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Abstract

Participation in interpersonal competitions, such as fencing or Japanese martial arts, requires players to make instantaneous
decisions and execute appropriate motor behaviors in response to various situations. Such actions can be understood as
complex phenomena emerging from simple principles. We examined the intentional switching dynamics associated with
continuous movement during interpersonal competition in terms of their emergence from a simple syntax. Linear functions
on return maps identified two attractors as well as the transitions between them. The effects of skill differences were
evident in the second- and third-order state-transition diagrams for these two attractors. Our results suggest that abrupt
switching between attractors is related to the diverse continuous movements resulting from quick responses to sudden
changes in the environment. This abrupt-switching-quick-response behavior is characterized by a joint action syntax. The
resulting hybrid dynamical system is composed of a higher module with discrete dynamics and a lower module with
continuous dynamics. Our results suggest that intelligent human behavior and robust autonomy in real-life scenarios are
based on this hybrid dynamical system, which connects interpersonal coordination and competition.
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Introduction

Nonlinear dynamics has revealed that complex phenomena,

from chemical reactions to the neural networks in the brain,

emerge from simple principles. Examples of complexity theory

include self-organization in thermodynamics theory [1], the

slaving-principle in lasers [2], spatiotemporal chaos in fluid

dynamics [3], and the synchronization of nonlinear-coupled

oscillators [4–6]. Humans are considered to be complex systems

as well. In response to various situations, people make instanta-

neous decisions and execute appropriate motor behaviors. Typical

examples of this include the processes involved in interpersonal

competition, such as fencing or Japanese martial arts originating

from Samurai traditions.

The ability of humans to control complex cognitive processes,

which is essential for what we recognize as intelligent behavior

(e.g., decision making), depends on the prefrontal cortex (PFC) [7–

9]. All goal-directed behaviors are learned and thus depend on a

cognitive system that can grasp the rules of a game, the goals

available, and the means used to achieve these goals. To this end,

PFC activity exerts a top-down influence by providing excitation

signals to bias other brain systems towards task-relevant informa-

tion. This suggests that the PFC plays a role in the mapping of

sensory inputs and internal states, such as the mapping between

the current motivational state and memories or voluntary actions.

PFC mapping can be described by the Hidden Markov Model

(HMM), which holds that switches between states proceed

according to conditional probabilities [10]. The HMM has been

widely used to construct probabilistic language models in natural

language processing and computational linguistics [11]; this model

is regarded as an automation model in complex sciences. Human

intentional dynamics and decision making have been modeled by

neuropercolation based on the graph theory [12], which is a

generalization of cellular automata [13,14] (i.e., PFC activity is

considered to be a discrete dynamical system).

In contrast, complex human movements have been examined

using the continuous model of a dynamical system. The Haken-

Kelso-Bunz (HKB) model [15] was derived from the theory of

nonlinear oscillators and synergetics [2,16,17], which was based on

the observation of phase transitions for two-finger experiments

[18,19]. These experiments have shown the abrupt change from

one stable state to another for critical values as the movement

frequency gradually increases. In a discrete dynamical system, this

frequency would be a bifurcation parameter, and the phase

differences of movements would be regarded as collective

variables. The HKB model is based on the synchronization of

nonlinear-coupled oscillators. If the system consists of two coupled

oscillators, then the system has two stable states: in-phase

synchronization and anti-phase synchronization. Pitchfork bifur-

cation describes the change from these two stable states to one

stable state (i.e., from anti- and in-phase synchronization to in-

phase synchronization). This model is commonly applied to

interlimb coordination and/or perception-action coordination in

human movements [20]. Interpersonal coordination has also been

studied in terms of the coupling between two oscillators using
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visual information based on this model [21–23]. For example,

synchronization among six people during the swinging of rocking

chairs was examined using the Kuramoto order parameter

[24,25]. Synchronized patterns among three people who commu-

nicated via perceptual information during sports activities was also

confirmed based on the coupled-oscillators approach derived from

symmetric Hopf bifurcation group theory [26,27].

However, little is known about the dynamics underlying the

continuous abrupt switching behavior observed in martial arts in

which both quick decision making and execution are required. In

this study, to clarify the intentional switching dynamics during

interpersonal competition we observed a time series of the

interpersonal distances (IPDs) between two players based on their

moving trajectories during 24 matches of Japanese fencing or

kendo from the viewpoint of a hybrid dynamical system [28,29].

