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Chapter 1

General Introduction

Canonical fixed-temperature simulations of complex systems such as biomolecules

and spin systems are greatly hampered by the multi-minima problem. Because

simulations at low temperatures tend to get trapped in a few of a huge number

of local-minimum-energy states which are separated by high-energy barriers, it

is very difficult to obtain accurate canonical distribution at low temperatures by

conventional Monte Carlo (MC) and molecular dynamics (MD) simulations. One

way to overcome this multiple-minima problem is to perform a simulation in a

generalized ensemblewhere each state is weighted by an artificial, non-Boltzmann

probability weight factor so that a random walk in potential energy space may be

realized. This random walk allows the simulation to overcome any energy barrier

and to sample a much wider configurational space than by conventional methods.

Three of well-known generalized-ensemble algorithms are multicanonical al-

gorithm (MUCA) [1, 2], simulated tempering (ST) [3, 4], and replica-exchange

method (REM) [5, 6]. In MUCA, ST, and REM, random walk in potential energy

(MUCA) and temperature (ST and REM) are realized. The molecular dynamics

version of REM is called replica-exchange molecular dynamics (REMD) [7].

The cell is the most elementary unit of life. It was found by Hooke by ob-

serving the tissue of wood in the seventeenth century. The frontier of cells, where

the cells communicate with other cells and outside environment, mainly consist

of lipid bilayer.
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The finding that the membrane consists of a fluid lipid bilayer system must be

one of the most impressive advances in cell membranes, or even bio-science. It

is known as the fluid mosaic membrane model, proposed by S. J. Singer and G.

L. Nicolson in 1972 [8]. Proteins “swim” in the cell membrane which is made

up of fluid sol-state lipid bilayers. This is commonly recognized as a base of the

membrane model, while some exceptional situations are also suggested such as

raft [9], which is believed to be a gel-like domain.

The Ueoka Group at Sojo University reported anti-tumor effects of hybrid li-

posomes [10, 11, 12, 13]. Liposomes are spherical lipid bilayers, which can be

made artificially. The hybrid liposomes here correspond to the liposomes that

consist of not only phosphate lipids but also polyethylene glycol (PEG). These

substances have been studied as a candidate of drug delivery systems. What the

Group found is that even without anti-tumor drug inside, the liposomes made

of dimyristoylphosphatidylcholine (DMPC) themselves can work as anti-tumor

drugs. What is more surprising is that the effect changes drastically even when

the ingredient of liposomes is changed slightly. Dipalmitoylphosphatidylcholine

(DPPC), DMPC, and dilauroylphosphocholine (DLPC) are the phosphate lipids

similar to each other. They have the same head group, namely phosphatidyl-

choline (PC). The only difference is in the fat tails. DPPC, DMPC, and DLPC

have 16, 14, and 12 carbons in each of the two tails, respectively. DPPC and

DPMC exist in the human body. According to their experimental results, hybrid

liposomes consisting of DPPC have no effect on neither ordinary cells nor cancer

cells. It has nothing to do with drug effects. Those of DMPC cause cancer cells

to perform apoptosis specifically. However, ordinary cells are not affected. Thus,

the lipisomes with this lipid react as anti-tumor drugs. DLPC liposomes cause

necrosis and thus are toxic.

This is of great interest. Although the difference among the lipids are rather

small, their effects on the body vary much. The hypothetical mechanism is as-

sociated with the difference in fluidity of membrane. Cancer cells have usually

more fluid cell membrane with more unsaturated lipids, whereas the normal cell

has more stable membranes with more cholesterol.

The phase transition temperature of DPPC, DMPC, and DLPC are 40◦C, 23◦C,
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and 0◦C, respectively. Thus, at the body temperature, DPPC is in the gel phase,

which must be very rigid. On the other hand, the other two lipid membranes

are in the sol phase, which must be more fluid and soft. Especially, DLPC lipid

membrane should be quite fluid.

The first approach to understand such phenomenain silico must be the un-

derstanding of phase transitions of lipid bilayer systems. Even with such great

interests and importance, the reliable results seem to be still scarce. Thus, we

applied replica-exchange molecular dynamics (REMD) method [5, 7], one of the

generalized-ensemble algorithms, to the lipid bilayer systems [14, 15] (see Chap-

ter2). Note that this is the first application of generalized-ensemble algorithms to

lipid systems to our knowledge. This is given at the first part of this thesis.

Although REMD has been very efficient for the simulations of the lipid sys-

tems, the crossing over phase transition point will be more and more difficult, as

the system size increases. We thus want to develop more powerful generalized-

ensemble algorithms.

In the second part of this thesis, we focus on the ST method, which has some

similarity to REM. These two methods have not been very compatible with first-

order phase transitions. We propose an extension of ST method for spin systems,

which turned out to be applicable to systems with first-order phase transitions [16,

17]. In this ST method, not only temperature but also external field is treated as a

dynamical variable. Thus, this method can be referred to as “Simulated Tempering

and Magnetizing (STM).”

This thesis consists of the following parts. In Chapter 2, we give the results

of application of REMD to coarse-grained lipid bilayer systems, which is aimed

at the deeper understanding of its phase transition mechanisms. In chapter 3, we

introduce the STM. We then present the results of STM simulations applied to

the two-dimensional Ising model. Chapter 4 is devoted to a further application

of STM to the two-dimensional three-state Potts model. In Chapter 5 we con-

clude this thesis. In the following appendices, we summarize some statistical

techniques, which are important for analyzing errors of MC or MD simulation re-

sults that usually involve auto-correlations. We also give the relationship between

the Ising model and lattice gas model.
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Chapter 2

Replica-Exchange Molecular

Dynamics Simulation of Lipid

Bilayer Systems with

Coarse-Grained Model

T. Nagai, R. Ueoka, and Y. Okamoto: “Phase behavior of a lipid bilayer sys-

tem studied by a replica-exchange molecular dynamics simulation, ”Jour-

nal of the Physical Society of Japan81, 024002 (9 pages) (2012).

T. Nagai and Y. Okamoto: “Replica-exchange molecular dynamics simu-

lation of a lipid bilayer system with a coarse-grained model, ”Molecular

Simulation38, 437-441 (2012).
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2.1 Introduction

Biological membranes are mainly composed of lipids. Phosphocholine (PC) is

known as a main component. A dipalmitoylphosphatidylcholine (DPPC) bilayer

system has been studied as one of lipid bilayers. There have been many studies

on DPPC bilayers by simulations (for reviews, see, e.g., Refs. [1] and [2] ) and by

experiments (for a review, see, e.g., Ref. [3]).

DPPC bilayers have many phases along temperature, pressure, and so on. Dif-

ferent phases have different features in lateral diffusion coefficient, thickness of

bilayer area of lipids, etc.

Simulational studies of phase transitions with the change of the temperature

have been challenging because of the hysteresis behavior. The system easily gets

trapped in local-minimum-energy states. There have been a few all-atom simula-

tions of the phase transitions. Vrieset al. detected a ripple phase by annealing [4],

Leekumjornet al. performed annealing and heating simulations of several kinds

of lipid bilayers and studied gel phases and transition states [5, 6].

Coarse-grained models have been employed by a number of groups [7, 8, 9,

10]. In coarse-grained models, several atoms make up one reaction site. By re-

ducing the number of reaction sites, one can simulate a system in a shorter com-

putational time and it is easier to simulate larger systems.

As for coarse-grained simulations, Stevens performed simulations of a DPPC

bilayer with a coarse-grained model, and got a tilted gel phase [7]. Marrink and

coworkers studied the sol-gel phase transitions [11, 12] with their own coarse-

graind models, MARTINI [8] and MARTINI2.0 [8, 9]. The main simulation tech-

niques of inducing the phase transitions was cooling or heating. With their model,

they got an un-tilted gel phase of DPPC bilayer but did not get the tilted gel phase,

though the tilted gel phase is also supported by experiments. They changed param-

eters of MARTINI temporarily to sample the tilted-gel phase. With MARTINI2.0

model, they only report tilted-gel phase with externally applied tension. In the

present work, we applied the molecular dynamics (MD) version of the replica-

exchange method [13], Replica-Exchange Molecular Dynamics (REMD) [14] to

a DPPC bilayer system with a coarse-grained model MARTINI2.0. As far as we
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know, this is the first application of a generalized-ensemble algorithm (for a re-

view, see, e.g., Ref. [15]). to an explicit DPPC bilayer system. Using REMD

lets one enhance conformational sampling efficiency and simulate a system in a

wide range of temperature at once. Even though temperatures are changed dur-

ing REMD simulations, the REMD method does not break the detailed balance

at any temperature. Thus, we can obtain the well equilibrated states at all the

temperatures investigated. That is, we can obtain more reliable results at low tem-

peratures, and we can discuss temperature dependences more accurately than by

conventional methods.

This article is organized as follows. In§2.2 we present the methods, defini-

tions of some quantities, and simulation details. In§2.3we present the results of

our REMD simulations of the bilayer.

2.2 Materials and methods

We performed a replica-exchange molecular dynamics (REMD) [14] simulation

with a coarse-grained model MARTINI2.0. In this section, we explain REMD,

MARTINI, a number of definitions of physical values, and simulation details.

We first briefly review REMD. For details, see the literature [14]. In REMD

simulations,M copies (or, replicas) of a system are simulated by the molecular

dynamics method simultaneously atM different temperatures. Every certain num-

ber of simulation steps, one tries to exchange the temperatures without breaking

equilibrium by using Metropolis criterion [16]. By exchanging the temperatures,

replicas perform a random walk in the temperature space. This, in turn, induces

a random walk in the energy space. The REMD was extended toNPT ensemble

simulations, [17, 18, 19, 20] and we used this method in theNPT ensemble.

MARTINI is a coarse-grained model [8, 9] proposed by Marrinket al. They

revised parameters in 2007 [9]. We used this version of MARTINI, which is

referred to as MARTINI2.0. This force field has been extended to proteins [21]

and carbohydrates [22].

Here, we summarize main points of MARTINI2.0. One reaction site of MAR-
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TINI generally corresponds to four heavy atoms. In this model, reaction sites are

classified into 18 groups, which have different parameters. The potential energy

is given by

E = Ebond+ Eangle+ EvdW + ECoulomb , (2.1)

Ebond =
∑
bond

1
2

Kbond(R− R0)
2 , (2.2)

Eangle =
∑
angle

1
2

Kangle(cos(θ) − cos(θ0))
2 , (2.3)

EvdW =
∑
i, j

4ϵi j

(σi j

r i j

)12

−
(
σi j

r i j

)6 , (2.4)

ECoulomb =
∑
i, j

qiqj

4πϵ0ϵr

 1
r i j
− 5

3rc
+

5r3
i j

3r4
c

−
r4

i j

r4
c

 , (2.5)

whereR0, Kbond, θ0, andKangle denote the equilibrium distance, its force coeffi-

cient, the equilibrium bond angle, and its force constant, respectively.ϵi j andσi j

are the Lennard-Jones parameters, andr i j is the distance between thei-th and j-

th particles. qi, ϵ0, ϵr , and rc denote the full charges, the dielectric constant of

vacuum, the relative dielectric constant, and the cut-off distance (= 1.2 nm), re-

spectively.

One of the specific characteristics of MARTINI2.0 is the employment of the

anti-freeze particles. Because water particles in previous MARTINI tend to get

frozen easily, the anti-freeze particles were added in order to prevent water from

getting frozen. The Lennard-Jones parameters between an ordinary water par-

ticle and an anti-freeze particle are modified from that between ordinary water

particles. The other parameters of anti-freeze particles are the same as those of

ordinary water particles. Anti-freeze particles tend to break the long-distance or-

der in water. See the literature [9] for details. Figure2.1 shows the structure

of a DPPC molecule and a water particle in MARTINI2.0. One DPPC molecule

is represented by twelve particles. Four water molecules are represented by one

particle.

The simulation details are as follows. The system contained 32 DPPC molecules
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Figure 2.1: Structures of lipid and water particles in MARATINI2.0. The single
spherical particle is a water particle. This corresponds to four water molecules.
The other chain is a DPPC molecule. Twelve particles represent one DPPC
molecule. One particle corresponds to choline, another corresponds to phosphate.
Two particles are modeled as a glycerol backbone. Two sets of four particles (in
light blue) stand for palmitoyl tails.
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and 500 water particles. Fifty of those water particles were anti-freeze particles.

The initial conformation was a DPPC bilayer in a sol phase. By heating and

annealing the bilayer, we obtained a set of initial conformations for the REMD

simulations. These bilayers were further equilibrated by REMD simulations. We

then performed a 4.6-microsecond production REMD run per replica. The inter-

val of replica exchanges was 100 MD steps. The interval may appear to be small.

