds2 (iff. M2 = C3 = Λ2 = 0) ⇒ ds1 and ds2 are physically equivalent.

In the above, “
Diff→” stands for the general (non-foliation preserving) map (6.20), and especially

when the map (6.20) becomes the foliation preserving diffeomorphism, it is written as “
DiffF→ ”.

Thereby, one can notice that in n-DBI gravity the constants (M2, C3,Λ2) are newly induced

by the symmetry breaking. Thus, the constants (M2, C3,Λ2) should specify the foliation

because in n-DBI gravity there is no DOF to deform the foliation as opposed to general

relativity, and so a specific choice of the foliation breaks the full diffeomorphism down to

the foliation preserving one. To check the statement above, remember the definition of the

extrinsic curvature:

Kµν =
1

2
£nhµν . (6.24)

We introduce its traceless part σij and the trace part θ as well:

σij = Kij −
1

3
Khij, θ = K, (6.25)

where σij and θ are called shear and expansion of the congruence of time-like curves tangent

n, resectively. As is clear from the definition, the extrinsic curvature measures variations

of the foliation along the normal direction n: the shape (embedding) of the foliation is

determined by the extrinsic curvature. Let us take a look at the scalar (gauge-invariant)

quantities constructed by the extrinsic curvature:

θ = − 3 (G4M2 +G4Λ2r
3)√

C3 + 2G4M2r3 +G4Λ2r6
, σijσ

ij = 6

[
C3 +G4M2r

3

r3
√
C3 + 2G4M2r3 +G4Λ2r6

]2

; (6.26)

we also have

KijK
ij −K2 = 6

(
C3

r6
−G4Λ2

)
. (6.27)

It is manifest that M2, Λ2 and C3 enter in these scalar invariants. One can understand that

M2 and Λ2 dress the mass of the black hole and the cosmological constant, respectively.

However, the physical meaning of C3 is still unclear. To uncover its meaning, we set all

coefficients zero except for C3 in the line element (6.17):

ds2
1 =−

(
1 +

C3

r4

)
dt2 +

 dr√
1 + C3

r4

+

√
C3

r4
dt

2

+ r2dΩ2. (6.28)
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The mass, cosmological constant and charge of the black hole have been set to zero in (6.28).

Nevertheless, one can observe the singularity at r = 0, and besides it can not be gauged away.

We dub this singularity as shearing singularity [7]. This is because if setting M2 = Λ2 = 0 in

the scalar quantities made of the extrinsic curvature, one finds that the shear only survives

as

KijK
ij = σijσ

ij =
6C3

r6
, θ = 0. (6.29)

We summarize the consequence. We found the solution ds2
1 with 5 unknown constants

{Q,C,M1,M2,M3, C3}. Performing the non-foliation preserving diffeomorphism, the C3 was

removed and we obtained ds2
2. The ds2

2 was turned out to be a solution in n-DBI gravity, the

Reissner-Nordström-(Anti)-de-Sitter solution. However, this transformation is not a foliation

preserving one. This means that the C3 is not a gauge artifact but a shearing singularity. As

usual in Einstein gravity, one can invoke smoothness to rule out some solutions as unphysical.

For instance smoothness of the constant (Riemann) curvature spaces (M1 = M2 = Q = 0),

requires C3 = 0 to avoid the shearing singularity at r = 0.

Notice that there is, for example, no Reissner-Nordström (A)dS solution in Gullstrand-

Painlevé coordinates. If the symmetry group of n-DBI gravity was the set of general coordi-

nate transformations, we would have found such a solution. In other words, the breakdown

of the symmetry to foliation preserving diffeomorphisms is explicitly reflected in the form of

the solutions (6.17).

6.2.2 Asymptotic behavior

Asymptotically (r →∞) the solution (6.17) becomes a constant curvature space:

Rµναβ =
G4ΛC

3
(gµαgνβ − gµβgνα) . (6.30)

With appropriate choices of C one may set either Λ1 = 0 or Λ2 = 0, keeping the other

non-vanishing. In both cases one recognizes de Sitter space: either written in Painlevé-

Gullstrand coordinates (with cosmological constant Λ2), or written in static coordinates

(with cosmological constant Λ1). In the latter case, Anti-de-Sitter space may also occur,

written in global coordinates. Keeping both Λ1 and Λ2 non-vanishing one has an unusual

slicing of constant curvature spaces. This can represent de Sitter space-time, Anti-de Sitter

space-time or Minkowski space, depending on the sign of the total cosmological constant

Λ1 + Λ2. Indeed, the integration constant C controls the magnitude of the cosmological

constant:

C ∈ ]q −
√
q2 − 1, q +

√
q2 − 1[, de Sitter
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C = q ±
√
q2 − 1, Minkowski

C otherwise AdS.

dS and Minkowski space solutions can only exist if q ≥ 1.

6.3 Discussion

In [7] we have explored some further properties of n-DBI gravity, beyond those studied in

[6], which focused on cosmology.

A crucial property of the theory is the existence of an everywhere time-like vector field

n. We have assumed it to be hyper-surface orthogonal - which is expressed by the relation

we have chosen between n and the ADM quantities - albeit this condition could be dropped

and an even more general framework considered. The existence and role played by n is

reminiscent of Einstein-æther theory (see [5] for a review).

It follows that the symmetry group of the theory is that which preserves n and therefore

the foliation defined by it, F . This group, denoted by DiffF(M), is the group of foliation pre-

serving diffeomorphisms, and it is therefore smaller than general coordinate transformations;

it is the group that leaves invariant the equations of motion. This means that a non-foliation

preserving diffeomorphism applied to a solution of n-DBI gravity is not, in general, a solution

of n-DBI gravity. Exceptionally, however, this may happen and a non-foliation preserving

diffeomorphism may map two solutions. These should be regarded, however, as physically

distinct solutions, perhaps in the same orbit of a larger symmetry group, in the same spirit

of many duality symmetries or solution generating techniques that have been considered in

the context of supergravity or string theory. In n-DBI gravity it is unclear, at the moment,

if such larger symmetry group exists, but an explicit example of a non-foliation preserv-

ing mapping (inequivalent) solutions was provided by (6.20). The solutions are, of course,

isometric; in this particular example they are the standard Reissner-Nordström-(A)dS ge-

ometry in two different coordinate systems. Observe, however, the non-trivial dynamics of

the theory, where the mass and the cosmological constant can in effect be split between two

slicings but not the charge.

The fact that the spherically symmetric solutions of n-DBI gravity minimally coupled

to a Maxwell field contain precisely the Reissner-Nordström geometry (with or without a

cosmological constant) is remarkable and, as far as we are aware, unparalleled, within theories

of gravity with higher curvature terms. This leads to the natural question of how generic

is it that Einstein gravity solutions are solutions of n-DBI gravity (with the same matter

content)? Following the theorem and corollary presented in 6.1 this question can be recast

very objectively as the existence of a foliation with a specific property. How generically can

such foliation be found? Can it be found for the Kerr solution?
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Finally, the ansatz compatible with spherical symmetry in n-DBI gravity has more degrees

of freedom than in Einstein gravity. It will be quite interesting to see if, even in vacuum,

such ansatz can accommodate a non-trivial time dependence, prohibited in Einstein gravity

by Birkhoff’s theorem.

7 Scalar graviton in n-DBI gravity

n-DBI gravity is a gravitational theory which yields near de Sitter inflation spontaneously

at the cost of breaking Lorentz invariance by a preferred choice of foliation. In [10], we

have shown that this breakdown endows n-DBI gravity with one extra physical gravitational

degree of freedom: a scalar graviton. Its existence is established by Dirac’s theory of con-

strained systems. Firstly, a general analysis is made in the canonical formalism, using ADM

variables. It is useful to introduce an auxiliary scalar field, which allows recasting n-DBI

gravity in an Einstein-Hilbert form but in a Jordan frame. Identifying the constraints and

their classes we confirm the existence of an extra degree of freedom in the full theory, besides

the two usual tensorial modes of the graviton. Then, studying scalar perturbations around

Minkowski space-time, we show that there exists one scalar degree of freedom and identify

it in terms of the metric perturbations. We then argue that, unlike the case of (the original

proposal for) Hořava-Lifshitz (HL) gravity [38], there is no evidence that the extra degree of

freedom originates pathologies, such as vanishing lapse, instabilities and strong self-coupling

at low energy scales.

7.1 Nailing scalar graviton

We will consider the Hamiltonian formulation of the full n-DBI gravity theory and confirm

the existence of one extra degree of freedom. Since in the n-DBI action the time derivative is

of first order at most, one can work on the Hamiltonian formalism. The n-DBI Lagrangian,

LnDBI, is given by equation (6.1). The square root makes the analysis cumbersome, and we

find it more convenient to work in the linearized form with the auxiliary field e (3.59):

LenDBI = −1

κ

∫
d3x
√
−g e

(
R +KijK

ij −K2 − 2N−1∆N − 2G4ΛC(e)
)
, (7.1)

where κ ≡ 16πG4. In passing to the Hamiltonian formalism, we set the notation for the

canonical conjugate momenta as

LenDBI

(
(hij, ḣij), (N, Ṅ), (Ni, Ṅi), (e, ė)

)
→ He

nDBI

(
(hij, p

ij), (N, pN), (Ni, p
i
~N
), (e, pe)

)
.