Analogous to words and sentences in language, numerous complex

behavioral patterns during interpersonal competition could be

organized by syntactical rules that can be considered ‘‘action

syntax’’ [30,31]. Grooming in rodents has been examined as

‘‘action syntax’’ and regarded as a Markov chain [32–34];

however, these stereotypical actions can be generated by a

relatively simple feed-forward excitatory mechanism that cannot

adapt to environmental changes, such as interpersonal competi-

tion. In response to various situations, very large numbers of

movements can be generated in large strongly recurrent connected

systems equipped with appropriate rules [31]. We first attempted

to extend stereotypical ‘‘action syntax’’ to adaptive ‘‘joint action

syntax’’ during complex interpersonal competition characterized

by quick decision making and rapidly executed actions.

Methods

Participants
Twelve male members of the University of Tsukuba kendo club

participated in the experiment. This club has won the kendo

championship in the annual team competition for all Japanese

universities three times since 2000. All participants were healthy.

Six regular players on the team had expert status; their average

age was 20.6760.75 years, and they had an average of

14.1761.77 years of kendo experience. Six substitute players held

intermediate status; their average age was 21.1761.57 years, and

they had an average of 13.8360.69 years of kendo experience. All

participants provided written informed consent prior to the

experiments. The participants in this study have given written

informed consent for their photographs to be published, as

outlined in the PLOS consent form. Procedures were approved by

the Internal Review Board at the Research Center of Health,

Fitness, and Sports at Nagoya University and conformed to the

principles expressed in the Declaration of Helsinki.

Task
Each of the six players at both skill levels were matched against

four different opponents of the same skill level. If one player had

been matched against five other players in a round-robin system, a

total of 15 matches would have been played. However, because no

player would compete against one particular player, a total of 12

matches were played at each level. Following official kendo rules,

each match lasted 5 min and was played on a square court with

11.00-m sides (Figure 1A–B, Figure S1A, and Video S1). Each

match was judged by three referees. We observed 37.4265.45

instances of striking and 2.3361.25 points per match for experts

and 37.42610.11 instances of striking and 2.1761.67 points per

match for intermediate players.

Experimental Devices
Players’ movement trajectories were recorded using an optical

motion capture system with eight different cameras (100 Hz,

OQUS300, Qualysis, Inc.) and a Movie camera positioned at

various locations near the court. Large reflective markers were

attached to the back of each player’s head, the back of his waist,

both ankles, the right knee, and the top of the shinai or fencing foil

to detect movement (Figure S1B, S1C, and Video S1).

Scene Selection
First, an experimenter eliminated unrelated scenes in which the

match was stopped by the referees. Additionally, scenes in which

the reflective markers could not be seen because the players were

outside the camera angles were also removed (Figure 1C). As a

Figure 1. Scene selection. (A) Kendo match. (B) Trajectories of two
players during a kendo match over a 5-min period in a two-dimensional
plane (x{y). (C) Time series of interpersonal distance (IPD) for one
match. (D) Time series of IPD for one sequence eliminating unrelated
scenes. (E) Time series of IPD for one scene that begins with the
contestants at the greatest distance from one another and ends with
them coming together in a striking action.
doi:10.1371/journal.pone.0072436.g001
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result, the analyzed data averaged 4 min 19 s611 s for experts

and 4 min 26 s622 s for intermediate players per match, although

the matches lasted 5 min from start to finish. Each of the 12

matches was divided into 67 and 54 sequences for expert and

intermediate competitors, respectively (Figure 1D). We divided

each scene (which included only one striking action) because

interpersonal competition in kendo is interrupted by the striking

action, and movements after the striking action were considered

transitions to the next competition. We detected positive and

negative peaks in each sequence to identify the striking action. The

positive peaks corresponded to moments of approaching move-

ments between competitors; negative peaks corresponded to

moments of detaching movements. A quick detaching movement

was defined as a movement in which two adjacent peaks of IPD

time series had spread more than 1 m within 1,500 ms; these

movements were eliminated. As a result, each scene started with

the farthest interpersonal distance and ended with the nearest

distance for striking or with the middle distance for slow

detachment (Figure 1E). Scenes that included fewer than four

positive peaks were excluded from further analysis. As a result, 184

scenes involving experts and 162 scenes involving intermediate

players remained. The longest scene was 38.2 and 31.8 s for

experts and intermediate players, respectively. The shortest scene

was 4.1 and 4.2 s for experts and intermediate players, respec-

tively.