Because the REMD satsifies the detailed-balance condition, however, it is guaran-

teed to approach the thermal equiibrium no matter how often replica exchange is

tried. We took a small interval, following the recommendation of Ref. [23]. The

time step was 20 fs. In the production run, Nosé-Hoover thermostats [24, 25] and

Parrinello-Rahman borostats [26] were employed. We employed semi-isotropic

pressure controls, where the ratio of thex andy lengths of the simulation box was

fixed, while thez length moves independently. Reference pressure of all compo-

nents was 1 bar. We did not apply any surface tensions. Reference temperatures

were distributed at 127 points between 283 and 390 K (M = 127): 283.00, 283.70,

284.40, 285.11, 285.81, 286.52, 287.23, 287.94, 288.66, 289.38, 290.10, 290.82,

291.54, 292.26, 292.99, 293.72, 294.45, 295.00, 295.25, 295.51, 295.76, 296.01,

296.27, 296.52, 296.77, 297.03, 297.28, 297.53, 297.78, 298.04, 298.29, 298.54,

298.78, 299.05, 299.30, 299.56, 299.81, 300.06, 300.32, 300.57, 300.82, 301.08,

301.33, 301.58, 301.84, 302.09, 302.34, 302.59, 302.85, 303.10, 303.35, 303.61,

303.86, 304.11, 304.37, 304.62, 304.87, 305.13, 305.38, 305.63, 305.89, 306.14,

306.39, 306.65, 306.90, 307.15, 307.41, 307.66, 307.91, 308.16, 308.42, 308.67,

308.92, 309.18, 309.43, 309.68, 309.94, 310.19, 310.44, 310.70, 310.95, 311.20,

311.46, 311.71, 311.96, 312.22, 312.47, 312.72, 312.97, 313.23, 313.48, 313.73,

313.99, 314.24, 314.49, 314.75, 315.00, 317.21, 319.44, 321.69, 323.95, 326.24,

328.54, 330.87, 333.21, 335.57, 337.95, 340.36, 342.78, 345.22, 347.68, 350.17,

352.67, 355.20, 357.74, 360.31, 362.90, 365.51, 368.14, 370.79, 373.47, 376.17,

378.89, 381.63, 384.40, 387.19, and 390.00 K. Figure2.2shows the temperature

distribution. A smaller index is assigned to a lower temperature. We assigned

a high density distribution of temperatures around sol-gel phase transition point

because one needs a lot of replicas around critical temperatures. The highest tem-

perature was chosen so that the bilayer does not break. The lowest temperature
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was chosen so that it was lower than the sol-gel phase transition temperature. We

used a package software, GROMACS-4.0.5 [27, 28, 29, 30], for all the simula-

tions.
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Figure 2.2: Temperature distribution for the REMD simulation. Each point cor-
responds to a replica.

We now describe the way of calculation of the thickness of a bilayer and the

area of a bilayer, etc. The thickness of a bilayer is defined to be the distance

between the center of mass of phosphate particles in the upper layer and that in

the lower layer. The area of a bilayer is considered to be the area of base of the

simulation box. By dividing this area by the number of lipids in a leaflet, we

calculate the area per lipid. The tilt angle was defined as follows. In MARTINI,

a C2 tail of DPPC has four particles. The angle of the line which passes through

both the first particle and the last particle in a C2 tail to the unit vector parallel to

thez axis from the last particle is defined as the tilt angle.

2.3 Results and discussion

Figure2.3 shows the time series of the temperature index of one of the replicas

during the REMD simulation of the DPPC bilayer. Figure2.3 shows that this

replica made a random walk in the temperature space between the highest tem-
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perature and approximately the tenth lowest temperature. This suggests that the

REMD simulation was performed properly. Around the tenth lowest temperature,

there is a phase transition point of water as we discuss below. The existence of the

water phase transition prevents replicas from going down below the tenth lowest

temperature around 290 K. Our results are quite reliable in the range above this

temperature, above which the sol-gel phase transitions exist as is discussed below.
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Figure 2.3: The history of temperature index in one of the replicas (Replica 113)
during the REMD simulation of the DPPC bilayer with 32 lipids.

Figures2.4and2.5show the time series of the potential energy and the thick-

ness of the bilayer, respectively, of the replica in Fig.2.3. From Fig.2.4, we see

that the energy also made a random walk. Note that there is a strong and expected

correlation between the behaviors in Figs.2.3and2.4. According to Figs.2.3and

2.5, the bilayer is thick at low temperatures and thin at high temperatures. The

thickness is a good parameter characterizing the phase. These results suggest that

at high temperatures the bilayer is in the sol phase, where the bilayer is thin, and

at low temperatures the bilayer is in the gel phase, where the bilayer is thick. This

implies that the replica underwent several phase transitions during the simulation.
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Figure 2.4: Potential energy of one of the replicas (Replica 113) as a function of
time. The energy followed the movement of the temperature (see Fig.2.3).
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Figure 2.5: Thickness of the bilayer of one of the replicas (Replica 113) as a
function of time.
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In order to show the phase transition behavior clearly, we examine the tem-

perature dependence of the enthalpy, etc. Figures2.6, 2.7, 2.8, and2.9 show the

temperature dependence of the enthalpy, thickness of the bilayer, area per lipid,

and heat capacity. respectively. Here, the heat capacityC is defined by

C =

⟨
(H + PV)2

⟩
− ⟨H + PV⟩2

kBT2
, (2.6)

whereH, P, V, kB, andT are the sum of kinetic energy and potential energy,

pressure, volume, Boltzmann constant, and temperature, respectively. Sudden

changes of behaviors exist around 296 K in Figs.2.6, 2.7, and2.8. Other sudden

changes of behaviors also exist around 288 K in Figs.2.6 and 2.7. The heat

capacity in Fig.2.9has two peaks around 288 K and 296 K, corresponding to the

two sudden changes in the enthalpy in Fig.2.6. According to these results, two

phase transitions were found.

The phase transition around 288 K is the phase transition of water. The sudden

changes of enthalpy around this temperature in Fig.2.6mainly consist of the sud-

den changes of LJ potential energy between water particles (see Fig.2.15below).

Note that the enthalpy changes in Fig.2.6around 288 K are large. These are cor-

related to large changes in energy around this temperature. The large differences

in the energy are the reason why the replica exchanges were not successful around

this point.

The other phase transition around 296 K corresponds to the sol-gel phase tran-

sition of the DPPC bilayer. This is supported by the sudden changes of thickness

and area around 296 K in Figs.2.7and2.8. The phase characteristics were repro-

duced that the bilayer is thin and wide above the temperature and thick and narrow

under the temperature. The sol-gel phase transition is also suggested by the tem-

perature dependence of the LJ potential energy between DPPC molecules (see

Fig. 2.13below). The sol-gol phase transition temperature is consistent with the

previous work [11] by Marrink et al. They reported that the transition temperature

is 295±5 K.

The area per lipid in different phases was discussed in Ref. [3]. Their estimates
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of the area per lipid for the gel phase (20◦C) and for sol phase (50◦C) are 0.479

and 0.64 nm2, respectively. Our results are in accord with these values.
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Figure 2.6: Enthalpy as a function of temperature. The graphs on the right are
the same with different ranges of the ordinate and abscissa. The enthalpy has two
large changes around 288 K and 296 K.

We now examine some component energy terms as functions of the tempera-

ture to further analyze the phase behaviors.

Figure2.10 shows the average bond-length energy,⟨Ebond⟩, as a function of

temperature. This term has two sudden changes around 296 K and 288 K. Its

manner of change around 296 K differs from that of the enthalpy in Fig.2.6.

Figure2.11shows the average angle energy,
⟨
Eangle

⟩
, as a function of tempera-

ture. This term also has two sudden changes around 296 K and 288 K. Its manner

of change around 296 K is the same as that of the enthalpy in Fig.2.6.

Figure2.12shows the average Coulombic energy as a function of temperature.

Note that partial charges exist only in the head groups of lipids. This term also

has two sudden changes around 296 K and 288 K. Its manner of change around

296 K is the same as that of the enthalpy in Fig.2.6.

Figure 2.13 shows the temperature dependence of the average LJ potential

energy between DPPC particles. This term changes largely around 296 K. This
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large change corresponds to the sol-gel phase transition. The manner of the large

change around this temperature is the same as that of the enthalpy, and this sud-

den change is the main cause of the sudden change of enthalpy around 296 K in

Fig. 2.6. Hence, this term can be considered to be a driving force of the phase

transition to the gel phase.

Figure 2.14 shows the temperature dependence of the average LJ potential

energy between DPPC particles and water particles. This is the only interaction

between a DPPC molecule and a water molecule. This has sudden changes around

296 K and 288 K. The manner of change around 296 K is opposite to the change

of the enthalpy around 296 K in Fig.2.6.

Figure 2.15 shows the temperature dependence of the average LJ potential

energy between water particles. This has sudden changes around 296 K and 288

K. The latter one is quite huge, and this composes most of the sudden change of

enthalpy around 288 K in Fig.2.6. This sudden and huge change suggests that

water got frozen around 288 K in our simulation.

We remark that two of the energy terms in Figs.2.10and2.14increase around
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296 K as the temperature decreases. One term is the bond-length energy. The

other one is the LJ potential energy between DPPC molecules and water molecules.

These two terms favor the sol phase around the phase transition temperature, while

the other terms favor the gel phase.
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Figure 2.10: Average bond-length energy,⟨Ebond⟩, as a function of temperature.

In order to investigate the conformational features, we analyzed the potential

of mean force (PMF) maps. PMF is defined by

W(ξ1, ξ2) = −kBT logρ(ξ1, ξ2) , (2.7)

whereρ(ξ1, ξ2) is the probability distribution of a point (ξ1, ξ2) and is given by

ρ(ξ1, ξ2) =

∫
δ(ξ1(q) − ξ1)δ(ξ2(q) − ξ2)e−β(H+PV) dpdqdV∫

e−β(H+PV) dpdqdV
, (2.8)

whereH, P, V, p, andq are the sum of kinetic energy and potential energy, pres-

sure, volume, momenta, and coordinates, respectively.

Figure2.16shows PMF maps at four temperatures. One axis is the thickness

of the bilayer, the other one is the area of the bilayer, and the height shows the
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Figure 2.12: Average Coulombic energy, as a function of temperature.
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PMF. The curves on thexy-plane are the contours of the PMF. At the temperature

of 305.9 K, there is one local minimum (see Fig.2.16(a)). The temperature is high

enough for the bilayer to be in the sol phase. This minimum corresponds to the

sol phase. In the sol phase, the bilayer is thin and wide. At the temperature of

297.8 K, there are two local minima (see Fig.2.16(b)). The new local minimum

corresponds to the gel phase. In the gel phase, the bilayer is thick and narrow.

At the temperature of 295.5 K, there are three local minima (see Fig.2.16(c)).

This temperature is slightly lower than the previous one. This result suggests that

two gel phases exist. The newest one is thinner than the second newest mini-

mum. These two minima correspond to the un-tilted gel phase and the tilted-gel

phase, respectively. At the temperature of 293.0 K there are two local minima

(see Fig.2.16(d)). One of the local minima seen in 295.5 K and 297.8 K disap-

peared. In this temperature, the bilayer is mainly in the tilted-gel phase. These

results suggest that the sol-gel phase transitions are composed of two phase transi-

tions. Figure2.17shows the PMF map at 295.76 K, which also shows three local

minima of free energy.

In order to check the significance of the difference between the tilted gel
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Figure 2.16: Two-dimensional PMF maps.
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Figure 2.17: PMF map at 295.76 K. The color is assigned according to the PMF
values divided bykBT

phase and un-tilted gel phase, we evaluated errors of histograms by following

calculations [31]. Firstly we divided the obtained trajectory into sixteen parts.

Each data was converted into a histogram and we obtained sixteen histograms.

These histograms are denoted ash1(x, y), . . . , h16(x, y), wherex andy stands for

the bilayer thickness and area. The error bars of the histograms,σ(x, y) are cal-

culated byσ2(x, y) =
(∑16

i=1(hi − ⟨h(x, y)⟩)2
)
/16(16− 1), where⟨h(x, y)⟩ is the

average of sixteen histograms, or the histogram with all data. Finally, the ob-

tainedσ was converted into the error of PMF byσ(x, y)/ ⟨h(x, y)⟩. Note that

log(x+ δx) ≈ log x+ δx/x. Figure2.18shows the PMF with error bars at 295.5 K.

Note that data are shown only where the bilayer thickness is 8.04 nm2. The statis-

tically significant barrier exists between two local minima, which correspond to

the un-tilted gel phase and tilted gel phase.

To roughly estimate the phase transition temperature, we looked for the tem-

perature where each minimum has the same depth as each other. For this purpose,

we checked the PMFs at all temperatures. At 297.8 K (Fig.2.16(b)) or 297.5 K the

depth of the un-tilted gel becomes the same as that of the sol phase. At 295.5 K the

depth of tilted-gel becomes that of the un-tilted gel phase. Note that at this tem-
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perature the depth of the sol is still large as can been seen in Fig.2.16(c). These

two temperatures are not so far from the phase transition temperature deduced by

the enthalpy or the heat capacity in Fig.2.6or Fig.2.9, respectively.

It might be a natural question why we could not get another peak in the heat

capacity in Fig.2.9so that the two peaks correspond to the two phase transitions

discussed with PMF maps. There are several possible reasons. One is the error

of simulation is still not small enough to distinguish the peaks. Another is that

the system is too small to distinguish the two peaks. The third is that the heat

capacity has really one peak. One of the phase transitions discussed by the PMF

maps belongs to the other.

To investigate conformational features further, we analyzed the tilt angle dis-

tributions. This helps understanding of the correspondence between PMF maps

and conformational characteristics. Figure2.19shows distributions of the tilt an-

gle of C2 tails at the four temperatures. The same temperatures are chosen as in

the PMF maps. At the temperature of 305.9 K, the tilt angles of C2 tails have a

broad distribution. This means that the lipids are in the sol phase, in which the C2

tails are not ordered. At the temperature of 297.8 K, the tilt angles of C2 tails are
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located between 10◦ and 30◦. At the temperature of 295.5 K, the tilt angles are

located beween 10◦ and 30◦. At 10◦ their distribution has a small peak, and at 30◦

it has a large peak. This suggests that there are two state. One is an un-tilted phase

and the other one is a tilted phase. At the temperature of 293.0 K the tilt angles of

C2 tails are located around 30◦. These results also suggest that three states exist.

One is the sol phase, another one is the un-tilted gel phase, and the third one is the

tilted gel phase. The tilt angle in the tilted gel phase is around 30◦.
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Figure 2.19: The tilt angle distributions. The solid red line shows one at 293.0
K, the green dash line shows one at 295.5 K, the blue dash-dot line shows one at
297.8 K, and the purple dot line shows one at 305.9 K.