(7.2)
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However, the time derivatives of N and Ni are absent as in general relativity, and so is the

time derivative of e. Thus we have the primary constraints,

Φ1 ≡ pN = 0, Φi
2 ≡ pi~N = 0, Φ3 ≡ pe = 0. (7.3)

Denoting the Lagrangian density by LenDBI, the Hamiltonian density is given by

He(0)
nDBI ≡ pijḣij − LenDBI

=
√
hNj

(
− 2√

h
∇ip

ij

)
+

√
hN

κ

[
−κ

2

eh

(
pijpij −

1

2
p2

)
+ e (R− 2G4ΛC(e))

]
− 2

κ

√
h (e∆N) , (7.4)

where

pij ≡ δLenDBI

δḣij
= −
√
h

κ
(Kij − hijK)e. (7.5)

The time flow of the constraints are generated by the extended Hamiltonian density

He(1)
DBI = He(0)

DBI + λ1Φ1 + λ2iΦ
i
2 + λ3Φ3, (7.6)

where λ1, λ2i and λ3 are the Lagrange multipliers. Thus the primary constraints evolve in

time as

Φ̇1(x) =

∫
d3y{He(0)

DBI(y),Φ1(x)}+
∑
a=1,3

∫
d3y{Φa(y),Φ1(x)}λa +

∫
d3y{Φi

2(y),Φ1(x)}λ2i

= −
√
h

κ

[
−κ

2

eh

(
pijpij −

1

2
p2

)
+ e (R− 2G4ΛC(e))− 2∆e

]
≡ Φ4(x), (7.7)

Φ̇i
2(x) =

∫
d3y{He(0)

DBI(y),Φi
2(x)}+

∑
a=1,3

∫
d3y{Φa(y),Φi

2(x)}λa +

∫
d3y{Φj

2(y),Φi
2(x)}λ2j

= 2∇jp
ij ≡ Φi

5(x), (7.8)

Φ̇3(x) =

∫
d3y{He(0)

DBI(y),Φ3(x)}+
∑
a=1,3

∫
d3y{Φa(y),Φ3(x)}λa +

∫
d3y{Φi

2(y),Φ3(x)}λ2i

=

√
hN

κe

[
−κ

2

eh

(
pijpij −

1

2
p2

)
− e (R− 2G4ΛC(e))− 12λ

G4

(
q − 1

e

)]
+

2
√
h

κ
∆N ≡ Φ6(x). (7.9)
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Therefore, in addition to the primary constraints (7.3), we have the secondary constraints

Φ4 = ṗN ≈ 0 , Φi
5 = ṗi~N ≈ 0 , Φ6 = ṗe ≈ 0 . (7.10)

Finally, the time flows of the secondary constraints do not yield any further constraints, as

shown in Appendix C.

It is easy to understand the physical meaning of the above constraints. Firstly, we can

solve Φ6 = 0 for e and obtain

e = ±
(

1 +
G4

6λ
R
)−1/2

, (7.11)

where we defined R ≡ (4)R+K. Choosing the positive sign and plugging it into Φ4, we find

Φ4 = −κ
2

[
− 3λ

4πG2
4

q +
1√
h

√
A(h,N)B(h, p) +

1√
h

∆N

N

√
B(h, p)

A(h,N)
−∆

(
1√
h

√
B(h, p)

A(h,N)

)]
,

(7.12)

where

A(h,N) =
6λ

G4

+R− 2N−1∆N, B(h, p) = 2p2 − 4pijpij +
3λh

32π2G3
4

. (7.13)

In terms of the Lagrangian variables, the constraint Φ4 = 0 yields

0 =
1 + G4

6λ
(R−N−1∆N)√
1 + G4

6λ
R

− q − G4

6λ
∆

(
1 +

G4

6λ
R
)−1/2

. (7.14)

This is nothing but the Hamiltonian constraint in [7]. Similarly, plugging (7.11) into (7.5),

the constraints Φi
5 = 0 yield

∇j

Kji − hjiK√
1 + GN

6λ
R

 = 0. (7.15)

These are the momentum constraints in [7]. We, however, note that it is more appropriate

to regard the following linear combination:

Φ̃5j = Φ5j − Φ1∂jN − Φ3∂je, (7.16)

as the momentum constraints. This is because these are the constraints that generate the

spatial diffeomorphisms for the phase-space variables, hij, p
ij, N and e, rather than Φ5j (see

Appendix C). By an explicit computation, one can show that Φ2j and Φ̃5j are first-class
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constraints, forming the constraint algebra (C.52)–(C.57), and the rest are second class (see

Appendix C for details). Hence, the constraints are classified as

#(phase-space variables) = #(hij, p
ij, N, pN , Ni, p

i
~N
, e, pe) = 2(6 + 1 + 3 + 1) = 22,

#(2nd-class constraints) = #(Φ1,Φ3,Φ4,Φ6) = 1 + 1 + 1 + 1 = 4,

#(1st-class constraints) = #(Φ2j, Φ̃5j) = 3 + 3 = 6.

Consequently, the number of physical degrees of freedom (DOF) in n-DBI gravity reads

DOF of graviton =
1

2
(22− 4− 2× 6) = 2 + 1. (7.17)

Indeed, as advertised, we find an extra degree of freedom as compared to general relativity.

This is nothing but a scalar graviton.

7.2 Identity of scalar graviton

Having established the existence of the scalar graviton, we wish to identify it in terms of

the metric perturbations from the flat background. The metric has ten components: the

lapse N , the shift N i, and the spatial metric hij. These can be decomposed into 4 scalars

(n,B, ψ,E), 2 transverse vectors (Ai, Ãi), 1 transverse traceless tensor h̃ij as follows (see e.g.

[88]):

N =1 + n, Ni = ∇iB + Ai,

hij =δij − 2

(
δij −

∇i∇j

∆

)
ψ − 2

∇i∇j

∆
E +

(
∇iÃj +∇jÃi

)
+ h̃ij, (7.18)

where the transversality and traceless conditions are imposed,

∇iAi = ∇iÃi = ∇ih̃ij = h̃i i = 0. (7.19)

We now expand the n-DBI gravity action (6.1) to quadratic order around flat space-time,

setting q = 1. Thanks to conditions (7.19), scalar perturbations and vector-tensor pertur-

bations decouple from each other. The quadratic Lagrangian density for the scalar fields

yields, up to total divergences,

4πG4Lscalar = 2ψ̇2 + 4ψ̇
(
Ė + ∆B

)
+ (2ψ − 4n) ∆ψ +

G4

6λ
(2∆ψ −∆n)2 . (7.20)

This essentially corresponds to the λ = 1 case of [42], and the scalar graviton in this model is

qualitatively different in its character from the one discussed there. In order to see the scalar
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degree of freedom in the flat space, we shall apply Dirac’s theory of constrained systems.

The Hamiltonian density of this effective scalar theory reads17

H(0)
scalar = −1

8
p2
E +

1

4
pEpψ − pE∆B − (2ψ − 4n) ∆ψ − G4

6λ
(2∆ψ −∆n)2 , (7.21)

where pE and pψ are the conjugate momenta of E and ψ, respectively. Since the Lagrangian

density (7.20) does not contain the time derivative of n or B, their conjugate momenta

become the following primary constraints:

Φ1 ≡ pn = 0, Φ2 ≡ pB = 0. (7.22)

Thus the dynamics of this system is governed by the Hamiltonian density

H(1)
scalar = H(0)

scalar + λ1Φ1 + λ2Φ2, (7.23)

where λ1 and λ2 are Lagrange multipliers. The consistency requires the time flows of the

primary constraints to vanish:

Φ4 ≡ Φ̇1 = 4∆ψ +
G4

6λ

(
4∆2ψ − 2∆2n

)
≈ 0, Φ5 ≡ Φ̇2 = −∆pE ≈ 0. (7.24)

The former corresponds to the Hamiltonian constraint and the latter to the momentum

constraint. The time flows of these secondary constraints do not yield new constraints.

Among these four constraints, Φ2 and Φ5 commute with all the constraints and are therefore

first class, whereas Φ1 and Φ4 are second class. Hence the physical degrees of freedom of this

system are counted as (2 × 4 − 2 × 2 − 2)/2 = 1. In contrast, in general relativity (herein

we dub as GR) where λ → ∞, all the constraints are first class and the counting becomes

(2 × 4 − 2 × 2 − 2 × 2)/2 = 0. In other words, GR has two pairs of first class constraints

associated with the full diffeomorphism, whereas n-DBI has only one pair reflecting that only

the foliation preserving diffeomorphism is preserved. Thus, in n-DBI gravity there remains

one physical scalar degree of freedom that cannot be gauged away. We will elaborate on this

point in a moment.

Note that it is the presence of the lapse term (∆n)2 ∼ (N−1∆N)2 in the Hamiltonian

that leaves one physical scalar degree of freedom, as opposed to 1/2 in Hořava-Lifshitz (HL)

gravity.18 This is similar to the consistent extension of HL gravity [42].

