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Chapter 1

Introduction

1.1 Background of the Research on Table Tennis Robot
The science technology rapidly develops over the recent thirty years, especially in com-

puter vision, artificial intelligence, robot hardware which greatly promote the development of
robotics. Now, the conception of “robot” is not limited to industrial robot which can complete
only fixed tasks in a structured environment. Various kinds of robots that can work in dynam-
ic or unstructured environments have been studied such as the space robot, underwater robot,
which work in dangerous environments and home service robot, entertainment robot, which ap-
pear in human’s daily life. The robot working in a dynamic environment has to online acquire
and perceive the information of the surrounding environment by using external sensors e.g.
force sensor, tactile sensor, vision sensor. Moreover, it has to predict the future development
trend of the object and then quickly makes a decision for planning the motion of the robot’s
mechanical body.

“Table tennis robot” is a representative of them, which means that the robot can play table
tennis. In order to do that, the robot has to sense a coming ball’s trajectory; make a reasonable
judgment about how to return the ball and realize a flexible striking, which is a typical real-time
and intelligent process.

The research about “table tennis robot” already has nearly thirty years’ history since Prof.
John Billingsley from Portsmouth University in England initiated the table tennis robot compe-
tition in 1983. After this year, the table tennis robot research has gradually become a research
hotpot by reason of its difficulty and challenge in both real-time and intelligent design. In the
year of 1988, there was an important breakthrough that Russell Anderson at AT&T Bell Lab-
oratory presented the first table tennis robot (a 6 DOF PUMA 260 arm) which was capable to
play against humans [1, 3]. Follows include the presented table tennis systems in Japan [14],
Swiss [11], Spain and China, which show that the robot has already been able to play continu-
ously longer time with a human opponent who is beginner skill level. However, the robot still
can not control a ball returned by the human opponent with fast translational speed or high
rotational speed. In other words, “triumph over humans” in a competition is still a long way to
go for the research of table tennis robot.

1.2 The State of the Art on Table Tennis Robot
Imagine that if you are playing table tennis, what will be done in turn: seeing by eyes where

the ball is coming and what kind of ball it is; thinking by the brain how to return the ball; moving
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the hand with a racket to strike the ball. In order to accomplish the task of playing table tennis,
the robot should be provided with systems which are similar to our hand-eye coordination
system. Summarizing the previous research on table tennis robot, it consists of three basic
subsystems: vision system, control system and mechanical system, which correspond to the
human eye, brain and hand, respectively. Their relation can be expressed by using Figure 1.1.

Vision system

Control system

Mechanical system

Measuring the ball’s 

position and velocity  Eye

Determining the 

striking strategy Brain

Moving the racket

HandStriking the ball

Systems of table tennis robotBall is coming

Figure 1.1: Construction of table tennis system

1.2.1 System configuration

There have been many system configurations developed for playing table tennis. As for the
vision system, it may include one, two or four cameras and an image processor. The control
system usually is a PC. The mechanical system consists of a manipulator of which the end-
effector is the racket which is similar to human hand holding a racket. However, there is not
a uniform structure for the mechanical system. Let us see some typical table tennis systems
presented.

Actually, from 1985 to 1988, the contests for table tennis robot had been held four times in
Europe. Several table tennis systems were proposed at that time. However, due to the under-
developed real-time vision system and motion servo technology, the early systems complied
with the 20 rules made by Prof. John Billingsley for improving the success rate of the striking.
For example, the size of the table was limit in 0.5 m × 2 m. Figure 1.2 shows a representative
system in the eighties of last century, which is developed by Andersson et al. in USA. The
robot is a 6 DOF PUMA 260 arm with a stick and four cameras are used to detect the incoming
ball’s state [1, 2, 3, 4]. Under the robot table tennis rules suggested by Prof. John Billingsley,
this system realized playing against humans for the first time.

In 2003, L. Acosta [6] from Spain constructed a low-cost robot which used two paddles as
shown in Figure 1.3. The robot totally has 5 degrees of freedom and only one single camera
is applied to measure the ball’s 3D position with the geometrical relationship between the ball
and the shadow. It showed that the robot could play well if the speed of the ball was small (<
5 m/s). However, the table size was only half of the standard.

Figure 1.4 is the system configuration developed by Miyazaki et al. [27, 28, 30], which has
4 degrees of freedom that 2 DOF are able to move in the horizontal plane and 2 DOF are able to
determine the attitude of the racket. A stereo vision system (Quick MAG) measures the ball’s
position from the sensed images in every 1/60 sec. This robot system can return the ball to a
desired position on the table with a specified flying duration.
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Arm

Table

Racket

Arm

Table

Racket

Figure 1.2: 6-DOF structure (Andersson et al. in 1988)

Figure 1.3: 5-DOF structure (Acosta et al. in 2003)

Figure 1.4: 4-DOF structure (Miyazaki et al. in 2005)

The system in Figure 1.5 is based on a selective compliant robot arm (SCARA) which
has 4 degrees of freedom, i.e., three degrees for moving in x, y and z axes and one degree
for performing the wrist rotation [48]. Two 60 Hz cameras are applied to sense the ball’s
images and Intel’s Integrated Performance Primitives (IPPs) are used as the basis for the image-
processing software.

Figure 1.6 demonstrates a 5-DOF table tennis robot developed by Institute of Automation,
Chinese Academy of Sciences in China which can move the racket in x-y-z axis as shown in
(a) and rotate the racket around the pitch and yaw angles as shown in (b).

In fact, 5-DOF mechanical system is required for robot playing table tennis (3 degrees of
freedom for moving the racket’s position in x-y-z axis and 2 degrees of freedom for rotating the
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RacketRacketRacket

Figure 1.5: 4-DOF structure (Liu et al. in 2008)

(a) Translational X, Y, Z axis (b) Rotational S, P axis(a) Translational X, Y, Z axis (b) Rotational S, P axis

Figure 1.6: 5-DOF structure (Yang et al. in China in 2010)

racket’s directions (the yaw and the pitch angles)). However, redundant degrees of freedom can
increase the flexibility of the arm’s striking motion, which are capable to avoid singularity in the
motion planning of the manipulator [43, 53]. Therefore, in this thesis, a 7-DOF manipulator is
used for the table tennis game. This thesis focuses on the vision system that how to measure the
ball’s position and translational/ rotational velocities and the control system that how to control
the racket for returning the ball with a desired locus. Therefore, in the next two sections, the
research states about the vision system and the control system will be discussed in detail.

1.2.2 Vision system
The vision system seems like human eye, which is used for detecting the flying ball’s 3D

position and velocity in some frames. The robot uses this information for predicting the ball’s
flying trajectory and controlling the racket for striking the ball with a desired manner. There-
fore, the task of the vision system has a considerable significance since it directly decides
whether or not the following predicting task and controlling task can be performed well.

The vision system consists of cameras and image processor (PC or special processor). Table
1.1 shows the representative developments of the vision system of table tennis robot from 1988.

The number of camera can be one, two (stereoscopic vision) or more. In the single camera
system, only one image needs to be transmitted and processed, which simplifies the procedures
and lowers the cost. However, it needs some auxiliaries such as light, shadow, which has a
strict requirement on the working environment. More cameras system (Andersson used 4 video
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cameras) can enlarge the range of the visual field and improve the detection accuracy. However,
the image processing becomes complicated which increases the computing time and also there
are problems of cameras’ calibration and synchronous of data acquisition. Therefore, most of
the presented vision systems use stereoscopic vision (two cameras) system for detection.

Table 1.1: The development of the vision system for the table tennis robot
Time (year) Researcher Number of camera, frame rate, processor

1988 Anderson [4] Four video cameras, 60Hz, MC68020 processor
1993 Fassler [11] Two cameras, 50Hz, MC68020, MC68000 processor
2003 L. Acosta [6] One camera, 40Hz, PC
2005 Miyazaki [27] Two cameras, 60Hz, Quick MAG
2005 K.P. Modi [29] A USB communicative camera, 15Hz, work station
2005 Y. Zhang [58] One camera, 60-89Hz, PC
2006 Y. Zhang [58] Two cameras, 60-89Hz, PC
2007 Quanta-View Inc. [48] Two cameras (1394 bus), 60Hz, Intel Xeon processors
2008 Y. Zhang [58] Two cameras, 60-89Hz, PC
2010 Z. Zhang [59] Two cameras (DSP, FPGA), 250Hz, PC

The ball’s state includes three basic factors: position, translational velocity and rotational
velocity, and both the translational velocity and rotational velocity of the ball play important
roles in winning a table tennis match [49]. However, until now, almost all the presented vision
systems for the table tennis robot can only detect the incoming ball’s position and translational
velocity. The ball’s rotational velocity is ignored. Zhang et al. [59] shows a method of tracking
a flying ball in which the area of the ball image in every frame of image data is detected
by means of the frame difference and the search region method. However, their research is
under the assumption that the ball’s rotational velocity is in the range of 0∼20 rad/s. One
important reason is that there is no suitable vision sensor and algorithm of measuring the
ball’s rotational velocity for using in the high real-time demand situation of table tennis.
When a human being plays a table tennis, the translational velocity of the ball is in the range of
4∼30 m/s, nevertheless, in the robot case, the ball’s translational velocity generally is smaller
than 7 m/s since if it is too fast, the response time left for the robot is too short to be used
for hitting the ball. Actually, if the translational velocity is 5∼7 m/s, the ball’s flying duration
from the position being detected to the striking position is about 400∼600 ms and the robot
usually needs about 300∼500 ms for moving the manipulator from the waiting position to the
striking position. Therefore, the vision system must complete the detection task in just a few
milliseconds (the time from sensing the image to obtaining the measuring results should be
smaller than 80 ms), which is a great challenge for both the hardware of the vision sensor and
the detection algorithm.

However, it is generally well known that since the table tennis ball is “small” and “light”, the
rotation of the ball is an essential factor for various skills and tactics of table tennis such as chop,
drive, loop, push and so on [45, 50]. This means that the robot can never compete with a man
who has high skill level if the robot can not control a spinning ball. Moreover, for a spinning
ball, the rotation is an important factor that influences the ball’s flying trajectory, which has
been shown in [37] by using the aerodynamics model and some experimental data and in [18]
by comparing the observed real trajectory with the theoretical spin-free ball trajectory of drive
and push shots. Therefore, it is necessary to consider the influence of the rotational velocity for
a spinning ball.

In a word, in order to compete with a human player in a table tennis game, the robot must
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be able to master how to detect the incoming ball’s rotational velocity and how to control the
returning ball’s rotational velocity.

There has been some research about measuring the rotation velocity of a ball. Watanabe
et al. [51] propose a multi-target tracking algorithm for a high speed vision chip and as one
of its applications, they show some experimental results on measuring a rotational velocity of
a ball in real-time; the used algorithm is that by the proposed method, multi-feature on the
ball’s surface is tracked in two-dimensional (2D) image space and also the feature matching
between the kth frame and the (k + 1)th frame is carried out. Then three-dimensional (3D)
position of each feature’s centroid in each frame is reconstructed to estimate the rotational
velocity by using the consecutive features’ 3D positions. The results are excellent; however,
unfortunately the experimental results show that the measurable range of the rotational speed is
almost less than 1200 rpm, which is not satisfactory because the rotational speed reaches about
3000 rpm in the case of table tennis balls (The rotational velocity of the ball varies with different
table tennis techniques: 40∼85 c/s (2400∼5100 rpm, back spin), 30∼80 c/s (1800∼4800 rpm,
smash), 50∼75 c/s (3000∼4500 rpm, top spin serve), 90∼160 c/s (5400∼9600 rpm, high loop),
100∼160 c/s (6000∼9600 rpm, forward loop) [16]).

As the image registration method [9, 19, 57] without feature matching, the following method
is used in [44] and [46]; (k + 1)th frame of image data are estimated by using a candidate of
rotational velocity and the sensed kth frame of image data. Then the most plausible rotational
velocity is searched by comparing the estimated image data with the sensed image data in every
frame.

Reference [44] shows the measurement of a baseball’s spin in off-line by using camera
video, where image processing is focused on how to separate the ball image from the back-
ground and how to eliminate the effect of the outdoor light condition. In [46], the rotational
velocity of table tennis ball is measured. However, the frame rate used in the experiment is
500 Hz which is not fast enough to realize the table tennis playing robot. In fact, when the
rotational speed is 3000 rpm, the ball rotates 36 deg in the interval of the frame rate, which
means the consecutive frames of image data are too coarse for the image registration method to
estimate the rotational velocity. In addition, unfortunately the estimated results in [46] do not
show clearly how well the proposed method can work.

1.2.3 Control system
When playing table tennis, the control system works like player’s brain which has to analyze

the coming ball’s trajectory, has to think strategies for returning the ball and has to manipulate
the robot’s arm. Hence, it is the core system for reflecting the robot’s intelligence. Precisely,
“the task of the robot brain” can be divided as the following ones in turn:

a) predicting the incoming ball’s trajectory;

b) determining a suitable posture and velocity for the racket at the striking time;

c) planning a reference trajectory of the manipulator with the racket such that the returned
ball would reach a given destination on the opponent table;

d) controlling the robot according to the motion planning in c).

This section will mainly focus on the tasks a)–c) as shown in Figure 1.7.
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(a) Trajectory prediction 
by control system 

Sensing the ball’s 
position and velocity 

by vision system

(b) Racket striking posture 
and velocity determination by 

control system

Aerodynamics model

Racket rebound model

Table rebound model(c) Manipulator motion 
planned by control system

(a) Trajectory prediction 
by control system 

Sensing the ball’s 
position and velocity 

by vision system

(b) Racket striking posture 
and velocity determination by 

control system

Aerodynamics model

Racket rebound model

Table rebound model(c) Manipulator motion 
planned by control system

Figure 1.7: Tasks of the control system

a) predicting the incoming ball’s trajectory

After acquiring the detected incoming ball’s information from the vision system, the control
system begins to predict the ball’s trajectory. There are two purposes of the trajectory predic-
tion: 1) for determining a striking position and a striking time; 2) for obtaining the ball’s state
just before striking. Usually, the striking position will be firstly decided under some required
conditions on the predicted trajectory. For example, if the ball’s predicted position in x-axis or
z-axis satisfies a required value, or if the predicted translational velocity of the ball in z-axis is
near to 0 after rebounding from the table, or if both the ball’s predicted position and velocity
accord with a condition.

Let us imagine the ball’s motion before striking: after shot by the opponent, the ball flies in
the air, rebounds from the table and flies in the air again. Therefore, in order to plan the ball’s
flying trajectory, it is necessary to simulate the ball’s flight in the air and the ball’s rebound
from the table (See Figure 1.7). There have been many aerodynamics models and table rebound
models presented by the previous table tennis research [6, 58, 59]. However, those models only
consider the translational velocity of the ball. The rotational velocity is totally ignored. Hence,
those models are not suitable for a spinning ball.

b) determining the racket’s striking state for returning the ball to a reference

Consider what the human player will do next after he decides the special point to strike the
ball back. Surely, he will think how to strike the ball with the racket in order for the returned
ball to achieve a desired position on the opponent court. Maybe he also wishes the returned ball
can reach a desired velocity at that position. Similarly, the robot player has to determine the
racket’s velocity and posture at the striking time for returning the ball to a reference position.
This is the racket control problem.

Generally, the problem can be described with Figure 1.8, which determines the racket’s
striking velocity and posture through the racket rebound model and the aerodynamics model
under the two informations: the ball’s velocity just before the striking and the ball’s desired
landing state.

Until now, there have been many researches on controlling the racket for table tennis robot
returning balls. Acosta et al. [6] determined the posture of the racket under the assumption
that when the racket struck the ball, the reflection angle of the ball was same as the incidence
angle and also there was about 30% energy loss after the rebound. The trajectory of the ball
was estimated by the parabolic throw formula which considered the friction of the ball in the
air. The ball was returned to a target point on the table. Miyazaki et al. [30] proposed a
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racket control method by using three input-output maps which corresponded to racket rebound
model and aerodynamics model. The maps were constructed based on experimental data, not
on physical models. Their method could return the ball to a desired position on the table with
specified flight duration. Yang et al. [54] determined the racket’s striking velocity by using
the translational velocity of the incoming ball and the expected translational velocity of the
returned ball at the striking time in which the energy loss was also considered. As the racket’s
striking posture, they fixed the racket’s pitch angle and decided the racket’s yaw angle by using
the direction of the coming ball and the rule of the specular reflection.

However, all of the above studies have not considered exact physical models of either racket
rebound or aerodynamics. Moreover, the rebound ball’s rotational velocity has not been treated
as one of control variables.

Racket striking velocity and posture

Ball’s velocity just before striking Ball’s desired landing state

Racket rebound model Aerodynamics model+

Figure 1.8: The general racket control problem

c) planning a reference trajectory for the manipulator with the racket

The third task of the control system is to plan a reference motion trajectory for the manip-
ulator with the racket. It should be noted that the manipulator motion planning for the table
tennis is different from that for the industrial robot arm based on the time optimization. In the
table tennis case, in order to successfully return the ball to a desired position with a desired
velocity, the racket must achieve a proper state just at the striking time. Therefore, the planning
is to optimize the manipulator’s motion under the constraint of the time. Here, the racket’s
proper striking state includes three terms: position, velocity and posture which are determined
at the above two tasks.

The racket motion is generally planned as a loop which includes four steps: approaching
from the waiting position to the striking position; striking with a proper state; reducing the
speed to zero; returning to the waiting position (Figure 1.9). And the most popular motion
trajectory planning method used for table tennis arm is the fifth degree polynomial method that
from the start time to the end time the position trajectory is expressed by using a fifth order
polynomial.

However, the fifth order polynomial method does not consider the capacity of the driver.
In order to increase the usage of the motor and the success rate of the planning, [20] proposed
a fixed-time trapezoidal acceleration trajectory planning method for table tennis and [58] pre-
sented a polygonal line speed planning method for their second generation table tennis robot.
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In [31, 32], they studied human movements when playing table tennis and presented a robot
system which mimicked human striking behavior.

Waiting position Striking position

Approaching

Striking velocity and postureInitial velocity and posture

Returning

Step 1

Step 4

Step 2

Reducing speed

Step 3

Figure 1.9: Motion planning strategy

Another point is about the equipment of the control system. In some presented table tennis
robots [6, 29], both the vision system and the control system share the same CPU which reduces
the transmission time of the detected ball’s state data and lowers the cost of the robot. However,
most of table tennis robots [30, 54] use two or more processers by considering the complexity
of the tasks. In this thesis, the developed table tennis system uses one PC for the vision system
and one PC for the control system to decrease the computation.

1.3 Demands for Table Tennis Robot

It has been mentioned in Section 1.1 that “robot playing table tennis is a typical real-time
and intelligent process”. Therefore, real-time and intelligence are two important demands for
the table tennis robot. Besides them, for achieving a successful striking, the robot also has to
satisfy the high requirement on the accuracy. In this section, the three basic requirements for
the table tennis robot are discussed in detail.

Demand 1: Real Time

“Real time” means the ability of a software or hardware system that can complete a task
in a limit time or quickly response to an external event, which is a measurement of the sys-
tem’s processing speed and reaction time. It is the most important requirement for the table
tennis system since the speed of the table tennis ball is very high (4∼30 m/s when humans
play), which means only a very short response period leaves for the sensors, processors and
manipulator. Especially, for the vision system, measuring the ball’s position, translational and
rotational velocities in a few milliseconds (the time from sensing the image to obtaining the
measuring results should be smaller than 80 ms) are really difficult for both the vision sensors
and the image processing technology.

Demand 2: Accuracy

The accuracy requirement for the table tennis robot has two meanings: 1) the racket is
able to strike the ball; 2) after struck by the racket, the ball is able to return to a destination
on the opponent court with desired velocities. As for the first meaning, it is a demand on the
prediction accuracy of the striking position and the striking time. The prediction error of the
striking position should be smaller than “ the radius of the racket - the radius of the ball ”. On



10 Chapter 1

the other hand, the second meaning is a demand on the determination accuracy of the racket’s
striking velocity and posture. The accuracy requirement depends on the opponent player that if
he is a beginner, the robot just needs to return the ball to an easy position on the table, i.e. the
center of the opponent court. However, if he is a player with high skill level, in order to win
him, the robot needs to return the ball to a difficult position with high accuracy.

Demand 3: Intelligence

As we all know, table tennis is a “high technique” sport since the ball is so light that it can
have high rotational speed and various kinds of spins, e.g. top spin, back spin, side spin. When
playing table tennis, the player has to think different strategies to return the balls with different
kinds of speeds and spins. Similarly, when the robot plays table tennis, it also has to quickly
determine a striking method to overcome these uncertain incoming balls. For example, for each
incoming ball, the robot has to decide a new striking position and striking time; and it has to
determine a new striking posture and velocity for the racket and plan a new motion trajectory for
the manipulator. Therefore, it must be able to adjust its motion and striking method according
to the random coming ball, which is quite different from the conventional industrial robot that
can only repeat a same task in all the working time. Hence, it is necessary for the table tennis
robot to have a high intelligent brain.

1.4 The Purpose of the Thesis
The purpose of this thesis is to realize a table tennis robot which can control a spinning

table tennis ball. To achieve this purpose, the robot must be able to detect and control
the rotational velocity of the table tennis ball in a real-time situation. According to these
requirements, in this thesis, we develop a system of table tennis robot as shown in Figure 1.10
and Figure 1.11 which consists of the following three subsystems:

(1) the vision system: two high speed cameras (900 Hz) and a PC;

(2) the control system: a PC;

(3) the mechanical system: a 7-DOF manipulator.