Figure2.20shows snapshots of the bilayer obtained during the REMD sim-

ulation. Figures2.20(a), 2.20(b), and2.20(c) correspond to the sol phase, the

un-tilted gel phase, and the tilted-gel phase, respectively. The values of the area

and the thickness of the bilayer are 9.91 nm2 and 4.09 nm, 7.91 nm2 and 4.65 nm,

and 8.10 nm2 and 4.37 nm, respectively.

In order to ensure the validity of the results presented so far, we also performed

simulations of larger systems, which consists of 72 and 128 lipids. The simulation
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(a)

(b)

(c)

Figure 2.20: Snapshots of three states of the DPPC bilayer with 32 lipids during
the REMD simulation. Water particles are suppressed for clarity.
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conditions such as thermostats and barostats, are almost the same as the those of

the smallest system. Although the results are still preliminary, they already show

consistency with those of the smallest-system simulation. For instance, Figures

2.21and2.22shows three snapshots obtained in the 72-lipid simulation and in the

128-lipid simulation, respectively, which correspond to the three states found in

the 32-lipid simulations.
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(a)

(b)

(c)

Figure 2.21: Snapshots of three states of the DPPC bilayer with 72 lipids obtained
by the REMD simulation. Water particles are suppressed for clarity.
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(a)

(b)

(c)

Figure 2.22: Snapshots of three states of the DPPC bilayer with 128 lipids ob-
tained by the REMD simulation. Water particles are suppressed for clarity.
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[24] S. Nośe: Mol. Phys.52, 255–268 (1984).

[25] W. Hoover:Phys. Rev., A31, 1695–1697 (1985).

[26] M. Parrinello and A. Rahman:J. Appl. Phys.52, 7182 (9 pages) (1981) .

34



[27] H. Berendsen, D. Van der Spoel, and R. Van Drunen:Comput. Phys. Com-

mun.91, 43–56 (1995).

[28] E. Lindahl, B. Hess, and D. van der Spoel:J. Mol. Model7, 306–317 (2001)

.

[29] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. Mark, and

H. Berendsen:J. Comput. Chem.26, 1701–1718 (2005).

[30] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl:J. Chem. Theory

Comput.4, 435–447 (2008).

[31] H. Flyvbjerg and H. G. Petersen:J. Chem. Phys.91, 461 (6 pages) (1989) .

[32] K. Nakano, Y. Iwamoto, W. Takata, Y. Matsumoto, and R. Ueoka:

Bioorg. Med. Chem. Lett.12, 3251–3254 (2002) .

[33] Y. Matsumoto, Y. Iwamoto, T. Matsushita, and R. Ueoka:Int. J. Cancer115,

377–382 (2005) .

[34] H. Nagami, K. Nakano, H. Ichihara, Y. Matsumoto, and R. Ueoka:

Bioorg. Med. Chem. Lett.16, 782–785 (2006).

[35] R. Ueoka, Y. Matsumoto, K. Goto, H. Ichihara, and Y. Komizu:

Curr. Pharm. Des.17, 1709–1719 (2011) .

35





Chapter 3

Simulated Tempering and

Magnetizing: Application of

Two-Dimensional ST Method to an

Ising Model

T. Nagai and Y. Okamoto: “Simulated tempering and magnetizing: appli-

cation of two-dimensional simulated tempering to two-dimensional Ising

model and its crossover,”Physical Review E86, 056705 (12 pages) (2012);

arXiv:1205.2523.

T. Nagai and Y. Okamoto: “Simulated tempering and magnetizing of the

Ising model,”Physics Procedia38, 100–104 (2012).

37



3.1 Introduction

In the computational statistical physics field, Monte Carlo (MC) and molecular

dynamics (MD) simulations have been commonly used. However, the quasi-

ergodicity problem, where simulations tend to get trapped in states of energy

local-minimum, has often posed a great difficulty. In order to overcome this diffi-

culty, generalized-ensemble algorithms have been developed and applied to many

systems including spin systems and biomolecular systems (for reviews, see, e.g.,

Refs. [1, 2, 3]).

Commonly used examples of generalized-ensemble algorithms are the mul-

ticanonical algorithm (MUCA) [4, 5], simulated tempering (ST) method [6, 7],

and replica-exchange method (REM) [8, 9] (it is also referred to as parallel tem-

pering). Closely related to MUCA are the Wang-Landau method [10, 11] and

metadynamics [12]. Also closely related to REM is the method in Ref. [13].

In the ST method, temperature is regarded as a dynamical variable, which

is updated by the Metropolis criteria during the simulation, and consequently a

random walk is realized in the temperature space. This random walk, in turn,

causes a random walk of the energy, which enables the system in question to

overcome free-energy barriers. However, it is well-known that the ST method is

not very compatible with first-order phase transitions (for a review, see, e.g., Ref.

[14]). When there is a first-order phase transition, the random walk of temperature

across the phase-transition point hardly occurs. We remark that there is a recent

attempt to deal with this difficulty by an extension of ST [15].

Recently, the multi-dimensional generalizations of the generalized-ensemble

algorithms, including the MUCA, ST, and REM, were discussed and general for-

malisms were given [16, 17, 18]. In these methods, the energy of the system

is generalized by adding other energy term(s) with some coupling constants. In

the multi-dimensional ST method, not only the temperature but also the coupling

constants are considered as dynamical variables.

In this work, we study a special case of the above general multi-dimensional

ST methods. Namely, the additional term is−hM whereh andM are the external

field and the magnetization, respectively. The external fieldh corresponds to the
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couping constant which is updated during MC simulations. Therefore, not only

temperature but also external field becomes a dynamical variable and is expected

to realize a random walk during the simulations. Thus, this simulation can be

referred to as the “Simulated Tempering and Magnetizing” (STM). In order to test

the effectiveness of the present method, we applied it to the two-dimensional Ising

model.

The Ising model has two kinds of phase transitions. One occurs along the

change of temperature when the external field is zero. The other occurs along the

change of external field when the temperature is under the critical temperature

(Tc). The former is classified as a second-order phase transition. The latter is

categorized as a first-order phase transition unless the temperature is exactly equal

to Tc. When T = Tc, the transitions are classified into a second-order phase

transition. This system allows us to confirm applicability of the two-dimensional

ST to the first-order phase transitions along the external field changes.

We also investigate the crossover phenomena in the phase transitions, in which

critical exponents are changed. We study the behavior of magnetization per spin

m, which follows m ∼ |T − Tc|β andm ∼ |h|1/δ near the critical point, whereβ

andδ are critical exponents [19]. Our simulation method, with a combination of

histogram reweighting techniques, enables us to calculate physical values such as

the energy and magnetization at various values ofT andh from a single production

run.

This article is organized as follows. In§3.2 we present the STM method. In

§3.3we present the results.
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3.2 Materials and methods

3.2.1 System

We study the two-dimensional Ising model in external field. The total energy is

given by

H = E − hM , (3.1)

E = −
∑
⟨i, j⟩
σiσ j , (3.2)

M =
N∑

i=1

σi , (3.3)

wherei, N, σi, andh are the index of spin, total number of spins, spin at thei-th

site, and external field, respectively. The spinσi takes on the values±1. The sum

in Eq. (3.2) goes over the nearest-neighbor pairs. The spins are arranged on the

squareL × L lattice. We imposed the periodic boundary conditions. Data were

obtained for lattice sizes from 2× 2 to 160× 160.

3.2.2 Simulation methods

Whereas the conventional ST method considers temperature as a dynamical vari-

able, the STM method considers not only temperature but also external field as a

dynamical variable. Here, before explaining the STM method, we shortly review

the conventional ST method [6, 7].

In the conventional ST method, temperature is a dynamical variable which

takes on one ofNT values (here, temperature is discretized intoNT values). In

other words, denotingX and x as a sampling space and its microscopic state,

respectively, the Boltzmann factor

e−E(x)/T+a(T) (3.4)

is regarded as a joint probability for the state (x,T) (∈ X⊗{T1,T2, . . . ,TNT }). Here,
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a(T) (or a(Ti)) is a parameter for obtaining uniform distributions of temperature

values. Here and hereafter, we set Boltzmann’s constant to unity. Now that the

temperature is a dynamical variable, the simulated system is allowed to realize

a random walk in the temperature space. This random walk, in turn, causes a

random walk of energy. Consequently, the simulated system has more chance to

overcome energy barriers.

Even though the temperature changes during ST simulations, any thermody-

namic quantity at temperatureTi, ⟨A⟩Ti
, can be reconstructed with the conditional

expectation of a physical quantityA given atTi, or ⟨A|Ti⟩. Note that

⟨A|Ti⟩S T =

NT∑
j=1

∫
dxA(x) δi j e

− E(x)
T j
+a(T j )

NT∑
j=1

∫
dxδi j e

− E(x)
T j
+a(T j )

(3.5)

=

∫
dx A(x) e−

E(x)
Ti
+a(Ti )∫

dx e−
E(x)
Ti
+a(Ti )

(3.6)

= ⟨A⟩Ti
, (3.7)

whereδi j is the Kronecker delta. Namely, we have

⟨A⟩Ti
=

1
NTi

NTi∑
j=1

Aj
Ti
, (3.8)

whereNTi andAj
Ti

stand for the total number of samples andj-th sample atTi.

To find a candidate fora(Ti), let us look at the probability of visitingTi. By

41



summing over the delta function, the probability of occupyingTi is given by

P(Ti) =

NT∑
j=1

∫
dxδi j e

− E(x)
T j
+a(T j )

NT∑
j=1

∫
dx e

− E(x)
T j
+a(T j )

(3.9)

=
e− f (Ti )+a(Ti )

NT∑
j=1

e− f (T j )+a(T j )

(3.10)

∝ e− f (Ti )+a(Ti ) , (3.11)

where f is the dimensionless (Helmholtz) free energy and

e− f (T) ≡
∫

dx e−E(x)/T . (3.12)

Substituting f (Ti) into a(Ti) gives constant probability regardless ofTi. Thus,

the dimensionless free energyf (Ti) is a good choice fora(Ti) in order to obtain

uniform temperature distribution and to realize a random walk in the temperature

space. Although the free energy is not knowna priori, unless the system is exactly

solvable, the free energy calculation methods (the details will be provided below)

enable us to get its good estimate from preliminary simulation runs.

In the two-dimensional ST algorithm, on the other hand, we consider that

another parameter is also a dynamical variable [16, 17, 18]. Especially in the

STM method, the external fieldh is a second dynamical variable. In other words,

we consider

e−(E−hM)/T+a(T,h) (3.13)

as a joint probability for (x,T,h) (∈ X⊗ {T1,T2, . . . ,TNT } ⊗ {h1,h2, . . . hNh}), where

a(T,h) is a parameter.

To find a candidate fora(Ti ,hj), we again look at the probability of staying at
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each set of parameter values. It is given by

P(Ti ,hj) =

NT∑
k=1

Nh∑
l=1

∫
dxδik δ jl e−

E(x)−hl M(x)
Tk

+a(Tk,hl )

NT∑
k=1

Nh∑
l=1

∫
dx e−

E(x)−hl M(x)
Tk

+a(Tk,hl )

(3.14)

=
e− f (Ti ,h j )+a(Ti ,h j )

NT∑
k=1

Nh∑
l=1

e− f (Tk,hl )+a(Tk,hl )

(3.15)

∝ e− f (Ti ,h j )+a(Ti ,h j ) , (3.16)

where

e− f (Ti ,h j ) =

∫
dx e−(E−h j M)/Ti . (3.17)

The dimensionless free energyf (Ti ,hj) is again a good choice fora(Ti ,hj) in order

to acquire a uniform distribution ofT andh. These values can be estimated from

preliminary simulation runs and reweighting techniques.

As in conventional ST method, any thermal average⟨A⟩Ti ,h j
at givenTi (∈

{T1,T2, . . . ,TNT }) andhj (∈ {h1,h2, . . . , hNh}) can be obtained by calculating the

conditional expectation:⟨A⟩Ti ,h j
=

⟨
A|Ti ,hj

⟩
S T

. Namely, we have

⟨A⟩Ti ,h j
=

1
NTi ,h j

NTi ,hj∑
k=1

Ak
Ti ,h j
, (3.18)

whereNTi ,h j is the total number of samples atTi andhj, andAk
Ti ,h j

stands for the

k-th sample atTi andhj.

The method of updatingT or h is similar to that of updating spins becauseT

andh are considered as dynamical variables. The Metropolis criterion for updat-
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ing T or h is given by the following transition probability:

w(Ti ,hj → Ti′ ,hj′) = min

(
1,

P(Ti′ ,hj′)

P(Ti ,hj)

)
(3.19)

= min

(
1,exp

(
−

(
1
Ti′
− 1

Ti

)
E +

(
hj′

Ti′
−

hj

Ti

)
M + a(Ti′ ,hj′) − a(Ti ,hj)

))
.

(3.20)

Once an initial state is given, the STM simulations can be performed by repeat-

ing the following two steps. 1. We perform a conventional canonical simulation

atTi andhj for certain MC sweeps. 2. We update the temperature or external field

by Eq. (3.20) with a(T, h) = f (T,h).

In our implementation every certain MC sweeps eitherT or h was updated

(the choice betweenT andh was made at random) by Eq. (3.20) to a neighboring

value (the choice of two neighbors was also made at random). Here, one MC

sweep stands forL× L single spin updates. The number of MC sweeps performed

between parameter updates is here referred to as the parameter-updating period.

Whereas updating the parameter to a neighboring value with the Metropo-

lis algorithm should be considered the easiest to implement, we remark that, as

spins can be updated by a number of methods such as the heat bath method, other

schemes of updating the parameters can be employed [20]. There also exists a

temperature updating scheme for ST by Langevin algorithm [21].

