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SUMMARY 

 

 The capability of acquiring continuous surface data is one of the most important 

superiorities of remote sensing compared with conventional field investigation. 

Because the spatial distributions of the geographic elements are not independent, 

many spatial features (such as landscape pattern, contextual information, spatial 

autocorrelation, etc.) can be shown in the remotely sensed images. Till now, a number 

of mathematical tools have been developed to describe the spatial features from 

different aspects, which can be categorized into three types depending on their 

calculating approaches: moving-window based, object based, and image based 

methods. Although these methods were widely applied in remote sensing, they were 

simply used without much consideration of the particular geographic characteristics 

and their applications were limited on land cover classification or change detection. 

Therefore, this thesis attempts to extend the application of spatial features in the 

following fields: 

(1) A moving-window based method was applied in the field of classification 

accuracy assessment. For the landscape analysis, classification error in a land 

cover map will be propagated into the calculation of the landscape patter indices. 

However, the traditional classification accuracy indices consider only the amount 

of classification error without their spatial distribution, consequently cannot well 
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predict the error of landscape pattern indices induced by classification error. 

Therefore, in chapter 2, a new measure of classification error, Weighted 

Misclassification Rate, which is based on the moving-window technique, was 

proposed to predict the error of landscape pattern indices induced by classification 

error.  

(2) A moving-window based method, Markov Random Fields model, was employed 

in an automated land cover updating approach. Although many classification 

techniques were intensively studied, there is a lack of a totally automated 

approach for updating land cover maps. In chapter 3, the author proposed an 

automated updating approach which integrates the change detection technique, 

Markov Random Fields model, and an iterated training sample selecting 

procedure, to produce reasonable land cover maps efficiently. 

(3) Uncertainties in object based methods were quantified. Although object based 

methods were intensively studied, the uncertainties in image segmentation were 

largely neglected in the previous studies. In chapter 4, a new soft segmentation 

model was developed for quantitatively describing the uncertainties in the 

segmented results. 

(4) An Image based method was used for investigating the scale effect of the 

relationship between vegetation index and surface temperature. Such relationship 

was used for improving the spatial resolution of thermal infrared images because 

the visual-near infrared images are usually with higher spatial resolution. 
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However, the scale effect of this relationship was neglected in the previous studies. 

In chapter 5, the scale effect was investigated and a more robust spatial sharpening 

method for thermal imagery was proposed. 
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CHAPTER 1  

Introduction 

 

1.1 Background 

Remote sensing is commonly defined as the science (and to some extent, art) of 

obtaining and analyzing the information about the earth surface from the distant 

sensor in the airplane or satellite (Lillesand and Kiefer, 2000). In general, remotely 

sensed data are recorded as the 2-dimension images with spectral bands information 

on different dates (Fig. 1.1). Therefore, remotely sensed images include three 

dimensions of information: i) spatial information; ii) spectral information; iii) 

temporal information. And the quality of remote sensing data depends on its spatial, 

spectral, and temporal resolutions (revisit time of the satellite). 

  

 

Fig. 1.1 Three dimensions of information (spatial, spectral, and temporal information) 

in remotely sensed images 

Spring Winter

…
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Till now, algorithms and applications have been intensively studied for mining the 

spectral information and temporal information of satellite images. Spectral 

information has been used for land cover mapping (e.g. Richard and Jia, 2006), 

quantitatively retrieving of biophysical parameters (e.g. Liang, 2004), and so on. 

Temporal information has been applied in land cover change detection (e.g. Lu et al., 

2004), phenology study (e.g. Zhang et al., 2003), disaster monitoring (e.g. Tralli et al., 

2005), and so on. Many technologies used for extracting the spectral and temporal 

information were developed by the remote sensing community and show a very 

particular geophysical or biophysical characteristic. A representative example is the 

development of vegetation indices which considers the particular spectral response of 

vegetation, atmospheric effect and other factors (Bannari et al., 1995).  

In contrast, although more and more attentions have been paid on the spatial 

information mining since the appeal of Blaschke and Strobl (2001), most of the 

studies simply used the mathematical tools of digital image processing without much 

consideration of the particular geographic characteristics, and the applications were 

limited on land cover classification or change detection. Therefore, there is a great 

potential of improving the mathematical tools of spatial feature extraction by 

considering more geographic characteristics or applying them in more research fields 

rather than classification.  

The introduction part is organized as follows. In section 1.2, a brief review of the 

studies on spatial feature extraction in remote sensing is presented. In section 1.3, the 
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author introduces several gaps in the previous studies and presented the framework of 

this doctor thesis. 

 

1.2 Review of the Studies on the Spatial Feature Extraction   

There is no strict definition of the spatial feature. It usually includes landscape 

pattern, texture, spatial autocorrelation, and other features related with spatial 

distribution. Because of its complexity, there is not a uniform spatial feature 

description method which is commonly accepted. Till now, many mathematical tools 

have been developed to describe the spatial feature from different aspects. In this 

review, we categorized them into three types depending on the calculating methods: 

moving-window based, object based, and image based methods.  

 

1.2.1 Moving-Window Based Methods 

The moving-window is the most commonly used tool for extracting the spatial 

features in the images. The methods based on moving-window include spatial domain 

filter, Markov Random Field Model, Mathematical Morphology and Co-occurrence 

matrix. 

(1) Spatial domain filter 

In this method, a moving window is established that contains an array of 

coefficients or weighting factors. Such arrays are referred to as operators or kernels. 

Then, the kernel is moved throughout the original image, and the value at the center 
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of the kernel in the filtered image is obtained by multiplying each coefficient in the 

kernel by the corresponding DN (Digital Number) in the original image and adding all 

the result products. Depending on the different kernels, the spatial domain filters can 

be applied for smoothing images, sharpening images, enhancing edges and so on 

(Lillesand and Kiefer, 2000).  

(2) Markov Random Field Model 

Markov Random Field (MRF) is a probabilistic process in which all interaction is 

local; the probability that a cell is in a given state is entirely determined by probability 

states of neighboring cells (Materka and Strzelecki, 1998). It has been used for 

improving classification and change detection result by reducing the “salt and pepper” 

error in pixel based classification or change detection methods (Bruzzone and Prieto, 

2000).  

(3) Mathematical Morphology 

The basic idea in binary morphology is to probe an image with a simple, 

pre-defined shape, drawing conclusions on how this shape fits or misses the shapes in 

the image (Comer and Delp, 1999). This simple "probe" is called structuring element, 

and is itself a binary image (e.g., a subset of the space or grid). The basic operations 

of mathematical morphology include erosion, dilation, open and close. Mathematical 

morphology has been used for classification, endmember extraction, speckle removal 

on radar data, etc. (Soille and Pesaresi, 2002, Plaza et al., 2002). 

(4) Co-occurrence matrix 
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The co-occurrence-matrix describes second-order statistic of texture, which is a 

matrix of estimated probabilities of transitions from level r1 to level r2 for given 

vector v, and vector v defines direction of construction of the matrix and distance 

between points that have intensities r1 and r2 (Materka and Strzelecki, 1998). The 

co-occurrence-matrix was widely applied in extracting the textural information of 

remotely sensed images. 

 In summary, moving-window based methods are easy to conduct and with high 

computing efficiency, therefore have been widely applied in the previous studies. 

   

1.2.2 Object Based Methods  

Object based image analysis methods receive more and more attentions in remote 

sensing community (Blaschke, 2010). The first step of object based image analysis is 

segmentation which produces a set of non-overlapping objects (polygons, patches). 

The segmentation algorithm can be mainly categorized into image driven based, 

model driven based, and homogeneity measure based methods (Dey et al., 2010). 

Now, commercial softwares eCognition and ENVI EX are also available for image 

segmentation, which stimulates related studies. The second step is the analysis for the 

segmented image. Most applications focused on land cover/land use classification and 

change detection. Only a few studies focused on quantitative retrieving of biophysical 

parameter (e.g. Addink et al., 2007). Object based method is promising for extracting 

spatial feature of the images, especially for the images with high spatial resolution; 
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however, it requires high computation cost and many parameters which are usually 

difficult to determine suitably.  

 

1.2.3 Image Based Methods 

Image based methods include global spatial autocorrelation index, semivariogram, 

Fourier transformation and so on. They describe the overall features of the spatial 

pattern. Although without spatial explicit information, this kind of methods are still 

widely applied in many studies. For example, the semivariogram is usually applied for 

studying the scale effect of the images (e.g. Woodcock and Strahler, 1987, Román et 

al., 2009). Fourier transformation could be used for removing the stripe noise in 

remotely sensed images (Chen et al., 2004).  

 

1.3 Contents of this Thesis  

Although the spatial features of remotely sensed images have already received 

much attention, there are still many gaps in the previous studies. This thesis found and 

filled some gaps in the previous studies. 

(1) Weighted Misclassification Rate (WMR) 

Moving-window based methods have been applied in classification, however, 

was never considered in the classification accuracy assessment. Especially for the 

landscape analysis, classification error will be propagated into the calculation of 

landscape patter index, while the traditional classification accuracy index cannot 



10 

 

reflect such error correctly. Therefore, in chapter 2, the author proposed a new 

measure of classification error, Weighted Misclassification Rate (WMR), based on the 

moving-window technique. WMR considers the spatial distribution of classification 

error, and can well predict the error of landscape pattern index (LPI).   

(2) An integrated, automated approach for updating land cover maps  

Although classification techniques were intensively studied, there is a lack of a 

totally automated approach for updating land cover maps. In chapter 3, we developed 

an automated approach which integrates the change detection technique, Markov 

Random Fields model, and an iterated training sample selecting procedure. The new 

approach can update land cover maps with reasonable accuracy efficiently. 

(3) Soft segmentation model 

There are always uncertainties or errors in image segmentation. Unfortunately 

such uncertainty information was rarely considered in the previous studies. In chapter 

4, a soft segmentation model was developed for quantitatively describing the 

uncertainties in the segmented result.  

(4) Scale effect of the relationship between vegetation index and surface 

temperature 

Image based methods were usually used for processing the gray images, while 

were rarely applied in the multi-band images. In chapter 5, the author investigated the 

scale effect of the relationship between vegetation index and surface temperature 
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using the image based method. Based on the investigated result, a more robust 

thermal sharpening method was proposed. 

 

The framework of this thesis is shown in Fig. 1.2. 
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Fig. 1.2 Framework of this thesis 
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CHAPTER 2  

Weighted Misclassification Rate: A New Measure of 

Classification Error Designed for Landscape Pattern Index 

 

2.1 Introduction 

As one of the most important topics in landscape ecology, a large number of 

landscape pattern index (LPI) have been developed to quantitatively describe the 

landscape pattern (Turner, 2005). Moreover, an excellent software package, Fragstats 

(McGarigal and Marks, 2002), which stimulates the broad application of LPI in 

various fields, is also available for calculating LPIs.  

Remotely sensed data have been widely used to derive LPIs (Newton et al., 2009).  

