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Chapter 1
General Introduction

Canonical fixed-temperature simulations of complex systems such as biomolecules
and spin systems are greatly hampered by the multi-minima problem. Because
simulations at low temperatures tend to get trapped in a few of a huge number
of local-minimum-energy states which are separated by high-energy barriers, it
is very dfficult to obtain accurate canonical distribution at low temperatures by
conventional Monte Carlo (MC) and molecular dynamics (MD) simulations. One
way to overcome this multiple-minima problem is to perform a simulation in a
generalized ensembl¢here each state is weighted by an artificial, non-Boltzmann
probability weight factor so that a random walk in potential energy space may be
realized. This random walk allows the simulation to overcome any energy barrier
and to sample a much wider configurational space than by conventional methods.

Three of well-known generalized-ensemble algorithms are multicanonical al-
gorithm (MUCA) [1, [2], simulated tempering (STB[ 4], and replica-exchange
method (REM) B, 6]. In MUCA, ST, and REM, random walk in potential energy
(MUCA) and temperature (ST and REM) are realized. The molecular dynamics
version of REM is called replica-exchange molecular dynamics (REMP) [

The cell is the most elementary unit of life. It was found by Hooke by ob-
serving the tissue of wood in the seventeenth century. The frontier of cells, where
the cells communicate with other cells and outside environment, mainly consist
of lipid bilayer.



The finding that the membrane consists of a fluid lipid bilayer system must be
one of the most impressive advances in cell membranes, or even bio-science. It
is known as the fluid mosaic membrane model, proposed by S. J. Singer and G.
L. Nicolson in 19728]. Proteins “swim” in the cell membrane which is made
up of fluid sol-state lipid bilayers. This is commonly recognized as a base of the
membrane model, while some exceptional situations are also suggested such as
raft [9], which is believed to be a gel-like domain.

The Ueoka Group at Sojo University reported anti-tumi@ees of hybrid li-
posomes10, 11, 12, [13]. Liposomes are spherical lipid bilayers, which can be
made artificially. The hybrid liposomes here correspond to the liposomes that
consist of not only phosphate lipids but also polyethylene glycol (PEG). These
substances have been studied as a candidate of drug delivery systems. What the
Group found is that even without anti-tumor drug inside, the liposomes made
of dimyristoylphosphatidylcholine (DMPC) themselves can work as anti-tumor
drugs. What is more surprising is that thi#éeet changes drastically even when
the ingredient of liposomes is changed slightly. Dipalmitoylphosphatidylcholine
(DPPC), DMPC, and dilauroylphosphocholine (DLPC) are the phosphate lipids
similar to each other. They have the same head group, namely phosphatidyl-
choline (PC). The only dlierence is in the fat tails. DPPC, DMPC, and DLPC
have 16, 14, and 12 carbons in each of the two tails, respectively. DPPC and
DPMC exist in the human body. According to their experimental results, hybrid
liposomes consisting of DPPC have rfteet on neither ordinary cells nor cancer
cells. It has nothing to do with drugfects. Those of DMPC cause cancer cells
to perform apoptosis specifically. However, ordinary cells are fietted. Thus,
the lipisomes with this lipid react as anti-tumor drugs. DLPC liposomes cause
necrosis and thus are toxic.

This is of great interest. Although theffirence among the lipids are rather
small, their éfects on the body vary much. The hypothetical mechanism is as-
sociated with the dierence in fluidity of membrane. Cancer cells have usually
more fluid cell membrane with more unsaturated lipids, whereas the normal cell
has more stable membranes with more cholesterol.

The phase transition temperature of DPPC, DMPC, and DLPC a& 23 C,



and OC, respectively. Thus, at the body temperature, DPPC is in the gel phase,
which must be very rigid. On the other hand, the other two lipid membranes

are in the sol phase, which must be more fluid and soft. Especially, DLPC lipid

membrane should be quite fluid.

The first approach to understand such phenonierslico must be the un-
derstanding of phase transitions of lipid bilayer systems. Even with such great
interests and importance, the reliable results seem to be still scarce. Thus, we
applied replica-exchange molecular dynamics (REMD) metBpd][ one of the
generalized-ensemble algorithms, to the lipid bilayer systddislf] (see Chap-
terl2). Note that this is the first application of generalized-ensemble algorithms to
lipid systems to our knowledge. This is given at the first part of this thesis.

Although REMD has been venfiecient for the simulations of the lipid sys-
tems, the crossing over phase transition point will be more and mfireutt, as
the system size increases. We thus want to develop more powerful generalized-
ensemble algorithms.

In the second part of this thesis, we focus on the ST method, which has some
similarity to REM. These two methods have not been very compatible with first-
order phase transitions. We propose an extension of ST method for spin systems,
which turned out to be applicable to systems with first-order phase transitiGns [

17]. In this ST method, not only temperature but also external field is treated as a
dynamical variable. Thus, this method can be referred to as “Simulated Tempering
and Magnetizing (STM).”

This thesis consists of the following parts. In Chapter 2, we give the results
of application of REMD to coarse-grained lipid bilayer systems, which is aimed
at the deeper understanding of its phase transition mechanisms. In chapter 3, we
introduce the STM. We then present the results of STM simulations applied to
the two-dimensional Ising model. Chapter 4 is devoted to a further application
of STM to the two-dimensional three-state Potts model. In Chapter 5 we con-
clude this thesis. In the following appendices, we summarize some statistical
techniques, which are important for analyzing errors of MC or MD simulation re-
sults that usually involve auto-correlations. We also give the relationship between
the Ising model and lattice gas model.
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Chapter 2
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Dynamics Simulation of Lipid
Bilayer Systems with
Coarse-Grained Model
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tem studied by a replica-exchange molecular dynamics simulatidor-
nal of the Physical Society of Jap&i, 024002 (9 pages) (2012).

T. Nagai and Y. Okamoto: “Replica-exchange molecular dynamics simu-
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2.1 Introduction

Biological membranes are mainly composed of lipids. Phosphocholine (PC) is
known as a main component. A dipalmitoylphosphatidylcholine (DPPC) bilayer
system has been studied as one of lipid bilayers. There have been many studies
on DPPC bilayers by simulations (for reviews, see, e.g., R&fand [2] ) and by
experiments (for a review, see, e.g., REJ) [

DPPC bilayers have many phases along temperature, pressure, and so on. Dif-
ferent phases haveftirent features in lateral flusion codficient, thickness of
bilayer area of lipids, etc.

Simulational studies of phase transitions with the change of the temperature
have been challenging because of the hysteresis behavior. The system easily gets
trapped in local-minimum-energy states. There have been a few all-atom simula-
tions of the phase transitions. Vriesal. detected a ripple phase by annealidf [
Leekumjornet al. performed annealing and heating simulations of several kinds
of lipid bilayers and studied gel phases and transition staj@}.|

Coarse-grained models have been employed by a number of griUg<[

10]. In coarse-grained models, several atoms make up one reaction site. By re-
ducing the number of reaction sites, one can simulate a system in a shorter com-
putational time and it is easier to simulate larger systems.

As for coarse-grained simulations, Stevens performed simulations of a DPPC
bilayer with a coarse-grained model, and got a tilted gel ph#seMarrink and
coworkers studied the sol-gel phase transitidhit [L2] with their own coarse-
graind models, MARTINI8] and MARTINI2.0 [8,19]. The main simulation tech-
nigues of inducing the phase transitions was cooling or heating. With their model,
they got an un-tilted gel phase of DPPC bilayer but did not get the tilted gel phase,
though the tilted gel phase is also supported by experiments. They changed param-
eters of MARTINI temporarily to sample the tilted-gel phase. With MARTINI2.0
model, they only report tilted-gel phase with externally applied tension. In the
present work, we applied the molecular dynamics (MD) version of the replica-
exchange methodl.B|, Replica-Exchange Molecular Dynamics (REMIZY[ to
a DPPC bilayer system with a coarse-grained model MARTINI2.0. As far as we



know, this is the first application of a generalized-ensemble algorithm (for a re-
view, see, e.g., Reflf]). to an explicit DPPC bilayer system. Using REMD
lets one enhance conformational samplifigceency and simulate a system in a
wide range of temperature at once. Even though temperatures are changed dur-
ing REMD simulations, the REMD method does not break the detailed balance
at any temperature. Thus, we can obtain the well equilibrated states at all the
temperatures investigated. That is, we can obtain more reliable results at low tem-
peratures, and we can discuss temperature dependences more accurately than by
conventional methods.

This article is organized as follows. §2.2we present the methods, defini-
tions of some quantities, and simulation details§Z03 we present the results of
our REMD simulations of the bilayer.

2.2 Materials and methods

We performed a replica-exchange molecular dynamics (REMHA])gimulation
with a coarse-grained model MARTINI2.0. In this section, we explain REMD,
MARTINI, a number of definitions of physical values, and simulation details.

We first briefly review REMD. For details, see the literatutd][ In REMD
simulations,M copies (or, replicas) of a system are simulated by the molecular
dynamics method simultaneouslyMtdifferent temperatures. Every certain num-
ber of simulation steps, one tries to exchange the temperatures without breaking
equilibrium by using Metropolis criteriorilf]. By exchanging the temperatures,
replicas perform a random walk in the temperature space. This, in turn, induces
a random walk in the energy space. The REMD was extenddiPibensemble
simulations,[17,/18,/19,20] and we used this method in ttNPT ensemble.

MARTINI is a coarse-grained modeB[9] proposed by Marrinlet al. They
revised parameters in 2008]] We used this version of MARTINI, which is
referred to as MARTINI2.0. This force field has been extended to prot@ijs [
and carbohydrate2¥).

Here, we summarize main points of MARTINI2.0. One reaction site of MAR-



TINI generally corresponds to four heavy atoms. In this model, reaction sites are
classified into 18 groups, which havefdrent parameters. The potential energy
is given by

E = Ebond+ Eangle+ Evaw + Ecoulomb (2-1)
1
Ebond = ZEKbond(R_ RO)Za (2-2)
bond
1
Eangle = Z EKangIe(COSG) - COSGO))Z > (23)
angle
_ S | Dt I ]
Saw = ;46” [( fi ) (rij ) } 24
3 4
g (1 5 O
E _ Sl B 2.5
Coulomb ] Arepe [rij 3re - Sré‘ I’g ( )

whereRy, Kyona 0o, andKangie denote the equilibrium distance, its force fie
cient, the equilibrium bond angle, and its force constant, respectiggbndor;

are the Lennard-Jones parameters, gni$ the distance between tieh and j-

th particles. q;, €, &, andr. denote the full charges, the dielectric constant of
vacuum, the relative dielectric constant, and the d¢bidstance € 1.2 nm), re-
spectively.

One of the specific characteristics of MARTINI2.0 is the employment of the
anti-freeze particles. Because water particles in previous MARTINI tend to get
frozen easily, the anti-freeze particles were added in order to prevent water from
getting frozen. The Lennard-Jones parameters between an ordinary water par-
ticle and an anti-freeze particle are modified from that between ordinary water
particles. The other parameters of anti-freeze particles are the same as those of
ordinary water particles. Anti-freeze particles tend to break the long-distance or-
der in water. See the literatur8][for details. Figurd2.1 shows the structure
of a DPPC molecule and a water particle in MARTINI2.0. One DPPC molecule
is represented by twelve particles. Four water molecules are represented by one
particle.

The simulation details are as follows. The system contained 32 DPPC molecules
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Figure 2.1: Structures of lipid and water particles in MARATINI2.0. The single
spherical particle is a water particle. This corresponds to four water molecules.
The other chain is a DPPC molecule. Twelve particles represent one DPPC
molecule. One particle corresponds to choline, another corresponds to phosphate.
Two particles are modeled as a glycerol backbone. Two sets of four particles (in
light blue) stand for palmitoyl tails.

