地震観測記録に基づく免震構造物と 地盤の動的相互作用に関する研究

(A Study of the Dynamic Performance of an Isolated Building considering Soil-Structure-Interaction based on Earthquake Records)

(ZHOU Fangyuan)

名古屋大学大学院環境学研究科 博士(工学)

2012 年

目 次

7
ĸ

第1章	序論	
1.1 本	≤研究の背景と目的	1
1.2 閉	モ往の研究	5
1.3 論	▲文の構成	.10

第2章 対象建物及び強震観測システムの概要

2.1	はじめに	13
2.2	対象建物の敷地概要	14
2.3	設計における地盤調査結果	19
2.4	地盤改良の概要	29
2.5	対象建物の概要	30
2.6	強震観測システムの概要	37
2.7	これまでに観測された主な地震	44

第3章 地盤改良が地盤と建物の動的相互作用効果に与える影響

3.1 はじめに	49
3.2 ボーリング調査及び PS 検層による改良地盤の特性評価	50
3.3 浅層レーリー波探査による改良地盤の特性評価	53
3.4 地盤改良が相互作用効果に及ぼす影響	57
3.5 まとめ	68

第4章 地震観測記録に基づく対象建物の振動特性及び地震時応答

4.1	はじめに
4.2	検討に用いる地震の概要及び観測記録の分析70
4.3	数値解析モデルによる地震観測記録のシミュレーション76
4.4	まとめ

第5章 地震観測記録に基づく基礎-地盤間の相対変位と地震時土圧の関係

5.1	はじめに	103
5.2	土圧計の設置状況及び分析に用いる地震観測記録	104
5.3	地震観測記録に基づく地震時側面土圧の分析	110
5.4	地震時側面土圧力の位相特性の分析	115
5.5	地震時側面土圧力と基礎-周辺地盤間の相対変位との関係	117

5.6	側壁面の地盤インピーダンスに関する解析的検討	.122
5.7	まとめ	.129

第6章 結論

6.1 本研究の要約と結論	131
6.2 今後の課題と展望	134
参考文献	135
発表論文	

第1章 序論

1.1 本研究の背景と目的

1995年1月17日に発生した兵庫県南部地震では、6437名の尊い命が犠牲となり、10万棟以上の建物が全壊、10兆円を超える経済的損失が生じるなどの甚大な被害がもたらされた¹⁾。この震災以降、地震調査研究推進本部²⁾が設置され、日本各地の主要な活断層や海溝型地震の地震発生確率を発表するなど、精力的な活動が行われてきた。また、中央防災会議³⁾では、予防対策、想定東海地震や東南海・南海地震の被害想定を実施するとともに、大規模地震対策特別措置法に基づき、地震防災対策強化地域や東南海・南海地震防災対策推進地域を指定するなどの地震被害軽減に向けた施策が実施されてきた。

この地震を契機として、免震建物への関心が非常に高まり、急速に普及した⁴⁾。さらに、2000 年の建設省告示第2009号「免震建築物の構造方法に関する安全上必要な技術的基準を定める件」 の施行によって、ある条件を満足すれば建築主事確認により建設が可能となったことから、戸建 て免震建物を含む免震建物の急増を後押した。

2011年3月11日14時46分宮城県牡鹿半島の東南東沖130kmの海底を震源として発生した東 北地方太平洋沖地震は、日本における観測史上最大の規模、マグニチュード(Mw)9.0を記録し、 最大震度は7で、震源域は岩手県沖から茨城県沖までの南北約500km、東西約200kmの広範囲に 及んだ⁵⁻⁶⁾。また、震度6強だけでも宮城、栃木、福島、茨城の4県の36市町村と仙台市の1区 と非常に広域で観測された。この地震により、広範囲で地震の揺れや液状化現象、地盤沈下など による被害が発生し、各種ライフラインも寸断された。政府は、この地震を「東日本大震災」と 命名した。2012年5月9日時点で、震災による死者・行方不明者は約1万9千人、建築物の全壊・ 半壊は合わせて38万戸以上、ピーク時の避難者は40万人以上、停電世帯は800万戸以上、断水 世帯は180万戸以上に上った。

本地震の発生後に、宮城県及びその周辺地域にある免震建物について、地震時最大応答や免震 層周囲の状況、居住者・使用者の感覚や意識等の調査が実施された⁷⁾。その調査結果からは、大き な被災状況は報告されておらず、地震時に免震装置が十分に機能を発揮したと考えられる。しか し、震源域から離れた足柄平野では、戸建て免震住宅において、免震層の変位が想定以上であっ たことが報告されており⁸⁾、地盤と建物の共振がその原因の一つと推定されている。また、鉛ダ ンパーの損傷も一部では報告されている。

ここで免震建物の設計を考えると、免震層に対して上部構造の剛性が十分大きく、上部構造を ほぼ1質点系とみなせる場合、免震建物の設計法は、エネルギー吸収の観点からは、実際の架構 のエネルギー吸収能力が明確になっていない一般建物の耐震設計よりも明快と言える^{9,10}。ただし、 このような条件が満足されない場合として、以下のようなケースが考えられる。

 上部構造の固有周期が長い高層鉄骨造建物などでは、免震周期と上部構造との固有周期が 接近してくる。 2 軟弱地盤に建設される建物では、大地震時の地盤の固有周期が数秒程度となり、免震の実 効周期に近い値となる。

このうち、ケース2において地盤改良や杭基礎が採用される場合には、振動性状をより詳細に 確認するために、地盤と建物の動的相互作用効果を考慮した検討が必要である。また、地盤改良 は、その要求性能の観点から、施工時には鉛直支持力に関する確認だけが実施され、建物の水平 方向の地震時挙動に影響を与えるせん断波速度等の計測は行われないのが現状である。

上述の設計に関わる問題点の他、本論文では免震建物の動的相互作用に関連して、以下に示すような課題を考える。

1 擁壁とのクリアランスの余裕度及び免震層の捩れの問題

近年、平面的・立面的に不整形な形状をした免震建物や高層建物が数多く建設されるようになってきた。免震建物の場合、上部構造物の重心と免震層の剛心とを一致させることによって、上部構造の捩れ応答を抑制することができるため、平面形状が不整形な免震建物が数多く存在する¹⁴⁾。また、下階に診療部門や店舗を有する病院、住宅やオフィスビルなどでは、低層部が高層部から張り出した立面形状の建物が多く見られる。この場合、鉛直荷重の異なる低層部と高層部とで、異なる基礎形式が採用されたり、径や長さの異なる杭が用いられたりする。また、建物計画上の要求から、基礎の一部分に地下室を有する建物が建設されることがある。この場合、地下室を有する部分のみ根入れ基礎となり、基礎一地盤系の剛性に偏りが生じる。このため、水平入力地震動に対して、捩れ方向の入力が励起されることが考えられる。免震建物の場合には、捩れ入力動が過大になると、基礎部が捩れ振動することにより、免震層端部で擁壁とのクリアランスの余裕度が減少する可能性があり、特に大地震においては、安全性を十分に確認しておく必要がある。

2 相互作用効果を含めた免震建物の動的性状及び擁壁に作用する土圧の問題

動的相互作用を考慮した検討を実施する時、地盤インピーダンスや基礎入力動の評価が必要で ある。しかし、地盤インピーダンスや建物-地盤系の動的特性に関して、これまでは解析的研究が 中心であり、特に免震では実験や地震観測など実測記録に基づく実証的研究が不十分である。

また、免震装置を守る擁壁に作用する地震時土圧についても、十分な検討がなされているとは 言い難い。地震時土圧は、既往の理論に従った方法により設計がなされるのが通常であるが、技 術的な難しさもあって、実建物において擁壁に作用する土圧を実測し、実際に擁壁に作用する地 震時土圧について検証している事例は非常に少ない。裏を返せば、実建物の擁壁に作用する地震 時土圧の観測記録は非常に貴重なデータといえる。

以上のような免震建物の地盤や相互作用に関する現状と問題点を背景として、本論文では、名 古屋大学内の4階建免震建物に地震観測体制を構築し、観測記録に基づいた検討を行う。

本研究で対象とする名古屋大学医学部附属病院外来診療棟は、地域の基幹病院の中枢を担う施 設であり、災害発生時においても高度医療機能を確保する必要があるため、免震構造が採用され た。一般的には杭基礎で設計することが多いに地盤条件に対して直接基礎で計画されており、詳 細な地盤調査に基づいて地盤改良が行われた。地盤改良は地盤の支持力及びせん断抵抗を向上す る上で有効な手段として普及しているが、実際にその効果を確認した事例が少なく、設計手法の 確立のためにデータの蓄積が望まれているのが現状である。特に本建物においては、建物の北西 の一部を除くL字型の範囲において地盤改良が行われたため、改良部と未改良部で動的特性が異 なることから、地震時に偏心に伴う捩れ入力動が励起される可能性がある。免震建物は捩れ入力 動が過大になると、基礎部の捩れ振動により、基礎部と一体的に挙動する擁壁と上部構造のクリ アランスの余裕度が減少する可能性がある。この点について耐震安全性を確認する必要がある。

本建物は、被災時の機能継持の要求から、大地震に対する建物健全性評価のため、加速度計及 び土圧計等を用いて高密度の強震観測を行っており、今までに多くの地震観測記録が得られてい る。記録は中小規模の揺れに限られているが、将来起こり得る大地震時の挙動を適切に予測する ためには、現段階で得られているこれらの強震観測記録に基づいて応答性状を把握することが重 要である。

以上のことから、本論では本建物を検討対象とし、まず、地盤改良に関連して、地盤改良前に 実施された凍結サンプリングを含む詳細な各種土質調査を利用するとともに、地盤改良後に実施 したボーリング調査、PS 検層や浅層レーリー波探査などの詳細な地盤調査に基づき、水平動に対 する地盤改良効果について、地盤インピーダンスや基礎入力動の観点から検討する。次に、これ までに観測されている記録に基づき、基礎の捩れ振動を含む本免震建物の地震時振動特性の評価 を行うとともに、大地震に対する応答予測に向けた数値解析モデルの構築を行う。さらに、観測 された土圧記録を用いて建物基礎に作用する地震時土圧と建物-地盤系の相対変位の関係を検討 するとともに、側面地盤インピーダンスの評価を行い、2次元有限要素法を用いた地震時側面土 圧力のシミュレーション解析、および地盤インピーダンスの推定を試み、実測記録との対応を考 察する。

本論文で実施する検討事項を以下に示す。

地盤改良に関する検討

- 地盤改良前後の地盤調査結果の比較により、地震時挙動に対する地盤改良の効果を確認する とともに、改良地盤のせん断波速度の評価方法について検討する。
- 薄層要素法と有限要素法に基づく理論的手法を用いて、地盤改良の有無や改良範囲の違いが インピーダンスと基礎入力動に与える影響について考察する。

地震観測記録に基づく上部建物の振動特性に関する検討

- 観測された地震時加速度記録の特性を分析する。
- 上部建物の地震時固有振動特性を分析し、その特徴を抽出する。
- 地震時における上部建物と基礎の水平及び捩れ応答を検討する。
- 設計資料等を参考にして、対象建物に関する数値解析モデルを構築し、地震時の上部建物及び基礎の水平及び捩れ応答のシミュレーションを行う。

地震観測記録に基づく地震時土圧に関する検討

- 複数の中小地震における加速度計・土圧計等の観測記録を用いて、免震ピット部分の直接基礎 側面に生じる地震時側面土圧力の特性や、建物基礎と周辺地盤や隣接建物との相対変位との 関係などについて検討する。
- 2 次元有限要素法を用いて地震時側面土圧力のシミュレーションを行い、観測された特性と 比較するとともに、地盤インピーダンスの推定を試みる。

以上の検討を通して、免震建物の応答性状に及ぼす地盤条件や動的相互作用の影響を明らかに することを目的とする。また、その結果は、本建物の将来の大地震に対する応答予測のためにも 有効な資料となる。

1.2 既往の研究

本節では、地盤改良、免震建物に関する観測手法、免震建物の捩れ性状および基礎側面に作用する土圧に関する既往の研究について、整理して述べる。

1.2.1 地盤改良の評価に関する研究

(1) 地盤改良の品質評価法

田村ら¹⁵⁾は、同一条件下で施工された改良体に対して、従来のボーリングコアによる一軸圧縮 強さだけではなく、電気比抵抗による未硬化段階の攪拌混合状況の評価、改良体に含まれる土塊 混入状況の評価、インテグリティ試験による評価など、様々な手法を用いて改良体の品質を調査 し、各種試験・評価方法の適用性や相互の関連性などを検討している。また、併せて改良体に必要 とされる品質などに関して考察している。

(2) 浅層レーリー波探査に関する研究

地下構造を推定する方法としては、PS 検層や微動アレイ観測、人工震源を用いた反射法や屈折 法などの地盤探査法がある。

簡便な方法として、浅層レーリー波探査がある。これは、カケヤを用いて人力で加振を行い、 上下動成分に含まれる表面波を抽出し、その分散性から地下構造を推定する方法である。林ら¹⁶⁾ は人工震源により励起された表面波の一種であるレーリー波を用いて、その伝播速度はおよそ波 長に相当する深度までの地盤のせん断波速度を反映する(レーリー波の伝播速度は一般にせん断 波速度の 0.9~0.95 倍)という特徴を利用して、地表から深度約 15m までの浅部地盤のせん断波速 度分布を簡便に求める手法を開発した。また、観測結果から、PS 検層結果や標準貫入試験結果な どと整合するせん断波速度構造が得られることを確認している。

本論では、対象敷地の改良地盤において浅層レーリー波探査を行うことにより、後述の改良地盤の等価せん断波速度の推定法について検証する。

(3) 改良地盤の等価せん断波速度の推定に関する研究

本研究の対象敷地では、部分的に深度 7m 程度まで深層混合処理工法によるパイル状の地盤改良が行われた。このような地盤の地震時応答評価において、地盤ばねとして等価剛性を用いる方法が簡便性から有力な手法の一つである。

寺田ら^{17,18}は複合材料を構成する物質が弾性体とみなせる場合、数学的均質化法を用いてその 等価剛性を求める理論を確立した。石川ら¹⁹はこの方法を用いて部分改良地盤の等価せん断剛性 を算出し、代表的な改良形状であるパイル状、ブロック状、格子状改良地盤の等価せん断波速度 の計算チャートを提示した。また、このチャートを用いた部分改良地盤の等価剛性の設定法につ いて提案している。そして、このチャートを用いて評価した等価せん断波速度の妥当性を検証す るために、実地盤において微動アレイ計測を行った結果と比較し、格子状に改良された部分改良 地盤においては、等価なせん断波速度は改良体の形状、改良率、改良体および地盤の Vs 比から一 意に決定できるとした。

本論では、パイル状に改良された部分改良地盤において、PS 検層から得られた改良体および未 改良地盤の剛性を用い、同手法により改良地盤の等価せん断波速度構造を推定し、浅層レーリー 波探査との比較から、推定手法の妥当性を確認する。

地盤改良に関する既往の研究成果からは、地盤改良が相互作用効果(例えば、地盤インピーダンス、基礎入力動等)に及ばす影響の検討が余り行われていないことが分かった。従って、本論では、

地盤改良前後の地盤パラメータを用いて、地盤改良が相互作用効果に与える影響を検討している。

1.2.2 免震建物の実挙動観測に基づく振動特性に関する研究

免震建物の実挙動観測に関するこれまでの研究として、常時微動、地震時観測、振動実験などがある。

(1) 常時微動計測結果に基づく研究

長嶋ら²⁰⁾は、大規模免震建物に対して、建設中に複数回実施した常時微動観測結果から推定し た共振振動数と、設計資料に基づいて作成した応答解析モデルの固有振動数とを比較することに より、免震層及び上部建物の実剛性について検討している。精度よく地震時挙動を推定し、被害 を定量的に予測するため、またヘルスモニタリングによる被災後及び時間経過による損傷度合の 把握のため、実際の建物の性状を知ることは重要であると考え、建設途中の質量変化を利用した 常時微動観測による建物の振動特性推定法を検討している。

斎藤ら²¹⁾は、6階建て免震建物の固有振動数及び減衰定数を、建物に設置された構造モニタリ ングシステムで6年半に渡り1日2回記録された常時微動加速度応答波形から、ARモデルを用い たシステム同定により評価した。ベイズの定理を用いたモデル次数選択及びモード抽出方法を用 いることにより、全ての記録に対して3次までのモードが適切に推定されたとしている。

(2) 免震建物の振動性状把握に関する研究

免震建物の地震時振動性状に関する既往の実験的研究として、日比野ら²²⁾・富島ら²³⁾、三山 ら²⁴⁾、高橋ら²⁵⁾などがある。日比野ら²²⁾は積層ゴムと弾性すべり支承を用いた免震構造物を対 象として、振動台実験を行い、免震層のせん断力及び水平相対変位の時刻歴波形を良好に模擬で きる詳細モデルを作成し、免震層のせん断力-水平変位関係に見られるピーク部分やせん断力の推 移を再現した。三山ら²⁴⁾は、アスペクト比を5とした免震建物模型の振動台実験を行い、せん断 剛性の軸力依存性、軸剛性の水平変位依存性、引張りを生じた場合の振動性状の確認を行った。 さらに、引張変位や着座速度について検討を行い、着座後に積層ゴムに生じる軸力の最大値を最 大引張変位から予測する方法を示し、実験結果により検証を行った。高橋²⁵⁾らは、大地震時に、 免震層の過大な水平変位に対して擁壁と建物の接触可能性が大きい問題点²⁶⁻²⁸⁾から、ナイロンリ ングを水平変位制御装置として用いた実大免震建物による振動実験の詳細な結果及び有効性につ いて報告した。

また、実際の建物に設置されて観測システムで得られた地震観測記録を用いた例としては、次 にような研究が挙げられる。岡田ら²⁹⁾は、東京都江東区に立地する積層ゴム支承に支持された S 造建物について、実挙動観測に基づく分析を行い、建物に入力される地震動が大きくなるに従い、 建物応答倍率が低減し、建物の固有振動数も低くなることを確認した。また、固有振動数の低下 にあわせて免震部の変形が急激に大きくなることも確認している。これらの傾向が顕著になるの は計測震度 3.0 からで、入力振幅に依存した免震建物の加速度応答低減効果が確認できたことを 報告している。加藤ら³⁰⁾は、北海道釧路市に建つ免震病院建物において、2003年十勝沖地震によ り得られた強震記録に基づき、免震建物の応答性状を報告している。その結果、水平方向の1階 の最大加速度は、基礎に対して 0.73~0.87倍に低減し、免震効果が認められることを確認してい る。また、1階と屋上の値を比較し、上部構造内での増幅はほとんど認められないことを確認し ている。松崎ら³¹⁾は、広島県に建つ積層ゴムと鉛ダンパーを免震層に有する地上8階建ての建物 において、2 つの大地震及びその前後に観測された中小地震による免震建物の応答性状について 分析を行った。その結果、入力に応じて固有振動数が変化し、大地震になるにつれてその効果が 現れることを確認した。また、大地震を経験した後も振動性状は初期の性能に回復すること、地 震により振動している最中にも振動数は常に変化し、入力の大きさに応じて振動数が低下し長周 期化することを明らかにした。米木ら³²⁾は、積層ゴム支承を有する免震建物と非免震建物におい て、観測地点での震度が 0~4 程度の小・中地震に対する応答性状を分析し、比較を行っている。 その結果、免震建物は震度が大きくなると免震効果が大きくなるが、震源距離が遠くなると免震 効果が小さくなることを明らかにしている。この原因として地震波の長周期成分が卓越するため としている。また、森田³³⁾は、U型鉛ダンパーを有する免震建物の地震時応答について検討を行 っており、免震層の応答変位に与える影響は、エネルギー理論の観点からほぼ説明できるとした。 古川ら³⁴⁾は、1995年兵庫県南部地震において2棟の免震建物で得られた基礎上及び建物応答記 録を基づいて、状態空間モデルによる予測誤差法を用い、免震部材の非線形復元力特性と水平2 方向移動の相互影響効果の両者に着目した検討を実施した。

海外の研究については、Fan ら³⁵⁻³⁷⁾は中層建物をハーモニック地震動で加振して、加振時建物 の固有振動数、摩擦係数及び免震装置の減衰係数の推定を行った。Maria O.³⁸⁾らは、4 階建て免震 建物と隣接する非免震建物(両建物の上部構造の条件は同じ)について、両建物の地震観測記録か ら免震建物の地震時応答低減効果を確認した。その他にも、免震建物の動的特性に関する研究³⁹⁻⁴³⁾ が挙げられる。

(3) 振動実験に関する研究

青柳⁴⁴)らは、LRB 免震建物を対象に、鉛入り積層ゴムの微小ひずみレベルに於ける振動特性(固 有振動数、減衰定数)の把握を目的として強制振動実験を実施し、免震建物の固有振動数及び減衰 定数を明らかにした。中村⁴⁵)らは、免震建物の振動特性を確認するために起振機試験を実施し、 建物の1次、2次固有振動数、及び減数定数を評価した。

免震建物の実挙動に関して実験を行った既往の研究から、免震建物の振動特性(例えば、固有振動数、減衰定数)は比較的容易に把握できるが、観測記録と設計資料に基づく解析モデル間の振動 特性を比較した研究事例は少ない。また、本研究で実施したような多点観測を行っている事例も 少ない。

1.2.3 免震建物の捩れ挙動に関する研究

振れ入力動をはじめとする入力の相互作用に関する研究として、以下がある。まず、山原^{46,47)} は十勝沖地震の余震記録から地動と観測記録の関係を調べた結果、基礎は同位相同振幅では振動 せず、波長が短いほど両者の差が大きいことを認めるとともに、これを入力損失と称し、入力の 相互作用の重要性を指摘した。この入力の相互作用を解析的に検討した例としては、Luco⁴⁸⁾や Trifunac⁴⁹⁾が行った SH 波に対する二次元面外場の半円球基礎の解析がある。その後、井口⁵⁰⁾は 3 次元地表面基礎の近似解法を示した。一方、Kobori ら⁵¹⁾や Luco⁵²⁾は積分方程式法により、地表面 円形基礎に SH 波が入射したときの捩れ振動問題を解いた。また、Yoshida⁵³⁾は根入れ基礎の捩れ 振動について、境界要素法と有限要素法のハイブリッド法による解析結果を示している。以上の ように、位相差入力を想定した捩れ振動等に関する研究については、これまでに数多く発表され てきた。

また、基礎一地盤系の剛性に偏りのある杭基礎構造物の捩れ挙動に関する研究として、文献⁵⁴ ~⁵⁷⁾が挙げられる。このうち、文献^{54~56)}は、支持地盤が傾斜した地盤に立地する杭基礎建物につ いての検討である。袋野ら⁵⁴は、建物の捩れ振動について、地震応答解析に基づいた検討を行った。辻ら⁵⁵は、異種基礎の水平荷重に対する静的な検討手法を提案した。山田ら⁵⁶は、三次元有限要素法をもとに、精度の高い解析法を提案し、異種基礎と構造物の弾塑性地震応答解析を行った。また、木村ら⁵⁷は、杭配置に偏心を有する杭基礎建物の捩れ挙動について、遠心模型実験およびシミュレーション解析を行った。

以上のように、捩れ挙動に関する研究は多く行われてきているが、免震建物を対象とした捩れ 挙動の分析は少ない。また、本研究対象建物のような、不整形の改良地盤に対する振動性状や地 震時応答に関する研究は見当たらなかった。

1.2.4 基礎に作用する土圧についての研究

地震動の建物への入力機構や、建物振動に対する地盤の抵抗などの動的相互作用を解明するに あたり、建物基礎に作用する地震時土圧の検討は極めて重要である⁵⁸⁾。特に、実際の構造物に作 用する地震時土圧の特性について、種々の地盤・建物条件のもとで多数の地震観測と分析を蓄積 すること^{59~65)}及び土圧の発生機構に関する研究^{65~69)}は、一般建物の動的相互作用の基礎資料とし て有用と考えられる。

