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ABSTRACT

A study on numerical analysis based on boundary element method for wave
propagation properties of phononic periodic structures

by

Haifeng GAO

Chair: Professor Toshiro Matsumoto

This dissertation presents a new methodology for the band calculations of phononic

structures based on the boundary element method. To investigate the band structure

given by the dispersion relation, Bloch eigenvalue problems need to be solved. Using

the boundary element method, nonlinear eigenvalue problems are formulated for both

homogenous and periodic structures originated from the nonlinear property of the fun-

damental solutions. To solve the nonlinear eigenvalue problems, a contour integral

method so-called Sakurai-Sugiura method is employed to extract the eigenfrequencies

in a certain selected complex domain of the circular frequency surrounded by a closed

Jordan curve. When using the boundary integral equation, spurious eigenvalues are

also obtained together with the true eigenvalues. To identify the spurious eigenval-

ues, additional boundary integral equation provided by Burton-Millerfs method are

employed.

After solving the resonance problems in 2D and 3D acoustic cavities as prepa-

ration works, the band structures of acoustic and elastic phononic structures in 2D

are computed by the proposed methodology. For importance of practical problems,

the transmissions of waves in finite unidirectional phononic periodic structures are

investigated through formulating a size-reduced system matrix by the boundary ele-

ment method. The frequency-banded nature existing in finite unidirectional periodic

phononic structures is discussed.
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CHAPTER I

Introduction

1.1 Background

Composite materials with inclusions embedded in a host periodically, are called

phononic/sonic crystals. Phononic crystals are the elastic analogues of photonic

crystals [3, 4, 5] and exhibit frequency-banded nature for the propagation of acous-

tic/elastic waves. The distinctive feature of a phononic crystal is its capacity to

create band gaps, based on Bragg scattering, usually at the wavelengths that are

comparable to its lattice constant. Therefore, small size phononic crystals usu-

ally display band gaps in high frequency ranges. However, relatively low frequency

band gaps also can be created based on local resonances [6]. The width of the

band gap, in general, increases with the difference in the densities and sound ve-

locities of the component materials, and the frequency of the gap can be tuned,

by changing lattice parameter. Along with the growing interest in phononic crys-

tals, novel applications have been found and investigated, such as acoustic super-

lenses [7], acoustic lasers [8], thermal barriers [9], acoustic diode [10], phononic

senors [11] etc,. The existence of band gaps in phononic crystals has been ob-

served experimentally [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and theoretically

[23, 24, 25, 26, 27, 28, 29, 30, 31]. A great illustration in the experiment [15] con-

ducted by the researchers at the Material Science Institute of Madrid shows that the

sculpture in Fig. 1.1 strongly attenuates sound waves at certain frequencies.

Since fabrication of these materials is currently quite challenging, computation

has become the primary tool for investigating the band structure of phononic crys-

tals. The calculation of band structure leads to a Bloch eigenvalue problem. Various

numerical methods such as plane wave expansion method, multiple-scattering the-

ory method, finite difference domain method, finite element method [24, 23, 32, 33,

1



Figure 1.1: The kinematic sculpture by Eusebio Sempere consists of a periodic array
of hollow stainless-steel cylinders, each 2.9 cm in diameter, arranged on a square

10× 10 cm lattice [2].

34, 35, 36, 37, 38, 39] are applied to the analysis of phononic crystals including the

boundary element method (BEM) [40, 41, 42]. The BEM [43], as one of the most

widely used numerical methods, requires only the discretization of the surface rather

than the volume. Hence, the BEM codes are easier to use with existing solid modelers

and mesh generators. Furthermore, for stress concentration and crack problems, the

BEM provides solutions in better accuracy, compared with the finite element method

(FEM) [44]. In particular, the BEM has an advantage in dealing with infinite prob-

lems, since it has the boundary-only discretization and the fundamental solutions

employed in the boundary integral equations satisfy the radiation condition automat-

ically. However, in order to solve such infinite problems, the FEM has to adopt a

perfectly matched layer [45] or special elements [46]. Though the BEM has advan-

tages, the computing cost is considered as a drawback for large-scale problems, since

the coefficient matrices formulated by the BEM are full and nonsymmetric matrices.

The emergence of fast algorithms such as fast multipole method (FMM) [47, 48, 49]

and adaptive across approximation (ACA) method [50, 51] can reduce the operation

count from O(N3) to O(N(logN)α) where N is the degrees of the freedom. This

makes the BEM become more attractive for large-scale problems. However, even

the computing cost is decreased, the calculation of eigenfrequencies is very difficult

because the fundamental solutions of interest are nonlinear with respect to circular

2



frequency or wave number. This occurs when the BEM is applied to the problems

such as acoustic resonance, free vibration of elastic structures and Bloch eigenvalue

calculations. In the BEM formulation, the circular frequency ω is involved in the

coefficient matrix implicitly, and the eigenequation is a transcendental equation that

contains the Bessel/Hankel functions.

However, the emergence of the contour integral method [52] which converts non-

linear eigenvalue problems to generalized eigenvalue problems, now enables to extract

the eigenvalues of the nonlinear eigenvalue problems given by the BEM. This method

is also called projection method because the eigenspace is also reduced to smaller

one that can be chosen as one wishes. In contrast to the original eigenspace, the

computing cost of the reduced eigenspace is negligible. Moreover, the master-worker

type algorithm make it easier to use in PC clusters or multi-core computers. The

colleagues of the author have performed a exploration work [53].

In this thesis, a new methodology based on the BEM and contour integral method

for the calculation of eigenfrequencies of the structures related to phononic crystals

is proposed, and is applied to the analyses of band structures of phononic structures.

As a starting point, the resonances of homogenous acoustic cavities are considered.

For undamped free vibration, only real eigenvalues are required, however, due to

the formulations provided by the BEM, spurious eigenvalues exist. These spurious

eigenvalues contain both real and complex numbers. It is easy to identify the complex

spurious eigenvalues from the numerical results. The identification of real spurious

eigenvalues, however, requires the boundary integral equation provided by Burton-

Miller’s method which moves the real spurious eigenvalues off the real axis.

After the preparing work is done, the method is applied to the band calcula-

tion of phononic structures. Taking the BEM as the tool for the analysis of pho-

tonic/phononic crystals, there are two ways of applying the Bloch theorem to the

numerical models: one is to use a quasi-periodic fundamental solution instead of the

conventional fundamental solution [41], the other is to give the Bloch periodic bound-

ary condition on the boundary of a unit cell. The former way results in a nonlinear

eigenvalue problem and the issue of the convergence of quasi-periodic fundamental

solution has to be considered. The latter way requires the extra discretization for

boundary of a unit cell. In our research, the latter way of applying Bloch theorem is

adopted, since it provides the whole reciprocal space.

The proposed methodology combining of the BEM and the contour integral method

is examined in the practical problems for the resonances of 2D and 3D acoustic cav-

ities. Then the author discusses applications of the proposed method to various
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phononic structures in two dimensions. The effectiveness of the method to analyze

phononic structures is demonstrated through numerical examples.

1.2 Organization of the thesis

The thesis is organized as follows.

• Chapter II

A new BEM-based methodology is proposed to calculate band structures of given

phononic structures.

The difficulties resulting from the application of the BEM to eigenvalue problems

are described. The nonlinear eigenvalue problems formulated by the BEM are pre-

sented by considering a simple case of the Helmholtz equation. Starting from the

weighted residual form, the boundary integral equation that shows a nonlinear ex-

pression for the eigenvalue parameter is derived. In particular, spurious eigenvalue

problems are also introduced by showing the spurious eigenequations of an annular

structure which is a interior problem but has a multiply connected domain. Since

phononic structures are always considered as multiply connect domains, spurious

eigensolutions are also obtained in the numerical simulations. To overcome the spu-

rious solutions, Burton-Miller’s method is introduced.

Similar properties of photonic crystals for phononic structure are introduced.

Bloch wave function for the mechanical waves propagating in phononic structures is

described. Various structures of crystals and their first Brillouin zones are introduced,

and the corresponding phononic structures that exhibit the same characteristics are

given. Next, the BEM modeling for the phononic structures is presented. Without

domain discretization, simple models are created.

• Chapter III

Being also considered as a new methodology for the eigenvalue problems, the proposed

method is applied to the analyses of a 2D square acoustic cavity. Furthermore, the

eigenfrequencies of 3D acoustic cavities are computed.

For the eigenfrequency computation for the 2D cavity, a relatively large thresh-

old δ = 10−6 is chosen for the rank detection of the Hankel matrix to filter out the

meaningful singular values. Also for the 3D case, by observing the behavior of the

singular values against the number of collocation points used for evaluating the con-

tour integral, a relatively large threshold value can be determined to filter out the
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meaningful singular values. The threshold is not unique for different models. If a

multiply connected domain is considered as an acoustic cavity, the boundary of the

inclusion generates spurious eigenfrequencies of real numbers [54]. To identify these

spurious solutions, the proposed methodology employs the boundary integral equation

provided by Burton-Miller’s method by which the components with large imaginary

parts are added to the real spurious eigenvalues. By observing the imaginary parts

of the numerical results, the true eigensolutions can be identified.

• Chapter IV

A new approach based on the BEM and the block SS method for the analyses of band

structure of phononic structures is proposed and applied to the band calculation of

acoustic phononic structure governed by the Helmholtz equation. The band gaps

are observed correctly both in homogenous and composite phononic structures. By

applying the Bloch periodic boundary condition on the virtual boundary of a unit

cell, the analyzed problem can be considered as an interior problem with a multiply

connect domain. Therefore, the real spurious eigenfrequencies are also observed as

horizontal lines in the band structures. Again, Burton-Miller’s method is used for

eliminating the spurious solutions.

• Chapter V

An important difference between elastic waves in solids and acoustic wave in the air is

that an elastic wave in a homogeneous solid has three independent polarizations: two

of them are transverse and one is longitudinal. However, an acoustic wave has just one

longitudinal polarization. To investigate the more complicated wave propagations, the

proposed approach is applied to the band calculation for elastic phononic structures.

In order to improve the efficiency of the contour integral method for computing the

real eigenfrequencies, a fusiform contour integral path is employed to exclude the

complex solutions. Three typical elastic phononic structures are constructed: the bi-

material phononic structure which has dense/stiff scatterers imbedded in light/soft

host, presenting a band gap based on Bragg scattering; the unidirectional phononic

periodic plate which has the unit cell with traction-free boundaries, presenting a flat

band structure; the phononic structure which has the imbedded dense/stiff scatterers

coated with a light/soft material, presenting a band gap based on the local resonance.

Numerical results demonstrate the effectiveness of the method for elastic materials.

• Chapter VI
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For importance of practical problems, an investigation on finite/infinite unidirectional

phononic plates which have 2D cells arranged along one direction periodically, is

carried out.

The band structures of the infinite unidirectional phononic plates are computed by

using the proposed approach. The dispersion relations for both acoustic and elastic

infinite unidirectional phononic plates are obtained. In the dispersion relations, the

stop bands and pass bands are identified. For the finite case, the bounded input and

output domains are connected with finite layers of unidirectional phononic plates. To

investigate the wave transmission in these finite structures, a size-reduced coefficient

matrix is derived utilizing the transfer matrix formulated by the BEM repeatedly.

The wave transmission is observed against the frequency and the number of layer.

With a sufficient number of layers of cells, the finite structures also exhibits the

frequency-banded nature which can be enhanced through increasing the number of

cells. Furthermore, the whole finite structure including the input and output domains

is treated as a free vibration problem and its eigenfrequencies are extracted by using

the block SS method. This is a more direct way to identify the frequency-banded

nature of the finite structures.