Unfortunately, inevitable misclassification in classified thematic maps have not 

attracted adequate attention in LPI-related literature (e.g. Shao and Wu, 2008), 

although misclassification errors can propagate into LPI calculation, as reported by 

Hess (1994). Until now, due to the unstable relationship between classification 

accuracy assessment indices and the LPI error (Langford et al., 2006), which is 

defined as the difference between the LPIs calculated from reference map (ground 

truth) and the LPIs calculated from the classified map with error, few studies have 

examined the impact of classification errors on the calculation of LPI (Shao and Wu, 

2008). Generally, the overall accuracy (OA) and kappa coefficient ( ) derived from 

the confusion matrix are the most popular indices for assessing classification error in 
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the remote sensing community (Foody, 2002). However, such indices focus on only 

the amount of misclassified pixels, without considering the spatial distribution of the 

pixels, whereas the reliability of LPI calculation as a measure of spatial heterogeneity 

depends primarily on the spatial pattern of classification errors. Consequently, they 

are not suitable for estimating the LPI error that arises from classification. Therefore, 

a new measure of classification error that can provide a reliable indicator of LPI error 

is needed. One possible solution is to develop an object-based assessment method 

(e.g., Zhan et al., 2009). However, this is not practicable for remotely sensed images, 

because obtaining the reference ground truth for the entire region of interest would be 

too expensive and difficult (Stehman, 2009). Accuracy assessment based on 

multi-resolution comparison is also a promising method (Kuzera and Pontius, 2008; 

Pontius and Connors, 2009). However, as an effective method that directly reflects 

LPI error, such assessment still requires improvement and further validation. 

Therefore, in order to provide a new measure of classification error that can 

provide a reliable indicator of LPI error, we propose a new classification accuracy 

assessment index referred to as the Weighted Misclassification Rate (WMR), which, 

although pixel-based, integrates the spatial distribution information of misclassified 

pixels by considering the adjacent pixels. A series of simulated images were used to 

test the performance of the newly proposed WMR.  

 

2.2 New Measure of Classification Error  
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2.2.1 Weighted Misclassification Rate Development 

An ideal classification error measure designed for LPI calculation should satisfy 

two requirements: 1) high correlation with LPI error and 2) convenience of sampling. 

Since misclassified pixels located at different positions may affect the landscape 

pattern and have a further effect on LPI error to different degree, we proposed a 

Weighted Misclassification Rate (WMR) by assigning different weights to different 

sampled pixels: 

 1WMR 100%

N

i

i

w

N

 


       (2-1) 

where N is the number of all sampled pixels and wi is the weight of one sampled pixel 

i. Since edge length and connectivity are two important aspects of the landscape 

pattern, a misclassified pixel that affects edge length and connectivity of a patch 

should be assigned a larger weight. Since WMR is calculated at the pixel level, we 

defined the edge number, which is an indicator of edge length at the pixel level, as the 

number of four-neighborhood pixels belonging to different classes than pixel i. Here, 

only four-neighborhood pixels are used because the total edge is calculated based on 

four-neighborhood pixels in Fragstats. In addition, the isolation of pixel i, which 

reflects patch connectivity, is defined based on whether there is at least one pixel 

belonging to the same class as pixel i around eight-neighborhood pixels. If there is no 

pixel belonging to the same class as pixel i around the eight neighborhood pixels, then 

the isolation of pixel i is given as 1, indicating that the target pixel i is completely 

isolated. Otherwise, it is given as zero. The weight of pixel i is thus calculated based 
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on the reference and classification data in 33 windows according to the changes in 

edge number and isolation of the pixel resulting from misclassification: 

c r
c r

( )1
( )

2 4

i i
i i i

p p
w q q

 
   

 
     (2-2) 

where pci and pri are the edge number of pixel i in the classification map awaiting 

assessment and in the reference map, respectively. The term (pci - pri)/4 ranges from -1 

to 1, reflecting the change in the edge number due to misclassification. The terms qci 

and qri are the isolation of pixel i in the classification map and in the reference map, 

respectively. The term of (qci - qri) has three distinct values, -1, 0, and 1, that specify 

the isolation change of the pixel due to misclassification. A positive value of wi 

indicates that pixel misclassification enhances the fragmentation of the map relative to 

the reference map, whereas a negative value of wi indicates that pixel 

misclassification reduces the fragmentation of the map relative to the reference map. 

If the sampled pixels in the 33 windows are correctly classified, the edge number 

and the isolation of the central pixel keeps unchanged, and the weight is equal to zero. 

Fig. 2.1 shows examples of the weight calculation. From Case (a) to Case (e), the 

weight changes from -1 to 1, reflecting the degree to which the landscape 

fragmentation is affected by the misclassified pixel, according to its spatial 

configuration. WMR can also be calculated on the class level after minor modification. 

First, a multi-class map is converted into a two-class map, in which one class is the 

target class and the other class, which is made up of the remaining classes, is the 

background class. Then, WMR can be calculated based on the two-class map. 
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Fig. 2.1 Illustration of weight calculation (a. w = -1; b. w = -0.5; c. w = 0; d. w = 0.5; e. 

w = 1) 

 

2.2.2 Statistical Properties of WMR 

Since WMR is the mean estimate of wi, we derived the expected value and 

variance of the mean estimate using different sampling methods. The expected value 

and variance of wi are denoted as E(w) and Var(w), respectively. 
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Under the random sampling method, the expected value and variance of the mean 

estimate are E(w) and Var(w)/N, respectively, where N is the sample size. The mean 

estimate is unbiased, and the variance decreases with the increase in the sample size. 

Under the proportionally allocated stratified random sampling method, the pixels 

are divided into m strata, where m is the number of classes. Here, wi of each stratum is 

denoted as Xk, k = 1, …, m, and the proportions of each stratum is denoted as fk, k = 

1, ..., m. Then, the expected value of the mean estimate is 
1

E( )
m

k k

k

f X


 , which is 

equal to E(w), and so is unbiased. The variance of the mean estimate is 

1

Var( ) /
m

k k

k

f X N


 . According to the law of total variance, Var(w) can be described 

as: 

 
1

Var( ) Var( ) Var E( )
m

k k k

k

w f X X


  .     (2-3) 

Therefore, the variance of the mean estimate under the proportional allocated 

stratified random sampling method is less than that under the random sampling 

method, especially when the term of  Var E( )kX  is large, which means that the 

error rate in various classes is largely different. 

 Under the stratified sampling method with each stratum having the same sample 

size, the expected value of the mean estimate is equal to 
1

E( )
m

k

k

X


 , which is biased. 

Therefore, such a sampling method is not appropriate for WMR calculation.  
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2.3. Simulation Study 

2.3.1 Data Simulation 

In the present study, instead of using actual reference and classification maps, a 

series of reference and classification maps were simulated because it is difficult to 

obtain the ground truth of a large number of actual classification maps for analysis, 

whereas for simulated data, the completed reference data can be acquired easily, and 

the classification error can be controlled to the desired range (Chen et al., 2010). The 

Simmap (Saura and Martinez-Millan, 2000) map simulation software package was 

used to generate a total of 75 correct base maps (reference maps) to represent the 

various landscapes without classification error (see, for example, Fig. 2.2). The size of 

the map is 200 pixels  200 pixels, and the number of classes is three. In Simmap, 

fragmentation of the landscapes is determined by the degree of aggregation, which is 

controlled by the parameter called as initial probability (P). As P increases, the 

number of patches decreases, and the mean and maximum size of the patches increase, 

resulting in increasingly aggregated landscapes (Saura and Martinez-Millan, 2000). 

We varied the class proportions and aggregation level and used the following five 

proportion configurations:  

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0.125,  0.125,  0.750

0.125,  0.250,  0.625

0.125,  0.375,  0.500

0.250,  0.250,  0.500

0.333,  0.333,  0.333

f f f

f f f

f f f

f f f

f f f

  

  

  

  

  

      (2-4) 
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where f1, f2, and f3 denote the proportions of three classes. Three levels of aggregation 

(P = 0.1, 0.3, and 0.5), were considered. Five maps were generated for each 

combination of proportion and aggregation configuration. 

 

 

Fig. 2.2 Examples of simulated reference classification maps with a range of 

proportion and aggregation configurations (a. P = 0.1, f1 = 0.125, f2 = 0.125, f3 = 

0.750; b. P = 0.1, f1 = 0.125, f2 = 0.375, f3 = 0.500; c. P = 0.1, f1 = 0.333, f2 = 0.333, f3 

= 0.333; d. P = 0.3, f1 = 0.125, f2 = 0.125, f3 = 0.750; e. P = 0.3, f1 = 0.125, f2 = 0.375, 

f3 = 0.500; f. P = 0.3, f1 = 0.333, f2 = 0.333, f3 = 0.333; g. P = 0.5, f1 = 0.125, f2 = 

0.125, f3 = 0.750; h. P = 0.5, f1 = 0.125, f2 = 0.375, f3 = 0.500; i. P = 0.5, f1 = 0.333, f2 

= 0.333, f3 = 0.333) 
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Fig. 2.3 Illustration of the simulated classification error (a. reference classification 

map; b. classification map with error; c. spatial distribution of the simulated 

misclassification pixels) 

 

We simulated the classification maps by changing the classes of some pixels to 

the other two classes in the reference maps in order to represent misclassification by a 

classifier (Fig. 2.3). Regarding the spatial distribution of classification error, the 

misclassification probability of edge pixels was set as two times that of non-edge 

pixels (Fig. 2.3c), because mixed pixels in the border often lead to increased 

Correctly classified non-edge pixels

Correctly classified edge pixels

Misclassified edge pixels

Misclassified non-edge pixels
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(c)
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classification error due to spectral mixture. For each reference map, we simulated five 

misclassification maps, in which the misclassified pixels covered 4% and 2%, 8% and 

4%, 12% and 6%, 16% and 8%, and 20% and 10% of edge and non-edge pixels, 

respectively. In summary, a total of 375 (= 75  5) incorrect classification maps were 

simulated. 

 

2.3.2 Measuring Fragmentation and LPI Error 

We used FRAGSTATS 3.0 (McGarigal et al., 2002) to calculate the LPIs. Based 

on the recommendation of Li et al. (2005), six important LPI indices were calculated: 

(a) Number of Patches (NP), (b) Mean Patch Size (MPS), (c) Total Edge (TE), (d) 

Double-Logged Fractal Dimension (DLFD), (e) Contagion (CONTAG), and (f) 

Aggregation Index (AI). All of these indices were calculated on the landscape level 

and the class level, except for CONTAG, which is available only for the landscape 

level. For each LPI both on the landscape level and the class level, the LPI error is 

calculated as followed: 

error reference classificationLPI (LPI) (LPI)      (2-5) 

where referenceLPI  is the LPI of the reference map and classificationLPI  is the LPI of the 

classification map. 

 

2.3.3 Measuring the Classification Error 
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 Overall accuracy, kappa coefficient, and the proposed WMR were used to 

measure the classification error. The accuracy indices were calculated based on all 

pixels of one map (40,000 pixels) to remove the sample effect. Two levels of accuracy 

assessment indices, which correspond to the landscape level and the class level of 

LPIs, respectively, were calculated. 

 

2.3.4 Analysis of Results  

Based on the 375 simulated classification maps, we investigated the correlation 

between LPI error and the accuracy assessment indices on both the landscape level 

and class level. For the class level, we chose only one class to analyze because there 

are no differences among three classes. Additionally, we also investigated the 

correlation between LPI error and the accuracy assessment indices on the landscape 

level under different subsets of simulation data. 