State Variables
The trajectory of the player’s head position was expressed as

time-dependent vectors XA(t)~½xA(t),yA(t)� for player A and

XB(t)~½xB(t),yB(t)� for player B. These time-series vectors were

calculated using software (Qualysis Track Manager, Qualysis, Inc.)

and flattened using a fourth-order Butterworth filter with a cutoff

frequency of 6 Hz. The time series for the Euclidean distance

XIPD(t) between two players was calculated using the following

equation:

XIPD(t)~XB(t){XA(t)

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xB(t){xA(t))

2z(yB(t){yA(t))
2

q ð1Þ

where t is a series of 0.01-s sampling intervals.

Displacement and velocity are state variables that represent the

behavior of the system. VIPD, that is, change in XIPD, was

calculated using the following general equation:

VIPD(t)~(XIPD(tz1){XIPD(t{1))=2 ð2Þ

However, a relatively large variance is required because VIPD is

calculated at the peaks of XIPD in the return map analysis.

Additionally, VIPD was independent of XIPD to create one state

variable.

To determine the delay from t, t, VIPD was calculated using the

following equation:

VIPD(t)~XIPD(tzt){XIPD(t) ð3Þ

The VIPD was calculated for t~0 to t~20. The variance of

VIPD and the correlation coefficient between XIPD in each t were
calculated. Figure S2 shows the results. The first crossing point

occurred at t~10 and 0.1 s. The VIPD corresponding to this t had

a relatively large variance and was independent in minimum delay

from t.

As a result, VIPD(t) was calculated using the following equation;

VIPD(t)~XIPD(tz10){XIPD(t) ð4Þ

XIPD(t) and VIPD(t) were calculated for the entire duration of

each of the 24 matches (Figure 2A). Both XIPD(t) and VIPD(t)
were normalized between 0 and 1, and state variables X (t) were
calculated as composite vectors of two time-dependent vectors

using the following equation (Figure 2B):

X (t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(normalized XIPD(t))

2z(normalized VIPD(t))
2

q
ð5Þ

Return Map and State Transition Analysis
The peak detection of XIPD(t) in each scene was calculated

using a second-order Savitzky-Golay smoothing filter with nine

points [35]. The mean intervals for scenes were 11.2 s + 5.67 s

for experts and 12.2 s65.45 s for intermediate players. The peaks

in each scene can be visualized using a plot, which is a type of a

return map. Such a map plots the present peak Xn versus the next

peak Xnz1. For each scene, we plotted the observed data as the

present peak Xn versus the next peak Xnz1 using the amplitude of

X (t) at the peaks of XIPD(t) as a discrete dynamical system

(Figure 2C–D), referred to as return map analysis. Periodicities are

revealed on such a plot as intersections with the line of identity

Xn~Xnz1 [36,37]. These intersections are known as an attractive

fixed point and repellers or saddle points. These attractive fixed

points are deterministically approached from a direction called the

stable direction or manifold, and the repellers are diverged from

these attractive fixed points along the unstable direction or

manifold as a linear function. Theoretically, we postulated the

linear function, Xnz1~aXnzb. The intersections can be classified

into two properties depending on the absolute value of a. When a

is less than 1, DaDv1, then the intersection is considered to be an

attractive fixed point (i.e., an ‘‘attractor’’). When the absolute

value of a is more than 1, DaDw1, then the intersection is referred to

as a repellent fixed point (i.e., a ‘‘repeller’’). An attractor can be

further classified into two types. When 0vav1 (Figure 3a), the

trajectories asymptotically close to the attractor, that is, the IPDs

decrease gradually (Figure 3A). When {1vav0, the trajectories
rotationally close towards the attractor (Figure 3b); that is, the

IPDs decrease by alternately moving a step towards and a step

away from the attractor (Figure 3B). A repeller also has two types

of trajectories: 1va, and av{1, corresponding to asymptotical

and rotational trajectories, respectively, as shown in Figure 3c, d

and 3C, D. Trajectories also approach and diverge from points

that do not cross the line Xn~Xnz1. We postulated that these

functions, an exponential function, Xnz1~b exp(aXn) (Figure 3e,
E), and a logarithmic function, Xnz1~a logXnzb (Figure 3f, F),

represent intermittency.