• Chapter VII

Conclusions of the thesis are presented.
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CHAPTER II

Overview of BEM-based methodology for band

calculation of phononic structures

2.1 BEM for eigenvalue problems

2.1.1 Nonlinear eigenvalue problems resulting from BEM

Different from nonlinear eigenvalue problems formulated by the BEM, a general-

ized eigenvalue problem is given by the FEM [44] as follows:

(K− ω2M)x = 0, (2.1)

where the circular frequency ω is involved in the eigenvalue problem explicitly. But

for the BEM, since the fundamental solutions are adopted as the weighted functions,

the coefficient matrix involve ω implicitly in each matrix element. Let us take a

simple case of the Helmholtz equation as an example:

∇2p(x) + k2p(x) + f(x) = 0 in Ω, (2.2)

where x is a point in Ω, Ω is the domain of the problem, k = ω/C is the wave number,

with circular frequency ω and wave speed C, and f(x) is a source term.

The integral representation for u(x) can be derived by starting from the following

weighted residual form:

∫

Ω

{
∇2p(y) + k2p(y) + f(y)

}
p∗(x, y) dΩy = 0. (2.3)

where the fundamental solutions p∗(x, y) for the Helmholtz equation include the ex-
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ponential function er or the zeroth order Hankel function of the first kind H(1)
0 (r)

where r = |x− y| and Ωy denotes the integration with respect to point y. Moreover,

for elastodynamic problems, the fundamental solutions contain the Bessel functions.

The fundamental solutions have highly nonlinear property.

Integrating by parts the left-hand side of the above form twice gives:

∫

S

p∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S

∂p∗(x, y)

∂n(y)
p(y) dSy +

∫

Ω

p∗(x, y)f(y) dΩy

+

∫

Ω

{
∇2p∗(x, y) + k2p∗(x, y)

}
p(y) dΩy = 0, (2.4)

where S = ∂Ω, and ∂(·)
∂n denotes the normal derivative at the corresponding point on

the boundary S. Recall the fundamental solution p∗(x, y) satisfies

∇2p∗(x, y) + k2p∗(x, y) + δ(x− y) = 0, (2.5)

where δ(x − y) is Dirac’s delta function in three-dimensional space. Therefore, the

last domain integral term of the left-hand side of Eq. (2.4) becomes as

∫

Ω

{−δ(x− y)} p(y) dΩy = −p(x), (2.6)

and hence, we have the following integral representation:

p(x) =

∫

S

p∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S

∂p∗(x, y)

∂n(y)
p(y) dSy +

∫

Ω

p∗(x, y)f(y) dΩy, x ∈ Ω.

(2.7)

Moving the point x to the boundary S and discretizing the boundary integral

equation with Ne constant elements, without the source term, we have the form as

follows:

1

2
pi(x) =

Ne∑

j=1








∫

Sj

p∗(x, y) dSy




∂pj(y)

∂n(y)



−
Ne∑

j=1








∫

Sj

∂p∗(x, y)

∂n(y)
dSy



 pj(y)



 .

(2.8)
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Let i vary from 1 to Ne, and then we have Ne linear equations as follows:

Bp = Gq, (2.9)

where p = {p1, p2, ..., pNe}T and q = {∂p1

∂n ,
∂p2

∂n , ...,
∂pNe

∂n }T .

By substituting the homogenous boundary condition of free vibration or the peri-

odic boundary condition to those equations and moving all the unknowns to the left

hand side, we obtain a nonlinear eigenvalue problem as follows:

A(ω)x = 0. (2.10)

where x includes all the unknowns. In the coefficient matrix of Eq. (2.10), each

element of the matrix is related to the integrals in Eq. (2.8) which has fundamental

solutions as the integrands.

2.1.2 Spurious eigenvalues for multiply connect domains

The nonlinear eigenvalue problem in Eq. (2.10) has not only a highly nonlinear

nature, but also yield spurious eigenvalues when the analyzed domain is infinite or

multiply connected [55, 54]. Especially, for the latter case, which is frequently en-

countered in the investigation of phononic structures, both real and complex spurious

eigenvalues exist.

Considering a 2D multiply connected annular domain depicted in Fig. 2.1, where

SI denotes the inner boundary, and SU denotes the outer boundary, the eigenequations

of this special case are given in Eqs. (2.11)-(2.19) [54].

For the boundary condition given as u = 0 on SI and u = 0 on SU, the true

eigenequation is as follows:

Jn(kr1)Yn(kr2)− Jn(kr2)Yn(kr1) = 0 (2.11)

and the spurious eigenequation is written as

Jn(kr1) = 0, (2.12)

where Jn denotes the Bessel function of the first kind and Yn denotes the Bessel

function of the second kind. For the boundary condition given as u = 0 on SI and
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Figure 2.1: A multiply connected annular domain.

∂u
∂n = 0 on SU, the true eigenequation is as follows:

Jn(kr1)Y
′
n(kr2)− J ′

n(kr2)Yn(kr1) = 0 (2.13)

and the spurious eigenequation is written as

Jn(kr1) = 0, (2.14)

where (·)′ denotes the first derivative of (·). For the boundary condition given as
∂p
∂n = 0 on SI and p = 0 on SU, the true eigenequation is as follows:

J ′
n(kr1)Yn(kr2)− Jn(kr2)Y

′
n(kr1) = 0, (2.15)

and the spurious eigenequation is written as

Jn(kr1) = 0. (2.16)

For the boundary condition given as ∂p
∂n = 0 on SI and

∂p
∂n = 0 on SU, we have the

true eigenequation:

J ′
n(kr1)Y

′
n(kr2)− J ′

n(kr2)Y
′
n(kr1) = 0, (2.17)
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and the spurious eigenequation:

Jn(kr1) = 0. (2.18)

It can be seen that the domain shown in Fig. 2.1 always yields spurious eigen-

values determined by Jn(kr1) = 0. Moreover, there is an extra nonzero factor of

eigenequation for real kr1 in each case:

Yn(kr1)− iJn(kr1) = 0, (2.19)

which is equivalent to iH(1)
n wherein i is the imaginary unit. The zeros of H(1)

n are

complex spurious eigenvalues. The contour integral method adopts the contour inte-

gral in the complex plane, and the zeros of H(1)
n are also obtained. For the undamped

linear vibration of acoustic and elastic problem, there is no complex eigenvalue for

interior problem, therefore, the complex spurious solutions obtained by the contour

integral method can be removed from the results.

For the real spurious eigenvalues resulted by the eigenequations like Jn(kr1) = 0,

it is difficult to identify them from the true solutions that are also real numbers, so

we employ Burton-Miller’s method to eliminate them.

2.1.3 Burton-Miller’s method

Let us see the integral equation shown in the previous section in Eq. (2.7). Taking

the normal derivative of Eq. (2.7) at point x, the integral equation becomes as follows:

∂p(x)

∂n(x)
=

∫

S

∂p∗(x, y)

∂n(x)

∂p(y)

∂n(y)
dSy −

∫

S

∂2p∗(x, y)

∂n(y)∂n(x)
p(y) dSy

+

∫

Ω

∂p∗(x, y)

∂n(x)
f(y) dΩy, x ∈ Ω. (2.20)

Without considering the source terms, the combination form as (2.7)+µ(2.20) [55]:

u(x) + µ
∂p(x)

∂n(x)
=

∫

S

p∗(x, y)
∂p

∂n
(y) dSy + µ

∫

S

∂p∗(x, y)

∂n(x)

∂p(y)

∂n(y)
dSy

−
∫

S

∂p∗(x, y)

∂n(y)
p(y) dSy − µ

∫

S

∂2p∗(x, y)

∂n(y)∂n(x)
p(y) dSy, x ∈ Ω. (2.21)

is proposed for the elimination of the real spurious eigenvalues. The coefficient µ is
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not unique for different models. The choice of µ is another research topic that is

beyond the scope of this thesis.

2.2 Phononic structure

2.2.1 Bloch wave

The Bloch wave or Bloch state is usually considered as a wave function of electro-

magnetic waves propagating in a periodic medium. Similarly, the mechanical waves

that exist in a periodic acoustic medium or composite solid structure, also present

the properties of the Bloch waves. The wave function can be written as

Unk(r) = eik·runk(r) (2.22)

where r denotes the position in the periodic structure, Unk can be defined as various

physical quantities such sound pressure, displacements, etc., n denotes the number of

eigenvalues for a same wave vector k, and unk is a periodic function in the space of

the periodic structure, written as follows:

unk(r+ L) = unk(r) (2.23)

where L is the lattice vector.

2.2.2 First Brillouin zone

The first Brillouin zone is usually introduced in solid state physics and considered

as a primitive cell in reciprocal space. In a single Brillouin zone, the solutions of

waves can be completely characterized, furthermore, the irreducible Brillouin zone,

which is the first Brillouin zone reduced by all symmetries in the point group of the

lattice. The examples of the first Brillouin zones for 1D, 2D, 3D, crystal lattices are

shown in Figs. 2.2-2.5. More simply, in the band calculation for the crystals, one can

just let the wave vector k vary along the boundary of irreducible Brillouin zone.
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

(a) 1D lattices

 
(b) The irreducible
Brillouin zone

Figure 2.2: The 1D lattice (a) and its irreducible Brillouin zone (b).





(a) 2D square lattices









(b) The irreducible Brillouin zone

Figure 2.3: The 2D square lattice (a) and its irreducible Brillouin zone (shade region)
(b).





(a) 2D square phononic structure (b) The irreducible Brillouin zone

Figure 2.4: The 2D triangular lattice (a) and its irreducible Brillouin zone (shade
region) (b).
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

(a) 3D simple cubic lattices







(b) The irreducible Bril-
louin zone

Figure 2.5: The 3D simple cubic lattice (a) and its irreducible Brillouin zone (sur-
rounded by blue lines) (b).

For the phononic structures, as macroscopical problems, have the inclusions dis-

tributed in the host periodically. These phononic structures in Fig.2.6 also have the

properties of crystals.

(a) 1D phononic structures (b) Unidirectional phononic structures

(c) 2D phononic structures

Figure 2.6: The 1D phononic structure (a), the unidirectional phononic plate (b) and
2D phononic structures (c).

2.2.3 BEM modeling for unit cells of phononic structures

In the boundary integral equations, in contrast to the weak form employed in the

FEM, the BEM does not have any domain integral terms unless sources over areas
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are given to the domain. Due to this advantage of the BEM, the numerical model

for phononic structures can be preprocessed easily. The BEM models for 2D and 3D

phononic structures are shown in Fig. 2.7.
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(a) The model for a cell of 2D phononic struc-
ture discretized by boundary elements

(b) The model for a cell of 3D phononic structure (cross-section view) discretized by bound-
ary elements

Figure 2.7: The 2D phononic BEM model (a) and 3D phononic BEM model (b).

In the BEM models, only the boundaries of the unit cell and inclusion are con-

structed. It is very convenient to apply the Bloch periodic boundary condition to the
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surface of the unit cell.

2.3 Eigensolver: the contour integral method

2.3.1 Brief introduction for the contour integral method

The contour integral method adopted in this thesis is the Sakurai-Sugiura (SS)

method [52] which is named after Sakurai and Sugiura who introduce their method

as an eigensolver for generalized eigenvalue problems. Based on the root finding

method for an analytic function, the SS method projects the original eigenspace to a

subspace associated with the eigenvalues located in a domain surrounded by a closed

Jordan curve as shown in Fig. 2.8. The reduced eigenspace is determined by the

Hankel matrices which formed by moments in different orders. These moments are

calculated by evaluating a contour integral along the Jordan curve numerically. Later,

the method is reformulated by using the resolvent theory in [56], wherein the filter

function can be observed explicitly. Furthermore, the block version of the SS method

is developed to overcome the problem of degenerated eigenvalues. Different from the

original SS method, instead of using one initial vector, the block version employs a

set of the initial vectors and the Hankel matrices are formed by moment matrices.

For nonlinear eigenvalue problems, the method is proposed in [1], wherein the SS

method is derived from Smith form for analytic matrix functions. A similar approach

is proposed by Wolf-Jürgen Beyn who use complex integrals of the resolvent operator

[57]. The block SS method not only is able to solve the degenerated eigenvalues, but

also enables us to acquire more eigenvalues with lower-order moment matrices.