Sample size is an important factor in assessment of classification error. The effect 

of sample size was also examined for the new index. For each simulated classification 

map, WMR were calculated based on different sample sizes, ranging from 400 to 

4000 with an interval of 400. Here, we used proportional stratified random sampling 

method and randomly sample 500 times for each level of sample size. For each 

sample size, Root Mean Square Error (RMSE) of estimated WMR was calculated as 

followed: 
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    (2-6) 

where 
,WMR i j

 is the WMR calculated from the jth sample of the ith simulated 

classification map, 
, full_sampleWMRi

 is the WMR calculated from full sample of the 

ith simulated classification map, which is regarded as the true value of WMR. RMSE 

indicates the accuracy of the estimated WMR. Then, the relationship between RMSE 

and sample size was investigated.   

 

2.4 Results 

2.4.1 Correlation between LPI error and classification accuracy indices 

In the correlation analysis between LPI error and classification accuracy indices, 

we used the fully sampling method to remove the effect of sample size. Tables 2.1 

and 2.2 show the correlation coefficients between the LPI error and the classification 

accuracy assessment indices, respectively, on the landscape level and the class level. 

WMR is better correlated with LPI error than overall accuracy and kappa coefficient 

in all cases, especially for the cases of NP, TE, CONTAG, AI, and DLFD. Among 

these LPI indices, the correlation coefficient between the error of MPS and WMR is 

decreased substantially. Although MPS is not particularly correlated with other LPIs, 

the correlations between the MPS error and the error of other LPIs are particularly 

low (results are not presented in the tables). That is because the MPS error is very 

sensitive to the true value of MPS, while the true value is unknown. For example, one 
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isolated misclassified pixel increases the NP by 1 and the TE by 4, regardless of the 

true values of NP and TE. However, the degree to which one isolated misclassified 

pixel decrease MPS depends on the true value of MPS. 

 

Table 2.1 Correlation coefficients between classification accuracy assessment indices 

and LPI error on landscape level (n = 375) 

Accuracy 

Index 

NP TE MPS CONTAG AI DLFD 

Correlation Coefficients 

OA -0.575 -0.801 0.027 -0.516 -0.801 -0.739 

  -0.659 -0.840 -0.077 -0.691 -0.839 -0.876 

WMR 0.983 0.987 0.580 0.944 0.987 0.917 

 

 

Table 2.2 Correlation coefficients between classification accuracy assessment indices 

and LPI error on class level (n = 375) 

Accuracy 

Index 

NP TE MPS AI DLFD 

Correlation Coefficients 

OA -0.437 -0.816 0.048 -0.442 -0.649 

  -0.768 -0.878 -0.139 -0.708 -0.937 

WMR 0.934 0.978 0.315 0.895 0.939 

 

Tables 2.3 and 2.4 show the correlation coefficients between the LPI error and the 

classification accuracy assessment indices on the landscape level under different 

subsets of simulation data. Strong correlations between WMR and LPI error (except 

for MPS) are observed for all subsets. For subsets of different aggregation levels 

(Table 2.3), the kappa coefficient is also well correlated with the LPI error. However, 
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for the subsets of different proportion configurations (Table 2.4), only WMR is well 

correlated with LPI error (except for MPS). Since LPIs are usually compared among 

the landscapes with different aggregation levels, WMR is more meaningful than 

kappa coefficient. The results for the class level are similar and so are not presented. 

 

Table 2.3 Correlation coefficients between classification accuracy assessment indices 

and LPI error on landscape level under different aggregation levels (n = 125) 

Aggregation 

level 

Accuracy 

Index 

NP TE MPS CONTAG AI DLFD 

Correlation Coefficients 

P = 0.1 

OA -0.749 -0.903 -0.639 -0.555 -0.904 -0.729 

  -0.907 -0.993 -0.765 -0.795 -0.993 -0.908 

WMR 0.973 0.990 0.842 0.910 0.990 0.953 

P = 0.3 

OA -0.908 -0.971 -0.647 -0.748 -0.972 -0.846 

  -0.991 -0.988 -0.823 -0.933 -0.989 -0.972 

WMR 0.996 0.993 0.838 0.927 0.993 0.958 

P = 0.5 

OA -0.970 -0.989 -0.458 -0.875 -0.989 -0.943 

  -0.976 -0.957 -0.748 -0.990 -0.957 -0.983 

WMR 0.999 0.997 0.619 0.954 0.997 0.985 

 

2.4.2 Effect of sample size 

Fig. 2.4 shows the RMSE of WMR against sample size on the landscape level and 

class level. It can be seen that the RMSE of new index decrease when the sample size 

increases. This result is consistent with other studies on the sample effect of the 

accuracy indices of hard and soft classification (Stehman, 1996; Chen et al., 2010). 
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Table 2.4 Correlation coefficients between classification accuracy assessment indices 

and LPI error on landscape level under different proportion configurations (n = 75) 

Proportion 

Configuration 

Accuracy 

Index 

NP TE MPS CONTAG AI DLFD 

Correlation Coefficients 

f1 = 0.125 

f2 = 0.125 

f3 = 0.750 

OA -0.748 -0.917 0.029 -0.823 -0.916 -0.960 

  -0.799 -0.945 -0.051 -0.869 -0.945 -0.977 

WMR 0.980 0.991 0.432 0.994 0.991 0.930 

f1 = 0.125 

f2 = 0.250 

f3 = 0.625 

OA -0.651 -0.856 0.024 -0.714 -0.855 -0.873 

  -0.666 -0.866 0.008 -0.728 -0.865 -0.881 

WMR 0.981 0.990 0.554 0.991 0.990 0.957 

f1 = 0.125 

f2 = 0.375 

f3 = 0.500 

OA -0.678 -0.822 0.008 -0.648 -0.821 -0.788 

  -0.684 -0.826 -0.001 -0.655 -0.825 -0.794 

WMR 0.995 0.990 0.614 0.987 0.990 0.936 

f1 = 0.250 

f2 = 0.250 

f3 = 0.500 

OA -0.545 -0.799 -0.000 -0.528 -0.799 -0.863 

  -0.546 -0.801 -0.000 -0.529 -0.801 -0.863 

WMR 0.978 0.987 0.662 0.972 0.987 0.906 

f1 = 0.333 

f2 = 0.333 

f3 = 0.333 

OA -0.493 -0.758 0.003 -0.408 -0.758 -0.758 

  -0.494 -0.759 0.001 -0.409 -0.759 -0.759 

WMR 0.982 0.985 0.710 0.957 0.985 0.953 

 

 

Fig. 2.4 Relationship between RMSE of WMR and the sample amount 
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2.5 Discussion and Conclusion 

Since traditional classification accuracy assessment indices are not well correlated 

with LPI error, Weighted Misclassification Rate is proposed to clarify the LPI error in 

this study. WMR is calculated based on the reference data in 33 blocks, which can 

be obtained from high-resolution images, as the same as the validation data for soft 

classification assessment (e.g. Wu et al., 2003). Through an analysis of a series of 

simulated images, WMR was found to be well correlated with errors of NP, ED, 

CONTAG, AI, and DLFD, but not MPS, suggesting that the proposed WMR, as a 

supplement to the overall accuracy and the kappa coefficient, has the potential to be a 

useful measure of classification error for landscape analysis. However, since there is 

still a large gap between such simulated data and the actual data, WMR should be 

validated using actual data or more elaborate simulations in the future. 
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CHAPTER 3  

An Automated Approach for Updating Land Cover Maps 

based on Integrated Change Detection and Classification 

Methods 

 

3.1 Introduction 

Information regarding land cover composition and changes is valuable for 

studying multiple aspects of an environmental system, such as energy balance, 

biogeochemical cycles, hydrological cycles and the climate system, which are 

regarded as crucial elements in global change studies (Turner et al. 1995). Therefore, 

reliable land cover information from remotely sensed data is increasingly required at a 

continuum of scales, from local and regional to continental and global scales. At 

global scales, several land cover datasets derived from remotely sensed data are 

available currently, including IGBP DISCover (Loveland et al., 2000), the MODIS 

land cover product (Friedl et al., 2002), the UMD land cover product (Hansen et al., 

2000), and Global Land Cover 2000 (Bartholomé and Belward, 2005). All of the 

above datasets are at a spatial resolution of 1 km. Additionally, another global land 

cover dataset, GlobCover produced by European Space Agency (ESA), is at a 

resolution of 300 m (Arino et al., 2008). However, previous studies have shown that 

there is relatively little agreement between these global land cover datasets (Hansen 

and Reed, 2000; Iwao et al., 2006; Kaptué Tchuenté et al., 2011), which could 
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decrease the reliability of the related studies. Additionally, these coarse resolution 

land cover products cannot satisfy the requirements of some specific studies, such as 

landscape analysis and land resources management at regional scales. Another 

important issue that has been found in the existing land cover products is that these 

products are derived only from remotely sensed data acquired during one or several 

years and represent land cover characteristics for a specific period with a lack of 

long-term land cover change information. At a regional scale, most land cover/use 

maps were derived from medium spatial resolution data, such as Landsat, Advanced 

Space-borne Thermal Emission and Reflection Radiometer (ASTER), and SPOT 

High-Resolution Visible and Infrared (HRVIR). Although the potential exists to 

achieve better classification accuracy, much human intervention is required in the 

classification procedure that cannot satisfy the requirement for the timely extraction 

of land cover information based on the large and growing satellite data archives of the 

Earth's surface. 

Although many computer-aided techniques have been developed for land cover 

classification or change detection during the past decades (Canty, 2006; Lu and Weng, 

2007; Lu et al., 2004), the skills and experience of an analyst are still very important 

for the success of image classification (Weng, 2011; Aitkenhead and Aalders, 2011) 

because the required human intervention is labor consuming and subjective. Moreover, 

the lack of historical and coincidental ground information to either establish training 

data or assess identification accuracy also decreases the accuracy of land cover maps 
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and the flexibility of classification and change detection algorithms (Xie et al., 2010). 

Therefore, the reliable classification of large amounts of remotely sensed data remains 

a very challenging task (Franklin and Wulder, 2002).  

A promising solution to the aforementioned technical difficulties in land cover 

map updating is to best utilize a known classification map instead of independently 

classifying the remotely sensed images. Xian et al. (2009) proposed a technique to 

update the 2001 national land cover database using a change detection method. In that 

study, Change Vector Analysis (CVA) was first employed to detect changed areas and 

then the detected changed areas were reclassified using Decision Tree Classification 

(DTC). This technique is capable of producing a reasonably accurate land cover map 

in a cost-effective way. However, CVA has a strict requirement for remotely sensed 

data that two used images acquired in different years should come from the same 

phenological period (Chen et al., 2003), which limits its wide application. In many 

cases, multi-seasonal data are strongly recommended because these data are not only 

useful for classifying different vegetation types (Saadat et al., 2011; Maxwell et al., 

2004) but also for correctly identifying land cover that changes seasonally, such as 

water bodies and snow cover (Ho and Umitsu, 2011; Negi et al., 2009). Unfortunately, 

acquiring such data in similar multi-seasons for both of the two years is very difficult 

because of cloud contamination. Furthermore, a single CVA threshold is not 

appropriate for detecting the area of different change types (Xian et al., 2009), which 

increases the difficulty of determining a suitable threshold. Another approach, the 
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Tempo-Spatial Feature Evolution (T-SFE) model (Xie, 2010), was proposed to 

address the difficulty of acquiring a historical training dataset for the classification of 

remotely sensed data. This model first produces the spectral class map by the 

unsupervised ISODATA classifier and then assigns the spectral class to the ground 

cover type by referring to a reference map of ground cover types from a subsequent 

time. Although this method avoids the requirement for a classification training dataset, 

the T-SFE model is only an exploratory rather than an automatic method because a 

satisfactory classification result requires the proper calibration of various model 

parameters. 