11



and 500 water particles. Fifty of those water particles were anti-freeze patrticles.
The initial conformation was a DPPC bilayer in a sol phase. By heating and
annealing the bilayer, we obtained a set of initial conformations for the REMD
simulations. These bilayers were further equilibrated by REMD simulations. We
then performed a 4.6-microsecond production REMD run per replica. The inter-
val of replica exchanges was 100 MD steps. The interval may appear to be small.
Because the REMD satsifies the detailed-balance condition, however, it is guaran-
teed to approach the thermal equiibrium no matter how often replica exchange is
tried. We took a small interval, following the recommendation of R2Z8].[ The

time step was 20 fs. In the production run, Medoover thermostat24, 25 and
Parrinello-Rahman borostat2q] were employed. We employed semi-isotropic
pressure controls, where the ratio of th@ndy lengths of the simulation box was
fixed, while thez length moves independently. Reference pressure of all compo-
nents was 1 bar. We did not apply any surface tensions. Reference temperatures
were distributed at 127 points between 283 and 39MK=127): 283.00, 283.70,
284.40, 285.11, 285.81, 286.52, 287.23, 287.94, 288.66, 289.38, 290.10, 290.82,
291.54, 292.26, 292.99, 293.72, 294.45, 295.00, 295.25, 295.51, 295.76, 296.01,
296.27, 296.52, 296.77, 297.03, 297.28, 297.53, 297.78, 298.04, 298.29, 298.54,
298.78, 299.05, 299.30, 299.56, 299.81, 300.06, 300.32, 300.57, 300.82, 301.08,
301.33, 301.58, 301.84, 302.09, 302.34, 302.59, 302.85, 303.10, 303.35, 303.61,
303.86, 304.11, 304.37, 304.62, 304.87, 305.13, 305.38, 305.63, 305.89, 306.14,
306.39, 306.65, 306.90, 307.15, 307.41, 307.66, 307.91, 308.16, 308.42, 308.67,
308.92, 309.18, 309.43, 309.68, 309.94, 310.19, 310.44, 310.70, 310.95, 311.20,
311.46, 311.71, 311.96, 312.22, 312.47, 312.72, 312.97, 313.23, 313.48, 313.73,
313.99, 314.24, 314.49, 314.75, 315.00, 317.21, 319.44, 321.69, 323.95, 326.24,
328.54, 330.87, 333.21, 335.57, 337.95, 340.36, 342.78, 345.22, 347.68, 350.17,
352.67, 355.20, 357.74, 360.31, 362.90, 365.51, 368.14, 370.79, 373.47, 376.17,
378.89, 381.63, 384.40, 387.19, and 390.00 K. Fi@uBshows the temperature
distribution. A smaller index is assigned to a lower temperature. We assigned
a high density distribution of temperatures around sol-gel phase transition point
because one needs a lot of replicas around critical temperatures. The highest tem-
perature was chosen so that the bilayer does not break. The lowest temperature

12



was chosen so that it was lower than the sol-gel phase transition temperature. We
used a package software, GROMACS-4.®3, 28, 29, [37], for all the simula-
tions.

400 ""Temperature” .

Temperature
ﬁg w W
D (0]
o o o

w
N
o

300 /

0 20 40 60 80 100 120 140
Temperature Index

Figure 2.2: Temperature distribution for the REMD simulation. Each point cor-
responds to a replica.

We now describe the way of calculation of the thickness of a bilayer and the
area of a bilayer, etc. The thickness of a bilayer is defined to be the distance
between the center of mass of phosphate patrticles in the upper layer and that in
the lower layer. The area of a bilayer is considered to be the area of base of the
simulation box. By dividing this area by the number of lipids in a leaflet, we
calculate the area per lipid. The tilt angle was defined as follows. In MARTINI,

a C2 tail of DPPC has four particles. The angle of the line which passes through
both the first particle and the last particle in a C2 tail to the unit vector parallel to
thez axis from the last particle is defined as the tilt angle.

2.3 Results and discussion

Figurel2.3 shows the time series of the temperature index of one of the replicas
during the REMD simulation of the DPPC bilayer. Figlf&d shows that this
replica made a random walk in the temperature space between the highest tem-

13



perature and approximately the tenth lowest temperature. This suggests that the
REMD simulation was performed properly. Around the tenth lowest temperature,
there is a phase transition point of water as we discuss below. The existence of the
water phase transition prevents replicas from going down below the tenth lowest
temperature around 290 K. Our results are quite reliable in the range above this
temperature, above which the sol-gel phase transitions exist as is discussed below.

Temperature Index

0O 05 1 15 2 25 3 35 4 45
Time[us]

Figure 2.3: The history of temperature index in one of the replicas (Replica 113)
during the REMD simulation of the DPPC bilayer with 32 lipids.

Figure€2.4andZ.53show the time series of the potential energy and the thick-
ness of the bilayer, respectively, of the replica in B@ From Fig.[Z.4, we see
that the energy also made a random walk. Note that there is a strong and expected
correlation between the behaviors in Figs3and2.4 According to Figs2.3and
[2.5, the bilayer is thick at low temperatures and thin at high temperatures. The
thickness is a good parameter characterizing the phase. These results suggest that
at high temperatures the bilayer is in the sol phase, where the bilayer is thin, and
at low temperatures the bilayer is in the gel phase, where the bilayer is thick. This
implies that the replica underwent several phase transitions during the simulation.

14
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Figure 2.4: Potential energy of one of the replicas (Replica 113) as a function of
time. The energy followed the movement of the temperature (se2Bjg.
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Figure 2.5: Thickness of the bilayer of one of the replicas (Replica 113) as a
function of time.
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In order to show the phase transition behavior clearly, we examine the tem-
perature dependence of the enthalpy, etc. Fidgir@®.7, (2.8 and2.9 show the
temperature dependence of the enthalpy, thickness of the bilayer, area per lipid,
and heat capacity. respectively. Here, the heat cap@agydefined by

((H+PV)?) = (H + PV)?
C= — : (2.6)

whereH, P, V, kg, andT are the sum of kinetic energy and potential energy,
pressure, volume, Boltzmann constant, and temperature, respectively. Sudden
changes of behaviors exist around 296 K in H§, 2.7, andZ.8 Other sudden
changes of behaviors also exist around 288 K in H§.andZ71 The heat
capacity in Fig2.9has two peaks around 288 K and 296 K, corresponding to the
two sudden changes in the enthalpy in Zg8. According to these results, two
phase transitions were found.

The phase transition around 288 K is the phase transition of water. The sudden
changes of enthalpy around this temperature in[Egmainly consist of the sud-
den changes of LJ potential energy between water particles (se& Fidpelow).
Note that the enthalpy changes in FZg8 around 288 K are large. These are cor-
related to large changes in energy around this temperature. The |figyentes
in the energy are the reason why the replica exchanges were not successful around
this point.

The other phase transition around 296 K corresponds to the sol-gel phase tran-
sition of the DPPC bilayer. This is supported by the sudden changes of thickness
and area around 296 K in Figg.4and2.8 The phase characteristics were repro-
duced that the bilayer is thin and wide above the temperature and thick and narrow
under the temperature. The sol-gel phase transition is also suggested by the tem-
perature dependence of the LJ potential energy between DPPC molecules (see
Fig.2.13below). The sol-gol phase transition temperature is consistent with the
previous work(IL1] by Marrink et al. They reported that the transition temperature
is 295+5 K.

The area per lipid in dierent phases was discussed in R&if. Their estimates

16



of the area per lipid for the gel phase {20) and for sol phase (3CQ) are 0.479
and 0.64 nri, respectively. Our results are in accord with these values.

'10 T T T T T

1 Enthalpy —— * * -14
g 12 |+ ‘.’_.v"'/- ’/,-'"""? -16
S -13¢ ._,.~"" o 118
o 14| S
= 285 290 295
= 2 T 14
§ 16 | - .
e 17 L. , 1 -15
Lﬁ 17 ' /

.18 |} 1], {-16

-19 1 1

300 320 340 360 380 290 300 310
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Figure 2.6: Enthalpy as a function of temperature. The graphs on the right are
the same with dferent ranges of the ordinate and abscissa. The enthalpy has two
large changes around 288 K and 296 K.

We now examine some component energy terms as functions of the tempera-
ture to further analyze the phase behaviors.

Figure[2.10 shows the average bond-length enex@ong), as a function of
temperature. This term has two sudden changes around 296 K and 288 K. Its
manner of change around 296 Kidrs from that of the enthalpy in Fig.6

Figure2.11shows the average angle ener<g§/ang|e>, as a function of tempera-
ture. This term also has two sudden changes around 296 K and 288 K. Its manner
of change around 296 K is the same as that of the enthalpy if2Hg.

Figure2.12shows the average Coulombic energy as a function of temperature.
Note that partial charges exist only in the head groups of lipids. This term also
has two sudden changes around 296 K and 288 K. Its manner of change around
296 K is the same as that of the enthalpy in 2@

Figurel2.13 shows the temperature dependence of the average LJ potential
energy between DPPC particles. This term changes largely around 296 K. This
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Figure 2.7: Average thickness of the bilayer as a function of temperature. Large
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large change corresponds to the sol-gel phase transition. The manner of the large
change around this temperature is the same as that of the enthalpy, and this sud-
den change is the main cause of the sudden change of enthalpy around 296 K in
Fig.2.8 Hence, this term can be considered to be a driving force of the phase
transition to the gel phase.

Figure[2.14 shows the temperature dependence of the average LJ potential
energy between DPPC particles and water particles. This is the only interaction
between a DPPC molecule and a water molecule. This has sudden changes around
296 K and 288 K. The manner of change around 296 K is opposite to the change
of the enthalpy around 296 K in Fig.8

Figure2.15 shows the temperature dependence of the average LJ potential
energy between water particles. This has sudden changes around 296 K and 288
K. The latter one is quite huge, and this composes most of the sudden change of
enthalpy around 288 K in Fif2.8 This sudden and huge change suggests that
water got frozen around 288 K in our simulation.

We remark that two of the energy terms in Figsl0andZ. I4increase around
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296 K as the temperature decreases. One term is the bond-length energy. The
other one is the LJ potential energy between DPPC molecules and water molecules.
These two terms favor the sol phase around the phase transition temperature, while
the other terms favor the gel phase.
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Figure 2.10: Average bond-length energdEong), as a function of temperature.

In order to investigate the conformational features, we analyzed the potential
of mean force (PMF) maps. PMF is defined by

W(£1, 62) = —kgT logp(é1,£2) (2.7)
wherep(&1, &) is the probability distribution of a poinkf, £,) and is given by

[ 6(&1(0) — £1)0(£2(a) — £2)ePH+PV) dpdgdV

p(§1,§2) = fe_ﬁ(H+P\/)dpdqu

: (2.8)

whereH, P, V, p, andq are the sum of kinetic energy and potential energy, pres-
sure, volume, momenta, and coordinates, respectively.

Figurel2.16 shows PMF maps at four temperatures. One axis is the thickness
of the bilayer, the other one is the area of the bilayer, and the height shows the
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PMF. The curves on they-plane are the contours of the PMF. At the temperature
of 305.9 K, there is one local minimum (see 2gl6@)). The temperature is high
enough for the bilayer to be in the sol phase. This minimum corresponds to the
sol phase. In the sol phase, the bilayer is thin and wide. At the temperature of
297.8 K, there are two local minima (see FZ1&Db)). The new local minimum
corresponds to the gel phase. In the gel phase, the bilayer is thick and narrow.
At the temperature of 295.5 K, there are three local minima (se€ZEIg(c)).
This temperature is slightly lower than the previous one. This result suggests that
two gel phases exist. The newest one is thinner than the second newest mini-
mum. These two minima correspond to the un-tilted gel phase and the tilted-gel
phase, respectively. At the temperature of 293.0 K there are two local minima
(see Figl2.16d)). One of the local minima seen in 295.5 K and 297.8 K disap-
peared. In this temperature, the bilayer is mainly in the tilted-gel phase. These
results suggest that the sol-gel phase transitions are composed of two phase transi-
tions. Figuré2.17shows the PMF map at 295.76 K, which also shows three local
minima of free energy.

In order to check the significance of theffdrence between the tilted gel
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Figure 2.16: Two-dimensional PMF maps.
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phase and un-tilted gel phase, we evaluated errors of histograms by following
calculations[B1]. Firstly we divided the obtained trajectory into sixteen parts.
Each data was converted into a histogram and we obtained sixteen histograms.
These histograms are denotedna&x, y), . . ., hig(X, y), wherex andy stands for

the bilayer thickness and area. The error bars of the histogkafrsy) are cal-
culated byo?(x.y) = (X% (h - (h(x.y)))?) /16(16 - 1), wherech(x.y)) is the
average of sixteen histograms, or the histogram with all data. Finally, the ob-
tainedo was converted into the error of PMF ly(x,y)/ (h(X,y)). Note that
log(x+6X) ~ log x+ 6x/x. Figure2.18shows the PMF with error bars at 295.5 K.
Note that data are shown only where the bilayer thickness is 8.84Time statis-
tically significant barrier exists between two local minima, which correspond to
the un-tilted gel phase and tilted gel phase.