(a) The original eigenspace (The
circular symbols denote the eigen-
values of the original eigenspace)





(b) The reduced eigenspace by
the contour integral (the crossed
symbols denote the eigenvalues in
the reduced eigenspace, and the
dashed line denotes the contour
integration path)

Figure 2.8: The reduction of the eigenspace by the block SS method.
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2.3.2 Block SS method [1]

Let us consider a nonlinear eigenvalue problem written in the form as follows

A(z)x = 0, (2.24)

where the size of A(z) is equal to Ne. In the block version SS method, Ne× l matrix

U and Ne× l matrix V (l ' Ne) are used to construct the following matrix function

T(z):

T(z) = UHA(z)−1V, (2.25)

where (·)H denotes the conjugate transpose, U and V are arbitrary nonzero matrices,

and U = V. It is noted that, in the original version of the SS method, arbitrary

nonzero vectors u, v are used instead of the above matrices U, V.

The moment matrices are given as follows:

Mm =
1

2πi

∫

Γ

T(z)zmdz, (2.26)

where Γ is a positively oriented closed Jordan curve in the complex plane for k, then

two Hankel matrices H<
Kl and HKl can be formed by using the moment matrices Mm,

where m varies from 0 to 2K − 1:

HKl =





M0 M1 · · · MK−1

M1 M2 · · · MK

...
...

. . .
...

MK−1 MK · · · M2K−2




, (2.27)

H<
Kl =





M1 M2 · · · MK

M2 M3 · · · MK+1

...
...

. . .
...

MK MK+1 · · · M2K−1




. (2.28)

By solving the eigenvalues of the matrix pencil H<
Kl − kHKl:

H<
Klw = kHKlw, (2.29)

the eigenvalues k1, k2, · · · , kK located in the closed curve Γ can be obtained.
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It can be proved that k1, k2, · · · , kK are the eigenvalues of the original problem

Eq. (2.24) located inside Γ [1].

Let (kj,wj) be the eigenpairs of the generalized eigenvalue problem (2.29), and

let

Sm =
1

2πi

∫

Γ

zmA(z)−1Vdz,m = 0, 1, · · · , K − 1, (2.30)

where Sm areNe×lmatrix, with which one can form the matrix S = (S0,S1, · · · ,SM−1),

which is a Ne×Kl matrix. Then, the eigenvectors can be solved by using the formula:

xj = Swj, (2.31)

where xj are eigenvectors of the original nonlinear eigenvalue problem. The proofs of

the theorems are given in [1].

The contour integrals in Eqs. (2.26) and (2.30) are carried out numerically using

N -points trapezoidal rule. A circlular integration path is defined as Γ = γ + ρeiθ(0 ≤
θ < 2π) and the collocation points are pj = γ + ρe2πi(j+1/2)/N(j = 0, 1, 2, . . . , N − 1).

Mm and Sm are calculated numerically:

Mm ≈ M̂m =
1

N

N−1∑

j=0

(
pj − γ
ρ

)m+1

T(pj), (2.32)

Sm ≈ Ŝm =
1

N

N−1∑

j=0

(
pj − γ
ρ

)m+1

A(pj)V. (2.33)

As the number of eigenvalues located inside Γ is not known in advance, the number

of the eigenvalues has to be determined. To this end, the singular value decomposition

(SVD) of the Hankel matrix is performed. After the Hankel matrices are formed, the

SVD of HKl is carried out as follows:

HKl = CΣEH , (2.34)

where C is a Kl×Kl complex unitary matrix ,Σ is a Kl×Kl diagonal matrix with

nonnegative real numbers (singular values of HKL) on the diagonal, and EH is the

conjugate transpose of E which is a Kl×Kl complex unitary matrix. The Σ matrix
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can be written as

Σ =





σ1

σ2
. . .

σm′

σm′+1

. . .

σKl





, (2.35)

where σ1, σ2, . . . , σm′ , σm′+1, . . . , σKl are the singular values of the Hankel matrix and

are defined as positive. The singular values are listed in decreasing order σ1 >

σ2, . . . , > σKl. Let δ be a positive threshold value and omit the small singular values

σm′+1 < δ · σ1, then a diagonal m′ ×m′ matrix is obtained as follows:

Σm′ =





σ1

σ2
. . .

σm′




. (2.36)

Let H = CHH<
KlE , then Eq. (2.29) becomes the form as

Hw̄ = kΣw̄, (2.37)

where w̄ = EHw.

Let H′ = H(1 : m′, 1 : m′), and Hm′ = Σm′
− 1

2H′Σ
− 1

2
m′ , then the problem becomes

a linear eigenvalue problem for Hm′

Hm′y = λy. (2.38)

If it is necessary to know the number of eigenvalues located in the selected range

in advance, the stochastic estimation [58] of the number for eigenvalues is proposed

as follows:

m′ =
1

2πi

∮

Γ

tr

(
A(z)−1dA(z)

dz

)
dz, (2.39)

where m′ is the number of eigenvalues located in Γ, and tr (A(z)) is the matrix trace
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of A(z).

A numerical approximation of m′ can also be carried out by using trapezoidal

rule:

m′ ≈ m̂′ =
1

l

N−1∑

j=0

wj

l∑

i=1

(vT
i A(pj)

−1A′(pj)vi), (2.40)

where wj =
ρ
N e

2πi
N (j+1/2) are the wights.

In Eqs. (2.32) and (2.33), the integration path is shifted and scaled as well as

the eigenvalues in order to retain numerical accuracy. Let λ1, λ2, . . . , λm′ be the

eigenvalues of (2.38), then the eigenvalues can be recovered by

kj = ρλj + γ. (2.41)

where ρ and γ are the radius and center of the circular integration path respectively.

In SVD (2.34), let E = {e1, e2, . . . , eKl}, eHj be the row vectors of EH , let Em′ =

{e1, e2, . . . , em′}, then we have

wj = Em′Σ
− 1

2
m′ yj, (2.42)

substituting Eq. (2.42) into Eq. (2.31), we can recover the eigenvectors by

xj = SEm′Σ
− 1

2
m′ yj. (2.43)

Error analysis of contour integral method is given in [57]. The error of the trapezoidal

rule for a circle integration path is

ErrorN(f) =
1

2πi

∫

Γ

f(z)dz − ρ

N

N−1∑

j=0

f(ρωj
N)ω

j
N , ωN = exp

(
2πi

N

)
, (2.44)

where f is a holomorphic function on annulus

{
z ∈ C :

1

a−
<

|z|
ρ

< a+

}
, a± > 1.
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For all 1 < R− < a−,and 1 < R+ < a+, ErrorN(f) satisfies

ErrorN(f) ! max
|z|=R+ρ

|f(z)|G(R−N
+ ) + max

R−|z|=ρ
|f(z)|G(R−N

− ), (2.45)

where G(x) = x/(1− x), x *= 1.

Referring to the corollary in [57], the maximum error of the eigenvalues is given

as

max
j=1,...,m

|k∗
j − kj| ! C̄[RN−κ+1

− +RN+κ−1
+ ], (2.46)

where k∗
j denotes the eigenvalue located inside Γ, kj denotes the numerical result, C̄

is a constant depending on A,U,and V, R± here are

R− = max
|k∗−γ|<ρ

|k∗ − γ|
ρ

, (2.47)

R+ = max
|k∗−γ|>ρ

ρ

|k∗ − γ| , (2.48)

where k∗ is the eigenvalues of (2.24).

The algorithm for the block SS method can be the following steps:

1. Choose an appropriate integration path and input U , V ∈ CNe×L (commonly

set U = V), N , K, l, δ.

2. Set collocation points pj, j = 0, 1, ..., N − 1

3. Compute A(pj)−1V, j = 0, 1, ..., N − 1

4. Compute Ŝm, m = 0, 1, ..., 2K − 1

5. Compute M̂m = UHŜm, m = 0, 1, ..., 2K − 1

6. Construct Hankel matrices HKl and H<
Kl ∈ CKl×Kl

7. Detect the rank of HKl by performing SVD

8. Filter out meaningful singular values components σj < δ · σ1 and convert the

Hankel matrix H<
Kl to the form as

H = CHH<
KlE,

H′ = H(1 : m′, 1 : m′),
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Hm′ = Σ
− 1

2
m′ H′Σ

− 1
2

m′

If the threshold δ can not be used, then we suggest carrying out the estimation

for m′.

9. Compute the eigensolutions of the standard linear eigenvalue problem Hm′y =

λy

10. Construct S = (S0,S1, ...,SM−1)

11. Compute k1, k2, ...km′ , xj = SEm′Σ
− 1

2
m′ yj
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CHAPTER III

Eigensolutions of Homogenous Domains

3.1 Introduction

In the field of mechanics and physics, we need to solve boundary value problems

of partial differential equations. With an increasing interest in fast algorithms such as

fast multipole method [47, 48, 49, 59] and adaptive cross approximation [50, 51], the

BEM is becoming a more attractive numerical method for boundary value problems.

Eigenvalue analysis is also important in the field such as resonance of structure,

principal component analysis and design of auto mobile stereo system, etc. To solve

eigenvalue problems by using the BEM is not so easy because, unlike FEM, the system

matrix resulting from the BEM involves the eigenvalue parameter implicitly. In this

chapter, since we consider homogenous mediums, the wave number k and circular

frequency ω have the linear relation k = ω
C , where C is the wave speed. Therefore,

in this chapter, k is consider as the eigenvalue parameter. Let us write the system

equations as A(k)x = 0, then zeros of the determinant of the system matrix A(k)

are the eigenvalues, therefore we need to solve a transcendental eigenequation for

k, thus, it is extremely difficult to solve the eigenvalues numerically. It is worth,

however, investigating the eigensolver based on the BEM, because boundary-only

discretization makes a smaller system matrix, and with the same level of DOFs, the

BEM may give more accurate results because there is no domain discretization.

Looking into the literatures, over the last three decades, many efforts have been

made in applying the BEM to eigenvalue analyses. The direct search method (DSM)

[60, 61, 62], which was first employed to extract the eigenvalues of nonlinear eigenvalue

problem formulated by the BEM, requires to draw the profile of det[A] with respect

to k with its incremental variation, and the massive computational costs make it

inefficient and time consuming. In addition, it is often very difficult to distinguish
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the eigenvalues located in their vicinities.

In order to avoid solving the nonlinear eigenvalue problem directly, some trans-

form methods [63, 64, 65, 66, 67, 68, 69, 70, 71], which may convert the nonlinear

eigenvalue problem to a generalized or a standard eigenvalue problem that can be

solved by using standard solvers, are developed. Internal cell method (ICM) [63] sets

up a generalized eigenvalue problem by treating the term involving k as a internal

term in the Helmholtz equation. In the boundary integral equations, the funda-

mental solution of the Laplace equation is adopted instead of that of the Helmholtz

equation, and in addition to the boundary discretization, the domain is divided into

internal cells. Nardini and Brebbia proposed an approach named dual reciprocity

method (DRM) to free vibration analyses [64, 65], in which the internal term can

be transformed to boundary integrals by applying the divergence theorem twice. For

acoustic problem, the sound pressure is interpolated using a global shape function,

but for elasticity problems, additional internal points or zoned boundary techniques

are required, in order to obtain accurate solutions [66]. Furthermore, the efficiency

of the DRM for the eigenvalue extraction of two-dimensional acoustic cavities is dis-

cussed [67]. Recently, DRM is applied in hybrid variational principle based meshless

method to solve eigenvalue problems [68, 69]. To transform the domain integrals

into boundary integrals, Nowak and Brebbia [70] proposed the multiple reciprocity

method (MRM), which is regarded as an extension of the idea of DRM. This method

employs a sequence of functions related to fundamental solution to constitute a set of

higher order fundamental solutions. Similarly, Kirkup and Amini [71] applied series

expansion method (SEM), which solve the Helmholtz equation by making an equiv-

alent procedure of MRM. This technique is also applied to eigenvalue problems for

solid of anisotropy [72] and piezoelectric solid [73]. Advantages and drawbacks for

some of these methods are discussed by Kamiya, etc. [74] and Ali [75].