17For convenience, we have rescaled the scalar fields by the factor of (4πG4)1/2.
18In non-projectable HL gravity, the lapse N is a Lagrange multiplier as in GR, but the Hamiltonian

constraint is second class. Moreover, the time flow of the Hamiltonian constraint yields an additional
constraint that depends on the lapse N . Thus, there are 3 second class constraints; the conjugate momentum
pN of the lapse, the Hamiltonian constraint H, and its time flow Ḣ. Together with 6 first class constraints,
the number of degrees of freedom is counted as (2× 10− 2× 6− 3)/2 = 2 + 1/2. Note, however, that linear
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We shall clarify how the scalar mode becomes physical as a direct consequence of the

breakdown of full diffeomorphism invariance to foliation preserving one. For this purpose,

we first note that the scalar field theory (7.20) has the foliation preserving gauge symmetry:

ψ → ψ, (7.25)

B → B + L̇− T, (7.26)

E → E −∆L, (7.27)

n→ n+ Ṫ , (7.28)

where T and L are related to infinitesimal coordinate transformations by ξ0 = T and ξi =

∇iL. In n-DBI gravity, T is a function of time only, whereas L is a function of both space

and time. In GR, T also becomes a function of both space and time. Note that the gauge

invariant quantities are

{ψ, Ë + ∆Ḃ + ∆n} for both GR and n-DBI, (7.29)

{Ė + ∆B, ∂in} for n-DBI only. (7.30)

As it is clear from the above counting of degrees of freedom, the extra scalar graviton exists

in n-DBI gravity, because the constraints Φ1 and Φ4 are second class, whereas in GR they

are first class and generate the gauge transformations{∫
d3yζ1(y)Φ1(y), n(x)

}
= ζ1(x),

{∫
d3yζ2(y)Φ4(y), pψ(x)

}
= −4∆ζ2(x). (7.31)

Comparing this with the foliation preserving diffeomorphism (7.25)-(7.28), we find that

ζ1 = Ṫ , ζ2 = T, (7.32)

where we used pψ = 4(ψ̇ + Ė + ∆B). In n-DBI gravity, as we stressed above, T is a

function of time only. Accordingly, the constraints Φ1 and Φ4 become second class and are

not considered as generators of gauge transformations. This implies that the scalar graviton

should involve the lapse and/or the shift whose gauge transformations are generated by T .

This nicely fits the expectation that the scalar graviton must have something to do with the

foliation structure which is specified by the lapse and the shift. Indeed, the equations of

perturbations about flat space-time yield a misleading result. There appear four second and two first class
constraints, implying incorrectly that the number of scalar degrees of freedom is zero. In projectable HL
gravity, there is an additional primary constraint ∂iN = 0 on top of pN = 0. In this case, the time flow of
pN = 0 does not yield the Hamiltonian constraint. Instead, it determines the Lagrange multiplier of ∂iN .
Hence pN and ∂iN are the only second class constraints, and the total physical degrees of freedom is 2 + 1.
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motion,

ψ̈ = 0, (7.33)

∆ψ̇ = 0, (7.34)

Ë + ∆Ḃ + ∆n+ ∆ψ = 0, (7.35)

∆ψ =
GN

6λ

(
1

2
∆2n−∆2ψ

)
, (7.36)

have in the E = 0 gauge the general solution19

B(t, x) =B0(x) +B1(x)t, (7.37)

n(t, x) =−B1(x)− ψ0(x), (7.38)

ψ(t, x) =ψ0(x), (7.39)

with ψ0(x) related to B1(x) by

ψ0(x) = −GN

6λ

(
∆B1(x) +

3

2
∆ψ0(x)

)
. (7.40)

Note that we have imposed the boundary condition that all the fields must fall off at spatial

infinity. In other words, the functions f(x)’s appearing in the most general solution and

obeying the Laplace equation ∆f(x) = 0 are unphysical and set to zero. In the Hamiltonian

system, a degree of freedom is the freedom to choose a pair of initial data for the time evolu-

tion in the phase space. We have found exactly one degree of freedom, i.e., the initial data

specified by a pair of arbitrary functions of space, (B0(x), B1(x)). In GR, these could have

been gauged away by choosing the gauge parameter T (t, x) = B(t, x) (and the Hamiltonian

constraint would have enforced ψ0(x) = 0). Put differently, in n-DBI gravity the scalar mode

is the broken gauge degree of freedom T (t, x) which obeys, by taking the time derivative of

the the Hamiltonian constraint (7.36),

∆2T̈ (t, x) = 0, (7.41)

where we have used n(t, x) = −Ṫ (t, x) − ψ0(x) and ψ(t, x) = ψ0(x). A few remarks are in

order: firstly, this is a key equation, despite its extremely simple appearance, and notably

originates from the nonlinear lapse term (∆n)2 ∼ (N−1∆N)2 in the Hamiltonian; secondly,

19A more common gauge is to set the shift B = 0. We can go from the E = 0 to the B = 0 gauge by
choosing the gauge parameter L(t, x) = −B0(x)t − 1

2B1(x)t2. This yields the conformal mode E(t, x) =
∆B0(x)t+ 1

2∆B1(x)t2. Note that in either gauge the lapse n alone only accounts for a half degree of freedom
of the scalar graviton.
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the Stückelberg field satisfies exactly the same equation and thus can be identified with the

broken gauge degree of freedom T (t, x).

Observe that the frequency of the scalar mode is ω = 0, and thus this is more a zero mode

than a propagating particle mode. Nonetheless, this is the physical degree of freedom of our

Hamiltonian system. We will postpone the interpretation of this result for the moment and

discuss it in 7.4.

7.3 Potential pathologies

We shall now address some potential pathologies associated with the existence of the scalar

graviton, which are known to afflict HL gravity.

7.3.1 Vanishing lapse

One of the most serious problems of HL gravity is the absence of dynamics discussed in

[39]. The problem is that the time flow of the Hamiltonian constraint yields an independent

constraint on the lapse, which, as it turns out, requires the lapse to identically vanish in

asymptotically flat space-times, implying that HL gravity does not have any dynamics. The

authors of [39] emphasize that this problem is intimately related to the fact that in HL gravity

the Hamiltonian constraint is second class. In n-DBI gravity, the Hamiltonian constraint

is also second class. This raises the concern that this model might also lack dynamics.

However, this problem is evaded in a similar way as the consistent extension of HL gravity

does. Namely, the time flow of the Hamiltonian constraint, given by (C.58) in the full theory,

does not yield an additional constraint unlike HL gravity; rather it determines the Lagrange

multiplier λ3, since the Hamiltonian constraint Φ4 depends on the auxiliary field e (and

implicitly on the lapse N through e by solving Φ6 = 0) and thus {Φ3,Φ4} 6= 0. This stems

from the nonlinear lapse dependence in the n-DBI action and can be seen more clearly in

the linearized theory in 7.1:20 the time flow of the Hamiltonian constraint Φ4 is generated

by its commutator with the Hamiltonian density (7.23). Because of the lapse term ∆2n in

the Hamiltonian constraint descended from the nonlinear lapse term (∆n)2 ∼ (N−1∆N)2

in the action, the coefficient {Φ1,Φ4} of the Lagrange multiplier λ1 is non-vanishing. Thus,

such time flow determines λ1 rather than imposing an extra constraint on the lapse.

To summarize, the nonlinear lapse dependence intrinsic to n-DBI gravity rescues the

model from the absence of dynamics.

20In the full theory, the nonlinear lapse dependence is somewhat obscured by the introduction of the
auxiliary field e which linearizes the lapse dependence.
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7.3.2 Short distance instability

In [40] it was found that the scalar graviton in HL gravity develops an exponential time

growth at short distances in generic space-times in the linearized approximation. This sug-

gests the presence of a universal short distance instability in HL gravity. Such problem,

however, should be considered with some caution. The exponentially growing mode involves

the lapse; but the lapse in asymptotically flat space-times is forced to vanish everywhere

[39], as mentioned in 7.3.1. If the lapse must collapse everywhere, there would be no way

to develop an exponentially growing mode involving the lapse. Thus there appears to be

a contradiction between these two issues. This might imply that the unstable scalar mode

found in [40] fails to obey the boundary condition at spatial infinity, when extended to long

distances. In any case, as we have just shown, the lapse does not vanish in our model and so

it is sensible and important to study whether the scalar mode leads to any sort of instability

or not.