To roughly estimate the phase transition temperature, we looked for the tem-
perature where each minimum has the same depth as each other. For this purpose,
we checked the PMFs at all temperatures. At 297.8 K (Ef4(b)) or 297.5 K the
depth of the un-tilted gel becomes the same as that of the sol phase. At 295.5 K the
depth of tilted-gel becomes that of the un-tilted gel phase. Note that at this tem-
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Figure 2.18:PMF with error bars where bilayer area is 8.04%rah295.5 K. The
solid curve is just a guide.

perature the depth of the sol is still large as can been seen i2Hi§c). These
two temperatures are not so far from the phase transition temperature deduced by
the enthalpy or the heat capacity in H&g8 or Fig.[2.9, respectively.

It might be a natural question why we could not get another peak in the heat
capacity in Figl2.9so that the two peaks correspond to the two phase transitions
discussed with PMF maps. There are several possible reasons. One is the error
of simulation is still not small enough to distinguish the peaks. Another is that
the system is too small to distinguish the two peaks. The third is that the heat
capacity has really one peak. One of the phase transitions discussed by the PMF
maps belongs to the other.

To investigate conformational features further, we analyzed the tilt angle dis-
tributions. This helps understanding of the correspondence between PMF maps
and conformational characteristics. FigiZt&9shows distributions of the tilt an-
gle of C2 tails at the four temperatures. The same temperatures are chosen as in
the PMF maps. At the temperature of 305.9 K, the tilt angles of C2 tails have a
broad distribution. This means that the lipids are in the sol phase, in which the C2
tails are not ordered. At the temperature of 297.8 K, the tilt angles of C2 tails are
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located between tGand 30. At the temperature of 295.5 K, the tilt angles are
located beween T@nd 30. At 10° their distribution has a small peak, and at 30

it has a large peak. This suggests that there are two state. One is an un-tilted phase
and the other one is a tilted phase. At the temperature of 293.0 K the tilt angles of
C2 tails are located around 30These results also suggest that three states exist.
One is the sol phase, another one is the un-tilted gel phase, and the third one is the
tilted gel phase. The tilt angle in the tilted gel phase is arourid 30
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004
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003
002 |
001 |
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Figure 2.19: The tilt angle distributions. The solid red line shows one at 293.0
K, the green dash line shows one at 295.5 K, the blue dash-dot line shows one at
297.8 K, and the purple dot line shows one at 305.9 K.

Figure[2.20 shows snapshots of the bilayer obtained during the REMD sim-
ulation. Figure€.2(a), 2.2Qb), and2.2Q(c) correspond to the sol phase, the
un-tilted gel phase, and the tilted-gel phase, respectively. The values of the area
and the thickness of the bilayer are 9.91%rand 4.09 nm, 7.91 nfrand 4.65 nm,
and 8.10 nrhand 4.37 nm, respectively.

In order to ensure the validity of the results presented so far, we also performed
simulations of larger systems, which consists of 72 and 128 lipids. The simulation
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Figure 2.20: Snapshots of three states of the DPPC bilayer with 32 lipids during
the REMD simulation. Water particles are suppressed for clarity.
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conditions such as thermostats and barostats, are almost the same as the those of
the smallest system. Although the results are still preliminary, they already show
consistency with those of the smallest-system simulation. For instance, Figures
[2.21andZ.22shows three snapshots obtained in the 72-lipid simulation and in the
128-lipid simulation, respectively, which correspond to the three states found in
the 32-lipid simulations.
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Chapter 3

Simulated Tempering and
Magnetizing: Application of
Two-Dimensional ST Method to an
Ising Model

T. Nagai and Y. Okamoto: “Simulated tempering and magnetizing: appli-
cation of two-dimensional simulated tempering to two-dimensional Ising
model and its crossovei?hysical Review B6, 056705 (12 pages) (2012);
arXiv:1205.2523.

T. Nagai and Y. Okamoto: “Simulated tempering and magnetizing of the
Ising model,”"Physics Procedi&8, 100-104 (2012).
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3.1 Introduction

In the computational statistical physics field, Monte Carlo (MC) and molecular
dynamics (MD) simulations have been commonly used. However, the quasi-
ergodicity problem, where simulations tend to get trapped in states of energy
local-minimum, has often posed a gredatidulty. In order to overcome this -

culty, generalized-ensemble algorithms have been developed and applied to many
systems including spin systems and biomolecular systems (for reviews, see, e.g.,
Refs. [, 12, 13]).

Commonly used examples of generalized-ensemble algorithms are the mul-
ticanonical algorithm (MUCA)4, 5], simulated tempering (ST) metha@, [7],
and replica-exchange method (RENS) [B] (it is also referred to as parallel tem-
pering). Closely related to MUCA are the Wang-Landau metlidii[11] and
metadynamicsl?2]. Also closely related to REM is the method in R&EJ].

In the ST method, temperature is regarded as a dynamical variable, which
Is updated by the Metropolis criteria during the simulation, and consequently a
random walk is realized in the temperature space. This random walk, in turn,
causes a random walk of the energy, which enables the system in question to
overcome free-energy barriers. However, it is well-known that the ST method is
not very compatible with first-order phase transitions (for a review, see, e.g., Ref.
[14]). When there is a first-order phase transition, the random walk of temperature
across the phase-transition point hardly occurs. We remark that there is a recent
attempt to deal with this iculty by an extension of STLH].

Recently, the multi-dimensional generalizations of the generalized-ensemble
algorithms, including the MUCA, ST, and REM, were discussed and general for-
malisms were givenllg, [17, [18]. In these methods, the energy of the system
is generalized by adding other energy term(s) with some coupling constants. In
the multi-dimensional ST method, not only the temperature but also the coupling
constants are considered as dynamical variables.

In this work, we study a special case of the above general multi-dimensional
ST methods. Namely, the additional term-isM whereh andM are the external
field and the magnetization, respectively. The external fistdrresponds to the
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couping constant which is updated during MC simulations. Therefore, not only
temperature but also external field becomes a dynamical variable and is expected
to realize a random walk during the simulations. Thus, this simulation can be
referred to as the “Simulated Tempering and Magnetizing” (STM). In order to test
the dfectiveness of the present method, we applied it to the two-dimensional Ising
model.

The Ising model has two kinds of phase transitions. One occurs along the
change of temperature when the external field is zero. The other occurs along the
change of external field when the temperature is under the critical temperature
(Te). The former is classified as a second-order phase transition. The latter is
categorized as a first-order phase transition unless the temperature is exactly equal
to T.. WhenT = T, the transitions are classified into a second-order phase
transition. This system allows us to confirm applicability of the two-dimensional
ST to the first-order phase transitions along the external field changes.

We also investigate the crossover phenomena in the phase transitions, in which
critical exponents are changed. We study the behavior of magnetization per spin
m, which followsm ~ |T — Tff andm ~ |h*® near the critical point, wherg
ands are critical exponentslB]. Our simulation method, with a combination of
histogram reweighting techniques, enables us to calculate physical values such as
the energy and magnetization at various valués afidh from a single production
run.

This article is organized as follows. §8.2we present the STM method. In
§3.3we present the results.

39



3.2 Materials and methods

3.2.1 System

We study the two-dimensional Ising model in external field. The total energy is
given by

H=E-hM, (3.1)
EZ—ZO’iO'j, (32)
D
N

i=1

wherei, N, o, andh are the index of spin, total number of spins, spin atittie

site, and external field, respectively. The spjrtakes on the valuesl. The sum

in Eq. (3.2 goes over the nearest-neighbor pairs. The spins are arranged on the
squareL x L lattice. We imposed the periodic boundary conditions. Data were
obtained for lattice sizes from:22 to 160x 160.

3.2.2 Simulation methods

Whereas the conventional ST method considers temperature as a dynamical vari-
able, the STM method considers not only temperature but also external field as a
dynamical variable. Here, before explaining the STM method, we shortly review
the conventional ST metho@,[7].

In the conventional ST method, temperature is a dynamical variable which
takes on one oNt values (here, temperature is discretized iNtovalues). In
other words, denotingk and x as a sampling space and its microscopic state,
respectively, the Boltzmann factor

e E(X)/T+a(T) (34)

IS regarded as a joint probability for the staxel) (¢ X®{T1, To, ..., Tn,}). Here,

40



a(T) (or a(T;)) is a parameter for obtaining uniform distributions of temperature
values. Here and hereafter, we set Boltzmann’s constant to unity. Now that the
temperature is a dynamical variable, the simulated system is allowed to realize
a random walk in the temperature space. This random walk, in turn, causes a
random walk of energy. Consequently, the simulated system has more chance to
overcome energy barriers.

Even though the temperature changes during ST simulations, any thermody-
namic quantity at temperatufie, (A)r,, can be reconstructed with the conditional
expectation of a physical quantifygiven atT;, or (AT;). Note that

_E0aT
ZfdxA(x)éije ) ram)

<A|Ti>ST = — (3-5)

Nt CEW .
> [[axa, et
=1

jﬁx«@é?ﬁm

(3.6)
fdx g T ram
= <A>Ti s (37)
wheregj; is the Kronecker delta. Namely, we have
1 &
- i
<M—MZ%, (3.8)

=1

whereNr, andA#i stand for the total number of samples grith sample af;.

To find a candidate foa(T;), let us look at the probability of visitind@;. By
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summing over the delta function, the probability of occupylihgs given by

Nt CER .
Zfdxéije 7; ram)
=

P(T) = (39)
f i?<)+a(T-)
Z dxe T
=1
e f(Ti)+a(Ti)
= N (3.10)
Z g f(T+a(T))
=1
oc @ fT+a) (3.11)

wheref is the dimensionless (Helmholtz) free energy and
e M= fdx g BT, (3.12)

Substituting f(T;) into a(T;) gives constant probability regardless if Thus,

the dimensionless free enerdyT;) is a good choice foa(T;) in order to obtain
uniform temperature distribution and to realize a random walk in the temperature
space. Although the free energy is not knaavpriori, unless the system is exactly
solvable, the free energy calculation methods (the details will be provided below)
enable us to get its good estimate from preliminary simulation runs.

In the two-dimensional ST algorithm, on the other hand, we consider that
another parameter is also a dynamical varialig [L7, [18]. Especially in the
STM method, the external fieldis a second dynamical variable. In other words,
we consider

g (E-hM)/T+a(T.h) (3.13)

as a joint probability forX, T, h) (e X®{T1, To,..., Tng}®1{hg, hy, .. Oy, }), where
a(T, h) is a parameter.

To find a candidate foa(T;, h;), we again look at the probability of staying at
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each set of parameter values. It is given by

Nt Np

E(X)— h|M(x)
Z Z de(SH( 5” e Tk +a(Tk’h|)
k=1 1=1
P(Tihy) = (3.14)
T f E(X)- h|M(><)+a(T )
dxe T«
k 1 I 1
f(T. hj)+a(Ti,hj)
- = (3.15)
ZZ —f(Tk h))+a(Ty.hy)
k=1 1=1
g fTh)+a(Tihy) (3.16)
where
o T _ f dx e ENMTi (3.17)

The dimensionless free enerffT;, h;) is again a good choice fa(T;, h;) in order
to acquire a uniform distribution of andh. These values can be estimated from
preliminary simulation runs and reweighting techniques.

As in conventional ST method, any thermal averager ,, at givenT; (€
{T1, To,..., T }) andhj (e {hy, hy, ..., hy,}) can be obtained by calculating the
conditional expectationtAy, , = <A|Ti, hj>ST. Namely, we have

NTi,hj

1
<A>Ti,hj = m Z A'lT'i,hj ’ (318)
PU k=1

whereNr, j,, is the total number of samples &tandh;, andA."ri,hj stands for the
k-th sample af; andh;.

The method of updating or h is similar to that of updating spins becauke
andh are considered as dynamical variables. The Metropolis criterion for updat-
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ing T or his given by the following transition probability:

W(T;,h; = Ty, hy) = min(l, %) (3.19)
is 1]
= min(l ex (— (i - 1) E+ (h—’ - m) M + a(Ti, hy.) — a(T; h-)))
B P T T T T R L))
(3.20)

Once an initial state is given, the STM simulations can be performed by repeat-
ing the following two steps. 1. We perform a conventional canonical simulation
atT; andh; for certain MC sweeps. 2. We update the temperature or external field

by Eq. 8.20 with a(T, h) = f(T, h).

In our implementation every certain MC sweeps eithieor h was updated
(the choice betweeh andh was made at random) by E@.P0 to a neighboring
value (the choice of two neighbors was also made at random). Here, one MC
sweep stands fdr x L single spin updates. The number of MC sweeps performed
between parameter updates is here referred to as the parameter-updating period.