In this Chapter, the block SS method is applied to solve BEM-based nonlinear

eigenvalue problem of 2D and 3D acoustic cavities. The standard boundary integral

equation and constant triangular elements are used. Without any internal inter-

polation and discretization, boundary-only discretization results in a more efficient

preprocessing and a small sized of the system matrix. For multiply connected do-

mains which includes a internal closed boundary, the methodology yields spurious

eigenvalues. Burton-Miller’s method is employed, and it is found that the real spuri-

ous eigenvalues shift with imaginary parts added. Numerical examples for 2D square,

3D spherical and cubic cavities are given to demonstrate the effectiveness of the pro-

posed methodology for solving eigenfrequencies of an acoustic problem for a simply
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connected region. for acoustic problem. A multiply connected region enclosed with

cubic and spherical boundaries is also investigated.

3.2 Formulations

Let p be the pressure of the time-harmonic sound wave propagating in a domain

Ω ⊂ R3. Then p satisfies the Helmholtz equation:

∇2p(x) + k2p(x) + f(x) = 0 in Ω, (3.1)

where x is a point in Ω, k = ω/C is the wave number, and f(x) is a source term.

The boundary conditions are written as

p(x) = p̄(x) on Sp, (3.2)

∂p(x)

∂n(x)
= iρωv̄(x) on Sv, (3.3)

p(x) = zv(x) on Sz, (3.4)

where ρ, v(x), and z denote the density of the medium, the normal component of the

particle velocity and the acoustic impedance, respectively, i denotes the unit imagi-

nary number and n(x) denotes the outward normal direction at x to the boundary.

The fundamental solutions for the Helmholtz equation are given as

p∗(x, y) =
1

4
H(1)

0 (kr) for 2D, (3.5)

p∗(x, y) =
1

4πr
eikr for 3D, (3.6)

where x and y are two different point in the domain and r = |y − x|, H(1)
0 denotes

the Hankel function of the first kind of order zero.

In this chapter, the derivation of the BEM formulations for 3D case is presented. In

order to remove the spurious eigenvalues, Burton-Miller’s method for 3D is employed,

and the hypersingular integral resulting from the normal derivative is formulated

explicitly.
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The integral representation for p(x) can be written as follows:

p(x) =

∫

S

p∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S

∂p∗(x, y)

∂n(y)
p(y) dSy +

∫

Ω

p∗(x, y)f(y) dΩy, x ∈ Ω.

(3.7)

Now the case in which the internal point x approaches a point on the boundary,

is considered. Let the boundary be discretized into triangular constant elements and

the boundary point which the internal point x approaches is assumed to be the center

of geometry x of the triangle ∆x. Since the fundamental solution and its derivative

has singularities at r = |x− y| = 0, we attach a hemisphere domain Ωε of radius ε

over x to circumvent r = 0 in evaluating the boundary integrals for the triangle ∆x,

as shown in Fig. 3.1 (b). Let also the boundary from which the circle is excluded

be Γε and the hemisphere boundary be Sε. The boundary integral for Γε and Sε are

evaluated separately. The integrals are defined as follows:

H1 =

∫

Sε

p∗(x, y)
∂p(y)

∂n(y)
dSy, (3.8)

H2 = −
∫

Sε

∂p∗(x, y)

∂n(y)
p(y) dSy, (3.9)

I1 =

∫

Γε

p∗(x, y)
∂p

∂n
(y) dSy, (3.10)

I2 = −
∫

Γε

∂p∗(x, y)

∂n(y)
p(y) dSy. (3.11)

Taking the limit ε→ 0, above integrals are obtained as

lim
ε→0

H1 = 0, (3.12)

lim
ε→0

H2 =
1

2
p(x), (3.13)

lim
ε→0

I1 =




i

2k



1− 1

2π

3∑

m=1

θm2∫

θm1

eikR̄(θ)dθ








∂p

∂n
(x), (3.14)

lim
ε→0

I2 = 0. (3.15)
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Figure 3.1: (a) A triangular element ∆x on the boundary. (b) An infinitesimal hemi-
sphere domain Ωε is attached to the neighborhood of x.

Finally, the conventional boundary integral equation (CBIE) is obtained as follows:

C(x)p(x) =

∫

S\∆x

p∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S\∆x

∂p∗(x, y)

∂n(y)
p(y) dSy

+




i

2k



1− 1

2π

3∑

m=1

θm2∫

θm1

eikR̄(θ)dθ








∂p(x)

∂n(x)
+

∫

Ω

p∗(x, y)f(y) dΩy, x ∈ S,

(3.16)

where C(x) = 1/2, if x is located at a smooth part of the boundary, the Cauchy

principal-value integrals are evaluated explicitly and the variables for this evaluation

are shown in Fig. 3.2.

Figure 3.2: The variables used for evaluating the integrals for Γε.

The normal derivative of the integral equation in a direction n(x) defined at point

x is written as
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∂p(x)

∂n(x)
=

∫

S

p̂∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S

∂p̂∗(x, y)

∂n(y)
p(y) dSy +

∫

Ω

p̂∗(x, y)f(y) dΩy, x ∈ Ω

(3.17)

where (̂ ) = ∂( )/∂n(x), and

p̂∗(x, y) =
∂p∗(x, y)

∂n(x)

=
−1

4πr2
(1− ikr)eikr

∂r

∂n(x)
.

(3.18)

The normal derivative ∂r/∂n(x) can be evaluated by using

∂r

∂n(x)
= r,ini(x). (3.19)

where r,i and ni(x), (i = 1, 2, 3) are the Cartesian components of gradients of r and

the unit outward normal vector, respectively. Note that the Einstein’s summation

convention is applied for repeated indices.

The following integrals are defined as point x approaches a point on the boundary,

J1 =

∫

Sε

p̂∗(x, y)
∂p(y)

∂n(y)
dSy, (3.20)

J2 = −
∫

Sε

∂p̂∗(x, y)

∂n(y)
p(y) dSy, (3.21)

K1 =

∫

Γε

p̂∗(x, y)
∂p(y)

∂n(y)
dSy, (3.22)

K2 = −
∫

Γε

∂p̂∗(x, y)

∂n(y)
p(y) dSy. (3.23)

Taking the limit ε→ 0, above integrals are evaluated as follows:

lim
ε→0

J1 =
1

6

∂p(x)

∂n(x)
(3.24)

J2 =
1

2ε
p(x) +

1

3

∂p(x)

∂n(x)
+O(ε2), (3.25)

lim
ε→0

K1 = 0, (3.26)
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K2 = − 1

2ε
p(x)− ik

2
p(x) +






3∑

m=1

θm2∫

θm1

eikR̄(θ)

4πR̄(θ)
dθ





p(x). (3.27)

Substituting the above integrals into Eq. (3.17), the representation for normal

directional derivative of the boundary integral equation (NDBIE) is obtained as

1

2

∂p(x)

∂n(x)
=

∫

S\∆x

p̂∗(x, y)
∂p(y)

∂n(y)
dSy −

∫

S\∆x

∂p̂∗(x, y)

∂n(y)
p(y) dSy

− ik

2
p(x) +






3∑

m=1

θm2∫

θm1

eikR̄(θ)

4πR̄(θ)
dθ





p(x) +

∫

Ω

p̂∗(x, y)f(y) dΩy, x ∈ S,

(3.28)

in which all the Cauchy principal-value integrals are also evaluated explicitly.

To identify the spurious eigenvalues, Burton-Miller’s method [55] provides the

formulation that requires the combination of CBIE (3.16) and NDBIE (3.28) by mul-

tiplying a coefficient µ:

CBIE + µNDBIE, (3.29)

where µ is typically set as µ = i/k.

For free vibrations, the source term f(y) = 0. Discretizing the boundary integral

equation in Eq. (4.5) with Ne constant triangular elements and considering the point

x of the fundamental solution at the center of geometry of each triangular element,

the following Ne algebraic equations can be obtained:

Bp = Gq, (3.30)

where B and G are two Ne × Ne matrices, and p = {p} and q = { ∂p
∂n} are vectors

of Ne components. Furthermore, substituting the homogenous boundary condition

and rearranging the unknowns to the left-hand side, a nonlinear eigenvalue problem

is obtained as follows:

A(k)x = 0. (3.31)

If there is nontrivial solution to Eq. (3.31), the following relation must hold:

det[A(k)] = 0. (3.32)
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Figure 3.3: A square structure.

The algebraic equations in Eq. (3.31) finally leads to a nonlinear eigenvalue problem

in which the eigenvalue parameter k is involved implicitly in the elements of matrix

A. The eigenvalues are the roots of det[A(k)] = 0. Eq. (3.32) is a highly nonlinear

transcendental equation for k, hence it is very difficult to solve analytically. In order to

solve the nonlinear eigenvalue problem in Eq. (3.31), the block SS method is employed

as an eigensolver.

3.3 Numerical examples

3.3.1 2D acoustic cavity

Consider a simple 2D square structure with the edges of 1[m] as shown in Fig.

3.3. Neumann boundary conditions are given on all the edges.

The theoretical solution for the eigenvalues is

k∗ = π

√
(
t1
L1

)2 + (
t2
L2

)2 (t1 = 0, 1, · · · , t2 = 0, 1, · · · ) (3.33)

for this square model L1 = L1 = 1 and the closed form of the eigenmode is

pe = A cos(t1πx1) cos(t2πx2). (3.34)
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The boundary is discretized into 40 quadratic isoparametric elements. The circular

integration path Γ = γ + ρeiθ, γ = (7.5, 0), ρ = 5.5 is used and the parameters

K = 4 and l = 10. Fig. 3.4 shows that the normalized singular values σi/σmax,

(i = 1, 2, ..., Kl) are greater than 10−12. In this case, to filter out the meaningful

singular values, usually one can increase either of l or N until the normalized singular

values less than 10−12 emerge, if the fixed threshold values δ = 10−12 is given [1].

However, it can be found that there is a step change of the normalized singular values

at 10−5 ∼ 10−7 in Fig. 3.4.

0 10 20 30 40
–10

–8

–6

–4

–2

0

ith singular values

lo
g

1
0
(σ

/σ
m

ax
)

Singular value

Figure 3.4: The singular values for fixed parameter k = 4 and l = 10.

The behavior of the singular values versus N is shown in Fig. 3.5. It can be found

that a separation of the singular values emerges and for N > 100, singular values are

well-separated. The open triangles represent the meaningful singular values and the

open circles represent the separated small singular values. If the threshold value δ is

chosen in the separation range 10−5 ∼ 10−7 to filter the normalized singular values

σi/σmax, the small singular values can be cut off. With the imaginary tolerance

threshold value set as 0.05, the result with N = 128 and other parameters same

as in the previous computation is shown in Table 3.1. Eighteen real eigenvalues

are obtained by the block SS method in reasonable accuracy. Fig. 3.6 shows the

integration path, the open circles and the location of the eigenvalues represented by

the rhombuses.
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Figure 3.5: The separation of singular values.
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Figure 3.6: The integration path and obtained eigenvalues.