側面土圧に関するこれまでの実験的研究として、井口ら⁷⁰⁾、田村⁷¹⁻⁷³⁾ら、和田⁷⁴⁻⁷⁷⁾らなどが ある。井口ら⁷⁰は、加振実験時に大型振動台の基礎に作用する側面土圧を分析し、側面土圧は基 礎の応答変位と応答速度に関係することを示した。田村⁷¹⁻⁷³⁾は、実験により、地盤液状化が生じ る条件で基礎が受ける土圧の特性を分析した。和田^{74~77)}らは、擁壁背面の地盤をセメントで固化 し地盤改良を行った場合の、地盤改良直後と固化後の擁壁壁面に作用する水平土圧の推定につい て検討を行うと共に、上載荷重に対する擁壁の構造性能について考察を行っている。実建物で地 震時側面土圧を観測した事例としては、井口ら⁵⁸⁾、広田ら^{78,79)}、内山・山下⁸⁰⁾の研究などがある。 井口ら⁵⁸⁾は、振動台基礎に土圧計と加速度計、周辺地盤に加速度計を設置して地震観測を実施し、 得られた複数の中小地震記録を用いて、基礎応答と地震時側面土圧の関係を明らかにしている。 また、土圧評価の簡易モデルを提案し、シミュレーション解析を通してその有効性について検証 している。広田ら^{78,79)}は、原子力発電所の構造物を対象に地震観測を実施し、長周期が卓越した 地震では加速度が小さくても土圧が生じることを明らかにしている。内山・山下 800は、構造物模型 の地震時側面土圧を計測し、構造物模型の相対する基礎側面には同位相の側面土圧が発生する場 合があることを述べている。さらに、側面土圧と基礎相対変位の関係については、根入れを有す る直接基礎に対して側面に作用する地震時土圧と地盤-基礎間の相対変位の関係について検討し た論文として、Velotos and Younan^{81~89)}がある。また、Tamura et al.⁹⁰⁾は、根入れを有する杭基礎の 根入れ部に作用する土圧に関連して、遠心載荷実験による実験的検討を行っている。川中島・石田 ⁹¹⁾は、地盤~構造物間の相対変位に伴い生じる土圧挙動の傾向、ならびに構造物端部形状が土圧 挙動に及ぼす影響を分析している。鈴木ら⁹²⁾は、土圧の非線形挙動を分析し、解析モデルを構築 するための実験的研究を行っている。このように、根入れ部に作用する地震時土圧と地盤-基礎 間の相対変位の関係については、これまでにも研究が実施されているが、実建物の観測に基づく 実証的研究はそれほど多くなく、現象を明らかにするためには、実験、解析に加えて、観測デー タの蓄積が重要であると考える。

一方、耐震設計法に関しては、限界耐力計算法の導入により動的相互作用効果を考慮した耐震 設計が可能となった。この計算法では、地盤インピーダンスの評価が必要であり、理論解や解析 的な検討結果に基づく簡便な評価式が示されている。鈴木ら⁹³⁾は、根入れ基礎に対する基礎入力 動の評価方法の検討にあたり、根入れ部に対する側面ばねの簡便な評価法を提案している。これ らの妥当性について、実建物の土圧を含む地震観測結果から検討することも必要である。

基礎に作用する地震時土圧の評価については、多くの実験的研究や理論的検討が行われている。 しかし、その中で地震時土圧と建物-地盤の相対変位の関係や、隣接建物がある場合の基礎側面土 圧に与える影響などについての研究事例はほとんどない。また、土圧等の観測記録から推定した 基礎側面の地盤インピーダンスと解析値との比較といった観点からの研究事例も少ない。

以上の既往の研究から、本論では、以下の4つの新たな観点から免震建物に関する検討を行う。

- (1) 改良地盤に支持された免震建物の地震時応答に関する既往の研究はあまり報告されていない。このような免震建物の動的相互作用効果を考慮した地震応答評価においては、地盤インピーダンスや基礎入力動を評価する必要があるが、そのような事例が少ない。そこで、本論では改良体を有する対象建物の地盤インピーダンスや基礎入力動を評価するとともに、改良範囲の違いが地盤インピーダンスや基礎入力動に与える影響を検討する。本検討結果は、改良地盤に立地する建物の相互作用を考慮した耐震設計において重要な参考資料となる。
- (2) 基礎の捩れ応答に関する既往の研究はあまり見られない。そこで本論では、免震建物の基礎の捩れ応答を観測記録に基づいて評価する。また、基礎の捩れ応答は上部建物と擁壁とのクリアランスの余裕度に影響を与える可能性が考えられる。そこで、大地震時の基礎の捩れ応答を予測するため、対象建物をモデル化し、中小地震に対するシミュレーション解析を実施する。このモデルを非線形領域に拡張することにより、大地震時の建物の捩れ応答がクリアランスに与える影響を検討することが可能となる。
- (3) 地震時に作用する相互作用力を、実際に基礎に作用する土圧力として観測記録に基づいて 評価した研究事例は少ない。また、基礎に作用する地震時土圧力の発生メカニズムに関す る既往の研究も少ない。そこで本論では、基礎の側面に設置した土圧計から観測された地 震時土圧記録に基づいて、基礎の側面に作用する土圧力と基礎-周辺地盤間の相対変位関 係から、基礎の側面に作用する土圧力の発生メカニズムについて分析する。また、隣接建 物が対象建物の基礎の側面土圧力に与える影響についても検討する。
- (4) 相互作用を考慮して建物地震時応答を評価する場合には、地盤インピーダンスが必要となる。これまでに、理論的手法による地盤インピーダンスに関する研究は多く見られるが、 土圧力や加速度波形等の地震観測記録に基づき地盤インピーダンスを計算した研究は見られない。そこで本論では、これらを用いて地盤インピーダンスを推定し、その結果と数値解析モデルで計算した基礎側面地盤インピーダンスを比較検討する。

以上の4点を明らかにするため、対象建物において強震観測システムを構築したことも本論文 の特徴である。構築した強震観測システムは、自由地表、及び建物の同一階で多点に配置した加 速度計や基礎の側面や底面に多点配置した土圧計の組み合わせで構成され、全成分が同時計測可 能となっている。このようなシステムの利点は、地震時の対象建物の水平や捩れ方向の応答を把 握できることに加えて、基礎に作用する土圧の発生メカニズムと対象建物の地震時動的応答の関 係を分析できることにある。

1.3 論文の構成

本論文は6章から構成される。以下に、各章の概要を示す。

第1章では、本研究の背景と目的を述べると共に、地盤改良、免震建物の観測記録及び地震時 土圧に関する既往の研究について概説し、本研究の位置づけを明確にする。

第2章では、対象敷地やその周辺の地盤概要及び本建物において構築した強震観測システムの 概要を述べる。

第3章では、対象敷地において、地盤改良前後において行ったボーリング調査、標準貫入試験、 PS 検層、浅層レーリー波探査等の地盤調査結果について示す。次に、主に改良地盤のせん断波速 度構造の観点から、地盤改良効果について検討する。さらに、地盤改良の有無や部分的な地盤改 良が地盤と建物の相互作用効果に及ぼす影響について解析的検討を行う。

第4章では、本建物で得られた複数の中小地震観測記録を用いて、当該建物の地震時挙動につい て分析する。さらに、南海トラフの巨大地震など、将来の大地震に対する応答予測に向けて、設 計資料等に基づく上部建物の数値解析モデルを作成し、応答解析結果と中小地震観測結果を比較 することにより妥当性を検証する。中小地震レベルでも実挙動を観測により把握し、線形レベル での特性を分析・モデル化しておくことは、将来の大地震時における応答予測をするために重要で ある。

第5章では、当該建物で得られた複数の中小地震観測記録を用いて、地震時に生じる側面土圧 の特性について分析した。また、自由地表面に対して基礎の水平方向の相対変位と当該建物基礎 の側面に生じる土圧力の伝達関数を取って、その結果から基礎側面に生じる土圧力の原因を把握 した。また、隣接建物の影響がある場合について、基礎側面に生じる土圧力の原因を分析した。 その後、2次元有限要素法を用いて、地震時側面土圧力のシミュレーション解析、および地盤イ ンピーダンスの推定を試み、実測記録との対応を考察する。

第6章では、本研究で得られた成果をまとめ、今後の課題や展望について述べる。 図 1.3-1 に本論の構成を示す。

10

図 1.3-1 本論文の構成

第2章 対象建物及び強震観測システムの概要

2.1 はじめに

本研究で対象とする名古屋大学医学部附属病院外来診療棟は、地域の基幹病院の中枢を担う施設である。当該建物では、災害発生時に高度医療機能を確保する必要があるため、免震構造が採用された。また、敷地の一部で液状化の可能性があったため、建築面積の約3/4の領域で地盤改良を施した上で直接基礎が採用された。地盤改良により支持地盤として十分な建物支持性能は有していると考えられる。しかし、改良部と未改良部で動的特性も異なることから、地震時に偏心に伴う捩れ入力動が励起される可能性がある。捩れ入力動が過大になると、基礎部の捩れ振動により、基礎部と一体的に挙動する擁壁と上部構造とのクリアランスの余裕度が減少する可能性も考えられる。このような背景もあり、当該建物では、大地震発生後の迅速な建物健全性把握のため、多点の地震観測を行っている。

本章では、対象建物の敷地と構造の特徴及び観測システムの概要について述べる。

2.2 対象建物の敷地概要

2.2.1 対象建物の敷地

本研究の対象建物⁹⁴⁻⁹⁷⁾は、名古屋市昭和区鶴舞町に位置する鉄骨鉄筋コンクリート造地上4階 で地下1階部分に免震層を有する病院建物である。対象敷地は名古屋大学鶴舞団地構内に位置し、

▲NS EW

写真 2.2-1 対象建物位置

写真 2.2-2 対象建物の外観

熱田台地と台地中央を南北に貫通する大曽根面と呼ばれる段丘面の境にあたる。熱田台地は名古 屋市の中心部に分布する、標高5~25m程度の地形面である。大曽根面は海面低下によって熱田面 が形成された後、河川の浸食でつくられた面であり、熱田面よりは急勾配で鶴舞付近で沖積面下 に没している。写真2.2-1に対象建物の位置を示す。写真2.2-2は建物の外観である。

2.2.2 地形概要

敷地は、JR 中央線「鶴舞」駅すぐ東方に位置しており、標高は T.P.+8m 程度となっている。名 古屋市の地形⁹⁸⁾は、西から東へ向かって主に沖積平野、台地、丘陵であり、敷地は、熱田台地と 段丘面の境界付近にあたる。

熱田台地は、熱田層堆積の海面低下期に河川の浸食作用から削り残されて台地化されたもので、 濃尾平野の東端に東部丘陵の西縁部を取り巻くように分布し、名古屋市の中心部に広がっている。 また、熱田台地中央部を南北に貫く大曽根面と呼ばれる平坦面は、北部では熱田面より 2~3m 低 く熱田層との間に存在するだけであるが、南下に伴い熱田面との比高は大きくなり、南部の熱田 付近では 10m 以上の急崖で隔てられている。これは、昔の矢田川もしくは庄内川が熱田面上を北 から南に貫流したときの河床面で、当時の河床礫からなる大曽根層が熱田層を若干浸食して数 m の厚さで堆積している。

2.2.3 地質概要

濃尾平野の地質層序とその形成史は、表 2.2-1 に示すとおりである。

敷地周辺を構成する地層は、図 2.2-1 の表層地質図や図 2.2-2 の地質断面に示すように、最上部の埋土層[B]が薄く分布し、以深は上位より更新世の大曽根層[D₄]、熱田層[D_{3U},D_{3L}]、海部弥富累層[D_m]及び第三紀鮮新世~第四紀更新世後期の東海層群[P]が分布する。

東海層群より上位の洪積層は、更新世中期以降の濃尾傾動運動(濃尾平野の西部が沈降し、東部 が隆起した地殻変動)に伴って順次堆積したものである。この間の数回の海面低下期(氷期)には、 それまで堆積していた地層が削り取られ開析谷が刻み込まれていき、海面上昇期(間氷期)には新し い地層によって埋戻されている。

東海層群は、西に向かってゆるく傾斜しつつ、濃尾平野西部では 200~300m 以深に分布する。 礫層、砂層、粘性土層が数 m の厚さで互層を成し、亜炭層、火山灰層を挟む。

海部・弥富累層は、砂礫が卓越する下半部(弥富累層相当層)と砂礫ばかりでなく砂層や粘性土層 をよく挟む上半部(海部累層相当層)から成り、前者の上部に発達する礫層を第三礫層、後者の上位 に分布する礫層を第二礫層と呼ぶこともある。

熱田台地を構成する更新世中期~後期の熱田層は、濃尾平野に広く分布し貝化石を含む厚い海 成粘土からなる下部と浮石を含む砂層からなる上部に分けられる。熱田層下部は熱田海進期の堆 積物と考えられており、厚さ30~40mに達し、濃尾平野地下一帯から三重県沿岸平野、伊勢湾内 にも広く連続して分布するが、熱田台地西部では厚さ10m前後で東部に向かって薄くなる欠如す る。熱田層上部は主に砂層よりなり、30m前後の厚さを有するが、レンズ状の粘性土を挟み縁辺 部では礫層を挟むことから海浜成・潟湖成・河成の堆積物と考えられている。また、御岳火山を起 源とする浮石層もいくつが認められる。

敷地付近の大曽根面を形成する大曽根層は、更新世中期の熱田層堆積後にそれを浸食して堆積 したもので、最終氷期最大海面低下期に刻まれた開析谷の埋没段丘となって断続的に分布してい る。大曽根面は比較的小径の礫からなり、層厚は5m以内である。

2.2.4 敷地の地盤概要

敷地の地盤構成は、表層が盛土層[B]で、以深、上位より大曽根層[D4c 及び D4g]熱田層 [D3s1~D3s2、D3c1-D3c3、D3g、D3c]、海部・弥富累層[Dmg1~2、Dms、Dmc]で分布し、東海層群 失田川累層[Pc1~3、Ps1~2、Pg]は、調査深度の GL-75m までが確認されている。表 2.2-2 に地盤構成を示した。

土	質	時代		濃尾平野	熱田台地東部丘陵		地史
		完親	所世	南陽層A			濃尾沖積平野面の形成
				濃尾層N			(1) 縄文海進
				第一礫層 D5			(1.7) 濃尾海進 濃
新	第	更	後		☆礫層 D ₅ 根層 D₄		(2) 最終氷期海面最低下期 尾 傾 動
生	四	新	期	上: 教田層	部 D _{3U}		(3) 盆 海面小変動期 地 (4~5) 運
				下;	部 D _{3L}		最終氷期の始まり 動
任	公司	++++-	中	第二礫層 D _m			(9~10) 熱田海進 (最終間氷期)
	小山	Щ (海部累層 D _m	海部·弥富累層 D _m		(15~16) 氷河期
		洪積	期	第三礫層			御田心下効
		世)		が富累層		 八事層	(80)
			前期			唐山層 ^{D1-2}	東海湖時代 知多変動 (500)
	第三	鮮新	期_ 世 	東海層群 P	瀬戸層群 矢田川 瀬戸隆	□累層 P 每土層	第一瀬戸内海海進期 (500) ▼
	紀	中新	世	中新統 P	瑞浪層群(品野層) ()内は推定年代×10 ⁴ 年前		
1	中・さ	T生什	2	基 盤 G	基盤山土の中古生層,花崗岩類 G		

表 2.2-1 濃尾平野及び周辺地域の層序とその形成史 98)

図 2.2-1 敷地付近の表層土質図⁹⁸⁾

地質時代		地層名	地質	記号
	完新世	盛土	礫質土	В
			砂質土	D4s
		大曽根層	粘性土	D4c
			砂礫	D4g
			砂質土	D3s1
			粘性土	D3c1
第	更		粘性土	D3c2
匹	新	熱田層	砂礫	D3g
紀	世		粘性土	D3c3
			砂質土	D3s2
			粘性土	D3Lc
			砂礫	Dmg1
		海部・	砂質土	Dms
		弥富累層	粘性土	Dmc
			砂礫	Dmg2
第	鮮	東海層群	粘性土	Pc1-3
三	新	(矢田川昱屋)	砂質土	Ps1-2
紀世			砂礫	Pg

表 2.2-2 地盤構成表 ⁹⁸⁾

2.3 設計時における地盤調査結果

建物設計時には、対象敷地内で PS 検層(サスペンション法)及び常時微動計測が行われている。 これらは一般的な地盤調査であり、その手法の概要と結果を示す。

2.3.1 PS検層

PS 検層は地盤の各層の P 波・S 波速度を計測するものである。そのうちサスペンション法は、 振源と 2 組の受振器を備えた計測器をボーリング孔に下ろして、深さ 1m ごとに詳細な波動伝播 速度を計測することができる。具体的には振源から発せられた波動を 1m 間隔の 2 点の受振器で 計測し、その時間差から波動速度を算出する。得られた P 波・S 波速度から各層の定数外かのよ うに求められる。P 波速度及び S 波速度が判明することにより、各地層の動的弾性定数が求めら れる。その算出式は次の通りである。

ポアソン比 $v = \frac{(Vp/Vs)^2 - 2}{2((Vp/Vs)^2 - 1)}$ (2.3-1)

剛性率
$$G_d = \rho V_s^2$$
 (2.3-2)
大文文本 $F_s = 2G_s(1+y)$ (2.2.2)

$$\gamma \neq \gamma \Rightarrow \qquad E_d = 2G_d(1+V) \tag{2.3-3}$$

図 2.3-1 に行われた PS 検層の位置を示している。

図 2.3-1 PS 検層の位置

PS 検層の結果を図 2.3-2 に示す。以下に図 2.3-2 から見られる概要についてまとめておく。

(1) GL-0.00~-1.95m

P 波速度は 410m/s、S 波速度は 160m/s を示している。P 波速度は、水中伝播速度(1500m/s)に比べてかなり小さな値であり、飽和度の低い層であることを示している。また S 波速度は、200m/sを下回る値であって、軟弱な土層に見られる値となっている。

(2) GL-1.95~-10.00m

P 波速度は 530~740m/s、S 波速度は 210~250m/s を示している。P 波速度はこの間においても水中伝播速度を下回る値である。また、S 波速度は地表付近に比べると大きな値を示している。

(3) GL-10.00~-44.55m

P 波速度は 1120~1650m/s、S 波速度は 220~310m/s を示している。P 波速度は、GL-10.00~-13.95m 間では水中伝播速度をやや下回る値を示すが、これに続く GL-13.95 以深の速度は飽和した土層に 見られる値となっている。また、S 波速度は、GL-16.95~-20.30m 間では 220m/s を示すものの、そ の他の区間においては 300m/s 前後の値が得られている。

(4) GL-44.55~-67.00m

P 波速度は 1900~2320m/s、S 波速度は 420~710m/s を示している。P 波速度は、この間が飽和した土層であることを示す大きな値である。また、S 波速度は、いずれも工学的基盤の目安とされる 400m/s を上回る値となっている。

(5) GL-67.00~-75.00m

P 波速度は 1640m/s、S 波速度は 300~330m/s を示している。P 波速度は、飽和した土層に見られる値である。また、S 波速度は、300m/s を上回る値であり、比較的締まった、あるいは、比較的硬い土層に見られる値である。

以上により、この地点では、深さ 0~10m までは粘土、砂質土の層となり、地盤のせん断波速度 は 210~250m/s 程度である。10m 以深では飽和した砂層が存在し、液状化の可能性を検討する必 要がある(2.3.4 参照)。

図 2.3-2 PS 検層結果

2.3.2 PS検層結果に基づく地盤増幅度の計算結果

PS 検層の S 波速度に基づき、重複反射理論解析によって算出した地盤増幅度(2E/(E+F))を図 2.3-3~2.3-4 に示す。解析に用いた地盤の諸定数を表 2.3-1 に示す。なお、表中の値は、GL-0.0m~GL-75m までが調査で得られた結果であり、これ以深については、調査のボーリングデータを基 に推定されたものである。

解析の入力基盤面は、GL-49.35m (Vs=710m/s) および GL-78.10m 以深 (Vs=520m/s) の2 深度を 想定した。図 2.3-3 を見ると、入力基盤面を GL-49.35m としたモデルでは 0.68 秒付近、図 2.3-4 から入力基盤面を 78.10m としたモデルにおいては 0.84 秒付近の増幅度が大きなものとなってい る。これより、工学的地盤にあたる GL-45m 以浅の表層地盤の増幅特性として、約 0.7 秒の周期 となることが分かる。

深度	S 波速度	密度	大力其般
(GL-m)	(m/s)	(g/cm^3)	八刀歪盆
0.00~1.50	160	1.80	
1.50~1.95	160	1.70	
1.95~5.30	250	2.00	
5.30~10.00	210	1.80	
10.00~13.95	310	2.00	
13.95~16.95	270	1.90	
16.95~20.30	220	1.90	
20.30~25.25	270	2.00	
25.25~32.70	300	2.10	
32.70~38.70	280	1.80	
38.70~44.55	280	1.70	
44.55~49.35	420	2.10	
49.35~58.50	710	2.10	0
58.50~62.00	500	2.10	
62.00~67.00	540	2.10	
67.00~68.75	330	1.70	
68.75~71.50	330	1.90	
71.50~75.00	300	1.80	
75.00~78.10	300	1.80	
78.10~∞	520	2.10	Ô

表 2.3-1 増幅度を計算した地盤諸元

図 2.3-3 地盤増幅度 (入力地盤面: GL-49.35m (Vs=710m/s))

図 2.3-4 地盤増幅度 (入力地盤面: GL-78.10m (Vs=520m/s))

2.3.3 常時微動計測結果

常時微動測定は、調査地の地盤の振動特性(卓越周期)をスペクトル解析から求めるために行った。 計測の概要と結果について示す。

(1) 測定器の仕様

測定に用いた機器の主な仕様は表 2.3-2 のとおりである。また、この測定装置の周波数特 性を図 2.3-5 に示した。

地表用受振器(5秒計)	データ収録装置(5秒計)
型式: SE-21(水平)、SE-22(上下)	型 式: SAMTAC-TSR023
測定周波数:0.2~50Hz	チャンネル数:3
感 度:500V·s·m ⁻¹	入力 電圧: <u>+</u> 10.24V
	AD 分解能:24bit
	サンプリング周波数:50,100,200,400Hz
	記憶装置:ハードディスク

表 2.3-2: 測定器のパラメータ

図 2.3-5 常時微動計(5 秒計)の総合周波数特性

(2) 測定方法

測定は敷地の西南部の地表において行われた。図 2.3-6 に測定の概要を示す。地表用の受信器は、 地面上に水平にかつ安定した状態に設置した。地表用受信器によって受信される波形は、データ 収録装置の増幅器により、適正な大きさに増幅した後、AD 変換を行いディジタルデータとして 記録した。AD 変換の時間間隔は 0.01 秒とした。

調査地の振動特性を得るために、周辺の振動源からのノイズの影響ができるだけ小さい状態で

測定する必要がある。このため、測定は記録される波形をモニター画面上で確認し、解析に使用 できるかを判断しながら行われた。

図 2.3-6 常時微動測定の概要

- (3) 解析方法
- (a) フーリエスペクトル

記録した波形から振幅の変動の少ない約40秒の区間を抽出し、平均値の除去などを行った後に 両側10%区間にテーパーをかけてフーリエ変換し、さらにパルツェンウィンドウを用いてスペク トルの平滑化を行って求めている。

(b) H/V スペクトル

長い周期成分まで確認するため、約160秒の区間でフーリエ変換し、水平2成分の2乗和平方 根を上下成分で除して求めている。さらに抽出区間を1/2ずつずらしながら計算し、各周期で平 均±標準偏差を求めて図示している。

(4) 常時微動測定結果

常時微動のフーリエスペクトルを図 2.3-7 に示す。水平方向はいずれも 3~4 秒に明確なピーク があり、1 秒以下の短周期域では 0.3~0.4 秒付近にピークが見られる。