We shall now show that the analysis that reveals an exponential time growth at short

scales in HL gravity, does not allow the same conclusion when applied to the scalar graviton

in n-DBI. We begin by recasting the equations of motion of n-DBI gravity:

(£t −£N)hij − 2NKij = 0, (7.42)

R +K2 −KijK
ij = 2G4ΛC(e) + 2e−1∆e, (7.43)

∇j (Kij − hijK) = −e−1∇je (Kij − hijK) , (7.44)

(£t −£N)
(
Kij − hijK

)
+N

(
Rij −KKij + 2KilKj

l − h
ijKmnK

mn
)
−∇i∇jN + hij∆N

= −e−1(£t −£N)e
(
Kij − hijK

)
+ e−1N

(
∇i∇j − hij(∇l lnN)∇l

)
e, (7.45)

where e =
(
1 + G4

6λ
R
)− 1

2 and the cosmological constant ΛC(e) = 3λ
G2

4

(
2q
e
− 1− 1

e2

)
. The first

equation defines the extrinsic curvature. The second and third equations are the Hamiltonian

and momentum constraints, respectively. The last equation is the evolution equation [7]. In

this form, the R.H.S. of (7.43)–(7.45) represent the modification from GR. In fact, when

the auxiliary field e is constant, the R.H.S. vanish except for the cosmological constant in

the Hamiltonian constraint (7.43), and these equations become those of GR, as remarked in

6.1. As we have seen in (7.41), the time-derivative of the Hamiltonian constraint succinctly

captures the scalar mode dynamics, and it can be written as

∆ė−KN∆e−
(
N∂iK + 2K∂iN

)
∂ie−N−1∆Nė = 0. (7.46)

We now consider small perturbations around a generic background in the gauge N i = 0:

hij = h̄ij + γij, (7.47)

78



Kij = K̄ij + κij, (7.48)

N = N̄ + n. (7.49)

The details of the following analysis can be found in Appendix D.1. We assume that the

background space-time varies over the characteristic scale L; R̄ij ∼ 1/L2, K̄ij ∼ 1/L, R̄ ∼
1/L2, ∂ ln N̄ ∼ 1/L, and ē ∼ 1 + O(1/L2). Since we are interested in a potential universal

short distance instability, we focus on scales much shorter than L;

ω, p� 1/L , (7.50)

where the space-time is nearly flat. We can then neglect terms with space-time derivatives

of the background fields relative to those of the perturbed fields. Assuming the Fourier

decompositions

γij, κ
ij, n ∼ e−iωt+ip·x, (7.51)

the perturbations of (7.42)–(7.45) and (7.46) yield (D.6)–(D.9) and (D.14), respectively. We

then find that for the scalar mode to be present

ω ∼ N̄p ∼ i
(
N̄K̄ + ∂N̄

)
∼ i

L
. (7.52)

At first sight, it might seem to imply the existence of an exponentially growing mode, sug-

gesting an instability. This relation, however, violates the validity of our approximation

(7.50) and thus cannot be satisfied. We conclude that this analysis does not reveal a po-

tential universal short distance instability as discussed in the HL case [40]. Note that this

also implies that there is no scalar mode of the type (n, γ) ∼ (n(ω, p), γ(ω, p)) eiωt+ip·x at

short distances.21 The same conclusion can be reached by an alternative analysis using the

Stückelberg field φ. We leave the details of the analysis in Appendix D.2. The equation of

motion for φ can be obtained from the action (3.66). The preferred choice of time-like vector

n = (−N, 0, 0, 0) corresponds to φ = t. Indeed, the equation of motion (D.20) for φ reduces,

when φ = t, to the time derivative of the Hamiltonian constraint (7.46). We now consider

perturbations in unitary gauge φ = t+ϕ and N i = 0, expanding (7.46) to linear order in ϕ.

To leading order, we find

∆2ϕ̈− (N̄K̄ − ∂t ln N̄)∆2ϕ̇+ 2∂i ln N̄∂
i∆ϕ̈ = 0. (7.53)

This indeed yields (7.52) found in the previous analysis.

21As we have seen in 7.1, the scalar mode does exist, but it has ω = 0. This can also be seen in the
Stückelberg formalism, cf. (7.53). The scalar mode is neither exponentially growing nor oscillating to linear
order. We will discuss more about the scalar mode in 7.4.
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We conclude by remarking that, as advertised, ϕ(t, x) can be identified with the broken

gauge parameter T (t, x). Since in flat space-time (7.53) yields ∆2ϕ̈ = 0, we obtain precisely

the scalar graviton equation (7.41) whose origin can be traced to the nonlinear lapse term

(observe also that (7.53) is the time derivative of the linearized Hamiltonian constraint).

This provides a consistency check of our computations.

7.3.3 Strong coupling

Naively, n-DBI gravity admits the GR limit by tuning the parameter λ→∞ and q → 1 with

λ(q−1) fixed finite. However, as is well-known, it is subtle and far from obvious whether the

extra scalar mode actually decouples in the IR in the putative GR limit. A famous example

is the van Dam-Veltman-Zakharov (vDVZ) discontinuity of massive gravity [89] which can

be attributed to the strongly coupled nature of a scalar mode, as elucidated in [90]. Massive

gravity has three extra modes; a transverse spin one and a scalar mode. As it turned out,

the scalar mode remains strongly coupled in the massless limit and thus the GR limit does

not exist.

The original form of HL gravity has a similar strong coupling problem [40, 41]; there is an

energy scale Λs above which the scalar mode self-coupling becomes strong. For HL gravity

to flow to GR in the IR, the strong coupling scale Λs needs to be sufficiently high so that

the coupling becomes weak and virtually decouples in the IR. However, as it turned out, the

naive estimate of the strong coupling scale yields a value too low, Λs =
√
λHL − 1MP , where

λHL is an anisotropy parameter and the coefficient of the K2 term; this is most manifest in

the Stückelberg field formalism. The part of the Stückelberg field action, coming from the

K2 term, is proportional to (λHL− 1)M2
P . This is the most relevant part of the action in the

IR. This implies that the coupling is g = 1/(
√
λHL − 1MP ) and thus irrelevant. Although

the coupling becomes weak in the IR, the strong coupling scale Λs is too low, approaching

zero in the putative GR limit λHL = 1. In fact, as argued in [40], the situation appears to be

even worse. The quadratic action in flat space lacks time derivatives, while there are time

derivative interactions. This may imply that the high frequency modes are always strongly

coupled. Indeed, one can refine the estimate of the strong coupling scale by making the space-

time slightly curved (with the characteristic length scale L) which introduces a quadratic

term with a time derivative. Then the refined strong coupling scale becomes anisotropic and

is estimated to be Λω = L−1/4Λ
3/4
s and Λp = L−3/4Λ

1/4
s [40]. In the flat space limit L→∞,

these are in fact zero.

In n-DBI, the situation turns out to be more subtle. The Stückelberg field action in flat
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space in unitary gauge yields

S3 =
1

192πλ

∫
d4x

[
1

2
(∆ϕ̇)2 − (ϕ̇∆ϕ̈− ∂iϕ∆∂iϕ̇) ∆ϕ+

5

12

(∆ϕ̇)3

λM2
P

]
, (7.54)

to cubic order, as shown in Appendix D.3. The quadratic action is invariant under the

scaling E → sE, t → s−1t, x → s−1x, and ϕ → s−1ϕ. First note that the last interaction

is irrelevant as compared to the middle ones. The higher order interactions have a similar

structure. So the most “relevant” terms are of the middle type and actually (classically)

marginal, with coupling λ
n−2
2 , for the n-th order in ϕ.22 However, due to quantum effects,

these operators may become either relevant or irrelevant. For the cubic terms with coupling

g =
√
λ, the beta function at 1-loop is of the form β(g) = −cg3, from which one obtains23

g2 = g2
0

(
1 + 2cg2

0 ln
Λ

MP

)−1

, (7.55)

where Λ is the energy scale and the UV cutoff scale is MP . Therefore, the strong coupling

scale is

Λs ∼MP exp

(
− 1

2cλ

)
. (7.56)

This implies that in the putative GR limit λ → ∞, the strong coupling scale is about

the Planck scale and thus sufficiently high. However, for this coupling to be (marginally)

irrelevant, the constant c must be negative. Given the fact that this is a scalar field theory

and the higher derivative nature of the operators, it seems plausible that this is actually the

case. Therefore, n-DBI gravity is likely to be free from the strong coupling problem.

7.4 Discussion

The first main result is to have established that n-DBI gravity has three degrees of freedom:

the usual two tensorial modes of the graviton plus a scalar mode which, however, is not

a propagating particle with a definite dispersion relation. The second result is that the

arguments for three pathological features of the original formulation of HL gravity do not

carry over to n-DBI gravity; these arguments concern the absence of dynamics, a universal

short distance instability, and a strong coupling issue. The reason why n-DBI looks healthier

than HL gravity, in these respects, has a common ground: the nonlinear dependence on

(spatial derivatives of) the lapse in the action.

The fact that the same arguments for the pathologies in HL gravity do not directly apply

to n-DBI gravity does not mean, of course, that the latter is free of pathologies. Although

22Most easily seen by redefining φ→
√
λφ.

23Here we assume that the IR divergences can be properly regularized.
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the arguments presented herein are reassuring, in order to establish an healthy behavior,

n-DBI gravity must be further studied. In particular, we found that the scalar mode grows

linearly in time in the linear approximation and is thus at the threshold between stability

(oscillation) and instability (exponential growth). In other words, the scalar mode can be

either marginally stable or unstable.24 The (in)stability depends on the details of the scalar

mode interactions. We thus need to extend the analysis performed in 7.3.2 beyond linear

order to establish the (in)stability of the scalar mode.

To study the effect of nonlinear interactions, we find it useful to work in the Einstein

frame (3.61). Note that the background space-time remains flat under the frame change.