High Speed Cameras 
(900fps)

Automatic Ball 
Catapult

7-DOF Manipulator

Task (A)

Task (C)
Task (B)

Figure 1.10: A robot playing table tennis
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Figure 1.11: The table tennis system

The detail information of these equipments can be found in Appendix A. As the summaries
of Section 1.2 and 1.3, in order to reach the goal of controlling the spin of the ball, the above
subsystems must be able to accomplish the following three tasks (See Figure 1.10):

(A) Detecting a ball’s state (position, translational and rotational velocities) by using vision
sensors immediately after the opponent player hit the ball,

(B) Predicting the ball’s trajectory by using the ball’s state detected in (A), aerodynamic
model and collision models with the table as well as the racket, and

(C) Determining the racket’s posture and velocity at the striking time such that the returned
ball would reach a given destination on the opponent table with a desired landing state
and planning a reference trajectory of the robot manipulator with the racket by the ball’s
trajectory predicted in (B).

Corresponding to the above three tasks, in this thesis, first of all, a real-time method is
proposed for measuring the ball’s position, translational and rotational velocities by applying
two high speed cameras (900 Hz) [22, 23] (Task A). Then, in order to solve the racket control
problem, three basic physical models built by our previous research [36, 37, 38] are introduced,
which include the aerodynamics model, the table rebound model and the racket rebound model
(Task B). Finally, a racket control method is proposed which can control the spin of the returned
ball (Task C).

This thesis mainly concentrates on Task (A) and Task (C).
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Detect the ball’s translational and rotational velocities by using two high speed cameras

For the first task, this thesis proposes an on-line method for estimating both translational
and rotational velocities of a table tennis ball by using only a few consecutive frames of image
data which are sensed by two high speed cameras. In order to estimate the translational velocity,
three-dimensional (3D) position of the ball’s center at each instant of camera frame is obtained,
where the on-line method of reconstructing the 3D position from the two-dimensional (2D)
image data of two cameras is proposed without the pattern matching process. The proposed
method of estimating the rotational velocity belongs to the image registration methods, where
in order to avoid the pattern matching process too, a rotation model of the ball is used to make
an estimated image data from an image data sensed at the previous instant of camera frame and
then the estimated image data are compared with the image data sensed at the next instant of
camera frame to obtain the most plausible rotational velocity by using the least square and the
conjugate gradient method. It is similar to the one shown in [46], however, this thesis clarifies
the parts which are vague and/or unexplained [46]; e.g., a process of “image resampling” [57],
i.e. the interpolation, and how to search the most plausible rotational velocity from the least
square problem. The effectiveness of the proposed method is shown by some experimental
results in the case of a ball rotated by a rotation machine as well as in the case of a flying ball
shot from a catapult machine.

Determine the racket’s state for controlling the returning ball with a desired landing state

For the third task, a racket control method is proposed for returning the ball to a desired
position on the opponent court with a desired rotational velocity at a desired landing time. The
method determines the racket’s state, i.e., the racket’s striking posture (yaw and pitch angles)
and translational velocity based on two physical models: the racket rebound model and the
aerodynamics model. Firstly, in order to better understand the essence of the racket control
problem, this thesis divides it as two subproblems (See Figure 1.12):

Racket striking velocity and posture

Ball’s velocity just before striking

Ball’s velocity just after striking

Ball’s desired landing state

Racket rebound model

Aerodynamics model

Problem 2

The striking position

Problem 1

Racket striking velocity and posture

Ball’s velocity just before striking

Ball’s velocity just after striking

Ball’s desired landing state

Racket rebound model

Aerodynamics model

Problem 2

The striking position

Problem 1

Figure 1.12: Racket control problem
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1) supposing the striking position and the ball’s desired landing state are given, solve the
aerodynamics problem for obtaining the ball’s velocity just after rebounding from the
racket;

2) supposing the ball’s velocities just before and after rebounding are known, solve the
racket rebound problem for obtaining the racket’s striking velocity and posture.

Notice that in Figure 1.12, the solid line square, the dash line square and the double solid
line square express the given parameter, the intermediate solved parameter and the finial solved
parameter, respectively. Then, the properties of these two problems (the problem of the aero-
dynamics model and the problem of the racket rebound model) are clarified from a theoretical
viewpoint. In fact, the first problem is a typical two-point boundary value problem about the
aerodynamics model that given the boundary conditions, i.e., the striking position and the land-
ing position, solves the differential equation of the aerodynamics model. As for the second
problem, basically, for a ball’s velocity just before striking, the racket’s velocity and posture at
the striking time determine the ball’s velocity just after striking, which means that the racket’s
striking velocity and posture determine the changing of ball’s velocities just before and after
the striking. The relation between them is named as the racket rebound model. Therefore,
the second problem, in nature, is solving an inverse problem of the racket rebound model for
obtaining the racket’s velocity and posture at the striking time.

However, it has been shown that solving the problem of the aerodynamics model needs
too much computation time, which is not suitable for a real-time situation. Therefore, a mod-
ified algorithm is proposed which can be used for a real-time process by introducing a simple
aerodynamics model. The effectiveness of the proposed racket control method is verified by
numerical simulations as well as experiments.

1.5 Organization of the Thesis
The followings show the organization of the thesis in detail.

In Chapter 2, an on-line algorithm is proposed for measuring the translational and rotation-
al velocities of a flying table tennis ball. As for estimating the translational velocity, the 3D
position of the ball’s center at each instant of camera frame is obtained by searching points on
the contour of ball image and finding perpendicular bisectors between those points. As for the
rotational velocity, two methods (Method 1 and Method 2) are demonstrated: Method 1 is an
algorithm presented in our previous paper [35]; Method 2 is the proposed method in this thesis
which estimates (k+1)th frame of image data by using a candidate of rotational velocity and
the sensed kth frame of image data. Then the most plausible rotational velocity is searched
by comparing the estimated image data with the sensed image data in every frame. The effec-
tiveness of the proposed on-line algorithm has been verified by comparing with Method 1 with
some experimental results: one experiment was carried out by a rotational machine and another
experiment was carried out by a catapult machine.

In Chapter 3, firstly, three physical models about ball motion are introduced: aerodynamics
model, table rebound model and racket rebound model which consider both the ball’s trans-
lational velocity and rotational velocity. The properties and the construction processes of the
three models are described in detail. Then, some experimental results are shown to verify the
effectiveness of these physical models.
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In Chapter 4, we propose a racket control method for returning the ball to a desired position
with a desired rotational velocity at a desired landing time. Firstly, by regarding the racket
rebound model as a set of nonlinear equations with respect to the racket’s state, an existence
condition for real solutions of the set of nonlinear equations is shown and moreover the solu-
tions are expressed in the closed form. On the other hand, associated with the aerodynamics
model, when considering the racket control, it is shown that two-point boundary value problem
plays important role. Then, an on-line control method for the racket’s state is proposed. Finally,
some numerical simulations and experimental results are displayed to verify the effectiveness
of the proposed method.

Chapter 5 is the conclusions and future work.



Chapter 2

Online Measuring the Ball’s State with High
Speed Camera

As discussed in Chapter 1, performing the measuring task of the ball’s state has important
meanings for predicting the ball’s trajectory and controlling the racket. Therefore, it has higher
requirements on the accuracy and real-time. In this Chapter, we propose an on-line algorith-
m for measuring the ball’s position, translational and rotational velocities by using about 6
consecutive frames of image data sensed by two high speed cameras (900 Hz) [21, 22, 23].

Actually, there have been a lot of researches on the measurement of the ball’s velocity with
vision sensors. Zhang et al. [59] shows a method of tracking a flying ball in which the area
of the ball image in every frame of image data is detected by means of the frame difference
and the search region method. Zhang [58] proposes a method of tracking the ball by using an
extended Kalman filter. In these researches, the translational velocity of the ball is measured.
However, the rotational velocity of the ball is not measured. It is shown [37] by using the
aerodynamic model and some experimental data that the ball’s rotation is an important factor
that influences the trajectory of flying table tennis ball. Watanabe et al. [51] propose a multi-
target tracking algorithm for a high speed vision chip and as one of its applications, they show
some experimental results on measuring the rotational velocity of a ball in real-time. The used
algorithm is that by the proposed method, multi-feature on the ball’s surface is tracked in two-
dimensional (2D) image space and also the feature matching between kth frame and (k + 1)th
frame is carried out. Then three-dimensional (3D) position of each feature’s centroid in each
frame is reconstructed to estimate the rotational velocity by using the consecutive features’
3D positions. The results are excellent; however, unfortunately the experimental results show
that the measurable range of the rotational speed is almost less than 1200 rpm, which is not
satisfactory because the rotational speed reaches about 3000 rpm in the case of table tennis
balls.

As the image registration method [57] without feature matching, the following method is
used in [44] and [46]; (k + 1)th frame of image data are estimated by using a candidate of
rotational velocity and the sensed kth frame of image data. Then the most plausible rotational
velocity is searched by comparing the estimated image data with the sensed image data in every
frame.

Reference [44] shows the measurement of a baseball’s spin in off-line situation. In [46],
the rotational velocity of a table tennis ball is measured. However, the frame rate used in the
experiment is 500 Hz which is not fast enough to realize the table tennis playing robot. In
addition, unfortunately the estimated results in [46] do not show clearly how well the proposed
method can work.
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In the previous research [35], an on-line method for measuring translational and rotational
velocities of a flying table tennis ball has been proposed. Though this method does not belong
to the image registration method mentioned above, the method has the same property that the
computation cost is low because feature matching is not needed. Unfortunately, it is pointed
out in [21] that the proposed method in [35] does not measure the rotational velocity with high
accuracy because the method does not take into the consideration of the rotational axis of the
ball which causes a rotation of image data in the image coordinate.

In this chapter, an algorithm is proposed to measure the translational and rotational veloc-
ities of a table tennis ball in real-time and some experimental results are used to verify the
effectiveness of the proposed on-line algorithm; one experiment was carried out by a rotation
machine and another experiment was carried out by a catapult machine.

Section 2.1 is the arrangement of the measurement system. In order to measure the 3D posi-
tion of the ball with the sensed 2D image data, it is necessary to build exact coordinate systems
for the equipments. In this section, four 3D and two 2D coordinate systems are introduced and
also the conversions between the coordinates are described.

In Section 2.2, a method for estimating the translational velocity of the ball is presented.
In order to do that, 3D position of the ball’s center at each instant of camera frame is obtained
by searching points on the contour of ball image and finding perpendicular bisectors between
those points.

In Section 2.3, the previous proposed method [35] (Method 1) is introduced for comparing
with the proposed method (Method 2) in the next section.

In Section 2.4, an image registration algorithm (Method 2) for estimating the rotational
velocity of the ball is proposed. Firstly, a nearest point method is presented to estimate the
intensities of the pixels on the later frame by using the information of the previous frame and
then the conjugate gradient method is used to seek the optimum of the rotational velocity.

Section 2.5 is the experimental results with both a ball rotated by a rotational machine and
a flying ball shot from a catapult machine which sufficiently demonstrate the effectiveness of
the proposed method.

2.1 Preliminary

Figure 2.1 shows a setup of measurement system which consists of a table, a catapult ma-
chine and two high speed cameras. The table is an international standard one with 1525(W )×
760(H) × 2740(D). The high speed cameras (Hamamatsu Photonics), Camera 1 and Camera
2, both are monochrome with frame rate 900 Hz, resolution 232× 232, focal length of the lens
f = 3.5×10−2 m, and pixel size ε = 2.0×10−5 m/pixel. More detailed parameters of them are
displayed in Appendix A. In this chapter, four 3D coordinate systems and two 2D coordinate
systems are utilized in the measurement system as shown in Figure 2.1.

With respect to the 3D coordinate systems, ΣB is the base coordinate system which is fixed
at a corner of the table. Σb is the ball coordinate system fixed at the center of the ball, and
hence, Σb translates and rotates subject to the ball’s motion. The camera coordinate system
ΣCn(n = 1, 2) is fixed at Camera 1 and 2, respectively.

With respect to the 2D coordinate systems, the image coordinate system ΣIn(n = 1, 2)
is fixed on the image plane of Camera n, where a position on the image plane is denoted by
(u, v). The sampling point of the image data in the image plane, i.e., “pixel index”, is denoted
by (i, j). Notice that (i, j) is a couple of integers and (u, v) is a couple of real numbers. In the
measuring method, in order to distinguish explicitly between (i, j) and (u, v), (i, j) is called
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Figure 2.1: Setup of table tennis ball system

a pixel coordinate and (u, v) is called a physical coordinate. Note that every pixel coordinate
(i, j) has the corresponding physical coordinate (u, v), i.e., (u, v) = ε(i, j), but not vice versa.

Figure 2.2 shows the coordinate system ΣIn in more detail. Because the image plane is
finite, some notations for minimum and maximum values of both the pixel and the physical
coordinates are prepared as follows.

ZI :=
{

(i, j)T ∈ Z2
∣∣ imin ≤ i ≤ imax, jmin ≤ j ≤ jmax

}
(2.1)

RI :=
{

(u, v)T ∈ R2
∣∣ umin ≤ u ≤ umax, vmin ≤ v ≤ vmax

}
(2.2)

where (umin, vmin) := ε(imin− 0.5, jmin− 0.5) and (umax, vmax) := ε(imax + 0.5, jmax + 0.5).
Notice that imax − imin = jmax − jmin = 231.

u

Image Plane

v

T( , )min mini j
T( , )min minu v

T( , )max maxi j

T( , )max maxu v

T T( , ) ( , )u v i jε=
ε

ε

T(0,0)

Figure 2.2: Coordinate conversion

Figure 2.3 shows an example of image data we can use to estimate the velocities, which is
composed of only 6 frames. This is due to that the high speed camera has a narrow field of
vision and also the ball’s translational speed is very high. The area of ball image is not so large,
compared with the frame size. Note that the ball image has its inscribed quadrangle (the black
square) with size about 50 × 50 in the pixel coordinate.
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Frame 1

Camera 1

Camera 2

Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Camera 2

Camera 1

Figure 2.3: Image data obtained by two cameras

Suppose that a 3D position is expressed as BP and CnP in the base coordinate system ΣB

and the camera coordinate system ΣCn(n = 1, 2) respectively. Then it is well known that

CnP = CnPB + CnRB
BP (2.3)

where CnPB ∈ R3 is a representation vector which describes the origin of ΣB in ΣCn and
CnRB ∈ R3×3 is a rotation matrix of ΣB with respect to ΣCn . Note that CnPB and CnRB are
determined and fixed by camera calibration process (See Appendix B).

It is assumed in this thesis that the relation between the camera coordinate system ΣCn and
the image coordinate system ΣIn is expressed by the pinhole camera model (See Appendix B).
Therefore, suppose that a 3D position CnP = (XCn , YCn , ZCn)T in ΣCn is projected into a 2D
position pn = (un, vn)T in ΣIn , then the perspective projection holds as follows

(un, vn) =

(
f
XCn

ZCn
, f
YCn
ZCn

)
(2.4)

where f is the focal length of lens.

2.2 Estimation of the Translational Velocity

Suppose that K frames of image data can be used to estimate the velocity and each frame is
sensed at time tk (k = 1, · · · , K) where tk+1 − tk = ∆t := 1/900 s. Notice that as mentioned
in Preliminary, the number K is less than 10, which corresponds to about 10 ms, a very short
time interval. Therefore we assume that the ball’s translational velocity during this interval is
constant even though the ball flies under the gravity.
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The proposed method of estimating a translational velocity (speed and direction) uses both
K frames of image data sensed at Camera 1 and Camera 2.

Let BP k
b ∈ R3 denote a position of ball’s center at time tk. Once all BP k

b ’s (k = 1, · · · , K)
are estimated, it is easy to see that the most plausible translational velocity Bvb is given by
solving the following least square problem.

min
Bvb,BP̄b

K∑
k=1

{
BP̂ k

b

(
Bvb,

BP̄b
)
− BP k

b

}T {
BP̂ k

b

(
Bvb,

BP̄b
)
− BP k

b

}
where BP̂ k

b

(
Bvb,

BP̄b
)

:= Bvbt
k + BP̄b, and BP̄b is a position of the ball’s center at the time

t = 0.
Therefore it turns out that the original estimation problem is converted into a problem of

how to estimate BP k
b from the kth frame of image data sensed at two cameras. Suppose that(

nukb ,
nvkb
)

(n = 1, 2) is a physical coordinate of the ball’s center in the image coordinate
system ΣIn . It is well known that BP k

b can be reconstructed from both
(
nukb ,

nvkb
)
’s (n = 1, 2)

by using (2.3) and (2.4).
Now an proposed algorithm of estimating

(
nukb ,

nvkb
)

from the kth frame of image data in
ΣIn will be shown. Hereafter the proposed image processing is described without the indices k
and n since it is same for any time and both cameras.

1) Detect four points on the contour of ball in the image data:

Figure 2.4 (a) shows a frame of image data, where relatively bright parts correspond to
the area of ball image. From left to right and from top to down, scan the image data line
by line as shown in Figure 2.4 (a) and search the first pixel coordinate ξ1 = (i1, j1), the
image intensity of which is larger than the prespecified threshold. This pixel coordinate
ξ1 is regarded as a point on the contour of ball. ξ` = (i`, j`) (` = 2, 3, 4) is detected in
the same way as ξ1 = (i1, j1). Scanning and searching for ξ2, ξ3 and ξ4 start from the
upper right, the lower right and the lower left respectively as shown in Figure 2.4 (b), (c)
and (d).

Figure 2.4: Image data and edge points detection

2) Calculate the center of the ball image:

As shown in Figure 2.6, the center of the ball image is presented as the nearest point to
the four perpendicular bisectors between ξ` and ξ`+1 (` = 1, 2, 3, 4) (See Figure 2.5).
Note that ξ5 is regarded as ξ1. It is easy to see that the perpendicular bisector between ξ`
and ξ`+1 is given by

y − j` + j`+1

2
=
i` − i`+1

j`+1 − j`

(
x− i` + i`+1

2

)
.
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Figure 2.5: The perpendicular bisector between points ξl and ξl+1

Therefore the nearest point ξb = (xb, yb) can be obtained by solving the least square
problem as follows.

(xb, yb) = arg min
x,y

4∑
`=1

(y − a`x− b`)2, (2.5)

where

a` =
i` − i`+1

j`+1 − j`
, b` =

i`+1
2 − i`2 + j`+1

2 − j`2

2(j`+1 − j`)
(l = 1, 2, 3, 4) (2.6)

1ξξξξ

4ξξξξ

3ξξξξ

2ξξξξ

bξξξξ

Figure 2.6: Calculation of the ball center on the image

DefineA, b and x as

A =


−a1 1
−a2 1
−a3 1
−a4 1

 , b =


b1

b2

b3

b4

 ,x =

[
x
y

]
. (2.7)

and noting that

4∑
`=1

(y − a`x− b`)2 = (Ax− b)T (Ax− b). (2.8)
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Then, it is easy to see that for x∗ = [xb, yb]
T ,

ATAx∗ −ATb = 0. (2.9)

Therefore,

x∗ = (ATA)−1ATb. (2.10)

Note that the physical coordinate (ub, vb) of the center of the ball image is given as
(ub, vb) = ε(xb, yb).

2.3 Estimation of the Rotational Velocity (Method 1)
An on-line method for measuring the rotational velocity of a flying table tennis ball with

the sensed images from two cameras has been proposed by our previous research [35]. In this
section, the method is summarized briefly for comparing with the method proposed in the later
section. The following notations will be used for estimating the rotational velocity.

BP k
b : the center of ball at time tk in ΣB

BP k
m : the centroid of the mth feature area at time tk in ΣB,m ∈ {1, 2, ...,M}

bP k
m : the centroid of the mth feature area at time tk in Σb

nξkc : the center of ball on the image at time tk in ΣIn(n = 1, 2)
nξkm : the image coordinate corresponding to BP k

m

ωωωω
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x

y
z
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Ball

nI∑
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b∑
x
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Figure 2.7: The position of the feature’s centroid on the ball

In Figure 2.7, the left one shows the 3D position of the centroid of the feature area on
the ball and the right one is the corresponding image coordinate of that feature area’s centroid.
Notice that bP k

m = BP k
m−BP k

b and its corresponding vector on the image is nξkmc = nξkm−nξkc
where nξkm = (nukm,

nvkm)T .
A basic relation between bP k

m and ω ∈ R3 is well-known as

bṖ k
m = ω × bP k

m = −S(bP k
m)ω (2.11)
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where S(bP k
m) ∈ R3×3 is a skew-symmetric matrix corresponding to the cross product of bP k

m.
On the other hand, by substituting (2.3) into (2.4), the kinematics between the centroid of

the feature area BP k
m and the corresponding 2D image coordinate ξkm =

[
1ukm,

1vkm,
2ukm,

2vkm
]T ∈

R4 is given as

nukm =
f

ε

r11
BP k

xm + r12
BP k

ym + r13
BP k

zm + CnPx

r31
BP k

xm + r32
BP k

ym + r33
BP k

zm + CnPz
,

nvkm =
f

ε

r21
BP k

xm + r22
BP k

ym + r23
BP k

zm + CnPy

r31
BP k

xm + r32
BP k

ym + r33
BP k

zm + CnPz
, (2.12)

where rij is the element of CnRB. Differentiating (2.12) under n = 1, 2 leads to

ξ̇km = J(BP k
m)BṖ k

m (2.13)

in which

J(BP k
m) =

∂ξkm
∂BP k

m

=


∂1ukm
∂BPk

xm

∂1ukm
∂BPk

ym

∂1ukm
∂BPk

zm

∂1vkm
∂BPk

xm

∂1vkm
∂BPk

ym

∂1vkm
∂BPk

zm

∂2ukm
∂BPk

xm

∂2ukm
∂BPk

ym

∂2ukm
∂BPk

zm

∂2vkm
∂BPk

xm

∂2vkm
∂BPk

ym

∂2vkm
∂BPk

zm

 ∈ R4×3 (2.14)

is the image jacobian. (2.13) is equivalent to

ξ̇kmc + ξ̇kc = J(BP k
m)(bṖ k

m + BṖ k
b ). (2.15)

Note that ξkc and BP k
b are related by

ξ̇kc = J(BP k
m)BṖ k

b . (2.16)

Substituting (2.16) into (2.15) and combining the result equation with (2.11) lead to

ξ̇kmc = −J(BP k
m)S(bP k

m)ω, (2.17)

which can be discretized as

∆ξkmc = −J(BP k
m)S(bP k

m)ω∆t, (2.18)

where ∆ξkmc = ξkmc − ξk−1
mc .