H/V スペクトルを図 2.3-8 に示す。やはり 3~4 秒に明確なピークが見られる。これは地震基盤 以浅の深部地盤の周期特性を示している。一方、1 秒以下の短周期域では、0.5~1 秒弱に緩やか な卓越が見られるが、あまり明確ではない。図 2.3-3 の表層地盤増幅特性のピークとおおむね対応 することから、工学基盤以浅の層の卓越周期に対応するものと考えられる。なお、フーリエスペ クトルでピークとなっている 0.3~0.4 秒は H/V スペクトルでは卓越しておらず、地盤の特性では ないと考えられる。一般にこの周期帯域は交通振動の影響が強く現れることが知られている。

PERIOD (SEC)

図 2.3-7 地表常時微動のフーリエスペクトル図(GL-0m 5 秒)

図 2.3-8 常時微動の H/V スペクトル

2.3.4 敷地地盤の液状化可能性評価

本敷地は表層の盛土以深は洪積層であり、過去の歴史地震においても敷地付近では液状化は確認されていない。しかし地下水位以深において若干N値が低く細粒分の少ない砂層が存在するため、液状化の検討が行われている。対象となるGL-5.38、-8.30mの砂層に関して、「建築基礎構造設計指針」(日本建築学会)に準拠した簡易判定法によれば、地表面加速度300gal程度の地震動に対して液状化の可能性があると判定される。そこで、凍結サンプリングによる不撹乱試料を用い、液状化に対する地盤挙動を詳細にシミュレーション可能なオンライン実験が行われている。実験の結果、過剰間隙水圧の発生による応力低下は見られたが、レベル2の設計用地震動に対しては液状化には至らないことが確認されている。

2.4 地盤改良の概要

2.3 節に述べたように敷地地盤の簡易な液状化判定によれば、地震時においては敷地一部に液状 化の可能性があるため、その対策として地盤改良を実施した。

図2.4-1に地盤改良の施工状況を示す。敷地の北西の一部を除くL字型の部分において地盤改良 が行われた。深層混合処理工法が採用され、径約1000mmの改良体が中心間距離1300mm程度で2203 本、地中に長さ7m で打設されている。写真2.4-1に深層混合処理工法により地盤改良した後の対 象敷地の様子を示す。この写真のように、ブロック杭形式が採用され、セメントおよびセメント 系固化材と原地盤の土を混合し、セメントソイルコラムを高密度に形成することにより、地盤改 良を行っている。

地盤改良前には、調査ボーリング及び標準貫入試験、PS 検層、孔内水平載荷試験の他に、液状 化調査の一環として凍結サンプリング等詳細な調査が行われた。また、これらに追加して表層地 盤のせん断波速度を評価するために浅層レーリー波探査を行った⁹⁴⁾。地盤改良後においては、改 良部及び未改良部においてボーリング調査及び標準貫入試験が行われ、地盤改良部においてはボ ーリング孔を利用した PS 検層が行われた。さらに、浅層レーリー波探査も行っている。また、地 盤改良部においては一軸圧縮試験もなされ、改良体の物性値が評価されている。

2.5 対象建物の概要

2.5.1 全体概要

建物規模は、地上4階(地下1階部分が免震層)、NS方向が9.0m×6スパン、EW方向が9.0m×11 スパンで、建物南側に一部吹き抜け及び柱抜けがあるがほぼ長方形の建物である。

建物用途は病院(外来診療棟)であり、1 階から3 階は、外来診察室、待合など、4 階は、管理部 門となっている。建築北側には各層に設備用バルコニーを設けている。4 階屋上部分には、将来 増築の計画がある。

隣接する既存建物として中央診療棟(免震構造)があり、各階2箇所で渡り廊下にて接続する。渡 り廊下は、既存建物とはエキスパンションジョイントで分離した別構造としている。表 2.5-1 に対 象建物の概要を示している。

建築場所		愛知県名古屋市昭和区鶴舞町
用途		病院
面積	敷地面積	89137m ²
	建築面積	5100m ²
	延べ床面積	17268.1m ²
	基準階面積	5286.8m ²
階数	地上	4 階
	地下	0 階
	塔屋	1 階
高さ	軒の高さ	GL+19.95m
	建築物の高さ	GL+20.75m
	最高部の高さ	GL+23.65m
	基準階階高	4.80m
	1 階階高	4.80m
	基礎底深さ	GL-3.65m
設計用地下水位		GL-3.80m
構造		RC 造 一部 SRC 造
L		

表 2.5-1 対象建物概要

2.5.2 上部構造及び基礎構造の概要

図 2.5-1~2.5-3 に上部構造の基準平面及び断面を示している。上部構造は鉄筋コンクリート造の 純ラーメン構造である。ただし、18m のロングスパン梁は鉄骨造とし、鉄骨梁に取合う柱は鉄骨 鉄筋コンクリート造としている。基礎は、地盤改良上で直接基礎が採用された。表 2.5-2 に主体構 造及び基礎構造の概要を表す。

表 2.5-2 上部構造及び基礎構造の概要

構造上の特徴	上部構造と基礎の間に免震装置を設置した免震構造	
	上部構造:構造種別 鉄筋コンクリート造(一部 S,SRC 造) 骨組形式 ラーメン構造	
骨組形式種別	基準スパン 9.0m(最長 18.0m) 基礎構造:構造種別 鉄筋コンクリート造	
	基礎形式 直接基礎(べた基礎)	
耐力壁・その他	なし	
	柱断面: b×D=900×900~900×1100mm (RC,SRC 造)	
	H-600×300~H-800×300mm (SRC 造)	
	φ -101.6~165.2 mm (組立てトラス柱)	
	梁断面: b×D=600×900~800×1500mm (RC,SRC 造)	
柱・梁	H-600×300~H-1200×300mm (S,SRC 造)	
断面 ・ 材料	鉄骨 : SN490B, SN490C, STKN490B	
	コンクリート:普通コンクリート Fc27 N/mm ² (上部構造)	
	Fc24 N/mm ² (基礎·擁壁)	
	鉄筋 : SD295A(D16以下)、SD345(D19~D32)	
	SBPDN1275/1420 (高強度せん断補強筋)	
スラブ形式	鉄筋コンクリート造スラブ	
	デッキプレート捨て型枠コンクリート造スラブ(S造部分)	

図 2.5-2 基準断面図(短辺方向)(1:600)

2.5.3 免震構造の概要

本建物は、建物柱脚下と基礎の間に免震装置を設置する基礎免震構造である。

免震装置は、「鉛プラグ入り積層ゴム支承(LRI: Lead Rubber Isolator)」、「積層ゴム支承(RB: Rubeer Bearing)」、「直動転がり支承(CLB: Cross Linear Bearing)」及び「減衰装置(オイルダンパーもしくは 増幅機構付き減衰装置(RDT: Rotary Damping Tube))」が採用されている。

図 2.5-4 に免震装置の配置を示している。

●:直動転がり支承
 ●:減衰装置

図 2.5-4 免震装置の配置

(1) 鉛プラグ入り積層ゴム

鉛プラグ入り積層ゴムには、有効ゴム径 1000mm のものを使用し、計 21 基を配置している。図 2.5-5 に鉛プラグ入り積層ゴムの概要図を、表 2.5-3 に諸元を示す。

装置タイプ	ゴム外形 (鉛径)	認定番号	ゴム高さ (mm)	二次剛性 (kN/mm)	切片荷重 (kN)	鉛直剛性 (kN/mm)	装置高さ (mm)
		MVBR-0260	247.9	1.264	225.6	3950	478.3
L1000A 1000(19	1000(190)	MVBR-0047	248.0	1.394	227.8	3740	505.4
L1000B	1000(200)	MVBR-0260	247.9	1.266	250.3	3950	478.3
		MVBR-0047	248.0	1.389	252.5	3740	505.4

表 2.5-3 鉛プラグ入り積層ゴムの諸元

図 2.5-5 鉛プラグ入り積層ゴムの概要図

(2) 天然ゴム系積層ゴム

天然ゴム系積層ゴムには、有効ゴム径 1000mm のものを計 12 基配置している。図 2.5-6 に天然 ゴム系積層ゴムの概要図を、表 2.5-4 に諸元を示す。

装置タイプ	ゴム外形 (鉛径)	認定番号	ゴム高さ (mm)	水平剛性 (kN/mm)	鉛直剛性 (kN/mm)	装置高さ (mm)
		MVBR-0295	247.9	1.241	3060	478.3
N1000	1000	MVBR-0045	248.0	1.367	2898	505.4

表 2.5-4 天然ゴム系積層ゴムの諸元

図 2.5-6 天然ゴム系積層ゴムの概要図

(3) 直動転がり支承(CLB)

直動転がり支承(CLB)には、鉛直支持力が異なる6種を併用し、計50基を主に建物中心部に配 置している。図 2.5-7 に直動転がり支承の概要図を、表 2.5-5 に諸元を示す。

図 2.5-7 直動転がり支承の概要図

	1 7 1	レール・フ	ブロック	ト下間直さ	基数	
装置タイプ	部位	レール全長 (mm)	ブロック数	(mm)		
CI D122	上	1750	1	358	2	
CLB155	\vdash	1750	1	550	~	
CI B250	上	1850	1	100	15	
CEB250	下	1850	1	498	13	
CI D295	上	1950	1	588	2	
CLB385	下	1950	1	500	_	
	上	2050	1	(()	4	
CLB200	下	2050	1	003	4	
	上	2150	1	79/	7	
CLB/80	下	2150	1	///	/	
CI B1000T	上	2760	2		20	
CLB10001	下	2150×2	2	663	20	

表 2.5-5 直動転がり支承の諸元

(4) オイルダンパー及び増幅機付き減衰装置(RDT)

オイルダンパーは、最大減衰力 1000kN、減衰係数 2500kN・sec/m のもの 2 種類用い、増幅機付 き減衰装置(RDT)と合わせて X 方向と Y 方向にそれぞれ 8 基ずつ計 16 基配置している。図 2.5-8 にオイルダンパーの概要図、図 2.5-9 に増幅機付き減衰装置の概要図を示す。

図 2.5-8 オイルダンパーの概要図

図 2.5-9 増幅機付き減衰装置の概要図

2.6 強震観測システムの概要

本建物では、地盤改良後から建物の施工段階、そして竣工後の現在に至るまで、様々な計測機器を用いて高密度な観測を行っている⁹⁴⁾。本節においては観測システムの概要を説明する。

2.6.1 加速度計

写真 2.6-1 に加速度計の設置状況を示す。また、表 2.6-1 に加速度計のセンサーの設置点及びセンサー名称を示す。表中 2.6-1 のセンサー名称は図 2.6-1(センサー名称の示す位置の図)に示す通りである。センサーの名称は、前の 2 文字が階数を、後ろの 2 文字が建物内の平面位置を表している。地盤については、後ろの 2 文字が地表からの深度を表わしている。階数は、建物 top を 05、免震ピット階天井を 1F、免震ピット階床を bm、地盤を gr と表現している。加速度計は中央部においては 5 階、1 階、基礎(05cc、01cc、bmcc)に NS、EW、UD の 3 成分設置している。また、擁壁の面外変形の把握を目的とし、西側の擁壁(smw0)に EW 方向、捩れ成分の抽出を目的として 5 階、1 階、基礎の東端(05ce、01ce、bmce)に NS 方向、短辺方向のロッキング成分の抽出を目的として 1 階、基礎の北端(01nc、bmnc)および長辺方向のロッキング成分の抽出を目的として 1 階、基礎の北端(01nc、bmnc)および長辺方向のロッキング成分の抽出を目的として 1 階、基礎の東端(01ce、bmce)に ud 方向設置している。地震時にはトリガーにより、自動的に計測が開始される。その後、自由表面の加速度計(gr01)を 2009 年に建物の西側約 15m の位置に設置した。

2.6.2 底面土圧計及び側面土圧計

対象建物においては、土圧計を用いた観測も行っている。土圧計は、湿度、腐食等に強いため、 コンクリート内部および地盤中に設置でき、高分解能で耐久性に優れているので長期的に正確な 計測が可能である。また、地盤と建物の力のやりとりを検討する際、変位を介さず直接土圧値を もって評価できることが利点である。対象建物においては、耐圧盤と地盤との境界に底面土圧計、 免震ピットの擁壁と地盤との境界に側面土圧計を設置し、力のやりとりを把握することで、動的 相互作用問題に対して土圧の観点からのアプローチが可能である。図 2.6-2 に底面土圧計と側面土 圧計の設置平面図および立面図を示す。表 2.6-2 に土圧計配置点及び土圧計名称一覧を示している。 また、土圧計の外観を表 2.6-2 中の写真に示す。

底面土圧計は、耐圧盤に作用する土圧を計測することで、平面的な位置および地盤の種類によ る荷重分担性状を把握することを目的とし、北西部と中央の未改良地盤に2点(r-1、r-2)、南西部 と南東部の改良地盤の未改良部分に2点(ir-1、ir-2)、および南東部の改良地盤の改良体内(ii-1)に1 点、計5点設置した。耐圧盤及び免震ピットの擁壁のコンクリート打設後の2008年3月下旬より 計測を開始した。施工段階においては、上部建物の工事が平面的に6つの工区単位で行われてい るため、一部に集中的に作用する荷重増分が耐圧版下においてどのように分担されるのか検討す ることを目的として静的計測を行った。また、動的観測も可能であり、施工後においては、地震 時における基礎-地盤間の力のやりとりの直接的評価や、地震時のロッキングの評価を目的として いる。

側面土圧計は、図 2.6-2 に示すように、免震ピットの擁壁西側の深度 GL-1.25m に擁壁の面外変 形を見ることを目的として 1 点(escwUP)、また、地盤と擁壁間の力のやりとりを把握し、また、 水平並進方向の振動の L 字型の地盤改良による偏心に起因する地盤の捩れ振動を検討するために 南西部、北東部、南東部の深度 GL-1.25m(esswUP、esneUP、esseUP)および耐圧盤の深度である GL-3.25m(esswBT、esneBT、esseBT)に設置している。また、中央南部の耐圧盤下の地盤中に、耐 圧盤のコンクリートに埋め込んだプレートを介して土圧計を固定し、耐圧盤下における地盤と基 礎の水平力のやりとりを把握することを試みている(図 2.6-2 の b-1)。

注記:cent_gr01 隣接建物自由表面に設置した加速度計

図 2.6-1 センサー名称が示す位置

加速	加速度計 設置点		センサー名称
		地表面	gr01
		基礎底面中央	bmcc
3 成分-ew,ns,ud		1 階中央	01cc
		R 階中央	05cc
		隣接建物の基礎底面中央	bmcc_cent
2 成人	a-ns ud	免震層下部東側	bmce
	,j 113, uu	1 階東側	01ce
	ns R 階東側		05ce
		免震層下部	bmnc
1 成分 ud	ud	1 階北側	01nc
		4 階中央	04cc
ew		擁壁上部	smw0

表 2.6-1 センサー配置点及びセンサー名称一覧

図 2.6-2 免震層の平面図、及び地盤改良の施工範囲と土圧計の配置

土圧計	記号	設置点	センサー名称
	s-1	中央西上	escwUP
	su-2	南西部上	esswUP
側面	sb-2	南西部下	esswBT
十正計	su-3	北東部上	esneUP
_ <u>_</u> _/µı	sb-3	北東部下	esneBT
	su-4	南東部上	esseUP
	sb-4	南東部下	esseBT
	b-1	中央南部	ebcsOU
	r-1	北西部	ebnwOU
底面	ir-1	南西部	ebswOU
十正計	r-2	中央部	ebccOU
P	ii-1	南東部	ebseIN
	ir-2	南東部	ebseOU

表2.6-2 土圧計配置点及び土圧計名称一覧

土圧計の写真

注記:r-1,r-2: 未改良部分 ir-1,ir-2: 改良地盤の未改良部分 ii-1: 改良地盤の改良部分 本論では、上述の加速度計・土圧計で得られた観測記録を用いた検討を実施している。なお、本建物では、この他に以下に示す観測も実施している。

2.6.3 光ファイバーセンサー

施工段階おける荷重増加に伴う柱軸力の変化、柱位置による荷重分担性状を把握することを目 的とし、光ファイバーによる構造物計測システム^{99,100)}(以下 SOFO: Surveillance d'Ouvrages par Fiber Optiques)を用いて、対象建物の静的変形の計測を行っている。計測に用いたセンサーは計測長さ 300mm である。図 2.6-3 に測定原理概念図を示す。直径約 8mm のパイプに、プリテンションをか けた計測用光ファイバーとテンションをかけない参照用光ファイバーの2本が入っており、LED から発射した光がファイバーの端部に置かれた反射器で反射して戻ってくる時間を測定し、その 時間差(位相差)から計測部両端部の間の伸縮を計測するというメカニズムである。また、変位 計測の分解能は静的計測において 2µm とされている。図 2.6-4 に対象建物における SOFO センサ ーの設置位置を示す。また、写真 2.6-2 に SOFO センサー設置の様子を示す。対象建物においては、 耐圧盤内部(S-ms とする)、改良地盤の改良体(S-ii とする)および改良地盤の未改良部(S-ir とする) の3点と、建物北西部の積層ゴム系免震装置(以下 LRB)と直動転がり支承(以下 CLB)および建物 中央部の CLB と LRB の計 4 つの免震装置直上における 1 階柱脚部に 2 点ずつの計 8 点、併せて 11 点設置している。前者の3点については、耐圧盤が施工された2008年2月下旬に、後者の8 点については1階スラブが打設された2008年4下旬~5月上旬に計測を開始している。その後、 図 2.6-4 に示すように、SOFO センサーを設置した柱位置における免震装置には鉛直変位計および 水平変位計を設置しており、2008年7月より免震装置における変位を計測している。

なお、センサー自体は温度変化の影響を受けないが、計測対象のソイルセメントコラム、地盤 およびコンクリートが温度変動により伸縮するため、変形から応力変化を推定するためには、温 度計測による補正が必要となる。そこで、SOFO センサーと併せて熱電対を設置し、SOFO センサ 一周辺の温度を計測している。

図 2.6-3 SOFO センサーの測定原理概念図

図 2.6-4 SOFO センサー及び鉛直変位計の設置位置図

(a) 地盤内への設置

(b) 1 階柱脚部への設置

写真 2.6-2 SOFO センサーの設置様子

2.6.4 免震装置に設置した鉛直変位計および水平変位計

施工段階の荷重増加に伴う、免震層位置による荷重分担性状および免震装置の種類による荷重 分担性状を把握することを目的とし、免震装置に鉛直変位計を設置している。また、地震時に免 震装置上下の相対変位を計測することを目的とし、鉛直変位計と併せて水平変位計も設置してい る。

鉛直変位計および水平変位計を設置した免震層の位置は、前項において光ファイバーセンサー (SOFO センサー)の説明で用いた図 2.6-4 に示す通りである。建物北西部の積層ゴム系免震装置(以 下、北西 LRB)と直動転がり支承(以下、北西 CLB)および建物中央部の直動転がり支承(以下、中 央 CLB)と積層ゴム系免震装置(以下、中央 LRB)の4つの免震装置においてそれぞれ、免震装置の 4 隅、南東、南西、北東、北西の位置(それぞれ SE、SW、NE、NW)に鉛直変位計を設置している。 写真 2.6-3 に鉛直変位計の設置の様子を示す。センサーは東京測器株式会社製の防滴型高感度変位 計を使用している。変位計は免震装置下部のコンクリート台座に治具で固定されており、先端部 分が水平方向に滑らかに動けるよう上部のコンクリートにはアクリル板を貼り付けて水平方向の 摩擦を低減している(写真 2.6-3 の(b))。 水平変位計は、地震時における免震装置上下間の相対変位を計測することを目的として、鉛直 変位計と同種類の変位計を鉛直変位計を設置した免震装置 4 つについて、長辺方向および短辺方 向に治具を用いて設置した(それぞれ EW、NS)。

(a) LRB への設置(b) 詳細(c)

(c) CLB への設置

写真 2.6-3 鉛直変位計の設置様子

2.6.5 データ収録システム

図 2.6-5 に観測システムの概要を示す。土圧計、間隙水圧計、加速度計データは同建物内に設置 したデータサーバで一括管理され、免震基礎部の加速度計のトリガーに応じて、同時収録が可能 である。また、本観測では、収録機ごとの時刻は完全に同期されており時刻補正を行う必要は無 い。中央診療棟の地盤記録に関しては GPS の時刻記録により、外来診療棟の観測システムと同期 が可能である。これらのデータは、学内 LAN を通じて遠隔操作が可能となっている。

以上のように、対象建物に構築した強震観測システムについて、以下の点で特徴と新規性があ るものと考えられる。

- (1)免震装置の地震時応答性状を把握するため、免震装置の上下に加速度計を設置した。また、 対象建物の各階の異なる位置に設置した多くの加速度計により、建物の水平方向の応答を 計測することに加えて、建物各層の捩れ応答の観測もできる。さらに、対象建物周辺の自 由地表面と基礎に設置した加速度計の観測記録に基づいて、捩れ振動を含めた基礎入力動 の分析を行うことも可能である。
- (2) 基礎の底面及び側面に設置した土圧計の記録から、基礎に作用する静的及び動的土圧の特 性が分析できる。また、建物自由地表面に設置した加速度計と基礎に設置した土圧計を組 み合わせて、基礎に作用する土圧の発生メカニズムや対象建物の地震時応答と土圧との関 係を分析できる。

図 2.6-5 観測システムの概要

2.7 これまでに観測された主な地震

2.6 節に述べた観測システムを構築した時点からこれまでに、振幅はあまり大きくないものの、 多数の地震記録を収録されている。図 2.7-1~2.7-4 に観測点と各地震の震源位置、表 2.7-1~2.7-4 に観測された地震の諸元を示す。これらの地震時に観測された建物応答の記録を用いて、第4章 及び第5章で建物の振動特性及び土圧の特性を分析する。

図 2.7-1 観測点と観測された地震の震源(1~21)

番	寄号	時間(年/月/日/時/分)	緯度	経度	震源深さ	規模	震源位置
	1	2009/02/18/06/47	35.7 N	136.3 E	9km	M 5.2	岐阜県美濃中西部
	2	2009/04/28/05/03	35.3 N	137.0 E	50km	M 3.3	愛知県西部
	3	2009/05/25/20/26	34.7 N	137.8 E	30km	M4.6	静岡県西部
	4	2009/07/14/03/57	35.4 N	137.3 E	50km	M3.4	岐阜県美濃東部
	5	2009/07/2709/44	35.1 N	137.3 E	40km	M4.0	愛知県西部
	6	2009/08/09/19/56	33.1 N	138.4 E	340km	M6.9	東海道南方沖
	7	2009/08/11/05/07	34.8 N	138.5 E	20km	M6.6	駿河湾
	8	2009/09/05/02/02	35.2 N	136.7 E	21km	M2.4	岐阜県美濃中西部
	9	2010/01/10/01/44	34.6 N	137.6 E	30km	M4.4	遠州灘
	10	2010/03/14/17/08	37.7 N	141.8 E	40km	M6.6	福島県沖
	11	2010/06/13/12/33	37.4 N	141.8 E	40km	M6.2	福島県沖
	12	2010/06/23/22/17	35.3 N	137.0 E	40km	M3.5	愛知県西部
	13	2010/07/21/06/19	34.2 N	135.7 E	60km	M5.1	奈良県
	14	2010/08/20/15/35	34.9 N	136.8 E	40km	M3.8	伊勢湾
	15	2010/08/26/05/54	34.9 N	137.4 E	40km	M4.1	愛知県西部
	16	2010/09/10/09/34	34.9 N	137.2 E	40km	M4.0	愛知県西部
	17	2010/10/12/22/40	35.1 N	138.0 E	10km	M3.9	静岡県西部
	18	2010/11/29/15/52	33.9 N	135.4 E	60km	M4.1	和歌山県南部
	19	2010/11/30/12/25	28.4 N	1 39 .7 E	480km	M6.9	小笠原諸島西方沖
	20	2010/12/28/03/12	35.2 N	137.2 E	50km	M3.4	愛知県西部
	21	2010/12/28/22/07	34.9 N	137.3 E	40km	M3.9	愛知県西部