A key observation is that, as suggested in Appendix E, the auxiliary field χ can essentially

be thought of as the time derivative of the scalar mode, i.e., χ ∼ Ṫ ∼ ϕ̇. In other words,

the proof of the stability amounts to showing the stability of the χ fluctuation. In fact, the

equation of motion for χ in the N i = 0 gauge

∂t(N
−2χ̇) + ∆χ− 1

3
∂t(N

−1K)− 1

12
V ′(χ) = 0 (7.57)

seems to indicate the stability against small perturbations around χ = 0; as is clear, the

potential V (χ) plotted in Fig.15 is very stable around χ = 0. Note, however, that the lapse

N and the spatial metric hij also furnish the scalar mode. Moreover, the auxiliary field χ is

further constrained by the other equations of motion. So, strictly speaking, we need to deal

with the coupled system of χ, N and hij (in the N i = 0 gauge). There is, however, a shortcut:

it would be sufficient to show that the solutions of (7.57) for χ in generic backgrounds are

oscillatory.

The force in (7.57) consists of the strongly attractive force 1
12
N2V ′(χ), the repulsive force

−N2∆χ = N2p2χ, the friction ∂t lnN2χ̇ ∼ L−1χ̇, and the external force 1
3
N2∂t(N

−1K) ∼
L−2. The last three forces may work against stability. These become more dominant when

χ is smaller. However, the small χ behavior is well approximated by the linear perturbation.

As shown in Appendix E, χ is marginally stable to linear order. Meanwhile, for larger χ, the

attractive force, being exponential, may quickly become dominant, as χ increases, and pull

it back to smaller χ. Hence it seems plausible that χ oscillates about χ = 0. We therefore

conclude that n-DBI gravity is likely to be stable against the scalar mode perturbations.

To close, we have considerably improved our understanding of the scalar mode and pre-

sented arguments for its healthy behavior. However, the scalar mode still remains somewhat

24As an illustration, consider a simple mechanical model. For canonical kinetic term, a linear time growth
is the behavior seen in a flat potential. The flat potential does not indicate an instability and is marginally
stable. However, any potentials which are flat to quadratic order all lead to the linear time growth for per-
turbations in the linearized approximation. The simplest examples are cubic and (convex) quartic potentials.
The former is clearly unstable (inverse-squared blow-up), whereas the latter is stable (oscillation).

82



0 1 2 3 4

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 15: The potential V (χ) defined in (7.3) with q = 1.

elusive; it does not appear to behave as a conventional particle with a (non-)relativistic dis-

persion relation around near-flat space-times. So it is rather unclear what signatures exactly

it might leave as an observable. On this score, however, we anticipate that the scalar mode

could be the source of scalar perturbations in the Cosmic Microwave Background Radiation,

when applied to inflationary cosmology [6], and we hope to return to this question in the

near future.
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A Notation and formulae

In this appendix, we list our notion and formulae used in this thesis. Since we work on 1 + 1

and 3 + 1 dimensions, here we generalize the space-time dimensionality to d+ 1 dimensions,

and we use the signature (−,+,+, · · · ,+) for a Lorentzian metric gµν . Greek indices run from

0 to d in the d+1-dimensional space-time, and we also use Latin indices for the d-dimensional

Euclidean space. Indices of all d + 1-dimensional tensors, pseudo-tensors and densities are

lowered and raised by the metric gµν and its inverse gµν , respectively. In addition, we apply

the Einstein summation convention. The covariant derivative compatible with gµν is denoted

by ∇λ, and we use ∆ as the Laplacian, gµν∇µ∇ν . We write the cosmological constant and

Newton constant as Λ and Gd+1, respectively. Then here we go.

Christoffel symbol:

Γλµν =
1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (A.1)

Covariant derivative acting on covariant and contravariant vectors:

∇µt
λ = ∂µt

λ + Γλµνt
ν , ∇µwν = ∂µwν − Γλµνwλ. (A.2)

Covariant derivative acting on density:

∇σp
µν = ∂σp

µν + Γµστp
τν + Γνστp

µτ − Γττσp
µν . (A.3)

Riemann tensor:

Rλ
µνσ = ∂νΓ

λ
µσ − ∂σΓλµν + ΓηµσΓλνη − ΓηµνΓ

λ
ση. (A.4)

Ricci tensor and Ricci scalar:

Rµν = Rλ
µλν , R = gµνRµν . (A.5)

Commutators of covariant derivatives:

[∇µ,∇ν ]t
λ = Rλ

σµνt
σ, (A.6)

[∇µ,∇ν ]wλ = −Rσ
λµνwσ. (A.7)

Variation of metric:

δgµν = −gµσgντδgστ . (A.8)
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Variation of Christoffel symbol:

δΓλµν =
1

2
gλσ (∇µδgνσ +∇νδgµσ −∇σδgµν) . (A.9)

Variation of Ricci tensor:

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
λµ. (A.10)

Variation of Ricci scalar:

δR = −Rµνδgµν + (∇µ∇ν − gµν∆)δgµν . (A.11)

Variation of Laplacian acting on scalar:

δ(∆e) = ∆(δe)−∇µ∇νeδgµν −∇µe∇νδgµν +
1

2
gµν∇τe∇τδgµν . (A.12)

Einstein-Hilbert action with Gibbons-Hawking-York boundary term:

S = − 1

16πGd+1

∫
M
dd+1x

√
−g (R− 2Λ +K) (A.13)

= − 1

16πGd+1

∫
M
dd+1x

√
−g (R− 2Λ) +

1

8πGd+1

∫
∂M

ddx
√
hK. (A.14)

B Derivation of the solutions

Taking the ansatz

ds2 = −N2(r)dt2 + e2f(r)
(
dr + e2g(r)dt

)2
+ r2dΩ2, (B.1)

it follows that (′ ≡ d/dr):

Kij = −e
2g

N
diag

{
e2f (f + 2g)′, r, r sin2 θ

}
, K = −e

2g

N

(
2

r
+ (f + 2g)′

)
, (B.2)

Rij = diag

{
2f ′

r
,
rf ′ + e2f − 1

e2f
, sin2 θ

rf ′ + e2f − 1

e2f

}
, R =

2e−2f

r2

(
2rf ′ + e2f − 1

)
,

(B.3)

Thus,

R =
2

r2

[
1− (re−2f )′ − (re4g)′

N2
− 2rf ′e4g

N2
− e−f

N
(r2N ′e−f )′

]
. (B.4)
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From the effective Lagrangian (6.16), the A equation of motion can be solved straightaway

to yield

A′ = Q
Nef

r2
, (B.5)

where Q is an integration constant. The g equation of motion yields the compact relation 1√
1 + G4

6λ
R

′ = (f + lnN)′√
1 + G4

6λ
R
, (B.6)

and can be integrated to yield (
1 +

G4

6λ
R
)−1/2

=
Nef

C
, (B.7)

where C is an integration constant. More explicitly, this equation may be written as

(
re4g+2f

)′
= N2e2f

(
1− (re−2f )′

)
−Nef

(
r2e−fN ′

)′
+

3λ

G4

r2
(
N2e2f − C2

)
. (B.8)

The f and N equations of motion, upon using (B.5) and (B.7), read, respectively

(
re4g+2f

)′
=re−2f

(
e2fN2

)′ − Nef

2

(
r2e−fN ′

)′
+
r2e−fN ′

2
(Nef )′

− 3λ

G4

r2
(
C2 − CqNef

)
+
G4CQ

2Nef

2r2
, (B.9)(

re4g+2f
)′

=− 1

4

(
r2
(
e−2f

)′
N2e2f

)′
− 3λ

G4

r2
(
C2 − CqNef

)
+
G4CQ

2Nef

2r2
. (B.10)

Eq. (B.10) is the Hamiltonian constraint (6.3), after using (B.7) and (B.8).

B.1 Solutions with constant R

To proceed we take the combination Nef = C̃ = constant which implies that R is constant.

We shall address the general solution in the next subsection, but it turns out that the most

interesting solution are found in this subset. With this choice, we observe from eq. (B.7)

that R = constant. From the resulting equations of motion, equating (B.8) with either (B.9)

or (B.10) (which become identical), we find the ODE:

Y ′′ +
6

r
Y ′ +

4

r2
Y =

12λ

G4

(
1− qC

C̃

)
− 2G4CQ

2

C̃r4
, (B.11)
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where Y ≡ e−2f − 1. It is now straightforward to obtain the exact solution. It reads (6.17),

where C̃ has been eliminated by rescaling C and the time coordinate.