Table3.1 summarizes the conditions of the present simulations. ForL = 80,

instead of a single 4000000000 MC sweep production run, four 1000000000 MC

sweep runs were performed. This was just to make one trajectory shorter and

easier to deal with numerically. Similarly, two production runs (instead of a single

run) were made forL = 30 and 160.

As for spin-updates, we employed the single spin update algorithm; we up-

dated spins one by one with the Metropolis criteria. As for quasi-random-number

generator, we used the Mersenne Twister [22].
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Table 3.1:Conditions of the two-dimensional ST simulations.

Lattice sizeL 2, 4, 8, 10, 20 30 80 160
Number of production runs 1 2 4 2
Total MC sweeps per run 42000000 42000000 1000000000 321300000
Parameter-updating period 50 20 10 5
T1–TNT 1.0–5.0 1.0–5.0 1.0–5.0 1.0–3.6
h1–hNh -1.5–1.5 -1.5–1.5 -1.5–1.5 -0.5–0.5
NT 20 20 70 63
Nh 21 21 51 51
Ndata

a 10 10 100 50

aThe data were stored everyNdataMC sweeps.

3.2.3 Free energy calculations

The simulated tempering parameters, or free energy in Eqs. (3.13) and (3.17) can

be simply obtained by the reweighting techniques applied to the results of prelim-

inary simulation runs [23, 18, 17, 16]. We employed two reweighting methods

for this free energy calculation. One method is the multiple-histogram reweight-

ing method, or Weighted Histogram Analysis Method (WHAM) [24, 25] and the

other is Multistate Bennett Acceptance Ratio estimator (MBAR) [26], which is

based on WHAM.

The equations of WHAM algorithm that were applied to the simulation results

are as follows. For details, the reader is referred to Refs. [25, 17]. The density of

states (DOS)n(E,M) and free energy valuesf (Ti ,hj) can be obtained by

n(E,M) =

∑
Ti ,h j

nTi ,h j (E,M)∑
Ti ,h j

NTi ,h j exp(f (Ti ,hj) − (E − hj M)/Ti)
, (3.21)

f (Ti ,hj) = − log
∑
E,M

n(E,M) exp(−(E − hj M)/Ti) , (3.22)

wherenTi ,h j (E,M) is the histogram ofE and M at Ti and hj, and NTi ,h j is the

total number of samples obtained atTi andhj. By solving these two equations
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self-consistently by iterations, we can obtainn(E,M) and f (Ti ,hj). The obtained

n(E,M) allows one to calculate any thermal average at arbitrary temperature and

external field values. Note thatf (Ti ,hj) is determined up to a constant, which

sets the zero point of free energy. Accordingly,n(E,M) is determined up to a

normalization constant.

The MBAR is based on the following equations. Namely, by combing Eqs. (3.21)

and (3.22), the free energy can be written as

f (Ti ,hj) = − log
N∑

n=1

exp(−(En − hj Mn)/Ti)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk,hl) − (En − hl Mn)/Tk)

, (3.23)

whereN, NTk,hl , En, andMn is the total number of data, the number of samples

associated withTk andhl, energy of then-th data, and magnetization of then-th

data, respectively. This equation should be solved self-consistently forf (Ti ,hj).

Note that, as in WHAM,f (Ti ,hj) is determined up to a constant.

We repeat the preliminary STM simulations and free energy calculations until

we finally obtain sufficiently accurate free energy values which let the system

perform a random walk in the temperature and external field space during the

STM simulation. We then perform a single, final production run.

Note that these two reweighting methods enable us to obtain not only dimen-

sionless free energy values but also physical values at any temperature and at any

external field. It is given by

⟨A⟩T,h =
N∑

n=1

WnaA(xn) , (3.24)

Wna =
1
⟨ca⟩

exp(−(En − hMn)/T)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk, hl) − (En − hl Mn)/Tk)

, (3.25)

⟨ca⟩ =
N∑

n=1

exp(−(En − hMn)/T)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk,hl) − (En − hl Mn)/Tk)

. (3.26)
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For details, the reader is referred to Refs. [26, 27].

We also used another method of calculating free energy. By substituting

a(T,h) in Eq. (3.16) by the estimates for free energỹf (T,h), we obtain

P(T,h) ∝ e− f (T,h)+ f̃ (T,h). (3.27)

From this we can write

f (T,h) = f̃ (T, h) − logP(T,h) + const. (3.28)

Here,P(T,h) can be obtained as the number of samples at each set of parameter

values in a preliminary STM simulation. Thus, this equation enables one to re-

fine the free energy much more easily than the reweighting methods, because the

method does not require any iterations. This method does not work well, however,

whenP(Ti ,hj) is too small (orf̃ (Ti ,hj) is too far away from true values) to obtain

samples at (Ti ,hj), while the reweighting techniques are still able to work. In the

present work, we first used the reweighting methods to obtain rough estimates of

the free energy for the entire parameter space. We then used the combination of

the reweighting methods and Eq. (3.28) for further refinements of the free energy.

Note that the WHAM gives another piece of information, namely DOS, which

MBAR cannot directly calculate. However, the WHAM requires to make his-

tograms before iterations and two kinds of calculations in an iteration step. As the

system size grows, the number of possible states increases. Thus, the calculation

of DOS can be quite time-consuming. On the other hand, MBAR can be used

without making histograms and one MBAR iteration step needs one equation.

The length of one iteration, which is approximately proportional to the number

of samples and parameter values, increases and can be time-consuming, as the

system size is enlarged. However, we have an impression that the MBAR is less

time-consuming and more easily implemented than the WHAM. The paralleliza-

tion of MBAR is slightly easier than that of WHAM and we actually did it with

OpenMP.

47



3.2.4 Temperature and external field distributions

As is mentioned in the previous subsections, we have to give the set of temperature

and external field values before ST or STM simulations. Actually the determina-

tion involves trial and error. However, still the reweighting methods help one to

do this to a certain extent.

Firstly the maximum and minimum values of temperature and external field

were chosen so that the area of temperature and external field were wide enough to

investigate the critical behaviors. This should be done separately for each system

and what is to be investigated.

The distribution of temperature was chosen to be proportional to an exponen-

tial to the index number in small lattice sizes, as is common in simulated temper-

ing and replica-exchange methods. However, in large lattice size systems, we as-

signed more number of values aroundTc by hand. A denser distribution is required

where the heat capacity is large or the phase transition occurs. The distribution of

external field was similarly assigned. In small lattice size it was proportional to

the index of external field. However, in the larger lattice size, we assigned more

points aroundh = 0, in which the phase transition occurs. We assigned them in

such a manner that the acceptance rate of ST parameter updates are preferably

between 10% and 50%. This fuzzy criterion is partly due to the two-dimensional

distributions. A temperature distribution at a certain external field does not always

give the same acceptance rates under another external field.

When the distributions ofTi andhj turned out to be improper, we reassigned

the distributions. In this case, we already had the samples and free energy esti-

mates at a previous distribution, with which the reweighting method lets one to

estimate the free energy at the newly distributed values. Consequently, we did

not have to start over the free energy calculations from the beginning. We actually

repeated this parameter redistribution procedures several times, especially in large

lattice size simulations.
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3.3 Results and discussion

3.3.1 Simulated Tempering and Magnetizing simulations

Firstly we shall show that the two-dimensional ST simulations were carried out

properly. Figures3.1 and3.2 show temperature and external field, respectively,

as functions of MC sweep. Both were obtained from the simulations in which

the linear lattice size was 80. The temperature and external field indeed realized

random walks.

Figures3.3 and3.4 show energy and magnetization per spin, respectively, as

functions of MC sweep. They also realized random walks. Note that there are

expected correlations between the temperature and energy (see Figs.3.1and3.3)

and between the external field and magnetization (see Figs.3.2 and 3.4). The

same behavior was observed in other lattice size simulations (data not shown).

Figure3.5shows the dimensionless free energy per spin as a function of tem-

perature and external field, which was obtained by applying MBAR to the results

of the production runs. Note that the partial differential of this free energy byh

gives ⟨m⟩T . The shape ath = 0 suggests a jump ofmbelowTc, indicating existence

of the first-order phase transitions.

Figure3.6 shows the distribution of magnetization as a function of tempera-

ture. BelowTc the distribution is separated into two parts. As temperature in-

creases, the distribution becomes broader. NearTc the distribution is the broadest

and two peaks merge. It then becomes narrower. Note that this figure was ob-

tained by only four production runs (see Table3.1), and can be obtained even by

only one production run, though the error is expected to become larger. Figures

3.7(a), 3.7(b), and3.7(c) show the distribution of magnetization as a function of

external field above, around, and belowTc, respectively. AboveTc, the change

is smooth and continuous (see Fig.3.7(a)). AroundTc, the distribution becomes

very wide aroundh = 0 (see Fig.3.7(b)). This is one of the properties of the

second-order phase transitions. BelowTc, the distribution jumps from one side to

the other side ath = 0 (see Fig.3.7(c)). This abrupt jump of distribution is one of

the properties of the first-order phase transitions.
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Figure 3.1: The history of temperatureT. The linear lattice sizeL is 80.
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Figure 3.2: The history of external fieldh. The linear lattice sizeL is 80.
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Figure 3.3: The history of total energy per spin,ϵtot. The linear lattice sizeL is
80.
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Figure 3.4: The history of the magnetization per spin,m (≡ M/L2). The linear
lattice sizeL is 80.
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Figure 3.5: The free energy per spinf /L2 and its contour curves as a function of
T andh.The linear lattice sizeL is 80.
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Figure 3.6: The distribution ofm as a function ofT for h = 0. The linear lattice
sizeL is 80.
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Figure 3.7: The distribution ofm as a function ofh when (a)T = 3.21, (b)
T = 2.316 and (c)T = 1.967. The linear lattice sizeL is 80.
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We also calculated the Binder cumulant [28] defined by

U(T, h, L) ≡ 1
2

3−
⟨
m4

⟩
⟨
m2

⟩2

 . (3.29)

Figure3.8 shows the Binder cumulant as a function of temperature. As is well-

known, the graphs cross at one point atTc. The error bars were obtained by the

jackknife method [29, 30].
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Figure 3.8: Binder cumulantU vs temperature.

Figure3.9shows the Binder cumulant as a function of temperature under dif-

ferent external fields. The graphs do not cross at one point in the presence of finite

external field. The amount of errors is expected to be on the same level of Fig.3.8

and the error bars are suppressed here to aid the eye.

3.3.2 Comparison of simulated tempering with simulated tem-

pering and magnetizing

We compared the results of the STM method with those of the conventional ST

method. Figures3.10and3.11show the magnetization as a function of tempera-

54



 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  2.5

U
(T

, 
L
)

T

(a) 

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  2.5

U
(T

, 
L
)

T

(b)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  2.5

U
(T

, 
L
)

T

(c)

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2  2.5

U
(T

, 
L
)

T

(d)

Figure 3.9: Binder cumulantU vs temperature under different external fields. (a)
h = 0. (b) h = 0.01. (c)h = 0.05. (d)h = 0.1. Red solid, dashed green, short
dashed dark blue, dotted purple, and chain light blue lines stand forL = 10, 20,
30, 80, and 160, respectively.

ture and external field, which was calculated using MBAR with the data obtained

by the conventional ST and STM simulation, respectively. Figure3.10obtained

by the conventional ST shows artifact jumps at a high temperature and a certain

external field. This must have been caused by a failure of sampling some parts

of states. On the other hand, the results by the STM simulations are smooth (see

Fig. 3.11). Figure3.12shows the density of states obtained by conventional ST

and STM simulations. This obviously illustrates that the area in which the energy

is relatively high with somewhat strong magnetizations were not sampled by the

conventional ST method. These results imply that the dimensional extension in

the STM enlarged the sampled space.

Once one succeeds in estimating the free energy values, or ST and STM pa-

rametersa(Ti) and a(Ti ,hj), with sufficient accuracy, one can perform ST and

STM simulations properly. However, the computational efforts in free energy cal-

culations are still much larger for STM than for ST. Therefore, it is desirable to

develop an even more efficient method for the STM free energy estimation than
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the present one.

3.3.3 Simulated magnetizing

We study the compatibility of ST with the first-order phase transition along exter-

nal field changes, by performing “Simulated Magnetizing” (SM) simulations, in

which the temperature is fixed and the external field is updated by the Metropolis

criteria. Figure3.13shows the external field as a function of MC sweep in the

SM simulations belowTc. We performed SM simulations in a number of lattice

sizes from 2×2 to 20×20. These graphs illustrate the fact that as the system size

becomes larger, the difficulty in simulations grows. In fact it finally became im-

possible to observe the events in which the magnetization goes to the other side

across the zero point (see Fig.3.14(a)), while it was still possible aboveTc (see

Fig. 3.14(b)). These results imply that the full range random walk happens above

Tc but not belowTc. Therefore, this result suggests that the random walk of tem-

perature is crucial for the full range random walk of external field. The full range

random walk of the external field happens in the STM simulation when the tem-

perature was high aboveTc. Note that the Ising model is equivalent to the lattice

gas model [31]. Hence, what happened in STM simulations can be understood

as that even though the phase transitions between gas and liquid do not directly

occur, they do occur through the “super critical water region.”

To explore this phenomenon more clearly, readers are referred to a supplemen-

tary material [32], which shows how the temperature and external field changed

during the STM simulation.

3.3.4 How often temperature or external field should be up-

dated?