Whereas updating the parameter to a neighboring value with the Metropo-
lis algorithm should be considered the easiest to implement, we remark that, as
spins can be updated by a number of methods such as the heat bath method, other
schemes of updating the parameters can be empl@@d There also exists a
temperature updating scheme for ST by Langevin algoritkth [

Table[3.1 summarizes the conditions of the present simulations.LFer80,
instead of a single 4000000000 MC sweep production run, four 2000000000 MC
sweep runs were performed. This was just to make one trajectory shorter and
easier to deal with numerically. Similarly, two production runs (instead of a single
run) were made fok = 30 and 160.

As for spin-updates, we employed the single spin update algorithm; we up-
dated spins one by one with the Metropolis criteria. As for quasi-random-number
generator, we used the Mersenne Twisg].[
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Table 3.1:Conditions of the two-dimensional ST simulations.

Lattice sizeL 2,4,8,10, 20 30 80 160

Number of production runs 1 2 4 2

Total MC sweeps per run 42000000 42000000 1000000000 321300000
Parameter-updating period 50 20 10 5

T1—Tne 1.0-5.0 1.0-5.0 1.0-5.0 1.0-3.6
hi—hy, -1.5-1.5 -1.5-1.5 -1.5-1.5 -0.5-0.5

Nt 20 20 70 63

Nh 21 21 51 51

Ngatd 10 10 100 50

8The data were stored evelg, MC sweeps.

3.2.3 Free energy calculations

The simulated tempering parameters, or free energy in Bgs3 (@nd B.17) can
be simply obtained by the reweighting techniques applied to the results of prelim-
inary simulation runs23, [18, 17, [16]. We employed two reweighting methods
for this free energy calculation. One method is the multiple-histogram reweight-
ing method, or Weighted Histogram Analysis Method (WHAIR%[25] and the
other is Multistate Bennett Acceptance Ratio estimator (MBAKY,[which is
based on WHAM.

The equations of WHAM algorithm that were applied to the simulation results
are as follows. For details, the reader is referred to R2&17]. The density of
states (DOSh(E, M) and free energy valuelT;, h;) can be obtained by

> i (E. M)
n(E, M) = o , (3.21)
Z NTi,hj eXp(f (Ti, hj) — (E — th)/T|)
Ti,h;
E.M

whereny, , (E, M) is the histogram oE and M at T; and h;, and N, is the
total number of samples obtainedTatandh;. By solving these two equations
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self-consistently by iterations, we can obta(f, M) and f (T;, h;). The obtained
n(E, M) allows one to calculate any thermal average at arbitrary temperature and
external field values. Note thdi{(T;, h;) is determined up to a constant, which
sets the zero point of free energy. Accordingiyf, M) is determined up to a
normalization constant.

The MBAR is based on the following equations. Namely, by combing Bo2I)
and B.22, the free energy can be written as

N i [
f(Ti,hy) = - |OQZ Nr  Nn LT 68
"N N @xp(F Ty 1) = (En — M) /Ty
k=1 I=1

whereN, Nr, n, En, andM, is the total number of data, the number of samples
associated witiy andh,, energy of then-th data, and magnetization of theth
data, respectively. This equation should be solved self-consistently(Tar;).
Note that, as in WHAM (T, h;) is determined up to a constant.

We repeat the preliminary STM simulations and free energy calculations until
we finally obtain sfficiently accurate free energy values which let the system
perform a random walk in the temperature and external field space during the
STM simulation. We then perform a single, final production run.

Note that these two reweighting methods enable us to obtain not only dimen-
sionless free energy values but also physical values at any temperature and at any
external field. It is given by

N
(Avrn = WoaA(X) (3.24)
n=1
_ 1 eXp(_(En - th)/T)
Wha = 1> o : (3.25)
7" Nrn exp(f (Tio ) = (En = hiMy)/Ti)
k=1 I=1
N (En— hMy)/T
N Y exp( )/T) (3.26)
n=1

Nr..n €Xp(f (T, ) — (En — i My)/Ty)

46



For details, the reader is referred to ReB, [27].

We also used another method of calculating free energy. By substituting
a(T, h) in Eq. 318 by the estimates for free enerdyT, h), we obtain

P(T, h) o g T+Th), (3.27)
From this we can write
f(T,h) = f(T,h) — log P(T, h) + const (3.28)

Here,P(T, h) can be obtained as the number of samples at each set of parameter
values in a preliminary STM simulation. Thus, this equation enables one to re-
fine the free energy much more easily than the reweighting methods, because the
method does not require any iterations. This method does not work well, however,
whenP(T;, h;) is too small (orf(T;, h;) is too far away from true values) to obtain
samples atTj, h;), while the reweighting techniques are still able to work. In the
present work, we first used the reweighting methods to obtain rough estimates of
the free energy for the entire parameter space. We then used the combination of
the reweighting methods and EB.28) for further refinements of the free energy.

Note that the WHAM gives another piece of information, namely DOS, which
MBAR cannot directly calculate. However, the WHAM requires to make his-
tograms before iterations and two kinds of calculations in an iteration step. As the
system size grows, the number of possible states increases. Thus, the calculation
of DOS can be quite time-consuming. On the other hand, MBAR can be used
without making histograms and one MBAR iteration step needs one equation.
The length of one iteration, which is approximately proportional to the number
of samples and parameter values, increases and can be time-consuming, as the
system size is enlarged. However, we have an impression that the MBAR is less
time-consuming and more easily implemented than the WHAM. The paralleliza-
tion of MBAR is slightly easier than that of WHAM and we actually did it with
OpenMP.
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3.2.4 Temperature and external field distributions

As is mentioned in the previous subsections, we have to give the set of temperature
and external field values before ST or STM simulations. Actually the determina-
tion involves trial and error. However, still the reweighting methods help one to
do this to a certain extent.

Firstly the maximum and minimum values of temperature and external field
were chosen so that the area of temperature and external field were wide enough to
investigate the critical behaviors. This should be done separately for each system
and what is to be investigated.

The distribution of temperature was chosen to be proportional to an exponen-
tial to the index number in small lattice sizes, as is common in simulated temper-
ing and replica-exchange methods. However, in large lattice size systems, we as-
signed more number of values aroundy hand. A denser distribution is required
where the heat capacity is large or the phase transition occurs. The distribution of
external field was similarly assigned. In small lattice size it was proportional to
the index of external field. However, in the larger lattice size, we assigned more
points arounch = 0, in which the phase transition occurs. We assigned them in
such a manner that the acceptance rate of ST parameter updates are preferably
between 10% and 50%. This fuzzy criterion is partly due to the two-dimensional
distributions. A temperature distribution at a certain external field does not always
give the same acceptance rates under another external field.

When the distributions of; andh; turned out to be improper, we reassigned
the distributions. In this case, we already had the samples and free energy esti-
mates at a previous distribution, with which the reweighting method lets one to
estimate the free energy at the newly distributed values. Consequently, we did
not have to start over the free energy calculations from the beginning. We actually
repeated this parameter redistribution procedures several times, especially in large
lattice size simulations.
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3.3 Results and discussion

3.3.1 Simulated Tempering and Magnetizing simulations

Firstly we shall show that the two-dimensional ST simulations were carried out
properly. Figure8.1 and3.2 show temperature and external field, respectively,
as functions of MC sweep. Both were obtained from the simulations in which
the linear lattice size was 80. The temperature and external field indeed realized
random walks.

Figures3.3 and3.4 show energy and magnetization per spin, respectively, as
functions of MC sweep. They also realized random walks. Note that there are
expected correlations between the temperature and energy (s€8.Eigysd3.3)
and between the external field and magnetization (see Bigsand[3.4). The
same behavior was observed in other lattice size simulations (data not shown).

Figurel3.5 shows the dimensionless free energy per spin as a function of tem-
perature and external field, which was obtained by applying MBAR to the results
of the production runs. Note that the partiaffdrential of this free energy by
gives<Tﬂ>. The shape &t = 0 suggests a jump @h belowT,, indicating existence
of the first-order phase transitions.

Figurel3.8 shows the distribution of magnetization as a function of tempera-
ture. BelowT, the distribution is separated into two parts. As temperature in-
creases, the distribution becomes broader. Ngéne distribution is the broadest
and two peaks merge. It then becomes narrower. Note that this figure was ob-
tained by only four production runs (see TaBId), and can be obtained even by
only one production run, though the error is expected to become larger. Figures
[B.4a),[3.4b), and3.4(c) show the distribution of magnetization as a function of
external field above, around, and beldw respectively. Abovd ., the change
is smooth and continuous (see H&yAa)). AroundT,, the distribution becomes
very wide arounch = 0 (see Fig[3.4(b)). This is one of the properties of the
second-order phase transitions. BelByvthe distribution jumps from one side to
the other side &t = 0 (see Fig[3.4c)). This abrupt jump of distribution is one of
the properties of the first-order phase transitions.
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Figure 3.1: The history of temperatur€. The linear lattice sizé& is 80.
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Figure 3.2: The history of external fielth. The linear lattice sizé is 80.
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Figure 3.4: The history of the magnetization per spimn,(= M/L?). The linear
lattice sizeL is 80.
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Figure 3.6: The distribution ofm as a function off for h = 0. The linear lattice
sizelL is 80.
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We also calculated the Binder cumulaB8] defined by

U(T,h,L) . <mA> (3.29)
s il - 2 <r‘nZ>2 . .
Figurel3.8 shows the Binder cumulant as a function of temperature. As is well-

known, the graphs cross at one poinflat The error bars were obtained by the
jackknife method29,3Q].

1 L*%ﬁa‘wg(g_—‘:.—_@%
0.8 \
= 06}
=
S 04 Te
10x10 ——
0.2t 1
20x20 7
30x30 [EL*\[%
OF 80x80 —=— P T T
160X16IO 1 1 1 1 1
16 18 2 22 24 26 28
T

Figure 3.8: Binder cumulantJ vs temperature.

Figurel3.9 shows the Binder cumulant as a function of temperature under dif-
ferent external fields. The graphs do not cross at one point in the presence of finite
external field. The amount of errors is expected to be on the same level Bi&ig.
and the error bars are suppressed here to aid the eye.

3.3.2 Comparison of simulated tempering with simulated tem-
pering and magnetizing

We compared the results of the STM method with those of the conventional ST
method. Figure8.10and3.11show the magnetization as a function of tempera-
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Figure 3.9: Binder cumulant) vs temperature underférent external fields. (a)
h=20. (b)h =0.01. (c)h = 0.05. (d)h = 0.1. Red solid, dashed green, short
dashed dark blue, dotted purple, and chain light blue lines stand f04.0, 20,
30, 80, and 160, respectively.

ture and external field, which was calculated using MBAR with the data obtained
by the conventional ST and STM simulation, respectively. Fi@ufé obtained

by the conventional ST shows artifact jumps at a high temperature and a certain
external field. This must have been caused by a failure of sampling some parts
of states. On the other hand, the results by the STM simulations are smooth (see
Fig.[3.1]). Figure3.12shows the density of states obtained by conventional ST
and STM simulations. This obviously illustrates that the area in which the energy
is relatively high with somewhat strong magnetizations were not sampled by the
conventional ST method. These results imply that the dimensional extension in
the STM enlarged the sampled space.

Once one succeeds in estimating the free energy values, or ST and STM pa-
rametersa(T;) and a(T;, h;), with suficient accuracy, one can perform ST and
STM simulations properly. However, the computationfébes in free energy cal-
culations are still much larger for STM than for ST. Therefore, it is desirable to
develop an even mordtient method for the STM free energy estimation than
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the present one.

3.3.3 Simulated magnetizing

We study the compatibility of ST with the first-order phase transition along exter-
nal field changes, by performing “Simulated Magnetizing” (SM) simulations, in
which the temperature is fixed and the external field is updated by the Metropolis
criteria. Figurd3.13 shows the external field as a function of MC sweep in the
SM simulations belowl.. We performed SM simulations in a number of lattice
sizes from X2 to 20x20. These graphs illustrate the fact that as the system size
becomes larger, thefticulty in simulations grows. In fact it finally became im-
possible to observe the events in which the magnetization goes to the other side
across the zero point (see H§114a)), while it was still possible abovE; (see
Fig.[3.14b)). These results imply that the full range random walk happens above
T, but not belowT.. Therefore, this result suggests that the random walk of tem-
perature is crucial for the full range random walk of external field. The full range
random walk of the external field happens in the STM simulation when the tem-
perature was high abovie. Note that the Ising model is equivalent to the lattice
gas model[31]. Hence, what happened in STM simulations can be understood
as that even though the phase transitions between gas and liquid do not directly
occur, they do occur through the “super critical water region.”

To explore this phenomenon more clearly, readers are referred to a supplemen-
tary material 82], which shows how the temperature and external field changed
during the STM simulation.