B.2 Generic solution

Since the set of equations we are solving is a second order ODE with three unknowns, we

expect a total of six integration constants. The constant R solution exhibited below has

only five integration constants and thus it is not the most general one. The latter can be

obtained observing that the equations (B.9) and (B.10) imply

−
(
r−2(logN)′

)′
=
(
r−2f ′

)′
=⇒ Nef = C̃e

1
3
C4r3 . (B.12)

C4 is the sixth integration constant, which was absent in the constant R solution. Similarly

to the constant R case, it is straightforward to find a second order ODE:

W ′′ +
6

r
W ′ +

4

r2
W =

4e
2C4r

3

3

r2
+

12λ

G4

e 2C4r
3

3 − qCe
C4r

3

3

C̃

− 2G4CQ
2e

C4r
3

3

C̃r4
, (B.13)

where we defined W ≡ e
−2

(
f−C4r

3

3

)
. This can be integrated to give explicit solutions. As

they are not very illuminating, however, we will not present them here. Indeed, the solutions

with C4 6= 0 seem rather exotic, since (B.7) and (B.12) imply that their asymptotic behavior

at r = +∞ is very different from that of Einstein gravity: the C4 < 0 solutions have a

curvature singularity at r = +∞ and thus we regard these solutions as unphysical; the

C4 > 0 solutions have the maximal negative curvature R = −6λ/G4 at r = +∞. Although

they are interesting in their own right, we shall not discuss these solutions further herein.

C Computations of constraint algebra

In this Appendix, we give an explicit computation of the constraint algebra and classification

of the constraints presented in 7.1. To facilitate the computation, we introduce smooth test

vector fields, ξµ = (ξ0, ξi) and ηµ = (η0, ηi), which fall off fast enough to suppress all the

boundary contributions [36]. Henceforth, we define the smeared constraints:

Φ̂1(ξ0) =

∫
d3xξ0(x)Φ1(x), (C.1)

Φ̂2(ξi) =

∫
d3xξi(x)Φ2i(x), (C.2)
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Φ̂3(ξ0) =

∫
d3xξ0(x)Φ3(x), (C.3)

Φ̂4(ξ0) =

∫
d3xξ0(x)Φ4(x), (C.4)

Φ̂5(ξi) =

∫
d3xξi(x)Φ5i(x), (C.5)

Φ̂6(ξ0) =

∫
d3xξ0(x)Φ6(x), (C.6)

Φ̂
(G)
N (ξi) =

∫
d3xξi(x)Φ

(G)
Ni (x) =

∫
d3xξi(x)(−Φ1∂iN)(x), (C.7)

Φ̂(G)
e (ξi) =

∫
d3xξi(x)Φ

(G)
ei (x) =

∫
d3xξi(x)(−Φ3∂ie)(x), (C.8)

Φ̂
(G)
~N

(ξi) =

∫
d3xξi(x)Φ

(G)
~Ni

(x) =

∫
d3xξi(x)

[
−
(
Φi

2∇iN
j +∇j

(
Φ2iN

j
))

(x)

]
, (C.9)

Φ̂′5(ξi) = Φ̂5(ξi) + Φ̂
(G)
N (ξi) + Φ̂(G)

e (ξi) =

∫
d3xξi(x)Φ̃5i(x), (C.10)

where Φ1, Φ2i, Φ3, Φ4, Φ5i, Φ6 and Φ̃5i are the constraints defined in 7.1. The idea is to

compute the commutators like

{Φ̂4(ξ0), Φ̂5(ηj)} =

∫
d3yd3xξ0(y)ηj(x){Φ4(y),Φ5j(x)}, (C.11)

and read off the algebra of local constraints from the R.H.S. The basic non-vanishing Poisson

brackets are given by

{pij(y), hkl(x)} =
1

2
(δikδ

j
l + δilδ

j
k)δ(y − x), (C.12)

{pN(y), N(x)} = δ(y − x), (C.13)

{pi~N(y), Nj(x)} = δijδ(y − x), (C.14)

{pe(y), e(x)} = δ(y − x). (C.15)

To compute the Poisson brackets of constraints, we take the variations of the smeared con-

straints:

δΦ̂1(ξ0)

δpN
= ξ0, (C.16)

δΦ̂2(ξi)

δp ~Ni
= ξi, (C.17)

δΦ̂3(ξ0)

δpe
= ξ0, (C.18)
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δΦ̂4(ξ0)

δhmn
= ξ0

[
1

2
hmnΦ4 −

κ

e
√
h
hmn

(
pabpab −

1

2
p2

)
+

2κ

e
√
h

(
pmlpnl −

1

2
pmnp

)
+
e

κ

√
hRmn −

√
h

κ
(∇m∇ne)

]
+

√
h

κ

[
−(∇m∇nξ0)e+ hmn(∇ae)(∇aξ

0) + hmne(∆ξ0)

]
, (C.19)

δΦ̂4(ξ0)

δpmn
= ξ0

[
2κ

e
√
h

(
pmn −

1

2
hmnp

)]
, (C.20)

δΦ̂4(ξ0)

δe
= −ξ0

[
κ

e2
√
h

(
pabpab −

1

2
p2

)
+

√
h

κ
R +

6λ
√
h

κG4

(
1− 1

e2

)]
+

2
√
h

κ
∆ξ0, (C.21)

δΦ̂5(ξi)

δhmn
= −(∇lξ

i)plj(δmi δ
n
j + δmj δ

n
i ) +∇l(p

mnξl) = £ξp
mn, (C.22)

δΦ̂5(ξi)

δpmn
= −hli(∇jξ

l)(δimδ
j
n + δinδ

j
m) = −£ξhmn, (C.23)

δΦ̂6(ξ0)

δhmn
= ξ0

[
1

2
hmnΦ6 +

Nκ

e2
√
h
hmn

(
pabpab −

1

2
p2

)
− 2κN

e2
√
h

(
pmlpnl −

1

2
pmnp

)
+
N
√
h

κ
Rmn −

√
h

κ
(∇m∇nN)

]
+

√
h

κ

[
−N(∇m∇n − hmn∆)ξ0 + hmn(∇lN)(∇lξ

0)

]
, (C.24)

δΦ̂6(ξ0)

δpmn
= −ξ0

[
2Nκ

e2
√
h

(
pmn −

1

2
hmnp

)]
, (C.25)

δΦ̂6(ξ0)

δN
= −ξ0

[
κ

e2
√
h

(
pabpab −

1

2
p2

)
+

√
h

κ
R +

6λ
√
h

κG4

(
1− 1

e2

)]
+2

√
h

κ
∆(ξ0), (C.26)

δΦ̂6(ξ0)

δe
= ξ0

[
2Nκ

e3
√
h

(
pabpab −

1

2
p2

)
− 12λN

√
h

κe3G4

]
, (C.27)

δΦ̂
(G)
N (ξi)

δN
= ∂i(ξ

ipN), (C.28)

δΦ̂
(G)
N (ξi)

δpN
= −ξi∂iN = −£ξN, (C.29)

δΦ̂
(G)
e (ξi)

δe
= ∂i(ξ

ipe), (C.30)

δΦ̂
(G)
e (ξi)

δpe
= −ξi∂ie = −£ξe, (C.31)

δΦ̂
(G)
~N

(ξi)

δN j
= ∇i(ξ

ip ~Nj) + (∇jξ
i)p ~Ni, (C.32)

δΦ̂
(G)
~N

(ξi)

δp ~N
= −ξi∇iN

j +N i∇iξ
j = −£ξN

j. (C.33)
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Using these, it is tedious but straightforward to compute the constraint algebra:

{Φ1(y),Φ6(x)} = −
[

κ

e2
√
h

(
pabpab −

1

2
p2

)
+

√
h

κ
R +

6λ
√
h

κG4

(
1− 1

e2

)]
δ(y − x)

+ 2

√
h

κ
∆δ(y − x), (C.34)

{Φ1(y),Φ
(G)
Nj (x)} = Φ1(x)∂yjδ(y − x) , (C.35)

{Φ3(y),Φ4(x)} = −
[

κ

e2
√
h

(
pabpab −

1

2
p2

)
+

√
h

κ
R +

6λ
√
h

κG4

(
1− 1

e2

)]
δ(y − x)

+
2
√
h

κ
∆δ(y − x), (C.36)

{Φ3(y),Φ6(x)} =

[
2Nκ

e3
√
h

(
pabpab −

1

2
p2

)
− 12λN

√
h

κe3G4

]
δ(y − x), (C.37)

{Φ3(y),Φ
(G)
ej (x)} = Φ3(x)∂yjδ(y − x), (C.38)

{Φ4(y),Φ4(x)} = Φk
5(y)∂ykδ(y − x)− Φk

5(x)∂xkδ(y − x)

− p

e
∂yke∂ykδ(y − x) +

p

e
∂xke∂xkδ(y − x), (C.39)

{Φ4(y),Φ5j(x)} = Φ4(x)∂yjδ(y − x)− ∂xje

N
Φ6(x)δ(y − x)− 2

√
h

κ
∂xje

(
∆− ∆N

N

)
δ(y − x) ,

(C.40)

{Φ4(y),Φ6(x)} =
2Npmn
e

[
2Rmn −

(
∇m∇me

e
+
∇m∇nN

N

)]
δ(y − x)

− Np

e

[
R− 6λ

G4

(
1− q

e

)]
δ(y − x)

− 2Npmn(y)

e
∇m

(y)∂ynδ(y − x)− 2Npmn(x)

e
∇m

(x)∂xnδ(y − x)

−
(
Np

e

)
∂ymN

N
∂ymδ(y − x)−

(
Np

e

)
∂xme

e
∂xmδ(y − x) , (C.41)

{Φ4(y),Φ
(G)
ej (x)} =

∂xje

N
Φ6(x)δ(y − x) + 2

√
h

κ
∂xje

(
∆− ∆N

N

)
δ(y − x), (C.42)