Although CVA-DTC has limitations, the strategy of updating land cover data 

only for the changed areas is promising. Therefore, we developed a new approach to 

update land cover maps by improving the updating strategy of Xian et al. (2009). The 

proposed approach aims to achieve two objectives: 1) to reduce the CVA requirement 

for remotely sensed imageries that should be acquired in the same phenological period 

from different years; and 2) to generate a fully unsupervised, automated method 

without human interaction for training data collection and parameter calibration. In 

the proposed approach, the Maximum Likelihood Classifier (MLC), which is the most 

popular supervised classification method in application studies, is employed for 

classification. The straightforward change detection technique, Change Vector 

Analysis in Posterior Probability Space (CVAPS) (Chen et al., 2011) or Post 

Classification Comparison (PCC), are employed for change detection. Compared with 
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CVA, PCC and CVAPS have relatively low requirements for remotely sensed data. 

Data acquired in different seasons or even with different remote sensors can be used 

(Serra et al., 2003). Considering the cumulative error in PCC (Machleod and 

Congalton, 1998; Castellana et al., 2007; Chen et al., 2011), CVAPS is recommended 

here because it can inherit the advantages of CVA and PCC. The greatest challenge in 

our method is to properly select the training sample. We proposed an iterated 

procedure to select training samples automatically based on a known classification 

map to ensure that the method is completely unsupervised. Additionally, an approach 

based on the Markov Random Fields (MRF) model was employed to reduce the 

“salt-and-pepper” error that usually occurs in pixel-based classification methods. A 

case study using Landsat data was conducted to validate the effectiveness of the 

proposed method, and the new method is expected to be more practicable for land 

cover updating or historical land cover mapping than CVA-DTC in common 

application cases with an available land cover map for a certain year.  

 

3.2 Methodology   

The proposed approach consists of three main parts: the change detection method, 

the Markov Random Fields (MRF) model, and an iterated training sample selecting 

procedure. The general flowchart is shown in Fig. 3.1.  
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Fig. 3.1 Flowchart of the proposed approach 
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3.2.1 Change Detection Method 

The change detection methods can be categorized into two types: 1) methods 

based on the radiometric difference between different acquisition dates, such as CVA; 

and 2) methods based on the classification results of the satellite images, such as PCC 

and CVAPS. The former method requires the used data should be acquired in the 

same phenolgoical period and from the same remote sensors. In contrast, the latter 

methods which do not have such strict requirement were selected in this study. PCC 

detects the changed areas by directly comparing two classification maps. This method 

is straightforward and easily conducted but suffers from cumulative error (Chen et al., 

2003; Liu et al., 2006; Castellana et al., 2007; Chen et al., 2011).  

As an improvement, CVAPS compares the posterior probability maps for two 

different dates instead of the classified maps, which avoids cumulative error (Chen et 

al., 2011). Supervised classifiers can be used to estimate the posterior probabilities of 

different land cover types. Here，a standard Maximum Likelihood Classifier (MLC) 

was used for its high computing efficiency and acceptable accuracy. In MLC, the 

normal distribution model is adopted. Assuming that the posterior probability vectors 

of a pixel at times 1 and 2 are (1)
P and (2)

P , respectively, the change vector in a 

posterior probability space can be defined as 

(2) (1)

(2) (1)

1 1

(2) (1)

2 2

(2) (1)

... ...

m m

p p

p p

p p

  

   
   
    
   
      
   

P P P

 (3-1) 
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where m is the number of classes. ΔP represents the difference in the posterior 

probability of each class for the two dates and contains the change information 

between the two images. The change magnitude of the vector is calculated as 

 
2

(2) (1)

1

m

i i

i

p p


  P                        (3-2) 

Compared with CVA, ||ΔP|| of different change types are at the same scale because 

the posterior probability can normalize the intra-class variability and inter-class 

distance. When the ||ΔP|| value is greater, the probability of change is higher. 

Compared with PCC, CVAPS requires a threshold to determine the 

changed/unchanged pixels. The threshold can be determined by either a supervised or 

unsupervised method. Here, the unsupervised threshold determination method based 

on the histogram entropy (Kapur et al., 1985) was employed to ensure that the method 

was unsupervised, although the supervised method is capable of achieving higher 

change detection accuracy (Chen et al., 2011). 

 Although some non-parametric classification algorithms, such as Support Vector 

Machine (SVM) and Artificial Neural Net (ANN), have been found to perform better 

than MLC in some studies (e.g., Dixon and Candade, 2007,; Mountrakis et al., 2011), 

these algorithms were not considered in this study because their computation cost 

increases geometrically with the increase in training sample size. 

 

3.2.2 Markov Random Fields Model 
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Pixel-based change detection (or classification) methods usually generate more 

“salt-and-pepper” error (Lu and Weng, 2007). One solution is to employ an 

object-based classification method, which has recently received increasing attention 

(Blaschke, 2010). However, such methods require many parameters, which are 

usually difficult to determine and do not satisfy the requirements of our automated 

method. Another solution is post-classification processing, such as the majority filter 

and the MRF model. In the past decades, the MRF model has been introduced in 

many change detection studies and has been shown to be effective at reducing 

“salt-and-pepper” error (e.g., Jeon and Landgrebe, 1991; Solberg et al., 1996; 

Bruzzone and Prieto, 2000; Liu et al., 2008). Compared to the object based 

classification method, the MRF model requires fewer parameters and has greater 

computing efficiency because parallel computing and advanced optimization 

algorithms are available for the MRF model (Sui et al., 2011; Szeliski et al., 2008). 

Therefore, the MRF model introduced in Bruzzone and Prieto (2000) was employed 

to reduce the “salt-and-pepper” error. In the MRF model, the probability (P) of the 

pixel (i, j) belonging to the class C is determined by both the spectral information and 

the labels of the neighboring pixels: 

    context spectrum

1
( , ) exp [ ( , )] [ ( , )]P C i j U C i j U C i j

Z
        (3-3) 

where Z is the normalizing constant; Ucontext and Uspectral is the energy of the context 

and the spectrum, respectively. The energy of the spectrum is the logarithmic function 

of the posterior probability: 
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 spectrum spectrum[ ( , )] ln [ ( , )]U C i j p C i j       (3-4) 

where pspectral is the posterior probability that is derived from the MLC classifier. The 

energy of the context is calculated based on the labels of the neighboring pixels. For 

the target pixel (i, j), a set of neighbor pixels called N(i, j), is defined first. As is the 

case in previous studies, a second-order neighborhood set (Fig. 3.2) is employed: 

   ( , ) {( 1, ),( , 1),( 1, 1),( 1, 1)}i j i j i j i j i j      N .    (3-5) 

 

 

Fig. 3.2 Second-order neighborhood set used by the MRF model 

 

Then the energy of the context is calculated as follows: 

   context context[ ( , )] ( , ) |{ ( , ),( , ) ( , )} ( , ), ( , )kU C i j U C i j C g h g h i j C i j C g h  N

 

 

(3-6) 

where 

 
-1 if ( , ) ( , )

( , ), ( , )
0 if ( , ) ( , )

k
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，
,    (3-7) 
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and β is the weight coefficient of the context information. Here, this value was set as 

1.6 based on the study of Bruzzone and Prieto (2000). The MRF model determines the 

class by minimizing the energy function (equivalent to maximizing the probability 

function) in Eq. (3-3) using the optimization algorithm such as iterated conditional 

modes (ICM), metropolis, graph cuts, and loopy belief propagation (LBP) (Besag, 

1986; Kohli et al., 2007; Szeliski et al., 2008). In this paper, the traditional ICM 

algorithm was employed for its acceptable efficiency and accuracy in the 

classification of remotely sensed images (Bruzzone and Prieto, 2000; Liu et al., 2008). 

It is noticed that only the changed pixels detected in Section 3.2.1 were refined by 

MRF model. The iteration of ICM can be described as follows: 

1) For all changed pixels determined by the pixel-based change detection technique, 

initialize C(i, j) with the class that minimizes the spectral energy function. The 

initialized classification is equal to the MLC result. 

2) For all changed pixels, update C(i, j) to the class that minimizes the total energy 

function (Eq. 3-3).    

3) Repeat Step 2 until convergence is reached.  

After iteration, the isolated changed pixels are more likely to be marked as 

unchanged pixels; therefore, the “salt-and-pepper” error can be reduced. 

 

3.2.3 Training Sample Selection 
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The key step of the automated approach is the proper selection of the training 

samples because they are required for MLC, PCC and CVAPS. Traditionally, the 

training samples are selected manually depending on the knowledge of the analyst or 

field investigation, which is time-consuming and subjective. It is assumed that the 

remotely sensed images were acquired in the year of T1 and T2 respectively and a 

classification map is already available on T1. The training sample for T2 is selected 

based on the known classification map on T1. Usually, the land cover changes only 

occurred in small areas between T1 and T2 for most applications, consequently, the 

use of the unchanged areas as training samples for the image on T2 is reasonable. 

Therefore, we developed an iterated method to refine the unchanged area as training 

samples. For convenience of description, the image data on T1 and T2 are denoted as 

Ψ1 and Ψ2, and the classification maps on T1 and T2 are denoted as C1 and C2. The 

training sample set is denoted as Ω. The iteration procedure includes following steps: 

1) All of the pixels in the known classification map on T1 are first selected into 

training samples set: 1Ω C .  

2) The Ω  is used for training the MLC for the calculation of posterior 

probability vectors on T1 and T2  

3) Changed /unchanged areas are detected by a pixel-based change detection 

method (CVAPS or PCC). The sets of changed pixels and unchanged pixel are 

denoted as cΘ  and uΘ   
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4) The T2 land cover types of the changed pixels 2 c( )C Θ  are updated 

according to the MLC results, and unchanged pixels 2 u( )C Θ  inherit the land 

cover labels from the T1 land cover map.  

2 c 2 c

2 u 1 u

( ) MLC( , , )

( ) ( )






C Θ Ω Ψ Θ

C Θ C Θ
      (3-8) 

5) The T2 land cover map 2 2 c 2 u{ ( ), ( )}C C Θ C Θ  is refined using the MRF 

model 

2M 2MRF( )C C ，       (3-9) 

and a more aggregate changed/unchanged map is obtained by comparing 2MC  

and 1C . The sets of unchanged pixels and changed pixels are refined as uMΘ  

and cMΘ  

6) The unchanged pixels are re-selected as training samples 1 uM( )Ω C Θ and 

goto step (2) 

The Step (2) to (6) is repeated until the uMΘ  and cMΘ  are highly consistent 

with the result of last iteration at the rate of 99%. The consistence rate is defined as: 

unchanged changed
Consistence Rate

p p

P


 ，      (3-10) 

where 
unchangedp is the number of pixels that are marked as unchanged pixels in both 

iterations, and 
changedp  is the number of pixels that are marked as changed pixels in 

both iterations. P is the number of all of the pixels in the image. Consequently, a 

higher consistency rate indicates that a change in the training samples has less 

influence on the changed/unchanged pixel detection result. This iterated procedure is 

expected to refine the unchanged area as the training samples improve classification 
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accuracy. After iteration, the final changed/unchanged map and the T2 classification 

map are obtained. 