A total of 346 scenes with more than five peaks of X (t) were
fitted to three types of functions; Xnz1~aXnzb,

Xnz1~b exp (aXn), and Xnz1~a logXnzb. The number of

fitted points was altered from three to six points on the return map

using moving windows from the beginning of the data to the end

of each scene:

3 points : f(Xn,Xnz1), (Xnz1,Xnz2), (Xnz2,Xnz3)g

Joint Action Syntax in Japanese Martial Arts
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4 points : f(Xn,Xnz1), (Xnz1,Xnz2), � � � , (Xnz3,Xnz4)g

5 points : f(Xn,Xnz1), (Xnz1,Xnz2), � � � , (Xnz4,Xnz5)g

6 points : f(Xn,Xnz1), (Xnz1,Xnz2), � � � , (Xnz5,Xnz6)g

A plotted point on a return map corresponds to two consecutive

peaks in the time series. Thus, the existence of N points for fitting

means that Nz1 series of peaks in time series of IPDs were

followed by certain regularities. As a measure of significance of fit,

we used the x2 goodness-of-fit test and the incomplete gamma

function, Q. We excluded the results of a fit when the

corresponding significance level exceeded 0.05; the minimum Q-

value was 0.824 for the remaining results; thus, these functions

were identified with high confidence. If the same series of points

were fitted by two different functions, then the series exhibiting

lower x2 probability was selected. When the exponential and

logarithmic functions were fitted to the series of points, the case in

which the function was crossed Xn~Xnz1 was excluded.

Additionally, the longer series of points for the fitted function

was selected, if the series was fitted by two different lengths of

series.

Furthermore, to clarify the switching among several attractors

and repellers, return maps were plotted using a well-fitted series of

points as four different linear functions of an attractor and a

repeller and histograms for each match were constructed from a

well-fitted series of points according to the grouping of peak values

in the bins. The threshold in each histogram, and the probabilities

of second- and third-order state transitions were calculated for a

well-fitted series of points as a linear function (Figure S3).

Calculations for function fitting, threshold determination, and

transition probabilities were performed by programs written in the

C-programming language, with several source files provided by

‘‘Numerical Recipes in C’’ [38].

Results

Return Map Analysis
For each scene, we plotted a return map of the time series of the

observed data, Xn versus Xnz1, using the amplitude of X (t) at the
peaks of XIPD(t). Figure 3a’–f’ shows examples of the fitting of six

functions to the series of points on the return maps (Video S2–S4).

We found 291 scenes that could be fit by the candidate functions:

162 of these scenes included expert competitors, and 129 scenes

included intermediate competitors. In total, 485 series of points in

these 291 scenes were well fit to the functions; 284 trajectories

were revealed as attractors, and 146 trajectories were fitted as

repellers; 55 trajectories were identified as intermittency (Table 1).

All six types of candidate functions could be found using 3-, 4-, and

5-point fitting; 16 trajectories were fitted using 6 points for four

types of functions. We found that 121 scenes were switched among

two to nine different functions in each scene; 80 scenes switched

between two functions, 22 scenes among three, 11 scenes among

four, six scenes among five, and one scene each among seven and

nine functions (Figure 4A–B, Table 2, Figure S4, and Video S5).

These results suggest that complex movements occurring during

the interpersonal competition of a kendo match could be

generated by simple rules that attract toward or repel from fixed

attractive and/or repellent points (Figure 5A–B).

State Transitions
We identified two discrete states in each histogram of return

maps using the threshold as a minimum value for each match: the

‘‘farthest apart’’ high-velocity state (F), and the ‘‘nearest (closest)

together’’ low-velocity state (N) (Figure 5A–D, and Figure S3).