3.3.4 How often temperature or external field should be up-
dated?

A common question about this kind of simulation is how frequently the parameter-

updating attempts should be made. We want to emphasize that as long as the

detailed balance condition is satisfied the simulations should be correctly carried
out.
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Figure 3.11: Reweighted data (red) and original data (green) obtained by the
STM simulations. The linear lattice siteis 80.
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Figure 3.12: Calculated DOS obtained by WHAM with (a) ST and (b) STM data.
The linear lattice sizé is 80.

(b)
1.5
1
0.5
= 0
-0.5
-1
) 100 200 300 400  500x10° -1.50 100 260 360 400  500x10°
MC sweep MC sweep
(0)1-5 I i I (d)1~5 T [ IO T 71
i T
0.5 | 0.5}
_— - o |
0.5 -0.5
-1 o
s I i s
0 100 200 300 400  500x10° 0 100 200 300 400  500x10°
MC sweep MC sweep

Figure 3.13: External field vs MC sweep in SM simulations undeT = 1.97).
The linear lattice siz& is (a) 2, (b) 4, (c) 8, and (d) 10, respectively.
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Figure 3.14: External field and MC sweep in the SM simulation (a) under
(T = 1.97) and (b) abové, (T = 3.88). The linear lattice sizk is 20.
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We compared STM simulations performed wittifeient parameter-updating
frequencies. Figur8.15 shows the results of the heat capacity as a function of
temperature ah = 0, which were obtained by the STM method withtdrent
conditions. The conditions are one parameter-updating attempt every one, two,
twenty, and a hundred MC sweeps. They show good agreement with each other.
The error bars were obtained by the jackknife meti&8130]. Note that the error
bars tend to be larger as the parameter-updating frequency becomes less.

Figure[3.16 shows the magnetization as a function of temperatute -at0.

Data were obtained with several parameter-updating frequencies, such as one
parameter-updating attempt every one, twenty, and a hundred MC sweeps. They
also agree with each other. Note that because finite sizes are employed, the mag-
netization undef, ath = 0 is also zero. With the lower parameter-updating
frequency, the convergence was not so good and the error bars tend to be larger.
The error bars were obtained by the jackknife meth2€| B0]. These results
suggest that the frequent parameter update does not make any artifacts and that it
should be recommended.

Figurel3.17 shows the integrated correlation time of magnetization obtained
at different parameter-updating frequencies. The height of data is expected to
converge to the integrated correlation time between samples. This was calculated
by using the jackknife method withfélerent bin sizesZ9, 30]. Data were stored
every ten MC sweeps. Thus, the correlation time measured by MC sweep should
be ten times larger. The error bars were obtained with/fdistribution. These
results suggest that the higher the parameter-updating frequency, the shorter the
correlation time. Therefore, frequent parameter updates are preferred. Note that
the observation that the frequent parameter updates are preferable is in accord
with the statement that frequent replica-exchanging attempts are recommended
[34,135].

3.3.5 Observation of crossover

We study the crossover behavior of the phase transitions. We calculated the mag-
netization by MBAR around the critical point.
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Figure 3.15: Heat capacity per spir;, ath = 0. The linear lattice sizé is 80.

As the legends shown in the figure, green square, blue circle, purple triangle, and
light-blue inverse-triangle represent that one parameter-updating attempt is made
every one, two, twenty, and a hundred MC sweeps, respectively. The exact result
(red solid line) was obtained by Berg’s progred@] based on Ref33].
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Figure 3.16: Magnetization per spim whenh = 0. As the legends shown
in the picture, the green square, blue circle and purple triangle represent that one
parameter-updating attempt is made every one, twenty, and a hundred MC sweeps,
respectively. Some error bars were slightly shifted horizontally to aid the eye.

62



100000 | } }
g
g§
10000 {,
=
e ¥, ‘
o T
1000
Every1 +—=—
Every 2
Every 20 ——
100 ‘ Everyj 00 —— |
0 200000 400000 600000
bin size

Figure 3.17: Correlation time analysis. Error bars show the 95% confident inter-
val.

We employ the finite-size scaling approach, which is discussed in R€}f. [
The scaling form of magnetizatiom with respect to temperature and external
field is given by

mUAY = WL, L+AI) (3.30)

wheret = [T — T.|/T. andL is the linear size of lattice. The Greek letterandy
stand for critical exponents. In the two-dimensional Ising mgglel,1/8,5 = 15,
v =1, andy = 7/4.

Firstly we examine the scaling behavior of the magnetization. FidBuE
and3.19show the magnetization as functionsiofndh, respectively, and we see
that it obeys the critical behavior ofi ~ |T — Tf¥ andm ~ |h|*/?, respectively.
According to the scaling approach, whenor L*®®h is large enough, then the
finite effect can be negligible. In this case, Figs18andi3.19imply that those
conditions are given bit > 0.2 andL®8h > 1.1, respectively.

We now study the behavior under the conditions slightl§edent from the
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critical point. Figure3.20shows the magnetization as a function of temperature
nearh = 0. As the external field was increased, the behavior wsrdntiated in

the low temperature region. Even in the presence of weak external field, the mag-
netization obeys$'/® when the temperature was relatively high enough. However,
with relatively strong external field, the scaling behavior disappears.

slope =1/8 E—
160x160 H=0
160x160 H=0.000001 x
160x160 H=0.000125  «x
160x160 H=0.001728
160x160 H=0.008000
0.1 L 160x160 H=0.064000 °

0.1 1 10
L1/vt

<m|> LPY

Figure 3.20: Scaledn nearh = 0.

Figurel3.21 shows the magnetization as a function of external field iear
T.. As the temperature was deviated frdiy the behavior is dierentiated in
the weak external field region. Thus, even with slightedence fromT, the
magnetization obeyls’/*® when the external field is strong enough.

Figure[3.22 illustrates the comprehensive behavior(ffi) near the critical
point. Note that this is a log scale plot. Near thaxis{m|) obeysh/**®* and near
the T-axis(|m) obeys|t|*/8.

Figurel3.23a) and Figuré.Zb) show the dference betweetim|) L8 and
1.22(Lt)® and that betweeim|) L¥8 and (!¥8h)Y/*5, respectively. These data
were obtained by the 168 160 lattice size simulations. Note that the factor
1.22 comes from the exact solutidB7, [19]. According to the crossover scaling
formalism Bg], if t~*%8h is large enough, then the magnetization obmys t'/2,
and if h"81% is large enought(**®h is small enough), then it obeys ~ h%/1°,
Figurel3.23a) shows that if the finite-sizeffects are negligibleL{ > 0.2) and
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t > 0.2h%15 (i.e., th™®/1% is large), then the critical behavior is ~ t'/8, Figure
[3.23b) shows that if finite-size feects are negligibleL**®h > 0.3) andt <
0.2h%/15 (i.e., t73¥8n is large), then the critical behavior s ~ h'/*>. Thus, Fig.
[3.23clearly shows that the ling & 0.2h%%%) gives the boarder of the two scaling
regimes.
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Figure 3.23: Difference between magnetization and its expected scaling behavior
about the critical point. The linear lattice sizas 160. (Q)mLY® — 1.22(Lt)Y/8| is
illustrated. The black line is = 0.2h®*°, The vertical gray line it = 0.2. (b)
ImLY8 — (L1¥8n)Y/%9 s illustrated. The black line is= 0.2h¥5. The horizontal

gray line isL*8h = 0.3
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Chapter 4

Simulated Tempering and
Magnetizing Simulations of a Potts
Model

T. Nagai, Y. Okamoto, and W. Janke: “Application of simulated temper-
ing and magnetizing to two-dimensional Potts modé&burnal of Statisti-
cal Mechanics: Theory and Experime2@13 P02039 (21 pages) (2013);
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4.1 Introduction

Monte Carlo (MC) and molecular dynamics simulations have been demonstrated
to be indispensable tools for studying the statistical properties of various physical
systems in equilibrium. The quasi-ergodicity problem, however, where the system
gets trapped in states of energy local-minimum, has often posed gftéailtes.

In order to overcome the fliculty, generalized-ensemble algorithms have been
developed and applied to many problems in spin models and biomolecular systems
(for reviews, see, e.g., Refd, 2, (3]).

Well-known examples of generalized-ensemble algorithms are the multicanon-
ical algorithm (MUCA) {4, 5], simulated tempering (ST) methd@l [7], and replica-
exchange method (REMBJ9] (REM is also referred to as parallel tempering).
Closely related to MUCA are the Wang-Landau methtd) /L 1] and metadynam-
ics [12]. Also closely related to REM is the method in REET.

On the basis of the recent multi-dimensional generalizations of the generalized-
ensemble algorithmsly, [15, [16], the “simulated tempering and magnetizing”
(STM) method has been proposed and developgdld]. In the Refs.[L7,18] the
classical Ising model was studied, being introduced the external (magnetic) field
as a second dynamical variable besides the temperature. The improvements over
the conventional “one-dimensional” simulated tempering schemes was shown,
such as better samplindghieiency and potential applicability to the first-order
phase transition which cannot be dealt with by one-dimensional ST.

In the present work, we further investigate the STM method, applying it to
the two-dimensional three-state Potts modé| PJ]. We see the scheme working
in this complicated system. We also look into crossover behaviors according to
lattice sizel as well asT andh.

This chapter is organized as follows. In chapter 4.2 we review the STM
method and give the details of our simulations. In chapter 4.3 we present the
results. After checking the two-dimensional random walks, we compare ST and
STM, and calculate various thermal quantities at many sets of parameter values.
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4.2 Model and methods

4.2.1 Model

We study the two-dimensional three-state standard Potts model in external field
with energy:

H=E-hM, (4.1)
E=-) 6o, (4.2)
a0
N
M =" boo (4.3)
i=1

whereN = L? denotes total number of spingjs Kronecker delta functionr; a
spin at thath site, anch the external field. The spim; takes on one of the three
values 0, 1, or 2. The sum in E@L.P) goes over all the nearest-neighbor pairs,
with the spinsr; arranged on the sites of squareg L lattice with periodic bound-
ary conditions. Data were obtained by means of STM for lattice sizes ranging
from 2x 2 to 160x 160 and additionally with conventional canonical simulations
on 320x 320 and 64& 640 lattices. Note that because of correspondence between
three-dimensional three-state Potts model and QCD theory, there are a number of
studies in three-state Potts model, especially in three-dimen&ariad, 23, 24).

We recall that the three-state (standard) Potts model is equivalent to the three-
state planer Potts @; model:

H=E-hM, (4.4)
E= —% > cost, (4.5)
[(3);
2 N
M = 3 Z cosb; , (4.6)
i=1

Whereeij = 9j — 6, andg; = 2éTO'i.
As one can see from Eq&L{Q) and .3 [or Egs. @.4) and E.6)], spin direc-
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tion O is favored by the positive external fielld £ 0). Accordingly, the negative
external field i < 0) disfavors spin direction 0. Thus, the system in presence of
the negative external field is expected to behave as two-dimensional Ising model.
In the limit h —» —o0, the three-state Potts model is equivalent to the Ising model
at the zero external field, because the unfavored states disappear from the partition
function. Figuréd. Tillustrates the schematic picture of this relation.

azlh‘ c=1
— >
L o=0 =0
a=2l$ o=2
h>0 h=0 h<0

Figure 4.1:Schematic description of behavior of spins according to the external
field. (a) spin O is favored with > 0, i.e., spin 1 and spin 2 are disfavored. (b) all
the three states are equivalentfor 0. (c) spin 0 is disfavored with < 0.

4.2.2 Simulation methods

In this section we briefly review the STM methd|/18]. While the conventional

ST methodl§, 7] considers the temperature to be an additional dynamical variable
besides spin degrees of freedom, the STM method employs the external field as
a second additional dynamical variable besides temperatdrd §]. This algo-

rithm is thus based on the multi-dimensional extension of generalized-ensemble
algorithms|L4, (15 [16]. In other words, we consider

e—(E—hM)/T+a(T,h) (47)

as a joint probability forX, T, h) (€ X®{T1, To, ..., Tng ) ®{hy, hy, .. Oy, }), where
a(T, h), x, andX are a parameter, the (microscopic) state, and the sampling space.
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A suitable candidate faa(T;, h;) may be found by looking into the probability
of occupying each set of parameter values. It is given by

Nt Nn E(x)-h M(x)
ZZ fdx5ik spe T
k=1 =1
P(Ti.h) = ——« (4.8)
_era(Tk hr)
55 fanemis
k=1 =1
e f(Tih)+aTih)
= (4.9)
Z Z e—f(Tk,h|)+a(Tkshl)
k=1 I=1
o @ fTih)+almih) (4.10)
where
e_f(Ti,hj):fdxe—(E—thwTi_ (4.11)

Thus, the dimensionless free enerfyf;, h;) is a proper selection fa(T;, h;) in

order to generate a uniform distribution of the number of samples according to
andh. These free energy values can be estimated by a number of methods. For ex-
ample, one can obtain such values from preliminary simulations and reweighting
techniques.