 

 

3.3 Case Study 

3.3.1 Data and Study Area 

 A case study on the Landsat data was conducted to validate the effectiveness of 

the proposed approach. The study area is located in Xi’an city, Shaanxi province, 

China (34°16'N, 108°54'E). Similarly to other cities in China, the urban area of Xi’an 

city expanded rapidly in the last decade along with the rapid economic growth in the 

area. The Landsat ETM+ images acquired on 2000-06-29 and 2000-11-20 and the 

Landsat TM images acquired on 2010-06-17 and 2010-08-04 were used for this 

experiment (Fig. 3.3). The size of the images was 1200×1300 pixels, covering an area 

of approximately 1400 km
2
. Multi-seasonal TM data were collected because these 

data are useful for distinguishing the cropland and forest. The forest pixels have a 

longer greenness period from May to October, whereas the cropland pixels have low 

greenness in June but approach the maximum of the growth in August. In the winter, 

both of the cropland and forest wilt and exhibit similar spectral characteristics. 

Therefore, cropland and forest pixels are particularly difficult to distinguish in the 

winter. CVA cannot be used in this case study because the multi-seasons in 2000 and 

2010 did not correspond with each other.  



43 

 

 

 

Fig. 3.3 Landsat TM/ETM+ images of the study area (a. ETM+ on 2000-06-29; b. 

ETM+ on 2000-11-20; c. TM on 2010-06-17; d. TM on 2010-08-04) 

 

A known classification map for one year is required for the proposed 

methodology. Here, we acquired the land cover map for 2010 (Fig. 3.4) from the 

National Geoinformatics Center of China, which was generated from TM data by 

visual interpretation referring to the high spatial resolution images (QuickBird). 

(a) (b)

(c) (d)
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According to the land cover map, there were five land cover types in the study areas 

including bareland, cropland, forest, urban and water.  

 

 

Fig. 3.4 Land cover map in 2010 

 

3.3.2 Updating Results and Accuracy Assessment  

The land cover map in 2000 was updated based on the multi-seasonal Landsat 

data and the land cover map in 2010 using the proposed method. We did not update 

chronologically from 2000 to 2010; instead, updated in the reverse order because the 

known land cover map was available in 2010. The change detection methods PCC and 

CVAPS were both tested for comparison. As shown in Fig. 3.5, the results derived 

from these methods based on PCC and CVAPS were very similar and exhibited a very 

high agreement of 97%. From 2000 to 2010, the most obvious change was urban 

expansion by encroaching areas with other land cover types correspondingly.  

Bareland
Cropland
Forest
Urban
Water
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Fig. 3.5 Land cover map in 2000 updated by the approach based on CVAPS (a) and 

by the approach based on PCC (b) 

 

For quantitative accuracy assessment, 6398 pixels in the 2000 image were 

randomly selected for validation. These pixels were interpreted visually based on the 

experience of the author’s group and reference data from 2000. The accuracies of 

“change/unchanged” were examined first because change detection is an important 

part of this methodology. As shown in Tables 3.1 and 3.2, the methods based on 

CVAPS and PCC produced similar results, whereas PCC estimated slightly more 

changed areas than the CVAPS results, which is consistent with the results of a 

previous study (Chen et al., 2011). For classification accuracy, the confusion matrixes 

are shown in Tables 3.3 and 3.4. The accuracies of the two methods are also similar, 

(a) (b)

Bareland
Cropland
Forest
Urban
Water
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while the method based on CVAPS performs slightly better. The structures of the two 

confused matrices are also similar. In detail, the water has the highest classification 

accuracy because the water spectrum is stable and unique, whereas there were much 

misclassification between forest and cropland, and between urban and bareland 

because of similar spectra. Additionally, there was also misclassification between 

urban and forest because trees usually cover the small towns, which results in a strong 

spectral vegetation signal in some urban pixels.  

 

Table 3.1 “Changed/unchanged” confusion matrix of the approach based on CVAPS 

Number of pixels 

Reference changed 

Unchanged 

pixels 

Changed 

pixels 
Sum 

Commission 

error 

Classified 

changed 

Unchanged 

pixels 
4002 600 4602 13.0% 

Changed pixels 230 1557 1787 12.9% 

 Sum 4232 2157 6389  

 Omission error 5.43% 27.8%   

Overall accuracy 87.01%，kappa coefficient 0.697 

 

Table 3.2 “Changed/unchanged” confusion matrix of the approach based on PCC 

Number of pixels 

Reference changed 

Unchanged 

pixels 

Changed 

pixels 
Sum 

Commission 

error 

Classified 

changed 

Unchanged 

pixels 
3927 567 4494 12.6% 

Changed pixels 305 1590 1895 16.1% 

 Sum 4232 2157 6389  

 Omission error 7.2% 26.3%   

Overall accuracy 86.3%，kappa coefficient 0.686 
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Table 3.3 Classification confusion matrix of the approach based on CVAPS 

Number of pixels 
  Reference  

Bareland Cropland Forest Urban Water Sum Commission error 

C
la

ss
if

ic
at

io
n

 Bareland 325 10 40 24 1 400 18.8% 

Cropland 7 1899 190 105 1 2202 13.8% 

Forest 0 187 958 0 13 1158 17.3% 

Urban 92 69 124 1834 39 2158 15.0% 

Water 

Sum 

9 1 13 1 456 480 5.0% 

433 2166 1325 1964 510 6398  

 Omission error 24.9% 12.3% 27.7% 6.6% 10.6%   

Overall accuracy 85.5%，kappa coefficient 0.802 

 

Table 3.4 Classification confusion matrix of the approach based on PCC 

Number of pixels 
  Reference  

Bareland Cropland Forest Urban Water Sum Commission error 

C
la

ss
if

ic
at

io
n

 Bareland 328 10 43 21 1 403 18.6% 

Cropland 7 1841 177 104 1 2130 13.6% 

Forest 0 204 967 0 15 1186 18.5% 

Urban 89 110 124 1838 42 2203 16.6% 

Water 

Sum 

9 1 14 1 451 476 5.3% 

433 2166 1325 1964 510 6398  

 Omission error 24.2% 15.0% 27.0% 6.4% 11.6%   

Overall accuracy 84.8%，kappa coefficient 0.793 

 

3.3.3 Role of Iterated Training Sample Selecting Procedure 

As a key component of the proposed methodology, the effect of the iterated 

training sample selecting procedure was investigated. Fig. 3.6(a) shows the 

relationship between the iteration number and consistence rate. The iteration ended 

when the consistence rate reached 99%. Both approaches that were based on CVAPS 

and PCC converged rapidly at the fifth and fourth iterations, respectively. This result 
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indicates that the proposed approach does not significantly increase the computational 

cost.  

 

Fig. 3.6 Relationship between iteration number and consistence rate (a), accuracy of 

change detection (b), and accuracy of classification (c) 
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As shown in Fig. 3.6 (b) and (c), the iteration largely improved the change 

detection and classification accuracies by more than 5% for Overall Accuracy (OA) 

and 0.1 for Kappa coefficient. These results indicate that the proposed iterated 

training sample selecting process can refine the training sample and improve the 

change detection and classification accuracy. 

 

3.3.4 Role of MRF model 

The methods with and without the MRF model were compared. Fig. 3.7 shows the 

updated land cover maps produced by the CVAPS-based approaches with and without 

the MRF model. As shown in Fig. 3.7, the approach with the MRF model produced 

more aggregated results, and the “salt-and-pepper” error was reduced largely. The 

results of the PCC-based approaches are comparable, and the data are not shown in 

the figures. Fig. 3.8 compares the quantitative classification accuracies of the 

approaches with and without the MRF model. The MRF model improved the overall 

classification accuracy by approximately 5% and the kappa coefficient by 

approximately 0.07. The approaches based on CVAPS and PCC produced almost the 

same results. A limitation of the MRF model is that some thin linear objects may be 

removed. As shown in Fig. 3.9, one traffic road disappeared as the result of using the 

method with the MRF model. However, we still suggest using the MRF model 

because the classification accuracy can be improved significantly. 
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Fig. 3.7 Land cover map in 2000 updated by the approach of CVAPS with MRF 

model (a) and without MRF model (b) 

 

 

Fig. 3.8 Comparison of the classification accuracies of the proposed approaches with 

and without the MRF model (a. overall accuracy; b. kappa coefficient) 

 

Bareland
Cropland
Forest
Urban
Water

(a) (b)

72%

76%

80%

84%

88%

CVAPS PCC

O
v

er
al

l 
A

cc
u

ra
cy

Approach with MRF

Approach without MRF

0.64

0.68

0.72

0.76

0.80

0.84

CVAPS PCC

K
ap

p
a 

Approach with MRF

Approach without MRF

(a) (b)



51 

 

 

Fig. 3.9 Detailed comparison of the approaches with and without the MRF model (a. 

with MRF model; b. without MRF model) 

 

 

3.3.5 Role of multi-seasonal data 

Compared to CVA-DTC, the proposed approach is more suitable to 

multi-seasonal data. Therefore, we investigated whether multi-seasonal data can 

improve the classification accuracy compared with single-seasonal data. Here, four 

single-seasonal data combinations were tested, including the images acquired on 

2000-06-29 and 2010-06-17; 2000-06-29 and 2010-08-04; 2000-11-20 and 

2010-06-17; and 2000-11-20 and 2010-08-04. The accuracies are compared in Fig. 

3.10. The results derived from the multi-seasonal data achieved the highest accuracy. 

This is reasonable because multi-seasonal data contains phenological information, 

Bareland
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which is very useful for distinguishing the cropland and forest. In cases of 

single-seasonal data, the accuracy decreased to varying extents. In particular, the 

accuracy decreased largely (approximately 10% of overall accuracy and 0.10 of kappa) 

when TM data acquired in the winter (2000-11-20) was used. This is because 

cropland is very easily misclassified with deciduous forest in the winter. In most cases, 

the method based on CVAPS performed better than the method based on PCC. 

Therefore, we suggest using CVAPS in application studies. 

 

 

Fig. 3.10 Accuracies of classification results based on multi-seasonal and 

single-seasonal data (a. overall accuracy; b. kappa coefficient) 

 

3.4 Discussion and Conclusion 

The proposed approach uses a similar CVA-DTC strategy as Xian et al. (2009), 

which updated the classification map only for the changed areas. In this study, CVA 

was replaced with more applicable change detection techniques, CVAPS or PCC, and 

replaced DTC with MLC to widen the scope of its flexibility. An iterative training 
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sample selection procedure was proposed by appropriately utilizing the unchanged 

area between two years to address the challenge of selecting the proper training 

samples without supervision. The experimental result shows that this iterative 

procedure can improve classification accuracy by approximately 5%. Furthermore, 

the iterative process converges in no more than five iterations, suggesting a low 

computational cost.  