表 2.7-1 観測された地震の諸元 (地震 1~21)

図 2.7-2 観測点と観測された地震の震源(22~41)

番号	時間(年/月/日/時/分)	緯度	経度	震源深さ	規模	震源場所
22	2011/02/06/07/25	35.9 N	137.8 E	20km	M3.7	長野県南部
23	2011/02/21/15/46	33.9 N	135.4 E	50km	M4.9	和歌山県南部
24	2011/02/27/05/38	36.1 N	137.4 E	ごく浅い	M5.4	岐阜県飛騨地方
25	2011/03/09/11/45	38.3 N	143.3 E	10km	M7.2	三陸沖
26	2011/03/10/03/16	38.4 N	143.7 E	10km	M6.2	三陸沖
27	2011/03/10/06/24	38.2 N	143.0 E	10km	M6.6	三陸沖
28	2011/03/11/14/46	38.0 N	142.9 E	10km	M9.0	三陸沖
29	2011/03/12/03/59	37.0 N	138.6 E	10km	M6.6	新潟県中越地方
30	2011/03/12/04/32	37.0 N	138.6 E	10km	M5.8	新潟県中越地方
31	2011/03/12/05/42	37.0 N	138.6 E	ごく浅い	M5.3	新潟県中越地方
32	2011/03/13/08/25	37.9 N	142.0 E	10km	M6.2	宮城県沖
33	2011/03/14/10/02	36.5 N	141.1 E	10km	M6.2	茨城県沖
34	2011/03/15/22/31	35.3 N	138.7 E	10km	M6.0	静岡県東部
35	2011/03/19/18/56	36.7 N	140.7 E	20km	M6.1	茨城県北部
36	2011/03/22/21/04	36.2 N	141.6 E	ごく浅い	M5.9	茨城県沖
37	2011/03/23/07/12	37.1 N	140.8 E	ごく浅い	M6.0	福島県浜通り
38	2011/03/23/07/36	37.1 N	140.8 E	10km	M5.8	福島県浜通り
39	2011/03/24/08/56	36.2 N	140.1 E	50km	M4.9	茨城県南部
40	2011/03/24/17/21	39.1 N	142.4 E	20km	M6.1	岩手県沖
41	2011/03/28/07/24	38.3 N	142.4 E	ごく浅い	M6.5	宮城県沖

表 2.7-2 観測された地震の諸元(地震 22~41)

図 2.7-3 観測点と観測された地震の震源(42~61)

番号	時間(年/月/日/時/分)	緯度	経度	震源深さ	規模	震源場所
42	2011/04/07/23/32	38.2 N	142.0 E	40km	M7.4	宮城県沖
43	2011/04/11/20/42	36.9 N	140.6 E	10km	M5.9	茨城県北部
44	2011/04/12/14/07	37.0 N	140.7 E	10km	M6.3	福島県浜通り
45	2011/04/13/10/08	36.9 N	140.7 E	10km	M5.8	福島県浜通り
46	2011/04/21/22/37	35.6 N	140.9 E	70km	M6.0	千葉県東方沖
47	2011/06/30/08/16	36.2 N	138.0 E	ごく浅い	M6.5	長野県中部
48	2011/07/05/19/18	34.0 N	135.2 E	10km	M5.4	和歌山県北部
49	2011/08/01/23/58	34.7 N	138.6 E	20km	M6.1	駿河湾
50	2011/11/10/18/56	35.2 N	136.8 E	10km	M3.9	愛知県西部
51	2011/11/18/03/58	35.9 N	136.4 E	10km	M4.8	福井県嶺北
52	2011/12/14/13/01	35.4 N	137.3 E	50km	M5.2	岐阜県美濃東部
53	2012/01/09/00/37	34.0 N	135.5 E	60km	M4.7	和歌山県北部
54	2012/01/12/12/20	36.9 N	141.3 E	20km	M5.8	福島県沖
55	2012/01/15/07/12	35.4 N	137.3 E	50km	M3.6	岐阜県美濃東部
56	2012/01/28/07/43	35.5 N	139.0 E	20km	M5.5	山梨県東部・富士五湖
57	2012/01/29/16/46	35.5 N	139.0 E	20km	M4.7	山梨県東部・富士五湖
58	2012/02/08/21/01	37.9 N	138.2 E	10km	M5.7	佐渡付近
59	2012/02/14/12/28	36.3 N	141.6 E	20km	M5.5	茨城県沖
60	2012/02/14/15/22	36.3 N	141.8 E	ごく浅い	M6.2	茨城県沖
61	2012/02/19/14/54	36.7 N	140.6 E	10km	M5.1	茨城県北部

表 2.7-3 観測された地震の諸元(地震 42~61)

図 2.7-4 観測点と観測された地震の震源(62~71)

番号	時間(年/月/日/時/分)	緯度	経度	震源深さ	規模	震源場所
62	2012/02/29/18/00	37.3 N	141.7 E	40km	M5.3	福島県沖
63	2012/02/29/23/32	35.2 N	141.5 E	20km	M5.8	千葉県東方沖
64	2012/03/10/02/25	36.7 N	140.7 E	10km	M5.5	茨城県北部
65	2012/03/14/21/05	35.8 N	141.1 E	10km	M6.1	千葉県東方沖
66	2012/03/27/20/00	39.8 N	142.5 E	10km	M6.4	岩手県沖
67	2012/04/01/23/04	37.1 N	141.3 E	50km	M5.9	福島県沖
68	2012/04/12/20/19	36.8 N	141.4 E	20km	M5.5	福島県沖
69	2012/04/12/23/50	37.4 N	141.8 E	30km	M5.9	福島県沖
70	2012/04/13/19/10	36.9 N	141.5 E	20km	M5.9	福島県沖
71	2012/05/05/18/56	35.2 N	137.2 E	50km	M4.4	愛知県西部

表 2.7-4 観測された地震の諸元(地震 62~71)

第3章 地盤改良が地盤と建物の動的相互作用効果

に与える影響

3.1 はじめに

名古屋大学医学部附属病院外来診療棟は、詳細な地盤調査に基づいて地盤改良を行った 上で、直接基礎となっている。地盤改良は地盤の支持力及びせん断抵抗を向上する上で有 効な手段として普及しているが、特にせん断抵抗やせん断速度について、実際にその効果 を確認した事例が少なく、設計手法の確立のためにはデータの蓄積が重要である。さらに、 動的相互作用の観点から、改良地盤上に立地する建物のインピーダンス及び基礎入力動に 関して検討した例は少ない。

特に、本建物においては、北西の一部を除く L 字型の範囲において地盤改良が行われた ため、改良部と未改良部で動的特性が異なることから、地震時に偏心に伴う基礎捩れ入力 動が励起される可能性がある。基礎は捩れ入力動が過大になると、基礎部の捩れ振動によ り、免震層上端部で基礎部と一体的に挙動する擁壁とのクリアランスの余裕度が減少する 可能性があるため、この点について耐震安全性を確認する必要がある。

そこで、まず、対象敷地において、地盤改良前後に行ったボーリング調査、標準貫入試 験、PS検層、浅層レーリー波探査等の地盤調査結果について示す。次に、主に改良地盤の せん断波速度構造の観点から、地盤改良効果について検討する。さらに、地盤改良の有無 や部分的な地盤改良が地盤と建物の相互作用効果に及ぼす影響について、解析的検討を行 う。

3.2 ボーリング調査及び PS 検層による改良地盤の特性評価

3.2.1 計測概要とボーリング調査結果

図 3.2-1 に地盤改良後に行われたボーリングと PS 検層の位置を示す。また、図 3.2-2 に地 盤改良前後における地盤の柱状図、及び一軸圧縮試験より得られた改良体の圧縮強度 q_u、 変形係数 E₅₀の深さ方向分布を示す。

図 3.2-1 に示すように、PS 検層は改良前においては一箇所、改良後に一箇所改良体(図 3.2-1 の No.2)のコアボーリング孔を利用して、GL-10m の深度まで 1m 毎に板叩き法によって実施した。改良前の調査は、当該建物の北東側で実施されており、改良後の位置と異なる。 起振点は図中の*印に示す5地点である。#1、#2、#3、#4を受振点から斜め方向に設定し、 受振点から垂直方向に#4 と同距離に#5 を設定している。#1、#3 及び#4 の 3 地点について は改良体中間の未改良部分において、また#2、#5 の 2 地点については改良体の上において 起振を行った。受振点と起振点の間隔は、#1 が 0.5m、 #2 が 5.0m、#3 が 5.7m、#4 及び#5 が 10m である。

図 3.2-2 の改良後の柱状図から、未改良部は上部から砂礫を主とした埋土層(N 値 25-37) 約 3m、洪積砂層(N 値 11-32)約 4m、洪積砂礫層(N 値 23-51)約 3m で構成されており、砂礫 層は比較的締まった状態である。表層部の約 3m は、既存の基礎を掘り起こして解体したた め、埋め戻し土となっている。この点を考慮して、4m 以深の地層を改良前と比較すると、 N 値が減少している層があるものの、ほぼ対応した結果が得られている。従って、未改良部 の状態は、地盤改良後もある程度保持されていると考えられる。

グ及び PS 検層の位置

図 3.2-2 地盤改良前後における地盤の N 値分布、改良体の圧縮強 q_u、 変形係数 E₅₀の深さ方向分布

3.2.2 PS検層結果

図 3.2-3 に PS 検層によるせん断波速度構造の推定結果を示す。図 3.2-3 より、#1(受振点-起振点間隔 10m)の結果が 700~800m/s 程度と大きな値であり、その後#2、#3、#4、#5 と値 が小さくなることから、受振点と起振点間隔が広くなる程、せん断波速度 Vs は小さくなる ことが分かる。また、#4、#5 の結果には有意な差は見られず、改良体の配列が PS 検層結果 に及ぼす影響は小さいと考えられる。

ここで、地盤改良対象層の平均的なせん断波速度 Vs を概算を試みる。地盤改良前のせん 断波速度は約 220m/s である。一方、改良後については、受振点と起振点距離がある程度長 い場合には、地盤全体の平均的なせん断速度を示していると考えて、#4、#5 の結果から 600m/s 前後と推定される。

次に、他の方法を用いて、改良体の等価なせん断波速度を推定することを試みる。まず、 受振点と起振点距離が小さい#1の PS 検層結果は、ほぼ改良体のせん断波速度(*Vsi*とする) と見なせると仮定して、これを図 3.2-3 より 820m/s とする。上述したように、改良前の地 盤と改良後の未改良部の N 値に大きな差が見られないことから、両者のせん断波速度(*Vsg* とする)は等しいと仮定する。以上から、改良体 (*Vsj*=820m/s)と未改良部(*Vsg*=220m/s)から構 成される地盤全体の等価なせん断波速度を両者のせん断剛性における面積重み付け平均から求めることができる(*V_{save}*とする)。この考え方に基づけば、*V_{save}*=582m/s となり、600m/s 前後と推定された PS 検層の結果に概ね対応する。

さらに、土質試験より測定された圧縮強度 q_u 及び変形係数 E_{50} から改良体の Vs を推定する。圧縮強度 q_u とせん断波速度 Vs の間には式(3.2-1)に示す近似式が成り立つ¹⁰¹⁾。また、初期変形係数 E_0 と Vs の間には、「 $E_0=2(1+\mu)\rho V_s^2$ μ :ポアソン比, ρ :密度(g/m³)」の関係があるが、 E_{50} はある程度塑性化が進んだ状態(ひずみ度が 5×10⁻³ 程度)の変形係数であり、 E_{50} / E_0 は5 程度とされる。これらの関係から、 E_{50} と Vs の間には式(3.2-2)に示す近似式が成り立つ。こ こでは、文献 101)や PS 検層結果を参考に、 $\mu=0.3$ とし、 ρ は深さ方向の測定結果(1.8~2.2 g/m³) を用いた。

$$q_u = 172 \exp(0.005Vs) - 172 \quad kN/m^2$$

$$E_{50} \times 5 = 2(1+u) \qquad kN/m^2 \qquad (3.2-1)$$

$$(3.2-2)$$

計算結果を#1 における PS 検層結果と併せて図 3.2-4 に示す。圧縮強度 q_u 、変形係数 E_{50} より推定される Vs はそれぞれ概ね 700~800m/s、1000~1200m/s である。また、深度が大きくなる程大きくなるが、これは GL-6.5m 以深が砂礫層で含水率が低く、セメント改良効果が高いことが可能性の一つとして考えられる。一方、PS 検層結果より求められる Vs 値は、深くなる程値小さくなっており傾向が異なるが、 q_u 、 E_{50} 測定値より求められる Vs 値の中間にあり、概ね程度妥当な値と考えられる。

3.3 浅層レーリー波探査による改良地盤の特性評価

3.3.1 計測地点及び計測方法

本項では、改良地盤の前後で行った浅層レーリー波探査の計測地点及び計測方法につい て説明を行う。図 3.3-1 に浅層レーリー波探査を行った計測地点を示す。また、写真 3.3-1 に浅層レーリー波探査の様子を示す。計測には 24 個の鉛直センサーを 1m 間隔でケーブル で接続して設置した。図 3.3-1 に示すように、地盤改良前(ただし、表層部の約 3m は取り除 かれた後)においては、対象敷地の東側において、南北方向に約 43m 直線アレイを組んで計 測を行った。また、改良後においては、対象敷地の中央付近において、東西及び南北方向 に 23m 直線アレイを組んで計測を行った。また、南北方向については、改良地盤と未改良 部の比較を行うことを目的とし、センサーの約 1/4 に相当する部分を未改良地盤上に展開し ている。それぞれのセンサーの間をカケヤで叩いて人力起振するという作業を繰り返し、 計測を行った。鉛直センサー1m 間隔で粘土を用い地盤に固定し、各センサー間をカケヤで 起振する。

図 3.3-1 地盤改良前後で行った浅層 レーリー波探査の計測地点

写真 3.3-1 浅層レーリー波探査の様子

3.3.2 分析方法及び分析結果

(1) 解析方法

表面波解析による表層地盤構造の推定方法の 1 つとして、Park et al.^{102,103)}および Xia et al.^{104,105)}が提案したものがある。彼らはカケヤなどのインパルス振源によって励起された表面波を測線上の多数の受振器を用いて測定を行い、多数のトレースから位相速度曲線(分散曲線)を計算し、さらに一次元の測定解析を測線上で連続的に行うことにより二次元のせん断波速度構造を求める手法を提案し、これを表面波多チャンネル CMP 解析と称した。図3.3-2 に表面波探査の測定方法の説明図を示した。起振はカケヤにより行い、受振器には固有周波数の低い(4.5Hz)速度型ジオフォンを用いて、受振点間隔を 1~2m として測定する。また、起振点間隔は受振点間隔と等しくし、各受信点の中間点を起振する。以下に CMP 解析の流れを示している(図 3.3-3 も参照)。

図 3.3-2 表面波探査の測定方法(応用地質株式会社パンフレットより)

CMP 解析の主な流れ:

(a) 観測した波形を、トレースごとにフーリエ変換により周波数領域に変換する。

$$F(x,\omega) = \int_{-\infty}^{\infty} f(x,t) \cdot e^{-i\omega t} dt$$
(3.3-1)

ここで、x は距離、t は時間、 ω は角周波数、f(x,t) は時間領域の共通起振点記録、 $F(x,\omega)$ はそのフーリエ変換である。

(b) 計算を行う見かけ速度(*c*:位相速度)ごとに、距離と速度に応じて位相シフトを行い ながら、波形スペクトルを加算(スタック)する。

$$F(c,\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(x,\omega) \cdot e^{i\omega\frac{x}{c}} dt$$
(3.3-2)

(c) (b)を計算したい位相速度の全範囲について行う。

(d) 次のように絶対値を計算して図とする。

$$P(c,\omega) = |F(c,\omega)|$$

(3.3-3)

(e) (d)で求めた図において各周波数で最も振幅の大きい位相速度を求め、この点を結ん だ線を位相速度曲線(分散曲線)とする。

(f) 以上のように求めた位相速度曲線(分散曲線)を逆解析することによって、せん断波 速度構造を求める。

(2) 計測結果

図 3.3-4 に地盤改良前後における地盤のせん断波速度構造の推定結果を示す。上が改良前、 下が改良後の結果である。改良前と改良後-南北方向の未改良部におけるせん断波速度 Vs は 200m/s 程度のほぼ同等の値を示しており、両地点で地盤構造が大きく異なっていないこ とが分かる。改良部分においてはVsは、支持地盤相当の概ね400m/s程度まで向上している。

ここで、PS 検層結果より求めた改良地盤のせん断波速度 V_{save}を既往の手法¹⁹の低減率を 用いて補正する。すなわち、図 3.3-5 において面積的改良率 R 及び未改良地盤の Vs に対す る改良部の Vs の比 a から低減率を定め、これを V_{save}に乗じ、改良地盤の等価せん断波速度 (V_{seq}とする)を求める。その結果、V_{seq}=338m/s となり、浅層レーリー波探査の結果に比べ小 さいものの、ある程度対応した値となった。

図 3.3-4 改良前後における地盤のせん断波速度の推定

図 3.3-5 V_{save}の低減率

3.4 地盤改良が動的相互作用効果に及ぼす影響

ここでは、改良体が地盤インピーダンスや基礎入力動に与える影響について検討する。 検討のパラメーターとしては改良体の有無、改良範囲、改良体の長さである。

3.4.1 地盤改良を構成する改良体のモデル化

本検討では、改良体を杭に置換してモデル化する。この時、改良体は、曲げ変形を無視して、せん断梁要素でモデル化する。改良地盤と基礎底面はピン接合とする。

ここで、対象改良地盤の改良体の数量は2203本と非常に大規模である。このような大規 模群杭問題では解析自由度が非常に大きくなり、通常は、解析が困難である。大規模群杭 の問題に対して、文ら¹⁰⁶⁾は、近接する複数杭を1本杭に集約することにより大規模群杭問 題を小規模集約群杭問題に置換する方法を提案している。そこで、本検討でも文ら¹⁰⁶⁾の手 法を用いることとする。以下に、文ら¹⁰⁶⁾提案した評価法について簡単に示す。

図3.4-1~3.4-2に示すように、群杭をブロック化し、各ブロックで複数の杭を1本の集約杭 に置換する。集約杭の剛性については、集約前の杭の水平剛性と上下剛性を保存するよう に集約する。杭周面の地盤ばねについては、グリーン関数として、ブロック内の同一平面 の杭位置で同時加振した場合の受振平面上でのグリーン関数を、加振面積を重みとして平 均した値を用いる。

(1) 集約杭の断面定数

図 3.4-1 に示すように、集約杭と群杭の水平剛性及び上下剛性を保存するために、集約杭の断面パラメータは群杭の断面パラメータの単純和とする。

$$A = \sum A_i$$

$$A_1 = \sum A_{1i}$$

$$A_2 = \sum A_{2i}$$

$$I_{11} = \sum I_{11i}$$

$$I_{22} = \sum I_{22i}$$
(3.4-1)

ここに、*A*、*A*₁、*A*₂、*I*₁₁、*I*₂₂、*J*はそれぞれ軸断面積、1軸(x)方向と2軸(y)方向のせん 断断面面積、1軸と2軸まわりの断面2次モーメト及び捩れ断面2次モーメントである。また、 集約杭の座標位置は集約する杭断面の図心とする。

$$X = \sum x_i A_i / \sum A_i$$

$$Y = \sum y_i A_i / \sum A_i$$
(3.4-2)

群杭全体の回転抵抗については、図3.4-2に示すように、集約杭の上下剛性に基礎中心からの距離を積和することにより得ることとし、集約杭の回転剛性は無視する。ブロック化による誤差については、参考文献106)を参考されたい。

(2) 集約杭に用いる薄層解

図3.4-3に示すように、集約杭に適用する薄層解は以下のように同一面上の杭位置に同時 加振した場合の受振面上の杭位置変位の重み付き平均変位とする。すなわち、S節面の多点 加振によるR節面の変位は、群杭のS節面の多点加振によるR節面の多点の変位を重み付き平 均した値とする。S節面の多点に作用する加振力の総和が1とすると、S節面上のj杭の加振力 F_i は次式のように書くことができる。

$$F_j = \frac{w_j}{\sum\limits_{k=1}^{N_S} w_k}$$
(3.4-3)

ここに、w は重み、 N_s はブロック内の杭の本数である。この加振力によるR節面上のi 杭位置の変位 u_{Rsi} は次式のように書くことができる。

$$u_{SRi} = \sum_{j=1}^{N_s} F_j u_{SRij} \sum_{j=1}^{N_s} \left(\frac{w_{Sj}}{\sum_{k=1}^{N_s} w_{Sk}} u_{RSij} \right) = \frac{\sum_{j=1}^{N_s} w_{Sj} u_{RSij}}{\sum_{k=1}^{N_s} w_{Sk}}$$
(3.4-4)

ここに、*u_{RSij}*は薄層要素法による加振解である。*R*面の各杭位置の変位を重み付き平均すると、次式が得られる。

$$u_{SR} = \frac{\sum_{i=1}^{N_R} w_{Ri} u_{RSi}}{\sum_{i=1}^{N_R} w_{Ri}} = \frac{\sum_{i=1}^{N_R} \sum_{j=1}^{N_*} w_{Ri} w_{Sj} u_{RSij}}{\sum_{i=1}^{N_R} w_{Ri} \sum_{k=1}^{N_*} w_{Ri}}$$
(3.4-5)

薄層解として、重みw としては加振面及び受振面の杭の断面積を用いる。杭断面が同じ 場合は次式のように書くことできる。

$$u_{RS} = \frac{\sum_{i=1}^{N_R} \sum_{j=1}^{N_s} u_{RSij}}{N_R N_s}$$
(3.4-6)

なお、図3.4-3は、同一のブロック内での加振解の誘導の例を示しているが、異なるブロック間での多点加振解も全く同じ手続きで求めることができる。

このような手続きを経ることにより、各ブロックの複数杭が水平剛性と上下剛性が保持 された1本の集約杭に置換され、各集約杭には、集約杭用の薄層加振解が適用されることに なる。これにより、大規模群杭の問題が、小規模集約群杭を解く問題に変換され、解析自 由度が大幅に縮約され、実用可能な解析になる。

なお、大規模群杭を小規模集約群杭に変換する際には、簡易評価法の精度が重要となる。 文ら¹⁰⁶⁾は、大規模群杭を均等のブロックに集約化した場合、各方向のブロック数をnとする と、回転インピーダンスの誤差は1/n²程度となるとしている。これより、本検討では、25本 (5×5)を1つの改良体として集約した。図3.4-4に各ブロックの集約する前後の説明図を示し ている。表3.4-1に敷地の規模及び改良体の諸元を示している。図3.4-5に未改良部分のパラ メータを示している。

基礎の形状		改良休の諸元				
(<i>m</i>)		以以代代的月日				
В	104.0	<i>d</i> = 1.0m	s = 1.3 m			
С	52.0	<i>L</i> = 7.0m	<i>h</i> = 0.03			
B_1	52.0	<i>v</i> = 0.3	$\rho = 2.0 t/m^3$			
C_1	32.5	$V_s = 820 \text{m/s}$				
D	4.50	$E = 4.71 \times 10^6 \text{kN/m}^2$				
注記 1:	h:減衰定	芝数 :ボアソ	ン比 🕫:密度			
<i>V_s</i> :せん断波速度 <i>E</i> :ヤング係数						
記号は図 3.4-4(a)を参照						

表 3.4-1 敷地の規模及び改良体の諸元

図 3.4-5 未改良部分のパラメータ

3.4.2 解析ケース

地盤改良が動的相互作用効果に及ぼす影響を検討するため、ここでは、該当建物地盤改良(部分的(75%程度)に地盤改良(改良体長さ7m))以外のケースについても解析した。解析ケースは、図 3.4-6 に示すように、地盤の全面を改良(改良体長さ7m)した場合(CASE1)、部分的(75%程度)に地盤改良(改良体長さ7m)を実施した場合(CASE2a)、部分的(75%程度)に地盤 改良(改良体長さ15m)を実施した場合(CASE2b)、地盤改良しない場合(CASE3)の4ケースを 想定する。