Any thermal averag(aA)Ti,hj atgivenT; (€ {Ty, To, ..., Tn. ) andhj (€ {hy, hy, ... by, })
can be obtained by the conditional expectatiofr, , = <A|Ti, hj>3T' Namely,
we have

NT. h
1

<A>Ti,hj = m Z A-kri,hj > (4.12)
BN k=1

b

whereNr, ,, is the total number of samples &tandh;, andAl}i,hj represents the
k-th sample af; andh,;.

The temperatur@d or external fieldh can be updated similarly to spin;,
because they are considered as dynamical variables. The Metropolis criterion for
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updatingT andh is given by

wW(T;,h; = Ty, hy) = min(l, %) (4.13)
is 1]
= min(l ex (— (i - 1) E+ (h—’ - m) M + a(Ti, hy.) — a(T; h-)))
B P T T T T R L))
(4.14)

Once an initial state is prepared, the STM simulations can be performed by
repeating the following two steps. 1. We perform a conventional canonical sim-
ulation at fixedT; andh; for certain MC sweeps. 2. We update the temperature
andor external field by Eql4.14) with a(T, h) = f(T, h).

In our implementation, after a fixed number of MC sweeps, either h was
updated (the choice betwedhandh was made at random) by Ed@.L4 to a
neighboring value (the choice between two possible neighbors was also made at
random). Here, one MC sweep consists.of L single spin updates. The number
of MC sweeps performed between parameter updates is here referred to as the
parameter-updating period.

We remark that, as spins can be updated by a number of algorithms, other
schemes of updating the parameters can be empl@&d There also exists a
temperature updating scheme for ST by Langevin algori@h [

Tabled. Isummarizes the conditions of the present STM simulations. Accord-
ing to the previous studied§,27,128], we update the parameters frequently. That
is, we employed very small parameter-updating periods.

We have also performed conventional simulations. T@bElists their de-
tails. The temperature was chosen by the extrapolation. We estimated the proper
temperature by fitting the STM results TG, — Te o« L™, where T is the
temperatures at which the observables take their maxima. The Greelyldder
notes the correlation length critical exponent. We fit to the Potts caseq/6)
and to the Ising case & 1) the data without the external field and the data in the
external field, respectively.
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As for spin-updates, we employed the single spin update algorithm; we up-
dated spins one by one with the heatbath algorithm. As for quasi-random-number
generator, we used the Mersenne Twisg].[

4.2.3 Free energy calculations

The simulated tempering parameters, or free energies, in Egs.and @.1])

can be simply obtained by the reweighting techniques applied to the results of
preliminary simulation runs3g, [16, (15, [14]. We used two reweighting methods

for this free energy calculation. One method is the multiple-histogram reweighting
method, or Weighted Histogram Analysis Method (WHAX|[32] and the other

is Multistate Bennett Acceptance Ratio estimator (MBABJ][ which is based

on WHAM.

The equations of WHAM algorithm applied to the system is as follows. For
details, the reader is referred to Ref82[[15]. The density of states (DOS)
n(E, M) and free energy valuelT;, h;) can be obtained from

D (E, M)
n(E, M) = o , (4.15)
D" Nry exp(f(Ti, hy) = (E - hjM)/Ty)
Ti.hj
f(Ti.hj) = =In " n(E, M) exp(-(E - hjM)/T), (4.16)
E.M

wherenr, x, (E, M) is the histogram oE and M at T; and h;, and Ny, is the

total number of samples obtained&tandh;. By solving these two equations
self-consistently by iterations, we can obtaiic, M) and f(T;, h;). The obtained

n(E, M) allows one to calculate any thermal average at arbitrary temperature and
external field values. Note thd{(T;, h;) is determined up to a constant, which
sets the zero point of free energy. AccordingiyE, M) is determined up to a
normalization constant.

The MBAR is based on the following equations. Namely, by combing Egs.

80



(419 and @.19), the free energy can be written as

N
(mhy) = -in ) SPCE =M . @417)

N, €Xp(f (T, ) — (En — i My)/Ty)

whereN, Ny, En, andM, is the total number of data, the number of samples as-
sociated withTl, andh,, energy of than-th measurement, and magnetization of the
n-th measurement, respectively. This equation should be solved self-consistently
for f(T;, h;). Note that, as in WHAM{ (T, h;) is determined up to a constant.

We repeat the preliminary STM simulations and free energy calculations until
we finally obtain skiciently accurate free energy values which let the system
perform a random walk in the temperature and external field space during the
STM simulation. We then perform final production runs.

Note that these two reweighting methods enable us to obtain not only dimen-
sionless free energy values but also physical values at any temperature and at any
external field. Such averages are given by

N
(A= ) WhaAXs) (4.18)
n=1
— 1 exp(_(En - th)/T)
TS : (4.19)
D0 Nrun exp(f (T, ) = (En = hiMy) /T
k=1 1=1
N (En— hM,)/T
€ =) v expe( J/T) (4.20)
n=1

N, €xp(f (T, hy) — (En — M)/ Ty)

For details, the reader is referred to Re83, [34].

We also used two other methods of free energy calculations. One is given
as follows. By substituting(T, h) in Eq. @.10 by the estimates for free energy

81



f(T, h), we obtain
P(T, h) oc g T+, (4.21)
We can write
£(T,h) = f(T,h) - In P(T, h) + const (4.22)

Here,P(T, h) can be obtained as a histogram at each set of parameter values in a
preliminary STM simulation. Thus, this equation enables one to refine the free en-
ergy much more easily than the reweighting methods, because the method does not
require any iterations. This method does not work well, however, vi#&n h;)

is too small (orf(T;, h;) is too far away from true values) to obtain samples at
(Ti, hj), while the reweighting techniques still work.

The other method for the free energy calculations is a Wang-Landau-method-
like scheme, where we subtract a fixed constant from the free energy value being
sampled during preliminary simulations. To stand on the safe side, we did not use
such data for reweighting techniques which, strictly speaking, requires equilib-
rium data as inputs. Note that this method also work with inaccurate free energy
values. Thus, this method also works even when the free energy estimates are far
away from stficiently accurate values.

In the present work, we first used the reweighting methods and Wang-Landau-
like scheme to obtain rough estimates of the free energy for the entire parameter
space. We then used the combination of the reweighting methods ard.E3). (
for further refinements of the free energy.

4.3 Results and discussion

We first examine whether the STM simulations were carried out properly or not.
Figuredd.2and4.3 show the time series of the temperature and the external field,
respectively, fol. = 80. In both plots we see block structures reflecting the first-
order phase transition linelat= 0 in the Potts model (see Fi§.3 and the second-
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order phase transition at théective Ising transition temperatufg(h) ~ 1.1346
for negative external field (see Fi.2). Within these blocks, the temperature and
external field realize random walks. The temperature and external field indeed

realized random walks.

2
1.5
|_
1 |
0.5
0

Figure 4.2: History of temperaturd, for the linear lattice sizé& = 80.

15 F
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Figure 4.3: History of external fieldh, for the linear lattice sizé = 80..
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Figured4.4 andi4.5 show energy and magnetization per spin, respectively, as
functions of MC sweeps. They also perform random walks. Note that there exist
expected correlations between the temperature and energy (s€é.Baysd4.4)
and between the external field and magnetization (see&@and4.5). The same
behavior was observed in simulation with other lattice sizes (data not shown).

Figurel4.8 shows the history of dlierently defined magnetization, which is
given by

L2
L2 3
Z 5j,0'i] — E} X E (423)

Hereafter, we also use the following definition:

M = <{ max
max j=0,1,2

I\/lmax
L2

. (4.24)

In order to compare the results with ordinary ST simulations, we also per-
formed an ST simulation with = 40. The ST simulation was performed at the
conditions similar to those of STM; namely, the same total number of MC sweeps,
same temperature distribution, and so on, except that weg s€0.

With the data obtained, we performed the WHAM calculations to obtain the
density of states (DOS). As shown in Fy4, the area sampled by STM is larger
than that by ST. Thus, the STM method enables us to perform reweighting tech-
niques in wider range.

We further closely looked into thef@lerence in the sampled areas between two
methods. Figurd.8illustrates how the sampled areaffeli. The red regions were
sampled by the STM method exclusively, the green regions by both methods, the
blue region by the ST method only, and white regions by neither of them. Thus,
at first sight, it seems that there are some areas in which the STM method is not
good, and that the ST method is somehow more powerful than STM.

Figureld.9zooms in on a region where blue is dominant (mainly sampled by
ST). There are many pigments (in red and green) which both methods sampled
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Figure 4.4: History of energy per spirk/L?, for the linear lattice siz& = 80.
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Figure 4.5: History of the magnetization per spi/L?, for the linear lattice size
L = 80.
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Figure 4.6: The history ofMmax/L? (= m), for the linear lattice sizé = 80.
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Figure 4.7: Calculated DOS obtained by WHAM with (a) ST and (b) ST data,
for the linear lattice sizé = 80.
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-2 -18 -16 -14 1.2 -1 0.8
E/L2

Figure 4.8: The diference in sampled points between ST and STM. The red area,
green, blue, and white regions correspond to the area sampled by only STM, only
by both of them, only by ST, and by neither of them, respectiviely 40).
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and which even only STM sampled. This shows that because the ST method has
more samples at a smaller number of sets of parameter values, the part sampled is
narrow but denser. However, the representative parts should be sampled properly
by STM as well, although the sample density decreases.

0.8 0.39
0.7
06 0.38
N, 05
= 04
0.3 0.37
0.2
0.1 - - 0.36
-1.55 -1.5 -1.45
(a) E/L2 (b)

Figure 4.9: The zoom of Figuré&.8 with increasingly higher resolution. The
difference in sampled points between ST and STM. The red area, green, blue, and
white regions correspond to the area sampled by only STM, only by both of them,
only by ST, and by neither of them, respectively.

To make it sure that the STM method also samples the relevant area enough,
we then performed reweighting techniques aldng 0 with data obtained by
ST and STM. Figrured.10 andi4.11 show the specific heat capaciB/L? and
susceptibilityy/L? as a function ofl along withh = 0, respectively. The red line
and the green line correspond to the data obtained by STM and by ST, respectively.
The error bars were obtained by the jackknife meth@f] [B6, [37]. We see no
pronounced dierences between the two methods. Thus, we confirm that both
methods let one sample the representative parts dlcagd and that the STM
method enables one to obtain DOS at wider areas.

Because the STM method enables us to obtain the DOS in a wide range of
sampling space, we can calculate the two-dimensional map of any thermal phys-
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Figure 4.10: The heat capacit€/L? as a function ofT, for L = 40. The inset
shows the peak region withfterent abscissa and ordinate.
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Figure 4.11: The susceptibilityy/L? as a function ofT for L = 40. The inset
shows the peak region withftierent abscissa and ordinate.
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ical quantity. Figuré.12 shows the specific heat capacity and susceptibility per
spin as a function of andh whenL = 80. This implies that the phase transition
temperature converges into the Ising case, as the external field increases. Related
theoretical work is found in, e.g., Rel3§].

1 pemrerr———g 10 1 ey 250
05 [ f s 05 [ 8 200
0 F 5 & s oF 150
- £ ] - ]
-05 F 1+ 4 -05 F -4+ 100
A F 1 2 1 F 1 50
15 been ' 0 15 ' ' 0
08 12 16 08 12 16
(a) T (b) T

Figure 4.12: The map ofC/L? andy/L? as a function off andh, for the linear
lattice sizeL = 80. The black vertical line i = 1.1346, which is the critical
temperature of Ising model.

Figureld.13shows the specific heat as functions of temperature for some val-
ues ofh andL. With positive external field, the phase transition disappears. How-
ever, because of finite-siz&ects, the abnormality, as measured by the diverging
behavior, persists to some extent. With the smaller external field, the divergence
behavior remains for largdr. Vice versa, with larget, the more easily it can
be shown that the diverging behavior disappears. This can be seen as a crossover
betweerL andh.

Figureld.14 shows the dimensionless free energy per spin as a function of
temperature and external field, which was obtained by applying MBAR to the
results of the production runs. Note that the partifiledential of this free energy

by h gives%. The shape ab = 0 suggests a jump d¥l below T, indicating
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Figure 4.13: The specific heaf/L? as a function off (a)h = 0.0, (b)h = 0.005,
(c)h =0.01 (d)h = 0.02. Red, green, blue, magenta, and cyan lines stands for
L = 5,10, 20,40, and 80, respectively.

existence of the first-order phase transitions.