In comparison to CVA-DTC, the proposed approach employed CVAPS or PCC to 

detect changed areas instead of directly comparing the radiometric difference between 

different acquisition dates. Therefore, this method can avoid the strict requirement of 

CVA for reliable image radiometric correction and remotely sensed data acquisition 

that the two images acquired in different years should be from the same phenological 

period. Without such strict requirements, the proposed approach can be applied for 

land cover mapping or updating over larger scales and for longer periods. 

Additionally, the change magnitudes of different change types in CVAPS are on the 

same scale because the posterior probability for each pixel classification is in the 

range of zero to one. Consequently, a single threshold is more suitable for CVAPS 

than CVA, which is convenient for users to optimize the threshold with the existing 

thresholding methods. Compared with PCC, CVAPS analyzes the posterior 

probability vector with CVA, which can alleviate classification error accumulation 

effectively existing in PCC and improve the changed/unchanged detection accuracy. 
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As shown in Section 3.3.5, CVAPS performs better than PCC in most cases. 

Therefore, CVAPS is recommended in applications. 

In this study, MLC was employed as the supervised classification method. This 

method is popular and easily conducted but requires training data. In this study, an 

iterative training sample selecting procedure was proposed to address the limitation 

by appropriately utilizing the unchanged area between two years. The first step in the 

procedure is to use the entire known land cover map as the training data, which 

provides huge training samples. In the subsequent steps, the change detection result is 

used to refine the training samples and ensure that only unchanged pixels are used as 

the training reference. Regardless of the number of times the iteration is performed, 

the size of training samples for classification is still very large, which is nearly equal 

to the size of the unchanged area. MLC is more suitable for such large training 

samples because the huge size of training samples is more likely to satisfy the normal 

distribution assumed in MLC. The advantage of the non-parameter classification 

algorithms, such as SVM and ANN, is the low requirement for specific spectral 

distribution. Another advantage of SVM is its robustness for the small training sample 

size. These advantages are not shown obviously in the case of a large sample size. 

Instead, the computation cost increases geometrically with the increase in training 

sample size. Therefore, the non-parameter algorithms are not considered in this 

approach. However, any supervised classifiers can be used in our approach in theory. 

In the future, more advanced classifiers can be employed.  
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MRF model is also an important sub-module in this approach. The experiment 

result shows that it can reduce “salt and pepper” error significantly although some 

thin linear objects may also be removed mistakenly. In this study, a standard MRF 

model was employed for general feasibility. However, if some prior knowledge, for 

example the land cover incompatible/compatible rules among spatial or temporal 

neighborhood pixels, are available (Liu et al., 2006, Liu et al., 2008), they also can be 

integrated into the MRF model to meet the specific need of a study. 

In practice, updating a land cover map often depends on data availability and 

quality, time and cost constraints, and analytical skill and experience. Compared with 

CVA-DTC and T-SFE, the proposed approach requires no supervision and decreased 

requirements for remotely sensed data, which is applicable to timely updates of both 

historical and future land cover maps. 

We also recognize that there are potential limitations regarding this new approach. 

Firstly, this approach assumes the same classification systems between two years. 

Therefore, the new land cover type will not be correctly identified if it is not available 

on T1 but appears on T2. In this case, the new land cover type on T2 should be firstly 

identified before using the proposed approach. One-class classifier (e.g. Muñoz-Marí 

et al., 2010) may be a good choice for identifying the new land cover type because 

only the training sample of the new class is required. Another limitation is that the 

approach does require the availability of one reliable land cover map that provides 

initial training samples. In general, a high quality classified map is expected. When 
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the amount of misclassification pixels accounts only for a small proportion, the 

estimation of mean value and covariance of each class in MLC will be affected very 

slightly; consequently, the posterior probability calculated from MLC will also be 

affected slightly. However, if the classification accuracy of the known land cover map 

is poor, the accuracy of both change detection and classification may be reduced. The 

impact of error propagation could be complicated, depending on the spectral and 

spatial distribution of the misclassification pixels. Some possible solutions include 

selecting core areas of different land cover types in the known map as a training 

reference instead of using the entire map in the first step or manually selecting the 

areas with lower classification uncertainty if such information is available. 
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CHAPTER 4  

Soft Image Segmentation Model 

 

4.1 Introduction 

 With the development of remote sensors with high spatial resolution (around 1 

meter) such as IKONOS, QuickBird, Worldview, etc., pixel based image analysis 

method cannot satisfy the need of high-resolution image processing because the sizes 

of most land cover objects are much larger than the high spatial resolution. Therefore, 

object based methods have received more and more attentions recently (Blaschke, 

2010). The first and the most important step of the object based method is image 

segmentation which subdivides an image into a set of non-overlapping “homogeneous” 

objects (patches). Till now, many image segmentation algorithms have been 

developed from different perspectives (Haralick and Shapiro, 1985; Dey et al., 2010). 

The segmentation algorithms can be divided into four categories: (a) point-based, (b) 

edge-based, (c) region-based and (d) combined (Schiewe, 2002), or categorized as 

model driven and image driven approaches (Guindon, 1997), depending on different 

categorization perspectives. Among them, the commercial software, named 

eCognition (Definiens, 2009) was particularly widely applied in the studies of object 

based analysis because of its convenience of operation and the effective algorithm of 

Multi-resolution image segmentation (Blaschke, 2010). The uncertainty is well known 

come along with the segmentation procedure. The reliabilities of different objects are 
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different depending on the degrees of homogeneity, and the mixed pixels on the 

borders between different objects are difficult to be assigned to a certain object.  

Unfortunately, few studies cared about the uncertainty in image segmentation except 

of the study of Lucieer and Stein (2002), which proposed a boundary stability image 

(BSI) to describe the uncertainty of the objects by considering the stability of the 

boundary. However, it did not consider the potential overlapping between the objects. 

Based on the idea of soft classification which assigns one pixel into multi classes 

instead of a single class, this study proposed a soft segmentation model which assigns 

each pixel into several adjacent objects with corresponding probabilities. The 

uncertainty of segmentation is reflected in the probability image.  

In this paper, the multi-resolution segmentation in eCognition was briefly 

introduced in section 4.2; and the principle of soft segmentation model was described 

in detail in section 4.3; a case study of an IKONOS image was conducted for 

validating the effectiveness of the model in section 4.4; then discussion and 

conclusion were summarized in section 4.5. 

 

4.2 Multi-resolution Segmentation in eCognition 

The multi-resolution segmentation algorithm in eCognition is a bottom-up 

approach and follows a pair-wise region merging process (Baatz, 2000). At each step, 

a pair of image objects is merged into one larger object. The merging decision is 

based on local homogeneity criteria describing the similarity of adjacent image 



59 

 

objects. In eCognition, both of the shape compactness and spectral smoothness are 

used for determining the degree of homogeneity. The pair is merged when both of two 

conditions are satisfied: (1) the homogeneity of the merging of the selected pair is 

maximum among all possible merging pairs; and (2) the homogeneity due to the 

merging of the selected pair is higher than a threshold of the scale parameter. The 

second condition determines when the merging procedure stops. Depending on the 

different scale parameters, segmented image on different levels can be acquired. As 

shown in Fig. 4.1, spatially, the objects on the low level are subsets within the objects 

on the high level.  

 

 

 

Fig. 4.1 Illustration of multi-resolution segmentation 
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4.3 Soft Segmentation Model 

The soft segmentation model was developed based on the multi-resolution 

segmented result. Assumed that there are l levels of segmented images (L=1, …, l ), 

L=1 is the pixel level and L=l is the top level. The proposed model aims to produce 

the probability of each pixel merged into each object on the top level of L=l. The 

model consists of two steps. 

Step 1: The first step of the model is to calculate the probabilities of each 

sub-object on the level of L=k merged into the super-objects on the level of L=k+1. In 

eCognition, the ith object on the level of L=k (denoted as ik) is merged into a single 

father object on the level of L=k+1. In this model, the ik is not only probably merged 

into its father object, but also probably merged into its neighbored objects on level of 

L=k+1, which are spatially adjacent with ik (Fig. 4.2). The father object and 

neighbored objects of ik on level of L=k+1 are denoted as a set N(ik). Therefore, the 

object ik has the probabilities of being merged into each object mk+1 in the set N(ik). 

The probabilities are calculated based on the principle of Maximum Likelihood, 

where mean value and covariance are considered. The probability (
1,k ki mp


) of object ik 

merged into object mk+1 is calculated as followed: 

1

1

, 1 1

( )

( | ) / ( | )
k k

k k
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where 
,i k  and 

, 1m k 
 are the mean value of object ik and mk+1; , 1m kS 

 is the 

covariance matrix of object mk+1.  

An example is shown in Fig. 4.2, object 2k on level of L=k has the probabilities of 

being merged into the object 1k+1 and 2k+1 on level of L=k+1. When the probability of 

a sub-object merged into its father object is higher, this step of merging is more 

reliable.   

 

 

Fig. 4.2 Illustration of the probability of sub-object on level of L=k merged into the 

super-object on level of L=k+1 

 

Step 2: After finishing the first step, we aim to calculate the final probability of 

each pixel merged into the object on the top level of L=l. The probability of the pixel 

i1 merged into object ml on the top level is calculated based on the merging path: 

1 , ,1 , ,2 , ,( 1)...
l

l

i m i n i n i n l

n m

P p p p 

 

         (4-3) 

where 
, ,1i np

 
,…, 

, ,( 1)i n lp 
 are the probabilities on the nth merging path from pixel i1 

to the object ml. The product of these probabilities is the probability of the pixel i1 

merged into the object ml by the nth merging path. Because there may be several 
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merging paths from pixel i1 to the object ml, the final probability of the pixel i1 

merged into the object ml is the summation of the probabilities on all the merging 

paths from pixel i1 to the object ml.  

An illustration is shown in Fig. 4.3. The four pixels on the level of L=1 is merged 

into two objects on the top level of L=3. The number on the array means the 

probability of each sub-object merged into the super-object on the next level. And 

the red numbers at the bottom means the final probabilities of each pixel merged into 

the two objects on the top level of L=3. Taking the pixel B1 as an example, there are 

two merging path from B1 to A3 (B1->A2->A3 and B1->B2->A3). According to Eq. 

(4-3), the probability of B1 merged into A3 is equal to 0.8×1+0.2×0.8=0.96. There is 

only one merging path from B1 to B3 (B1->B2->B3), therefore the probability of B1 

merged into B3 is equal to 0.2×0.2=0.04. As shown in Fig. 4.3, the final 

probabilities of pixel B1 merged into the objects A3 and B3 are 0.96 and 0.04 

respectively. 

 

 

Fig. 4.3 Illustration of the summation of the probabilities on the merging paths 
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 Finally, we could get the final probability of each pixel merged into each object 

on the top level of segmented images. If the probability of the pixel merged into its 

father object is higher, the merging process for this pixel is more reliable and with 

lower uncertainty. Therefore, the probabilities produced by the soft segmentation 

model can reflect the uncertainty in the merging procedure.  