The eigenmodes of the interior domain can be computed by using the eigenpairs

obtained by the block SS method. The sound pressure amplitudes of the internal

points are solved by substituting the eigenvalues and eigenvectors into integral equa-

tion. The eigenmodes corresponding to the simple eigenvalues
√
2π and 2

√
2π are

shown in Fig. 3.7 and Fig. 3.8, respectively.
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Figure 3.7: The eigenmode corresponding to
√
2π
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Figure 3.8: The eigenmode corresponding to 2
√
2π
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Table 3.1: Numerical results of the eigenvalues and the relative error

i t1 t2 ki |k
∗
i −Re[ki]

k∗i
| × 100 [%]

1 1 0 3.1415− 2.7247× 10−4i 0.002930
2 0 1 3.1419 + 2.0373× 10−4i 0.009471
3 1 1 4.4428 + 5.7581× 10−4i 0.002261
4 2 0 6.2832 + 1.3439× 10−5i 0.0009452
5 0 2 6.2877 + 3.4249× 10−4i 0.07165
6 2 1 7.0205 + 1.8360× 10−3i 0.06077
7 1 2 7.0270− 1.3931× 10−3i 0.03083
8 2 2 8.8845− 2.4201× 10−3i 0.01474
9 3 0 9.4230− 8.9682× 10−4i 0.01939
10 0 3 9.4280− 5.5301× 10−3i 0.03422
11 3 1 9.9335− 1.9236× 10−3i 0.01098
12 1 3 9.9352 + 1.2624× 10−4i 0.006404
13 2 3 11.3273 + 7.9114× 10−4i 0.0009067
14 3 2 11.3287− 1.5518× 10−4i 0.01388
15 0 4 12.5667 + 6.3867× 10−4i 0.002423
16 4 0 12.5669 + 3.1598× 10−4i 0.004116
17 1 4 12.9537 + 8.2268× 10−4i 0.004252
18 4 1 12.9539 + 6.1463× 10−4i 0.006124

3.3.2 3D acoustic cavities

For 3D case, three numerical models are presented: a spherical model with Dirich-

let boundary condition, a cubic box with mixed boundary condition, both of which

have the analytical solutions, and a doubly connected region consisting of cubic

boundary and spherical boundary. For the cubic box model, the eigenmodes cor-

responding to the nondegenerate eigenvalues are presented, and for the third model,

the spurious eigenvalues resulting from the spherical boundary are discussed.

In all the examples, the standard boundary element method and constant trian-

gular elements are adopted.

3.3.2.1 Eigenvalues of interior acoustic problem of a spherical model with

Dirichlet boundary condition

In Fig. 3.9(a), an internal field of a unit spherical structure with radius R = 1

[m] is considered. The acoustic medium is assumed to be air with the sound speed

c = 340 [m/s]. The Dirichlet boundary condition is given on the surface of the sphere.

The general solution of Helmholtz’ equation, regular at the origin, is given as
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

(a) Spherical field model. (b) Meshed model of the spherical field.

Figure 3.9: Spherical field model with 490 elements.

pe(r, θ, ϕ) =
∞∑

α=0

α∑

β=−α

Cαβjα(kr)Y
β
α (θ, ϕ), (3.35)

where k = 2πf
C is the wave number, Cαβ are the Fourier coefficients determined by the

boundary conditions, and jα denotes the spherical Bessel function of integer order α.

Also, Y β
α = CpP β

α (cos θ)e
iβϕ, where P β

α (cos θ) are associated Legendre polynomials,

and Cp is a constant.

Obviously, the eigenvalues for k are zeros of jα(kR) for the Dirichlet boundary

condition. Due to the spherical Bessel function with order α and β varying from −α
to α, we have the multiplicity of the eigenvalues corresponding to the zero points

of the spherical Bessel functions. The multiplicity of the eigenvalues now becomes

2α+1. The first three zero points of the spherical Bessel functions of 0th to 5th order

and their multiplicities are shown in Table 3.2.

Table 3.2: The multiplicity of the Dirichlet eigenvalues.
α zeros points of jα multiplicity
0 3.14159, 6.28319, 9.42478 1
1 4.49340, 7.72525, 10.90412 3
2 5.76346, 9.09501, 12.32294 5
3 6.98793, 10.41711, 13.69802 7
4 8.18256, 11.70491, 15.03966 9
5 9.35581, 12.96653, 16.35471 11

As shown in Fig. 3.9, the boundary of the spherical field is divided into 490
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triangular elements, hence the DOF of the system becomes Ne = 490. By taking

as Γ = γ + ρeiθ, γ = (6, 0), ρ = 2.6 for the integration path, we obtain six different

eigenvalues located in the domain as k∗=4.49340, 5.76346, 6.28319, 6.98793, 7.72525,

8.18256, with the parameter set N = 256, K = 4, l = 15, and δ = 10−12. Both the

obtained simple and multiple eigenvalues are shown in Table 3.3. It is found that the

multiplicities of the eigenvalues smaller than l are kept.

Fig. 3.10 shows that the eigenvalue k1 approximating to k∗ = 3.14159, lying

outside the periphery of the domain, may also be obtained, and can be sorted from

the results lying in the given domain. This is because the extension of the implicit

filter function, and the situation can be improved by increasing the number of the

points used for trapezoidal rule (we do not plot complex results here as the complex

eigenvalues are not discussed in this thesis). Fig. 3.12 shows that the eigenvalues

located on the periphery of the integration path will disappear as the filter function

is approximated more accurately, however, the accuracy of the numerical results will

not be improved.

  











 


Figure 3.10: Eigenvalues of spherical model with N = 256.

Observing the behavior of the normalized singular values in Fig. 3.11, it is found

that the singular values can be divided into three groups: (i) Becoming stable soon

from the beginning (circular symbols); (ii) Decaying relatively slowly (triangular sym-
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Table 3.3: The Dirichlet eigenvalues of spherical model.

i ki |k
∗
i −Re[ki]

k∗i
| × 100 [%]

1 3.1703− 7.4529× 10−6i 0.9145
2 4.5330 + 3.0384× 10−5i 0.8803
3 4.5352 + 3.4117× 10−5i 0.9295
4 4.5343 + 3.2560× 10−5i 0.9107
5 6.3407 + 6.6061× 10−5i 0.9152
6 5.8175 + 5.5999× 10−5i 0.9374
7 5.8153 + 5.1600× 10−5i 0.9000
8 5.8140 + 4.8672× 10−5i 0.8766
9 5.8135 + 4.7898× 10−5i 0.8686
10 5.8131 + 4.7072× 10−5i 0.8610
11 7.7932 + 9.3120× 10−5i 0.8796
12 7.7970 + 1.0455× 10−5i 0.9288
13 7.7956 + 9.9935× 10−5i 0.9101
14 7.0507 + 6.8848× 10−5i 0.8977
15 7.0497 + 6.7057× 10−5i 0.8838
16 7.0489 + 6.5255× 10−5i 0.8723
17 7.0483 + 6.3485× 10−5i 0.8641
18 7.0470 + 6.0589× 10−5i 0.8449
19 7.0461 + 5.9277× 10−5i 0.8327
20 7.0459 + 5.9148× 10−5i 0.8301
21 8.2471 + 4.9937× 10−5i 0.7882
22 8.2475 + 4.9487× 10−5i 0.7932
23 8.2526 + 5.3112× 10−5i 0.8560
24 8.2520 + 6.1446× 10−5i 0.8481
25 8.2488 + 5.3377× 10−5i 0.8096
26 8.2491 + 5.2274× 10−5i 0.8130
27 8.2506 + 4.9398× 10−5i 0.8319
28 8.2501 + 5.4687× 10−5i 0.8255
29 8.2502 + 5.0740× 10−5i 0.8269
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Figure 3.11: Separation of singular values of spherical model.

bols); (iii) Decaying fastest until they become somewhat stable. Group (ii) decays

slowly because the corresponding eigenvalues (including some complex eigenvalues

that are also spurious eigenvalues) are located near the periphery of the integration

path.

Above behaviors of the singular values stem from the numerical evaluation of the

contour integral, the BEM model, and also the distribution of eigenvalues.

According to Eq. (2.46), the error of the contour integral depends on N and the

integrand, while the error of the eigenvalues obtained by the block SS method is re-

lated to the constants C̄ (it is introduced in Eq. (2.46)) and N . C̄ is independent of

N in the case of a circular integration path. Therefore, when there are eigenvalues

located near the periphery of integration path, R± tend to be 1. Therefore, N may

not be a main factor to the accuracy of numerical results. For a certain model, it is

more efficient to use small number for N as each point for trapezoidal rule costs one

BEM calculation. Under the promise of a reasonable accuracy, N should be chosen as

small as possible. There are two gaps formed by group (i) and group (ii), group (ii)

and group (iii). If the threshold is chosen located in the first gap, only the eigenvalues

located inside the integration path are obtained. However, with the threshold located

in the latter gap, the eigenvalues located outside of the neighborhood of the integra-

tion path may be obtained. In both cases, the results are in reasonable accuracy.
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Figure 3.12: Eigenvalues of spherical model with N increased.

However, if a threshold located out of the gaps is used ghost results may be obtained,

and they can be considered as eigenvalues located out of the domain, but they are

not accurate.

It is found that the errors in the BEM are rather large comparing with those of the

nonlinear eigenvalue problem example in [1]. The phenomenon is attributed to the

discretization of the boundary of the BEM model. The next example shows that the

method works well for a mixed boundary condition, furthermore, the eigenvectors are

obtained and the accuracy may be improved by increasing the number of the meshes

of the BEM model.

3.3.2.2 Cubic model with mixed boundary condition

Another example is a cubic box with edge length L = 1 [m], as depicted in

Fig. 3.13(a), with the same acoustic medium with the previous model, the Dirichlet

boundary condition is given on its left and right surfaces, while Neumann boundary

condition is given on the other four surfaces that are considered as rigid wall. In this

case the eigenvalues for the wave number k are given in the form [76]:

π
√

n2
1 + n2

2 + n2
3, (3.36)
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(a) Cubic box model. (b) Meshed model of cubic box.

Figure 3.13: Cubic model with 384 elements.

and the eigenmode is given as

pe(x, y, z) = sin(n1πx) cos(n2πy) cos(n3πz), (3.37)

where n1 = 1, 2, 3, · · · , n2 = 0, 1, 2, 3, · · · , and n3 = 0, 1, 2, 3, · · · . Degenerate eigen-

values also exist because of the cubic structure. Noticing that n1 *= 0, the analytical

solutions are given in Table 3.4.

Table 3.4: Multiplicity of eigenvalues.√
n2
1 + n2

2 + n2
3 k∗ multiplicity

1 3.14159 1√
2 4.44288 2√
3 5.44140 1
2 6.28319 1√
5 7.02481 4√
6 7.69530 3

As shown in Fig. 3.13(b), the surface of the cubic box is divided into 384 triangular

constant elements. By taking as Γ = γ + ρeiθ, γ = (5.5, 0), and ρ = 2.4 to define

the integration path, six eigenvalues located in the domain are obtained: k∗=3.14159,

4.44288, 5.44140, 6.28319, 7.02481, and 7.69530, with the parameters set N = 256,

K = 4, l = 15, and δ = 10−12. The four-point Gausian quadrature rule is also used

for the evaluation of the contour integral, and the integral interval is divided into

64 segments. The total number of BEM analyses is 64 × 4 = 256 and the same
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results are obtained with the same computation cost as that of trapezoidal rule. The

numerical results and relative errors are given in Table 3.5. Both in the previous
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Figure 3.14: Eigenvalues of cubic model with mixed boundary condition.
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Figure 3.15: Separation of singular values of cubic model.
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Table 3.5: The mixed boundary eigenvalues of cubic model.

i ki |k
∗
i −Re[ki]

k∗i
| × 100 [%]

1 3.1609 + 5.8744× 10−3i 0.6154
2 5.4619− 7.1328× 10−3i 0.3767
3 6.3164− 8.1983× 10−3i 0.5289
4 7.7401− 1.7383× 10−3i 0.5817
5 7.7152− 2.6113× 10−2i 0.2583
6 7.7152− 2.6113× 10−2i 0.2583
7 7.0406− 9.0043× 10−3i 0.2243
8 7.0624 + 6.0769× 10−3i 0.5347
9 7.0624 + 6.0769× 10−3i 0.5347
10 7.0319− 9.7160× 10−3i 0.1002
11 4.4601 + 2.5835× 10−3i 0.3878
12 4.4601 + 2.5835× 10−3i 0.3878

and this examples, we used the same threshold δ = 10−12 to filter out the small

singular values of the Hankel matrix HKl. This threshold is so small that it can be

considered as a conservative choice. Because we choose the parameters such as l and

K to make as there is no rank deficiency for the reduced eigenspace, there are always

small singular values or we can increase l and K. In Fig. 3.15, we find that the small

singular values decay rapidly while N increases, and the gap between the remaining

singular values and the small singular values become sufficiently large at N = 50,

and becomes stable at N = 100. Different from the previous example, there is no

eigenvalue located outside the neighborhood of integration path, thus it can be found

that there are only two groups of singular values.

The eigenmodes corresponding to the non-degenerated eigenvalues can be calcu-

lated by using Eq. (2.43), in which S may be formed using intermediate data Sj.