A common question about this kind of simulation is how frequently the parameter-

updating attempts should be made. We want to emphasize that as long as the

detailed balance condition is satisfied the simulations should be correctly carried

out.
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Figure 3.10: Reweighted data (red) and original data (green) obtained by the
conventional ST. The linear lattice sizeL is 80.
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Figure 3.11: Reweighted data (red) and original data (green) obtained by the
STM simulations. The linear lattice sizeL is 80.
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Figure 3.12: Calculated DOS obtained by WHAM with (a) ST and (b) STM data.
The linear lattice sizeL is 80.
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Figure 3.13: External field vs MC sweep in SM simulations underTc (T = 1.97).
The linear lattice sizeL is (a) 2, (b) 4, (c) 8, and (d) 10, respectively.
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Figure 3.14: External field and MC sweep in the SM simulation (a) underTc

(T = 1.97) and (b) aboveTc (T = 3.88). The linear lattice sizeL is 20.
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We compared STM simulations performed with different parameter-updating

frequencies. Figure3.15shows the results of the heat capacity as a function of

temperature ath = 0, which were obtained by the STM method with different

conditions. The conditions are one parameter-updating attempt every one, two,

twenty, and a hundred MC sweeps. They show good agreement with each other.

The error bars were obtained by the jackknife method [29, 30]. Note that the error

bars tend to be larger as the parameter-updating frequency becomes less.

Figure3.16shows the magnetization as a function of temperature ath = 0.

Data were obtained with several parameter-updating frequencies, such as one

parameter-updating attempt every one, twenty, and a hundred MC sweeps. They

also agree with each other. Note that because finite sizes are employed, the mag-

netization underTc at h = 0 is also zero. With the lower parameter-updating

frequency, the convergence was not so good and the error bars tend to be larger.

The error bars were obtained by the jackknife method [29, 30]. These results

suggest that the frequent parameter update does not make any artifacts and that it

should be recommended.

Figure3.17shows the integrated correlation time of magnetization obtained

at different parameter-updating frequencies. The height of data is expected to

converge to the integrated correlation time between samples. This was calculated

by using the jackknife method with different bin sizes [29, 30]. Data were stored

every ten MC sweeps. Thus, the correlation time measured by MC sweep should

be ten times larger. The error bars were obtained with theχ2 distribution. These

results suggest that the higher the parameter-updating frequency, the shorter the

correlation time. Therefore, frequent parameter updates are preferred. Note that

the observation that the frequent parameter updates are preferable is in accord

with the statement that frequent replica-exchanging attempts are recommended

[34, 35].

3.3.5 Observation of crossover

We study the crossover behavior of the phase transitions. We calculated the mag-

netization by MBAR around the critical point.
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Figure 3.15: Heat capacity per spin,C, at h = 0. The linear lattice sizeL is 80.
As the legends shown in the figure, green square, blue circle, purple triangle, and
light-blue inverse-triangle represent that one parameter-updating attempt is made
every one, two, twenty, and a hundred MC sweeps, respectively. The exact result
(red solid line) was obtained by Berg’s program [30] based on Ref. [33].
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Figure 3.16: Magnetization per spinm when h = 0. As the legends shown
in the picture, the green square, blue circle and purple triangle represent that one
parameter-updating attempt is made every one, twenty, and a hundred MC sweeps,
respectively. Some error bars were slightly shifted horizontally to aid the eye.
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Figure 3.17: Correlation time analysis. Error bars show the 95% confident inter-
val.

We employ the finite-size scaling approach, which is discussed in Ref. [36].

The scaling form of magnetizationm with respect to temperature and external

field is given by

mLβ/ν = Ψ(L1/νt, L(γ+β)/νh) , (3.30)

wheret = |T − Tc|/Tc andL is the linear size of lattice. The Greek lettersν andγ

stand for critical exponents. In the two-dimensional Ising model,β = 1/8, δ = 15,

ν = 1, andγ = 7/4.

Firstly we examine the scaling behavior of the magnetization. Figures3.18

and3.19show the magnetization as functions ofT andh, respectively, and we see

that it obeys the critical behavior ofm ∼ |T − Tc|β andm ∼ |h|1/δ, respectively.

According to the scaling approach, whenLt or L15/8h is large enough, then the

finite effect can be negligible. In this case, Figs.3.18and3.19 imply that those

conditions are given byLt > 0.2 andL15/8h > 1.1, respectively.

We now study the behavior under the conditions slightly different from the
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Figure 3.18: Scaledm whenh = 0. The lines are the same as used in Ref. [36].
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64



critical point. Figure3.20shows the magnetization as a function of temperature

nearh = 0. As the external field was increased, the behavior was differentiated in

the low temperature region. Even in the presence of weak external field, the mag-

netization obeyst1/8 when the temperature was relatively high enough. However,

with relatively strong external field, the scaling behavior disappears.

 0.1

 1

 0.1  1  10

 <
|m

|>
 L

β/
ν

 L
1/ν

t 

slope =1/8      
160x160 H=0      

160x160 H=0.000001
160x160 H=0.000125
160x160 H=0.001728
160x160 H=0.008000
160x160 H=0.064000

Figure 3.20: Scaledm nearh = 0.

Figure3.21shows the magnetization as a function of external field nearT =

Tc. As the temperature was deviated fromTc, the behavior is differentiated in

the weak external field region. Thus, even with slight difference fromTc, the

magnetization obeysh1/15 when the external field is strong enough.

Figure 3.22 illustrates the comprehensive behavior of⟨|m|⟩ near the critical

point. Note that this is a log scale plot. Near theh-axis⟨|m|⟩ obeys|h|1/15 and near

theT-axis⟨|m|⟩ obeys|t|1/8.
Figure3.23(a) and Figure3.23(b) show the difference between⟨|m|⟩ L1/8 and

1.22(Lt)1/8 and that between⟨|m|⟩ L1/8 and (L15/8h)1/15, respectively. These data

were obtained by the 160× 160 lattice size simulations. Note that the factor

1.22 comes from the exact solution [37, 19]. According to the crossover scaling

formalism [38], if t−15/8h is large enough, then the magnetization obeysm ∼ t1/8,

and if h−8/15t is large enough (t−15/8h is small enough), then it obeysm ∼ h1/15.

Figure3.23(a) shows that if the finite-size effects are negligible (Lt ≫ 0.2) and
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Figure 3.21: Scaledm nearT = Tc.
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t ≫ 0.2h8/15 (i.e., th−8/15 is large), then the critical behavior ism ∼ t1/8. Figure

3.23(b) shows that if finite-size effects are negligible (L15/8h ≫ 0.3) and t ≪
0.2h8/15 (i.e., t−15/8h is large), then the critical behavior ism ∼ h1/15. Thus, Fig.

3.23clearly shows that the line (t = 0.2h8/15) gives the boarder of the two scaling

regimes.

Figure 3.23: Difference between magnetization and its expected scaling behavior
about the critical point. The linear lattice sizeL is 160. (a)|mL1/8 − 1.22(Lt)1/8| is
illustrated. The black line ist = 0.2h8/15. The vertical gray line isLt = 0.2. (b)
|mL1/8 − (L15/8h)1/15| is illustrated. The black line ist = 0.2h8/15. The horizontal
gray line isL15/8h = 0.3
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4.1 Introduction

Monte Carlo (MC) and molecular dynamics simulations have been demonstrated

to be indispensable tools for studying the statistical properties of various physical

systems in equilibrium. The quasi-ergodicity problem, however, where the system

gets trapped in states of energy local-minimum, has often posed great difficulties.

In order to overcome the difficulty, generalized-ensemble algorithms have been

developed and applied to many problems in spin models and biomolecular systems

(for reviews, see, e.g., Refs. [1, 2, 3]).

Well-known examples of generalized-ensemble algorithms are the multicanon-

ical algorithm (MUCA) [4, 5], simulated tempering (ST) method [6, 7], and replica-

exchange method (REM) [8, 9] (REM is also referred to as parallel tempering).

Closely related to MUCA are the Wang-Landau method [10, 11] and metadynam-

ics [12]. Also closely related to REM is the method in Ref. [13].

On the basis of the recent multi-dimensional generalizations of the generalized-

ensemble algorithms [14, 15, 16], the “simulated tempering and magnetizing”

(STM) method has been proposed and developed [17, 18]. In the Refs. [17, 18] the

classical Ising model was studied, being introduced the external (magnetic) field

as a second dynamical variable besides the temperature. The improvements over

the conventional “one-dimensional” simulated tempering schemes was shown,

such as better sampling efficiency and potential applicability to the first-order

phase transition which cannot be dealt with by one-dimensional ST.

In the present work, we further investigate the STM method, applying it to

the two-dimensional three-state Potts model [19, 20]. We see the scheme working

in this complicated system. We also look into crossover behaviors according to

lattice sizeL as well asT andh.

This chapter is organized as follows. In chapter 4.2 we review the STM

method and give the details of our simulations. In chapter 4.3 we present the

results. After checking the two-dimensional random walks, we compare ST and

STM, and calculate various thermal quantities at many sets of parameter values.
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4.2 Model and methods

4.2.1 Model

We study the two-dimensional three-state standard Potts model in external field

with energy:

H = E − hM , (4.1)

E = −
∑
⟨i, j⟩
δσi ,σ j , (4.2)

M =
N∑

i=1

δ0,σi , (4.3)

whereN = L2 denotes total number of spins,δ is Kronecker delta function,σi a

spin at theith site, andh the external field. The spinσi takes on one of the three

values 0, 1, or 2. The sum in Eq. (4.2) goes over all the nearest-neighbor pairs,

with the spinsσi arranged on the sites of squareL×L lattice with periodic bound-

ary conditions. Data were obtained by means of STM for lattice sizes ranging

from 2× 2 to 160× 160 and additionally with conventional canonical simulations

on 320×320 and 640×640 lattices. Note that because of correspondence between

three-dimensional three-state Potts model and QCD theory, there are a number of

studies in three-state Potts model, especially in three-dimensions [21, 22, 23, 24].

We recall that the three-state (standard) Potts model is equivalent to the three-

state planer Potts orZ3 model:

H = E − hM , (4.4)

E = −2
3

∑
⟨i, j⟩

cosθi j , (4.5)

M =
2
3

N∑
i=1

cosθi , (4.6)

whereθi j = θ j − θi andθi = 2π
3 σi.

As one can see from Eqs. (4.1) and (4.3) [or Eqs. (4.4) and (4.6)], spin direc-
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tion 0 is favored by the positive external field (h > 0). Accordingly, the negative

external field (h < 0) disfavors spin direction 0. Thus, the system in presence of

the negative external field is expected to behave as two-dimensional Ising model.

In the limit h→ −∞, the three-state Potts model is equivalent to the Ising model

at the zero external field, because the unfavored states disappear from the partition

function. Figure4.1 illustrates the schematic picture of this relation.

(a) (b) (c)

Figure 4.1:Schematic description of behavior of spins according to the external
field. (a) spin 0 is favored withh > 0, i.e., spin 1 and spin 2 are disfavored. (b) all
the three states are equivalent forh = 0. (c) spin 0 is disfavored withh < 0.

4.2.2 Simulation methods

In this section we briefly review the STM method [17, 18]. While the conventional

ST method [6, 7] considers the temperature to be an additional dynamical variable

besides spin degrees of freedom, the STM method employs the external field as

a second additional dynamical variable besides temperature [17, 18]. This algo-

rithm is thus based on the multi-dimensional extension of generalized-ensemble

algorithms [14, 15, 16]. In other words, we consider

e−(E−hM)/T+a(T,h) (4.7)

as a joint probability for (x,T,h) (∈ X⊗ {T1,T2, . . . ,TNT } ⊗ {h1,h2, . . . hNh}), where

a(T,h), x, andX are a parameter, the (microscopic) state, and the sampling space.
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A suitable candidate fora(Ti ,hj) may be found by looking into the probability

of occupying each set of parameter values. It is given by

P(Ti ,hj) =

NT∑
k=1

Nh∑
l=1

∫
dxδik δ jl e−

E(x)−hl M(x)
Tk

+a(Tk,hl )

NT∑
k=1

Nh∑
l=1

∫
dx e−

E(x)−hl M(x)
Tk

+a(Tk,hl )

(4.8)

=
e− f (Ti ,h j )+a(Ti ,h j )

NT∑
k=1

Nh∑
l=1

e− f (Tk,hl )+a(Tk,hl )

(4.9)

∝ e− f (Ti ,h j )+a(Ti ,h j ) , (4.10)

where

e− f (Ti ,h j ) =

∫
dx e−(E−h j M)/Ti . (4.11)

Thus, the dimensionless free energyf (Ti ,hj) is a proper selection fora(Ti ,hj) in

order to generate a uniform distribution of the number of samples according toT

andh. These free energy values can be estimated by a number of methods. For ex-

ample, one can obtain such values from preliminary simulations and reweighting

techniques.

Any thermal average⟨A⟩Ti ,h j
at givenTi (∈ {T1,T2, . . . ,TNT }) andhj (∈ {h1,h2, . . . , hNh})

can be obtained by the conditional expectation:⟨A⟩Ti ,h j
=

⟨
A|Ti ,hj

⟩
ST

. Namely,

we have

⟨A⟩Ti ,h j
=

1
NTi ,h j

NTi ,hj∑
k=1

Ak
Ti ,h j
, (4.12)

whereNTi ,h j is the total number of samples atTi andhj, andAk
Ti ,h j

represents the

k-th sample atTi andhj.

The temperatureT or external fieldh can be updated similarly to spinσi,

because they are considered as dynamical variables. The Metropolis criterion for
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updatingT andh is given by

w(Ti ,hj → Ti′ ,hj′) = min

(
1,

P(Ti′ ,hj′)

P(Ti ,hj)

)
(4.13)

= min

(
1,exp

(
−

(
1
Ti′
− 1

Ti

)
E +

(
hj′

Ti′
−

hj

Ti

)
M + a(Ti′ ,hj′) − a(Ti ,hj)

))
.