We study the crossover behavior of the phase transitions. We calculated the
magnetization by MBAR around the critical point.

According to the crossover scaling formalisBe], if t1¥°h is small enough,
then the magnetization obeys~ t¥/°, and ifh~¥% is small enough (i.et¥°h
is large enough), then it obeys ~ h'/14, wheret = I=L. Figured.15a) shows
that if the finite-size fiects are negligibleL€’°t > 0.1) andt > (h/6)%* (i.e.,
t~1%%h is small), then the critical behavior is ~ t¥/°. Figureld.IT5b) shows that
if finite-size dfects are negligibleLf®*°h > 0.1) and @'¥° < h (i.e.,t™¥®his
large), then the critical behavior lm ~ h'/*4, Thus, Figl4.I5clearly shows that

the line f = 6t149) gives the slope of the boundary of the two scaling regimes.

We investigate the crossover behavior between the two models. With the neg-

ative external field, the model is expected to behave like the Ising model. Thus, as

. . din{m?
L increases the maximum values®® d'g;”“), n§ﬁ ). d":j;”

, and 24 change
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Figure 4.14: The free energy per spifyL? and its contour curves as a function

of T andh, for the linear lattice sizé = 80.
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Figure 4.15: Difference between magnetization and its expected scaling behavior
around the Potts critical point, for the linear lattice size= 80. (a)|mL?*® —
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and U,1 % are the Binder cumu

lants B0]. Figured4.16-4.20show them. Note thaq@hax, d'”<m>|max, d'”<m2>|max,
d'”<U2>|max, and dIn<U4>|max are expected to behave asymptoucaIIyLéisﬁ)/v L1,

Ll/V, L, andLl/V, respectively, as the lattice sizencreases37]. Those critical
exponents in the two-dimensional Ising model and in the Potts model are given
by v = 1 andp = g andv = 2 andpB = ¢, respectively. We can observe that
all quantities alondn = O (red line with filled squares) follow the Potts case, and
those with the external field at lardge(green line with filled circles and blue line
with filled triangles) follow the Ising case. Note that the two linek at—0.5 and

h = —1.0 converge into almost the same linelagicreases. On the other hand,
the line ath = —0.5 (green line) is more deviated from the scaling behavior. This
can be also understood as the crossover betwesrdh.

their behaviors. HerelJ, = 1 -
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Figure 4.16: %lmax as function ofL.
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Chapter 5
Conclusions

In this thesis we explored the generalized-ensemble algorithms. We first carried
out the REMD simulations and studied biological lipid bilayer systems, and we
introduced a new ST method. We applied the method to Potts model as well as
Ising model.

In Chapter 2 we performed a REMD simulation of a DPPC bilayer system in
order to study the phase transitions. The bilayer underwent many phase transitions
between gel and sol phases during the simulation. We believe that this is crucial
to sample gel phases correctly. The reason is that, in the annealing simulations,
systems can easily get trapped in local-minimum-energy states and cannot escape
from the states because temperatures decrease only. On the other hand, REMD
lets the system make a random walk in the temperature space so that the system
can explore the conformational space more widely. It is worth noting that we
could discuss well-equilibrated states in a wide range of temperature because the
REMD method gives correct distributions at any temperature. This is not so easy
by conventional methods.

We examined the temperature dependences of the enthalpy, heat capacity,
thickness of bilayer, and area of bilayer. The phase-transition temperature itself
was in agreement with the previous woflf py Marrink et al.

We also examined the temperature dependence of many component energy
terms. We found the average bond-length energy and the average LJ potential
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energy between water molecules and DPPC hatfierdint behaviors from the
other energy terms. These two terms favor the sol phase, as the system is cooled.
On the other hand, the other terms favor the gel phase.

To investigate the conformational property, we examined the PMF maps and
tilt angle distributions at four dierent temperatures. Conformations were clas-
sified into three states, namely, sol, untilted gel, and tilted gel states. The tilted
gel state was observed for the first time with MARTINI2.0, while a previous work
with MARTINI did not find this statell] Experiments support the existence of
the tilted-gel state. This implies the importance of employing powerful confor-
mational sampling techniques such as generalized-ensemble algorithms in simu-
lations of bilayer systems.

It was experimentally found that some hybrid liposomes composed of 90 mol
% phospholipids and 10 mol % polyoxyethylene dodecyl ether with no antitumor
drugs can kill only cancer cells withouffacting normal cellsZ, [3]. In particular,
three hybrid liposomes composed of phospholipids having the same hydrophilic
head group but dierent hydrophobic alkyl chains were studied. It was found that
the hybrid liposomes composed of phospholipids dilauroylphosphatidylcholine
(DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidyl-
choine (DPPC) cause necrosis, apoptosis, and no changes, respedlivéli [
though both necrosis and apoptosis result in deaths of cells, necrosis is toxic and
only apoptosis is a desired phenomenon for the organisms. Hegedices in
these three phospholipids are just the lengths of the hydrophobic alkyl chains;
DLPC, DMPC, and DPPC have 12, 14, and 16 carbon atoms after glycerol. The
sol-gel phase transition temperaturesof the regular liposomes composed of
DLPC, DMPC, and DPPC are 273 K, 296 K, and 313 K, respectively (those of
hybrid liposomes are slightly lower than these pure liposome valGgsiHence,
at the body temperature of 310 K, they are in sol phase much ahgva sol
phase neaf., and in gel phase, respectively. We simply conjecture that the dif-
ferences of theféects of the hybrid liposomes above on the tumor cells are just
the reflections of these phasedfdrences. If this is true, we should observe, for
instance, apoptosis, néfects, and noféects with hybrid liposomes composed of
DLPC, DMPC, and DPPC, respectively, at the temperature of experiments around
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290 K. Likewise, we expect that necrosis, necrosis, and aptopsis with hybrid lipo-
somes composed of DLPC, DMPC, and DPPC, respectively, at the temperature of
experiments around 330 K. These investigations with experiments and simulations
at different temperatures are our future works.

In Chapter 3, we have introduced a two-dimensional simulated tempering in
temperature and external field, which we refer to as Simulated Tempering and
Magnetizing (STM). We applied it to the two-dimensional Ising model. During
the simulations, two-dimensional random walks in temperature and external field
were realized. The random walk covered a wide area of temperature and external
field so that the STM simulations enabled us to study a wide area of phase diagram
from a single simulation run.

Even though the first-order phase transitions along the external field change
did not directly occur, the transitions happened through high temperature regions,
or “super critical water regions.” The dimensional extension allowed us to over-
come the dficultly of the first-order phase transitions. Thus, this result suggests
that the dimensional extension allows us to overcome tfiedity of crossing the
first-order phase transition points with the ST method. The similarity between ST
and REM implies that the dimensional extension of REM will also give this prop-
erty (An example is shown for the case of a two-dimensional REM simulation in
temperature and pressure in R&])[ In this way we see that the method is more
conveniently expanded.

We also performed STM simulations with severdlelient parameter-updating
frequencies. According to the convergence and sizes of error bars, the more fre-
guent attempts should be the better choice. The calculated auto-correlation time
also suggested that the frequent attempt is favorable.

We investigated the crossover behavior of phase transitions by calculating the
magnetization per spim around the critical point by the reweighting techniques.
The results showed agreement with the previous theoretical studies. Thus, this
supports the validity of the two-dimensional ST method, or STM.

With the data of the present work, we can calculate the two-dimensional den-
sity of statesn(E, M), so that we can determine the weight factor for the two-
dimensional multicanonical simulations. Therefore, we can also perform the two-
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dimensional multicanonical simulations. The STM method will be very useful for
simulating spin-glass systems.

In Chapter 4, we further applied Simulated Tempering and Magnetizing (STM)
[8,[7] to the two-dimensional three-state Potts model. During the simulations, two-
dimensional random walks in temperature and external field were realized. In this
way, the random walk covered a wide area of temperature and external field so
that the STM simulations enabled us to study a wide area of phase diagram from
production runs.

Because of the method’s capability of dealing with a wider area of the sam-
pling space (as seen in DOS), we can calculate thermal quantities at an enlarged
range of the parameter space. We have succeeded in producing many typical fea-
tures of the systems in presence of the external field.

We investigated the crossover behaviors of phase transitions by calculating the
magnetization per spin around the critical point by the reweighting techniques.
The results showed agreement with the previous theoretical studies. Thus, this
supports the validity of the STM method.

With the data of the present work, we can calculate the two-dimensional den-
sity of stateqn(E, M), so that we can determine the two-dimensional multicanon-
ical weight factor. Therefore, we can also perform the two-dimensional multi-
canonical simulations. This is also our future work. We remark that the present
methods are useful not only for spin systems but also for other complex systems
with many degrees of freedom. Note that because this method does not require
one to change the energy calculation, the method should be highly compatible
with existing package programs.
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Appendix A

Errors of Correlated Data

In this Appendix, we look into the method of evaluation of err@isd]. Our
particular aim here is the analysis of autocorrelated data.
Without correlation, the errar is evaluated by the common formula:

o2 = NN 1)2’* A (A1)

whereN, A;, andA are the total number of samples, théh sample, and the
average of samples, respectively. However, this does not work well when there are
correlations between samples. We particularly explore how to modifyl/Z&d) (

in order to cope with autocorrelations.

A.1 Introduction

We assume that random variabkesnd B have the (finite) expected valug®\§
and(B), respectively) and (finite) variancess ando3, respectively). These are
not usually known and to be estimated. Given the probability densigy; ¢{A),

the expected value is given ) = fAf(A) dA. Note that, in this section, brack-
ets() indicate the “theoretical” averages, which are determined independently of
samples. As you should know, we can dekier B) = (A)+(B) and(aA) = a(A)

with constant.
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When there are no correlations betwé&eandB, we have well-known formu-
lae:

2 2, 2
Opg=O0aT 0B (A.2)

O-SA = azo-i’ (A3)

whereo3, ; ando?, are the variance oA + B andaA, respectively. On the other
hand, with correlation, the variance #f+ B is given byo3,; = o4 + 03 +
2cov(A, B), where covA, B) = ((A - (A)) (B — (B))).

Equation [A.1)) is actually based on EqdA2) and [A.3), and therefore the
independence between samples is assumed. This is why Eql@&fidrdées not
work with correlated data and we need a more careful treatment.

A.2 Errors of non-correlated samples

A.2.1 Basics

Let us first look into the analysis of non-correlated data. We suppose that we
haveN independent sampled\{, A, ..., Ay) from an identical distribution. The
expected value and variance are given by

(A = f AF(A) dA (A.4)
= [ @2 i@da (A5)

respectively. What we want to do is to estimé#¢ and its error.
The expected valugd) can be estimated by the averalge

I
A:NZA. (A.6)

i=1

Note that we distinguish the estimates from the true values by denoting the esti-
mates and the true values Asnd(A), respectively.

110



The average& is a “good” estimator fofA), because we ha\<e,&> =(A). The
average of estimates goes to the true value. Thus, this is an unbiased estimate.

The error of the average is given by the standard deviation of the average. The

variance of the averagf/%\ is given by

2
2 Oa
ok =24 (A.7)

because we have, denotiki§e) = o2 for the aid of eye,

0% =V(A) = V((Ar+ Ax + -+ AY/N) (A.8)
= 1/NV(AL+ Ap + -+ AY) (A.9)
1 o2
= ZV(A) = A, A.l
GEE (A.10)
Recall thatA;, A, ..., andAy follows an independent identical distribution of

which variance i8/(A) = o=. It should be worth to note that the averafje=
(AL + A +--- + Ay)/N is considered as a new random variable.

Thus, if one knows the variane€, one can obtain the variance of average
However, this is generally not knovanpriori. Therefore, the question is hawf,
can be estimated. The estimatorodf, 63 is given not byo = & TN (A — A)?
but by

N
F= o DA - AR (A.11)

though there existing only a slightfteérence with largé.

Thus, the estimator for errer;’is given via the estimator for the variance of
averageriz

) 1 < <
52 = NN=T ;(A - A2 (A.12)

Especially, ifN is large enough to use the central limit theorem, then we can

111



use the nature of the Gauss distribution. (For examfdl®60 gives the 95 %
confidence interval.

TablelA.1] gives the summary of these quantities for the better availability of

reference.

Table A.1:Summary for the quantities. Theh sample is denoted b.