A τ -multiplicity eigenvalue is, however, corresponding to τ independent eigenvec-

tors, so that the basis is not unique for this case. Fig. 3.16 shows the eigenmodes

corresponding to the non-degenerate eigenvalues.

The numbers of boundary elements used for analyzing the cubic model are 384,

864, 1536, 2400, and 3456. The same parameter values as those used in the previous

examples are used for the block SS method. It is found that the accuracy is improved

effectively by increasing the number of boundary elements of the model, but increase

in the number of points for trapezoidal rule does not change the accuracy much when a

threshold located in the separation area of singular values is chosen. The convergence

behavior of the relative error of the eigenvalues is shown in Fig. 3.17.
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(a) k = 3.16093. (b) k = 5.46190.

(c) k = 6.31642. (d) k = 10.90076.

Figure 3.16: Eigenmodes of the cubic cavity.
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Figure 3.17: The relative error corresponding to the different number of elements of
cubic model.

3.3.2.3 Multiply connected domain with cubic and spherical boundary

Another example is shown in Fig. 3.18(a), in which a multiply connected domain

enclosed with a cubic with edge length Lc = 1[m] and spherical boundary Ss with

radius rc = 0.4[m] is considered. Neumann boundary condition is given on all the

boundaries of the model. This example is given to demonstrate that the proposed

methodology gives spurious eigenvalues resulting from the spherical boundary. Al-

though it is an interior problem, the problem is regarded, for the spherical boundary

Ss, as an exterior problem with Neumann boundary condition by the block SS method.

Therefore, the spurious eigenvalues, which are given by corresponding interior prob-

lem with Dirichlet boundary condition, are also obtained. The elimination of the

spurious eigenvalues resulted by the BEM for multiply-connected domain has been

investigated by previous research [54, 77, 78, 79], wherein the real spurious eigenvalues

are removed from the real axis. However, what is actually done by the Burton-Miller

method is that a large imaginary part is given to the spurious eigenvalue and thus

the spurious eigenvalue is removed from the real axis. The block SS method calculate

all the eigenvalues within the contour in the complex plane, therefore, the removed

real spurious eigenvalues may appear as complex values within this contour.
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(a) Doubly connected region.

(b) Meshed model of doubly connected region.

Figure 3.18: Structure of doubly connected region with cubic and spherical boundary
and its meshed model.
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Table 3.6: The eigenvalues of the the multiply connected do-

main.

i ki i ki

1 6.4841 + 4.2477× 10−3i 20 9.9249 + 1.2185× 10−2i

2 6.4847 + 4.2491× 10−3i 21 9.9257 + 1.2188× 10−2i

3 6.4852 + 4.2494× 10−3i 22 9.9268 + 1.2195× 10−2i

4 6.9832 + 5.3121× 10−3i 23 10.050 + 1.1011× 10−2i

5 6.9843 + 5.3178× 10−3i 24 10.051 + 1.1018× 10−2i

6 6.9860 + 5.3255× 10−3i 25 10.053 + 1.1035× 10−2i

7 7.4343 + 7.2119× 10−3i 26 10.165 + 1.1043× 10−2i

8 7.4345 + 7.2137× 10−3i 27 10.165 + 1.1047× 10−2i

9 7.4347 + 7.2155× 10−3i 28 10.238 + 1.1373× 10−2i

10 7.5648 + 8.9061× 10−3i 29 10.413 + 1.7243× 10−2i

11 7.9366− 5.7301× 10−5i* 30 10.921 + 1.3084× 10−2i

12 8.5184 + 8.9087× 10−3i 31 10.922 + 1.3084× 10−2i

13 8.5203 + 8.9195× 10−3i 32 10.922 + 1.3089× 10−2i

14 8.9685 + 9.8402× 10−3i 33 11.348 + 3.1952× 10−5i*

15 8.9687 + 9.8319× 10−3i 34 11.354 + 1.9501× 10−5i*

16 8.9701 + 9.8340× 10−3i 35 11.361 + 1.0512× 10−5i*

17 9.3733 + 6.5595× 10−3i 36 11.417 + 1.7828× 10−2i

18 9.3735 + 6.5617× 10−3i 37 11.417 + 1.7835× 10−2i

19 9.3743 + 6.5659× 10−3i 38 11.417 + 1.7840× 10−2i

* Spurious eigenvalues corresponding to the boundary Ss.

Table 3.7: The modified spurious

eigenvalues obtained by Burton-

Miller’s method.

i k̃i

11 9.4506− 2.6060i

33 12.7665−3.0248i

34 12.7919−3.0088i

35 12.7783−3.0165i

The spurious eigenvalues and their multiplicities shown in Table 3.6 are in conformity

with the corresponding interior problem’s analytical solution that is determined by

Eq. (3.35). Among these spurious eigenvalues, (7.9366,−5.7301× 10−5) corresponds
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Figure 3.19: The shift of spurious eigenvalues (the dashed lines denote the shift
tracks).

to the first zero point of j0, whose multiplicity is 1, and (11.354, 1.95006 × 10−5i)

corresponds to the first zero point of j1 whose multiplicity is 3. In Fig. 3.19, the shift

of the spurious eigenvalues is shown as the parameter µ changes as i/8k,i/7k,...,i/k,

and it is found that larger µ gives larger imaginary parts for the spurious eigenvalues.

Most interestingly, from the Fig. 3.20, it can be seen that the eigenmode corresponding

to the spurious eigenvalue k = 7.9366 is very similar to the eigenmode corresponding

to k = 7.5648, since the real spurious eigenvalue 7.9366 is similar to 7.5648, and

waves with similar wave lengths and wave numbers propagate in the structure. So,

the eigenmodes shown in Fig. 3.20 also have difference in the distribution of the

amplitude of the sound pressure.

It seems very difficult to distinguish the spurious eigenvalues from the numerical

results if the analytical solution of the problem is not known in advance. However, as

we show in Table 3.7 the modified spurious eigenvalues corresponding to the eigen-

values for number 11, 33, 34, and 35 shown in Table 3.6, it can be seen that large

imaginary components are added to the spurious eigenvalues by using Burton-Miller’s

method. This means that Burton-Miller’s method can shift the spurious eigenvalues

to complex numbers. Therefore, these spurious results can be filtered out very easily

by checking the imaginary parts. Comparing the results in Table 3.6 and Table 3.7, it

is found that the added number should not be constant but depend on the eigenvalue

and the parameter µ.
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(a) k = 7.5648. (b) k = 7.9366 (spurious eigenvalues).

Figure 3.20: Eigenmodes of the cubic cavity with rigid spherical inclusion.

3.4 Conclusion

In this chapter the BEM combined with the block SS method is applied to the

calculation of eigenfrequencies of 2D/3D acoustic cavities. With this methodology,

we can extract the accurate eigenvalues lying in a given domain in the complex plane

of wave number by solving a generalized eigenvalue problem by means of numerical

contour integration, by which we can convert the original eigenspace to a relatively

small one under concern.

For the 2D acoustic cavity, a relatively large threshold δ = 10−6 is chosen for

the rank detection of the Hankel matrices. Also for the 3D cases, by observing the

behavior of the singular values, a relatively larger threshold value can be determined to

filter out the meaningful eigenvalues. The threshold is not unique for different models.

Moreover, if a multiply connected domain with a inclusion is considered as an acoustic

cavity, the boundary of the rigid inclusion generates spurious eigenfrequencies of real

numbers. To identify the spurious eigenvalues obtained numerically, we employed

the boundary integral equation provided by Burton-Miller’s method, by which large

imaginary components are added to these spurious eigenvalues.

Although we applied the methodology only to the interior acoustic problem, it

can also be a promising solver for the computation of scattering frequencies [46],

since it can calculate the complex eigenvalues directly and the BEM satisfies the

radiation condition for infinite problem automatically. The resonance of exterior

problem remains as a future research topic.
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In the next chapter, the Bloch eigenvalue problem is calculated repeatedly for

the characterization of the dispersion relation, and the rank detection is performed

by observing the difference of singular values. Furthermore, Burton-Miller’s method

is used to remove the spurious eigenvalues resulted by the embedded scatterers in

coefficient matrix of the BEM.
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CHAPTER IV

Phononic Structures for Acoustic Problem

4.1 Introduction

The composite structures so-called phononic crystals, which show band structures

for acoustic/elastic waves, are considered as elastic analogous extensions of photonic

crystals. The existence of band gaps in phononic crystals is also observed by both the-

oretical studies [23, 24] and experimental investigations [80, 81]. It is shown that the

propagation of elastic waves with particular frequencies within band gaps is forbidden

by the phononic crystals. This property enables phononic crystals to provide a sound

and vibration isolated environment as a result of the created band gaps. Furthermore,

phononic crystals can also be used as wave filters or waveguides with a moderate num-

ber of dot defects or linear defects distributed in a certain way [82, 83, 84].

Several numerical methods have already been developed for computation of band

structures of phononic crystals, for example, plane wave expansion (PWE) method

[23, 24, 32], multiple-scattering theory (MST) method [33, 34, 35], finite difference

time domain (FDTD) method [36, 37, 85], wavelet method [38] and finite element

method (FEM) [39].

The research interest in the analysis of phononic crystals is the band gaps search-

ing. Similar to photonic crystals, numerical analyses of band gaps for phononic crys-

tals usually result in eigenvalue problems. The boundary element method (BEM) is

one of the widely used numerical computation tools for wave problems, requiring the

discretization of the boundary only. For scattering problems, it satisfies the radiation

conditions by giving appropriate Green’s function. There are two methodologies of

analysis for periodic composite structures: one is to give the Bloch conditions on a

unit cell and use the conventional Green’s function [40], and the other is to apply the

Bloch conditions directly to the wave equation [41, 42]. However, both methodologies
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result in nonlinear eigenvalue problems when they are applied to obtaining dispersion

curves of phononic crystals. The transcendental eigenequation makes it difficult to

solve the eigenvalues by standard eigensolvers directly. For photonic crystals, there

is a work in which the nonlinear eigenvalue problem is converted to a generalized one

by transforming the system matrix with the former methodology [40].

In this section, the work is undertaken to provide a new methodology of band

structure calculation for two-dimensional acoustic phononic crystals. The BEM com-

bined with the block SS method is employed to compute dispersion curves. The

constant elements are adopted for simplicity of numerical treatment. We have to

mention that the scattering problem analyzed by the BEM yields spurious frequen-

cies, which can be removed by Burton-Miller’s method [86]. The application of the

technique is demonstrated through band gap analyses of homogenous and composite

structures. The results show the effectiveness of the proposed method.

4.2 Formulations

For 2D acoustic phononic crystals, we have the same governing equation in Eq.

(3.1), and the fundamental solution in 2D case in Eq. (3.5). Moreover, it is an

exterior problem which is defined in an infinite domain and no energy is radiated

from infinity to the field, therefore the sound pressure must satisfy the Sommerfeld

radiation condition [87]:

lim
|ξ|→+∞

|ξ|
τ−1
2

(
∂p(ξ)

∂|ξ| − ikp(ξ)

)
= 0, (4.1)

where τ=2 for 2D case.

Since Burton-Miller’s method requires NDBIE, we give the normal derivatives of

the 2D fundamental solution as follows,

q∗(x, y) =
∂p∗(x, y)

∂n(y)
= −ki

4
H(1)

1 (kr)
∂r

∂n(y)
, (4.2)

p̂∗(x, y) =
∂p∗(x, y)

∂n(x)
= −ki

4
H(1)

1 (kr)
∂r

∂n(x)
, (4.3)
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q̂∗(x, y) =
∂q∗(x, y)

∂n(x)

= −k2i

8
[H(1)

0 (kr)−H(1)
2 (kr)]

∂r

∂n(x)

∂r

∂n(y)

−ki

4
H(1)

1 (kr)
∂2r

∂n(x)∂n(y)
. (4.4)

where ( )∗ denotes the fundamental solution, and (̂ ) = ∂( )/∂n(x).