Thus, we identified four trajectories, fXn~F ,Xnz1~Fg,

Figure 2. Schematic representation of state variables (X (t)). (A) Schematic representation of XIPD(t) and VIPD(t). (B) Schematic
representation of the state variables. (C) Blue, cyan, and black lines show a time series of normalized XIPD(t), normalized VIPD(t), and X (t),
respectively, for a 12-s scene that had more than five peaks. The red and black circles show the corresponding values of X (t) to the peaks of XIPD(t).
(D) Return map of the time series of the observed data, Xn versus Xnz1 using the amplitude of X (t) at the peaks of XIPD(t) corresponding to the
series of points (red and black circles) in panel shown in C.
doi:10.1371/journal.pone.0072436.g002
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fXn~N,Xnz1~Ng, fXn~F ,Xnz1~Ng and

fXn~N,Xnz1~Fg, as second-order transitions. The state

transition diagrams for experts and intermediate players are

shown in Figure 5E and 5F, respectively. The conditional

probabilities for second-order state transitions were calculated

for each skill level. For experts, the transition probabilities of the

four trajectories were: fPr(F DF )~0:96, Pr(N DF )~0:04g, and

fPr(N DN)~0:19, Pr(F DN)~0:81g, corresponding to two discrete

states (F ,N ). For intermediate players, the probabilities were:

fPr(F DF )~0:82, Pr(N DF )~0:18g, and fPr(N DN)~0:69,
Pr(F DN)~0:31g. The differences in transition probabilities

between experts and intermediates for each discrete state were

significant according to Fisher’s exact test (F: pv1:45|10{12, N:

pv1:08|10{5). The offensive and defensive maneuvers of the

experts were more often in the ‘‘farthest apart’’ high-velocity F-

state. In contrast, those of intermediate players were more likely to

be found in the ‘‘nearest (closest) together’’ low-velocity N-state.

Two peaks can be observed in each histogram in the ‘‘farthest

apart’’ high-velocity state (Figure 4C–D). This indicates that the

current discrete state has two second-order states that depend on

the previous state: fXn{1~F ,Xn~Fg (FF) and

fXn{1~N,Xn~Fg (NF). The probabilities of third-order trajec-

tories between four second-order states were calculated for each

skill level (Figure 4G–H) for experts and intermediates, respec-

tively. For experts, the eight third-order transition probabilities

were: fPr(F DFF )~0:95, Pr(N DFF )~0:05g, fPr(F DNF)~0:83,
Pr(N DNF )~0:17g, fPr(N DNN)~0:00, Pr(F DNN)~1:0g, and

fPr(N DFN)~0:23, Pr(F DFN)~0:77g, corresponding to four

discrete states. For the intermediate players, the probabilities were:

fPr(F DFF )~0:81, Pr(N DFF )~0:19g, fPr(F DNF)~0:43,
Pr(N DNF )~0:57g, fPr(N DNN)~0:57, Pr(F DNN)~0:43g, and

fPr(N DFN)~0:76, Pr(F DFN)~0:24g. Experts exhibited higher

probabilities for the third-order transitions to the state of ‘‘farthest

apart’’ high velocity in all sub-states. On the other hand,

intermediate players showed higher transition probabilities to the

state of ‘‘nearest together’’ low velocity in all sub-states (FF:

pv1:97|10{9, NF: p~:16, NN: pv:04, FN: pv2:3|10{4).

These results reveal that the second-order trajectories between two

discrete states, that is, ‘‘farthest apart’’ high velocity and ‘‘nearest

together’’ low velocity, and also the third-order trajectories among

four discrete states, depend not only on the current state but also

on the previous state. This suggests that these state transitions of

offensive and defensive maneuvers in kendo have a hierarchical

structure.

Discussion

In this study, the return map analysis revealed that continuous

interpersonal competition, which may appear to be quite complex,

could be expressed in terms of a number of discrete dynamics

represented by simple linear functions. The state transition

Figure 3. Trajectories of six functions and return map analysis.
(a–d) Linear functions, Xnz1~aXnzb, with four different slopes for
0vav1,{1vav0,1va, and av{1, respectively. (e) Exponential
f u n c t i o n , Xnz1~b exp (aXn). ( f ) L o g a r i t hm i c f u n c t i o n ,
Xnz1~a log (Xn)zb. (a) Asymptotic trajectory to the attractive fixed
point as a series of points, which corresponds to the movement of
decreasing IPD by the step-towards motion shown in (A). (a’) Observed
series of points in a scene from X0 to X5 , approaching an attractor with
Xnz1~0:552Xnz0:308. (b) Rotational trajectory to the attractor, which
corresponds to the movement of decreasing IPD by alternating step-
towards and step-away motions shown in (B). (b’) Observed series of
points in a scene from X0 to X5 , approaching an attractor with
Xnz1~{0:360Xnz1:064. (c) Diverging from the repellent fixed point