Finally, the rotational velocity is derived as,

ω = −{J(BP k
m)S(bP k

m)}+ ∆ξkmc
∆t

. (2.19)

Notice that in (2.19), bP k
m can be solved by the relation bP k

m = BP k
m − BP k

b . However, it is
impossible to obtain BP k

m and ∆ξkmc since ξkmc can not find its correspondence in the previous
frame. Here, an on-line method of estimating the rotational velocity is proposed where instead
of considering (2.18) for each feature, (2.18) is regarded as a relation of the average values
∆ξkm̄c,

BP k
m̄ and bP k

m̄ of {∆ξkmc, BP k
m,

bP k
m|m = 1, 2, ...,M}, i.e.,

∆ξkm̄c = −J(BP k
m̄)S(bP k

m̄)ω∆t. (2.20)
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(1) How to get ∆ξkm̄c.

In Figure 2.8, nGk(s, t) ∈ N232×232 is defined as the kth frame of image data in Camera n (n
= 1, 2) and ngk(s, t) ∈ NNgn×Ngn is the segmented 2D image data of the inscribed quadrangle
of the ball at Camera n. Note that the values of nGk and ngk are binarized to (0, 1) with a
suitable threshold. Method 1 estimates the correlation between the kth and (k+1)th images by
minimizing the following performance function:

Vn(nh, nl) :=
1

(Ngn − nh)(Ngn − nl)
×

Ngn−nh∑
s=1

Ngn−nl∑
t=1

(
ngk+1(s, t)− ngk(s+ nl, t+ nh)

)2
.

(2.21)

This operation can be illustrated by using the right of Figure 2.8, where (nhmin, nlmin) is the

nGk

ngk

ngk

ngk+1

Ball image

nlmin

nhmin

Figure 2.8: The segmented 2D image data and the correlation between the two images

solution of the correlation. In fact, (nhmin, nlmin) is the best horizontal and vertical shifts that
the sensed (k+1)th frame of image data matches the sensed kth frame of image data of Camera
n. Then, the representative image displacement ∆ξkm̄c is expressed as:

∆ξkm̄c = [1hkmin,
1lkmin,

2hkmin,
2lkmin]T . (2.22)

(2) How to get BP k
m̄ and bP k

m̄.

Firstly, as shown in Figure 2.9, the centroids of the feature areas on the 2D images are
calculated by

nξkf =
Σs,t∈D

nGk(s, t)[s, t]T

Σs,t∈DnGk(s, t)
− nξkc , (2.23)

where

D :=

{
(s, t)|

[
nξkc −

Ngn

2

]
≤ s, t ≤

[
nξkc +

Ngn

2

]}
and [.] stands for the integer as an argument rounded off.

Secondly, the representative 3D position BP k
m̄ is calculated by using the centroids 1ξkf and

2ξkf .
Thirdly, BP k

m̄ is modified to a position on the surface of the ball as shown in [35] and
bP k

m̄ = BP k
m̄ − BP k

b .
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Representative 
position

Centroid of feature areas 

Figure 2.9: The representative position of the feature areas

The advantage of this method is that the computation cost is low since feature matching is
not needed. However, the method does not measure the rotational velocity with high accuracy
[21] because the method does not take into the consideration of the rotational axis of the ball
which causes a rotation of image data in the image coordinate.

2.4 Estimation of the Rotational Velocity (Method 2)

In this section, we also propose an algorithm of estimating the rotational velocity by using
theK frames of image data under the condition that the image processing mentioned in Section
2.2 has been already done, i.e., all the values below have been known and so they can be used
to estimate the rotational velocity.

BP k
b : the center of ball at time tk in ΣB

CnP k
b : the center of ball at time tk in ΣCn

Bvb : the estimated translational velocity in ΣB

Cnvb : the estimated translational velocity in ΣCn

The proposed method belongs to the image registration method. Our method uses the K
frames of image data sensed by one camera, say Camera 2, under the above condition. In
addition, hereafter almost all things are described in the camera coordinate system ΣC2 . There-
fore, in this section, we use simple notations P k,P k

b and vb instead of C2P k, C2P k
b and C2vb

respectively.
Suppose that as shown in Figure 2.10, an specified point on the ball’s surface, which is

a fixed point in the ball coordinate system Σb, is represented by P k at time tk in the camera
coordinate system ΣC2 . Then it is well known that

Pk+1 − Pk+1
b = Rω

(
Pk − Pkb

)
(2.24)

Rω = exp

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

∆t (2.25)
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Figure 2.10: Ball’s rotation with translation in the camera coordinate system

where ω = (ωx, ωy, ωz)
T is the rotational velocity.

The proposed method consists of two sorts of image processings; the first one is to construct
the estimated (k + 1)th frame of image data by using the sensed kth frame of image data and
a candidate of rotational velocity ω. The second one is to search the most plausible rotational
velocity ω∗ by solving a least square problem with an objective function given as a difference
between the estimated image data and the sensed image data all over the frames. Hereafter
those two processings will be explained in detail.

2.4.1 Construction of the estimated (k + 1)th frame of image data

Let P ∈ R3 denote a point on the ball’s surface in the camera coordinate system ΣC2 and
this point P is assumed to be projected into the physical coordinate p ∈ R2 in the image
coordinate system ΣI2 .

Then the mapping P → p is just the perspective projection given as (2.4). In fact that
P = (XCn , YCn , ZCn)T and p = (un, vn)T in (2.4). Moreover, it is straightforward to see that
the inverse mapping p→ P exists because P can be solved in (2.4) with the condition that P
locates on the ball’s surface, i.e., ‖P − Pb‖ = r where Pb is the ball’s center.

Figure 2.11 displays a flow of constructing the estimated (k + 1)th frame of image data.

Physical coordinate transformation from the kth frame to the (k + 1)th frame

By sensing the kth frame of image data, we obtain the image intensities of image data. The
image intensity at the pixel coordinate (i, j)T ∈ ZI is denoted by Ik(i,j).

When the estimated (k + 1)th frame of image data are constructed by using the kth frame
of image data and a candidate of rotational velocity, in order to express interim image data, the
image intensity at the physical coordinate p := (u, v)T ∈ RI , which is described by Ik+1(p),
is needed.

Given the kth frame of image data, we pay attention to the image data in the inscribed
quadrangle of the ball image which is shown as a black quadrangle in Figure 2.11. The set of
all pixel coordinates inside the black quadrangle is denoted by

Zk
Iq :=

{
(i, j)T ∈ ZI

∣∣ ikminq ≤ i ≤ ikmaxq, j
k
minq ≤ j ≤ jkmaxq

}
.
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Associated with a pixel coordinate (i, j) ∈ Zk
Iq, the 3D point on the ball’s surface which is

projected into (i, j) is denoted by P k
(i,j) (See Step 1 in Figure 2.11).

In (2.24) and (2.25) with P k replaced by P k
(i,j) and a candidate of rotational velocity ω,

we can obtain P k+1 as a function of (i, j) and ω, which is denoted by P k+1
(i,j) (ω). Thus our

estimation is that the point P k
(i,j) moves to the point P k+1

(i,j) (ω) at time tk+1 (See Step 2 in Figure
2.11).

According to (2.4), the 3D point P k+1
(i,j) (ω) is projected into a 2D point with the physical

coordinate (u, v)T . This physical coordinate is denoted by p(i,j)(ω) because it is a function of
(i, j) and ω (See Step 3 in Figure 2.11).

From the above observation, we conclude that under the rotational velocity ω, the point,
which is projected into the pixel coordinate (i, j) in the kth frame, is projected into the physical
coordinate p(i,j)(ω) in the (k + 1)th frame. Therefore, it is reasonable that the image intensity
of the (k + 1)th frame is estimated as follows.

Ik+1
(
p(i,j)(ω)

)
= Ik(i,j) for ∀(i, j) ∈ Zk

Iq (2.26)

Recall that the pixel coordinate (i, j) is discrete and the physical coordinate (u, v) is continuous.
Therefore, notice that in general, p(i,j)(ω) has no corresponding pixel coordinate.
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Figure 2.11: Flow of constructing the estimated (k + 1)th frame of image data
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Image resampling for the estimated (k + 1) th frame of image data

As mentioned above, the constructed (k+ 1)th frame of image data given by (2.26) can not
be compared with the sensed (k+ 1)th frame of image data because the sensed frame of image
data have the intensities at the pixel coordinates. On the other hand, as shown in Figure 2.12,
almost all p(i,j)(ω)’s (denoted by blue points) do not correspond to any the pixel coordinates
(i, j)’s (denoted by red points).

Therefore the estimated (k + 1)th frame of image data which have intensities at the pixel
coordinate must be constructed from Ik+1

(
p(i,j)(ω)

)
’s (see Step 4 in Figure 2.11), which is

a sort of interpolation. The constructed intensity at the pixel coordinate (i, j) is denoted by
Îk+1

(i,j)(ω).
There are many ways of interpolations [21] and here the nearest point method is employed.
Associated with the pixel coordinate (i, j) in the image coordinate system ΣI2 , define its ε

neighborhoodN(i,j)as

N(i,j) :=
{

(u, v)T ∈ RI

∣∣ ∥∥(u, v)T − ε(i, j)T
∥∥ < ε

}
. (2.27)

And also define the set of all p(i,j)’s as

Sk+1(ω) :=
{
p(i,j)(ω)

∣∣ (i, j) ∈ Zk
Iq

}
(2.28)

and then define

NSk+1
(i,j)(ω) := N(i,j) ∩ Sk+1(ω). (2.29)

The nearest point method assigns the estimated image intensity Îk+1
(i,j)(ω) as

Îk+1
(i,j)(ω) = Ik+1

(
p(`∗,m∗)(ω)

)
(2.30)

where p(`∗,m∗)(ω) ∈NSk+1
(i,j)(ω) is the nearest point to the pixel coordinate (i, j), i.e.,

p(`∗,m∗)(ω) = arg min
p∈NSk+1

(i,j)
(ω)

∥∥p− ε(i, j)T∥∥ . (2.31)

Note that ifNSk+1
(i,j)(ω) = φ, then Îk+1

(i,j)(ω) is not defined.

2.4.2 Estimation of the most plausible rotational velocity
In order to search the most plausible rotational velocity ω∗, a least square problem is for-

mulated as minω E(ω), where the objective function is given by

E(ω) :=
1

K − 1

K−1∑
k=1

1

|IJk+1|
∑

(i,j)∈IJk+1

{
Îk+1

(i,j)(ω)− Ik+1
(i,j)

}2

(2.32)

with IJk+1 :=
{

(i, j)
∣∣∣NSk+1

(i,j)(ω) 6= φ
}

.
The conjugate gradient method is applied to solve the above least square problem because

the conjugate gradient method does not need to calculate the Jacobian at every iteration, which
saves storages and computation time.
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Figure 2.12: Projection of Pk+1
(i,j)(ω) to p(i,j)(ω) on the later frame

The line search algorithm updates the estimated rotational velocity ωqh as follows.
ωqh = ωh + αqhdh
ωh+1 = ωh + αqhh dh
α0
h+1 = αqhh

(2.33)

where h ∈ N and dh ∈ R3 is the descent direction of E(ω), i.e.,

dh =

{
−gh for h = 0
−gh + βhdh−1 for h ≥ 1

(2.34)

and gh = ∂E(ω)
∂ω
|ωh

.
βh is defined by the Polak-Ribiere-Polyak method [56]. Note that βh is limited in [0,1].
αqh > 0 represents the step size, which starts from an initial step size α0

0. While searching
along the direction dh, αqh is updated as αq+1

h with q ∈ N and this process terminates at q = qh
where αqhh satisfies the weak Wolfe-Powell rule [56]. Notice that the initial values ω0, α0

0 are
given.

The iteration number IN is defined as the total sum of the step size searching numbers in
all the descend directions.

IN =
∑
h

qh (2.35)

In the step size searching process, either if the step size αqh < αmin or if E(ω) < Emin and
‖gh‖ < gmax, the iteration terminates. In addition, we set α0

0 = 20 , qh < qmax and h < hmax
to avoid too much process time.

2.5 Experimental Results
This section demonstrates two kinds of experimental results; one is carried out with a rota-

tion machine and another is carried out with a catapult machine.
As you can see from Figures 2.3, 2.13, and 2.19, each black blob on the ball surface is

painted in different shape each other, e.g., thick line, rectangular, ellipse, etc. It is paid attention
in the experiments that the balls have almost the same patterns on their surfaces *.

*The estimation precision would change when the ball with different shapes of blobs is used. The optimal
pattern of shapes for estimating ball’s velocity is not known and it is a future problem.
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The light condition is also important in the experiments when the high speed cameras are
used. In the case of experiments with the rotation machine, one halogen lamp (300 W) is
located about 0.5 m far from the sensed ball. In the case of experiments with the catapult
machine, two halogen lamps (300 W) are used, one of them is located about 0.5 m far from the
sensed ball and the other is located about 1 m far from the sensed ball. Those arrangements are
so decided that there is a shade as few as possible around the contour of the ball images *. The
background is set in black color.

In all the cases, six frames of image data are used to estimate the translational and rotational
velocities, i.e. K = 6, because it is realized that if K ≤ 4, the proposed method sometimes
provides unstable estimated velocities.

In the conjugate gradient method used for estimating the rotational velocity, the initial value
of rotational velocity is set as ω0 = 1000

(
1√
3
,− 1√

3
, 1√

3

)
rpm. In addition, the parameters with

which the iteration is terminated are set as follows; αmin = 0.5, Emin = 1000, gmax =
3, qmax = 4 and hmax = 6.

2.5.1 Experiments with a rotation machine
Figure 2.13 shows a setup of experiment using a rotation machine. A motor which drives a

rotational axis of the machine is controlled by PC through a Motion Controller and the rotation
machine can give a rotation to a table tennis ball with any rotational velocity as you like.

In the experiment with the rotation machine, the ball has no translational velocity. Therefore
this experiment aims exclusively to verify how well the proposed method of estimating the
rotational velocity works. However, the on-line algorithm which includes the image processing
of both translational and rotational velocities is used even in this experiment.

Motion controller

Rotational 
axis

Camera 1

P
C

Camera 2

Ball
Motor

Figure 2.13: The rotation machine

In the experiments, the rotational axis of the ball is set as two cases; Axis 1: ω/‖ω‖ =
(−0.038, 0.999,−0.006) and Axis 2: ω/‖ω‖ = (−0.557, 0.814, 0.165). In both cases, the
rotational speed ‖ω‖ is set as four cases; from 1500 rpm to 3000 rpm with the increment of
500 rpm.

Before showing the experimental results, we will discuss the upper bound of the rotational
speed that can be accurately estimated by the setup of the paper. The frame rate of the high

*The shade causes some errors for detecting the four points on the contour of the ball in the image data (See
the algorithm in Section 2.2), which makes the precision of measuring the ball’s velocity worse.
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speed camera is 900 Hz and one side of the inscribed quadrangle in the ball image (See Figure
2.3) seems to be about a quarter of the ball’s great circle. Therefore if the rotational speed is
over than 13500 rpm (=900×60×1

4
), (k + 1)th frame of image data cannot overlap kth frame

of image data, which means that the proposed method cannot work. It is easy to imagine that
the greater the overlap of two consecutive frame of image data, a better measurement precision
is obtained. If the overlap should be more than two thirds or three quarters of the inscribed
quadrangle, the upper bound of the rotational speed that can be estimated by the setup of the
paper is about 4500 rpm or 3400 rpm, respectively.

Figure 2.14 shows the experimental results on the estimated rotational speed, where Figure
2.14 (a) and (b) are respectively the cases of axis 1 and 2, and also the black pluses are given by
the proposed method (Method 2); the green circles are given by the previous method (Method
1) [35], respectively. It shows that 89% of the estimation errors are smaller than 200 rpm
irrespective of both rotational axis and speed. In addition, the proposed method (Method 2)
achieves better performances than the previous method (Method 1) [35].
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Figure 2.14: The estimated rotational speed

The experimental results on the estimated rotational axis are shown in Figure 2.15, where
Figure 2.15 (a) and (b) are respectively the cases of axis 1 and 2. The results in those figures
are illustrated by the inner product between the real axis and the estimated axis; suppose that
ωreal and ωest are respectively the real and the estimated rotational velocities, then the results
show the inner product 〈ωreal/‖ωreal‖,ωest/‖ωest‖〉. Note that it is in a range of [-1, 1] and
the inner product 1 means the estimated axis is completely equal to the real one. As shown
in Figure 2.15, the black pluses are given by Method 2; the green circles are given by Method
1 [35]. The results display that 75% of the inner products in the proposed method are greater
than 0.97, which means the estimation errors are less than 15 deg. Those results are also much
better than those of Method 1 [35].

The processing time with PC (Operating System: Windows XP sp2; CPU: Intel(R) Xeon(R)
E5430, 2.66GHz; Physical Memory: 2.00GB RAM) is in the range [30, 65] ms, which depends
on the iteration number IN defined in (2.35).

We assume that a table tennis ball reaches the robot in 500∼700 ms after the opponent
player hits the ball. As mentioned in Chapter 1, besides of the proposed image processing,
i.e. the estimation of the translational and rotational velocities of the ball, the following two
processes are needed.

• Predict the ball’s trajectory by using the data of estimated ball’s velocities, the aerody-
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Figure 2.15: The estimated rotational axis

namic model and collision models. (It is known by our research group that this process
takes about 20 ms.)

• Plan the robot motion by the data of ball’s trajectory and a given destination of returned
ball and then control the robot to the hit position at a specified time with a specified
posture of racket. (It is known by our research group that this process takes about 400
ms.)

Therefore the total processing time would be less than 500 ms, thus the proposed algorithm
of estimating the ball’s velocities is fast enough for the real-time situation.

2.5.2 Experiments with a catapult machine
In this experiment, a table tennis ball is shot from a ball catapult machine (Figure 2.16).

This machine has 10 speed scales marked with the number from 1 to 10 and the ball catapults
out with higher speeds of both translation and rotation when the scale is set bigger. And also
the machine can control the rotational axis of the ball such as topspin, backspin, etc.

The experiment measures the translational and rotational velocities of the ball immediately
after the ball catapults out from the machine. The machine’s speed scale is set as three cases of
the marks 3, 4 and 5 which correspond to almost same speeds as human players hit with. The
rotational axis is set as topspin.

Tables 2.1, 2.2 and 2.3 show the results of both translational and rotational velocities esti-
mated by the proposed method in the case of the speed scale 3, 4 and 5, respectively, where
two trials, Trial 1 and Trial 2, are shown in Table 2.2 of the speed scale 4. All the estimated
velocities seem reasonable and the processing times are short enough. Note that Trial 1 and
Trial 2 in Table 2.2 have almost same results but those are not exactly same. This also seems
to be reasonable, because the catapult machine set at the same scale shoots balls with almost
same translational and rotational velocities, but those velocities are not exactly same.

Figure 2.17 shows the iteration processes of the objective function E(ω) defined in (2.32)
and we can see that the objective functions decrease greatly in about 10 iterations and converge
to constants less than about 900 in all the cases. Note that the objective function with 900
corresponds to that the residual image, (Ik+1 − Îk+1), has the absolute value of 30 every pixel
on the average. Figure 2.18 describes the iteration processes of the estimated rotational speed,
from which we can say that the estimated speeds also converge to the stable values in about 10
iterations in all the cases.
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Camera 1

Automatic Ball 
Catapult

Camera 2

Figure 2.16: Experimental system with catapult machine

Table 2.1: The estimated results on speed scale 3
Translational velocity ‖vb‖ × vb

‖vb‖
[m/s] 5.57 × (-0.97, 0.12, 0.19)

Rotational velocity ‖ω‖ × ω
‖ω‖ [rpm] 2737 × (0.13, 0.99, 0.06)

Processing time [ms] 32
Iteration number IN 8

Table 2.2: The estimated results on speed scale 4
(Trial 1)
Translational velocity ‖vb‖ × vb

‖vb‖
[m/s] 6.37 × (-0.98, 0.15, 0.15)

Rotational velocity ‖ω‖ × ω
‖ω‖ [rpm] 3188 × (0.10, 0.99, -0.09)

Processing time [ms] 47
Iteration number IN 10

(Trial 2)
Translational velocity ‖vb‖ × vb

‖vb‖
[m/s] 6.25 × (-0.99, 0.08, 0.06)

Rotational velocity ‖ω‖ × ω
‖ω‖ [rpm] 3253 × (0.01, 0.99, 0.04)

Processing time [ms] 47
Iteration number IN 10

Table 2.3: The estimated results on speed scale 5
Translational velocity ‖vb‖ × vb

‖vb‖
[m/s] 7.29 × (-0.98, 0.14, 0.17)

Rotational velocity ‖ω‖ × ω
‖ω‖ [rpm] 3630 × (0.14, 0.99, 0.02)

Processing time [ms] 47
Iteration number IN 12

Compared Trial 1 with Trial 2 in the case of the speed scale 4, Figure 2.17 shows that the
final value of the objective function is bigger in Trial 2 than in Trial 1, but Figure 2.18 shows
that the estimated rotational speeds converge to plausible values in both cases. Now we will
compare the image data obtained by the proposed method for Trial 1 and Trial 2.

Figures 2.19 and 2.20 demonstrate the comparison of an estimated image data with a sensed
one in Trial 1 and Trial 2, respectively in the case of the speed scale 4.