Let us write the boundary integral equation given by Burton-Miller’s method,

presented by Eqs. (3.5), (4.2), (4.3) and (4.4) as follows,

1

2
p(x) +−

∫

S

q∗(x, y)p(y)dS(y)−
∫

S

p∗(x, y)q(y)dS(y)

+
1

2
µq(x) + µ=

∫

S

q̂∗(x, y)p(y)dS(y)− µ−
∫

S

p̂∗(x, y)q(y)dS(y) = 0, (4.5)

where µ is chosen as i/2k, −
∫

denotes that the integral is evaluated in the sense of

Cauchy-principal value (CPV), =
∫

denotes that the integral is evaluated in the sense

of finite-part of divergent integral [88]. One can also eliminate the hyper-singularity

in Eq. (3.28) using the regularization method [89]. Discretizing Eq. (4.5) with n

constant elements, the discretized form of the boundary integral equation is obtained

as follows:

1

2
pi(x) +

1

2
µqi(x) +

n∑

j=1

∫

Sj

[q∗(x, y) + µq̂∗(x, y)] dS(y)pj(y)

−
n∑

i=1

∫

Sj

[p∗(x, y) + µp̂∗(x, y)] dS(y)qj(y) = 0, (4.6)

where Sj denotes j-th element, pj, qj are the sound pressure and its normal derivative

on the Sj element respectively. Let the integrals in Eq. (4.6) be denoted as

B̃ij =

∫

Sj

[q∗(x, y) + µq̂∗(x, y)] dS(y), (4.7)

G̃ij =

∫

Sj

[p∗(x, y) + µp̂∗(x, y)] dS(y). (4.8)
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Furthermore, let us write

Bij =





B̃ij i *= j

B̃ij + 1
2 i = j

, (4.9)

and

Gij =





G̃ij i *= j

G̃ij + 1
2 i = j

. (4.10)

By using the representations in Eqs. (4.9) and (4.10), Eq. (4.6) is written as

n∑

j=1

Bijpj =
n∑

j=1

Gijqj. (4.11)

Assuming the fundamental solution is applied at each center of the constant ele-

ment, a system of algebraic equations is obtained in the matrix form:





B11 B12 · · · B1n

B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn









p1

p2

...

pn




=





G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn









q1

q2

...

qn




, (4.12)

or

Bp = Gq, (4.13)

where B and G are n × n matrices, p and q are vectors that contain the sound

pressure and its normal derivative of the boundary element, respectively. Moreover,

in this work, both vectors are unknowns but have certain periodic relations given by

extra equations.

Let us consider a 2D phononic structure as shown in Fig. 4.1. The cylindrical

scatterers, infinitely long in x3 direction, are periodically collocated in the matrix

medium that is assumed to be air in this study. With the radius of the cylinders R,

and the lattice constant a, the filling fraction can be obtained as follows,

f = πR2/a2. (4.14)

To calculate the band structure, it is needed to analyze only a unit cell shown in

Fig. 4.2(a), and apply the periodic boundary condition on the boundary of the unit

cell. The reciprocal lattice and the first Brillouin zone [90] are shown in Fig. 4.2(b).
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(a) Phononic structure with cylindrical scatterers.
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

(b) 2D square lattice (dashed
line).

Figure 4.1: 2D Phononic crystal.

k = (k1, k2) is the Bloch wave vector in x-y plane.

The periodic structure requires that the sound pressure p(r) must satisfy the

following relationship according to the Bloch theorem:

p(r+ l) = eik·lp(r), (4.15)

where l = n1a1 + n2a2 is the translation vector, a1, a2 are the lattice base vectors.

The periodic boundary condition is applied on the boundary elements of the unit

cell, which restricts the infinite problem to a bounded one. Because of the symmetry

of the Brillouin zone, the wave vector k varies only along the boundary of the first

Brillouin zone: M → Γ → X → M. Then, all the waves propagating in the composite

structure are obtained.

In order to introduce the periodic boundary condition, the elements are separated

into three groups: (i) the dependent elements; (ii) the independent elements; (iii)

the internal elements, which are illustrated in Fig. 4.3. The dependent elements are

represented by open circular symbols, the independent elements are represented by

solid circular ones, and internal elements are represented by cross symbols.

The quantities corresponding to the three element groups are represented by the

following expressions:

pD,qD: Nodal sound pressure and normal derivative at dependent elements.

pI ,qI : Nodal sound pressure and normal derivative at independent elements.

pC ,qC : Nodal sound pressure and normal derivative at internal elements.
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


(a) Unit cell of square lattice. (b) First Brillouin zone (the

square primitive cell defined in
reciprocal space) and the ir-
reducible Brillouin zone (the
shade triangular).

Figure 4.2: Unit cell and Brillouin zone.

Figure 4.3: The meshed model of the unit cell. The open circular symbols denote the
independent element; the solid circular symbols denote the dependent element; the

cross symbols denote the internal elements

With the above definitions, Eq. (4.13) can be written as

(
BD BI BC

)



pD

pI

pC



 =
(

GD GI GC
)



qD

qI

qC



 . (4.16)

According to Eq. (4.15), pI and pD satisfy the relation:

PD = ei[ka]12PI , (4.17)
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for the normal derivatives q, it has the opposite normal direction, so we have

qD = −ei[ka]12qI , (4.18)

where [ka]12 = k1a1 when the relation between PD and PI is along the x1 direction,

[ka]12 = k2a2 when the relation is along the x2 direction.

Substituting Eqs. (4.17) and (4.18) into Eq. (4.16), we obtain a system of equations

represented only by the quantities of the independent and internal elements. Eq.

(4.16) can be rewritten as follows:

(
BDei[ka]12 BI BC

)



pI

pI

pC



 =
(

−GDei[ka]12 GI GC
)



qI

qI

qC



 . (4.19)

Then, combining the coefficients column vectors corresponding to the same quantities,

we obtain the following system of equations:

(
BDei[ka]12 +BI BC

)( pI

pC

)
=
(

−GDei[ka]12 +GI GC
)( qI

qC

)
. (4.20)

We finally obtain the following equations by moving the unknowns to the left-hand

side,

(
BDei[ka]12 +BI GDei[ka]12 −GI AC

)



pI

qI

xC



 = 0, (4.21)

where xC denotes the unknowns on the internal elements, and AC denotes the coeffi-

cient matrix of xC . The constant elements guarantee that the number of dependent

elements is equal to that of the independent elements, which results in a square sys-

tem matrix. Eq. (4.21) can be written in the form of a nonlinear Bloch’s eigenvalue

problem:

F(ω)(x) = 0, (4.22)

where F is a square matrix that contains ω implicitly and transcendentally. In the

next section, we use block SS method to solve Eq. (4.22) which determines the

dispersion relation.

The calculation of the eigenvalue problem in Eq. (4.22) is carried out repeatedly

with given different k1 and k2 for the periodic boundary condition. This means that

the location of gap in the singular values may change when the periodic boundary
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condition is different. Therefore, it is not appropriate to specify a constant threshold

δ for the repeated computations with different periodic boundary conditions.

Let σ1, σ2, . . . , σKl be the singular values ofHKl, the singular values corresponding

to the eigenvalues actually existing in the integration path and the small singular

values are separated by a threshold. The threshold is used to determine the rank of

the Hankel matrices. Since the threshold values are not the same among different

problems, it is necessary to find the location of the gap in the singular values sorted

in descendent order. Another set of values δ1, δ2, . . . , δKl−1 is introduced as follows:

δi−1 = ∆σi =
log10 (σi)− log10 (σi−1)

∆h
, (i = 2, 3, ..., Kl), (4.23)

where ∆h = i− (i− 1) = 1. The set of δi implies the variation of singular values. If

δi is larger than a threshold δ∗, it is indicated that the (i + 1)-th singular value can

be considered as a small singular value that should be removed. In this thesis, δ∗ = 1

is chosen. It is noted that Kl is rather small and the computation cost for SVD is

negligible.

4.3 Numerical examples

4.3.1 Phononic crystal with rigid cylinders

In Fig. 4.4, the unit cell of the analysis model including rigid cylinders in the

medium is shown. The parameters of the homogeneous structure are shown in Tab.

6.1. The unit cell with the periodic boundary condition results in a plane exterior

problem of a circular boundary.

Table 4.1: The parameters of homogenous structure

Domain Density [kg/m3] Wave speed [m/s] Filling fraction
1 ρ1 = 1.22 C1 = 337.20 f = 0.55

The eigenfrequencies of the structure are extracted with CBIE and Burton-Miller’s

method. The results are shown in Fig. 4.5 and Fig. 4.6, respectively. The integration

path is a circle in the complex plane, centered at γ = (2550, 0) and its radius is

ρ = 2000, the range of eigenvalues to calculate is [550, 4550].

The dispersion curve in Fig. 4.5 indicates that some spurious eigenfrequencies

are also obtained, compared with previous research [25]. When the wave vector k

is varying, the spurious eigenfrequencies are constants, and observed as horizontal
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





Figure 4.4: The unit cell with a rigid scatterer (the rigid scatterer is shown in gray
and the matrix material is in white).

  









  

Figure 4.5: Dispersion curves obtained for the homogenous model by CBIE.
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lines in Fig. 4.5. These real spurious eigenfrequencies correspond to the boundary

of the rigid cylinder with Neumann boundary condition. This means the eigenvalue

problem for interior closed boundary is also computed by the block SS method.

These real spurious eigenfrequencies satisfy

Jj

(
ωR

c

)
= 0, (j = 0, 1, 2, · · · ), (4.24)

where Jj is the Bessel function of the j-th order. The spurious eigenfrequencies

are related to the zeros of the Bessel function. These real spurious eigenvalues are

produced by the interior of the circular closed boundary, and they are called Neumann

eigenvalues [91].

Since complex eigenvalues are also included in the results, we pick out the real

ones by checking the values of the imaginary part. The imaginary part must satisfy

the following condition:
Im(ω)

ρ
< β, (4.25)

where β is a very small positive threshold. In the present work, it is taken as

β = 0.0085.

However, those real spurious eigenfrequencies cannot be distinguished in this way

because they do not result from numerical error, but from a mathematical reason.

Burton-Miller’s method [86] can add a relatively large imaginary part to the real

spurious eigenfrequencies. Hence, we can exclude these spurious frequencies from the

results.

We find that from the comparisons of the results shown in Fig. 4.5 and Fig. 4.6

the horizontal lines formed by real spurious eigenfrequencies are removed by applying

Burton-Miller’s method. Actually, the real spurious ones are moved to one side of

the real axis, then eliminated by considering their large imaginary parts.

The dispersion curves illustrated in Fig. 4.6 show excellent agreement with the

results given by the literature [25].

4.3.2 Phononic crystal with composite mediums

We show in Fig. 4.7 a unit cell containing an inclusion in the medium.

Tab. 4.2 contains the material constants and parameters of the composite struc-

ture. The structure of the previous example has a closed boundary, and Neumann

boundary condition is given on it, however, the boundary of domain 1 of this example

is the interface between domain 1 and domain 2.

62



  









  
Figure 4.6: Dispersion curves obtained for the homogenous model by Burton-Miller’s

method. The shaded range implies the band gap.







Figure 4.7: The unit cell with an inclusion (domain 2 is shown in gray and domain 1
is shown in white).
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Table 4.2: The parameters of composite structure

Domain Density [kg/m3] Wave speed [m/s] Filling fraction
1 ρ1 = 1.22 C1 = 337.20

f = 0.5
2 ρ2 = 0.09 C2 = 1241.50

The results presented in this section are aimed to illustrate that the spurious

eigenfrequencies are also generated by the interior closed interface. It should be

noted that the spurious eigenfrequencies are decided by the material of domain 1

but not by that of domain 2. The results in Fig. 4.8 are also showing spurious

  









  

Figure 4.8: Dispersion curves of the composite model obtained by CBIE

eigenfrequencies as those shown in Fig. 4.5. The boundary condition on the interior

boundary between domain 1 and domain 2 is different from Neumann boundary

condition in this example.