Notation Definition Description
(A [Af(A)dA Expected value of
oz [ (A= (N)? F(A) dA Variance ofA
A 1 ‘ Average of samples
NZA (Estimator for expected value)
2 . .

&2 2 (A -A) Estimator for variance (of)

2 1 2 Variance of average
[0 IN(%

A N™ A (the second power of error)
A 1.2 1 A2 Estimator for variance of average
YA NOA = NN-T) & (A -A) (Estimator for the second power of error)

A.2.2 Blocking/binning method in the case without correlations

We explore a blocking (or binning) method with samples without correlations.
We introduce a new random variablg(f% = (A1 + A)/2, where (= 2,4,6...).
Therefore, there arbl/2 new blocks or bins. Because there are no correlations
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between samples, the variance®? is given byai(z) = 04/2. Note that

V(A®) =V (% (A + Az)) (A.13)
- %v (A1 + A) (A.14)
= %v (A (A.15)

As you see easily, the expected value is the sgA@) = (A).

We shall look into the estimates for average and its error of this new variable.
The estimate o(A(2)>, A® is given by the average:

A (A.16)

N
Z A. (A.17)

Becausé;'— bins exist, the variance of average of the new variab}g), is given
by

2

NG
04 = NL/Z (A.18)

The estimate of the variance of the new variables after one blocking transfor-
mation is given by

N/2

1 D (AP - ARy, (A.19)
i=1

~2
TAD T Nj2-1

Note that the sum is divided byN(2 — 1) notN/2. Hence, we arrive at
N/2

2 1 @ _ A@)2
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We further look into the relation betweerf ando?,. Usingo?,, = 0a/2,
we have

i = NI (A.21)
2
3 oa/2
= N/2 (A.22)
2
Oa
= ZA A.2
N (A.23)
= o2, (A.24)

Thus, the error of average b2 samples (bins) oA? is the same as the error
of average oN samples ofA. The blocking process does not change the average
and its error of uncorrelated data. Note that we later discuss the repetition of this
procedure.

A.2.3 Repeating of blocking

By repeating this procedure, we obtain a set of sampfed). One of the sample

A"V s the average ofZsamples of\. The number of sample&™? is N/2". Let

us remember that one blocking process does not change the average and its error

(or the variance of average), as discussed in the preceding section. Therefore, the

average and its error of such new samples obtained by repetition of blocking data

are the same as those of the original samples in the non-correlated data analysis.
If nis large enoughA™?Y is expected to follow a Gaussian distribution be-

cause of the central limit theorem. Thus, the averagA®f), A™D follows t-

distribution withN/2"-1 degree of freedomt-@istribution is a distribution of av-

erage of any number of samples from a Gaussian distribution.}-@Irstribution

can be regarded as a Gaussian distribution, when there are more tHaio B8

F2 sample§?

"1Berg’s book

Zhttpy/www.aandt.co.jipn/qgbasigtbunpu.htm [in Japanese; accessed on 03.July 2012]

“For instance the 95% CI afdistribution with degree of freedom 20 is given b, while
that of a Gaussian distribution is96o-.
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A.3 Errors of correlated data

We shall discuss the error of correlated data. We can eliminate the correlation
between data of MC or MD simulations by blocking method introduced above.

We first show that the errors grow by blocking procedures when there is a pos-
itive correlation. The variance of average of new variable is given by the blocking
procedure in the following manner:

720 = VI(X + %42)/2] = 1/AV(X + %42), (A.25)
V(X + %i11) = 2V(X) + 2C0V(, %+1), (A.26)

where covk;, Xi+1) = {(X — (X))(Xi+1 — {X))). We then obtain

oz 1
ai@) = 7’\ + écov(xi, Xit1)- (A.27)
Thus, the samples after a blocking transformation has an extra term, which is
half of the autocorrelation. Supposing the extremely strong correlation, we have
cov(x, Xi.1)  V(X). Thus, the variance o&?), o4, is given byo2, = 4. The
variance of average is given by the variance of new samples dividéyl 2y

2 The
O'A(z) = N_/2 (A28)

2 2
_ % _ %
= N/2_2N (A.29)
= 20%. (A.30)
The variance oA®, o2 , is twice as the variance &, o Thus, its standard
deviation (error) becomes?2 times larger.

Obviously, as the correlation between samples decreases by repeating the
blocking procedures, the change of error by one blocking procedure becomes
smaller. It is supposed to stop finally (when &, A”) = 0). Thus, block-
ing n-times and observing the stop of change, we can obtain uncorrelated data.

Therefore, we obtain the errors taking account of correlations. In this way, we can
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estimate errors by performing affgient numben times transformations:

1 N/2" ~
~2 (n+1) 1
% = WD 2 A A, (A3D)
i=1

A.4 Comment about interpretation of error bar

To interpret the error bars as a standard deviation of Gaussian distribution, we need
the “suficiently large number” of samples. It is because of the central limit theo-
rem. The question is how many samples (bins) are enough to take this approxima-
tion. It can be answered by observitidistributions, which give the distribution

of the average of independedtsamples from an identical Gaussian distribution.
We can regard-distribution as Gaussian distribution if we have more than 16 to
30 samples. Thus, if we have more than 16 Mileeks, which has no correlations

by applyingn blocking, then the obtained error bar is considered as standard devi-
ation of a Gaussian distribution. In other words, we want the deviation to converge
before the bin number becomes less than 16. If the deviation converge later than
this, the error bar should be treated as the deviatidrdedtribution. If it does not
converge, what we have is only the minimum level of error.
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Appendix B

Jackknife Method

B.1 Introduction

Suppose that we hawé samples:A;, A, ..., Ay. The averaged (:% >A)isa

good estimate of expectation 8fbecause we hav(e&) = (A). In other words,

the expected value of the estimate is given by the theoretical expectation. How-
ever, one has to pay attention when one estimates something given by non-linear
function f of (A) [1,12, [3]. A typical example i E)?, which makes up the heat
capacity. The bad way i = %Z fi, wheref; = f(A). This is a bad estimator
and f does not converge intdf ). Precisely, we have to use

f = f(A). (B.1)

One typical example is to calculate a specific heca(IE) — (E)?), with samples
of energyE,, E,, ..., En. To obtain latter term, we have to use

(E)? = (% D Ei)z, (B.2)

not(EA>2 = % >, E2. (If you do it wrong, the specific heat is estimated to be always
zero; thus the bad estimator has typically a bias of ord€¥(@j.)

In this case the error of can not be obtained, because we do not haaay
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longer. Supposing error and non-linearityfofre small, you can use propagation
formula: 6f = j—/‘; la-a 0A. However, this is not always robust and recommend-
able.

B.2 Jackknife method

A robust method of estimating errors is the jackknife methy@][3]. The error
by the jackknife method wittN samples is given by

N
@)=Y (1 ) 8.3)

i=1

where
= f(A), (B.4)
J 1 N
N =5 >A, (B.5)
j=1,j#i

fI = %Z 2. (B.6)

In other words A is an average of samples except thh sample. Iff(X) = x,
this form leads to the ordinary form, which gives the error of the average.

B.2.1 Dealing with correlation with jackknife method

In the jackknife method with blocking or binning, we first sepafdtsamples into
K bins containingh samples for each (Note thEt= N/n). Thek-th bin contains
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the samples fork(— 1)n < i < kn. We then have the following forms:

K-1g -
(@9 = == > (R = )%, (B.7)
k=1
fe = F(A), (B.8)
~ 1
J_ * J
1 N
J _ .
A=y Z A. (B.10)
j=1,j¢bin(k)

Here,A) is the average excluding the samples inkth bin.

If we observe the convergence of{(?, as increasing the number of samples
in each bin (accordingly decreasing the number of bins), we then obtain the errors

taking account of autocorrelations.

AsisinA3, 57 becomesV?2 times if there is strong correlations. By repeating

binning, we can obtain the errors without correlations.
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Appendix C

Relation Between Ordinary
Blocking and Blocking with
Jackknife Method

Here, we look into the relation between the ordinary blockitigaind blocking
with jackknife method[2]. If f is linear in jackknife methodf( is unbiased),
then the blocking form of jackknife method leads to the form of ordinary block-
ing. Supposing (X) = x for simplicity, we shall start with the form of jackknife
method. We first have

e K-1 N J A2
(G = == D (A - A% (C.1)
k=1
PO 1 1
A:AJ:RZA“J:NZA" (C.2)
1 N
A= —— A, (C.3)
N_”j:wzt;in(@ |
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We then calculate:

A-A= > A——ZA (C.4)
jebin(k)
:N];nZAj_N]—-n Z Aj_%ZAj (C5)
] ]

jebin(k)

1 1 1
:(N—n_N)ZAj_m 2N 9

jebin(k)

n 1 1
jebin(k)
T nK - n[ ZA n Z j (C.8)
jebln(k)
ﬁ(NZAj—H > A (C.9)
i jebin(k)
Thus, we have
K-1g
~Jy2 _ N J _ A)2
(G =~ kZ:;(Ak ) (C.10)
K-1 1 V(1 1 ’
:TZ(K——l) (NZAJ-—H DA (C.11)
K j jebin(k)
2
1 ~ 1
=— A-— Aj] ) (C.12)
S )
By denotingK = N/2 andn = 2, we have
1 N/2
~AJN2 2 A\2

whereA® = 1(Ay_1+Aa). Thus, the formis proven to be equivalent to EZ520).
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Appendix D

Tips for Numerical Treatment for
Summing up Large Numbers

The reweighting techniques often require one to deal with potentially very large
numbers such as expfandn(E). Even though theoretically well-formulated,
such calculations can be numerically halted because of overflows. One may have
some trouble even with inputting them. We can usually avoid these numerical
difficulties by using following algorithms. The trick is using logarithm.

The first algorithm is based on the following equalit}.[Supposin¢A > B >
0 for simplicity, we have

log(A+ B) = logA + log [1 + 2] (D.1)
=logA+log[1+ exp(logB-logA)]. (D.2)

Thus, log(A + B) can be numerically obtained without risk of overflows. Because
A > B, exp(logB - logA) can only underflow. It happens only whén>> B.
In this case, we have Idd\ + B) ~ logA, so it is numerically safe. By recur-
sively using this algorithm, one can obtain I8g(+ A; + --- + A,) only with
log A1, l0gA,, . .., log As. In the actual implementation, Idgand logB should be
substituted by max(log, log B) and min(logA, log B).

Another algorithm is based on the following equali§].[ SupposingA; >
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A, > --- > A, > 0 for simplicity, we have

A A
log(AL+ Ap+ -+ A = log Ay + log |1+ =2 + = + An

A D.3
ACA T (B-3)

=log A,
+log[1+ exp(logA; — logAy) + - - - + exp(log A, — log Ay)] . (D.4)

In this way, we can again calculate 10& + A, + - - - + An) fromlogAq, log A, ..., 10g A,
with no overflows.
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Appendix E

Lattice Gas and Ising Model

The total energy of Ising modél on a square lattice can be converted into that of
lattice gas in the following mannet]f

H:—JZcricrj—hZO'i (E.1)

(.
=-3) (s -1)@s-1)-h) (25 - 1), (E.2)

.0

whereo; = +1 ands = 1,0. If o = 1, thens = 1 and vice versa. We then have

H=-43) ss+21) (s+s)+3> 1-h> (2s-1)  (E3)

(. @i.j) (.
:—4JZssj+8Jn+ 2JN - 2hn+ hN (E.4)
@.j)
= —4sts,- —(2h=83)n+ (h—2I)N, (E.5)
(.
wheren and N are the number of occupied sites and the total number of sites,
respectively. The first term corresponds to the attractive energy between particles
of lattice gas. The second term corresponds to the chemical potential of lattice gas.
The last term is a constant. Here, we defire (2h—8J) andEg = -4J 3 j, S S;.
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Thus, free energy per spihis given by

exp(BfN) > exp(-BH) (E.6)

(J'o:il,o']_:il,...,O'N =+1

= > exp[-B(Eq — un)] exp(-B(h - 2J)N)  (E.7)

$=1,0,5=1,0,...,sy=1,0
= @ exp(L(h— 2J)N) (E.8)
= expBpN) exp(-B(h - 2J)N), (E.9)

wherep is pressure. Instead &f, N appears. The Greek lettér stands for the

.....

last two equations were obtained with grand canonical ensembles. Therefore, we
obtain

-f=p-(h-2J), (E.10)
p=h-f-2J. (E.11)

Thus, we conclude that the canonical ensemble of Ising model is equivalent to
theu-T ensemble of lattice gas model with the following correspondence:

p=h-f-2J, (E.12)
= (2h—8J), (E.13)
Eg=-4) ss; (E.14)

8)
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