asymptotically, decreasing IPD by the step-towards motions shown in
(C). (c’) Series of points (X5 to X11), diverging from repeller with
Xnz1~1:627Xn{0:505. (d) Diverging from the repeller rotationally,
increasing IPD by alternating step-towards and step-away motions
shown in (D). (d’) Series of points (X9 to X13), diverging from a repeller
with Xnz1~{1:112Xnz1:584. (e) Approaching and diverging trajec-
tories around the attractor and/or the repeller exponentially, increasing
IPD by step-away motions shown in (E). (e’) Series of points (X2 to X7),
diverging from a repeller with Xnz1~0:188 exp (2:014Xn). (f) Logarith-
mically approaching and diverging trajectories around an attractor,
decreasing IPD by step-towards from motions shown in (F). (f’) Series of
points (X0 to X3) approaching an attractor and diverging from a
repeller (X3 to X6) with Xnz1~0:704 logXnz0:907.
doi:10.1371/journal.pone.0072436.g003
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analysis revealed second-order transition probabilities between two

states: the ‘‘farthest apart’’ high-velocity state (F) and ‘‘the nearest

(close) together’’ low-velocity state (N). These two states have a

hierarchical structure that depends on the previous state. Third-

order transition probabilities also revealed differences between

expert and intermediate competitors. This result suggests that

intentional switching dynamics is embedded in complex contin-

uous interpersonal competition (such as a martial arts competition)

and is thus better described as a hybrid dynamical system

consisting of higher discrete and lower continuous modules

connected via a feedback loop [28,29]. This switching dynamic

allows for very complex, diverse, continuous human movements.

Switching dynamics have been studied theoretically [39],

numerically [40], and behaviorally [41] as a continuous dynamical

system excited by a temporal input. This model accounts for the

dynamics of switching among some attractors as fractal transitions

within finite time intervals, as expressed in the following ordinary

differential equation:

_xx~f (x,I(t)) ð6Þ

where x[RN is the state of the system, and I(t)[RN is the temporal

input. This model has been extended to a hybrid dynamical system

composed of a higher module with discrete dynamics and a lower

module with continuous dynamics [28,29]. The higher module

selects the switching input Il(t) at the interval Tl based on the

following:

Il(t), l~1, . . . ,L ð7Þ

where Il(t)[RN ,L, and t correspond to the lth input for the lower

module, the number of inputs, and the time, respectively. The

lower module can be described as a set of continuous non-

autonomous dynamical systems [39], defined by the following

ordinary differential equation:

_xx~f (x,Il(t)) ð8Þ

where x[RN is the state of the lower module. The two modules are

connected by a feedback system, in which the higher module

switches at regular intervals in response to the states of the lower

module. This system converges into various switching attractors

that correspond to infinite switching manifolds; this defines the

feedback control rule at the switching point. The feedback system

could be considered to be an automaton that generates various

sequences from the fractal set by choosing the typical switching

manifold [28,29]. This hybrid dynamical system could be

considered a macroscopic model in which the discrete module

corresponds to the brain function as decision making, and the

continuous module corresponds to the motor function as human

Table 1. Numbers of well-fitted series of points by function fitting using three to six points from the series in a scene.