In each figure, (a) represents the sensed kth frame of image data and (b) is the image
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Figure 2.17: The iteration process of the objective function
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Figure 2.18: The iteration process of the estimated rotational speed

intensities, Ik, in the inscribed quadrangle of the ball image (a). (c) is the estimated image
intensities, Îk+1, of (k + 1)th frame by using (b) and the estimated rotational velocity in Table
2.2. On the other hand, (d) represents the sensed (k + 1)th frame of image data and (e) is the
image intensities, Ik+1, in the inscribed quadrangle of the ball image (d). (f) is the residual
image obtained by (Îk+1−Ik+1). We can see that most of the value in (f) are very small, which
means the proposed method works well. Compared Figure 2.20’s (f) with Figure 2.19’s (f), the
values are larger in Figure 2.20 than in Figure 2.19. (Recall that the final value of the objective
function in Trial 2 is greater than one in Trial 1.) This may be caused by some shades on the
ball surface, which you can see as shades in the area of warm color in (b) and (e) of Figure
2.20.

From the above observations, it may be possible to say that the shade on the ball surface af-
fects the final values of the objective functions, but the proposed least square method suppresses
that effect to estimate the rotational velocity.
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Figure 2.19: Image transformation result on Trial 1, the speed scale 4
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Figure 2.20: Image transformation result on Trial 2, the speed scale 4

2.6 Summary

In this chapter, we proposed the on-line algorithm for measuring the translational and rota-
tional velocities of a table tennis ball. Figure 2.21 displays the estimation process in detail.

With respect to estimating the translational velocity, one of the important processes is how
to estimate the center of the ball image. The proposed method estimates the ball’s center on
the image by using the nearest point to the perpendicular bisectors between four points on the
contour of the ball image.

The rotational velocity is estimated by the image registration method, where the method of
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estimating (k + 1)th frame of image data is proposed in detail by using the sensed kth frame
of image data and the candidate of rotational velocity. And also in order to search the most
plausible rotational velocity, the conjugate gradient method is applied to minimize the intensity
residuals between the estimated and the sensed frames.

The experimental results with the rotation machine show that 89% of the estimation errors
of the rotational speeds are smaller than 200 rpm and 75% of the estimation errors of the
rotational axes are less than 15 deg. The estimation error may be caused by two reasons: (1)
the intensity difference of the same feature between the previous and the later frames; (2) the
estimation accuracy of the ball’s center. Moreover, the experimental results with the catapult
machine demonstrate that both the translational and rotational velocities have been estimated
well and the processing time is in the range of [30, 65] ms. Therefore, the proposed method is
accurate and fast enough to realize a table tennis playing robot.
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Figure 2.21: The process of estimating the translational and rotational velocities



Chapter 3

Physical Models for Predicting the Motion
of the Ball

In this chapter, three physical models of the ball motion presented by our research group
[36, 38] will be introduced (aerodynamics model, table rebound model and racket rebound
model) and some experimental data will be displayed to verify the effectiveness of the proposed
models. These three models are built by considering both the ball’s translational velocity and
rotational velocity, which are the basis of determining the racket striking velocity and posture
for controlling the returning ball’s rotational velocity (Topic of Chapter 4).

3.1 Preliminary

Predicting the ball’s motion trajectory is the first essential task for the control system since
the robot has to determine a striking position, striking time and the ball’s velocities just before
striking. Figure 3.1 shows the process of the trajectory prediction from the point the opponent
shots out the ball to the point the racket strikes the ball (the blue dash line).

Trajectory prediction by 
control system

Sensing ball’s 
position and velocity 

by vision system

Racket striking posture and 
velocity determination by 

control system

Racket rebound model

Table rebound model

Figure 3.1: Planning the ball’s motion trajectory

It is easy to see that there are two basic models needed for planning the ball’s motion
trajectory before striking. One is for the flight of the ball in the air and another is for the
collision between the ball and the table, which are named as the aerodynamics model and the
table rebound model, respectively (See Figure 3.1). Furthermore, at the striking point, in order
to determine the racket’s velocity and posture at the striking time for returning the ball to a



38 Chapter 3

desired position, it is necessary to build a relation between the racket’s striking state and the
ball’s states just before and after the striking, which is named as a racket rebound model. These
three physical models have been presented in our previous research [36, 37, 38].

The presented models have one important improvement comparing with the previous re-
search on table tennis robot [6, 58, 60] that they [36, 37, 38] are exact analytical models for
the ball motion since not only the ball’s translational velocity but also the rotational velocity
are included in the models. It is well-known that “table tennis ball is much more difficult than
other ball playing games such as tennis ball, base ball, et.al.”. Actually, this difficulty just
comes from the ball’s various kinds of rotational velocities. Therefore, in order to develop a
table tennis robot which has high playing techniques, the rotational velocity of the ball should
not be ignored in the models.

The followings are some important coordinates and variables which will be used in this
chapter for describing the rebounding phenomena.

ΣB : on a corner of the table (Same as Chapter 2);

ΣR : on the center of the racket and the z axis is vertical to the racket′s plane;

Σb : on the center of the ball (Same as Chapter 2).

In the aerodynamics model, pb ∈ R3 is the position of the ball’s center in ΣB. In the rebound
models (table and racket), (vb,ωb) and (v′b,ω

′
b) express the ball’s translational and rotational

velocities just before and after rebounding. However, in the table rebound model, the variables
are under ΣB; in the racket rebound model, the variables are under ΣR, respectively.

z

z
x

y
BΣ

RΣ

x
z

y

xy

bΣ

Figure 3.2: Coordinate systems of table, racket and ball

It should be noted that the rebound models (table, racket) are constructed based on the
assumption that the table tennis ball does not deform when rebounding. In the table rebound
model, the friction determines the type of the contact during the impact. In the racket rebound
model, the elastic has the dominant effect and there is the assumption that the kinetic energy of
the contact velocity is stored as the potential energy because of the elasticity.

3.2 Aerodynamics Model
When a table tennis ball flies in the air with translational and rotational velocities, the ball’s

motion is mainly affected by three forces: gravity, drag force and Magnus force, which can be
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given as follows.

p̈b(t) = −g − CD(t)
ρ

m
Sb‖ṗb(t)‖ṗb(t) + CM(t)

ρ

m
Vbω × ṗb(t) (3.1)

where pb(t) ∈ R3 is the ball’s position at the time t, g = [0, 0, g]T with the acceleration of
gravity g = 9.8 m/s2, Sb = 1

2
πr2, and Vb = 4

3
πr3. Notice that ω = [ωx, ωy, ωz]

T ∈ R3

is the ball’s rotational velocity which is here assumed constant when the ball flies in the air.
The parameters m and ρ are the ball’s mass and the air density; m = 2.7 × 10−3 kg and
ρ = 1.184 kg/m3(25◦C).

The second and third terms in the right of (3.1) are the drag force and Magnus force (See
Figure 3.3) in whichCD(t) andCM(t) are the coefficients of them respectively, which are given
by

CD(t) = aD + bDh(ṗb(t),ω), CM(t) = aM + bMh(ṗb(t),ω) (3.2)

where
h(ṗb(t),ω) =

ṗbxωy − ṗbyωx√
(ṗbxωy − ṗbyωx)2 + (ṗ2

bx + ṗ2
by)ω

2
z

(3.3)

and aD = 0.505, bD = 0.065, aM = 0.094 and bM = −0.026.

Airflow 
ω

Magnus force

Dragbɺp

Figure 3.3: Aerodynamic model

3.3 Table Rebound Model

Figure 3.4 shows a ball collides with and rebounds from the table in which (vb,ωb) and
(v′b,ω

′
b) represent the translational and rotational velocities of the ball’s center just before and

after the rebound in ΣB.

B∑
x

z y

b′v b′ωωωω
bωωωω

bv

Figure 3.4: Ball’s velocities just before and after rebounding from the table
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Actually, v′b just after rebounding changes due to the friction and the rotational velocity ωb
as shown in Figure 3.5. The yellow and the red circles represent the cases of the top and back
spins respectively and the ball velocities just before the rebound are same. It is easily confirmed
that the velocity v′bz in the case of the back spin is greater than in the case of the top spin. In
addition, the rotational velocity ω′b also changes due to the friction. Therefore, in order to pre-
dict the ball trajectory after the rebound from the table, it is necessary to consider the friction.
In fact, during the infinitesimal interval of this collision, rolling, friction and restitution, all of
these happen simultaneously. Hence, v′b and ω′b are determined by a complicated function of
vb and ωb.

Figure 3.5: Difference of v′b when ωb is the top or back spin

Now let the contact velocity vbT be defined by

vbT :=
[
vbx vby 0

]T
+ ωb × r =

 vbx − rωby
vby + rωbx

0

 (3.4)

where r = [0 0 − r]T ∈ R3 and r ∈ R+ is the radius of the ball. For the modeling, the
following assumptions are made.

Assumption 1: During the impact of the rebound, the ball is in a point contact with the
table. This means that any moment around z-axis does not affect on the ball during the impact.

Assumption 2: The differences between translational and angular momentums before and
after the rebound equal the impulses at the rebound.

mv′b −mvb = P (3.5)

Iω′b − Iωb = r × P (3.6)

where m is the ball’s mass and I = 2
3
mr2 is the moment of inertia. P ∈ R3 is the impulse in

the translational direction and r × P is given as the impulse of the rotation.

Assumption 3: In the z direction, there holds the following simple relationship:

v′bz = −etvbz (3.7)

where et is the coefficient of restitution between the ball and the table.
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Assumption 4: The impulse in the x and y directions Pxy = [Px Py 0]T ∈ R3 is given by

Pxy = −λ vbT
‖vbT‖

, 0 ≤ λ ≤ µ|Pz|, (3.8)

where µ is the dynamic coefficient of friction between the ball and the table.

Assumption 5: The contact velocities vbT and v′bT just before and after the rebound are in
the same direction. That is, the following relation holds,

v′bT = νvbT , ν ≥ 0, (3.9)

where either (ν 6= 0, λ = µ|Pz|) or (ν = 0, 0 ≤ λ < µ|Pz|) happens.

Assumption 4 and Assumption 5 are necessary to express that v′bT may be reduced in its
magnitude from vbT , but the direction cannot be changed. Assumption 4 means that the impulse
in the x and y directions is related to the one in the z direction, where the friction force in the x
and y directions is proportional to fz (the normal force) with µ and its direction is the opposite
one of vbT as shown in Figure 3.6(a). In (3.8), λ is the magnitude of Pxy, which is equal to
µ|Pz| since v′bT cannot become zero. If v′bT could reach to the opposite direction of vbT under
λ = µ|Pz|, then v′bT should be zero and λ should be among [0, µ|Pz|) .

bv

bω zf

bTvzfµ
b′v

b′ω zf

bT′vzfµ

b′v

b′ω zf

0bT′ =v

Before 
Rebound 

After 
Rebound 

bv

bω zf

bTvzfµ

After 
Rebound 

Before 
Rebound 

(a) 0 and | |s zPν λ µ> =

(b) 0 and 0 | |s zPν λ µ≤ < <

Figure 3.6: Phenomena during an infinitesimal interval of the rebound

The impulse in the z direction can be derived by combining (3.7) and (3.5):

Pz = −m(1 + et)vbz. (3.10)

In the x and y directions, the contact velocity v′bT after the rebound is derived by (3.4) with
(3.5), (3.6) and Assumption 4:

v′bT = −λ(
1

m
+
r2

I
)
vbT
‖vbT‖

+ vbT = ν(λ)vbT , (3.11)

where

ν(λ) = − λ

‖vbT‖
(

1

m
+
r2

I
) + 1. (3.12)
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Combining (3.10), I = 2
3
mr2 and (3.12), let νs be defined as

νs = ν(µ|Pz|) = 1− 5

2
µ(1 + et)

|vbz|
‖vbT‖

. (3.13)

It follows that (A) if νs > 0, ν = νs and λ = µ|Pz|; (B) if νs ≤ 0, ν = 0 and

λ = ||vbT ||/(
1

m
+
r2

I
) =

2

5
m||vbT ||. (3.14)

For the case (A), i.e., νs > 0, substituting (3.8) with λ = µ|Pz| and (3.10) into (3.5) and
(3.6), we can obtain the relations of the translational and rotational velocities before and after
the rebound,

v′b = Avvvb +Avωωb, (3.15)

ω′b = Aωvvb +Aωωωb, (3.16)

where

Avv :=

 1− α 0 0
0 1− α 0
0 0 −et

 ,Avω :=

 0 αr 0
−αr 0 0

0 0 0

 ,
Aωv :=

 0 −3α
2r

0
3α
2r

0 0
0 0 0

 ,Aωω :=

 1− 3α
2

0 0
0 1− 3α

2
0

0 0 1

 ,
α := µ(1 + et)

|vbz|
‖vbT‖

. (3.17)

For the case (B), i.e., νs ≤ 0, by using λ = 2
5
m‖vbT‖ and the similar calculation of the case

(A), we can get the coefficient matrices of (3.15) and (3.16) as

Avv :=

 3
5

0 0
0 3

5
0

0 0 −et

 ,Avω :=

 0 2r
5

0
−2r

5
0 0

0 0 0

 ,
Aωv :=

 0 − 3
5r

0
3
5r

0 0
0 0 0

 ,Aωω :=

 2
5

0 0
0 2

5
0

0 0 1

 . (3.18)

Notice here the parameters of the ball are m = 2.7 × 10−3 kg and r = 2.0 × 10−2 m. The
dynamic coefficient of friction is µ = 0.25 and the coefficient of restitution between the ball
and the table is et = 0.93, which are obtained by the experimental data [36].

3.4 Racket Rebound Model
Figure 3.7 shows an example of the ball rebounding from the racket rubber. The green

circles represent the same point on the ball. It is confirmed that the rotational velocity about
the axis normal to the image plane changes to the inverse direction after the rebound. This
implies that unlike the collision between the ball and the table, v′bT can change the direction
from vbT in the collision between the ball and the racket. It can not be explained by only using
the friction and the same of the table rebound model. Actually, the rubber stores elastic energy
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Figure 3.7: Rebound of the ball from the racket rubber

at the collision process. In order to achieve desired ball trajectory after the rebound from the
racket, it is necessary to consider this phenomenon.

Figure 3.8 shows the rebound between the ball and the racket rubber in which (vb,ωb) and
(v′b,ω

′
b) represent the translational and rotational velocities of the ball’s center just before and

after the striking with respect to the frame ΣR.

bω

bω′

bv

bv′

x

y

z

RΣ

x

y

z

BΣ

Figure 3.8: Racket rebound model

Assumptions 1-3 are also made here.
Instead of assumptions 4 and 5, in order to express the effect of the elasticity parallel to the

surface, we model the tangent motion of the racket rubber as the motion of the virtual mass mα

with the spring ks and the displacement s(t) ∈ R3 as shown in Figure 3.9. Notice that mα is
the equivalent mass consisting of the mass of the ball and the deformed area of the rubber. For
the model, we make the following assumption.
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Figure 3.9: Visual spring model parallel to the surface

Assumption 4’: The impulse Pxy ∈ R3 in the x and y directions is given as

Pxy = −kpvbT , (3.19)

where kp is a constant fixed from the experimental data.
This assumption is comming from the following consideration.
Imagine that the kinetic energy of the visual mass is conserved as the elasticity energy

without any dissipation. Suppose that smax = [sxmax, symax, 0]T ∈ R3 is the maximum dis-
placement of the virtual mass with the same direction of vbT and the rubber’s elasticity is
uniform in any direction with its stiffness ks. Let the infinitesimal interval of the collision
be T , if the displacement s(t) has a constant velocity vs = smax

T
, then it is easy to see that

s(t) = vst(0 ≤ t ≤ T ) and

Pxy =

∫ T

0

−kss(t)dt = −ksvs
∫ T

0

tdt = −1

2
ksTv

2
s = −1

2
ksTsmax. (3.20)

On the other hand, from

1

2
mα‖vbT‖2 =

1

2
ks‖smax‖2,

vbT
‖vbT‖

=
smax
‖smax‖

, (3.21)

we get

smax =

√
mα

ks
vbT . (3.22)

Therefore,

Pxy = −1

2
ksT

√
mα

ks
vbT = −kpvbT , (3.23)

where
kp =

1

2
T
√
mαks. (3.24)

From assumptions 1-3, i.e., (3.5)-(3.7) and assumption 4’, i.e., (3.20), we obtain the Racket
Rebound Model in the frame ΣR as

v′b = Avvvb +Avωωb, (3.25)

ω′b = Aωvvb +Aωωωb, (3.26)



3.5 Experimental Verification of the Three Models 45

where

Avv :=

 1− kpv 0 0
0 1− kpv 0
0 0 −er

 ,Avω := kpv

 0 r 0
−r 0 0
0 0 0

 ,
Aωv := kpω

 0 −r 0
r 0 0
0 0 0

 ,Aωω :=

 1− kpωr2 0 0
0 1− kpωr2 0
0 0 1


and

kpv :=
kp
m
, kpω :=

kp
I
. (3.27)

The parameters er = 0.73, kpv = 0.615 and kpω = 2570 are obtained from experiments [36] .
Now, we will consider the model (3.25) and (3.26) in the frame ΣB. Suppose the racket’s

striking posture and velocity are given by (α, β) and BV in ΣB, respectively. Then, the racket
rebound model can be written as[

RT
R 0

0 RT
R

] [
Bv′b − BV

Bω′b

]
=

[
Avv Avω

Aωv Aωω

] [
RT
R 0

0 RT
R

] [
Bvb − BV

Bωb

]
(3.28)

where Bvb and Bv′b are the ball’s translational velocities in ΣB just before and after the striking,
and Bωb and Bω′b are the ball’s rotational velocities in ΣB just before and after the striking. RR

is the rotational matrix from ΣB to ΣR, which is given by

RR =

 cos β sin β sinα sin β cosα
0 cosα − sinα

− sin β cos β sinα cos β cosα

 .

3.5 Experimental Verification of the Three Models

3.5.1 The case of the aerodynamics model
In order to identify the coefficients of the drag force and Magnus force, (CD, CM) in the

aerodynamics model (3.1), the ball’s rotational velocity ω is assumed to be constant during the
flying. This assumption has been verified in [37]. The ball position pb ∈ R3 is measured widely
by two middle speed cameras (150 Hz) of Radish System (Library, Co.). The coefficients are
identified in [37, 39] by minimizing the difference of the trajectories of the measured ball
and the numerical solution of the aerodynamics model (See Figure 3.10) with the following
objective function:

min
C
V (C), (3.29)

where C := [CD, CM ]T and

V (C) :=
Nt∑
j=1

Vj(C)

Nt

, Vj(C) :=

Nj∑
i=1

1

Nj

‖ pbj(ti)− p̂bj(ti,C) ‖2

in which Nt is the number of all the experimental trials and Nj is the number of the measured
data at the jth trial. The sampled time ti is defined as ti := i∆t, ∆t = 1/150 s. pbj and p̂bj
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Numerical Solution
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jbpMeasured Position by Radish (150fps)

by Runge Kutta Method

Initial states measured
by high speed camera

Numerical Solution
jbp̂

jbpMeasured Position by Radish (150fps)

by Runge Kutta Method

Initial states measured
by high speed camera

Figure 3.10: Coefficients identification

are the measured and simulated positions. p̂bj is solved in the interval [t1, tNj
] by the fourth-

order Runge-Kutta method with the initial states of (p̂bj , ˙̂pbj , ω̂j) measured by the high speed
cameras around the ball catapult.

The aerodynamics model is verified by 4 cases [37, 39]: (a) Top spin, (b) Back spin, (c)
Left side spin and (d) Right side spin. Note here that the experimental data for Case (a) and
Case (b) are pure top spin (ωy < 0) and pure back spin (ωy > 0) with ṗby, ωx, ωz ' 0 and the
experimental data for Case (c) and Case (d) are pure left side spin (ωz < 0) and pure right side
spin (ωz > 0) with ωx, ωy ' 0. Figure 3.11 displays the flying trajectories of the ball under the
above 4 cases. In the verification experiments, for each spin case, the balls were shot from the
automatic catapult machine with three speed scales (3, 4, 5).

Top Spin

Back Spin
Landing point

B∑ x

z

y Table

(a) Ball trajectories of the top and back spins

Left side spin

Right side spin

B∑ x
y
z

Table

(b) Ball trajectories of the left and right side spins
Figure 3.11: The flying trajectories of the ball

Table 3.1 is the initial states of the top spin balls. Since the ball’s flying distance in x-axis
is much longer than that in y and z axis, the differences of the landing points in x-axis between
the measured ones and the predicted ones by the aerodynamics model are shown in Table
3.2. Figure 3.12 demonstrates the ball’s flying distance in x-axis from the position detected
by the high speed cameras to the position landing on the table. The horizontal and vertical
axes express the ball’s flying distances obtained by models and measured by the middle speed
cameras, respectively. The solid line represents the case where these values are same. The
markers of the pink squares, the blue circles and the green stars (“3t”, “4t”, “5t”) represent top
spin balls which are shot in Speed Scale 3, 4 and 5, respectively. These results are calculated
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with the aerodynamics model. The black markers are obtained with the free falling model. It
can be seen easily that most of the markers obtained by the aerodynamics model are near to the
solid line, which are much better than the ones obtained by the free falling model.

Table 3.1: Initial states of the balls for top spin verification
Speed Scale ṗbx [m/s] ṗbz [m/s] ωy [rad/s]

3 top -4.99±0.09 2.53±0.082 -300±10
4 top -6.22±0.11 1.07±0.15 -360±23
5 top -7.46±0.076 1.68±0.087 -400±3.5

Table 3.2: The difference of the landing points in x-axis between the measured ones and the
predicted ones [m] (Verification of the top spin)

Speed Scale Aerodynamics model
3 top 0.086± 0.046
4 top 0.11± 0.059
5 top 0.075± 0.082

Flying distance by model [m]
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Figure 3.12: Verification of the top spin

Table 3.3 shows the initial states of the back spin balls. V (C) in (3.29) is used to verify
the effectiveness of the aerodynamics model as shown in Table 3.4. Figure 3.13 demonstrates
an example of the trajectory comparison in z-axis, where the lines of the blue, red, magenta
and green represent the cases of the measured data, top spin, back spin and no-air resistance.
In fact, this is a back spin ball. Top spin and back spin mean the coefficients (CD, CM ) for top
spin and back spin are used in the aerodynamics model. No-air resistance is the free falling
situation. It is found that the magenta line is very close to the blue line and the other lines are
under the blue line.