{Φ5j(y),Φ5i(x)} = Φ5j(x)∂yiδ(y − x)− Φ5i(y)∂xjδ(y − x), (C.43)

{Φ6(y),Φ5j(x)} = Φ6(x)∂yjδ(y − x)− ∂xjN

N
Φ6(x)δ(y − x)− 2

√
h

κ
∂xjN

(
∆− ∆N

N

)
δ(y − x)

− 2N
√
h

κ
∂yje

(
B(h, p)

e3

)
δ(y − x), (C.44)

{Φ6(y),Φ6(x)} = −∂ym
(

2N2

e2

)
pmn(y)∂ynδ(y − x) + ∂xm

(
2N2

e2

)
pmn(x)∂xnδ(y − x)

−
(
N

e

)2

Φ5n(y)∂ynδ(y − x) +

(
N

e

)2

Φ5n(x)∂xnδ(y − x)
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+
Np∂ymN

e2
∂ymδ(y − x)− Np∂xmN

e2
∂xmδ(y − x), (C.45)

{Φ6(y),Φ
(G)
Nj (x)} =

∂xjN

N
Φ6(x)δ(y − x) + 2

√
h

κ
∂xjN

(
∆− ∆N

N

)
δ(y − x), (C.46)

{Φ6(y),Φ
(G)
ej (x)} =

2N
√
h

κ
∂yje

(
B(h, p)

e3

)
δ(y − x), (C.47)

{Φ(G)
Nj (y),Φ

(G)
Ni (x)} = Φ

(G)
Nj (x)∂yiδ(y − x)− Φ

(G)
Ni (y)∂xjδ(y − x), (C.48)

{Φ(G)
ej (y),Φ

(G)
ei (x)} = Φ

(G)
ej (x)∂yiδ(y − x)− Φ

(G)
ei (y)∂xjδ(y − x), (C.49)

{Φ1(y),Φ2j(x)} = {Φ2i(y),Φ2j(x)} = {Φ3(y),Φ2j(x)} = {Φ4(y),Φ2j(x)} = {Φ5i(y),Φ2j(x)}
= {Φ6(y),Φ2j(x)} = {Φ(G)

Ni (y),Φ2j(x)} = {Φ(G)
ei (y),Φ2j(x)} = 0. (C.50)

In order to classify the class of the constraints, it is more appropriate to choose

(Φ1,Φ2j,Φ3,Φ4, Φ̃5j,Φ6) (C.51)

as a set of independent constraints. Φ̃5j is defined in (C.10) and given by a linear combination

Φ5i − ∂iNΦ1 − ∂ieΦ3. As is clear from the above computation, Φ2j and Φ̃5j commute with

all the constraints:

{Φ1(y),Φ2j(x)} = {Φ2i(y),Φ2j(x)} = {Φ3(y),Φ2j(x)} = {Φ4(y),Φ2j(x)}
= {Φ̃5i(y),Φ2j(x)} = {Φ6(y),Φ2j(x)} = 0 . (C.52)

{Φ1(y), Φ̃5j(x)} = Φ1(x)∂yjδ(y − x) ≈ 0, (C.53)

{Φ3(y), Φ̃5j(x)} = Φ3(x)∂yjδ(y − x) ≈ 0, (C.54)

{Φ4(y), Φ̃5j(x)} = Φ4(x)∂yjδ(y − x) ≈ 0, (C.55)

{Φ̃5i(y), Φ̃5j(x)} = Φ̃5i(x)∂yjδ(y − x)− Φ̃5j(y)∂xiδ(y − x) ≈ 0, (C.56)

{Φ6(y), Φ̃5j(x)} = Φ6(x)∂yjδ(y − x) ≈ 0. (C.57)

It is easy to show that the set (C.51) is complete. Namely, the time flows of the secondary

constraints do not give rise to any new constraints:

Φ̇4(x) =

∫
d3y{He(0)

nDBI(y),Φ4(x)}+
∑
a=1,3

∫
d3y{Φa(y),Φ4(x)}λa +

∫
d3y{Φi

2(y),Φ4(x)}λ2i

≈ 0, (C.58)

˙̃Φ5j(x) =

∫
d3y{He(0)

nDBI(y), Φ̃5j(x)}+
∑
a=1,3

∫
d3y{Φa(y), Φ̃5j(x)}λa +

∫
d3y{Φi

2(y), Φ̃5j(x)}λ2i

≈ 0, (C.59)
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Φ̇6(x) =

∫
d3y{He(0)

nDBI(y),Φ6(x)}+
∑
a=1,3

∫
d3y{Φa(y),Φ6(x)}λa +

∫
d3y{Φi

2(y),Φ6(x)}λ2i

≈ 0. (C.60)

Since the Hamiltonian density takes the form

He(0)
nDBI = −

(
NΦ4 +N jΦ5j

)
− 2

κ

√
h (e∆N −N∆e) , (C.61)

one can see that (C.58) and (C.60) determine λ1 and λ3, while (C.59) is trivially satisfied.

Hence, there are no additional constraints from these time flows. Having established the

completeness of the set (C.51), we conclude that Φ2j and Φ̃5j are first class, and the rest are

second class.

Finally, let us end this appendix with a comment on the generator of the spatial diffeo-

morphism. The generator G(ξi) of the spatial diffeomorphism acts on a phase-space variable

A as

{A(y),G(ξi)} = £ξA(y) . (C.62)

Since pN , p
i
~N
, and pe are primary constraints, we only need to consider the reduced set

of phase-space variables, (hij, p
ij, N, ~N, e). The spatial diffeomorphisms for this set are

generated by (Φ5,−Φ5,Φ
(G)
N ,Φ

(G)
~N
,Φ

(G)
e ). They are indeed all generated by the first class

constraints, as can be seen from (C.7)–(C.10).

D Computational details of perturbations

In this appendix, we show some details of the computations in the perturbative analysis of

the scalar mode in 7.1 and 7.2.

D.1 Perturbation of the equations of motion

The linearised version of equations (7.42)–(7.45) and (7.46) can be obtained in a fashion

similar to [40]. To the approximation explained in 7.3.2, we find, in the gauge N i = 0,

γ̇ij − 2N̄κij − 2K̄ijn = 0, (D.1)

2K̄ijκ
ij − 2κK̄ −∇i∇jγij + ∆γ =

G4

6λ
∆α, (D.2)

∇jκij −∇iκ−
3

2
K̄jk∇iγjk + K̄jk∇kγij +

1

2
K̄ij∇jγ =

G4

12λ

(
K̄ij − h̄ijK̄

)
∇jα, (D.3)

κ̇ij + γ̇ijK̄ − h̄ijκ̇− γ̇klh̄ijK̄kl −∇i∇jn+ h̄ij∆n
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+
N

2

(
∇k∇jγik +∇k∇iγjk −∆γij −∇i∇jγ

)
= − G4

12λ
N̄∇i∇jα, (D.4)

and

∆α̇ = ∆∂t

[
∇i∇jγij −∆γ + 2K̄ijκ

ij − 2κK̄ − 2N̄−1

(
∆n−∇iγ

ij∇jN̄ +
1

2
∇iγ∇iN̄

)]
= 0 .

(D.5)

The L.H.S. of (D.1)–(D.4) are the same as those in GR and agree with the λ = ξ = 1 case

of [40]. Eq.(D.5), however, is very different.

We are interested in perturbations of the modes with wavelengths much shorter than the

characteristic scale L of the background, i.e., ω, p� 1/L, where the space-time is virtually

flat. First, (D.5) enforces α to the constant. Thus the R.H.S. of (D.1)–(D.4) are always

negligible and thus we have in Fourier space

iωγij + 2(N̄κij + K̄ijn) = 0, (D.6)

(pipj − p2δij)γ
ij − 2(K̄κ− K̄ijκ

ij) = 0, (D.7)

pjκ
ij − piκ− 3

2
K̄jkγ

jkpi + K̄jkp
kγij +

1

2
K̄ijpjγ = 0, (D.8)

iω(δijκ− κij)− (p2δij − pipj)n− iω(K̄γij − δijK̄klγ
kl)

− N

2
(pkp

jγik + pkp
iγjk − p2γij − pipjγ) = 0. (D.9)

Plugging (D.6) into (D.9) and discarding sub-leading terms linear in K̄ij ∼ O(1/L), we

simply obtain the fluctuation equation of GR in flat space-time:

ω2

p2
(δijκ−κij)+iω

(
δij − pipj

p2

)
n+N̄2

(
κij +

1

p2

(
pipjκ− pkpjκik − pkpiκjk

))
= 0. (D.10)

Contraction with δij and pj, respectively, yields

iωκ− p2n =0, (D.11)

piκ− pjκij =0. (D.12)

Using these relations, one can find that (D.10) gives the massless dispersion relation

ω2 = N̄2p2. (D.13)

In this approximation, the rest of the equations, the Hamiltonian and momentum constraints

(D.7) and (D.8), are automatically satisfied. In GR, we can set n = 0 by using the residual
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gauge symmetry. Thus we are left with a massless transverse traceless tensor mode, i.e., the

usual graviton.