  

4.4 Case Study 

4.4.1 Data and Study Area 

A case study was conducted on a subset of an IKONOS image acquired in 

Beijing on 2001-04-26 (Fig. 4.4). This area locates in the center of this city and the 

main land cover objects include building, road, vegetation patch, river and bared 

playground. The sizes of these land cover objects are usually larger than the spatial 

resolution of the IKONOS image (4 meter). Therefore, the object based analysis 

method is more suitable for processing this image than the pixel based method.  
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Fig. 4.4 IKONOS image in Beijing 

 

4.4.2 Multi-resolution Segmentation 

The commercial software, eCognition 8.0, was used for conducting the image 

segmentation. Segmented images on six levels with scale parameter L=5, 10, 15, 20, 

25, and 30 were acquired. Fig. 4.5 shows the segmented images on the level of L=10, 

20 and 30. As the L increases, the size of objects becomes larger and more detail 

information was removed.  

 

0       400         800m
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Fig. 4.5 Segmented images on different scale levels (a. L=10; b. L=20; c; L=30) 

 

 

4.4.3 Result of Soft Segmentation Model 

Based on the multi-resolution segmented images, soft segmentation result was 

acquired by the proposed soft segmentation model. Fig. 4.6 shows the probability of 

each pixel merged into its father object on top level of L=30. The brighter object is 

with higher reliability. A detail example is shown in Fig. 4.7. The object in the red 

polygon (Fig. 4.7a) corresponds to a vegetation patch which is clearly different from 

its surrounding objects (Fig. 4.7c). As shown in Fig. 4.7 (e), the pixels in the red 
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polygon have high probability of being merged into this object while the pixels 

outside the red polygon have very low probability of being merged into this object. 

Therefore, the red object is highly reliable. In contrast, the object in green polygon 

(Fig. 4.7a) does not correspond to a clear object, instead covers several land cover 

types including road, building roofs and trees (Fig. 4.7c). As shown in Fig. 4.7 (d), the 

pixels inside and outside the green polygon do not have much difference on the 

probability of being merged into this object. Therefore, the green object is with low 

reliability. Moreover, mixed pixels in the border can be also reflected in the 

probability image. As a profile of probability shown in Fig. 4.7 (f), For the pixels in 

the border of the red object, the probability of being merged into the red object 

decreases step by step from inside the object to outside the object, which is consistent 

with the characteristics of mixed pixels.   

 

 

Fig. 4.6 Image of the probability of each pixel merged into its father object on the top 

level 
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Fig. 4.7 A detail example of soft segmented result (a. hard segmented image; b. image 

of the probability of each pixel merged into its father object; c. original image; d. 

image of probability of each pixel merged into the green object; e. image of 

probability of each pixel merged into the red object; f. The probabilities of being 

merged into the green object and red object for the pixels on the red profile across fig. 

d and e) 

 

4.5 Discussion and Conclusion 

In this chapter, a soft segmentation model was proposed to describe the 

uncertainty in the multi-resolution segmentation procedure in eCognition. When the 

sub-objects are merged into the super-objects on the higher level, the probabilities of 

P
ro

b
ab

ili
ty

Sample Number

－ Green Object
－ Red Object

(a) (b) (c)

(d) (e) (f)



68 

 

being merged into different objects are calculated. Therefore, the uncertainty in the 

merging procedure is considered.    

A case study of IKONOS image was conducted, and the result shows that the soft 

segmented image can represent the reliability of the object to some extent. The pixels 

in the object which corresponds to a pure land cover are with high probability of 

being merged into their father object. In contrast, the pixels in the object which covers 

several land covers are with low probability of being merged into their father object. 

Moreover, the mixed pixels in the border between objects can be also reflected in the 

soft segmentation result. These results indicate that the soft segmentation model can 

bring reasonable information of uncertainty, which is meaningful for understanding 

the reliability of the object based image analysis.   

As a beginning attempt to quantitatively describe the uncertainty in image 

segmentation, there are limitations in the proposed soft segmentation model. In the 

hard image segmentation, both spectral information and shape information of the 

objects are considered. However, the proposed soft segmentation model only 

considers the spectral information, which cannot reflect all the uncertainties in the 

segmentation. Spectral, shape and textural information need to be considered in the 

future research.  
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CHAPTER 5  

Scale Effect of Vegetation Index Based Spatial Sharpening 

for Thermal Imagery: A Simulation Study by ASTER Data 

 

5.1 Introduction 

Thermal infrared (TIR) band imagery has been widely applied in the studies on 

urban heat island effect exploration, evapotranspiration estimation and drought 

monitoring (Kato and Yamaguchi, 2005; Loheide li and Gorelick, 2005; Kafle and 

Yamaguchi, 2009; Shakya and Yamaguchi, 2010). Unfortunately, the spatial 

resolution of TIR bands of remote sensors is usually coarser than that of visible-near 

infrared (VNIR) bands, which limits its more precise application. Therefore, several 

techniques have been developed for sharpening TIR imagery by using VNIR bands 

(Kustas et al., 2003; Tonooka, 2005; Liu and Pu, 2008; Jing and Cheng, 2010; 

Dominguez et al., 2011; Zhan et al., 2011; Yang et al., 2011). Among them, 

vegetation index based spatial sharpening methods were intensively studied because 

of the simple and effective principle, the negative correlation between vegetation 

index and surface temperature (T) (Kustas et al., 2003; Agam et al., 2007a; Agam et 

al., 2007b; Yang et al., 2010; Merlin et al., 2010).   

The most representative method is TsHARP, which was originally proposed by 

Kustas et al. (2003) and refined by Agam et al. (2007a). TsHARP disaggregates T 

image to the spatial resolution of VNIR band using empirically derived relationship 
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between NDVI and T. This method is valid based on the assumption that the 

relationship of NDVI -T is scale independent. Marceau and Hay (1999) proposed that 

there are two aspects of scale in remotely sensed imagery: grain and extent. Grain 

corresponds to the spatial resolution, and extent corresponds to the spatial extent of 

the study area. However, previous studies only focused on spatial resolution issue but 

ignored the spatial extent issue. It was shown that the relationship established on 

coarse resolution will not change (or change slightly) on fine resolution in the 

previous studies (Agam et al., 2007a). However, only resolution independence cannot 

ensure the effectiveness of the vegetation index based spatial sharpening method. The 

spatial extent is also a key factor affecting the NDVI-T relationship. Therefore, in this 

study, we investigated NDVI-T relationships on different spatial extents and spatial 

resolutions. And then we modified TsHARP method by considering the spatial extent 

effect and tested it in a simulation study using ASTER data. 

 

5.2 Method 

5.2.1 TsHARP 

TsHARP (Agam et al., 2007a) firstly performs least-squares regression between T 

and NDVI on the coarse thermal resolution (NDVI,low). 

 low low
ˆ(NDVI ) (NDVI )T f ,       (5-1) 

As suggested by Agam et al. (2007a), following function was employed 

0.625(NDVI) (1 NDVI)f a b  
       

(5-2) 
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where a is regressed slope and b is constant term. And then this regression 

relationship is applied to the NDVI at their finer resolution (NDVIhigh). After that, the 

divergence of the retrieved temperatures from the observed temperature field is 

assessed at the coarser resolution 

 
0.625

low low low
ˆ (1 NDVI )T T a b       .     (5-3) 

This coarse-resolution residual field is then added back into the sharpened map 

0.625

high high low

0.625 0.625

low high low

ˆ ˆ(1 NDVI )

        (1 NDVI ) (1 NDVI )

T a b T

T a

    

       

    (5-4) 

It can be seen that regressed slope (a) is the key parameter for the sharpening result.  

 

5.2.2 Study on Scale Effect of NDVI -T Relationship 

(1)  NDVI -T Relationship on Different Spatial Resolutions 

Because the term of (1-NDVIlow)
0.625

 is regarded to be linearly correlated with 

vegetation fraction (Agam et al., 2007a), we resampled the images of (1-NDVIlow)
0.625

 

to different spatial resolution by linear aggregations. Also, T images were resampled 

to different spatial resolutions by linear aggregation. Here, nonlinear relationship 

between temperature and emissivity was not considered because different temperature 

aggregation methods produce low differences (Liu et al., 2006). Then, the regressed 

slopes of (1-NDVIlow)
0.625

-T relationship on different spatial resolutions were 

investigated.  

(2)  NDVI -T Relationship on Different Spatial Extents 



72 

 

Spatial extent is another important aspect of the scale effect, but was neglected in 

the previous studies. In order to establish the NDVI-T relationship on a certain spatial 

extent, the larger scale of spatial variance of NDVI and T should be firstly removed. 

The large scale of spatial variance corresponds to the variance of low-frequency 

component of an image. Therefore, we introduced a simple high-pass filter to remove 

the large scale of spatial variance.  

The calculation process of high-pass filtering is illustrated in Fig. 5.1. Supposing 

that we try to study the image on the spatial extent of m pixels, the original image is 

firstly divided into N/(m×m) windows, where each window has m×m pixels and N is 

the number of pixels in the whole image. Secondly, an averaged image is acquired by 

averaging the values of the pixels in each window. Then, high-frequency component 

image corresponding to m-pixel spatial extent is derived by subtracting the original 

image with the averaged image. The regression analysis is then conducted on the 

high-frequency component image of (1-NDVIlow)
0.625

 and T. The regressed slope on 

the spatial extent of m pixels can be finally acquired. Through this method, regressed 

slopes on the different spatial extents were investigated. 

 

Fig. 5.1 Illustration of high-pass filtering (a. high-frequency component image; b. 

original image; c. averaged image) 
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5.2.3 Modified TsHARP 

 Sharpening T image is equal to retrieving the high frequency component image of 

T on the spatial extent which is equal to a thermal pixel. Unfortunately, regressed 

slope on such scale cannot be acquired without T image with fine resolution. However, 

we can establish the NDVI-T relationship on the minimum available spatial extent 

(2×2 pixels of thermal-infrared image) instead of the whole image. Therefore, we 

replaced the regressed slope on the whole image in Eq. (5-4) with that on the 2×2 

thermal pixels (alocal)  

0.625 0.625

high low local high low
ˆ (1 NDVI ) (1 NDVI )T T a              (5-5) 

It is noticed that alocal is calculated based on the whole high frequency component 

images, where the sample size is equal to that of original TsHARP, and a unique alocal 

is derived. The modified method considers the factor of spatial extent and is expected 

to acquire more accurate sharpening result.  

 

5.3 Simulation Study 

5.3.1 Study Area and Data  

Two subsets of ASTER images (256×256 pixels with 90 m resolution) were 

employed for our study. One subset image of ASTER (Fig. 5.2a) was acquired in 

Inner Mongolia, China (44.6N, 116.0E), on the date of July 16, 2010. Grassland is the 

dominant landscape in this semi-arid area, where water is one of the most important 

limiting factors for vegetation status (Cao et al., 2009). Another subset image of 
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ASTER (Fig. 5.2c) was acquired in Haihe River Basin, China (38.3N, 114.7E), on the 

date of April 26, 2002. Irrigated cropland is the dominated landscape in this area. The 

atmospheric corrected VNIR band reflectance and surface temperature (T) were 

produced by GEO Grid (AIST, 2007). In order to be consistent with TIR data, the 

spatial resolution of VNIR band was also resampled to 90 m resolution by linear 

aggregation. As shown in Fig. 5.3, there are negative correlations between NDVI and 

T for both of the two landscapes. 