Table 3.5 is for the verification of the side spin cases, where the norm of the difference of
the flying distances at about 1.8 m between the measured ones and the predicted ones by the
aerodynamics model are shown. Since the side spin balls have bigger velocity in y-axis than
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Table 3.3: Initial states of the balls for back spin verification
Speed Scale ṗbx [m/s] ṗbz [m/s] ωy [rad/s]

3 back -5.1±0.077 1.47±0.10 270±21
4 back -6.7±0.048 0.41±0.11 323±37
5 back -7.4±0.051 -0.17±0.14 361±21

Table 3.4: V (C) [m2/Nj] (Verification of the back spin)
Speed Scale Aerodynamics model

3 back 0.52×10−3± 0.39 ×10−3

4 back 0.19×10−3± 0.38 ×10−3

5 back 0.14×10−3± 0.20 ×10−3
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Figure 3.13: Trajectory comparison for the verification of the back spin

the pure top or pure back spins (See Figure 3.11), the differences of the flying distances in both
x and y axis are displayed in Figure 3.14, where the triangles and the circles express the left and
right side spin, respectively. The red color markers mean that the difference is bigger than 3.7
cm. It can be seen that most of experimental results have small differences from the measured
data. Therefore, the aerodynamics model is validate for predicting the trajectory of a ball with
spinning.

Table 3.5: The norm of the difference of the flying distances at about 1.8 m between the mea-
sured ones and the predicted ones [m] (Verification of the side spin)

Speed Scale Aerodynamics model
3 left side 0.017± 0.006
4 left side 0.023± 0.010
5 left side 0.033± 0.004

3 right side 0.014± 0.008
4 right side 0.013± 0.003
5 right side 0.020± 0.008
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Figure 3.14: The difference of the flying distances between the measured ones and the predicted
ones (Verification of the side spin)

3.5.2 The case of the table rebound model
The table rebound model is verified by 4 cases: (a) Top spin, (b) Back spin, (c) Side-top

spin and (d) Side-back spin as illustrated in Figure 3.15.
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B∑ (b) Back spin
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xy

B∑ (c) Side-top spin

z

xy

B∑ (d) Side-back spin

Figure 3.15: Situations of the verification of the table rebound model

Table 3.6 shows the verification of the cases of the top and back spins. Since the experi-
mental data are pure top spin (ωby < 0) and pure back spin (ωby > 0) with vby, ωbx, ωbz ' 0.
Hence, only (vbx, vbz) m/s and ωby rad/s are shown in Table 3.6. The number 1) and 2) are the
cases of the top spin and the number 3)-6) are the cases of the back spin. The errors of the
velocity and the rotation are ev = 1.0− 11.1% and eω = 1.5− 10.5%, respectively.

Figure 3.16 is also for the verification of the cases of the top and back spins which are
represented as the circles and the squares, respectively. The horizontal and vertical axes are the
experimental values and the calculated values from the model of the translational and rotational
velocities after the rebound. The solid lines represent the cases where these values are same.
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Table 3.6: Verification of the table rebound model
No. (vbx, vbz, ωby) (v′bx, v

′
bz, ω

′
by) Model

1) (-2.8, -3.3, 279) (-3.8, 3.0, 196) (-4.0, 3.1, 199)
2) (-3.6, -2.1, 216) (-3.8, 2.0, 209) (-3.8, 2.0, 194)
3) (-4.1, -2.2, -286) (-3.1, 2.0, -224) (-3.0, 2.1, -206)
4) (-3.8, -1.8, -216) (-3.0, 1.7, -161) (-2.9, 1.7, -150)
5) (-2.7, -2.2, -170) (-1.9, 1.9, -100) (-1.7, 1.9, -90.6)
6) (-2.6, -2.2, -165) (-1.7, 2.0, -93.7) (-1.5, 2.1, -83.9)

Figure 3.17 is used for the verification of the side-top spin case (the circles) and side-back spin
case (the squares). Note that the side-top spin means ωby < 0, ωbz > 0 and the side-back spin
means ωby > 0, ωbz > 0. In Figure 3.17, multi-rotational axes are displayed. It is confirmed
that most of the data in Figures 3.16 and 3.17 are close to the solid lines. The few data which
are a little far from the solid lines maybe caused by the quantization errors of the image data
[36]. Hence, the experimental data show the validation of the rebound model on the table, even
though the model is constructed under Assumption 1-5 in Subsec. 3.3.
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Figure 3.16: Verification of the top spin and back spin

3.5.3 The case of the racket rebound model
The rebound model on the racket is verified by 4 cases [36] of (a) Top spin, (b) Back spin,

(c) Side-top spin (vby > 0) and Side-top spin (vby < 0) as illustrated in Figure 3.18.
Figure 3.19 shows the results of the pure top spin and pure back spin. Figure 3.20 shows

the results of side-top spin of vby > 0 and vby < 0. The red data are used for the identification
of the parameters and the blue data are used for the verification. The circles and the squares
represent the top spin and the back spin in Figure 3.19 and the side-top spin of vby > 0 and the
side-top spin of vby < 0 in Figure 3.20. It is confirmed that the red and blue data are close to
the solid lines with the errors due to the quantization errors of the image data.

Table 3.7 shows some of the experimental data of the contact velocity before and after
the rebound and the ones after the rebound calculated by the model. It is confirmed that the
calculated velocities are in the opposite directions of the velocities before the rebound and close
to the velocities after the rebound. Therefore, the proposed model can represent the specified
effect of the rubber.
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Figure 3.17: Verification of the side spin (ωby > 0 and ωby < 0)

Table 3.7: Verification of the tangent velocity [m/s]
No. Before the rebound After the rebound Calculated by Model
1 -3.79 2.35 2.21
2 -3.87 2.12 2.26
3 -3.77 2.04 2.20
4 -3.92 2.03 2.29
5 -3.68 2.02 2.15
6 -3.74 2.37 2.18

3.6 Summary

In this chapter, three physical models which have been presented by our research group
are demonstrated in detail, which include the aerodynamics model, table rebound model and
racket rebound model. The three models are built based on the ball’s translational and rotational
velocities in which the aerodynamics model includes the Magnus force caused by the rotational
velocity of the ball; the rebound models characterize the variation of the ball’s translational and
rotational velocities before and after rebounding.

Some experimental data are shown to verify the effectiveness of these models, which in-
clude top spin balls, back spin balls and side spin balls. The experiments for two rebound
models demonstrate that the estimated ball’s velocities just after rebounding coincide well with
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Figure 3.18: Situations of the verification of the racket
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Figure 3.19: Verification of the top spin and back spin

the real velocities after rebounding and the experiments for the aerodynamics model display
that the trajectory prediction is accurate enough for the racket to strike the balls, when the table
rebound model is used together.

In fact, it has important meanings for building these three models since it makes the fol-
lowing two works become possible: (1) The robot can successfully strike the coming ball with
various kinds of rotational velocities; (2) The robot can control the returned ball’s rotational
velocity. Therefore, the three models are the basis of controlling a spinning table tennis ball.
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Figure 3.20: Verification of the side spin
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Chapter 4

Racket Control Method

Until now, the target of most of the developed table tennis robots is to return the ball to a
desired position on the opponent’s table. If the ball’s landing velocity or time can be controlled
by the robot? In the table tennis ball game, it is a desired condition that the robot can con-
trol the ball’s landing state which includes totally 9 variables: position, translational/rotational
velocities and time. However, as shown in Figure 4.1, the input (racket’s striking state, i.e.
posture and velocity) only has 5 variables. Therefore, it is easy to see that all of the 9 variables
of the output (the ball’s state at the landing point) cannot be independently controlled by the
racket’s 5 striking variables. According to this observation, we have to consider the following
two problems:
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Figure 4.1: Racket control problem

1) Which variables of the ball’s state at the landing point can be controlled by the racket’s
striking velocity and posture?

2) If a reference is given for the independently controlled variables shown in the first prob-
lem, how can the racket’s velocity and posture be determined to achieve the reference?



56 Chapter 4

In order to answer the above two problems, this chapter analyzes the properties of two
physical models: the racket rebound model (RRM) and the aerodynamics model (ADM). In
Section 4.2, by regarding RRM as a set of nonlinear equations with respect to the racket’s
state, an existence condition for real solutions of the set of nonlinear equations is shown and
moreover the solutions are expressed in the closed form. On the other hand, associated with
ADM, when considering the racket control, it is shown that a two-point boundary value problem
plays important role. In Section 4.3, an on-line control method for the racket’s state is proposed
which can return the ball to a desired landing position with a desired rotational velocity at a
desired landing time. Section 4.4 and 4.5 show numerical simulations and experimental results
which verify the effectiveness of the proposed method [24, 25, 26].

4.1 Preliminary
The racket rebound model (RRM) and the aerodynamics model (ADM), which have been

introduced in Chapter 3 will be applied in this chapter for solving the racket control problem.
Therefore, in this section, we briefly review these two models for discussing their properties in
the later section.

Racket Rebound Model (RRM)

The racket rebound model (RRM) expresses a relation between ball’s velocities at the mo-
ment just before and after a racket strikes the ball. In Chapter 3, it is denoted that the racket
strikes the ball with the racket’s translational velocity BV ∈ R3 and the posture of the yaw
angle α ∈ [−π

2
, π

2
] and the pitch angle β ∈ [0, π]. The ball’s translational and rotational veloc-

ities just before and after the racket strikes the ball are defined as Bvb ∈ R3, Bωb ∈ R3 and
Bv′b ∈ R3, Bω′b ∈ R3, respectively. In this section, since almost all the things are described in
ΣB, the simple notations v0,v1,ω0,ω1 and V are used instead of Bvb, Bv′b,

Bωb,
Bω′b and BV .

Then the relation between (v0,ω0) and (v1,ω1) can be shown as follows.[
v1 − V
ω1

]
= RRRM(α, β)

[
v0 − V
ω0

]
, (4.1)

where

RRRM(α, β) =

[
RR 0
0 RR

] [
Avv Avω
Aωv Aωω

] [
RR 0
0 RR

]T
,

RR =

 cos β sin β sinα sin β cosα
0 cosα − sinα

− sin β cos β sinα cos β cosα

 ,
Avv = diag(1− kv, 1− kv,−er), Avω = kvrS12, (4.2a)

Aωv = −kωrS12, Aωω = diag(1− kωr2, 1− kωr2, 1), (4.2b)

and

S12 =

 0 1 0
−1 0 0
0 0 0

 .
Note that RR is a rotational matrix from ΣB (the base coordinate) to ΣR (the racket coordi-

nate) with the yaw α and the pitch β. The parameter r = 2 × 10−2 m is the radius of the ball,
and the parameters kv = 6.15 × 10−1, kω = 2.57 × 103 and er = 7.3 × 10−1 are obtained by
experimental data [36, 38].
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Aerodynamics Model(ADM)

The aerodynamic model (ADM) is a differential equation which shows the motion of the
ball flying in the air with the rotational velocity:

p̈(t) = −g − CD(t)
ρ

m
Sb‖ṗ(t)‖ṗ(t) + CM(t)

ρ

m
Vbω × ṗ(t), (4.3)

where for simplicity, in this chapter, p(t) ∈ R3 is used instead of pb(t) to express the position
of the ball’s center at the time t, g = [0, 0, g]T , Sb = 1

2
πr2, and Vb = 4

3
πr3. Notice that the

ball’s rotational velocity ω = [ωx, ωy, ωz]
T ∈ R3 is assumed as a constant value.

Table 4.1: The parameters in the aerodynamics model
Parameter Value

g 9.8 m/s2

r 2 ×10−2m
m 2.7 ×10−3kg
ρ 1.184 kg/m3(25◦C)

The drag coefficient CD(t) and Magnus coefficient CM(t) vary with (ṗ(t),ω), which are
given by

CD(t) = aD + bDh(ṗ(t),ω), CM(t) = aM + bMh(ṗ(t),ω) (4.4)

where
h(ṗ(t),ω) =

ṗxωy − ṗyωx√
(ṗxωy − ṗyωx)2 + (ṗ2

x + ṗ2
y)ω

2
z

(4.5)

and aD = 0.505, bD = 0.065, aM = 0.094 and bM = −0.026.

4.2 Properties of the Physical Models

4.2.1 Solution to the racket rebound model
Concerning RRM described by (4.1), we will consider the following problem: given v0,ω0,v1

and ω1, find V , α, β which satisfy (4.1).
Note that (4.1) is a set of 6 nonlinear equations with respect to V , α, β. The upper three

equations in (4.1) are

v1 − V = RRAvvR
T
R(v0 − V ) +RRAvωR

T
Rω0. (4.6)

In order to solve V , the above equation is rewritten as

(I −RRAvvR
T
R)V = v1 −RRAvvR

T
Rv0 −RRAvωR

T
Rω0

= (v1 − v0 + v0)−RRAvvR
T
Rv0 −RRAvωR

T
Rω0

= (I −RRAvvR
T
R)v0 + (v1 − v0)−RRAvωR

T
Rω0. (4.7)

Consequently, V can be expressed as

V = v0 + (I −RRAvvR
T
R)−1

{
(v1 − v0)−RRAvωR

T
Rω0

}
= v0 +RR (I − Avv)−1 {RT

R(v1 − v0)− AvωRT
Rω0

}
. (4.8)
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On the other hand, the last three equations in (4.1) are

ω1 = RRAωvR
T
R(v0 − V ) +RRAωωR

T
Rω0. (4.9)

Substituting (4.8) into (4.9), leads to

ω1 = −RRAωv(I − Avv)−1
{
RT
R(v1 − v0)− AvωRT

Rω0

}
+RRAωωR

T
Rω0

= −RRAωv(I − Avv)−1RT
R(v1 − v0) +RR

{
Aωv(I − Avv)−1Avω + Aωω

}
RT
Rω0.

(4.10)

Note that by using (4.2a) and (4.2b),

S := −RRAωv(I − Avv)−1RT
R =

kωr

kv
Ss(α, β), (4.11)

where

Ss(α, β) =

 0 cosα cos β sinα
− cosα cos β 0 cosα sin β
− sinα − cosα sin β 0

 (4.12)

is a skew symmetric matrix. Moreover, by using (4.2a), (4.2b), it is easy to see that

Aωv(I − Avv)−1Avω + Aωω = I3. (4.13)

Therefore, (4.10) is rewritten as

ω1 = S(v1 − v0) + ω0. (4.14)

By introducing new variables ξ and η as ξ = kωr
kv

(v1 − v0) and η = ω1 − ω0, then (4.14)
is equivalent to

η = Ss(α, β)ξ. (4.15)

From the above observation, it is easy to see that if RRM described by (4.1) has a solution of
(V , α, β), then it is necessary that ξTη = ξTSs(α, β)ξ = 0 since Ss(α, β) is a skew symmetric
matrix, which is equivalent to

(v1 − v0)T (ω1 − ω0) = 0. (4.16)

Now we will solve (4.15) with respect to α and β under the condition that ξTη = 0 holds.
By using the notations η = [ηx, ηy, ηz]

T and ξ = [ξx, ξy, ξz]
T , (4.15) is rewritten as

ηx = ξy cosα cos β + ξz sinα, (4.17)
ηy = −ξx cosα cos β + ξz cosα sin β, (4.18)
ηz = −ξx sinα− ξy cosα sin β. (4.19)

Firstly, for solving α, (4.17) and (4.19) are written as

ξy cosα cos β = ηx − ξz sinα, (4.20)
ξy cosα sin β = −ηz − ξx sinα. (4.21)
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(4.20) and (4.21) lead to

ξ2
y cos2 α = (ηx − ξz sinα)2 + (−ηz − ξx sinα)2,

which is equivalent to the following quadratic equation with respect to sinα,

a sin2 α + 2b sinα + c = 0, (4.22)

where
a = ξ2

x + ξ2
y + ξ2

z , b = ξxηz − ξzηx, c = η2
x + η2

z − ξ2
y .

Now we will derive a necessary and sufficient condition for (4.22) to have real roots of
sinα. Notice that the quadratic equation (4.22) has real roots if and only if b2 − ac ≥ 0.

b2 − ac = (ξxηz − ξzηx)2 − (ξ2
x + ξ2

y + ξ2
z )(η

2
x + η2

z − ξ2
y)

= (ξ2
x + ξ2

y + ξ2
z − η2

x − η2
z)ξ

2
y − (ξ2

xη
2
x + ξ2

zη
2
z + 2ξxξzηxηz). (4.23)

According to (4.16),

(v1 − v0)T (ω1 − ω0) = ξxηx + ξyηy + ξzηz = 0. (4.24)

Hence, −ξyηy = ξxηx + ξzηz, which leads to

ξ2
yη

2
y = (ξxηx + ξzηz)

2 = ξ2
xη

2
x + ξ2

zη
2
z + 2ξxηxξzηz. (4.25)

Substituting (4.25) into (4.23) yields

b2 − ac = (ξ2
x + ξ2

y + ξ2
z − η2

x − η2
y − η2

z)ξ
2
y . (4.26)

Therefore, b2 − ac ≥ 0 can be shown to be equivalent to

‖η‖2 := η2
x + η2

y + η2
z ≤ ξ2

x + ξ2
y + ξ2

z =: ‖ξ‖2. (4.27)

Thus α is given by

sinα =
−b±

√
b2 − ac
a

. (4.28)

Now we will consider a necessary and sufficient condition for (4.28) to have real roots of
α. Notice here that the condition (4.27) implies

−1 ≤ −b±
√
b2 − ac
a

≤ 1, (4.29)

which means that (4.28) always have real roots of α.
In fact, it is easy to see that a(η2

x+η2
y+η

2
z) ≤ a2 under (4.27). Moreover, a(η2

x+η2
y+η

2
z) ≥ b2

since

a(η2
x + η2

y + η2
z)− b2 = (ξ2

x + ξ2
y + ξ2

z )(η
2
x + η2

y + η2
z)− (ξxηz − ξzηx)2

= (ξxηx + ξzηz)
2 + (ξxηy)

2 + (ξyηx)
2 + (ξyηy)

2 + (ξyηz)
2 + (ξzηy)

2

≥ 0. (4.30)
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Therefore, b2 ≤ a(η2
x + η2

y + η2
z) ≤ a2, which means |b| ≤ a, i.e., both a− b ≥ 0 and a+ b ≥ 0

hold. On the other hand, it is easy to see that b2 − ac ≤ (a+ b)2 and b2 − ac ≤ (a− b)2 since

(a+ b)2 − (b2 − ac) = a(a+ 2b+ c)

= (ξ2
x + ξ2

y + ξ2
z )(ξ

2
x + ξ2

y + ξ2
z + 2ξxηz − 2ξzηx + η2

x + η2
z − ξ2

y)

= (ξ2
x + ξ2

y + ξ2
z )
[
(ξx + ηz)

2 + (ξz − ηx)2
]

≥ 0, (4.31)

(a− b)2 − (b2 − ac) = a(a− 2b+ c)

= (ξ2
x + ξ2

y + ξ2
z )(ξ

2
x + ξ2

y + ξ2
z − 2ξxηz + 2ξzηx + η2

x + η2
z − ξ2

y)

= (ξ2
x + ξ2

y + ξ2
z )
[
(ξx − ηz)2 + (ξz + ηx)

2
]

≥ 0, (4.32)

which by noting that a ± b ≥ 0, means
√
b2 − ac ≤ a ± b. Now it is straightforward to prove

that
√
b2 − ac ≤ a+ b implies −b+

√
b2−ac
a

≤ 1 and
√
b2 − ac ≤ a− b implies −1 ≤ −b−

√
b2−ac
a

,
which are equivalent to (4.29).

Once α is determined by (4.28), β is obtained by (4.18) as

ξz sin β − ξx cos β =
ηy

cosα
, (4.33)

which has a real solution β if and only if

|ηy| ≤
√
ξ2
x + ξ2

z cosα,

which is equivalent to

η2
y

ξ2
x + ξ2

z

≤ 1−
(
−b±

√
b2 − ac
a

)2

. (4.34)

By summarizing the above observation, we get the next proposition.

Proposition 1: RRM described by (4.1) has a solution of (V , α, β) if and only if

(1) ξTη = 0,

(2) ‖η‖ ≤ ‖ξ‖,

(3) η2
y

ξ2
x+ξ2

z
≤ 1−

(
−b±
√
b2−ac
a

)2

.

When these conditions are satisfied, V , α, and β are given by (4.8), (4.28) and (4.33).

4.2.2 Two-point boundary value problem for the aerodynamics model
Here we will consider the two-point boundary value problem (TPBVP) of ADM described

by (4.3), i.e., given p(t1) and p(t2) with t1 < t2, find p(t) and ṗ(t) for all t ∈ [t1, t2] which
satisfy (4.3).

It is well known that unlike the initial value problem, the TPBVP of an ordinary differential
equation does not always have a (unique) solution. Let us consider the following TPBVP [8]:{

p̈(t) = f(t,p, ṗ),
p(t1) = p1 ∈ Rn, p(t2) = p2 ∈ Rn, t1 < t2 ∈ R. (4.35)
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The next theorem is known as one of sufficient conditions for existence of a solution of the
TPBVP.

Theorem 2 [8] : Suppose that there exist constants K,L > 0 such that f(t,p, ṗ) satisfies

‖f(t,pa, ṗa)− f(t,pb, ṗb)‖ ≤ K‖pa − pb‖+ L‖ṗa − ṗb‖, (4.36)

for any pa,pb ∈ Rn and any t ∈ R. Then if t1 and t2 satisfy

K
(t2 − t1)2

8
+ L

t2 − t1
2

< 1, (4.37)

the TPBVP described by (4.35) has a unique solution.