Function Aa Ar Ra Rr Exp Log Sum

Fitting points E I E I E I E I E I E I E I

3 61 35 42 47 17 23 39 28 6 7 8 5 173 145

4 33 19 4 5 12 14 3 1 1 2 10 9 63 50

5 17 11 2 – – 4 1 – – 1 2 – 22 16

6 5 3 – – 1 3 – – 1 – 2 1 9 7

116 68 48 52 30 44 43 29 8 10 22 15 267 218

Sum 184 100 74 72 18 37 485

Aa and Ar are asymptotical, 0vav1, and rotational, {1vav0, attractors. Ra and Rr are asymptotical, 1va, and rotational, av{1, repellers. Exp and Log are
intermittencies of exponential and logarithmic functions, respectively. E and I denote expert and intermediate competitors, respectively.
doi:10.1371/journal.pone.0072436.t001

Figure 4. Switching among three different functions. (A) Time
series of normalized XIPD(t) and state variable, X (t), and circles show
peaks of normalized XIPD(t). (B) Return map for this time series that
demonstrates switching among three different functions. At first, from
the peak of X0 to X5, the observed series of points have approached to
an attractive fixed point asymptotically with Xnz1~0:654Xnz0:254.
From the peak of X5 to X9, the observed points diverged from a
repellent fixed point rotationally with Xnz1~{1:107Xnz1:600. Finally,
from the peak of X9 to X13, the observed points approached the other
attractive fixed point asymptotically with Xnz1~0:182Xnz0:574.
doi:10.1371/journal.pone.0072436.g004
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Table 2. Well fitted scenes switching between different functions in each scene.

Number of functions 1 2 3 4 5 6 7 8 9 Sum

Expert 100 39 14 4 3 – 1 – 1 162

Intermediate 70 41 8 7 3 – – – – 129

Sum 170 80 22 11 6 – 1 – 1 291

The numbers show the different functions in each scene.
doi:10.1371/journal.pone.0072436.t002

Figure 5. State transition diagrams. (A, B) Return maps were plotted using observed points as four different linear functions of an attractor (red)
and a repeller (blue) for expert and intermediate competitors respectively. The circles show crossing points with the line of identity, Xn~Xnz1 . (C, D)
Red, blue, and black lines show histograms of crossing points for an attractor, a repeller, and the sum of these respectively. (E, F) Second-order state
transition diagrams with the conditional probabilities consisted of the ‘‘farthest apart’’ high velocity state (F) and the ‘‘nearest together’’ low velocity
state (N) for expert and intermediate competitors, respectively. (G, H) The third-order state transition diagrams comprised four second-order sub-
states.
doi:10.1371/journal.pone.0072436.g005
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movements. Thus, the loop from the discrete to the continuous

module can be regarded as an efferent pathway, and that from the

continuous to the discrete module as an afferent pathway.

This idea is similar to neural syntax and could facilitate progress

in defining cell assemblies, identifying their neuronal organization,

and revealing causal relationships between assembly organization

and behavior [31]. In general, syntax (grammar) is a set of

principles that govern the transformation and temporal progres-

sion of discrete elements (e.g., letters and musical notes) into

ordered and hierarchical relations (e.g., words, phrases, sentences,

chords, chord progressions, and keys) that allow for a congruous

interpretation of the meaning of language and music by the brain.

In addition to its contribution to language and music, the grouping

or chunking of fundamentals by syntax allows for the generation of

a virtually infinite number of combinations from a finite number of

lexical elements using a minimal number of rules in sign, body,

artificial and computer languages, and mathematical logic.

‘‘Action syntax’’ [30] has been examined as a Markov chain in

grooming behavior in rodents [32–34]. However, this behavior

can be regarded as a stereotypical action that was generated by a

relatively simple feed-forward excitatory mechanism. In contrast,

interpersonal competition does not exploit this mechanism,

because the environment changes abruptly and unpredictably. In

response to various situations, very large numbers of movements

can be generated in large strongly recurrently connected systems

equipped with appropriate syntax [31]. The hybrid dynamical

system [28,29] in this study can be considered as a valid model for

‘‘joint action syntax’’, which can generate various movements in

interpersonal competition, such as martial arts.

In kendo, experts competed at greater distances and with higher

velocities compared with intermediate competitors (Figure 5C–D).

A point (ippon) in a kendo competition is achieved when an

accurate strike is made on the opponent with the uppermost third

of the shinai; (i.e., the top 0.30–0.40 m of its total length, 1.20 m).