3.4.3 解析結果の比較

(1) 地盤改良の有無や改良範囲の違いがインピーダンスに与える影響

CASE1、CASE2a、CASE3のインピーダンスを図 3.4-7 に示す。図中のインピーダンスの 方向は、図 3.4-6 に対応している。水平成分や捩れ成分における実部の準静的な値を比較す ると、3 つのケースの差は小さく、地盤改良の影響はあまり顕著ではないことが分かる。水 平成分、捩れ成分は、地盤改良を実施した場合、高振動数側で改良地盤周辺の地盤の影響 と考えられる付加質量効果によりインピーダンスの実部が減少する傾向が認められる。一 方、インピーダンスの虚部は大きくなる。

図 3.4-6 解析ケースの一覧

インピーダンスの比較

(2) 地盤改良の有無や改良範囲の違いが基礎入力動に与える影響

無質量基礎の下端の中心に鉛直下方から SH 波が入射した際の、各ケースの基礎入力動を 図 3.4-8 に示す。加振方向は NS(y)方向である。図 3.4-8 により、加振方向(図 3.4-8(b))で、地 盤改良に起因すると考えられる入力低減効果が認められる。しかし、全面改良(CASE1)、部 分改良(CASE2a)の差は小さい。また、地盤を部分改良した場合は、基礎—地盤系の剛性に 偏りが生じるため、加振方向の直交方向(x 方向)や上下方向の基礎入力動が励起されている (図 3.4-8(a), (c))。また、図 3.4-8(e), (f)より、回転成分や捩れ成分の基礎入力動も励起されて いることが分かる。本検討ケースのうち、CASE2a が本建物における改良地盤の状態に相 当する。前述したように、地盤を L 字型に部分改良した場合は、基礎-地盤系の剛性に偏 りが生じるため、水平方向加振によっても、捩れ成分の基礎入力動が励起されると考えら れるが、観測記録に基づく本結論の妥当性の検証についてはは 4.3 節で述べることにする。

(3) 地盤改良体長さがインピーダンスや基礎入力動に与える影響

CASE2a、CASE2b、CASE3の各インピーダンスを比較して、図 3.4-9 に示す。水平成分や 捩れ方向における実部の準静的な値を比較すると、改良体長さが長くなると、静的なイン ピーダンス(例えば(a)中の拡大図)がやや増加しており、地盤改良効果が認められる。インピ ーダンスの虚部は、改良体長さが長いほど、あるいは振動数が高いほど大きくなっており、 逸散減衰効果が増大することが分かる。これに対し、上下方向や回転成分では、改良体長 さの違いによるインピーダンスの差は小さい。

次に、各ケースの基礎入力動を図 3.4-10 に示す。加振方向は NS(y)方向である。基礎入力 動を見ると、地盤改良が深いほど、加振方向の入力動が小さくなっている。他の方向は、 改良体長さが長い方が、低振動数側において基礎の捩れ入力動が大きくなっていることが 分かる。

図 3.4-9 改良体長さの違いによるインピーダンスの比較

図 3.4-10 改良体長さの違いによる基礎入力動の比較

3.5 まとめ

本章では、地盤改良前後に行った詳細な地盤調査について述べ、改良体が地盤インピー ダンスや基礎入力動に与える影響について検討した。得られた知見を以下にまとめる。 地盤改良について:

- ・ 改良前の地盤の *Vs* 値は PS 検層結果より 220m/s 程度であったが、改良後においては改良地盤全体の *Vs* 値が 600m/s 程度と 3 倍近く改善されていることを確認した。
- ・ PS 検層結果より、改良体の Vs 値は 820m/s 程度であると推定される。これは改良体の 一軸圧縮試験結果から得られる圧縮強度 qu および変形係数 E₅₀から概算される改良体の Vs 値の間の値であることから、ある程度妥当な値と考えられる。
- ・ 改良前後のボーリング調査結果より、改良前の地盤と改良地盤の未改良部の N 値がほぼ 対応していることが確認できた。このことから、改良地盤の未改良部の Vs 値は 220m/s 程度であると考えられる。

改良体が地盤インピーダンスや基礎入力動に与える影響について

- ・ 地盤改良の有無、及び部分的な地盤改良が相互作用特性に及ぼす影響を検討した。その 結果、限られた範囲ではあるが、インピーダンスの実部は、準静的な値では地盤改良の 影響が小さいことが分かった。また、水平成分の高振動数側では、地盤改良によって減 衰が増大する。一方、上下成分と回転成分は地盤改良による影響が少ないことが分かっ た。また、基礎入力動は、地盤改良により入力損失効果が増大すること、基礎一地盤系 の剛性に偏りがあるような部分的な改良地盤では、捩れ振動が励起されることが明らか となった。
- ・ 改良体長さが長くなると、水平成分と捩れ成分では、インピーダンスの実部の準静的な 値がやや増加し、高振動数側でインピーダンスが大きくなることが分かった。これに対 し、上下方向や回転成分では、地盤改良によるインピーダンスの差は小さかった。基礎 入力動は、改良体長さが長くなると、加振方向の基礎入力動が小さくなる傾向が認めら れ、低振動数側では基礎の捩れ入力動が励起され易いことが分かった。

第4章 地震観測記録に基づく対象建物の振動特性

及び地震時応答

4.1 はじめに

実際の建物の地震時挙動や耐震性を検討する際には、モデル化に基づく応答解析等によるのみ ならず、実際の挙動の観測に基づく分析が重要である。特に、建物と地盤の動的相互作用などモ デル化が難しい対象の場合は、解析と実測を比較しつつ、実際の特性を適切に評価することが必 須といえる。

本論文で対象とする免震建物については、敷地に部分的に地盤改良が行われており、直接基礎 で支持されている。3章で解析的に示したように、このような地盤・建物では複雑な動的相互作 用の影響が予測され、特に基礎入力動に捩れ成分が励起される可能性も示唆されている。免震建 物では、捩れ入力により上部構造の捩れ応答が過大に励起されれば、クリアランスの余裕が減少 する可能性があり、耐震性にも大きく影響する。しかしこのような特性についてはほとんど検討 例がなく、実測でも現象は示されていない。

本章では、観測された地震記録を用いて、対象建物の基本的な振動特性や捩れ応答特性について明らかにする。また設計図書に基づいて数値解析モデルを構築し、観測結果によりチューニングを行う。中小地震の実記録から免震建物の線形レベルでの特性を詳細に把握しておくことで、 将来の大地震時の応答予測にむけて重要な知見が得られるものと考えられる。
4.2 検討に用いる地震の概要及び観測記録の分析

本節では、検討に用いる地震の概要、および観測された対象建物の加速度応答について述べる。

4.2.1 検討に用いる地震の諸元

表4.2-1に本章の検討で用いる地震(2009/8/11駿河湾の地震、2010/7/21奈良県南部の地震)の諸元 を、表4.2-2に各地震における建物の最大加速度、及び捩れ応答の最大値を示す。捩れ応答の計算 については、各階(基礎)の中心及び端部での加速度観測記録を2回積分して、得られた端部の変 位応答の値から中心の変位応答の値を引いたものを各階(基礎)の半幅を除いて、各階(基礎) の捩れ応答が得られると考えた。各地震とも入力加速度が小さかったため、顕著な免震効果は認 められなかった。また、水平及び捩れ成分の応答を両地震で比較すると、駿河湾の地震の方が奈 良県南部の地震に比べて大きな応答となっている。また、捩れ応答の絶対値は、水平成分の応答 に比べて小さい。図4.2-1に観測点及び震源の位置を示している。

図 4.2-1 観測点及び震源の位置 表 4.2-1 今回の検討に用いる地震の諸元

山山市一方	n (4	規模	震	源	深さ	震源距離
地辰名	口 1·J	Mj	緯度	経度	(km)	(km)
駿河湾地震	2009年08月11日	6.5	34.78N	138.50E	23	102.2
奈良県南部地震	2010年07月21日	5.1	34.21N	135.69E	58	164.2

表 4.2-2 建物の応答の絶対最大値リスト

建物応答の最大値リスト(観測記録)									
Like A	RF	(gal)	1F	(gal)	BF	F(gal)	+= la (10 ⁻⁵ 1)		
四晨名 	EW	NS	EW	NS	EW	NS	捩れ(10 rad)		
駿河湾	10.36	17.71	10.44	14.12	11.92	14.06	8.26		
奈良県南部	6.98	6.58	5.79	5.14	6.06	4.15	1.18		

4.2.2 観測記録の概要

本節では、上部建物の屋上中央(05cc, 3 成分) と東端(05ce, NS 成分)、1 階中央(01cc, 3 成分) と東端(01ce, NS,UD 成分)、免震層下中央(bmcc, 3 成分)と東端(bmce, NS,UD 成分)、及び地表(gr01, 3 成分)で得られた地震観測記録に基づく建物の振動性状を分析する。

2009 年 8 月 11 日駿河湾の地震における NS(短辺)方向と EW(長辺)方向の加速度波形と加速度フ ーリエスペクトルをそれぞれ図 4.2-2、図 4.2-3 に示す。

2010年7月21日奈良県南部の地震におけるNS(短辺)方向とEW(長辺)方向の加速度波形と加速度 フーリエスペクトルをそれぞれ図4.2-4、図4.2-5に示す。

両地震の加速度波形を比較すると、奈良県南部の地震は主要動が始まってから 40 秒程度で減衰 し、揺れが小さくなるのに対し、駿河湾の地震は 1 分近く揺れが継続している。これは、駿河湾 の地震はマグニチュードが奈良県南部の地震に比べて大きいことから、地震規模により継続時間 が長くなり、長周期成分が多く含まれたためと考えられる。また、地盤(gr01)の加速度フーリエス ペクトルを見ると、駿河湾の地震は、短周期から長周期成分に広く分布しているが、特に NS(短 辺)方向、EW(長辺)方向ともに、0.7Hz 付近の長周期成分が卓越している。それに対して奈良県南 部の地震においては、2Hz 付近の成分が卓越している。

さらに、NS(短辺)方向及び長辺方向ともに免震ピット階床から建物最上階へと加速度が増幅し ている。本来は、免震装置の上部の加速度応答はほぼ一様となるはずだが、今回観測された地震 においては振幅レベルが比較的小さいため、十分に免震効果を発現しなかった。また、EW(長辺) 方向、NS(短辺)方向ともに、地表(gr01)に比べて免震ピット下(bmcc)の加速度が小さくなっている ことが分かる。この点について加速度フーリエスペクトルを見ると、5Hz よりも高い振動数の成 分が著しく減少しており、高振動数の波が基礎部分で平均化されることに起因する入力損失効果 の影響が表われていると考えられる。一方、低振動数の成分については減少することなく、上部 建物に伝幡していることが分かる。

図 4.2-4 加速度波形及びそのフーリエスペクトル (奈良県南部の地震の EW(長辺)方向)

4.3 数値解析モデルによる地震観測記録のシミュレーション

4.3.1 解析モデルの概要

本検討では、上部建物を等価せん断型多質点系モデルに置換する。建物と解析モデルを図 4.3-1 及び図 4.3-2 に示す。また、未改良地盤のパラメータを図 4.3-3 に示す。地盤改良部分は、改良体 をせん断梁要素でモデル化し、改良地盤と基礎底面はピン接合とした。改良地盤の諸元等は、図 4.3-4 及び表 4.3-1 に示すとおりである。質量は、固定荷重が大半を占めることから、設計図書の 数値を採用した。上部構造の剛性を除く解析諸元を表 4.3-1 に示す。上部建物のせん断剛性(x 方向、 y 方向)、捩れ剛性は、詳細を次項に示すが、構造図等に基づき算定した上で、地震観測記録を用 いて補正した。解析モデルの減衰定数は、地震観測記録に基づいて、RFと1Fの伝達関数から1/2h 法により推定し、上部建物と免震層をそれぞれ約7.1%と約24%(駿河湾)及び9%と約17.7%(奈良 県南部)と推定し、複数剛性としてモデル化した。地震応答解析は、動的サブストラクチャー法 に基づく文らの方法^{107,108)}を用いて、相互作用を考慮した振動数領域での解析を実施する。

図 4.3-1 建物の断面図(諸元は表 4.3-1 参照) 図 4.3-2 解析モデル(m:質量(表 4.3-1 参照))

図 4.3-3 未改良地盤のパラメータ 図 4.3-4 地盤と基礎の平面図(諸元は表 4.3-1 参照)

質	量	高さ	基礎の)形状	改良友	木の諸元				
$\times 1$	$0^3 t$	(m)	(n	n)	UX IX P	ドット日ノレ				
m_0	20.90	-3.75	В	104.0	<i>d</i> = 1.0m	s = 1.3m				
<i>m</i> ₁	3.83	-0.75	С	C 52.0 $L = 7.0 \text{m}$ $h = 0.03$						
<i>m</i> ₂	2.56	4.97	B_1	52.0	<i>v</i> = 0.3	$\rho = 2.0 t/m^3$				
<i>m</i> ₃	2.67	9.77	C_1	32.5	$V_s =$	820m/s				
<i>m</i> ₄	2.81	14.87	D	4.00	$E = \Delta$	$4.71 \times 10^{6} \text{kN/m}^{2}$				
m ₅ 2.38 19.4 注記 1:高さは地表面から各質点の高さ										
注記 2: h:減衰定数 v:ボアソン比 P:密度 V:せん断波速度 E:ヤング係数										

表 4.3-1 解析モデル及び改良体の諸元(記号は図 4.3-1~4.3-4 を参照)

4.3.2 地震観測記録による建物の固有振動数の評価

上部構造の振動特性について分析するため、設計資料を参照して上部構造のせん断及び捩れ剛 性を評価する。該当建物の構造等は2章に示したとおりである。図4.3-5~4.3-11 に Y1~Y7 通り、 図4.3-12~4.3-23 に X1~X12 通りの軸組図をそれぞれ示した。主要部材断面を表4.3-2~4.3-3 に示 す。剛性の評価にあたっては、各層の水平剛性は梁を剛と仮定し、パネルゾーンを考慮して平面 に分布する柱の水平剛性の総和と考えた。各層の捩れ剛性は各層の平面中心に対して分布する柱 の捩れ剛性と個材の捩れ剛性の総和と考えた。例として、計算した水平 X 通り軸の水平剛性を表 4.3-4 に示した。以上の方法によって、計算した水平及び捩れ剛性を表4.3-5 に示す。

上部構造の水平剛性、及び捩れ剛性は、設計図書の構造図や部材リストを参考に算定した後、 地震観測記録の伝達関数から推定した1次固有振動数と対応するように補正した。その結果、両地 震とも上部構造のせん断剛性は計算結果の0.95倍(表4.3-5に示した剛性を参考する)となった。この 差の要因として、せん断剛性を算定する際に梁柔性を考慮していないこと等が考えられる。一方、 捩れ剛性は、計算結果を用いた場合の捩れの1次固有振動数が地震観測記録とよく対応していた ため、補正は行わなかった。

次に、免震装置の剛性を補正する。具体的には、駿河湾の地震と奈良県南部の地震において、 1FとRFの相対変位が小さいことを地震観測記録から確認した。そして、上部建物の全質量を1質 点とし、基礎と1階の伝達関数から、水平成分及び捩れ成分の1次固有振動数と対応するように、 免震装置のせん断剛性及び捩れ剛性を算定した。評価した建物のせん断剛性及び捩れ剛性を表 4.3-6に示す。

本節では、構造図等に基づいて、解析モデルを作成した。解析モデルに基づいて計算した、1 階に対する各層の伝達関数と観測記録から得られた伝達関数を比較する。図4.3-24に奈良県南部の 地震における伝達関数の比較結果を示す。これより、1次固有振動数周辺では、地震観測記録と数 値解析結果が非常によく対応していることが分かる。駿河湾の地震についても同様の結果が得ら れている。なお、地震観測記録に認められる6Hz付近や8Hz付近のピークは、振動数は捉えられて いるが、振幅値に大きな差があるため、追加検討が必要である。

図 4.3-6 梁伏図 (1:600)

図 4.3-10 Y6 通り軸組図 (1:600)

図 4.3-11 Y7 通り軸組図 (1:600)

梁番号	G	1	G2			G2A		G3		G4		G5	
層	端部	中央	X1,X 中	12 端部 央	X2,X11 端部	X1,X12 端部 X2,X11 端部	中央	端部	中央	端部	中央	端部	中央
Z2~Z5	1100×1000	900×1000	900×	< 1000	1100×1000					900×1000	900×1000	600×1000	600×1000
Z1	800×1500	800×1500	800×	1500	800×1500	800×1500	800×1000	800×1500	800×1500	800×1500	800×1500	800×1500	800×1500
梁番号	G	6		G7		G8		G)	G	10	G	1
層	端部	中央	X1,X 中	12 端部 央	X2,X11 端部	端部	中央	端部	中央	端部	中央	端部	中央
Z2~Z5	900×1000	900×1000	600×	< 1000	600×1000	600×1000	600×1000	600×1000	600×1000	600×1000	600 imes 1000	600×1000	600×1000
Z1	800×1500	800×1500	800×	1500	800×1500	800×1500	800×1500	800×1500	800×1500	800×1500	800×1500	800×1500	800×1500
梁番号	G	12		•	G13	Gź	21	G2	21A	G2	22	G2	22A
層	X1 端	中央 X2 端	層	端部	中央	中央	Y1 端部 Y2 端部	中央	端部	中央	Y2端部 Y3端部	中央	端部
Z5	600×1000	600×1000	Z1~Z5	600×100	00 600×1000	600×800	600×1000			600×800	600×1000	600×1000	600×1000
Z1	600×1500	600×1100	Z1	800×150	0 800×1500	800×1100	800×1500	800×1500	800×1500	800×1100	800×1500	800×1500	800×1500

表 4.3-2 主要な梁のサイズ(諸元は図 4.3-5~4.3-23 参照)

梁番号	G	23	G	23A		G24		G2	5	G26		
層	端部	中央	X1,X12 端部 中央	X2,X11 端部	Y3 端部	中央	Y4端部	Y3 端部 中央	端部	中央	端部	
Z2~Z5	600×1000	600×1000			900×1000	900×900	900×1300	900×1000	900×1300	600×1000	600×1000	
Z1	800×1500	800×1500	800×1200	800×1200	800×1500	800×1100	800×1500	800×1500	800×1500	800×1500	800×1500	
梁番号	G	27	G	G28		G29			G30			
層	端部	中央	中央	端部	Y6 端部	中央	Y7 端部	Y6 端部	中央	Y7 端部		
Z2~Z5			600×1000	600×1000	900×1300	900×900	900×1000	900×1300	900×900	900×1000		
Z1	800×1500	800×1000	800×1500	800×1500	800×1500	800×1100	800×1500	800×1500	800×1100	800×1500		
梁番号		(SG1		SG1A					SB	21	
層	端部		中央		端	部	r	中央		端部		中央
Z5	BH-1200×3	300×19×32	BH-1100×3	BH-1100×300×19×28					H-588×3	300×12×20	H-588×30	0×12×20
Z4	BH-1200×3	300×19×36	BH-1100×300×19×32				-		H-588×3	300×12×20	H-588×30	$00 \times 12 \times 20$
Z3	BH-1200×3	300×19×25	BH-1100×300×19×25 E		BH-1200×300×19×36 BH-110		BH-1100)×300×19×32 H-588		$300 \times 12 \times 20$	H-588×30	$00 \times 12 \times 20$
Z2	BH-1200×3	$300 \times 19 \times 25$	BH-1100×3	00×19×25					H-588×3	$300 \times 12 \times 20$	H-588×30	$00 \times 12 \times 20$

表 4.3-2 主要な梁のサイズ-続き (諸元は図 4.3-5~4.3-23 参照)

	C1	C2	C3	C4	C5	C6	C7	C8	C9	C21	C22	C51
	(mm)											
X(W)	900	900	900	900	900	900	900	900	900	900	900	900
Y(B)	900	900	900	900	900	900	900	900	1170	1100	900	600
$I_X(m^4)$	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.120	0.067	0.055	0.036
$I_{Y}(m^4)$	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.099	0.055	0.016
$I_{ZZ}(m^4)$	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.109	0.167	0.109	0.053

表 4.3-3 主要な柱のサイズ(諸元は図 4.3-5~4.3-23 参照)

Х

-

В

Y

-

.

÷

W

	Y 方向の各軸と X 🕽	方向各軸	交差点0	の柱のイ	ナーシャ	マモーメ	ントIy亻	直(×m ⁴)	A ⁴) Y 方向の各軸と X 方向各軸交差点の柱の高さ(m)						(m)	E _C	Es	К
		Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y1	Y2	Y3	Y4	Y5	Y6	Y7	(10^{10}N/m^2)	(10^{10}N/m^2)	(10 ¹⁰ N/m)
	一階	0	0	0.055	0.055	0.055	0.055	0.055	0	0	3.80	3.80	3.80	3.80	3.80	2.358	21	0.140952
X1 通り軸	二階	0	0	0.055	0.055	0.055	0.055	0.055	0	0	3.80	3.80	3.80	3.80	3.80	2.358	21	0.140952
	三階	0	0	0.055	0.055	0.055	0.055	0.055	0	0	4.10	4.10	4.10	4.10	4.10	2.358	21	0.112220
	四階	0	0	0.055	0.055	0.055	0.055	0.055	0	0	3.50	3.50	3.50	3.50	3.50	2.358	21	0.180392
	一階	0	0	0.055	0.099	0	0.099	0.055	0	0	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
X2~X4	二階	0	0	0.055	0.099	0	0.099	0.055	0	0	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
通り軸	三階	0	0	0.055	0.099	0	0.099	0.055	0	0	3.39	3.39	0	4.10	4.10	2.358	21	0.224399
	四階	0	0	0.055	0.099	0	0.099	0.055	0	0	4.21	4.21	0	3.50	3.50	2.358	21	0.117159
	一階	0	0.055	0.055	0.099	0	0.099	0.055	0	0	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
X5~X6	二階	0	0.055	0.055	0.099	0	0.099	0.055	0	0	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
通り軸	三階	0	0.055	0.055	0.099	0	0.099	0.055	0	0	3.39	3.39	0	4.10	4.10	2.358	21	0.224399
	四階	0	0.055	0.055	0.099	0	0.099	0.055	0	0	4.21	4.21	0	3.50	3.50	2.358	21	0.117159
	一階	0	0.055	0.055	0.099	0	0.099	0.055	0	3.80	3.80	3.47	0	3.47	3.98	2.358	21	0.187916
X7	二階	0	0.055	0.055	0.099	0	0.099	0.055	0	3.80	3.80	3.97	0	3.97	3.98	2.358	21	0.143000
通り軸	三階	0	0.055	0.055	0.099	0	0.099	0.055	0	4.10	3.39	3.39	0	3.85	3.85	2.358	21	0.188797
	四階	0	0.055	0.055	0.099	0	0.099	0.055	0	3.50	3.50	3.90	0	3.90	3.75	2.358	21	0.160634