Proof: Define u ∈ B: the Banach space of C[[t1, t2],Rn] with the norm

‖u‖B , max
t1≤t≤t2

[K‖u(t)‖] + L‖u̇(t)‖] . (4.38)

The mapping T : B → B is defined by

Tu(t) ,
∫ t2

t1

G(t, s)f (s,u(s), u̇(s)) ds+w(t), (4.39)

where G(t, s) is the Green’s function for the boundary value problem

G(t, s) =

{
(t2 − t)(s− t1)/(t1 − t2), t1 ≤ s ≤ t ≤ t2,
(t2 − s)(t− t1)/(t1 − t2), t1 ≤ t ≤ s ≤ t2.

(4.40)

and

w(t) =
p2 − p1

t2 − t1
t+

p1t2 − p2t1
t2 − t1

. (4.41)

Here, we introduce three properties of G(t, s) for later use,

(1) |G(t, s)| ≤ (t2−t1)
4

,

(2)
∫ t2
t1
|G(t, s)|ds = (t2−t)(t−t1)

2
and so

∫ t2
t1
|G(t, s)|ds ≤ (t2−t1)2

8
,

(3)
∫ t2
t1

∣∣∣dG(t,s)
dt

∣∣∣ ds = (t2−t)2+(t−t1)2

2(t2−t1)
and so

∫ t2
t1

∣∣∣dG(t,s)
dt

∣∣∣ ds ≤ t2−t1
2

.

For u1,u2 ∈ B,

‖Tu2(t)− Tu1(t)‖ =

∥∥∥∥∫ t2

t1

G(t, s) {f (s,u2(s), u̇2(s))− f (s,u1(s), u̇1(s))} ds
∥∥∥∥

≤
∫ t2

t1

|G(t, s)| ‖f (s,u2(s), u̇2(s))− f (s,u1(s), u̇1(s))‖ ds

≤
∫ t2

t1

|G(t, s)| {K ‖u2(s)− u1(s)‖+ L ‖u̇2(s)− u̇1(s)‖} ds

≤ ‖u2 − u1‖B
∫ t2

t1

|G(t, s)|ds

≤ (t2 − t1)2

8
‖u2 − u1‖B . (4.42)
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∥∥∥∥dTu2(t)

dt
− dTu2(t)

dt

∥∥∥∥ =

∥∥∥∥∫ t2

t1

dG(t, s)

dt
{f (s,u2(s), u̇2(s))− f (s,u1(s), u̇1(s))} ds

∥∥∥∥
≤

∫ t2

t1

∣∣∣∣dG(t, s)

dt

∣∣∣∣ ‖f (s,u2(s), u̇2(s))− f (s,u1(s), u̇1(s))‖ ds

≤ ‖u2 − u1‖B
∫ t2

t1

∣∣∣∣dG(t, s)

dt

∣∣∣∣ ds
≤ t2 − t1

2
‖u2 − u1‖B . (4.43)

Therefore,

‖Tu2 − Tu1‖B ≤
(
K

(t2 − t1)2

8
+ L

t2 − t1
2

)
‖u2 − u1‖B < ‖u2 − u1‖B . (4.44)

Thus, condition (4.37) implies that T is a contraction mapping and then it follows from the
Banach Fixed-Point Theorem that T has a unique fixed point in C[[t1, t2],Rn], which is the
solution of the boundary value problem (4.35) (Q.E.D).

In the case of ADM described by (4.3), note that

f(t,p, ṗ) = −g − CD(t)
ρ

m
Sb‖ṗ(t)‖ṗ(t) + CM(t)

ρ

m
Vbω × ṗ(t),

where CD(t) and CM(t) are functions of ṗ and ω as shown in (4.4) and (4.5). Therefore,
f(t,p, ṗ) is a function of only ṗ and does not depend on p, so f(t,p, ṗ) can be denoted by
f(ṗ). By the mean-value theorem, there exists a ṗ such that

f(ṗa)− f(ṗb) =
∂f(ṗ)

∂ṗ
(ṗa − ṗb),

which implies that by supporting that ‖ṗ(t)‖ ≤ 10 m/s and ‖ω‖ ≤ 400 rad/s, we can use
Theorem 2 and it is easy to see that in (4.36), K → 0 and

L = max
ṗ,ω

∥∥∥∥∂f(ṗ)

∂ṗ

∥∥∥∥ ≈ 3.17,

where
∂f(ṗ)

∂ṗ
= − ρ

m
Sb‖ṗ‖

{
bDṗ

∂h

∂ṗ
+ CD

(
I +

ṗṗT

‖ṗ‖2

)}
+
ρ

m
Vb

{
bMω × ṗ

∂h

∂ṗ
+ CM(ω×)T

}
.

Therefore it can be concluded that the TPBVP of ADM has a unique solution if t2 − t1 < 2
L
≈

0.63 s.

4.3 Racket’s Striking Posture and Velocity
Before discussing how to control the racket’s striking posture and velocity, recall how the

ball motion is generated by two physical models, RRM and ADM.
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Let the time be t = 0 when the racket strikes the ball, and denote the time just before and
after striking the ball by t0 and t1, respectively, i.e., t0 = 0− and t1 = 0+.

Suppose the ball’s state at the time t0 is given as

p(t0) = p0, ṗ(t0) = v0, ω(t0) = ω0. (4.45)

According to RRM described by (4.1), the racket’s state (V , α, β) determines

p(t1) = p1, ṗ(t1) = v1, ω(t1) = ω1, (4.46)

where note that p1 = p0.
Then ADM described by (4.3), where the initial conditions p(t1), ṗ(t1) are given by (4.46),

provides a ball motion (p(t), ṗ(t)) for t ∈ [t1, t2] (as shown in Figure 4.2). Note that the time
t2 is a landing time when the ball lands in the opposite court, i.e.,

p(t2) = p2 = [px2, py2, 0]T . (4.47)

x

y
z

B∑

Ball

The landing 
point

Striking 
position

1t  = t
1 1 1( , , )p v ωωωω

2 2 2( , , )p v ωωωω
2t  = t

Racket

0t  = t
0 0 0( , , )p v ωωωω

x
z

y

( , , )α βV

Figure 4.2: Rebound ball’s motion

Now, in order for the table tennis playing robot to return a ball to a desired destination in the
opposite court, we will propose how to control the racket’s state (V, α, β) in real-time process.
Note that the ball’s state just before striking, p0,v0,ω0, are known. Suppose that the desired
destination p2 and the landing time t2 are requested. By using the proposed method of racket
control, i.e., the racket’s state (V, α, β), it can be achieved not only that p(t2) is equal to p2

but also that two elements of ω(t) = ω1 = ω2 are regulated as you like, say the y-element
ωy(t) = ωy1 = ωy2 and the z-element ωz(t) = ωz1 = ωz2 are controlled at any desired values.

In fact, first of all, by considering (4.3) (ADM) with the boundary conditions p(t1) =
p1 = p0,p(t2) = p2, we would use one of the well-known numerical methods of the TPBVP,
e.g., the initial value methods, the finite difference methods, etc. [5] and also we can use a
command “bvp4c” for the TPBVP in MATLAB. But those methods are not suitable for real-
time process because they need a lot of computing time. Then we will propose a method
of solving the TPBVP which gives an approximate solution in real-time process, i.e., with a
reasonable computing time (< 30 ms). Instead of ADM described by (4.3), we propose to use
a simple aerodynamics model (SAM)

p̈x(t) = −D|ṗx(t)|ṗx(t),
p̈y(t) = −D|ṗy(t)|ṗy(t),
p̈z(t) = −g,

(4.48)
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where D = CD
ρ
m
Sb is constant. Notice that (4.48) has a solution slightly different from the

exact solutions of ADM described (4.3). But we can find out analytical solutions for SAM.
Let us solve ṗx1(t1) = v1 under the given conditions that px(t1) = px1, py(t1) = py1, pz(t1) =

pz1 and px(t2) = px2, py(t2) = py2, pz(t2) = 0 where px2 > px1 and pz1 > 0 are assumed.

In x axis, according to the base coordinate, p̈x(t) = −Dṗ2
x(t). Its integral equations (4.50),

(4.51) can be obtained readily with the method of derivation of parameters as follows:∫
p̈x(t)

ṗ2
x(t)

dt = −
∫
Ddt. (4.49)

ṗx =
1

Dt+ Cx1

, (4.50)

px =
1

D
ln |Dt+ Cx1|+ Cx2, (4.51)

where Cx1 and Cx2 are constant values and Cx1 can be easily obtained by substituting ṗx(t1) =
vx1 into (4.50),

Cx1 =
1

vx1

−Dt1. (4.52)

Then, by using (4.52), px(t1) = px1 and px(t2) = px2, it can be seen that

px2 − px1 =
1

D
ln(Dvx1(t2 − t1) + 1). (4.53)

In y axis, actually, p̈y(t) = −sgn(vy1)Dṗ2
y(t). With the same method as x axis, it yields

py2 − py1 = sgn(vy1)
1

D
ln(D|vy1|(t2 − t1) + 1). (4.54)

In z axis, the integral solutions are

ṗz =

∫
p̈zdt = −gt+ Cz1 (4.55)

pz = −g t
2

2
+ Cz1t+ Cz2. (4.56)

Substituting the boundary conditions, ṗz(t1) = vz1, pz(t1) = pz1 and pz(t2) = 0 into (4.55) and
(4.56) lead to

−pz1 = −1

2
g(t2 − t1)2 + vz1(t2 − t1). (4.57)

Therefore,

vx1 = exp{D(px2−px1)}−1
D(t2−t1)

,

vy1 = sgn(py2 − py1) exp{D|py2−py1|}−1

D(t2−t1)
,

vz1 = 1
2
g(t2 − t1)− pz1

t2−t1 ,

(4.58)

where sgn(py2 − py1) = sgnvy1 is used.
Second, v0,v1,ω0 and the desired ωy1, ωz1 determine ωx1 as shown in the condition (4.16).

Finally, we can obtain the racket’s state (V, α, β) as shown in Subsec. 4.2.1. Figure 4.3 shows
the flow chart of the solving process in which the parameters in the green square, blue square
and red square are the given, intermediate solved and final solved parameters, respectively. All
those processes take the computing time less than 30 ms.
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Figure 4.3: The process of solving the racket’s striking posture and velocity

4.4 Numerical Simulations

In this section, it will be verified via numerical simulations how well the racket’s state
(V , α, β) obtained by the proposed method can work. The ball’s state (p0, v0, ω0) just before
the racket strikes the ball is set in three cases; p0 = [−0.15, 0.70, 0.25] m is common for the
three cases, and v0, ω0 are shown in Table 4.2(a). Furthermore, the desired (px2, py2, ωy1, ωz1,
t2) are also shown in Table 4.2(b). From the base coordinate system ΣB (see Figure 4.2), it is
easy to see that the comming ball and the returning ball of the case 1) are in backspin, ones of
the case 2) are in topspin, and ones of the case 3) are in the side spin, respectively. Note that
the desired px2, py2 m and t2 s are set in common for the three cases.

Associated with the three cases shown in Table 4.2, the proposed method provides the
racket’s state as shown in Table 4.3; “the proposed” means the racket’s state which is obtained
by the proposed method, i.e., using SAM, and “the true” means the racket’s state which is
obtained by the command “bvp4c” in MATLAB and achieves the desired (px2, py2, ωy1, ωz1, t2)
exactly. Table 4.4 shows results of px2, py2, ωy1, ωz1, t2 when the racket’s states via the proposed
method are used. Comparing Table 4.4 with Table 4.2(b), the average errors on px2, py2 and t2
are 0.082 m, 0.045 m and 0.025 s, respectively. In addition, it can be seen that ωy1 and ωz1 can
be achieved exactly. Those results are due to that RRM described (4.1) is exactly solved, but
ADM described (4.3) is approximated as SAM described by (4.48) to be solved in real-time
process.

Moreover, the returning ball’s trajectory and time-history are shown in Figures 4.4-4.6 for
the cases 1)-3), respectively. In each figure, the red line shows the result obtained by the pro-
posed method, and the green dotted line shows the result which achieves the desired destination
exactly.
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Table 4.2: Ball’s state and desired destination
(a) Ball’s state just before struck by racket

[vx0, vy0, vz0] [m/s] [ωx0, ωy0, ωz0] [rad/s]
1) [-2.5, 0, 0.1] [0, 150, 0]
2) [-4.5, 0, 0.3] [0, -150, 0]
3) [-2.75, -0.8, -0.5] [0, -50, 150]

(b) The desired (px2, py2, ωy1, ωz1, t2)
[px2, py2] [m] [ωy1, ωz1] [rad/s] t2 [s]

1) [2.055, 0.768] [-100, 0] 0.6
2) [2.055, 0.768] [100, 0] 0.6
3) [2.055, 0.768] [0, -100] 0.6

Table 4.3: Racket’ state via the proposed method and the true state
V [m/s] α [rad] β [rad]

1) the proposed [1.48, 0.095, 1.41] -0.011 0.792
the true [1.51, 0.11, 1.34] -0.013 0.811

2) the proposed [0.65, 0.064, 1.72] -0.012 1.66
the true [0.67, 0.075, 1.87] -0.014 1.63

3) the proposed [1.48, 0.23, 1.30] 0.31 1.25
the true [1.50, 0.38, 1.33] 0.28 1.24

Table 4.4: The obtained (px2, py2, ωy1, ωz1, t2)

[px2, py2] [m] [ωy1, ωz1] [rad/s] t2 [s]
1) [2.09, 0.76] [-100, 0] 0.620
2) [1.92, 0.78] [100, 0] 0.561
3) [1.98, 0.66] [0, -100] 0.582

4.5 Experimental Results

4.5.1 Experimental settings

Prediction of Ball’s Motion Trajectory Before Struck by the Racket

In the experiment, a table tennis ball is shot from a ball catapult machine. The ball’s posi-
tion, translational velocity and rotational velocity just after being shot by the catapult machine
are measured by using two high speed monochrome cameras (900 Hz) [23]. Then, using these
measured ball’s information as the initial state (pinit,vinit,ωinit), the motion trajectory of the
ball is predicted based on the aerodynamics model (ADM) and the table rebound model (TRM)
(Chapter 3) to determine the striking position p0 and the striking time t0 as well as the ball’s
state (v0,ω0) just before the striking.

The following shows the prediction process in detail:
Firstly, just after obtaining the ball’s initial position and velocities measured with the high

speed cameras, the motion trajectory of the ball is predicted by using an initial value method,
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(b) Ball time-history
Figure 4.4: The case 1) of backspin

the fourth-order Runge-Kutta method, based on the differential equation of ADM, which in-
cludes the position prediction and velocity prediction:

Solve y, ẏ = f(t,y) with initial condition y(t0).

ti+1 = ti + h


k1 = hf(ti,yi)
k2 = hf(ti + h/2,yi + k1/2)
k3 = hf(ti + h/2,yi + k2/2)
k4 = hf(ti + h,yi + k3)

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) (4.59)
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(b) Ball time-history
Figure 4.5: The case 2) of topspin

Position Prediction: 
y = p
ẏ = f(t,y) = v
y(t0) = pinit

(4.60)

Velocity Prediction:
y = v
ẏ = f(t,y) = −g − CD ρ

m
Sb‖v‖v + CM

ρ
m
Vbω × v

y(t0) = vinit,ωinit

(4.61)

where h is the iteration step size which is set as 1
1200

in the experiment. Notice that the ball’s
rotational velocity ω is considered as a constant value when the ball flies in the air.

Secondly, when pz ≤ 0 (the ball’s position in z-axis) at the first time, it is confirmed that
the ball collides with the table and the ball’s state (position and velocities) at this time is seen
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(b) Ball time-history
Figure 4.6: The case 3) of sidespin

as the state just before rebounding from the table. Then, by using TRM, the ball’s state just
after the rebounding can be estimated.

Thirdly, setting the ball’s state just after rebounding from the table as the initial value,
predict the ball’s motion trajectory after rebounding with the same method as in the first step.
And the prediction stops if one of the following conditions is satisfied:

1) if −0.3[m] ≤ px ≤ 0 and vz ≤ 0,

2) if px ≤ −0.3[m].

Then, the stop time of the prediction is decided as the striking time. The ball’s position and
velocities at that time are determined as the ball’s state just before striking with the racket.



70 Chapter 4

Determination of 7 Joints’ Postures of the Manipulator at the Striking Time

The robot is a robot manipulator with 7 DOF (PA10, Mitsubishi H.I.) and the racket is
attached on the robot’s end effector. The method of controlling the posture and velocity of the
racket at the striking position is shown in Sec.4.3. Now we will show how to control the robot’s
joints’ angles at the striking position.

Let q ∈ R7 be the vector of joint angles with its i-th element qi being the i-th joint angle.
Then the kinematic equation is given as [pT ,θT ]T = F (q) where p ∈ R3 is a position of the
racket’s center and θ = [α, β, γ]T ∈ R3 is the racket’s posture. Recall that the references of
p, α and β are given as shown in Sec.4.3, but γ is free. Therefore the kinematic equation is
reduced to [

p
θ2̄

]
= F5̄(q), (4.62)

where θ2̄ = [α, β]T ∈ R2 and F5̄(q) = [I5 05×1]F (q). Notice that given [pT ,θT2̄ ] ∈ R5, the
equation (4.62) is a set on nonlinear equations to q ∈ R7 and so it could have infinite number
of solutions if there exists a solution q. Here, in order to obtain a solution q of (4.62), the
Newton-Raphson method is used, i.e.,

q(k+1) = q(k) + J †
5̄
(q(k))

(
[pT ,θT2̄ ]T − F5̄(q(k))

)
, (4.63)

where J†
5̄

is a pseudo inverse of the Jacobian J5̄, i.e., J5̄ = ∂F5̄

∂q
∈ R5×7 and J†

5̄
= JT5̄

(
J5̄J

T
5̄

)−1 ∈
R7×5. The iterative process (4.63) starts with q(0) which is a waiting position for the com-
ming ball and the iterative process stops when the stop condition is satisfied, i.e., ‖[pT ,θT2̄ ]T −
F5̄(q(k))‖ ≤ e where e > 0 is a preassigned small number.

Now we will show how to achieve the racket’s velocity V .
Again the kinematic equation [pT ,θT ]T = F (q) is reduced as p = F3̄(q) where F3̄(q) =

[I3 03×3]F (q). Therefore it is derived directly that V = J3̄(q)q̇ where J3̄ = ∂F3̄

∂q
∈ R3×7.

Then q̇7 = 0 is always selected for simplicity, so by introducing q̇6̄ = [I6 06×1]q̇ ∈ R6, the
above equation is reduced as

V = J̄3̄(q)q̇6̄, (4.64)

where J̄3̄ = J3̄[I6 06×1]T ∈ R3×6. Therefore, q̇6̄ can be determined by

q̇6̄ = J̄ †
3̄
(q)V (4.65)

in which J̄ †
3̄

= (J̄3̄W
−1)

T
(J̄3̄W

−1J̄T3̄ )−1. W−1 = diag {1, 0.6, 2, 2, 2π, 2π} is a weight
matrix with respect to the joints’ limit velocity.

4.5.2 Some results
Here some experimental results are shown in the cases that the catapult machine shot a

backspin ball and a topspin ball.
The striking position p0 = p1 and the ball’s velocities v0,ω0 were estimated real-timely by

using the high speed cameras’ data as in Table 4.5(a). The desired destination p2 in the opposite
court, the landing time t2 and the desired rotational velocities ωy1, ωz1 are set as in Table 4.5(b).
Then the racket’s state obtained by the proposed method is shown in Table 4.5(c). In order to
evaluate how well the hitting position is estimated and how well the ball is controlled by the
racket to return to the desired destination, two middle speed colored cameras (Library Inc.) are
used, whose frame rate is 150 Hz.
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Table 4.5: Experimental results
(a) Ball’s state just before struck by racket

back spin top spin
[px0, py0, pz0][m] [-0.30, 0.66, 0.23] [-0.14, 0.73, 0.26]

[vx0, vy0, vz0] [m/s] [-2.97, -0.0077, 0.34] [-4.17, -0.12, -0.0023]
[ωx0, ωy0, ωz0] [rad/s] [-28.02, 229.76, -28.58] [7.53, -241.09, -6.28]

(b) The desired (px2, py2, ωy1, ωz1, t2)
[px2, py2] [m] [ωy1, ωz1] [rad/s] t2 [s]

back spin [2.055, 0.768] [-125.66, 0] 0.6
top spin [2.055, 0.768] [104.72, 0] 0.5

(c) Racket’ state via the proposed method
V [m/s] α [rad] β [rad]

back spin [1.26, -0.18, 1.75] -0.068 0.708
top spin [1.15, 0.019, 0.64] -0.028 1.814

Figure 4.7 shows the ball’s trajectories of x-z plane and x-y plane in the case of back spin
ball. The blue * shows the comming ball’s trajectory sensed by the middle speed camera
system. The black dots show the returning ball’s trajectory sensed by the middle speed camera
system, and the red line is a smooth curve approximating the black dots. Figure 4.9 shows the
time-history of the returning ball’s position, where the black dots are data sensed by the middle
speed camera system and the red curve is a smooth curve derived from the black dots. The
horizontal solid line is the desired position. From Figures 4.7 and 4.9, it can be evaluated that
the achieved destination p2 in the opposite court is [px2, py2] = [2.10, 0.78] m and the landing
time t2 is t2 = 0.622 s. In the case of top spin ball, Figure 4.8 shows the ball’s trajectories
of x-z plane and x-y plane and Figure 4.10 shows the time-history of the ball where the blue
*, the black dots, the red curve and the horizontal solid line express the same things as in
Figures 4.7 and 4.9. From those figures, in the case of top spin ball, it can be evaluated that
the achieved destination p2 in the opposite court is [px2, py2] = [1.90, 0.744] m and the landing
time is t2 = 0.451 s.