 

 

Fig. 5.2 ASTER data (a. VNIR band of grassland; b. NDVI of grassland; c. Surface 

temperature of grassland; d. VNIR band of cropland; e. NDVI of cropland; f. Surface 

temperature of cropland) 
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Fig. 5.3 Scatterplot of NDVI and T (a. grassland; b. cropland), the color from blue to 

red corresponds to the density from low to high 

 

5.3.2 Scale Effect of NDVI-T Relationship  

We investigated the NDVI-T relationship on the spatial resolution of 90 m, 180 m, 

360 m, 720 m, 1440 m, and 2880 m, and on the spatial extent of 180 m, 360 m, 720 m, 

1440 m, 2880 m, 5760 m, 11520 m, and 23040 m, which corresponded to 2, 4, 8, 16, 

32, 64, 128, and 256 pixels, respectively.  

Fig. 5.4(a) shows the regressed slopes on different spatial extents and spatial 

resolutions for the grassland. As shown in Fig. 5.4(a), the regressed slope increases 

when the spatial resolution becomes coarser, and also significantly increases with 

increasing of spatial extent. The regressed slope on spatial extent of 23040 m is up to 

three times larger than that on spatial extent of 180 m. However, when the spatial 
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extent becomes larger, the regressed slope becomes less sensitive to the change of 

spatial resolution and spatial extent.  

Fig. 5.4(b) shows the regressed slopes on different spatial extents and spatial 

resolutions for the cropland. The regressed slope increases dramatically with 

increasing of spatial extent before it comes to 720 m, but becomes stable (or slightly 

decreases) when it is larger than 720 m. But in the case of 2880 m spatial resolution, 

the regressed slope decreases largely with increasing of spatial extent. 

In summary, NDVI-T relationship is largely affected by spatial extent. The scale 

effect is complex, varying from case to case.  
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Fig. 5.4 Regressed slopes on different spatial extents and spatial resolutions (a. 

grassland; b. cropland) 

 

5.3.3 Sharpening Experiments 

In order to validate our modified method, we simulated T images with 900 m 
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were then used for the spatial sharpening experiments, and the original T image with 

90 m resolution was used for validation.  

(1) Case of Grassland 

For the grassland, the new method estimated the regressed slope of 

(1-NDVIlow)
0.625

-T as 32.9, while the original TsHARP estimated it as 54.3, which 

obviously exaggerated the role of NDVI. Therefore, as shown in Fig. 5.5, the 

sharpened T image by the new method is smoother than that by TsHARP. In order to 

investigate how the regressed slope determines the sharpening accuracy, we 

sharpened the T image using different slopes ranging from 0 to 60; meanwhile, root 

mean square error (RMSE) and square of correlation coefficient (R square) were 

calculated for accuracy assessment. As shown in Fig. 5.6, the best value of slope is 

around 23.0, which is much more approximate to the regressed slope estimated by the 

new method than that estimated by the TsHARP. The accuracy of TsHARP is lower 

than that of new method, and even lower than that of uniform disaggregation which 

employs a zero value of slope. It indicates that TsHARP is not suitable for grassland.  
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Fig. 5.5 Surface temperature (T) image of grassland (a. with 900 m resolution; b. 

sharpened by TsHARP; c. sharpened by new method) 

 

 

Fig. 5.6 Relationship between the sharpening accuracy and regressed slope in 

grassland 
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(2) Case of Cropland 

For the cropland, the new method estimated the regressed slope of 

(1-NDVIlow)
0.625

-T as 23.4, and the original TsHARP estimated it as 21.9. Therefore, 

the two methods produced very similar sharpening result (Fig. 5.7). Similarly, we 

sharpened the T image using regressed slopes ranging from 0 to 60. As shown in Fig. 

5.8, the best value of sharpening slope is around 20.0, which is approximate to the 

regressed slopes estimated by the two methods. Both of two methods performs much 

better than uniform disaggregation. The reason for the similar results by two different 

methods is that regressed slope keeps stable when the spatial extent is larger than 720 

m, therefore, the new method cannot show its advantage. In summary, both of the 

TsHARP and new method are suitable for cropland. 

 

 

Fig. 5.7 Surface temperature (T) image of cropland (a. with 900 m resolution; b. 

sharpened by TsHARP; c. sharpened by new method) 
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Fig. 5.8 Relationship between the sharpening accuracy and regressed slope in 

cropland 
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Additionally, we conducted the experiments of spatial sharpening from different 

source resolutions (sharpening to 90 m from 900 m, 720 m, 360 m, and 180 m) and 

sharpening to different target resolutions (sharpening from 900 m to 450 m, 180 m, 

and 90 m). The sharpening accuracies were compared in Fig. 5.8. Similar to the 
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because the effect of spatial size for cropland becomes obvious when the spatial size 

is less than 360 m.  

In summary, both of the original TsHARP and new method are suitable for the 

cropland, while TsHARP could produce large error for the grassland.  

 

 

Fig. 5.9 Accuracies (RMSE) of sharpening from different source resolutions to 

different target resolutions (a. sharpening to 90 m from 900 m, 720 m, 360 m, and 180 

m in grassland; b. sharpening from 900 m to 90 m, 180 m, and 450 m in grassland; c. 

sharpening to 90 m from 900 m, 720 m, 360 m, and 180 m in cropland; d. sharpening 

from 900 m to 90 m, 180 m, and 450 m in cropland) 
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5.4 Discussion 

In this study, NDVI-T relationships established on different spatial extents were 

found to be largely different. The reason may be related to the positive correlation 

between NDVI and soil moisture. It is well known that soil moisture also affects the 

surface temperature largely. It is reasonable to assume that  

0.625

m(1 NDVI)T a a Moisture     ,       (5-6) 

where am is the slope for moisture. Since NDVI is somehow positively correlated with 

soil moisture, when T is regressed with only (1-NDVIlow)
0.625

, the regressed slope 

becomes (for convenience, we assume the data is standardized) 

 0.625

m
ˆ (1 NDVI) ,  Moisturea a a r       ,      (5-7) 

where r[(1-NDVIlow)
0.625

, Moisture] is the correlation coefficient between 

(1-NDVIlow)
0.625 

and soil moisture. Hence, â becomes smaller when the correlation 

between NDVI and Moisture becomes weaker. In the grassland, there is a triangular 

in NDVI-T scatterplot (Fig. 5.3a). It implies that the spatial patterns of soil moisture 

and NDVI are not matched well because the soil moisture varies more smoothly than 

NDVI in the spatial pattern. As a result, when the spatial extent decreases, the 

correlation between NDVI and moisture becomes weaker and â decreases 

correspondingly. While in the irrigated cropland, there is a much better correlation 

between NDVI and T (Fig. 5.3b). The reason may be that soil moisture is also 

correlated well with NDVI in the cropland. Such explanation is reasonable because 

irrigation is only conducted on the vegetated cropland. Therefore, the spatial pattern 
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of moisture is not smoother than that of NDVI in large scale. That could explain why 

the regressed slope becomes stable when the spatial extent is larger than 720 m. Such 

difference in the scale effect of NDVI-T relationship leads to the different 

performance of TsHARP in grassland and cropland. Our result suggests that TsHARP 

is more suitable in cropland, which is similar with the previous study (Agam et al., 

2007b), where a worse performance of TsHARP was found in natural land cover 

compared with agricultural land cover. 

 The above explanation is reasonable for this case study. For the other cases, the 

physical reason of the scale effect might be different. And also the scale effect does 

not only exist in NDVI-T relationship, but possibly can be found in the relationship of 

other land surface parameters as well. We suggest that spatial extent is also a very 

important aspect of scale effect other than spatial resolution, and should be considered 

in the related studies.  

 

5.5 Conclusion 

Our study shows that the spatial extent is an important scale factor affecting the 

NDVI-T relationship except of spatial resolution, but was largely neglected in the 

previous studies. Previous spatial sharpening methods for thermal imagery which 

apply NDVI-T relationship established on the whole image to the small spatial extent 

(thermal resolution) may produce a large error. We modified TsHARP by establishing 

the NDVI-T relationship on the minimum available spatial extent. The simulation 
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study shows that the new method can acquire good sharpening accuracy for both of 

the grassland and cropland, while the original TsHARP method produced a large error 

for grassland. Therefore, we can conclude that the modified method is more robust 

than the original TsHARP. 
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CHAPTER 6  

Discussion and Conclusion 

 

6.1 Discussion 

 Spatial features are valuable information in remotely sensed images. Although 

many mathematic tools are available for extracting the spatial features, they were 

originally designed for general images without much consideration of the geographic 

characteristics in remotely sensed image. Therefore, they were only used for land 

cover classification in the previous studies. This thesis extended the application of 

spatial features in the fields of classification accuracy assessment, automated land 

cover updating, uncertainty in image segmentation, and spatial sharpening for thermal 

images. The mathematic tools for spatial feature extracting were revised by 

considering the particular geographic characteristics including the landscape pattern, 

mixed pixels, and scale effect. Therefore, the methodologies or models in those fields 

were significantly improved compared with previous studies.  

There are still many other fields where spatial features were rarely considered. 

Till now, most quantitative remote sensing models which are used for retrieving the 

biophysical parameters (e.g. LAI, biomass, LUE, evapotranspiration, etc.) are 

sub-pixel models, where the scale of geographic elements is assumed smaller than the 

spatial resolution and spatial features were neglected. As the spatial resolution of 
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remotely sensed image increases, this assumption collapses and the spatial features 

become more important and should be considered more in developing such models.  

In this thesis, the mathematical tools for extracting spatial features were 

categorized into three types: moving-window based, object based and image based 

methods. However, it should be noticed that there are other methods which are 

difficult to be categorized into any kind of these three methods. For example, the 

wavelet transformation which is localized in both spatial domain and frequency 

domain can be regarded as a method between moving-window based and image based. 

The seed-growing algorithm which considers the adjacent pixels in an adaptive 

window can be regarded as a method between moving-window based and object 

based.  

As there is a need of considering the spatial features in quantitative remote 

sensing models, meanwhile many mathematical tools for extracting spatial features 

are available, further combing them together will be my future research. 

 

6.2 Conclusion    

In this thesis, better methodologies and models in four fields were achieved by 

considering spatial features.  

(1) The proposed Weighted Misclassification Rate (WMR) which can predict the 

Landscape Pattern Index (LPI) error induced by classification error is an 

important supplement to traditional accuracy assessment indices.  
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(2) The proposed integrated, automated updating approach for land cover mapping 

can produce land cover maps efficiently. Compared with previous methods, 

multi-source remotely sensed data can be combined together and human 

interactions are not required in the proposed approach.  

(3) The soft segmentation model is a beginning attempt to quantitatively describe the 

uncertainty in the object based methods as the uncertainty was largely neglected in 

the previous studies. 

(4) The improved vegetation-index-based spatial sharpening method for thermal 

imagery which considers the scale effect performs more robustly than the original 

method.  
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