表 4.3-4 各 X 通り軸の水平剛性の計算値

	Y 方向の各軸と X 方向各軸交差点の柱のイナーシャモーメント Iy 値(>									Y 方向の各軸と X 方向各軸交差点の柱の高さ(m)						E _C	Es	К
		Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y1	Y2	Y3	Y4	Y5	Y6	Y7	(10^{10}N/m^2)	(10^{10}N/m^2)	(10 ¹⁰ N/m)
	一階	0.055	0.055	0.055	0.099	0	0.099	0.055	3.80	3.80	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
X8 通り軸	二階	0.055	0.055	0.055	0.099	0	0.099	0.055	3.80	3.80	3.80	3.80	0	3.80	3.80	2.358	21	0.159320
	三階	0.055	0.055	0.055	0.099	0	0.099	0.055	4.10	4.10	4.10	4.10	0	3.85	3.85	2.358	21	0.140019
	四階	0.055	0.055	0.055	0.099	0	0.099	0.055	3.50	3.50	3.50	3.50	0	3.75	3.75	2.358	21	0.184839
	一階	0.055	0.055	0.055	0.099	0	0.099	0.055	3.80	3.80	3.80	3.80	3.80	3.80	3.80	2.358	21	0.159320
X9~X11		0.055	0.055	0.055	0.099	0	0.099	0.055	3.80	3.80	3.80	3.80	3.80	3.80	3.80	2.358	21	0.159320
诵り軸	三階	0.055	0.055	0.055	0.099	0	0.099	0.055	4.10	4.10	4.10	4.10	4.10	4.10	4.10	2.358	21	0.140019
ACC / H	四階	0.055	0.055	0.055	0.099	0	0.099	0.055	3.50	3.50	3.50	3.50	3.50	3.50	3.50	2.358	21	0.184839
	一階	0.055	0.055	0.055	0.055	0.055	0.055	0.055	3.80	3.80	3.80	3.80	3.80	3.80	3.80	2.358	21	0.159320
X12	二階	0.055	0.055	0.055	0.055	0.055	0.055	0.055	3.80	3.80	3.80	3.80	3.80	3.80	3.80	2.358	21	0.159320
诵り軸	三階	0.055	0.055	0.055	0.055	0.055	0.055	0.055	4.10	4.10	4.10	4.10	4.10	4.10	4.10	2.358	21	0.140019
. <u>.</u> ,	四階	0.055	0.055	0.055	0.055	0.055	0.055	0.055	3.50	3.50	3.50	3.50	3.50	3.50	3.50	2.358	21	0.184839

表 4.3-4 各 X 通り軸の水平剛性の計算値-続き

任要	計算したフ	水平剛性	計算した拒わ副歴
11/1.追.	EW	NS	可 昇 し /こ1庆4 0 阿川工
単位	10 ¹⁰ N/m	10 ¹⁰ N/m	10 ¹³ Nm/rad
一階	1.893911	1.903703	3.322641
二階	1.893897	1.858786	3.317941
三階	1.949285	2.055788	3.362771
四階	1.916830	1.903753	3.582363

表 4.3-5 計算した該当建物の水平および捩れの剛性

表 4.3-6 解析モデルのせん断及び捩れ剛性

(上 四)		駿河湾		奈良県南部					
业直	K _x	Ky	K _{zz}	K _x	Ky	K _{zz}			
免震装置	0.42	0.42	0.92	0.61	0.80	1.45			
1層	1.79	1.78	3.32	1.79	1.78	3.32			
2 層	1.79	1.74	3.32	1.79	1.74	3.32			
3層	1.84	1.92	3.36	1.84	1.92	3.36			
4 層	1.81	1.78	3.58	1.81	1.78	3.58			
注記:	水平方向剛性の単位:10 ¹⁰ N/m 捩れ剛性の単位:10 ¹³ Nm/rad								

図 4.3-24 伝達関数の比較(奈良県南部の地震)

4.3.3 地震観測記録のシミュレーション解析結果

次に前4.3.1節で作成した解析モデルを用いた地震時観測記録のシミュレーション解析結果について述べる。まず、各地震における建物の水平及び捩れ応答のシミュレーションの流れを図4.3-25、4.3-26に示した。

図 4.3-27 並進、捩れ成分の定義

ここに、 U_i は観測点の変位応答である。 U_s は自由表面点の変位応答である。図4.3-25に示すように、数値解析モデルから得られた地表面に対する各階の伝達関数に自由地表面の地震観測波形のスペクトルを乗じて得られた結果を逆フーリエ変換すると各階の応答が求められる。また、各階の速度応答は各階の変位応答を1回微分して求めた。捩れ応答については、図4.3-26に示しているように、数値解析モデルから計算した各階の端部の変位応答の値から、中心の変位応答の値を差し引いたものを各階(基礎)の半幅で除して、各階(基礎)の捩れ応答が得た。図4.3-27に並進、捩れ成分の定義を示している。

図 4.3-29 解析モデルと地震観測記録での伝達関数の比較(奈良県南部の地震)

速度のフーリエスペクトル

図 4.3-30 フーリエスペクトルによる建物の応答の比較 (駿河湾の地震)

図 4.3-31 フーリエスペクトルによる建物の応答の比較 (奈良県南部の地震)-続き

ここでは、数値解析モデルを用いたシミュレーション結果を示す。まず、各地震について、自 由地表に対する最上階、1 階、基礎の伝達関数(RF/GL、1F/GL、BF/GL)の解析結果と地震観測 記録の比較を図 4.3-28、4.3-29 に示す。各図の捩れ成分については、地表面 NS 成分に対する伝達 関数を示している。図 4.3-28 が駿河湾の地震、図 4.3-29 が奈良県南部の地震についての結果であ る。両地震とも比較的よく対応した結果となっている。詳細に見ると、図 4.3-28(a), (b)、及び図 4.3-29(a), (b)から、1 次固有振動数では、ピークの振動数とその振幅が良く対応していることが分 かる。しかし、先にも述べたように、高次の固有振動数では振幅に差が認められるため、今後検 討する必要がある。

一方、図 4.3-28(c), (d)、及び図 4.3-29(c), (d)を見ると、基礎の並進成分と捩れ成分が、解析結果 と地震観測記録でよく対応している。これらの結果より、地盤-建物連成系の解析モデルは、概ね 妥当といえる。

次に、各地震について、伝達関数と自由地盤での地震観測記録を用いて算出した1階東端にお ける捩れ速度応答、及び1階中央における NS 方向速度(変位)フーリエスペクトルと速度(変 位)波形を比較して図4.3-30~4.3-33に示す。駿河湾の地震時には、対象建物付近の自由表面に加 速度計が設置しなかったため、隣接建物の自由表面(cent_gr01:第2章参照)の加速度計の観測記録 を用いる。奈良県南部の地震には、対象建物の自由表面(gr01:第2章参照)に設置した加速度計の 観測記録を使うこととする。図4.3-30~4.3-33を見ると、解析結果と地震観測記録はよく対応して いる。捩れ成分は、並進成分に比べて非常に小さいが、1 階と基礎で励起されていることが分かる。3.4 節で、基礎-地盤系の剛性に偏りが生じ捩れ現象が励起されることを理論的解析により確認したが、ここでは、その妥当性を実観測記録から検証することができた。

今後、当該建物の質量や剛性の更なる検討とともに、本解析モデルによる、東海・東南海・南 海地震のシミュレーション解析を実施して、免震層端部と擁壁とのクリアランスの余裕度等につ いて検討していく予定である。

速度の時刻歴波形

図 4.3-32 時刻歴波形による建物応答の比較結果(駿河湾の地震)

図 4.3-32 時刻歴波形による建物応答の比較結果(駿河湾の地震)-続き

速度の時刻歴波形

図 4.3-33 時刻歴波形による建物応答の比較結果(奈良県南部の地震)

図 4.3-33 時刻歴波形による建物応答の比較結果(奈良県南部)-続き

4.4 まとめ

本章では、部分的な地盤改良が行われた地盤上に立地する直接基礎の免震建物を対象として、 動的相互作用の影響を考慮した数値解析モデルを作成し、地震観測記録と比較することにより、 その妥当性を検証した。得られた結果を以下に示す。

- 1次固有振動数周辺では、地震観測記録と数値解析結果がよく対応している。ただし、地震観 測記録に認められる 6Hz 付近や 8Hz 付近のピークは、振動数は捉えられているが、振幅値に 大きな差があり、今後の検討の必要がある。
- ・ 地震観測記録の分析結果から、基礎部に捩れ入力動が生じることが確認された。ただし、中小地震であったこともあり、その振幅は小さかった。
- ・ 地震観測記録と数値解析モデルによるシミュレーション解析結果を比較したところ、両者は 良く対応していた。このことから、今回作成した地盤-建物連成系の解析モデルは弾性域に おいて、現象を説明可能なモデルといえる。実際の質量や剛性については、地震観測結果と の比較により更なる検討が必要である。

第5章 地震観測記録に基づく建物-地盤間の相対変位と

地震時土圧の関係

5.1 はじめに

地震動の建物への入力機構や、建物振動に対する地盤の抵抗などの動的相互作用を解明するに あたり、建物基礎に作用する地震時土圧の検討は極めて重要である。特に、実際の構造物に作用 する地震時土圧の特性について、種々の地盤・建物条件のもとで多数の地震観測と分析を蓄積す ることは、一般建物の動的相互作用の基礎資料として有用と考えられる。

また、根入れ部に作用する地震時土圧力と地盤-基礎間の相対変位の関係については、これまで にも研究が実施されているが、実建物の観測に基づく実証的研究は多くなく、現象を明らかにす るためには、実験、解析に加えて、観測データの蓄積も重要と考える。

一方、耐震設計法に関しては、限界耐力計算法の導入により動的相互作用効果を考慮した耐震 設計が可能となった。この計算法では、地盤インピーダンスの評価が必要であり、理論解や解析 的な検討結果に基づく簡便な評価式が示されている。これらの妥当性について、実建物の土圧を 含む地震観測結果から検討することも重要である。

本章では、対象建物で得られた複数の中小地震観測記録を用いて、基礎の地震時側面土圧の特 性や建物-地盤間の相対変位との関係について分析するとともに、側面地盤インピーダンスの評価 を行う。さらに、2次元有限要素法を用いて、地震時側面土圧のシミュレーション解析、及び地 盤インピーダンスの推定を試み、実測記録との対応を考察する。

5.2 土圧計の設置状況及び分析に用いる地震観測記録

図5.2-1に免震層の平面図、地盤改良範囲、土圧計の配置などを示す。本建物は基礎免震を採用 しており、側面は擁壁となっている。底面土圧計は、耐圧盤に作用する土圧を計測することで、 位置および地盤の種類による荷重分担性状の把握を目的とし、北西部と中央の未改良地盤に2点 (r-1、r-2)、南西部と南東部の改良地盤の未改良部分に2点(ir-1、ir-2)、および南東部の改良地盤の 改良体内(ii-1)に1点、計5点設置している。耐圧盤及び免震ピットの擁壁のコンクリート打設後の 2008年3月下旬より観測を開始している。動的観測が可能であり、施工後においては、地震時にお ける基礎-地盤間の力のやりとりの直接的評価や、地震時のロッキングの評価を目的とした観測が 行っている。側面土圧は基礎の東西面の2深度で計測しており、西側の擁壁GL-1.25m(escwUP)、南 西、北東、南東のGL-1.25m前後(esswUP、esneUP、esseUP)、及び耐圧盤の深度に対応するGL-3.25m 前後(esswBT、esneBT、esseBT)で計測している。さらに、耐圧盤から地中に突出した鉛直プレー トに水平方向の土圧計を設置し、基礎底面における地盤と基礎の水平力の伝達を計測している(建 物中央南部、ebcsOU)。

図5.2-2~5.2-3に側面と底面土圧計の設置位置を示している。表5.2-1に用いる土圧計の仕様等を 示した。使用した土圧計はロードセル型土圧計であり、地震時土圧の計測については基礎面が押 される状態を正の土圧としている。

本章では、側面土圧計の観測記録94,97)について分析を進める。

型名	配置	容量 kPa	定格出力 <i>u</i> V/V	ひずみ出力 ×10 ⁻⁶	零バランス ×10 ⁻⁶
EBW07031	側面土圧計 sb-4	500	983	1966	+120
EBW07032	側面土圧計 su-2	500	988	1976	+20
EBW07033	側面土圧計 sb-3	500	973	1945	-270
EBW07034	側面土圧計 s-1	500	976	1951	+10
EBW07035	側面土圧計 su-4	500	965	1930	-20
EBW07036	側面土圧計 su-3	500	970	1940	-70
EBW07037	側面土圧計 sb-2	500	971	1942	-30
EBW07046	側面土圧計 b-1	500	982	1964	+180
EBW07047	側面土圧計 r-2	500	982	1963	+20
EBW07048	側面土圧計 r-1	500	978	1956	+120
EBW07049	側面土圧計 ii-1	500	976	1951	+10
EBW07050	側面土圧計 ir-2	500	974	1947	+300
EBW07051	側面土圧計 ir-1	500	981	1961	+40

表 5.2-1 各土圧計の仕様等

土圧計	設置番号	設置点	センサー名称
	s-1	中央西	escwU
	su-2	南西部	esswUP
側面	sb-2	南西部	esswBT
土圧	su-3	北東部	esneUP
	sb-3	北東部	esneBT
	su-4	南東部	esseUP
	sb-4	南東部	esseBT
	b-1	中央南	ebcsOU
底面	r-1	北西部	ebnwOU
土圧計	ir-1	南西部	ebswOU
	r-2	中央部	ebccOU
	ii-1	南東部	ebseIN
	ir-2	南東部	ebseOU

- :鉛プラグ入り 積層ゴム
- :天然ゴム系積 層ゴム
- :直動転がり支承

---:減衰装置

注記:

r-1,r-2: 未改良部分

ir-1,ir-2: 改良地盤の未改良部分

ii-1: 改良地盤の改良部分

図 5.2-1 免震層の平面図、及び地盤改良の施工範囲と土圧計の配置

図 5.2-2 側面土圧計の精確な配置図(軸は図 5.2-1 を参照)

図 5.2-3 底面土圧の精確な配置図

図5.2-4に加速度計の配置を示す。加速度計は、建物中央部の屋上階、1階、基礎に各3成分、屋 上階、1階、基礎の東端にNS成分、基礎の北端および東端にUD成分、西側の基礎擁壁上端にEW (面外)成分を設置した。また、自由地表観測点 (gr01)を建物の西側約15mの位置に設置した。 なお、当該建物の西側には、10mほど離れて鉄骨造平屋建ての駐車場が隣接しており、地表観測 点はそのわきにある。一方、東側には約11m離れて、別のSRC造地下3階地上7階建ての免震建物 が隣接している。同建物でも多点で地震観測が実施されており、このうち図5.2-4に示した基礎底 面中央(bmcc_cent点)における観測記録を以後の検討で用いることとする。

表5.2-2に本章で用いる各地震の諸元、表5.2-3に各地震の基礎底面中央、及び自由地表で得られた加速度波形の最大値をまとめて示す。また、図5.2-5に各地震の自由地表における観測記録の加速度(EW方向)のフーリエスペクトル(Parzen Window幅:0.1Hz)を示す。文献⁵⁸⁾では、地震動波形

(a) 対象建物 (b) 隣接建物

加速度計		設置点	センサー名称
		地表面	gr01
		基礎底面中央	bmcc
3 成分-ew,ns,ud		1 階中央	01cc
		R 階中央	05cc
		隣接建物の基礎底面中央	bmcc cent
2 成分- ns,ud		免震層下部東側	bmce
		1 階東側	01ce
	ns	R 階東側	05ce
1 成分		免震層下部北側	bmnc
	ud	1 階北側	01nc
		4 階中央	04cc
	ew	擁壁上部	smw0

図 5.2-4 加速度計の配置図

表 5.2-2 分析に用いる地震の諸元

各地震のパラメーター			震源		深さ
地震名	日時	Mj	北緯	東経	(km)
奈良県南部の地震(EQ1)	2010/07/21 6:19	5.1	34.2	135.7	58
宮城県沖の地震(EQ2)	2011/04/7 23:34	7.4	38.2	140.2	40

表 5.2-3 基礎及び自由表面の最大加速度応答値(gal)

地雷友	基礎中心(bmcc)			自由表面(gr01)			
地展名	EW	NS	UD	EW	NS	UD	
EQ1	6.06	4.15	3.13	6.13	5.61	4.67	
EQ2	3.40	1.85	1.25	3.47	2.01	1.31	

に含まれる振動数成分と基礎に生じている地震時側面土圧の関係を明らかにするために、自由地 表での加速度波形に含まれる振動数成分に応じて地震記録を3つのグループ(グループA:1Hz以 下の比較的低振動数成分を多く含む地震動、グループC:3~4Hz以上の高振動数成分を多く含む 地震動、グループB:グループAとCの中間の性質を持つ地震動)に分類している。これに準じる と、今回の分析に用いる2つの地震の記録は、2010年7月21日奈良県南部の地震(以降、EQ1:奈良県南 部地震とする)は 1~5Hz間の高振動数成分を含むグループC、2011年4月7日の宮城県沖の地震(以降、 EQ2:宮城県沖地震とする)は、1Hz以下の低振動数成分を多く含む地震動としてグループAに属すると 考えられる。

5.3 地震観測記録に基づく地震時側面土圧の分析

図5.3-1に各地震における建物東側の側面土圧計(北東部上、北東部下、南東部上、南東部下)、 建物西側の側面土圧計(南西部上、南西部下、中央西上)及び耐圧盤の側面土圧計(中央南部)で 記録された地震時土圧波形を示す。

これらを見ると、数十秒の区間で大きく変動する成分が複数の観測記録で認められる。また、 その変動の様子は、同じ観測でも地震により異なっている。この原因の一つとして、震動による 周辺地盤の締固めや緩みの影響が、特定するまでには至っていない。また、地震によっては地震 時側面土圧が非常に小さい観測点が数点あり、土圧計と周辺地盤との接触状態が悪い可能性もあ るが、この傾向も地震により異なるため解釈が難しい。

ここでは、地震時側面土圧の記録を分析するにあたり、バンドパスフィルタ(バンド幅はEQ1: 0.5~10Hz、EQ2:0.2~10Hz)を用いて、記録された地震時側面土圧波形から長周期の変動成分を除 去した。図5.3-2に、各地震、各観測点における長周期を除いた地震時側面土圧波形とそのフーリ エスペクトルを示す。なお、図5.3-2で示した記録のうち、S/N比が不十分であると推定される観測 記録を除いて、EQ1では、南西部上、南西部下、北東部下の3地点、EQ2 では、南西部下、北東部 下の2地点の観測記録を用いて分析を進める。ただし、EQ2の北東部上の観測記録については、正 側に大きく振れた波形となっており、振幅値が北東部下の波形に比べて非常に大きく、正常に作 動していなかった可能性もあることから、検討には用いないこととした。

図 5.3-2 から、観測された地震時側面土圧の主要な成分は、EQ1 では 5Hz より低振動数側、EQ2 では 3Hz より低振動数側であることが分かる。

以降の検討では、これらの振動数領域に限定した特性について扱うこととする。図5.3-2(a)には、 南西部上に対する南西部下の地震時側面土圧のスペクトル比と位相差を示す。これより、同じ位 置で深さが異なる2点(深さ方向で約2.0mの間隔)の地震時側面土圧はほぼ同一の特性であること が分かる。

したがって、基礎側壁1面(片面)に作用する地震時側面土圧力を評価する際、EQ1の西側の地 震時側面土圧力については、西側の上下の地震時側面土圧波形の平均値に基礎側面の面積を乗じ て算定することとした。一方、先に述べた理由により、EQ1における東側では北東部下、EQ2にお ける東側、及び西側では、それぞれ北東部下、及び南西部下で得られた土圧波形を用いることと した。

図5.3-3に、各地震について、西側と東側それぞれの基礎側面全体に作用する地震時側面土圧力の推定波形とフーリエスペクトルを示す。表5.2-3に示したように、建物基礎の最大応答加速度EQ1の方が大きく、最大変位はEQ2の方が大きいことが分かる。これより、今回の観測記録に関しては、地震時側面土圧力は、加速度よりも変位との関係性が高いと考えられる。これらの結果に基づき、以降の検討では、建物基礎-周辺地盤間の相対変位と地震時側面土圧力の関係に着目した分析を行う。

(a) EQ1(奈良県南部の地震)

図 5.3-1 各地震において観測された地震時側面土圧波形

図 5.3-1 各地震において観測された地震時側面土圧波形-続き

EQ1(奈良県南部の地震) (a)

下の地震時側面土圧のスペクトル比と位相差

(a) EQ1(奈良県南部の地震)

(b) EQ2(宮城県沖の地震)

図 5.3-3 基礎に作用する地震時側面土圧力の推定波形とそのフ ーリエスペクトル

5.4 地震時側面土圧力の位相特性の分析

図 5.4-1 に、建物基礎の相対する側面で観測された地震時側面土圧力を時刻毎に乗じたモーショ ンプロダクト(東側の観測記録×西側の観測記録)の時刻歴波形を、EQ1、EQ2 について示す。主要 な時間帯を切り出した拡大図も示した。またバンドパスフィルター処理(0.3Hz~1.3Hz、1.3Hz~ 2.3Hz)を施したモーションプロダクト(M.P.)の時刻歴波形を図 5.4-2 に示す。モーションプロダク トでは、両側の土圧が同位相で発生していれば正に、逆位相で発生していれば負になる。

図5.4-2を見ると、比較的低振動数成分のみを含むEQ2では、建物基礎の相対する地震時側面土 圧力の位相特性はほぼ全時間帯で同位相となっている。一方、EQ2より高振動数成分も含むEQ1 では、EQ2と同様に同位相で発生している時間帯が長いが、負側に大きく振れる時もあり、逆位 相の土圧が生じていることがわかる。また、図5.4-2から、EQ2でも高振動数成分に関しては逆位 相の土圧が生じていることが分かる。以上より、建物基礎の相対する側面に作用する地震時側面 土圧は、低振動数成分では同位相で生じ、高振動数成分では逆位相となる傾向があることが分か った。同様の傾向は既往の文献^{58,61,66,67)}でも指摘されている。このことは、低振動数領域では、建 物基礎と周辺地盤の相対変位が建物基礎両側で同位相となっていることを意味している。低振動 数で土圧が同位相となる要因としては、隣接建物の影響や表面波による位相差入力の影響が推定 されるが、これらについては今後の検討課題としたい。

5.5 地震時側面土圧力と基礎—周辺地盤間の相対変位との関係

本節では、観測記録に基づいて、基礎と周辺地盤間の相対変位と基礎側面が受ける地震時側面 土圧力との関係を分析する。分析には基礎底面中央(bmcc 点)における加速度記録を用いた。な お、図 5.5-1 に、EQ2 における、基礎底面中央(bmcc 点)、擁壁上部(smw0 点)での変位の関係 (EW 方向)を示す。これより、基礎底面中央と擁壁上部では、対象とする振動数領域では、ほ ぼ同様の地震時挙動を示していたと推定される。観測成分は EW 方向のみであり、相対変位は以 下の式によって評価する。

$$\Delta u_1 = U_{BO} - U_g$$
(5.5-1)
$$\Delta u_2 = U_{BO} - U_{BC}$$
(5.5-2)

ここに、 Δu_1 は自由地表と当該建物基礎の相対変位、 Δu_2 は隣接免震建物基礎と当該建物基礎の 相対変位、 U_g は自由地表の変位応答、 U_{BO} は当該建物の基礎底面中央(bmcc点)の変位応答、 U_{BC} は 隣接免震建物の基礎底面中央(bmcc_cent点)の変位応答を表す。なお、相対変位は、観測された加 速度記録を2回積分して変位時刻歴波形を求め、その差から算定した。東向きの変位応答を正と定 義したため、5.5-1式による Δu_1 は西側面で地盤ー建物間が開く場合が正、東側面では逆に地盤ー建 物間が減少する場合が正、5.5-2式による Δu_2 は東側面で当該建物ー隣接建物間が減少する場合が正 となる。

土圧と相対変位の精度の妥当性を示すために、相対変位と土圧力の関係を図5.5-2に示す。図より、EQ1の東側、EQ2の西側でループがやや乱れているが、相対変位と土圧力には、ある程度の対応関係が認められる。

図5.5-3に、各地震における相対変位Δu1及びそのフーリエスペクトルを示す。この図から、相対 変位については、EQ1では5Hz程度より低振動数側、EQ2では2Hz程度より低振動数側の成分が多 いことが分かる。