The average time of a strike movement was 0.3660.08 s for the

experts and 0.3860.09 s for the intermediate players from an

average interpersonal distance of 2.3760.18 m for the experts and

2.4260.18 m for the intermediate players. A split-second offensive

or defensive maneuver may decide the outcome of a match. Thus,

contestants must carefully maintain and change their interpersonal

distance to balance the gain/loss of offensive and defensive

maneuvers. This critical interpersonal distance, which induces the

step-towards and step-away switching movement, has been shown

in real settings [42,43]. Our results suggest that experts engage in

offensive and defensive maneuvers at greater distances, whereas

intermediate players prefer closer distances for these maneuvers.

Both players have similar attractors and repellers in their own

matches; however, they play different movements based on the

different syntax of their skill level.

Over the past several decades, intensive research has been

conducted on emergent behavior in complex systems. In biological

systems, in particular, research on a variety of complex systems has

been focused on intelligence and the very nature of life itself.

However, the intentional switching dynamics in interpersonal

competition characterized by quick decision making and rapidly

executed actions remain poorly understood. Higher-level cognitive

brain functions generate seemingly homogeneous spatiotemporal

sequences of neural activity to produce meaningful neural words

and sentences in response to diverse environments. We can

postulate a hybrid dynamical system that simulates decision

making and/or intelligence [13,14,31]. Additionally, human

movements are self-organized with robust autonomy not only in

individuals but also in populations [20–22,25,27]. Joint action

syntax, derived from hybrid dynamical system, is common and

essential in nature from the level of neuronal activity to that of the

activities of daily living. Furthermore, this model can be used to

incorporate intentionality and robust decision making in the

movement of artificial systems.

Supporting Information

Figure S1 Experimental setting and interpersonal dis-
tance (IPD). A Experimental setting. The black triangles

correspond to cameras (a total of eight). B Reflective markers

attached to the back of the player’s head, back of his waist, both

ankles, right knee, and the top of the shinai to detect movement. C
Top view captured by an optical motion capture system. The bar

shows the IPD between two markers attached to the back of the

player’s head.

(EPS)

Figure S2 Variances of VIPD and correlation coefficients
between XIPD and VIPD for each t.
(TIF)

Figure S3 Histograms of each match and its return
map. A and C, Examples of histograms of well-fitted peaks of

each match. The thresholds were determined from the minimum

frequency value of each match. The higher values of the peaks

were regarded as ‘‘farthest apart’’ high-velocity states, denoted as

‘‘F’’; the lower values of the peaks were regarded as ‘‘nearest

(closest) together’’ low-velocity states, denoted as ‘‘N’’. The

threshold of A was 0.56, and the threshold of C was 0.6. B and

D, Return maps corresponding to the histograms A and C,
respectively, divided into four second-order sub-states: FF: Far-

Far; FN: Far-Near; NN: Near-Near; and NF: Near-Far.

(TIF)

Figure S4 Examples of return maps and switching
function from a series of points in a scene. Red lines

show attractors, and blue lines show repellers. Cyan lines show

intermittency in all panels. A Nine functions, B seven functions,

and C-H five functions were switched sequentially.

(EPS)

Video S1 Experimental setting and motion caputure
data. Animated clip showing an example of the experimental

setting and an example of the motion capture data from side and

top of views.

(MP4)

Video S2 Attractor on the return maps. Animated clip

showing examples of the pattern of attractors on the return maps,

which include the time series of X (t) and XIPD(t), velocities of

step-toward and step-away of each player, and 2D movement from

top of view, and approaching to the attractive fixed point

asymptotically and rotationally.

(MOV)

Video S3 Repeller on the return maps. Animated clip

showing examples of the pattern of repellers on the return maps,

which include the time series of X (t) and XIPD(t), velocities of

step-toward and step-away of each player, and 2D movement from

top of view, and diverging from the repellent fixed point

asymptotically and rotationally.

(MOV)

Video S4 Intermittency on the return maps. Animated

clip showing examples of the pattern of intermittencies on the

return maps, which include the time series of X (t) and XIPD(t),
velocities of step-toward and step-away of each player, and 2D

movement from top of view, and approaching and diverging
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around the attractive fixed point and/or repellent fixed point

exponentially and logarithmically.

(MOV)

Video S5 Switching among several functions in one
scene. Animated clip showing examples of the pattern of

switching among several functions on the return maps, which

include the time series of X (t) and XIPD(t), velocities of step-

toward and step-away of each player, and 2D movement from top

of view.

(MOV)
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