The experimental results above have almost same features as observed in the numerical
simulations, i.e., the achieved px2 and t2 is larger than the desired ones in the case of back spin
ball, while the achieved px2 and t2 are smaller than the desired ones in the case of top spin ball.

Associated with the requested racket’s state (V , α, β), the requested joint angle and velocity
of the robot manipulator at the striking instant, qref and q̇ref , are determined as shown in
(4.63) and (4.65). It is not a concern in this thesis how to control the manipulator to achieve
q(0) = qref and q̇(0) = q̇ref , but it must be shown how near the attained q(0) and q̇(0) are
to the requested qref and q̇ref . Figures 4.11 and 4.12 show the time-histories of the angles and
velocities of the joints #1∼ #7 in the case of back spin ball, where the blue lines show qref and
q̇ref and the red dots show q(t) and q̇(t) which is calculated by q(t+h)−q(t)

h
with a sampling

period h. The vertical green line shows the striking instant, i.e., t = 0. Figures 4.13 and 4.14
also show the time-histories of the angles and velocities of the joints #1∼ #7 in the case of top
spin ball. From both figures, it can be seen that q(0) and q̇(0) have been controlled well.
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Figure 4.7: Ball trajectory (Experiment): the case of backspin ball
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Figure 4.8: Ball trajectory (Experiment): the case of topspin ball

4.6 Summary
In this chapter, firstly, the racket control planning is discussed rigorously from a theoret-

ical viewpoint, i.e., concerning a table tennis robot, a two-point boundary value problem is
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Figure 4.9: Ball time-history (Experiment): the case of backspin ball

discussed more rigorously. Then, an on-line racket control method is proposed for returning
a table tennis ball to a desired position with a desired rotational velocity at a desired landing
time. In detail, the algorithm of determining the racket’s state (velocity and posture) is derived
by performing the following two works: 1) solving nonlinear equations of the racket rebound
model (RRM); 2) solving the two-point boundary value problem of the differential equation
of the aerodynamics model (ADM). However, in fact, solving the work 2 needs a lot of com-
puting time since the aerodynamics model is a complicated differential equation which can be
solved by using numerical methods. Therefore, a simple aerodynamics model (SAM) which
can directly obtain the analytical solution is proposed for using in the on-line situation.

Some numerical simulations and experimental results have been demonstrated to verify the
effectiveness of the proposed method. The numerical simulations show that the average errors
of the landing position in x-axis and y-axis (the length and width directions of the table) are
0.082 m and 0.045 m, respectively. And the average error of the landing time is 0.025 s. The
desired rotational velocity can be achieved exactly. Those results are due to that RRM is exactly
solved, but ADM is approximated as SAM to be solved in real-time process. The experiments
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Figure 4.10: Ball time-history (Experiment): the case of topspin ball

got the similar results as the simulations.
Furthermore, please notice that the method proposed in this chapter does not belong to a

class of visual feedback control systems. In fact, the high speed cameras (900 Hz) have nar-
row fields so that the cameras can observe less than 10 frames of images just after the ball is
shot from the catapult machine. After the cameras estimate the ball’s translational and rota-
tional velocities at this instant, it usually takes about 500 msec and more until the manipulator
with the racket strikes the coming ball. During this interval, the proposed method controls the
manipulator based on the physical models without any visual feedback. From this sense, the
proposed method is not robust against the physical models’ errors. One of the future researches
is to integrate the proposed method with the visual feedback control.
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(d) The time-histories of q4 (left) and q̇4 (right)

Figure 4.11: The 1, 2, 3, 4 joints’ time-histories in the case of back spin ball
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(b) The time-histories of q6 (left) and q̇6 (right)
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(c) The time-histories of q7 (left) and q̇7 (right)

Figure 4.12: The 5, 6, 7 joints’ time-histories in the case of back spin ball
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Figure 4.13: The 1, 2, 3, 4 joints’ time-histories in the case of top spin ball
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Figure 4.14: The 5, 6, 7 joints’ time-histories in the case of top spin ball



Chapter 5

Conclusions

The conclusions are summarized in this chapter and some suggestions are shown for the
further research.

5.1 Summary

Owing to the high requirements on real-time, accuracy, and intelligence, the research of ta-
ble tennis robot has been a hot research topic in robotics since the year of 1983. Many different
shapes of table tennis robots have been developed during these years such as Andersson’s 6-
DOF arm robot with 4 60Hz cameras, Acosta’s 5-DOF low-cost two-paddle robot system with
a single camera and Miyazaki’s 4-DOF robot system with two cameras. These robot systems
have been able to play against human opponents who are beginner level. However, “Robot
beats humans” in a table tennis game is still a long way to go.

One common feature of the previous research is that the vision system can only measure the
ball’s position and translational velocity. The effect of the ball’s rotational velocity is ignored
because of the difficulty of measuring the ball’s rotational velocity in an on-line situation. It
is well known that table tennis is a “high technique” sport and the rotational velocity is an
indispensable factor for the various kinds of techniques. Therefore, in order to realize a robot
which can compete with humans in a game with high skills, it is necessary to consider the
rotational velocity of the ball. This thesis tries to develop such a robot which can detect and
control the ball’s rotational velocity.

In Chapter 1, the systems of the presented table tennis robots are discussed in detail. Gen-
erally, it consists of three parts: the vision system (eye), the control system (brain) and the
mechanical system (hand). With these systems, the table tennis robot has to accomplish three
basic tasks:

1) Detecting a ball’s state by using vision sensors,

2) Predicting the ball’s trajectory by using the ball’s state detected in task 1),

3) Determining the racket’s posture and velocity at the striking time such that the returned
ball would reach a given destination on the opponent table, planning a reference trajectory
of the robot manipulator with the racket by the ball’s trajectory predicted in task 2) and
also controlling the robot according to the motion planning.
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Corresponding to the above tasks, in order to develop a table tennis robot which can detect
and control the rotational velocity of the ball, this thesis has done the following works:

1) Proposed a method for detecting a ball’s position, translational and rotational velocities
by using two high speed cameras (900 Hz) immediately after the opponent player hit the
ball,

2) For predicting the ball’s trajectory and performing work 3), introduced three physical
models presented by our previous research: aerodynamics model, table rebound model
and racket rebound model which considered both the ball’s translational velocity and
rotational velocity,

3) Proposed a racket control method which could return the ball to a desired position on the
table with a desired rotational velocity at a desired landing time.

This thesis mainly focuses on Task 1) and Task 3).

In Chapter 2, an on-line algorithm is proposed for measuring the translational and rotational
velocities of a table tennis ball with only 6 consecutive frames of image data sensed by using
two high speed cameras (900 Hz). With respect to estimating the translational velocity, one of
the important processes is how to estimate the center of the ball image. The proposed method
detects four points on the contour of the ball image and calculates the perpendicular bisectors
between every two adjacent points of these contour points. Then, the ball’s center on the image
is estimated as the nearest point to these perpendicular bisectors. The rotational velocity is
estimated by the image registration method, where the method of estimating (k+ 1)th frame of
image data is proposed in detail by using the sensed kth frame of image data and the candidate
of the rotational velocity. And also in order to search the most plausible rotational velocity, the
conjugate gradient method is applied to minimize the intensity residuals between the estimated
and the sensed frames. The experimental results with the rotation machine show that 89% of the
estimation errors of the rotational speeds are smaller than 200 rpm and 75% of the estimation
errors of the rotational axes are less than 15 deg. Moreover, the experimental results with the
catapult machine demonstrate that both the translational and rotational velocities have been
estimated well and the processing time is in the range of [30, 65] ms. Therefore, the proposed
method is accurate and fast enough to realize a table tennis playing robot.

In Chapter 3, three physical models about ball motion are introduced, which have been
presented by our research group: aerodynamics model (ADM), table rebound model (TRM)
and racket rebound model (RRM). Comparing with the research of the previous presented ta-
ble tennis robots, these three models have a significant improvement that the ball’s rotational
velocity is considered as one of the deciding factors of the ball motion. As for ADM, the bal-
l’s gravity and drag force as well as the Magnus force caused by the ball’s rotational velocity
are considered influencing the ball’s trajectory. The rebound models (TRM and RRM) char-
acterize the variation of the ball’s translational and rotational velocities just before and after
the rebounding. Some experimental data are shown to verify the effectiveness of these mod-
els, which include top spin balls, back spin balls and side spin balls. The experiments for two
rebound models demonstrate that the estimated ball’s velocities just after rebounding coincide
well with the real velocities after rebounding and the experiments for the aerodynamics model
display that the trajectory prediction is accurate enough for the racket to strike the balls, when
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the table rebound model is used together. In fact, it has important meanings for building these
three models since they are the basis for the robot to control a spinning table tennis ball.

In Chapter 4, a racket control method is proposed for returning the ball to a desired position
on the opposite court with a desired rotational velocity at a desired landing time. Here, the
determined racket state includes the translational velocity and the posture of the yaw and the
pitch angles. And the determination method is based on the racket rebound model (RRM) and
the aerodynamics model (ADM). The racket control problem consists of two subproblems; (a)
the problem of solving a set of nonlinear equations which comes from RRM and (b) the two-
point boundary value problem of the nonlinear differential equation which comes from ADM.
This thesis clarifies the fundamental properties of those subproblems: for the first problem
about RRM, an existence condition for real solutions of the set of nonlinear equations is shown
and the solutions are expressed in the closed form; as for the second problem associated with
ADM, it shows that the two-point boundary value problem of ADM needs too much computing
time to be treated in real-time manner. Therefore, an on-line algorithm is proposed by using an
approximate aerodynamic model (SAM). Some numerical simulations and experimental results
have been demonstrated to verify the effectiveness of the proposed method. The numerical
simulations show that the average errors of the landing position in x-axis and y-axis (the length
and width directions of the table) are 0.082 m and 0.045 m, respectively. And the average error
of the landing time is 0.025 s. The desired rotational velocity can be achieved exactly since
the racket rebound model (RRM) is solved exactly. The experimental results are similar to the
ones of the simulations.

Furthermore, it should be noted that the method proposed in Chapter 4 does not belong
to a class of visual feedback control systems. In fact, the high speed cameras (900 Hz) have
narrow fields so that the cameras can observe less than 10 frames of images just after the ball
is shot from the catapult machine. After the cameras estimate the ball’s translational and rota-
tional velocities at this instant, it usually takes about 500 msec and more until the manipulator
with the racket strikes the coming ball. During this interval, the proposed method controls the
manipulator based on the physical models without any visual feedback. From this sense, the
proposed method is not robust against the physical models’ errors. One of the future researches
is to integrate the proposed method with the visual feedback control.

5.2 Further Research
The followings are some suggestions for the further research.
In order to realize a robot which can compete with human beings in a table tennis game,

this thesis proposes a real-time method for detecting the ball’s translational/ rotational velocities
and also presents a method for determining the racket’s striking state, which is capable to
control the rotational velocity of the returning ball. The proposed methods work well in the
experiments, where the balls with different spins are shot from an automatic catapult machine.
However, the developed robot system still can not play against a human opponent. The reasons
mainly come from the problems of the hardware:

(1)The reason caused by the vision system: The high speed cameras (900 Hz) have two
shortcomings which make them not suitable to be used for detecting the ball’s state when the
robot rallies with a human being. The first shortcoming is that the high speed cameras have
a narrow field of view. The resolution of the camera is 232×232 and the field of view of the
two cameras is only about 15 cm×15 cm which is too small to be used for detecting the ball
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which moves in all the range of the table. The second shortcoming is that a strict additional
light condition is required for the experiment since the exposure time for one frame is too short.
This also limits the flying range of the ball since the estimation accuracy of the ball’s rotational
velocity will be affected if the ball is too near or too far from the light.

Suggestion for the vision system: Use middle speed cameras for estimating the ball’s posi-
tion, translational and rotational velocities. In fact, our group has developed another method
for estimating the ball’s rotational velocity by using two middle speed cameras (150 Hz) of
which the field of view is large enough to cover all the table and additional light condition is
not needed.

(2)The reason caused by the manipulator: The mechanical system applied in this thesis is
a 7-DOF manipulator. There are some limits for the 7-DOF manipulator. Firstly, as shown in
Sec.4.5 of Chapter 4, since there are two redundant degrees of freedom, the kinematic equation
for solving the striking postures of the 7 joints has infinite number of solutions. The methods
for obtaining one solution always cost much computation time. Furthermore, the limit velocity
of the racket attached on the end-effector is about 3 m/s, which should be faster for high speed
coming balls. Finally, the workspace of the manipulator is not large enough.

Suggestion for the manipulator: In fact, for accomplishing the table tennis striking task, 5
degrees of freedom are enough (three degrees of freedom for determining the racket’s position
in X, Y, Z coordinates and two degrees of freedom for determining the posture of the racket
at the striking time). And for a 5-DOF robot, there is no redundant degree of freedom. Then,
solving the 5 joints’ striking postures from the inverse kinematics is much easier, which will
reduce the computing time greatly. Therefore, using a 5-DOF robot is suggested. Another
point, it is better to use a lighter arm for moving faster. As for enlarging the work space,
we suggest that the robot arm can move in a frame attached on the table. Actually, we have
developed a new 5-DOF robot which has these good features.

Furthermore, I would like to give some comments on improving three models of ball mo-
tion, i.e., the aerodynamics model, the table rebound model, and the racket rebound model.

These models are very important in this research because the racket control has been car-
ried based on those physical models. The models constructed and used in this research could be
verified to be correct with enough precision and to work well by carrying out the experiments.
However, if you wish to predict the coming ball’s position and velocity with more precision
as well as to return the ball to the desired position on the opposite court more precisely, you
can improve those physical models. For instance, with respect to the aerodynamics model,
the rotational velocity is assumed here to be constant when the ball flies, but in fact, the rota-
tional velocity would be changing. About the table rebound model, it was constructed under
Assumptions 1 to 5 in Chapter 3 and some parameters of the model were identified by the ex-
perimental data. Rigorously speaking, the contact between the ball and the table could not be a
point contact, and the phenomena assumed in collision between the ball and the racket would
not be real either. When you want to construct those models more realistically, you need to
observe and analyze those phenomena more precisely by using super high speed cameras and
other precision instruments.
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Table Tennis System

Figure A.1 shows the configuration of the table tennis system and the coordinate systems on
the table and the manipulator. The equipments for the system include the table, ball, racket, two
high speed cameras, 7 DOF manipulator, automatic catapult machine and PCI memolink. In
addition, two middle speed cameras have been used in the experiments (Chapter 4) to detect the
returning ball’s trajectory for evaluating how well the ball achieves to the desired destination.
In this section, the parameters of these equipments are described in detail.
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Figure A.1: Configuration of the table tennis system

A.1 Table, Ball, Racket

Figure A.2 displays the size of the table which is an international standard one. Table
A.1 is the specification of the table. The table tennis ball used (Table A.2) is an standard one
recognized by International Table Tennis Federation. Table A.3 shows the specification of the
racket’s rubber.
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Length

Height

Width

Figure A.2: Standard table size

Table A.1: The specification of table tennis table
Maker IGNIO

Stock Number IG-2PG0016
Playfield MDF (Material), 18[mm](Thickness)

Frame Steel 30[mm]
Size 1525(W)×760(H)×2740(D)

Weight 90kg

Table A.2: The specification of table tennis ball
Maker Nittaku

Maker Type 3 Star(Premium), 40mm Hard ball
Diameter 40[mm]

Color White
Weight 2.7[g]

Table A.3: The rubber of the racket
Maker Japanese table tennis corporation

Maker Type MORISTO DF
Thickness 3[mm]

Color Black

A.2 High and Middle Speed Cameras

A.2.1 High speed camera

In the table tennis system, two high speed cameras (Table A.5) are used for detecting the
ball’s translational and rotational velocities. Table A.4 and Table A.6 are the specifications of
the lens and the sensor, respectively.
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Table A.4: The specification of the lens
Maker FUJINON
Model HF35HA-1B

Focal Length 35[mm]
Diaphragm F1.6∼F22

Hyperfocal Distance ∞∼0.25[m]

Table A.5: The specification of high speed camera
Active Sensor Size 10.24mm×10.24mm

Array Size 512×512(random part readout ex.232×232)
Pixel Size 29µm

Aperture Ratio 45%
Frame Rate 250fps(1000fps for 232×232 array size)

Power Consumption 6W
Gradation 10bit

Others Readout the original and processed image data
Use Visual C++ interface library

Table A.6: The specification of the sensor
Profile Sensor Image Sensor

Process 0.6µm, 2-poly, 3-metal CMOS Process
Chip Size 13.0×14.3mm
Pixel Size 20µm

Pixel Number 512×512 512×512
Readout Model PPS APS
Aperture Ratio 2% (×2) 44%

Highest Frame Rate 1620fps 248fps(512×512),
2421fps(128×128)

Power Voltage 5V(Analog), 5V
3V(Digital)

Power Consumption 75mW@1000fps 450mW@125fps
Sensitivity 0.8µV/elec. 10.7µV/elec.

Dark Output Voltage 300mV/sec@25◦C 100mV/sec@25◦C
Random Noise 12mVrms 0.7mVrms

Saturation Output Voltage 3.2V 1.4V
Number of Port 2(X,Y) 8

ADC 8bit ADC Internal Model(2 Number) No(External Model)
Output Form 2 ports, digital output 8 ports, analog output

A.2.2 Middle speed camera

The middle speed camera is produced by Library co.,Ltd (Table A.7), which is capable
to track high speed moving objects in real-time situation with an image processing software.
Table A.8 is the specification of the lens for the middle speed camera.
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Table A.7: Radish camera (middle speed camera)
Active Sensor Size 4.8mm×3.6mm

Array Size 640× 480
Pixel Size 7.4µm

Frame Rate 150fps
Power Consumption 1A

Gradation Color 24bit

Table A.8: The specification of the lens (middle speed camera)
Maker VS Technology

Product Name SV-0814MP
Focal Length 8.3[mm]
Diaphragm F1.4∼F16

Hyperfocal Distance ∞∼0.1[m]

A.3 7-DOF Manipulator
A 7-DOF manipulator (Mitsubishi) is applied as the mechanical system. Figure A.3 shows

the general view of the manipulator. Tables A.9, A.10 and A.11 display the specifications of
3 shoulder joints, 2 elbow joints and 2 wrist joints, respectively. Table A.12 is the maximum
speed of each joint.

Table A.9: The specification of the manipulator (shoulder 3 joints)

Joint Name S1 S2 S3
Rated Torque [N·m] 4.64 4.64 2.00

Motor Rated Current [A] 10 10 10
Rotation Direction CCW CCW CCW

Arm Working Area [deg] -177∼177 -94∼94 -174∼174

Table A.10: The specification of the manipulator (elbow 2 joints)
Joint Name E1 E2

Rated Torque [N·m] 2.00 0.29
Motor Rated Current [A] 10 10

Rotation Direction CCW CCW
Arm Working Area [deg] -137∼137 -255∼255

A.4 Others

A.4.1 Automatic catapult machine
Table A.13 is the specification of the automatic catapult machine.
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Figure A.3: The general view of the manipulator

Table A.11: The specification of the manipulator (wrist 2 joints)
Joint Name W1 W2

Rated Torque [N·m] 0.29 0.29
Motor Rated Current [A] 10 10

Rotation Direction CCW CCW
Arm Working Area [deg] -165∼165 -255∼255

A.4.2 PCI memolink

There are two PCs in the table tennis system that one is for the vision system and another
one is for the control system. These two PCs are connected by a PCI Memolink for transmit-
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Table A.12: Maximum moving velocity of each joint
Maximum Velocity 1 joint 2 joint 3 joint 4 joint 5 joint 6 joint 7 joint

[deg/sec] 57.3 57.3 114.6 114.6 360.0 360.0 360.0

Table A.13: The specification of automatic catapult machine
Maker SAN-EI

Maker Type Table Tennis Machine Robo-Pong 2040
Power 100[V]

Ball Speed 16∼120[km/h]
Ball Frequency 26∼94[number of ball/min]

Regulate the oscillator speed of the machine head.
Position the head in the desired direction.

Functions Adjust the angle of the machine head (up and down) by hand.
Put any type of spin on the ball(top spin, back spin, side spin and so on).
Be capable of using either the 38[mm] or 40[mm] ball.

ting the measured ball’s information (See Figure A.4). Table A.14 is the specification of the
Memolink.

Table A.14: PCI Memolink
Maker Interface

Product Name PCI4911 PCI4915
Memolink Type Master Terminator Slave
Connection Type Master:Slave = 1:8

Maximum Transfer Velocity 512KB/s[Byte],1MB/s[Byte]
Maximum Transfer Length 30m

Memory Size 256KB
Data Protection Parity check

Bus PCI local bus 32 bit, 33MHz
Interrupt Facility Have

Power Consumption DC+5V(±):1.4A(TYP) DC+5V(±):0.3A(TYP)
I/O Port 8 Port

Memory Size 16KB
Number of Slot 1

PA10

Robot Control 

PC

High Speed Camera 

PC

High Speed Camera 

PCI Memolink

Figure A.4: Connection of PCs with a PCI Memolink
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Robot Kinematics and Cameras’ Calibra-
tions

B.1 Robot Kinematics

In this thesis, the robot system is a 7 DOF manipulator controlled with PID. When the robot
executes tasks, it is necessary to transform the control space since the manipulator is controlled
in the work space while its actuators operate in the joint space [12]. Forward kinematics defines
a function (kinematics equations) to compute the position and the posture of the end-effector
from the specified joints’ postures. Then, the velocity relations between them are determined
by the Jacobian of this function. The inverse kinematics is the reverse process of this function,
which computes the joints’ postures for achieving a specified position and posture of the end-
effector. In this section, we introduce the derivation of the forward kinematic equations and the
corresponding Jacobian matrix.

B.1.1 Frame arrangement of the manipulator

Figure B.1 displays the frame arrangement of the manipulator.