(4.14)

Once an initial state is prepared, the STM simulations can be performed by

repeating the following two steps. 1. We perform a conventional canonical sim-

ulation at fixedTi andhj for certain MC sweeps. 2. We update the temperature

and/or external field by Eq. (4.14) with a(T,h) = f (T,h).

In our implementation, after a fixed number of MC sweeps, eitherT or h was

updated (the choice betweenT andh was made at random) by Eq. (4.14) to a

neighboring value (the choice between two possible neighbors was also made at

random). Here, one MC sweep consists ofL× L single spin updates. The number

of MC sweeps performed between parameter updates is here referred to as the

parameter-updating period.

We remark that, as spins can be updated by a number of algorithms, other

schemes of updating the parameters can be employed [25]. There also exists a

temperature updating scheme for ST by Langevin algorithm [26].

Table4.1summarizes the conditions of the present STM simulations. Accord-

ing to the previous studies [18, 27, 28], we update the parameters frequently. That

is, we employed very small parameter-updating periods.

We have also performed conventional simulations. Table4.2 lists their de-

tails. The temperature was chosen by the extrapolation. We estimated the proper

temperature by fitting the STM results toTmax − Tc ∝ L−1/ν, whereTmax is the

temperatures at which the observables take their maxima. The Greek letterν de-

notes the correlation length critical exponent. We fit to the Potts case (ν = 5/6)

and to the Ising case (ν = 1) the data without the external field and the data in the

external field, respectively.
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As for spin-updates, we employed the single spin update algorithm; we up-

dated spins one by one with the heatbath algorithm. As for quasi-random-number

generator, we used the Mersenne Twister [29].

4.2.3 Free energy calculations

The simulated tempering parameters, or free energies, in Eqs. (4.7) and (4.11)

can be simply obtained by the reweighting techniques applied to the results of

preliminary simulation runs [30, 16, 15, 14]. We used two reweighting methods

for this free energy calculation. One method is the multiple-histogram reweighting

method, or Weighted Histogram Analysis Method (WHAM) [31, 32] and the other

is Multistate Bennett Acceptance Ratio estimator (MBAR) [33], which is based

on WHAM.

The equations of WHAM algorithm applied to the system is as follows. For

details, the reader is referred to Refs. [32, 15]. The density of states (DOS)

n(E,M) and free energy valuesf (Ti ,hj) can be obtained from

n(E,M) =

∑
Ti ,h j

nTi ,h j (E,M)∑
Ti ,h j

NTi ,h j exp(f (Ti ,hj) − (E − hj M)/Ti)
, (4.15)

f (Ti ,hj) = − ln
∑
E,M

n(E,M) exp(−(E − hj M)/Ti) , (4.16)

wherenTi ,h j (E,M) is the histogram ofE and M at Ti and hj, and NTi ,h j is the

total number of samples obtained atTi andhj. By solving these two equations

self-consistently by iterations, we can obtainn(E,M) and f (Ti ,hj). The obtained

n(E,M) allows one to calculate any thermal average at arbitrary temperature and

external field values. Note thatf (Ti ,hj) is determined up to a constant, which

sets the zero point of free energy. Accordingly,n(E,M) is determined up to a

normalization constant.

The MBAR is based on the following equations. Namely, by combing Eqs.
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(4.15) and (4.16), the free energy can be written as

f (Ti , hj) = − ln
N∑

n=1

exp(−(En − hj Mn)/Ti)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk,hl) − (En − hl Mn)/Tk)

, (4.17)

whereN, NTk,hl , En, andMn is the total number of data, the number of samples as-

sociated withTk andhl, energy of then-th measurement, and magnetization of the

n-th measurement, respectively. This equation should be solved self-consistently

for f (Ti ,hj). Note that, as in WHAM,f (Ti , hj) is determined up to a constant.

We repeat the preliminary STM simulations and free energy calculations until

we finally obtain sufficiently accurate free energy values which let the system

perform a random walk in the temperature and external field space during the

STM simulation. We then perform final production runs.

Note that these two reweighting methods enable us to obtain not only dimen-

sionless free energy values but also physical values at any temperature and at any

external field. Such averages are given by

⟨A⟩T,h =
N∑

n=1

WnaA(xn) , (4.18)

Wna =
1
⟨ca⟩

exp(−(En − hMn)/T)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk,hl) − (En − hl Mn)/Tk)

, (4.19)

⟨ca⟩ =
N∑

n=1

exp(−(En − hMn)/T)
NT∑
k=1

Nh∑
l=1

NTk,hl exp(f (Tk,hl) − (En − hl Mn)/Tk)

. (4.20)

For details, the reader is referred to Refs. [33, 34].

We also used two other methods of free energy calculations. One is given

as follows. By substitutinga(T, h) in Eq. (4.10) by the estimates for free energy
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f̃ (T,h), we obtain

P(T,h) ∝ e− f (T,h)+ f̃ (T,h). (4.21)

We can write

f (T,h) = f̃ (T,h) − ln P(T,h) + const. (4.22)

Here,P(T,h) can be obtained as a histogram at each set of parameter values in a

preliminary STM simulation. Thus, this equation enables one to refine the free en-

ergy much more easily than the reweighting methods, because the method does not

require any iterations. This method does not work well, however, whenP(Ti ,hj)

is too small (or f̃ (Ti ,hj) is too far away from true values) to obtain samples at

(Ti ,hj), while the reweighting techniques still work.

The other method for the free energy calculations is a Wang-Landau-method-

like scheme, where we subtract a fixed constant from the free energy value being

sampled during preliminary simulations. To stand on the safe side, we did not use

such data for reweighting techniques which, strictly speaking, requires equilib-

rium data as inputs. Note that this method also work with inaccurate free energy

values. Thus, this method also works even when the free energy estimates are far

away from sufficiently accurate values.

In the present work, we first used the reweighting methods and Wang-Landau-

like scheme to obtain rough estimates of the free energy for the entire parameter

space. We then used the combination of the reweighting methods and Eq. (4.22)

for further refinements of the free energy.

4.3 Results and discussion

We first examine whether the STM simulations were carried out properly or not.

Figures4.2and4.3show the time series of the temperature and the external field,

respectively, forL = 80. In both plots we see block structures reflecting the first-

order phase transition line ath = 0 in the Potts model (see Fig.4.3) and the second-
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order phase transition at the effective Ising transition temperatureTc(h) ∼ 1.1346

for negative external field (see Fig.4.2). Within these blocks, the temperature and

external field realize random walks. The temperature and external field indeed

realized random walks.
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Figure 4.2: History of temperatureT, for the linear lattice sizeL = 80.
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Figure 4.3: History of external fieldh, for the linear lattice sizeL = 80..
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Figures4.4 and4.5 show energy and magnetization per spin, respectively, as

functions of MC sweeps. They also perform random walks. Note that there exist

expected correlations between the temperature and energy (see Figs.4.2and4.4)

and between the external field and magnetization (see Figs.4.3and4.5). The same

behavior was observed in simulation with other lattice sizes (data not shown).

Figure 4.6 shows the history of differently defined magnetization, which is

given by

Mmax ≡

max
j=0,1,2

 L2∑
i

δ j,σi

 − L2

3

 × 3
2
. (4.23)

Hereafter, we also use the following definition:

m≡ Mmax

L2
. (4.24)

In order to compare the results with ordinary ST simulations, we also per-

formed an ST simulation withL = 40. The ST simulation was performed at the

conditions similar to those of STM; namely, the same total number of MC sweeps,

same temperature distribution, and so on, except that we seth0 = 0.

With the data obtained, we performed the WHAM calculations to obtain the

density of states (DOS). As shown in Fig.4.7, the area sampled by STM is larger

than that by ST. Thus, the STM method enables us to perform reweighting tech-

niques in wider range.

We further closely looked into the difference in the sampled areas between two

methods. Figure4.8illustrates how the sampled areas differ. The red regions were

sampled by the STM method exclusively, the green regions by both methods, the

blue region by the ST method only, and white regions by neither of them. Thus,

at first sight, it seems that there are some areas in which the STM method is not

good, and that the ST method is somehow more powerful than STM.

Figure4.9 zooms in on a region where blue is dominant (mainly sampled by

ST). There are many pigments (in red and green) which both methods sampled
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Figure 4.4: History of energy per spin,E/L2, for the linear lattice sizeL = 80.
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Figure 4.5: History of the magnetization per spinM/L2, for the linear lattice size
L = 80.
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Figure 4.6: The history ofMmax/L2 (≡ m), for the linear lattice sizeL = 80.

Figure 4.7: Calculated DOS obtained by WHAM with (a) ST and (b) ST data,
for the linear lattice sizeL = 80.
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Figure 4.8: The difference in sampled points between ST and STM. The red area,
green, blue, and white regions correspond to the area sampled by only STM, only
by both of them, only by ST, and by neither of them, respectively (L = 40).
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and which even only STM sampled. This shows that because the ST method has

more samples at a smaller number of sets of parameter values, the part sampled is

narrow but denser. However, the representative parts should be sampled properly

by STM as well, although the sample density decreases.

Figure 4.9: The zoom of Figure4.8 with increasingly higher resolution. The
difference in sampled points between ST and STM. The red area, green, blue, and
white regions correspond to the area sampled by only STM, only by both of them,
only by ST, and by neither of them, respectively.

To make it sure that the STM method also samples the relevant area enough,

we then performed reweighting techniques alongh = 0 with data obtained by

ST and STM. Figrures4.10 and4.11 show the specific heat capacityC/L2 and

susceptibilityχ/L2 as a function ofT along withh = 0, respectively. The red line

and the green line correspond to the data obtained by STM and by ST, respectively.

The error bars were obtained by the jackknife method [35, 36, 37]. We see no

pronounced differences between the two methods. Thus, we confirm that both

methods let one sample the representative parts alongh = 0 and that the STM

method enables one to obtain DOS at wider areas.

Because the STM method enables us to obtain the DOS in a wide range of

sampling space, we can calculate the two-dimensional map of any thermal phys-
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Figure 4.10: The heat capacityC/L2 as a function ofT, for L = 40. The inset
shows the peak region with different abscissa and ordinate.
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Figure 4.11: The susceptibilityχ/L2 as a function ofT for L = 40. The inset
shows the peak region with different abscissa and ordinate.
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ical quantity. Figure4.12shows the specific heat capacity and susceptibility per

spin as a function ofT andh whenL = 80. This implies that the phase transition

temperature converges into the Ising case, as the external field increases. Related

theoretical work is found in, e.g., Ref. [38].

Figure 4.12: The map ofC/L2 andχ/L2 as a function ofT andh, for the linear
lattice sizeL = 80. The black vertical line isT = 1.1346, which is the critical
temperature of Ising model.

Figure4.13shows the specific heat as functions of temperature for some val-

ues ofh andL. With positive external field, the phase transition disappears. How-

ever, because of finite-size effects, the abnormality, as measured by the diverging

behavior, persists to some extent. With the smaller external field, the divergence

behavior remains for largerL. Vice versa, with largerL, the more easily it can

be shown that the diverging behavior disappears. This can be seen as a crossover

betweenL andh.

Figure 4.14 shows the dimensionless free energy per spin as a function of

temperature and external field, which was obtained by applying MBAR to the

results of the production runs. Note that the partial differential of this free energy

by h gives ⟨M⟩T L2 . The shape ath = 0 suggests a jump ofM below Tc, indicating
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Figure 4.13: The specific heatC/L2 as a function ofT (a)h = 0.0, (b)h = 0.005,
(c) h = 0.01 (d)h = 0.02. Red, green, blue, magenta, and cyan lines stands for
L = 5, 10,20,40, and 80, respectively.

existence of the first-order phase transitions.

We study the crossover behavior of the phase transitions. We calculated the

magnetization by MBAR around the critical point.

According to the crossover scaling formalism [39], if t−14/9h is small enough,

then the magnetization obeysm ∼ t1/9, and ifh−9/14t is small enough (i.e.,t−14/9h

is large enough), then it obeysm ∼ h1/14, wheret = Tc−T
Tc

. Figure4.15(a) shows

that if the finite-size effects are negligible (L6/5t ≫ 0.1) andt ≫ (h/6)9/14 (i.e.,

t−14/9h is small), then the critical behavior ism ∼ t1/9. Figure4.15(b) shows that

if finite-size effects are negligible (L28/15h ≫ 0.1) and 6t14/9 ≪ h (i.e., t−14/9h is

large), then the critical behavior ism ∼ h1/14. Thus, Fig.4.15clearly shows that

the line (h = 6t14/9) gives the slope of the boundary of the two scaling regimes.

We investigate the crossover behavior between the two models. With the neg-

ative external field, the model is expected to behave like the Ising model. Thus, as

L increases the maximum values ofd⟨m⟩
dβ , d ln⟨m⟩

dβ ,
d ln⟨m2⟩

dβ , d ln⟨U2⟩
dβ , andd ln⟨U4⟩

dβ change
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Figure 4.14: The free energy per spinf /L2 and its contour curves as a function
of T andh, for the linear lattice sizeL = 80.