図5.5-4に、基礎側面に作用する地震時側面土圧力と相対変位*Au*1のコヒーレンスと位相差(Parzen Window幅:0.1Hz)を示す。いずれの地震についても、対象とする振動数帯域においてコヒーレン スが高く、地震時側面土圧力が相対変位と関連があることが分かる。ただし、東側壁と西側壁で コヒーレンスを比べると、いずれの地震でも西側壁のコヒーレンスの方が高い。さらに、図5.5-4 の西側壁における位相差に着目すると、低振動数領域において地震時側面土圧力と相対変位に、 大よそ180度の位相差が認められる。一方、東側については、5.5-1式に示した相対変位の定義から 考えれば、土圧と相対変位は同位相となるはずであるが、西側壁と同様に大よそ180度の位相差が 生じている。当該建物の西側には大きな建物はないが、東側には埋込みを有する免震建物が隣接 しているため、地震時側面土圧にこの建物の影響が含まれている可能性が考えられる。

そこで、5.5-2式に示した当該建物基礎と隣接免震建物基礎の相対変位Δu₂に着目した検討を行う。 なお、本来であれば、対象建物と隣接建物間の地盤応答を用いるべきであるが、対象建物と隣接 建物間の地盤に地震計を設置していない。そこで、隣接建物が建物間距離で約11m、擁壁間では さらに狭く、近接していることから、次善の対応として、隣接建物の基礎底面中央部における観 測記録を用いることとした。

図5.5-5に、各地震における相対変位Au2の時刻歴波形とフーリエスペクトルを、図5.5-6に、当該

建物と隣接建物の相対変位 Δu_2 と当該建物の基礎東側壁面に作用する地震時側面土圧力とのコヒ ーレンスと位相差(Parzen Window幅:0.1Hz)を示す。図5.5-6から、相対変位 Δu_2 の方が、 Δu_1 より東 側壁に作用する地震時側面土圧力とのコヒーレンスが高く、位相差もほぼ0度となっていることが 分かる。

以上をまとめれば、基礎の地震時側面土圧力は基礎の相対変位応答と強い関係があること、ま た隣接建物がある場合は、その影響が地震時側面土圧力に現れることが明らかになった。

図 5.5-1 EQ2 における基礎底面中央(bmcc 点)と擁壁上部(smw0 点) の EW 方向の変位の関係

(b) EQ2:宮城県沖地震

図 5.5-4 各地震における地震時側面土圧力と基礎-周辺地盤間の相 対変位Δu1とのコヒーレンスと位相差

(b) EQ2:宮城県沖地震

図 5.5-6 当該建物と隣接建物の相対変位 Au₂と当該建物の基礎東側 壁面に作用する地震時側面土圧力とのコヒーレンスと位相差

5.6 側壁面の地盤インピーダンスに関する解析的検討

本節では、2次元有限要素法を用いて基礎側面に作用する地震時側面土圧力のシミュレーション を行い、5.3節で示した実測記録との比較を行う。また基礎側面の地盤インピーダンスの推定を試 みる。図5.6-1に解析モデルを示す。解析モデルでは、基礎と同じ形状の無質量剛体を地盤に埋込 んでいる。また、図5.6-1中に示すように、埋戻し土を考慮するために、施工図を参考して、基礎 周辺地盤掘削状況を解析モデルに取り入れた。地盤の側面と底面は、粘弾性境界とした。地盤パ ラメータの設定に当たっては、著者らが以前に実施したPS検層と浅層レーリー波探査結果を参照 した。なお、第三章で示したように、当建物では基礎底面より7mの地盤改良が行われているが、 この地盤改良部分の結果に対する影響は小さいことを確認している。

表5.6-1に、解析モデルの諸元を、表5.6-2に基礎周辺地盤の物性値をそれぞれ示した。埋戻し土部分のせん断波速度については、竣工後に計測を実施しておらず、実際の数値が不明であるため、 既往の文献⁸⁰⁾における検討事例を参考にして、周辺地盤のせん断波速度の約1/3に設定した。

解析では、無質量剛体基礎に対して、観測された基礎と自由地盤との相対変位を入力して、地 震時側面土圧力を算定する。次に、解析により得られた側面土圧力と先に述べた相対変位から側 面地盤のインピーダンスを推定した。なお、本検討で扱っている地震動は、加速度が小さいため、 地盤はほぼ弾性に近い挙動をしていると考えられる。したがって、基礎変位と地盤変位を同時に 入力した場合と自由地盤と基礎の相対変位を入力した場合はほぼ等価であると考えた。相対変位 は、西側壁については(5.5-1)式に示した-Δu₁、東側壁については(5.5-2)式のΔu₂を用いる。

両地震について、図5.6-2に地震時側面土圧力の計算結果と観測記録の比較結果を、図5.6-3にそのフーリエスペクトルの比較を示す。図中赤線は解析結果、黒線は観測記録からの算定結果を表している。図5.6-2には、一部を拡大した図を合わせて示している。これらの図から、解析結果と 観測記録は非常に対応が良いことが分かる。ただし、EQ2(宮城県沖地震)の場合、西側壁のシ

図 5.6-1 シミュレーションモデル

表 5.6-1 解析モデルの形状

各幾何パラメーター					
A	5m	Н	4m	С	1m
D	104m	Е	1000m	F	75m

深度	P波速度	S 波速度	密度	ボアソン比
GL-(m)	m/s	m/s	g/cm ³	
埋戻し土	160	70	1.70	0.380
0.00~1.50	410	160	1.80	0.410
1.50~1.95	410	160	1.70	0.410
1.95~5.30	530	250	2.00	0.357
5.30~10.00	740	210	1.80	0.456
10.00~13.95	1120	310	2.00	0.459
13.95~16.95	1650	270	1.90	0.486
16.95~20.30	1650	220	1.90	0.491
20.30~25.25	1650	270	2.00	0.486
25.25~32.70	1650	300	2.10	0.483
32.70~38.70	1580	280	1.80	0.484
38.70~44.55	1580	280	1.70	0.484
44.55~49.35	1900	420	2.10	0.474
49.35~58.50	2320	710	2.10	0.448
58.50~62.00	2050	500	2.10	0.468
62.00~67.00	2050	540	2.10	0.463
67.00~68.75	1640	330	1.70	0.479
68.75~71.50	1640	330	1.90	0.479
71.50~75.00	1640	300	1.80	0.483

表 5.6-2 地盤物性一覧

ミュレーション結果は観測記録に比べて過大評価となっているので、この点については、さらな る検討が必要である。また、東側壁の解析については、先述したように両建物基礎間の相対変位 を用いた結果で、本条件下においては隣接建物の側面土圧に対する影響が大きかった可能性があ る。本来であれば、西側と同様に自由表面に対する基礎の相対変位を用いるべきであると考える。

次に、シミュレーション結果を用いて算定した基礎側面の地盤インピーダンスを、基礎の地盤 の地震時側面土圧力と基礎の相対変位の伝達関数から計算した結果と比較して図5.6-4に示す。図 中、赤線は解析結果、黒線は観測記録からの算定結果を表している。観測記録による結果を地震 で比較すると、両地震で同程度の結果が得られている。解析結果との比較については、詳細にみ れば、EQ1(奈良県南部地震)では、虚部の高振動数側で解析結果がやや過大評価、EQ2(宮城県 沖地震)では、西側壁における実部がやや過大評価となっているものの、全体的にほぼ同程度と なっている。なお、EQ2の西側のインピーダンスについては、1.5Hz付近以上の高振動数側で観測 と解析での対応が良くない。この理由の一つとして、図5.6-4(b)に示したように、土圧と相対変位 のコヒーレンスが低くなっていることが考えられるが、今後の観測記録の蓄積後に再度検討した い。

図 5.6-2 地震時側面土圧力波形の解析結果と観測記録の比較-続き

図 5.6-2 地震時側面土圧力波形の解析結果と観測記録の比較-続き

図 5.6-2 地震時側面土圧力波形の解析結果と観測記録の比較-続き

(b) EQ2:宮城県沖地震

図 5.6-3 地震時側面土圧力の計算結果と観測記録の比較(フーリエスペクトル)

図 5.6-4 基礎側面の地盤ーダンスの解析結果と観測記録との比較

図 5.6-4 基礎側面の地盤-ダンスの解析結果と観測記録との比較 (EQ2 の 3~5Hz は検討対象外) - 続き

5.7 まとめ

本章では、検討対象の免震建物でこれまでに得られた複数の中小地震の観測記録を用いて、免 震ピット部分の直接基礎側面に生じる地震時側面土圧力の特性や、建物基礎と周辺地盤や隣接建 物との相対変位との関係などについて検討した。さらに、2次元有限要素法を用いて地震時側面 土圧力のシミュレーションを行い、観測された特性と比較するとともに、地盤インピーダンスの 推定を試みた。本検討で得られた知見を以下に示す。

- 建物基礎の相対する側面に作用する地震時側面土圧は、低振動数成分では同位相で生じ、高振動数成分では逆位相となる傾向があることが確認された。
- 基礎に生じる地震時側面土圧力と建物基礎-周辺地盤の相対変位と間には高い相関が認められた。また、隣接建物がある場合には、基礎側面に作用する地震時側面土圧に影響を受ける場合があることを確認した。
- ・ 中小地震で得られた複数の観測記録を用いて、基礎側面の地盤インピーダンスを算定した結果、いずれの地震でも同程度の結果が得られた。
- ・ 地震時側面土圧力のシミュレーション解析において、埋戻し土のせん断波速度は実際の数値が不明であるため、既往の文献⁸⁰⁾における検討事例を参考にして、せん断波速度を低減した場合に、観測記録とほぼ対応した結果が得られた。

以上の結果は、既往の研究結果とも整合するものである。

第6章 結論

6.1 本研究の要約と結論

本論では、改良地盤に立地する直接基礎の免震建物を研究対象として、地盤改良効果の評価と 改良地盤の相互作用特性を検討すると共に、地震観測記録と数値解析から免震建物の動特性の把 握と、地震時土圧について検討した。以下に、各章で得られた知見をまとめて述べる。

第1章では、研究の背景として、免震建物の歴史や現状の課題について述べるとともに、免震 建物の地震時応答評価の重要性を指摘した。また、本研究に関連する、地盤改良、免震建物の振 動特性、及び地震時土圧についての既往の研究をレビューするとともに、本研究の位置づけを明 らかにした。最後に、本論文の構成と各章の概要を示した。

第2章では、本論で研究対象とした、名古屋大学付属病院外来診療棟(4階建免震建物)及び その周辺の地盤や地質について、地盤調査結果等を参考に解説した。また、対象建物の構造計画、 今回構築した強震観測システムとその特徴及びとこれまでに観測された地震記録の概要を述べた。

第3章では、対象敷地において、地盤改良後に実施したボーリング調査、PS 検層、浅層レーリ ー波探査等の地盤調査結果について述べた。次に、主にせん断波速度構造の観点から、改良地盤 の評価法やその効果について検討した。最後に、動的相互作用効果の観点から、地盤改良が地盤 インピーダンスや基礎入力動に与える影響を検討した。本章で得られた知見をまとめて以下に示 す。

- ① 改良前の地盤のせん断波速度 *Vs* 値は PS 検層結果より 220m/s 程度であったが、改良後においては改良地盤全体の *Vs* 値が 600m/s 程度と3 倍近く改善されていることを確認した。
- ② PS 検層結果より、改良体の Vs 値は 820m/s 程度であると推定された。これは改良体の一軸圧縮 試験結果から得られる圧縮強度 qu及び E₅₀から概算される改良体の Vs 値の中間の値であるこ とから、ある程度妥当な値と考えられる。
- ③ 地盤改良の有無、及び部分的な地盤改良が相互作用特性に及ばす影響を検討した。その結果、限られた範囲ではあるが、インピーダンスの実部は、準静的な値では地盤改良の影響が小さいことが分かった。また、水平成分の高振動数側では、地盤改良によって減衰が増大する。一方、上下成分と回転成分は地盤改良による影響が少ないことが分かった。また、基礎入力動は、地盤改良により入力損失効果が増大すること、基礎一地盤系の剛性に偏りがある部分的な改良地盤では、捩れ振動が励起されることが明らかとなった。
- ④ 地盤改良の長さが相互作用に及ぼす影響について検討した。改良体長さが長くなると、水平成 分と捩れ成分ではインピーダンスの実部の準静的な値がやや増加すること、高振動数でインピ

ーダンスが大きくなることが分かった。これに対し、上下方向や回転成分では地盤改良による インピーダンスの差は小さい。基礎入力動に関しては、改良体長さが長くなると加振方向の基 礎入力動が小さくなる傾向が認められた。その他の方向では、改良体長さが長い方が低振動数 側で基礎の捩れ入力動が励起され易いことが明らかとなった。

第4章では、強震観測システムで得られている建物と地表面の加速度記録を用いて、当該建物の地震時挙動について分析した。ここでは、観測記録のうち、特に2009年8月11日駿河湾の地震と2010年7月21日奈良県南部の地震について検討した。さらに、南海トラフの巨大地震など、将来の大地震時の応答予測に向けて、設計資料等に基づく上部建物の数値解析モデルを作成し、シミュレーション解析を実施して中小地震観測結果と比較した。本章で得られた知見をまとめて以下に示す。

- ① 検討対象とした2つの地震において、1次固有振動数周辺では、地震観測記録と数値解析結果 がよく対応した。
- ② 地震観測記録の分析結果から、基礎部に捩れ入力動が生じることが確認された。ただし、中小地震であったこともあり、その振幅は小さかった。
- ③ 地震観測記録と数値解析モデルによるシミュレーション解析結果を比較したところ、両者は 良く対応していた。このことから、今回作成した地盤-建物連成系の解析モデルは弾性域に おいて、現象を説明可能なモデルといえる。

第5章では、当該建物で得られた複数の中小地震における土圧計の記録を用いて、地震時側面 土圧の周波数特性について分析した。また、地震時土圧力と建物一地盤間の相対変位との関係に ついて分析するとともに、側面地盤インピーダンスの評価を行った。さらに、2次元有限要素法 を用いて、地震時側面土圧のシミュレーション解析、および地盤インピーダンスの推定を試み、 実測記録との対応関係について考察した。本章で得られた知見をまとめて以下に示す。

- 建物基礎の相対する側面に作用する地震時側面土圧は、低振動数成分では同位相で生じ、高振動数成分では逆位相となる傾向があることが確認された。
- ② 基礎に生じる地震時側面土圧力と建物基礎-周辺地盤の相対変位との間に高い相関が認められた。また、隣接建物がある場合には、壁面に作用する地震時側面土圧が影響を受ける場合があることが確認された。
- ③ 中小地震で得られた複数の観測記録を用いて、基礎側面の地盤インピーダンスを算定した結果、いずれの地震でも同程度の結果が得られた。
- ④ 地震時側面土圧力のシミュレーション解析において、埋戻し土のせん断波速度は実際の数値が不明であるため、既往の文献における検討事例を参考にして、周辺地盤のせん断波速度を低減した場合に、観測記録とほぼ対応した結果が得られた。

第6章では、本研究で得られた成果をまとめ、今後の課題や展望について記述した。

本研究を通じて、以下の知見が得られた。 地盤改良に関する検討:

まず、対象建物の地盤改良が実施された後、地盤改良を考慮する地盤インピーダンスや基礎入 力動を検討し、地盤改良を有する場合の地盤インピーダンスや基礎入力動の評価方法に対して重 要な参考資料を提供した。また、地盤改良範囲と改良体のパラメーターの変化による、地盤イン ピーダンスや基礎入力動の変化に関する検討を行い、改良体が地盤インピーダンスや基礎入力動 に与える影響が明確になった。

地震観測記録に基づく建物の振動特性に関する検討:

本建物に構築された強震観測システムの観測記録から、建物の捩れ応答が確認された。また、 対象建物をモデル化して中小地震における建物の捩れ応答のシミュレーションを行い、数値解析 モデルの妥当性を合わせて検証した。将来、モデルを非線形へと拡張して、大地震時の建物捩れ 応答が擁壁とのクリアランスの余裕度に与える影響を検討することが可能となる。

地震観測記録に基づく地震時土圧に関する検討:

本建物の基礎に設置した土圧計により、擁壁に作用する地震時側面土圧を観測し、それらの観 測記録に基づいて、擁壁に作用する土圧力と基礎-周辺地盤間の相対変位の関係を分析した。そ の結果から擁壁に作用する土圧力の発生メカニズムが明らかになった。また、隣接建物が側面に 作用する土圧力に与える影響を、初めて分析した。これらの結果は、地震時に基礎に作用する側 面土圧力の特性の研究に新しい観点を提供したと言える。さらに、観測記録に基づいて、基礎地 盤側面インピーダンスを推定した。また、推定した結果と数値解析モデルによるシミュレーショ ン結果を比較するとともに、基礎側面の緩み領域が基礎側面地盤インピーダンスに与える影響を 検討した。

なお、本分析結果は、中小地震レベルの応答に対するものであるが、実挙動を観測により把握 し、線形レベルでの特性を分析しておくことは、将来の大地震時における応答予測を実施してい く上では、重要な資料になると考えている。例えば、本検討結果において、免震建物の捩れ方向 の応答が認められている。免震建物の場合、捩れ入力動が過大になると基礎部が捩れ振動するこ とにより、免震層端部で擁壁とのクリアランスの余裕度が減少する可能性があり、注意を必要す ることになる。

133

6.2 今後の課題と展望

本研究における今後の検討課題や展望をまとめて示す。

地盤改良の評価や動的相互作用効果に与える影響について

- 地盤改良前後の地盤調査により、地盤改良効果が認められているが、地盤改良部分と地盤 未改良部分の水平方向及び鉛直方向での力の分担率について、更なる詳細な分析が必要で ある。
- ② 大地震時における、改良体及び地盤の非線形領域の動的特性に関する検討が必要である。

免震建物の振動性状や数値モデルの構築について

- ① 上部構造の水平剛性を地震観測記録から補正して、構築した上部構造のシミュレーション モデルから計算した当該建物の振動特性は、1次固有振動数周辺では地震観測記録とよく対応していた。今後、実際の質量や剛性について、更なる検討が必要である。また、地震観測記録に認められる6Hz付近や8Hz付近のピークは、振動数は捉えられたものの、振幅値に大きな差が認められた。新たな観測記録を用いる等、更なる詳細な分析が必要である。
- ② 本論で作成した数値解析モデルを、免震層と上部建物の履歴特性を考慮可能な非線形解析 モデルへと拡張して、強震時の免震層端部における擁壁とのクリアランスの余裕度等の検 討と上部構造の応答の予測が必要である。

免震建物の基礎部分に作用する地震時土圧について

- 各地震における地震時土圧波形の観測記録中に、数十秒の区間で大きく変動する成分が複数の観測記録で認められるが、この変動の原因についての検討がが必要である。
- ② 建物基礎の相対する側面に作用する地震時側面土圧は、低振動数成分では同位相で生じる。 その原因としては、隣接建物の影響や表面波による位相差入力の影響が推定されるが、本 論では十分に明らかにできなかった。これらについては、隣接建物の影響も含めて今後検 討の余地がある。
- ③ 側面のインピーダンスについては、高振動数側で観測と解析での対応が良くないため、今後の観測記録の蓄積後に再度検討が必要である。
- ④ 現時点では、観測された底面土圧記録についての分析は行っていない。今後、改良地盤と
 未改良地盤との荷重分担性状を明確にするため、底面土圧に関する検討を実施する予定である。

今後、非線形特性を考慮可能な数値解析モデルの拡張を行い、南海トラフの巨大地震等に対す る地盤・上部構造物の応答予測と耐震安全性、機能維持の評価を行うことが喫緊の課題である。

参考文献

- 兵庫県南部地震から15年<建物への入力地震動はどこまで解明されたか>、2010年度日本建築 学会大会(北陸)、構造部門(振動)、パネルディスカッション資料
- 2) 地震調査推進研究本部のホームページ:http://www.jishin.go.jp/main/、 2012 年 4 月 29 日閲覧
- 3) 中央防災会議のホームページ: http://www.bousai.go.jp/jishin/chubou/、2012年4月29日閲覧
- 4) 田中佑治、福和伸夫、飛田潤、護雅史:国内免震建物のデータベース構築と現状分析、日本 建築学会技術報告集、Vol.17、No.35、pp.79-84、2011.02
- 5) 岩手県の有感地震検索、気象庁地震データベース: http://www.seisvol.kishou.go.jp/cgitmp/shindo_db/1428.html/、2012年4月29日閲覧
- 6)「平成23年(2011年)東北地方太平洋沖地震」について(第15報)、気象庁、2011年3月
 17日閲覧
- 7) 平成 23 年(2011 年)東北地方太平洋沖地震被害調查報告、独立行政法人建築研究所、2012.03
- 8) 田中佑治、高橋武宏、福和伸夫、飛田潤、護雅史:2011 年東北地方太平洋沖地震において足 柄平野に建つ免震住宅で観測された応答変位と H/V スペクトルの関係、日本建築学会東海支 部研究報告集、2012.02
- 9) 加藤史郎:免震ドームの動的挙動と設計法に関する基礎的研究、豊橋技術科学大学構造工学 講座、2002.10
- 10) 日本建築構造技術者協会:応答制御構造設計法、彰国社、2000.12
- 11) 秋山宏:建築物の耐震極限設計、東京大学出版社、1987
- 12) 多田英之監修、高山峯夫他著:4秒免震への道-免震構造設計マニュアル、1997
- 13) 建設省建築研究所、(財)日本建築センター:設計用入力地震動作成手法技術指針(案)、1991
- 14) 岩城梨佳、福和伸夫、護雅史、彦坂智基:基礎形状の不整形性や基礎形式の混用がねじれ基礎入力動に与える影響、日本建築学会構造系論文集、No.649、pp.531-538、2010.03
- 15)田村昌仁、井上芳生、小堀隆治、渡辺一弘、藤井衛、日比野信一、小川能克、牧原依夫、阿 部秋男:深層混合処理工法による改良体の品質評価法、日本建築学会構造系論文集、No.550、 pp. 79-86、2001.12
- 16) 林宏一、鈴木晴彦、斉藤秀樹:人工震源を用いた表面波探査の開発とその土木地質調査への適用応用、地質技術年報、Vol.21、pp.9-39、2001
- 17) 寺田賢二郎、菊池昇:均質化入門、丸善出版、2003
- 18) 寺田賢二郎、松井和己、真野篤志:均質化理論に基づく非線形力学挙動のミクロ-マクロ 連成モデリング、日本機械学会論文集、Vol.66、No.643、pp.98-105、2000.03
- 19) 石川明、浅香美治、社本康広:均質化法を用いた部分改良地盤の等価S波速度の簡易評価 法、日本建築学会構造系論文集、No.613、pp.67-72、2007.03
- 20) 長嶋史明、前野敏元、松島信一、川瀬博:微動観測による建設中の免震建物の振動特性評価、 日本建築学会大会学術講演梗集、B-2、pp.21507-21508、2010.09
- 21) 斎藤知生:構造モニタリングによる免震建物の継続的特性評価、日本機械学会、No.10、
 pp.256-300、2010.09
- 22) 日比野浩、久保哲夫、高木政美、勝田庄二:弾性すべり支承と積層ゴム支承を併用した複合