B.1.2 Forward kinematics

Based on the frame of each joint, forward kinematics can be solved by using the homoge-
nous transformation as follows. Notice that the angle of the ith joint is expressed as θi and
Ci := cos θi, Si := sin θi.

0T1 =


C1 −S1 0 0
S1 C1 0 0
0 0 1 0
0 0 0 1

 (B.1)

1T2 =


C2 −S2 0 0
0 0 1 0
−S2 −C2 0 lb

0 0 0 1

 (B.2)
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Figure B.1: Frame arrangement of the manipulator

2T3 =


C3 −S3 0 0
0 0 −1 −ls
S3 C3 0 0
0 0 0 1

 (B.3)
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3T4 =


C4 −S4 0 0
0 0 1 0
−S4 −C4 0 0

0 0 0 1

 (B.4)

4T5 =


C5 −S5 0 0
0 0 −1 −le
S5 C5 0 0
0 0 0 1

 (B.5)

5T6 =


C6 −S6 0 0
0 0 1 0
−S6 −C6 0 0

0 0 0 1

 (B.6)

6T7 =


C7 −S7 0 0
0 0 −1 −lw
S7 C7 0 0
0 0 0 1

 (B.7)

where 0T7 =0 T1
1T2

2T3
3T4

4T5
5T6

6T7 can be expressed as:

0T7 =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 (B.8)

where

t11 = C7C6C5C4C1C2C3 − C7C6C5C4S1S3 − C7C6C5C1S2S4 − C7C6S5C1C2S3 (B.9)
− C7C6S5S1C3 − C7S6S4C1C2C3 + C7S6S4S1S3 − C7S6C1S2C4 − S7S5C4C1C2C3

+ S7S5C4S1S3 + S7S5C1S2S4 − S7C5C1C2S3 − S7C5S1C3

t12 = −S7C6C5C4C1C2C3 + S7C6C5C4S1S3 + S7C6C5C1S2S4 + S7C6S5C1C2S3 (B.10)
+ S7C6S5S1C3 + S7S6S4C1C2C3 − S7S6S4S1S3 + S7S6C1S2C4 − C7S5C4C1C2C3

+ C7S5C4S1S3 + C7S5C1S2S4 − C7C5C1C2S3 − C7C5S1C3

t13 = S6C5C4C1C2C3 − S6C5C4S1S3 − S6C5C1S2S4 − S6S5C1C2S3 − S6S5S1C3 (B.11)
+ C6S4C1C2C3 − C6S4S1S3 + C6C1S2C4

t14 = lwS6C5C4C1C2C3 − lwS6C5C4S1S3 − lwS6C5C1S2S4 − lwS6S5C1C2S3 (B.12)
− lwS6S5S1C3 + lwC6S4C1C2C3 − lwC6S4S1S3 + lwC6C1S2C4 + leS4C1C2C3

− leS4S1S3 + leC1S2C4 + C1S2ls

t21 = C7C6C5C4S1C2C3 + C7C6C5C4C1S3 − C7C6C5S1S2S4 − C7C6S5S1C2S3 (B.13)
+ C7C6S5C1C3 − C7S6S4S1C2C3 − C7S6S4C1S3 − C7S6S1S2C4 − S7S5C4S1C2C3

− S7S5C4C1S3 + S7S5S1S2S4 − S7C5S1C2S3 + S7C5C1C3
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t22 = −S7C6C5C4S1C2C3 − S7C6C5C4C1S3 + S7C6C5S1S2S4 + S7C6S5S1C2S3 (B.14)
− S7C6S5C1C3 + S7S6S4S1C2C3 + S7S6S4C1S3 + S7S6S1S2C4 − C7S5C4S1C2C3

− C7S5C4C1S3 + C7S5S1S2S4 − C7C5S1C2S3 + C7C5C1C3

t23 = S6C5C4S1C2C3 + S6C5C4C1S3 − S6C5S1S2S4 − S6S5S1C2S3 + S6S5C1C3 (B.15)
+ C6S4S1C2C3 + C6S4C1S3 + C6S1S2C4

t24 = lwS6C5C4S1C2C3 + lwS6C5C4C1S3 − lwS6C5S1S2S4 − lwS6S5S1C2S3 (B.16)
+ lwS6S5C1C3 + lwC6S4S1C2C3 + lwC6S4C1S3 + lwC6S1S2C4 + leS4S1C2C3

+ leS4C1S3 + leS1S2C4 + S1S2ls

t31 = −C7C6C5S2C3C4 − C7C6C5C2S4 + C7C6S2S3S5 + C7S6S2C3S4 (B.17)
− C7S6C2C4 + S7S5S2C3C4 + S7S5C2S4 + S7S2S3C5

t32 = S7C6C5S2C3C4 + S7C6C5C2S4 − S7C6S2S3S5 − S7S6S2C3S4 + S7S6C2C4 (B.18)
+ C7S5S2C3C4 + C7S5C2S4 + C7S2S3C5

t33 = −S6C5S2C3C4 − S6C5C2S4 + S6S2S3S5 − C6S2C3S4 + C6C2C4 (B.19)

t34 = −lwS6C5S2C3C4 − lwS6C5C2S4 + lwS6S2S3S5 − lwC6S2C3S4 + lwC6C2C4 (B.20)
− leS2C3S4 + leC2C4 + C2ls + lb

B.1.3 Jacobian matrix
Equation (B.21) shows the velocity kinematics which relates the translational velocity and

the angular velocity of the end-effector (ṗ,ω) with the joints’ velocity θ̇ by the Jacobian matrix
J . Note that θ̇i(i = 1, 2, · · · , 7) is the velocity of the ith joint.

[
ṗ
ω

]
= J θ̇ (B.21)

J =


j11 j12 j13 j14 j15 j16 j17

j21 j22 j23 j24 j25 j26 j27

j31 j32 j33 j34 j35 j36 j37

j41 j42 j43 j44 j45 j46 j47

j51 j52 j53 j54 j55 j56 j57

j61 j62 j63 j64 j65 j66 j67

 (B.22)

in which the element is displayed as follows:

j11 = (−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 + (−S1C2S3 + C1C3)S5)S6 (B.23)
− ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw − ((S1C2C3 + C1S3)S4 + S1S2C4)le

− S1S2ls
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j12 = C1(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 − (−S2C3S4 + C2C4)C6)lw (B.24)
+ (−S2C3S4 + C2C4)le + C2ls)

j13 = S1S2(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 − (−S2C3S4 + C2C4)C6)lw (B.25)
+ (−S2C3S4 + C2C4)le + C2ls)− C2(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5

+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

+ ((S1C2C3 + C1S3)S4 + S1S2C4)le + S1S2ls)

j14 = (−S1C2S3 + C1C3)(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 (B.26)
− (−S2C3S4 + C2C4)C6)lw + (−S2C3S4 + C2C4)le)

− S2S3(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 + (−S1C2S3 + C1C3)S5)S6

− ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw + ((S1C2C3 + C1S3)S4 + S1S2C4)le)

j15 = ((S1C2C3 + C1S3)S4 + S1S2C4)(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 (B.27)
− (−S2C3S4 + C2C4)C6)lw + (−S2C3S4 + C2C4)le)

− (−S2C3S4 + C2C4)(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5

+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

+ ((S1C2C3 + C1S3)S4 + S1S2C4)le)

j16 = −(−((S1C2C3 + C1S3)C4 − S1S2S4)S5 (B.28)
+ (−S1C2S3 + C1C3)C5)(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6

− (−S2C3S4 + C2C4)C6)lw

+ (−(−S2C3C4 − C2S4)S5 + S2S3C5)(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5

+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

j17 = 0 (B.29)

j21 = −(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 + (−C1C2S3 − S1C3)S5)S6 (B.30)
− ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw + ((C1C2C3 − S1S3)S4 + C1S2C4)le + C1S2ls

j22 = S1(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 − (−S2C3S4 + C2C4)C6)lw (B.31)
+ (−S2C3S4 + C2C4)le + C2ls)

j23 = C2(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 + (−C1C2S3 − S1C3)S5)S6 (B.32)
− ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw + ((C1C2C3 − S1S3)S4 + C1S2C4)le

+ C1S2ls)− C1S2(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 − (−S2C3S4 + C2C4)C6)lw

+ (−S2C3S4 + C2C4)le + C2ls)
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j24 = S2S3(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 + (−C1C2S3 − S1C3)S5)S6 (B.33)
− ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw + ((C1C2C3 − S1S3)S4 + C1S2C4)le

− (−C1C2S3 − S1C3)(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6

− (−S2C3S4 + C2C4)C6)lw + (−S2C3S4 + C2C4)le)

j25 = (−S2C3S4 + C2C4)(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 (B.34)
+ (−C1C2S3 − S1C3)S5)S6 − ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw

+ ((C1C2C3 − S1S3)S4 + C1S2C4)le)

− ((C1C2C3 − S1S3)S4 + C1S2C4)(−(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6

− (−S2C3S4 + C2C4)C6)lw + (−S2C3S4 + C2C4)le)

j26 = −(−(−S2C3C4 − C2S4)S5 + S2S3C5)(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5

(B.35)

+ (−C1C2S3 − S1C3)S5)S6 − ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw

+ (−((C1C2C3 − S1S3)C4 − C1S2S4)S5

+ (−C1C2S3 − S1C3)C5)(−((−S2C3C4 − C2S4)C5 + S2S3S5)S6 − (−S2C3S4 + C2C4)C6)lw

j27 = 0 (B.36)

j31 = 0 (B.37)

j32 = −S1(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 + (−S1C2S3 + C1C3)S5)S6 (B.38)
− ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw + ((S1C2C3 + C1S3)S4 + S1S2C4)le

+ S1S2ls + S1S2L2 )− C1(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5

+ (−C1C2S3 − S1C3)S5)S6 − ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw

+ ((C1C2C3 − S1S3)S4 + C1S2C4)le + C1S2ls)

j33 = C1S2(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 + (−S1C2S3 + C1C3)S5)S6 (B.39)
− ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw + ((S1C2C3 + C1S3)S4 + S1S2C4)le

+ S1S2ls)− S1S2(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 + (−C1C2S3 − S1C3)S5)S6

− ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw + ((C1C2C3 − S1S3)S4 + C1S2C4)le + C1S2ls)

j34 = (−C1C2S3 − S1C3)(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 (B.40)
+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

+ ((S1C2C3 + C1S3)S4 + S1S2C4)le

− (−S1C2S3 + C1C3)(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5 + (−C1C2S3 − S1C3)S5)S6

− ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw + ((C1C2C3 − S1S3)S4 + C1S2C4)le)
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j35 = ((C1C2C3 − S1S3)S4 + C1S2C4)(−(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5 (B.41)
+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

+ ((S1C2C3 + C1S3)S4 + S1S2C4)le)

− ((S1C2C3 + C1S3)S4 + S1S2C4)(−(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5

+ (−C1C2S3 − S1C3)S5)S6 − ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw

+ ((C1C2C3 − S1S3)S4 + C1S2C4)le)

j36 = −(−((C1C2C3 − S1S3)C4 − C1S2S4)S5 (B.42)
+ (−C1C2S3 − S1C3)C5)(−(((S1C2C3 + C1S3)C4 − S1S2S4)C5

+ (−S1C2S3 + C1C3)S5)S6 − ((S1C2C3 + C1S3)S4 + S1S2C4)C6)lw

+ (−((S1C2C3 + C1S3)C4 − S1S2S4)S5

+ (−S1C2S3 + C1C3)C5)(−(((C1C2C3 − S1S3)C4 − C1S2S4)C5

+ (−C1C2S3 − S1C3)S5)S6 − ((C1C2C3 − S1S3)S4 + C1S2C4)C6)lw

j37 = 0 (B.43)

j41 = 0 (B.44)

j42 = −S1 (B.45)

j43 = C1S2 (B.46)

j44 = −C1C2S3 − S1C3 (B.47)

j45 = (C1C2C3 − S1S3)S4 + C1S2C4 (B.48)

j46 = ((−C4C2C3 + S4S2)S5 − C5C2S3)C1 + S1 (−C3C5 + S5C4S3) (B.49)

j47 = ((C5C4C2C3 − C5S4S2 − S5C2S3)S6 + C6 (S2C4 + C3C2S4))C1 (B.50)
− S1 ((C3S5 + C5C4S3)S6 + C6S4S3)

j51 = 0 (B.51)

j52 = C1 (B.52)

j53 = S1S2 (B.53)



96 Appendix B

j54 = −S1C2S3 + C1C3 (B.54)

j55 = (S1C2C3 + C1S3)S4 + S1S2C4 (B.55)

j56 = ((−C4C2C3 + S4S2)S5 − C5C2S3)S1 − C1 (−C3C5 + S5C4S3) (B.56)

j57 = ((C5C4C2C3 − C5S4S2 − S5C2S3)S6 + C6 (S2C4 + C3C2S4))S1 (B.57)
+ C1 ((C3S5 + C5C4S3)S6 + C6S4S3)

j61 = 1 (B.58)

j62 = 0 (B.59)

j63 = C2 (B.60)

j64 = S2S3 (B.61)

j65 = −S2C3S4 + C2C4 (B.62)

j66 = (S2C3C4 + C2S4)S5 + S2S3C5 (B.63)

j67 = ((−C4C5C3 + S5S3)S6 − C6C3S4)S2 − C2 (C5S4S6 − C6C4) (B.64)

B.2 Cameras’ Calibrations

B.2.1 Pinhole camera model
In Figure B.2, the center of the lens is assumed as a pinhole. The light rayed from a 3D point

(XC , YC , ZC)T enters the camera through this pinhole and projects on the real image plane in
the inverse position (u′, v′)T . In order to avoid image inversion, it is assumed that there is a
visual image plane in front of the center of the projection and (u, v)T is the corresponding 2D
image coordinate of (XC , YC , ZC)T in the visual image plane. Notice that ΣC is set on the
origin of the lens and the Z-axis of ΣC which is perpendicular to the image plane is called the
optical axis.

The pinhole camera model defines a geometric relationship as shown in (B.65) between the
3D point (XC , YC , ZC)T and its 2D corresponding projection (u, v)T on the image plane. This
geometric mapping from 3D to 2D is called perspective projection.

(u, v) =

(
f
XC

ZC
, f
YC
ZC

)
. (B.65)
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Figure B.2: Pinhole camera model

B.2.2 Calibration of high speed camera

Suppose that a 3D position is expressed as BP and CnP in the base coordinate system ΣB

and in the camera coordinate system ΣCn(n = 1, 2), respectively. Then it is well known that
CnP = CnPB + CnRB

BP , (B.66)

where BP = (XB, YB, ZB)T , CnP = (XCn , YCn , ZCn)T .
In (B.66), CnPB ∈ R3 describes the origin of ΣB in ΣCn and CnRB ∈ R3×3 is a rotation

matrix of ΣB with respect to ΣCn . These two vectors are obtained by the camera calibration,
which includes the following steps:

Firstly, define CnPB and CnRB as

CnPB =

XBCn

YBCn

ZBCn

 , CnRB =

rn11 rn12 rn13

rn21 rn22 rn23

rn31 rn32 rn33

 , (B.67)

where rij(i, j = 1 ∼ 3) corresponds to the element in R derived from XYZ Euler angle with
respect to θz, θy, θx.

R =

cos θz cos θy cos θz sin θy sin θx − sin θz cos θx cos θz sin θy cos θx + sin θz sin θx
sin θz cos θy sin θz sin θy sin θx + cos θz cos θx sin θz sin θy cos θx − cos θz sin θx
− sin θy cos θy sin θx cos θy cos θx

 .
(B.68)

Secondly, substituting (B.67) into (B.66) and (B.65) in turn leads to (B.69) and (B.70).

XCn = rn11XB + rn12YB + rn13ZB +XBCn ,

YCn = rn21XB + rn22YB + rn23ZB + YBCn ,

ZCn = rn31XB + rn32YB + rn33ZB + ZBCn ,

(B.69)

un = f
rn11XB + rn12YB + rn13ZB +XBCn

rn31XB + rn32YB + rn33ZB + ZBCn

,

vn = f
rn21XB + rn22YB + rn23ZB + YBCn

rn31XB + rn32YB + rn33ZB + ZBCn

.

(B.70)
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Thirdly, choose m points and measure the 3D coordinates of them in ΣB. Then, calculate
their 2D coordinates by using two methods: 1) the method shown in (B.70), obtaining (un, vn)
from their 3D coordinates; 2) the method of obtaining (ũn, ṽn) from their 2D coordinates on
the image.

Finally, estimateXBCn , YBCn , ZBCn , θz, θy, θx by minimizing the following objective func-
tion,

J =
m∑
j=1

((ũnj − unj)2 + (ṽnj − vnj)2). (B.71)

B.2.3 Calculation of the 3D coordinate from 2D image coordinates

After obtaining C1PB, C1RB, C2PB, C2RB through the camera calibration in the above
section, the 3D coordinate BP = (XB, YB, ZB)T can be solved by using its 2D coordinates
(u1, v1) and (u2, v2) in the two cameras’ images from (B.70).

In fact, (B.70) is equal to the following equation:

u1

f
(r1

31XB + r1
32YB + r1

33ZB + ZBC1) = r1
11XB + r1

12YB + r1
13ZB +XBC1 ,

v1

f
(r1

31XB + r1
32YB + r1

33ZB + ZBC1) = r1
21XB + r1

22YB + r1
23ZB + YBC1 ,

u2

f
(r2

31XB + r2
32YB + r2

33ZB + ZBC2) = r2
11XB + r2

12YB + r2
13ZB +XBC2 ,

v2

f
(r2

31XB + r2
32YB + r2

33ZB + ZBC2) = r2
21XB + r2

22YB + r2
23ZB + YBC2 ,

(B.72)

which can be rewritten as
u1

f
r1

31 − r1
11

u1

f
r1

32 − r1
12

u1

f
r1

33 − r1
13

v1

f
r1

31 − r1
21

v1

f
r1

32 − r1
22

v1

f
r1

33 − r1
23

u2

f
r2

31 − r2
11

u2

f
r2

32 − r2
12

u2

f
r2

33 − r2
13

v2

f
r2

31 − r2
21

v2

f
r2

32 − r2
22

v2

f
r2

33 − r2
23


XB

YB
ZB

 =


XBC1 − u1

f
ZBC1

YBC1 − v1

f
ZBC1

XBC2 − u2

f
ZBC2

YBC2 − v2

f
ZBC2

 . (B.73)

Then, XB

YB
ZB

 = A†B (B.74)

in which

A =


u1

f
r1

31 − r1
11

u1

f
r1

32 − r1
12

u1

f
r1

33 − r1
13

v1

f
r1

31 − r1
21

v1

f
r1

32 − r1
22

v1

f
r1

33 − r1
23

u2

f
r2

31 − r2
11

u2

f
r2

32 − r2
12

u2

f
r2

33 − r2
13

v2

f
r2

31 − r2
21

v2

f
r2

32 − r2
22

v2

f
r2

33 − r2
23

 , B =


XBC1 − u1

f
ZBC1

YBC1 − v1

f
ZBC1

XBC2 − u2

f
ZBC2

YBC2 − v2

f
ZBC2

 (B.75)

and A is obtained by

A† = (ATA)−1AT . (B.76)
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B.2.4 Calibration of middle speed camera
This section is for the calibration of the middle speed cameras. There is a difference be-

tween the calibrations of the high speed and the middle speed cameras that for the previous
one, the rotational matrix from ΣB to ΣCn used is nonlinear, but it is linear for the later one.

The calibration of the middle speed cameras includes the following steps:
Firstly, the basic transformation relation in (B.66) is also held here that

CnP = CnPB + CnRB
BP , (B.77)

where BP = (XB, YB, ZB)T , CnP = (XCn , YCn , ZCn)T . CnPB ∈ R3 describes the origin of
ΣB in ΣCn and CnRB ∈ R3×3 is a rotation matrix of ΣB with respect to ΣCn . They are defined
as

CnPB =

XBCn

YBCn

ZBCn

 , CnRB =

rn11 rn12 rn13

rn21 rn22 rn23

rn31 rn32 rn33

 . (B.78)

Secondly, substituting (B.78) into (B.77) and (B.65) in turn leads to (B.79) and (B.80).

XCn = rn11XB + rn12YB + rn13ZB +XBCn ,

YCn = rn21XB + rn22YB + rn23ZB + YBCn ,

ZCn = rn31XB + rn32YB + rn33ZB + ZBCn ,

(B.79)

un = f
rn11XB + rn12YB + rn13ZB +XBCn

rn31XB + rn32YB + rn33ZB + ZBCn

,

vn = f
rn21XB + rn22YB + rn23ZB + YBCn

rn31XB + rn32YB + rn33ZB + ZBCn

,

(B.80)

which is expressed as

un =
bn1XB + bn2YB + bn3ZB + bn4
bn9XB + bn10YB + bn11ZB + 1

,

vn =
bn5XB + bn6YB + bn7ZB + bn8
bn9XB + bn10YB + bn11ZB + 1

(B.81)

with bni (i = 1, ..., 11). Then, rewrite (B.81) as

Anbn = cn, (B.82)

where

An =

[
XB YB ZB 1 0 0 0 0 −unXB −unYB −unZB
0 0 0 0 XB YB ZB 1 −vnXB −vnYB −vnZB

]
, (B.83)

bn =
[
bn1 bn2 bn3 bn4 bn5 bn6 bn7 bn8 bn9 bn10 bn11

]T
, (B.84)

cn = [un, vn]T . (B.85)

Finally, solve bn by using the 3D coordinates of m points and their corresponding 2D
coordinates on the image with (B.86),

An
j b

n = cnj (j = 1, · · · ,m). (B.86)
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Actually, it is seen easily that if BP , un, vn are obtained, An, cn are known matrix and
vector. Hence, bn can be solved by using (B.87).A

n
1

...
An
m

 bn =

c
n
1
...
cnm

 (B.87)
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