Figure 4.15: Difference between magnetization and its expected scaling behavior
around the Potts critical point, for the linear lattice sizeL = 80. (a) |mL2/15 −
1.2(L6/5t)1/9| is illustrated. The black line ish = 6t14/9. (b) |mL2/15 − (L28/15h)1/14|
is illustrated. The black line ish = 6t14/9.
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their behaviors. Here,U2 = 1 − ⟨m
2⟩

3⟨m⟩2 and U41 − ⟨
m4⟩

3⟨m2⟩2 are the Binder cumu-

lants [40]. Figures4.16–4.20show them. Note thatd⟨m⟩dβ |max,
d ln⟨m⟩

dβ |max,
d ln⟨m2⟩

dβ |max,
d ln⟨U2⟩

dβ |max, and d ln⟨U4⟩
dβ |max are expected to behave asymptotically asL(1−β)/ν, L1/ν,

L1/ν, L1/ν, andL1/ν, respectively, as the lattice sizeL increases [37]. Those critical

exponents in the two-dimensional Ising model and in the Potts model are given

by ν = 1 andβ = 1
8 andν = 5

6 andβ = 1
9, respectively. We can observe that

all quantities alongh = 0 (red line with filled squares) follow the Potts case, and

those with the external field at largeL (green line with filled circles and blue line

with filled triangles) follow the Ising case. Note that the two lines ath = −0.5 and

h = −1.0 converge into almost the same line asL increases. On the other hand,

the line ath = −0.5 (green line) is more deviated from the scaling behavior. This

can be also understood as the crossover betweenL andh.
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Figure 4.16: d⟨m⟩
dβ |max as function ofL.
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Chapter 5

Conclusions

In this thesis we explored the generalized-ensemble algorithms. We first carried

out the REMD simulations and studied biological lipid bilayer systems, and we

introduced a new ST method. We applied the method to Potts model as well as

Ising model.

In Chapter 2 we performed a REMD simulation of a DPPC bilayer system in

order to study the phase transitions. The bilayer underwent many phase transitions

between gel and sol phases during the simulation. We believe that this is crucial

to sample gel phases correctly. The reason is that, in the annealing simulations,

systems can easily get trapped in local-minimum-energy states and cannot escape

from the states because temperatures decrease only. On the other hand, REMD

lets the system make a random walk in the temperature space so that the system

can explore the conformational space more widely. It is worth noting that we

could discuss well-equilibrated states in a wide range of temperature because the

REMD method gives correct distributions at any temperature. This is not so easy

by conventional methods.

We examined the temperature dependences of the enthalpy, heat capacity,

thickness of bilayer, and area of bilayer. The phase-transition temperature itself

was in agreement with the previous work [1] by Marrink et al.

We also examined the temperature dependence of many component energy

terms. We found the average bond-length energy and the average LJ potential
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energy between water molecules and DPPC have different behaviors from the

other energy terms. These two terms favor the sol phase, as the system is cooled.

On the other hand, the other terms favor the gel phase.

To investigate the conformational property, we examined the PMF maps and

tilt angle distributions at four different temperatures. Conformations were clas-

sified into three states, namely, sol, untilted gel, and tilted gel states. The tilted

gel state was observed for the first time with MARTINI2.0, while a previous work

with MARTINI did not find this state.[1] Experiments support the existence of

the tilted-gel state. This implies the importance of employing powerful confor-

mational sampling techniques such as generalized-ensemble algorithms in simu-

lations of bilayer systems.

It was experimentally found that some hybrid liposomes composed of 90 mol

% phospholipids and 10 mol % polyoxyethylene dodecyl ether with no antitumor

drugs can kill only cancer cells without affecting normal cells [2, 3]. In particular,

three hybrid liposomes composed of phospholipids having the same hydrophilic

head group but different hydrophobic alkyl chains were studied. It was found that

the hybrid liposomes composed of phospholipids dilauroylphosphatidylcholine

(DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidyl-

choine (DPPC) cause necrosis, apoptosis, and no changes, respectively [4]. Al-

though both necrosis and apoptosis result in deaths of cells, necrosis is toxic and

only apoptosis is a desired phenomenon for the organisms. The differences in

these three phospholipids are just the lengths of the hydrophobic alkyl chains;

DLPC, DMPC, and DPPC have 12, 14, and 16 carbon atoms after glycerol. The

sol-gel phase transition temperaturesTc of the regular liposomes composed of

DLPC, DMPC, and DPPC are 273 K, 296 K, and 313 K, respectively (those of

hybrid liposomes are slightly lower than these pure liposome values) [5]. Hence,

at the body temperature of 310 K, they are in sol phase much aboveTc, in sol

phase nearTc, and in gel phase, respectively. We simply conjecture that the dif-

ferences of the effects of the hybrid liposomes above on the tumor cells are just

the reflections of these phase differences. If this is true, we should observe, for

instance, apoptosis, no effects, and no effects with hybrid liposomes composed of

DLPC, DMPC, and DPPC, respectively, at the temperature of experiments around
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290 K. Likewise, we expect that necrosis, necrosis, and aptopsis with hybrid lipo-

somes composed of DLPC, DMPC, and DPPC, respectively, at the temperature of

experiments around 330 K. These investigations with experiments and simulations

at different temperatures are our future works.

In Chapter 3, we have introduced a two-dimensional simulated tempering in

temperature and external field, which we refer to as Simulated Tempering and

Magnetizing (STM). We applied it to the two-dimensional Ising model. During

the simulations, two-dimensional random walks in temperature and external field

were realized. The random walk covered a wide area of temperature and external

field so that the STM simulations enabled us to study a wide area of phase diagram

from a single simulation run.

Even though the first-order phase transitions along the external field change

did not directly occur, the transitions happened through high temperature regions,

or “super critical water regions.” The dimensional extension allowed us to over-

come the difficultly of the first-order phase transitions. Thus, this result suggests

that the dimensional extension allows us to overcome the difficulty of crossing the

first-order phase transition points with the ST method. The similarity between ST

and REM implies that the dimensional extension of REM will also give this prop-

erty (An example is shown for the case of a two-dimensional REM simulation in

temperature and pressure in Ref. [6]). In this way we see that the method is more

conveniently expanded.

We also performed STM simulations with several different parameter-updating

frequencies. According to the convergence and sizes of error bars, the more fre-

quent attempts should be the better choice. The calculated auto-correlation time

also suggested that the frequent attempt is favorable.

We investigated the crossover behavior of phase transitions by calculating the

magnetization per spinm around the critical point by the reweighting techniques.

The results showed agreement with the previous theoretical studies. Thus, this

supports the validity of the two-dimensional ST method, or STM.

With the data of the present work, we can calculate the two-dimensional den-

sity of statesn(E,M), so that we can determine the weight factor for the two-

dimensional multicanonical simulations. Therefore, we can also perform the two-
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dimensional multicanonical simulations. The STM method will be very useful for

simulating spin-glass systems.

In Chapter 4, we further applied Simulated Tempering and Magnetizing (STM)

[8, 7] to the two-dimensional three-state Potts model. During the simulations, two-

dimensional random walks in temperature and external field were realized. In this

way, the random walk covered a wide area of temperature and external field so

that the STM simulations enabled us to study a wide area of phase diagram from

production runs.

Because of the method’s capability of dealing with a wider area of the sam-

pling space (as seen in DOS), we can calculate thermal quantities at an enlarged

range of the parameter space. We have succeeded in producing many typical fea-

tures of the systems in presence of the external field.

We investigated the crossover behaviors of phase transitions by calculating the

magnetization per spin around the critical point by the reweighting techniques.

The results showed agreement with the previous theoretical studies. Thus, this

supports the validity of the STM method.

With the data of the present work, we can calculate the two-dimensional den-

sity of statesn(E,M), so that we can determine the two-dimensional multicanon-

ical weight factor. Therefore, we can also perform the two-dimensional multi-

canonical simulations. This is also our future work. We remark that the present

methods are useful not only for spin systems but also for other complex systems

with many degrees of freedom. Note that because this method does not require

one to change the energy calculation, the method should be highly compatible

with existing package programs.
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Appendix A

Errors of Correlated Data

In this Appendix, we look into the method of evaluation of errors [1, 2]. Our

particular aim here is the analysis of autocorrelated data.

Without correlation, the errorσ is evaluated by the common formula:

σ2 =
1

N(N − 1)

N∑
i=1

(
Ai − Â

)2
, (A.1)

whereN, Ai, and Â are the total number of samples, thei-th sample, and the

average of samples, respectively. However, this does not work well when there are

correlations between samples. We particularly explore how to modify Eq. (A.1)

in order to cope with autocorrelations.

A.1 Introduction

We assume that random variablesA andB have the (finite) expected values (⟨A⟩
and⟨B⟩, respectively) and (finite) variances (σ2

A andσ2
B, respectively). These are

not usually known and to be estimated. Given the probability density ofA, f (A),

the expected value is given by⟨A⟩ =
∫

A f(A) dA. Note that, in this section, brack-

ets⟨⟩ indicate the “theoretical” averages, which are determined independently of

samples. As you should know, we can derive⟨A+ B⟩ = ⟨A⟩+⟨B⟩ and⟨aA⟩ = a ⟨A⟩
with constanta.
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When there are no correlations betweenA andB, we have well-known formu-

lae:

σ2
A+B = σ

2
A + σ

2
B (A.2)

σ2
aA = a2σ2

A, (A.3)

whereσ2
A+B andσ2

aA are the variance ofA+ B andaA, respectively. On the other

hand, with correlation, the variance ofA + B is given byσ2
A+B = σ

2
A + σ

2
B +

2cov(A, B), where cov(A, B) = ⟨(A− ⟨A⟩) (B− ⟨B⟩)⟩.
Equation (A.1) is actually based on Eqs. (A.2) and (A.3), and therefore the

independence between samples is assumed. This is why Equation (A.1) does not

work with correlated data and we need a more careful treatment.

A.2 Errors of non-correlated samples

A.2.1 Basics

Let us first look into the analysis of non-correlated data. We suppose that we

haveN independent samples (A1,A2, . . . ,AN) from an identical distribution. The

expected value and variance are given by

⟨A⟩ =
∫

A f(A) dA, (A.4)

σ2
A =

∫
(A− ⟨A⟩)2 f (A) dA, (A.5)

respectively. What we want to do is to estimate⟨A⟩ and its error.

The expected value⟨A⟩ can be estimated by the averageÂ:

Â =
1
N

N∑
i=1

Ai . (A.6)

Note that we distinguish the estimates from the true values by denoting the esti-

mates and the true values asÂ and⟨A⟩, respectively.
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The averagêA is a “good” estimator for⟨A⟩, because we have
⟨
Â
⟩
= ⟨A⟩. The

average of estimates goes to the true value. Thus, this is an unbiased estimate.

The error of the average is given by the standard deviation of the average. The

variance of the averageσ2
Â

is given by

σ2
Â
=
σ2

A

N
, (A.7)

because we have, denotingV(•) ≡ σ2
• for the aid of eye,

σ2
Â
= V(Â) = V((A1 + A2 + · · · + AN)/N) (A.8)

= 1/N2V(A1 + A2 + · · · + AN) (A.9)

=
1
N

V(A) =
σ2

A

N
. (A.10)

Recall thatA1, A2, . . . , andAN follows an independent identical distribution of

which variance isV(A) ≡ σ2
A. It should be worth to note that the averageÂ =

(A1 + A2 + · · · + AN)/N is considered as a new random variable.

Thus, if one knows the varianceσ2
A, one can obtain the variance of averageσ2

Â
.

However, this is generally not knowna priori. Therefore, the question is howσ2
A

can be estimated. The estimator ofσ2
A, σ̂2

A is given not byσ̂2
A =

1
N

∑N
i=1(Ai − Â)2

but by

σ̂2
A =

1
N − 1

N∑
i=1

(Ai − Â)2, (A.11)

though there existing only a slight difference with largeN.

Thus, the estimator for error ˆσÂ is given via the estimator for the variance of

average ˆσ2
Â
:

σ̂2
Â
=

1
N(N − 1)

N∑
i=1

(Ai − Â)2. (A.12)

Especially, ifN is large enough to use the central limit theorem, then we can
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use the nature of the Gauss distribution. (For example±1.96σ gives the 95 %

confidence interval.）

TableA.1 gives the summary of these quantities for the better availability of

reference.

Table A.1:Summary for the quantities. Thei-th sample is denoted byAi.

Notation Definition Description

⟨A⟩
∫

A f(A) dA Expected value ofA

σ2
A

∫
(A− ⟨A⟩)2 f (A) dA Variance ofA

Â 1
N

∑
Ai

Average of samples
(Estimator for expected value)

σ̂2
A

1
N−1

∑(
Ai − Â

)2
Estimator for variance (ofA)

σ2
Â

1
Nσ

2
A

Variance of average
(the second power of error)

σ̂2
Â

1
N σ̂

2
A =

1
N(N−1)

∑(
Ai − Â

)2 Estimator for variance of average
(Estimator for the second power of error)

A.2.2 Blocking/binning method in the case without correlations

We explore a blocking (or binning) method with samples without correlations.

We introduce a new random variable:A(2)
i/2 = (Ai−1 + Ai)/2, where (i = 2,4,6 . . . ).

Therefore, there areN/2 new blocks or bins. Because there are no correlations
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between samples, the variance ofA(2) is given byσ2
A(2) = σ

2
A/2. Note that

V
(
A(2)

)
= V

(
1
2

(A1 + A2)

)
(A.13)

=
1
4

V ((A1 + A2)) (A.14)

=
1
2

V (A) (A.15)

As you see easily, the expected value is the same:
⟨
A(2)

⟩
= ⟨A⟩.

We shall look into the estimates for average and its error of this new variable.

The estimate of
⟨
A(2)

⟩
, Â(2) is given by the average:

Â(2) =
1

N/2

N/2∑
i=1

A(2)
i (A.16)

=
1
N

N∑
i=1

Ai . (A.17)

BecauseN
2 bins exist, the variance of average of the new variable,σ2

Â(2) is given

by

σ2
Â(2) =

σ2
A(2)

N/2
. (A.18)

The estimate of the variance of the new variables after one blocking transfor-

mation is given by

σ̂2
A(2) =

1
N/2− 1

N/2∑
i=1

(A(2)
i − Â(2))2. (A.19)

Note that the sum is divided by (N/2− 1) notN/2. Hence, we arrive at

σ̂2
Â(2) =

1
N/2(N/2− 1)

N/2∑
i=1

(A(2)
i − Â(2))2. (A.20)
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We further look into the relation betweenσ2
Â

andσ2
Â(2). Usingσ2

A(2) = σ
2
A/2,

we have

σ2
Â(2) =

σ2
A(2)

N/2
(A.21)

=
σ2

A/2

N/2
(A.22)

=
σ2

A

N
(A.23)

= σ2
Â
. (A.24)

Thus, the error of average ofN/2 samples (bins) of̂A(2) is the same as the error

of average ofN samples ofA. The blocking process does not change the average

and its error of uncorrelated data. Note that we later discuss the repetition of this

procedure.