In n-DBI gravity, we do not have liberty to gauge away n. However, we have (D.5) to

take into account. Using (D.6), it becomes

κij
[
iωN̄

(
K̄ij − K̄δij

)
+ N̄2

(
p2δij − pipj + δijip

k∂k ln N̄ − 2ipi∂j ln N̄
)]

+ n
[
−iωp2 + N̄K̄ij

(
p2δij − pipj + ipk∂k ln N̄δij − 2ipi∂j ln N̄

)]
= 0. (D.14)

To leading order, this yields

N̄2κij
(
p2δij − pipj

)
− inωp2 = 0

(D.12)
=⇒ nωp2 = 0. (D.15)

Since our approximation is valid only for ω, p � 1/L, this implies that n = 0 and we are

again left with a graviton. To the next order, however, this reads

κij
[
iωN̄

(
K̄ij − K̄δij

)
+ N̄2

(
δijip

k∂k ln N̄ − 2ipi∂j ln N̄
)]

+ n
[
−iωp2 + N̄K̄ij

(
p2δij − pipj

)]
= 0.

(D.16)

Due to (D.11), the κij terms contribute. For n to be non-vanishing, we must have the relation

ω ∼ N̄p ∼ i
(
N̄K̄ + N̄∂ ln N̄

)
∼ i

L
. (D.17)

However, once again, this cannot be satisfied. Hence there is no scalar mode of the type

(n, γ) ∼ (n(ω, p), γ(ω, p)) eiωt+ip·x with |ω|, |p| � 1/L, including the one with imaginary ω.

D.2 Perturbation of the Stückelberg field

To obtain the equation of motion for the Stückelberg field φ, we vary the action (3.66) or

(3.67)

δS ∼ eδK ∼ eδ
(
Dα

(
nαDβn

β
))
∼
(
Dα

(
nβDβe

)
−KDαe

)
δnα, (D.18)

where e =
(
1 + G4

6λ

(
(4)R +K

))− 1
2 and K = −2Dα(nαDβn

β). Using

δnα =
∂αδφ+ nαnβ∂βδφ√

−X
, (D.19)

we find

Dα

(
(∂α + nαn

σ∂σ)(nβ∂βe)−Dβn
β(∂α + nαn

σ∂σ)e√
−X

)
= 0. (D.20)
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It can be shown that this becomes (7.46) when nµ = (−N, 0, 0, 0), i.e., φ = t. Note that

this equation is invariant under φ → f(φ), as it should be, owing to the fact that nα(∂α +

nαn
σ∂σ) = 0. This also implies that the quantity in the parenthesis is proportional to the

space-like vector nβDβnα tangential to the hypersurface.

Now we consider perturbations φ = φ̄ + ϕ, expanding (D.20) to linear order in ϕ. We

work in unitary gauge, φ̄ = t and N i = 0 and use

δnα = (0, N̄∂iϕ), δ
(√
−X

)−1/2

= −N̄ϕ̇, δK = N̄−1∇i(N̄
2∂iϕ), (D.21)

as well as

δe = − G4

12λ
ē3δK, −1

2
δK = (2K̄ − N̄−1∂t)(N̄

−1∇i(N̄
2∂iϕ)) + N̄∂iϕ∂iK̄. (D.22)

The terms coming from perturbing nα and 1/
√
−X in (D.20) contain at most 3 ϕ-derivatives,

while those from perturbing e contain 6 and 5 ϕ-derivatives. Thus we only need to consider

the latter. It also suffices to keep 3 and 2 δe-derivatives. Then we find

∆δė+ K̄N̄∆δe = 0. (D.23)

In terms of ϕ the leading terms (with 6 and 5 derivatives) yield (7.53).

D.3 Perturbation of the Stückelberg field - 2nd order

To find the cubic action of the fluctuation ϕ in flat space-time (with q = 1), we expand the

action as

S = − 1

16πG4

∫
d4x

[
K − 1

4

(
GN

6λ

)
K2 − 5

8

(
GN

6λ

)2

K3 + · · ·

]
. (D.24)

The first term is a surface term and does not contribute to the equation of motion. In unitary

gauge, the time-like vector takes the form

n0 = − 1 + ϕ̇√
(1 + ϕ̇)2 − (∂iϕ)2

, ni = − ∂iϕ√
(1 + ϕ̇)2 − (∂iϕ)2

. (D.25)

This can be expanded as

− n0 = 1 +
1

2
(∂iϕ)2 − ϕ̇(∂iϕ)2 +O(ϕ4), (D.26)

− ni = ∂iϕ− ϕ̇∂iϕ+ ϕ̇2∂iϕ+
1

2
(∂iϕ)3 +O(ϕ4). (D.27)
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In the flat background we have

K = −2
[
∂0

(
n0∂0n

0
)

+ ∂i
(
ni∂jn

j
)

+ ∂0

(
n0∂in

i
)

+ ∂i
(
ni∂0n

0
)]
, (D.28)

and we find to quadratic order

K = 2 [∆ϕ̇+ ∂0(ϕ̇∆ϕ)− ∂i(∂iϕ∆ϕ)] . (D.29)

Hence the cubic scalar field action is given by

S3 =
1

192πλ

∫
d4x

[
1

2
(∆ϕ̇)2 − (ϕ̇∆ϕ̈− ∂iϕ∆∂iϕ̇) ∆ϕ+

5G4

2λ

1

3!
(∆ϕ̇)3

]
. (D.30)

D.4 A nonlinear analysis of the Stückelberg field

The scalar mode ϕ obeys the equation of motion (D.20). To determine whether the scalar

mode leads to an instability or not, we need to study (D.20) beyond linear order approxi-

mation. As we discussed, to linear order, the equation of motion is simply

∆2ϕ̈ = 0, (D.31)

and the solution is

ϕ(t, x) = ε [ϕ0(x) + ϕ1(x)t] , (D.32)

where ϕ0(x) and ϕ1(x) are arbitrary functions of space. We have included the factor of ε� 1

for later convenience. The fully nonlinear solution can in principle be found systematically

order by order in ε expansions:

ϕ(t, x) = ε [ϕ0(x) + ϕ1(x)t] +
∞∑
n=2

εnϕn(t, x). (D.33)

The higher order fluctuations ϕn(t, x)’s are determined in terms of the initial data (ϕ0(x), ϕ1(x))

and of order n in powers of (spatial derivatives of) ϕ0(x) and ϕ1(x) and polynomial in time

t. Using (D.30), for example, the next-to-leading order fluctuation can be found as

ϕ2(t, x) =
1

2
ϕ

(2)
2 (x)t2 +

1

3!
ϕ

(3)
2 (x)t3, (D.34)

where

∆2ϕ
(2)
2 =∆ [2∆ϕ0∆ϕ1 + 2∂iϕ0∆∂iϕ1 + ∆∂iϕ0∂iϕ1]−

(
∆ϕ0∆2ϕ1 + ∆∂iϕ0∆∂iϕ1

)
,

∆2ϕ
(3)
2 =∆

[
2(∆ϕ1)2 + 2(∂iϕ1)2 + ∂iϕ1∆∂iϕ1

]
−
(
∆2ϕ1∆ϕ1 + ∂iϕ1∆∂iϕ1

)
. (D.35)
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Clearly, the late time behaviour of the scalar mode requires the knowledge of all order

fluctuations. Thus, to see whether the scalar mode yields an instability or not, we need to

re-sum the infinite series (D.33). However, this seems to be out of our reach and we will

instead resort to an alternative analysis working in the Einstein frame.

E Linear perturbations in the Einstein frame

We consider linear perturbations of the scalar fields around flat space-time in the Einstein

frame (3.61). The scalar field Lagrangian density reads

4πG4LEscalar =2ψ̇2 + 4ψ̇(Ė + ∆B)− (4n− 2ψ)∆ψ

+ 4χ̇
(
Ė + ∆B + 2ψ̇

)
+ 6χ̇2 − 6χ∆χ− 24λ

G4

χ2. (E.1)

This is the Einstein frame counterpart of (7.20). The equations of motion are given by

ψ̈ = −χ̈, (E.2)

∆ψ̇ = −∆χ̇, (E.3)

Ë + ∆Ḃ + ∆n = −χ̈, (E.4)

∆ψ = 0, (E.5)

which clearly reduce to those of GR for constant χ, plus

χ̈+ ∆χ+
1

3
(Ë + ∆Ḃ + 2ψ̈) +

4λ

G4

χ = 0. (E.6)

This is the linearization of (7.57). In the E = 0 gauge the general solution can be found as

B =B0(x) +B1(x)t, (E.7)

n =−B1(x), (E.8)

ψ =0, (E.9)

χ =χ0(x), (E.10)

with χ0(x) related to B1(x) by

∆B1 = −3∆χ0 −
12λ

GN

χ0. (E.11)
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Here we have again imposed the boundary condition that all the fields fall off at spatial

infinity. Note that χ0(x) is essentially B1(x) which is the degree of freedom responsible

for the linear time growth. This suggests the identification χ(t, x) ∼ Ṫ (t, x), that is, the

auxiliary field χ can be regarded as the time derivative of the scalar mode.
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