免震建物の地震応答性状、日本建築学会構造系論文集、No.593、pp.43-50、2005.07

- 23) 富島誠司、勝田庄二、久野雅祥:弾性すべり支承と積層ゴム支承を併用する免震構法の開発、 構法概要と基本性能の検証、日本建築学会技術報告集、No.2、pp.69-73、1996.03
- 24) 三山剛史、増田圭司:積層ゴムを用いたアスペクト比の高い免震建物の振動台実験-積層ゴム に生じる引張力とその後の着座による振動性状、日本建築学会構造系論文集、No.573、 pp.61-68、2003.11
- 25) 高橋武宏、穴原一範、深堀美英:水平変位制御によって免震建物に発生する衝撃力に関する 実大実験と応答解析、日本建築学会構造系論文集、No.573、pp.223-230、2003.11
- 26) 宮崎光生、水江正:震源近傍の強震動に対して免震構造は対応可能か、第28回地盤振動シンポジウム、pp.119-136、2000.11
- 27) 長戸健一郎、川瀬博、多賀直恒:過大地震入力に対する免震構造物の応答性状、第4回都市 直下地震災害総合シンポジウム、pp.253-256、1999.10
- 28) 梶井丈史、迫谷政則、久田嘉章:震源近傍における衝突を考慮した免震構造物の弾塑性応答 解析、日本建築学会大会学術講演梗概集、B-2、pp.527-528、2000.07
- 29) 岡田敬一、斉藤知生:構造モニタリングシステムを導入した免震建物の長期観測による振動 特性の評価、日本建築学会大会学術講演梗概集、pp.75-76、2007.08
- 30) 加藤貴司、境茂樹、伊藤嘉朗:2003 年十勝沖地震による釧路市に建つ免震病院の応答、日本 建築学会大会学術講演梗概集、pp.283-284、2004.08
- 31) 松崎浩、酒井章:高減衰積層ゴムと鉛ダンパーを用いた免震建物の地震観測、日本建築学会 大会学術講演梗概集、pp.565-566、2002.08
- 32) 米木伸一、田中伸幸、安田衛:免震装置が異なる建築物の地震観測結果の分析、日本建築学 会大会学術講演梗概集、pp.611-612、2001.09
- 33) 森田慶子、高山峯夫: 鉛ダンパーを有する免震建物の地震応答解析-別置型鉛ダンパーの復元 力特性の違いが応答に与える影響について、日本建築学会構造系論文集、No.580、pp.35-42、 2004.06
- 34) 古川忠稔、伊藤雅史、小野聡子、橘英三郎:実地震観測記録を用いた2棟の免震建物動特性の同定、日本建築学会構造系論文集、No.558、pp.117-124、2002.08
- 35) F., Fan and G., Ahmadi: Multi-Story Base-Isolated Buildings under a Harmonic Ground Motion-Part II: Sensitivity Analysis, Nuclear Engineering and Design No.123, pp.17-26, 1990
- 36) F., Fan, G., Ahmadi and I.G., Tadjbakhsh: Multi-Story Base-Isolated Buildings under a Harmonic Ground Motion-Part I: A Comparison of Performances of Various Systems, Nuclear Engineering and Design No.123, pp.1-16, 1990.10
- 37) F., Fan, G., Ahmadi and I.G., Tadjbakhsh: Base Isolation of a Multi-Story Building under a Harmonic Ground Motion-A Comparison of Performance if Various System, Report No.NCEER-88-0010, National Center for Earthquake Engineering Research, 1988.05
- 38) Maria O., Moroni, M., Sarrazin and R., Boroschek: Experiments on a Base-Isolated Building in Santiago, Chile, Engineering Structure, Vol.20., pp.720-725, 1998.08

- 39) C.C., Spyrakos, I.A., Koutromanos and Ch.A., Maniatakis: Seismic Response of Base-Isolated Buildings Including Soil-Structure Interaction, Soil Dynamics and Earthquake Engineering, Vol.29, pp.658-668, 2009.04
- 40) C.C., Spyrakos, I.A., Koutromanos and Ch.A., Maniatakis: Soil-Structure Interaction Effects on Base-Isolated Buildings Founded on Soil Stratum, Engineering Structure, Vol.31, pp.729-737, 2009.03
- S., Suresh, S., Narasimhan, S., Nagarajaiah, N., Sundararajan: Fault-Tolerant Adaptive Control of Nonlinear Base-Isolated Buildings using EMRAN, Engineering Structure, Vol.32, pp.2477-2487, 2010.08
- 42) Gian Carlo Giuliani: Structural Design, Analysis and Full-Scale Tests of Seismically Isolated Buildings, Engineering Structure, Vol.15, 1993.03
- 43) C., Ivo, M., Massimo, V., Francesco: Seismic Response of Multi-Storey Buildings Base-Isolated by Friction Devices with Restoring Properties, Computers & Structures, Vol.81, pp.2589-2599, 2003.11
- 44) 青柳栄、同下田郁夫:LRB 免震建物の実物実証実験、その3 起振機による強制振動実験、日本建築学会大会学術講演梗集、B-2、pp.779-780、1987.10
- 45) 中村嶽、平野欣郎、寺村彰、中山一彦、古村利幸:免震建物の地震観測及び経年特性について、その2 起振試験及び静的加力試験、日本建築学会大会学術講演梗概集、B-1、pp.825-826、 1994.07
- 46) 山原浩:地震時の地動と地震波の入力損失(第1報)、日本建築学会論文報告集、 No.165、 pp.61-66、1969.11
- 47) 山原浩:地震時の地動と地震波の入力損失(第2報)、日本建築学会論文報告集、No.167、pp.25-30、 1970.01
- 48) J. E. Luco : Torsional Response of Structures for SH Waves : The Case of Hemispherical Foundations, Bul. Seis. Soc. America, 66, pp.109-123, 1973.03
- 49) M. D. Trifunac : Interaction of a Shear Wall with the Soil for Incident Plane SH-Wave, Bull. Seis. Soc. America, 62, pp.63-83, 1972.03
- 50) 井口道雄:地震動の位相差及地盤一構造物の相互作用を考慮した地震応答、関東地震 50 周年 記念地震工学シンポジウム、pp.211-218、1973
- 51) T. Kobori, T. Minai and Y. Shinozaki : Vibration of Rgid Circuler Disk on an Elastic Half-Space Subjected to Plane Waves, Theoretical and Appl., 21, pp.109-119, 1973.06
- 52) J. E. Luco : Torsional Response of Structures of Obliquely Incident SH Waves, Int. J. Earthquake Eng. Struct. Cyn., 4, pp.207-219, 1976.05
- 53) K. Yoshida : Fundamental Studies Soil-Structure Interaction Problems, IRI Report, 95-01, 1995.03
- 54) 袋野健一、日下部馨:杭基礎部に偏心を有する建築構造物のねじれ振動、日本建築学会大会 学術講演梗概集、B-2、pp.289-290、1995.07
- 55) 辻英一、松尾雅夫、小野俊博、細野久幸: 異種の基礎を併用した建築物の検討法に関する研究(その2)日本建築学会大会学術講演梗概集、B-1、pp.747-748、1999.09
- 56) 山田有孝、三浦賢治: 異種の基礎を併用した構造物の弾塑性地震応答性状、日本建築学会構造系論文集、No.529、pp.113-119、2000.03

- 57) 木村匠、真野英之、社本康広、中井正一、松井和幸、護雅史: 杭配置に偏心を有する杭支持 構造物の地震時ねじれ挙動に関する研究、日本建築学会構造系論文集、No.626、pp.543-549、 2008.04
- 58) 井口道雄、武藤尊彦、箕輪親宏:大型振動台基礎側面に作用する地震時土圧の観測と解析、 日本建築学会構造系論文集、No.561、pp.65-72、2002.11
- 59) Ikuta, Y., M. Maruoka, T. Mitoma and M. Naganou: Record of Lateral Pressure Taken during Earthquake, Soil and Foundation, Japanese Soc. of Soil Mech. And Found. Engng, Vol.19, No.4, pp.85-92, 1979.12
- 60) Taniguchi, H., M. Ueda, M. Sugimoto, H. Tanaka, T. Yamashita and Y. Nukui: Effect of Nonlinear Behaviors on the Earth Pressure for a Deeply Embedded Building, Proc. 9th World Conf. on Earth. Engng, Tokyo-Kyoto, Japan, Vol.III, pp.647-652, 1988.10
- 61) 小淵康義、海津信廣: LNG 地下式貯槽の地震時挙動について、第20回地震工学研究発表会講 演梗概、pp.517-521、1989.07
- 62) 松本尚志、有泉幸蔵、国吉秀城、千葉脩、渡壁守正:深い根入れを有する建物の地震観測、 第8回日本地震工学シンポジウム、pp.1035-1040、1990.11
- 63) 鬼丸貞友、菅原良次、植竹富一、杉本三千雄、大宮幸男:高密度地震観測に基づく地震時土圧の研究、第9回日本地震工学シンポジウム、pp.1051-1056、1994.12
- 64) 四ツ田裕嗣、増田彰、今村晃、岸野泰章、石井寿、井上超、境茂樹:深層地下構造物に作用 する地震時の動的土圧の分布-その1:地震観測システムと地震記録の概要、日本建築学会大 会学術講演梗集、B-2、pp.413-414、1996.09
- 65) 中川恭次、角田智彦、渡辺清治、安井譲:大型実験棟の動特性について、大林組技術研究所 報、No.11、pp.-27-31、1975.08
- 66) 藤森健史:地震時土圧波形による建築構造物への入力地震動評価に関する研究、学位論文(東 北大学)、1993.12
- 67) 境茂樹、増田彰、今村晃、岸野泰章、石井寿、四ツ田裕嗣、井上超:深層地下構造物に作用す る地震時の動的土圧分布:その3:地震時変動側圧記録の解析、日本建築学会大会学術講演 梗概集、B-2、pp.417-418、1996.07
- 68) 風間基樹、稻富隆昌:ケーソンに作用する地震時動土圧に関する模型振動実験、土木学会論 文集、No.416、pp.1-13、1990.04
- 69) Iguchi, M., Y., Yasui and C., Minowa: On Effective Input Motions: Observations and Simulation Analyses, Proc. of the Second U.S.-Japan Workshop on Soil-Structure Interaction, Building Research Institute, Ministry of Land, Infrastructure and Transport of Japan, pp.75-87, 2001
- 70) 井口道雄、佐土平淳美、箕輪親宏:加振実験時の大型振動台基礎側面に作用する動土圧の観 測と解析、日本建築学会構造系論文集、No.549、pp.75-82、2001.11
- 71)田村修次:遠心載荷実験における基礎の根入れ効果が杭頭水平力に及ぼす影響と液状化層厚-上部構造物慣性力と土圧合力・側面摩擦力の位相差、日本建築学会構造系論文集、No.625、 pp.409-415、2008.03

- 72) Tamura, S., Imayoshi, T. and Sakamoto T: Earth Pressure and Sidewall Friction Acting on an Embedded Footing in Dry Sand based on Centrifuge Tests, Soil and Foundations, Japan Geotechnical Society, Vol.47, No.4, pp.811-819, 2007.08
- 73)田村修次、時松孝次、内田明彦、船原英樹、阿部秋男:大型せん断土槽を用いた液状化実験 における基礎根入れ部に加わる土圧合力と構造物慣性力の関係、日本建築学会構造系論文集、 No.559、pp.129-134、2002.09
- 74)和田昇三、遠坂文規、伊集院博、刑部徹:擁壁背面を地盤改良した場合の土圧に関する実験 的研究その1上載荷重に対する地盤改良効果について、日本建築学会構造系論文集、No.637、 pp.487-494、2009.03
- 75) 和田昇三、国府田誠、榎並昭:壁面摩擦を考慮した壁体土圧に関する実験的研究その2乾燥 砂地盤における剛性壁の主働土圧発生機構について、日本建築学会構造系論文集、No.468、 pp.71-79、1995.02
- 76) 和田昇三、国府田誠、榎並昭:受働土圧に関する実験的研究その2乾燥砂地盤における剛性 壁の受働土圧の発生機構について、日本建築学会構造系論文集、No.513、pp.113-120、1998.11
- 77)和田昇三、及川裕章、国府田誠:地表面に等分布荷重を載荷した場合のL型擁壁およびもたれ式擁壁の構造性能に関する実験的研究、日本建築学会構造系論文集、No.548、pp.73-80、2001.10
- 78) 広田昌憲、石村紀久雄、野嶋治、大宮幸男、鬼丸貞友: 軟岩中に埋込まれた構造物に作用する 土圧に関する研究:その2 地震時土圧の観測概要と結果、日本建築学会大会学術講演梗概集、 B-2、pp.1361-1362、1991.08
- 79) 広田昌憲、石村紀久雄、杉本三千雄、阿部康彦、鬼丸貞友:軟岩中に埋込まれた構造物に作用 する土圧に関する研究:その3 地盤.建屋の相対変位挙動と地震時土圧、日本建築学会大会 学術講演梗概集、B-2、pp.1363-1364、1991.08
- 80) 内山正次、山下利夫:深く埋込まれた構造物の地震時側面土圧の挙動に関する実験的研究、 日本建築学会構造系論文集、No.516、pp.105-112、1999.02
- Veletsos, A.S., Younan A.H., Dynamic Soil Pressure on Rigid Vertical Walls, Earthquake Engineering and Structural Dynamics, Vol.23, pp.275-301, 1994.05
- 82) C. Navarro and A. Samartin: Dynamic Earth Pressures against a Retaining Wall caused by Rayleigh Waves, Engineering Structure, Vol.11, pp.31-36, 1989.01
- 83) S., Kolathayar and P., Ghosh: Seismic Active Earth Pressure on Walls with Bilinear Back-Face using Pseudo-dynamic Approach, Computers and Geotechnics, Vol.36, pp.1229-1236, 2009.09
- 84) A. S. d. Santolo and A. Evangelista: Dynamic Active Earth Pressure on Cantilever Retaining Walls, Computers and Geotechnics, Vol.38, pp.1041-1051, 2011.12
- 85) X. L. Yang and J. H. Yin: Estimation of Seismic Passive Earth Pressure with Nonlinear Failure Criterion, Engineering Structure, Vol.28, pp.342-348, 2006.02
- 86) D.D. Theodorakopoulos: Dynamic Pressures on a Pair of Rigid Walls Retaining Poroelastic Soil, Soil Dynamics and Earthquake Engineering, Vol.23, pp.41-51, 2003.01
- 87) P.N. Psarropoulos, G. Klonaris and G. Gazetas: Seismic Earth Pressures on Rigid and Flexible Retaining Walls, Soil Dynamics and Earthquake Engineering, Vol.25, pp.795-809, 2005.06

- 88) A. Azad, S. S. Yasrobi and A. Pak: Seismic Active Pressure Distribution History Behind Rigid Retaining Walls, Soil Dynamics and Earthquake Engineering, Vol.28, pp.365-375, 2008.11
- 89) H.J. Lee and H.S. Roh: The Use of Recycled Tire Chips to Minimize Dynamic Earth Pressure during Compaction of Backfill, Construction and Building Materials, Vol.21, pp.1016-1026, 2007.05
- 90) Tamura, S., Suzuki, Y., Tsuchiya, T., Fujii S. and Kagawa, T.[2000]. Dynamic response and failure mechanisms of a pile foundation during soil liquid-faction by shaking table test with a large-scale laminar shear box,12th World Conf.on Earthq.Engrg., Reference No.0903, 2000.09
- 91) 川中島寛幸、石田哲朗:地盤~構造物間の相対変位に伴い土圧挙動に関する基礎的研究、土 木学会第58回年次学術講演会、pp.727-728、2003.09
- 92) 鈴木康嗣、内藤幸雄、堀越清視:埋め込みを有する構造物の非線形応答に関する実験とその 解析、日本建築学会構造系論文集、No.438、pp.83-92、1992.08
- 93) 鈴木承慈、福和伸夫、護雅史:埋込み基礎の基礎入力動簡易評価法、日本建築学会構造系論 文集、No.661、pp.535-541、2011.03
- 94) 後藤圭佑、護雅史、福和伸夫、飛田潤:改良地盤に支持された中層免震建物の振動特性に関 する研究(その1)地盤改良の調査結果及びS波速度構造の推定、日本建築学会大会学術講演梗 概集、B-2、pp.25-26、2008.07
- 95) 後藤圭佑、護雅史、飛田潤、福和伸夫:改良地盤に支持された中層免震建物の振動特性に関する研究~上部建物工事の進行に伴う土圧の変化~、日本建築学会東海支部研究報告集、2008、02
- 96) 後藤圭佑、護雅史、福和伸夫、飛田潤:改良地盤に支持された中層免震建物の振動特性に関 する研究~上部建物工事の進行に伴う土圧分布の変化に関する報告~、日本建築学会大会学 術講演梗概集、B-2、pp.335-336、2009.8
- 97) 後藤圭佑、護雅史、飛田潤、福和伸夫:平面的不整形な改良地盤に支持された免震病院建物 の振動特性に関する研究、日本建築学会東海支部研究報告集、2009.02
- 98) 最新名古屋地盤図、地質工学会中部支部、1988.01
- 99) 飛田潤、福和伸夫、西澤崇雄:光ファイバーセンサーによる鋼構造試験体の静的・動的柱軸変 形の計測、構造工学論文集、Vol.55B、pp.577-582、2009.03
- 100) 三上隆男: 光ファイバ変位センサー(SOFO センサー)による構造物のヘルスモニタリング、IHI 技報、Vol.47、No.4、pp.179-191、2007.12
- 101)日本建築センター:建築物のための改良地盤の設計及び品質管理指針 2001
- 102)Park,C.B., Miller ,R.D. and Xia,J.: Multimodal Analysis of High Frequency Surface Waves, The 99th Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems , pp.115-121, 1999.06
- 103)Park,C.B., Miller ,R.D., and Xia,J. : Multichannel Analysis of Surface Waves , The 64th Geophysics, pp.800-808, 1999.05-06
- 104)Xia,j., Miller ,R.D. and Park,C.B.,: Configuration of Near-Surface Sheer-Wave Velocity by Inverting Surface Wave, The 99th Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems, pp.95-104, 1999.06
- 105)Xia,j., Miller ,R.D. and Park,C.B., : Estimation of Near-Surface Sheer-Wave Velocity by Inversion of

Rayleigh Waves, The 64th Geophysics, pp.691-700, 1999.05-06

- 106)文学章、福和伸夫、小島宏章、酒井理惠子:大規模群杭の効率的な動的相互作用解析法、No.607、 pp.109-116、2006.09
- 107)文学章:地盤と構造物との動的相互作用における基礎形式・基礎形状・隣接建物の影響に関 する解析的研究、学位論文(名古屋大学)、2006.03
- 108)文学章,福和伸夫:直接基礎の基礎形状と基礎形式が動的相互作用効果に及ぼす影響、構造 工学論文集、Vol.52B、2006.03
発表論文

学術論文

- 1) 周方圓、護雅史、福和伸夫、飛田潤:地震観測記録に基づく建物-地盤間の相対変位と地震時 側面土圧の関係、日本建築学会構造系論文集、Vol.77、No.675、pp.685-693、2012.5
- 2) 周方圓、護雅史、福和伸夫:改良地盤上に立地した免震建物の地震時応答性状に関する考察、 日本建築学会技術報告集、Vol.17、No.36、pp.473-478、2011.6

学会発表

- Fangyuan Zhou, Masafumi Mori, Nobuo Fukuwa and Koichi Sugimoto: A new analysis model considering the uplift and torsion of the foundation to simulate dynamic nonlinear soil-structure interaction, 15th World Conference on Earthquake Engineering, Sep., 2012, Lisbon, Portugal.
- 周方圓、護雅史、福和伸夫:基礎の浮上りを考慮した低層 RC 建物地震時応答解析、日本建築 学会大会学術講演梗概集、2012.08、名古屋、日本
- 周方圓、護雅史、福和伸夫:改良地盤に支持された免震建物の振動特性に関する研究 その3 地震観測記録を用いた地震時土圧-相対変位関係の評価、日本建築学会大会学術講演梗概集、 2011.08、東京、日本
- 4) 周方圓、護雅史、福和伸夫:部分的な地盤改良が免震建物の地震時挙動に与える影響、第13
 回日本地震工学シンポジュウム、2010.11、筑波、日本
- 5) 護雅史、福和伸夫、周方圓: 軟弱地盤に立地する大規模群杭に支持された重要基盤施設の地 震時損傷評価、第13回日本地震工学シンポジュウム、2010.11、筑波、日本
- 6) 周方圓、護雅史、福和伸夫:改良地盤に支持された免震建物の振動特性に関する研究 その2 部分的な地盤改良が基礎応答に与える影響についての解析的検討、日本建築学会大会学術講 演梗概集、2010.09、富山、日本

謝辞

本論文は、筆者が日本に留学中の3年間で、名古屋大学大学減災連携研究センター教授・福和 伸夫先生並びに同研究センター准教授・護雅史先生のご指導のもとでまとめたものです。

福和伸夫先生のご尽力により、日本へ留学し、相互作用領域についての知識を深める夢を実現 できました。地盤と構造物との動的相互作用について、先生から懇切丁寧なご指導・ご助言を頂 き、本研究内容と巡り合わせて頂きました。また、論文投稿の折にはご指導、ご鞭撻を頂き、筆 者が相互作用の分野における研究の第一歩を踏み出す後押しをして下さいました。さらに、本研 究の実施にあたり、的確な方針指導や貴重なご助言により、研究の行き詰りを乗り越えて最後ま で進められました。研究のみならず、人と人を繋げる力、行動力など研究者として不可欠な素養 の面でも、福和先生より多くのことを学ばせて頂きました。ここに深甚なる感謝と敬愛の意を表 します。

護雅史先生には、本研究のテーマを決定する段階から的確なご助言を賜り、本論文の執筆の上 でも最初から完成まで再三にわたりご丁寧に修正頂きました。日本に留学中の3年間、護先生よ り研究の面でのご支援のみならず、生活の面においても公私問わず父のごとく世話して頂きまし た。筆者にとって、護先生は日本における勉強・生活を支えてくれた柱といっても過言ではあり ません。帰国してからも護先生の教えを常に念頭に置き、確実に研究に努めて参りたいと考えて おります。先生に心より厚く御礼申し上げます。

名古屋大学災害対策室・飛田潤先生には、研究を進める上で厳しくかつ的確なご指導、ご助言 を賜りました。研究の意義や分析手法、結果の考察、論文作成等についてご相談させて頂き、大 変貴重なご意見等を数多く頂きました。また、就職の際には、大変ご多忙な中ご協力を頂きまし た。ここに深く感謝の意を表します。

名古屋大学大学院環境学研究科・勅使川原正臣先生には、お忙しい中、本論文の内容についてに ご審査を頂き、貴重なご指摘・ご助言を頂きました。ここに心より厚く御礼申しあげます。

名古屋大学大学院環境学研究科・小島宏章先生には、相互作用の理論および実験データの分析手 法、結果の見方等の基礎的な部分について、数多くのご助言、ご指導を頂きました。また、研究 を進めるにあたっての環境を整えて頂くとともに、ゼミ資料のチェックまでも多くのご指導を頂 きました。ここに深く感謝の意を表します。

湖南大学・文学章先生には、メールなどを通じて、日本での留学生活において常にご配慮を賜り ましたとともに、研究の面でも、多大なご協力、貴重なご意見を頂きました。ここに深く感謝の 意を表します。 元名古屋大学大学院生・池田政人氏には、日本語を教えさせていただきました。大変ご多忙に も関わらず、筆者が研究で気落ちしている際、常に電話で声をかけて頂き、激励をして頂きまし た。また、名古屋に戻る時もごちそうしたりして頂きました。お蔭様で、楽しい留学生活を送る ことができました。ここに深く感謝の意を表します。

元名古屋大学大学院生・岩城梨佳氏、平田悠貴氏、後藤圭佑氏、杉本浩一氏、鶴ヶ野翔平氏、彦 坂智基氏、鈴木承慈、海野元伸、今枝賢志朗、田中佑治、胡波氏には、研究面・生活面で多くの ご配慮を頂きました。ここに深く感謝の意を表します。

名古屋大学大学院生・平井敬氏には、研究や生活ご指導、ご助言を頂き、多岐にわたる貴重なご 意見等を数多く頂きました。ここに深く感謝の意を表します。

名古屋大学大学院生・豊部立氏、橋本朋子氏、渡辺莉奈氏、河合智文氏、寺島芳洋氏、丹羽智是 氏、天埜貴仁氏、松下卓矢氏、舩越恵美氏、江上貴成氏および王韡氏、石玉勝氏、田欣氏、張玲 氏、王静氏等の友人には、研究面・生活面で多くのご配慮を頂きました。ここに深く感謝の意を 表します。

奨学金をご提供いただきました中国留学基金管理委員会及び、学費をご免除いただいた名古屋 大学には、この場を借りて心より感謝いたします。

最後に、これまでの長きに渡る学生生活を暖かく見守ってくれた家族や親戚に、心より感謝致 しております。

以上の他、多くの方々の支援により本論が完成できました。ここに感謝いたします。

2012年07月

周方圓 (シュウホウエン)