A.2.3 Repeating of blocking

By repeating this procedure, we obtain a set of samplesA(n+1). One of the sample

A(n+1)
i is the average of 2n samples ofA. The number of samplesA(n+1) is N/2n. Let

us remember that one blocking process does not change the average and its error

(or the variance of average), as discussed in the preceding section. Therefore, the

average and its error of such new samples obtained by repetition of blocking data

are the same as those of the original samples in the non-correlated data analysis.

If n is large enough,A(n+1) is expected to follow a Gaussian distribution be-

cause of the central limit theorem. Thus, the average ofA(n+1), Â(n+1) follows t-

distribution withN/2n−1 degree of freedom. (t-distribution is a distribution of av-

erage of any number of samples from a Gaussian distribution.) Thet-distribution

can be regarded as a Gaussian distribution, when there are more than 16*1 to 30
*2 samples.*3

*1Berg’s book
*2http://www.aandt.co.jp/jpn/qc/basic/tbunpu.htm [in Japanese; accessed on 03.July 2012]
*3For instance the 95% CI oft-distribution with degree of freedom 20 is given by 2.09σ, while

that of a Gaussian distribution is 1.96σ.
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A.3 Errors of correlated data

We shall discuss the error of correlated data. We can eliminate the correlation

between data of MC or MD simulations by blocking method introduced above.

We first show that the errors grow by blocking procedures when there is a pos-

itive correlation. The variance of average of new variable is given by the blocking

procedure in the following manner:

σ2
Â(2) = V[(xi + xi+1)/2] = 1/4V(xi + xi+1), (A.25)

V(xi + xi+1) = 2V(xi) + 2cov(xi , xi+1), (A.26)

where cov(xi , xi+1) = ⟨(xi − ⟨x⟩)(xi+1 − ⟨x⟩)⟩. We then obtain

σ2
ˆA(2)
=
σ2

A

2
+

1
2

cov(xi , xi+1). (A.27)

Thus, the samples after a blocking transformation has an extra term, which is

half of the autocorrelation. Supposing the extremely strong correlation, we have

cov(xi , xi+1) ≈ V(x). Thus, the variance ofA(2), σ2
A(2) is given byσ2

A(2) = σ
2
A. The

variance of average is given by the variance of new samples divided byN/2:

σ2
Â(2) =

σ2
A(2)

N/2
(A.28)

=
σ2

A

N/2
= 2
σ2

A

N
(A.29)

= 2σ2
Â
. (A.30)

The variance ofÂ(2), σ2
Â(2) is twice as the variance of̂A, σ2

Â
Thus, its standard

deviation (error) becomes
√

2 times larger.

Obviously, as the correlation between samples decreases by repeating the

blocking procedures, the change of error by one blocking procedure becomes

smaller. It is supposed to stop finally (when cov(A(n)
i ,A

(n)
i+1) = 0). Thus, block-

ing n-times and observing the stop of change, we can obtain uncorrelated data.

Therefore, we obtain the errors taking account of correlations. In this way, we can
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estimate errors by performing a sufficient numbern times transformations:

σ̂2
Â(n) =

1
N/2n (N/2n − 1)

N/2n∑
i=1

(
A(n+1)

i − Â(n+1)
)
. (A.31)

A.4 Comment about interpretation of error bar

To interpret the error bars as a standard deviation of Gaussian distribution, we need

the “sufficiently large number” of samples. It is because of the central limit theo-

rem. The question is how many samples (bins) are enough to take this approxima-

tion. It can be answered by observingt-distributions, which give the distribution

of the average of independentN samples from an identical Gaussian distribution.

We can regardt-distribution as Gaussian distribution if we have more than 16 to

30 samples. Thus, if we have more than 16 bins/blocks, which has no correlations

by applyingn blocking, then the obtained error bar is considered as standard devi-

ation of a Gaussian distribution. In other words, we want the deviation to converge

before the bin number becomes less than 16. If the deviation converge later than

this, the error bar should be treated as the deviation oft-distribution. If it does not

converge, what we have is only the minimum level of error.
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Appendix B

Jackknife Method

B.1 Introduction

Suppose that we haveN samples:A1,A2, . . . ,AN. The averagêA (= 1
N

∑
Ai) is a

good estimate of expectation ofA because we have
⟨
Â
⟩
= ⟨A⟩. In other words,

the expected value of the estimate is given by the theoretical expectation. How-

ever, one has to pay attention when one estimates something given by non-linear

function f of ⟨A⟩ [1, 2, 3]. A typical example is⟨E⟩2, which makes up the heat

capacity. The bad way iŝf = 1
N

∑
fi, where fi = f (Ai). This is a bad estimator

and f̂ does not converge into⟨ f ⟩. Precisely, we have to use

f̂ = f (Â). (B.1)

One typical example is to calculate a specific heat (∝
⟨
E2

⟩
− ⟨E⟩2), with samples

of energyE1,E2, . . . ,EN. To obtain latter term, we have to use

ˆ⟨E⟩2 =
(

1
N

∑
Ei

)2

, (B.2)

not ˆ⟨E⟩2 = 1
N

∑
E2

i . (If you do it wrong, the specific heat is estimated to be always

zero; thus the bad estimator has typically a bias of order ofO(1).)

In this case the error of̂f can not be obtained, because we do not havefi any
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longer. Supposing error and non-linearity off are small, you can use propagation

formula: δ f = d f
dA |A=Â δA. However, this is not always robust and recommend-

able.

B.2 Jackknife method

A robust method of estimating errors is the jackknife method [1, 2, 3]. The error

by the jackknife method withN samples is given by

(σ̂J
f )

2 =
N − 1

N

N∑
i=1

(
f J
i − f̂ J

)2
, (B.3)

where

f J
i = f (AJ

i ), (B.4)

AJ
i =

1
N − 1

N∑
j=1, j,i

Aj , (B.5)

f̂ J =
1
N

∑
f J
i . (B.6)

In other words,AJ
i is an average of samples except thei-th sample. If f (x) = x,

this form leads to the ordinary form, which gives the error of the average.

B.2.1 Dealing with correlation with jackknife method

In the jackknife method with blocking or binning, we first separateN samples into

K bins containingn samples for each (Note thatK = N/n). Thek-th bin contains
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the samples for (k− 1)n < i ≤ kn. We then have the following forms:

(σ̂J
f )

2 =
K − 1

K

K∑
k=1

( f J
k − f̂ J)2, (B.7)

f J
k = f (AJ

k), (B.8)

f̂ J =
1
K

∑
f J
i , (B.9)

AJ
k =

1
N − n

N∑
j=1, j<bin(k)

Aj . (B.10)

Here,AJ
k is the average excluding the samples in thek-th bin.

If we observe the convergence of ( ˆσJ
f )

2, as increasing the number of samples

in each bin (accordingly decreasing the number of bins), we then obtain the errors

taking account of autocorrelations.

As is inA.3, σ̂J
f becomes

√
2 times if there is strong correlations. By repeating

binning, we can obtain the errors without correlations.
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Appendix C

Relation Between Ordinary

Blocking and Blocking with

Jackknife Method

Here, we look into the relation between the ordinary blocking [1] and blocking

with jackknife method [2]. If f is linear in jackknife method (fi is unbiased),

then the blocking form of jackknife method leads to the form of ordinary block-

ing. Supposingf (x) = x for simplicity, we shall start with the form of jackknife

method. We first have

(σ̂J
A)2 =

K − 1
K

K∑
k=1

(AJ
k − Â)2, (C.1)

Â = ÂJ =
1
K

∑
AJ

i =
1
N

∑
Ai , (C.2)

AJ
k =

1
N − n

N∑
j=1, j<bin(k)

Aj . (C.3)
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We then calculate:

AJ
k − Â =

1
N − n

∑
j<bin(k)

Aj −
1
N

∑
j

Aj (C.4)

=
1

N − n

∑
j

Aj −
1

N − n

∑
j∈bin(k)

Aj −
1
N

∑
j

Aj (C.5)

=

(
1

N − n
− 1

N

)∑
j

Aj −
1

N − n

∑
j∈bin(k)

Aj (C.6)

=
n

N − n

 1
N

∑
j

Aj −
1
n

∑
j∈bin(k)

Aj

 (C.7)

=
n

nK − n

 1
N

∑
j

Aj −
1
n

∑
j∈bin(k)

Aj

 (C.8)

=
1

K − 1

 1
N

∑
j

Aj −
1
n

∑
j∈bin(k)

Aj

 . (C.9)

Thus, we have

(σ̂J
A)2 =

K − 1
K

K∑
k=1

(AJ
k − Â)2 (C.10)

=
K − 1

K

∑
k

(
1

K − 1

)2
 1
N

∑
j

Aj −
1
n

∑
j∈bin(k)

Aj


2

(C.11)

=
1

K(K − 1)

∑
k

Â− 1
n

∑
j∈bin(k)

Aj


2

. (C.12)

By denotingK = N/2 andn = 2, we have

(σ̂J
A)2 =

1
(N/2− 1)N/2

N/2∑
k=1

(A(2)
k − Â)2, (C.13)

whereA(2)
k =

1
2(A2k−1+A2k). Thus, the form is proven to be equivalent to Eq. (A.20).
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Appendix D

Tips for Numerical Treatment for

Summing up Large Numbers

The reweighting techniques often require one to deal with potentially very large

numbers such as exp(f ) and n(E). Even though theoretically well-formulated,

such calculations can be numerically halted because of overflows. One may have

some trouble even with inputting them. We can usually avoid these numerical

difficulties by using following algorithms. The trick is using logarithm.

The first algorithm is based on the following equality [1]. SupposingA ≥ B >

0 for simplicity, we have

log(A+ B) = logA+ log
[
1+

B
A

]
, (D.1)

= logA+ log
[
1+ exp

(
log B− logA

)]
. (D.2)

Thus, log(A+ B) can be numerically obtained without risk of overflows. Because

A ≥ B, exp
(
log B− logA

)
can only underflow. It happens only whenA ≫ B.

In this case, we have log(A+ B) ≈ logA, so it is numerically safe. By recur-

sively using this algorithm, one can obtain log(A1 + A2 + · · · + An) only with

logA1, logA2, . . . , logAn. In the actual implementation, logA and logB should be

substituted by max(logA, log B) and min(logA, log B).

Another algorithm is based on the following equality [2]. SupposingA1 ≥

129



A2 ≥ · · · ≥ An > 0 for simplicity, we have

log(A1 + A2 + · · · + An) = logA1 + log

[
1+

A2

A1
+

A3

A1
+ · · · + An

A1

]
(D.3)

= logA1

+ log
[
1+ exp

(
logA2 − logA1

)
+ · · · + exp

(
logAn − logA1

)]
. (D.4)

In this way, we can again calculate log(A1 + A2 + · · · + An) from logA1, logA2, . . . , logAn

with no overflows.
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Appendix E

Lattice Gas and Ising Model

The total energy of Ising modelH on a square lattice can be converted into that of

lattice gas in the following manner [1]:

H = −J
∑
⟨i, j⟩
σiσ j − h

∑
σi (E.1)

= −J
∑
⟨i, j⟩

(2si − 1)(2sj − 1)− h
∑

(2si − 1) , (E.2)

whereσi = ±1 andsi = 1,0. If σi = 1, thensi = 1 and vice versa. We then have

H = −4J
∑
⟨i, j⟩

si sj + 2J
∑
⟨i, j⟩

(
si + sj

)
+ J

∑
⟨i, j⟩

1− h
∑

(2si − 1) (E.3)

= −4J
∑
⟨i, j⟩

si sj + 8Jn+ 2JN− 2hn+ hN (E.4)

= −4J
∑
⟨i, j⟩

si sj − (2h− 8J)n+ (h− 2J)N , (E.5)

wheren and N are the number of occupied sites and the total number of sites,

respectively. The first term corresponds to the attractive energy between particles

of lattice gas. The second term corresponds to the chemical potential of lattice gas.

The last term is a constant. Here, we defineµ ≡ (2h−8J) andEg ≡ −4J
∑
⟨i, j⟩ si sj.
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Thus, free energy per spinf is given by

exp(−β f N) =
∑

σ0=±1,σ1=±1,...,σN=±1

exp(−βH) (E.6)

=
∑

s0=1,0,s1=1,0,...,sN=1,0

exp[−β(Eg − µn)] exp(−β(h− 2J)N) (E.7)

= Θ exp(−β(h− 2J)N) (E.8)

= exp(βpN) exp(−β(h− 2J)N) , (E.9)

wherep is pressure. Instead ofV, N appears. The Greek letterΘ stands for the

Grand partition function, whereΘ =
∑

s0=1,0,s1=1,0,...,sN=1,0 exp[−β(Eg − µn)]. The

last two equations were obtained with grand canonical ensembles. Therefore, we

obtain

− f = p− (h− 2J) , (E.10)

p = h− f − 2J . (E.11)

Thus, we conclude that the canonical ensemble of Ising model is equivalent to

theµ-T ensemble of lattice gas model with the following correspondence:

p = h− f − 2J , (E.12)

µ = (2h− 8J) , (E.13)

Eg = −4J
∑
⟨i, j⟩

si sj . (E.14)
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