Because the filling fraction is different in this example, the real spurious eigenfre-

quencies are different from those of the previous example, but, they also satisfy Eq.

(4.24). This means that they are also the eigenfrequencies corresponding to the circu-

lar domain with the Neumann boundary condition on its boundary. It may be found

in the results shown in Fig. 4.9 that the spurious eigenfrequencies are also removed
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  









 
Figure 4.9: Dispersion curves of the composite model obtained by applying Burton-

Miller’s method. The shaded ranges imply the band gaps.

using Burton-Miller’s method. For this phononic composite structure, two band gaps

are found in the band structure in the same range as that of Fig. 4.6.

4.4 Conclusion

In this chapter, the present approach has been demonstrated to be effective

through the numerical examples for eigenfrequency analyses of phononic structures.

A new methodology for calculations of band structures of acoustic phononic compos-

ite structures is presented. This is achieved by combining the BEM with the block

SS method. The band gaps have been observed correctly both in homogeneous and

composite phononic structures. When applying the CBIE, the spurious real eigen-

frequencies have appeared in the dispersion curves as the eigenfrequencies of the

inclusions with the Neumann boundary conditions. To exclude the spurious eigenfre-

quencies, Burton-Miller’s method, which adds a number that has a large imaginary

component on the real spurious ones, can be used.

In next chapter, the methodology is applied to the elastic phononic structures,

and a new integration path is proposed to exclude the complex eigenvalues which are
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considered as spurious ones in the calculation of band structure of phononic crystals.
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CHAPTER V

Phononic Structures for Linear Elastic Problem

5.1 Introduction

The frequency-banded nature of phononic crystals is usually based on two mech-

anisms: Bragg scattering and local resonances. The former one usually exists in the

structure that has stiff/dense scatterers imbedded in a soft/light host periodically

[23] and the latter one is caused by the local resonances of the soft material coated

scatterers embedded in a stiff host [92].

The band structures of the acoustic phononic structures have been investigated

by combining the BEM with the block SS method in the last chapter. For multiply

connected domains, the eigenvalue problem formulated by the BEM may yield real

spurious eigenfrequencies that also exist in the Bloch eigenvalue problem of phononic

crystals. Using Burton-Miller’s method, the real spurious eigenfrequencies are shifted

by adding components with imaginary parts. Then they can be identified.

In this chapter, the method is extended to the analyses of elastic phononic crys-

tals. The elastic waves propagating in elastic mediums are more complicated since

they have both longitudinal and transverse waves. The real spurious eigenfrequencies

are moved off the real axis by using Burton-Miller’s method, but they may still stay

in the contour integration path. This means that the total number of eigenfrequencies

within the contour integration path is not reduced. However, for interior problems

with linear elastic materials, only those real eigenfrequencies that correspond to the

true eigensolutions are required. The additional spurious complex eigenfrequencies

may result in higher computing cost. To compute large number of eigenfrequencies,

higher order of the moment matrices or more nonzero arbitrary column vectors are

required. The higher order of the moment matrices, however, requires more collo-

cation points along the contour integration path to keep the accuracy [56]. Each
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collocation point requires to solve a response problem by the BEM. The increase in

nonzero arbitrary column vectors also results in more computing cost and memory

consumption. In order to exclude the complex spurious eigenfrequencies from solv-

ing the domain surrounded by the contour integration path in the complex plane,

a fusiform integration path is proposed to confine the selected domain close to the

neighborhood of the real axis. The proposed method is applied to three types of

phononic structures: a two-phase phononic structure based on Bragg scattering, a

unidirectional phononic plate and a three-phase phononic structure. The numerical

results show the effectiveness of the proposed method for elastic phononic crystals.

The complex spurious eigenfrequencies are also excluded by the fusiform integration

path effectively.

5.2 Formulations

Considering an elastic wave propagating in a homogeneous and isotropic medium

without body force, the expression of governing continuum equation by displacements

is

(C2
1 − C2

2)uj,je(x, t) + C2
2ue,jj(x, t) = üe(x, t) x ∈ Ω, t ∈ [0,∞], (e, j = 1, 2) (5.1)

where x is a point in the domain Ω, t is time, ue denotes the e-th component of the

displacement vector, üe is the second derivative of ue with respect to time. An index

after a comma denotes a differentiation with respect to the coordinate corresponding

to the index, and the summation convention is applied for repeated indices. C1 and

C2 are the P (longitudinal) wave speed and S (transverse) wave speed respectively,

written as,

C1 =
√

(λ̄+ 2µ̄)/ρ̄ =
√

E(1− ν̄)/
{
ρ̄(1 + ν̄)(1− 2ν̄)

}
, (5.2)

C2 =
√

µ̄/ρ̄ =
√
E/
{
2ρ̄(1 + ν̄)

}
, (5.3)

where ρ̄ is the density of the medium, λ̄ and µ̄ are Lamé’s constants, E is Young’s

modulus, and ν̄ is Poisson’s ratio.

For free vibration, no excitation is considered, hence the displacement can be

written in a time-independent form:

ue(x, t) = Ue(x, ω)e
−iωt. (5.4)
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Substituting Eq.(5.4) into (5.1), the time-independent form of governing equation

is obtained as follows:

(C2
1 − C2

2)Uj,je(x, ω) + C2
2Ue,jj(x, ω) + ω

2Ue(x, ω) = 0. (5.5)

The boundary integral equation corresponding to the above differential equation is

obtained as [93]

cel(y)Ue(y, ω) +

∫

S

t∗el(x, y, ω)Ue(x, ω)dS(x)

−
∫

S

u∗
el(x, y, ω)Te(x, ω)dS(x) = 0 y ∈ S, (5.6)

where S is the boundary of the domain, cel depends on the geometry of the boundary

at point y, the kernels u∗
el(x, y) and t∗el(x, y) are known as displacement and traction

fundamental solutions which are given for two-dimensional case [93] as

u∗
el(x, y) =

1

2πρ̄C2
2

[ψδel − χr,er,l] , (5.7)

t∗el(x, y) =
1

2π

{(
dψ

dr
− 1

r
χ

)(
δel
∂r

∂n
+ r,lne

)
− 2

r
χ

(
ner,l

− 2r,er,l
∂r

∂n

)
− 2

dχ

dr
r,er,l

∂r

∂n
+

(
C2

1

C2
2

− 2

)(
ψ

dr
− dχ

dr
− 1

r
χ

)
r,enl

}
, (5.8)

where δel is Kronecker’s delta, r = |x−y|, ni is the unit of the outward normal vector

to the boundary, and

ψ = K0

(
sr

C2

)
+

C2

sr

[
K1

(
sr

C2

)
− C2

C1
K1

(
sr

C1

)]
, (5.9)

χ = K2

(
sr

C2

)
− C2

2

C2
1

K2

(
sr

C1

)
, (5.10)

where s = iω, and K0, K1, and K2 are the modified Bessel functions of order 0, 1,

and 2, respectively.

Discretizing Eq.(5.6) with N constant boundary elements, a linear equation is
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obtained as follows:

cel(y)U
i
e(y, ω) +

N∑

h=1




∫

Sh

t∗el(x, y, ω) dS(x)



Uh
e (x, ω)

−
N∑

h=1




∫

Sh

u∗
el(x, y, ω) dS(x)



T h
e (x, ω) = 0, (5.11)

where cel =
1
2δel when the boundary is smooth, and Uh

e (y, ω) and T h
e (x, ω) denote e-th

component of the displacement and traction on boundary Sh of the h-th element.

Let i vary from 1 to N , then a system of 2N linear algebraic equations is obtained

as

BU = GT, (5.12)

where U, T ∈ C2N , and B, G ∈ C2N×2N , formed by the following 2×2 local matrices:

bih = [ble],

gih = [gle],
(5.13)

where bih, gih, ∈ C2, (i, h = 1, 2, ..., N) and

ble =

∫

Sh

t∗el(x, y, ω)dS(x),

gle =

∫

Sh

u∗
el(x, y, ω)dS(x).

(5.14)

A 2D phononic structure is shown in Fig. 5.1 wherein scatterers are imbedded in a

host periodically and the square area enclosed by dashed lines denotes a square unit

cell.

The unit cell shown in Fig. 5.2 has the additional virtual square boundary which

is divided into two groups: dependent boundary (in black color) denoted by subscript

‘D’ and independent boundary (in gray color) denoted by subscript ‘I’. The boundary

of scatterer is denoted by the subscript ’C’.

With above definitions for boundaries of the unit cell, the system matrix for the

unit cell can be written as
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Figure 5.1: 2D two-phase elastic phononic crystal.

(
BI BD BC

)



UI

UD

UC



 =
(

GI GD GC

)



TI

TD

TC



 . (5.15)

Usually, the homogeneous boundary conditions:

ŪC(x) = 0 x ∈ SU ,

T̄C(x) = 0 x ∈ ST ,
(5.16)

are given to the boundary SC = SU

⋃
ST for free vibrations.

The Bloch theorem makes the quantities of displacements and tractions on depen-

dent boundary SD and independent boundary SI hold,

UD = e[ka]12UI , (5.17)

TD = (−e[ka]12)TI , (5.18)

where [ka]12 = k1a1 when the relation between UD and UI is along the x1 direction,

[ka]12 = k2a2 when the relation is along the x2 direction. The normal direction of

traction is opposite, therefore, a minus symbol is added in Eq. (5.18).

Substituting the periodic boundary conditions Eqs. (5.17), (5.18) and homoge-
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Figure 5.2: A square unit cell (the boundary of the square in black denotes the
dependent boundary, and the one in gray denotes the independent boundary).





Figure 5.3: The circular contour integration path.

neous boundary condition Eq. (5.16) into Eq. (5.15), and moving all unknown quan-

tities to left-hand side, the following equations can be obtained as

(
BI +BDe[ka]12 GI −GDe[ka]12 AC

)



UI

TI

XC



 = 0. (5.19)

where XC is the unknown vector of quantities on the SC . By now, a similar form of

Eq. (4.22) is obtained.

Considering the circular integration path adopted by now depicted in Fig. 5.3,

not only the real axis but also a certain area of complex plane is enclosed by the
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



Figure 5.4: The shuttle contour integration path.

circular contour integration path. In some cases, there are spurious eigenfrequencies

that have large imaginary parts and exist in the contour integration path, usually

this phenomenon depends on the problem we solved. However, the increase of the

number of eigenfrequencies located within the integration path requires higher order

moment matrices, more number of v vectors, or more collocation points. To avoid

these complex eigenfrequencies, we propose a new shape of integration path shown in

Fig. 5.4 which excludes the complex eigenfrequencies.

Let z = ξ + iη, and the proposed fusiform integration path in Fig. 5.4 is defined

as follows:

S̄1 = ξ + iy0 sin

(
ξ − ωa
ωb − ωa

π

)
, (5.20)

S̄2 = ξ − iy0 sin

(
ξ − ωa
ωb − ωa

π

)
, (5.21)

where [ωa, ωb] is the solving range for real eigenfrequencies, and y0 is the largest

amplitude of the imaginary part |η|.

The fusiform domain enclosed by S̄1 and S̄2 defined in Eqs. (5.20) and (5.21)

provides a parameter y0 that can be specified to exclude the eigenfrequencies whose

imaginary parts are larger than it. Since the complex eigenfrequencies with large

imaginary parts are are filtered out, the order of the moment matrices, the number

of nonzero random vectors, or the number of collocation points can be chosen as a

smaller number. This means that the proposed fusiform integration path is more

efficient in solving real eigenvalue problems. In this work, the contour integral along
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S̄1 and S̄2 is also evaluated by trapezoidal rule. The interval [ωa, ωb] is discretized

into N̄ = N/2 subranges equally by N̄ +1 points ξ1, ξ2, ..., ξN̄+1 and h̄ = (ωb−ωa)/N̄ .

The collocation points on the contour integration path S̄1 and S̄2 can be written as

pn = ξn + iy0 sin

(
ξn − ωa
ωb − ωa

π

)
on S̄1 (5.22)

p̄n = ξn − iy0 sin

(
ξn − ωa
ωb − ωa

π

)
on S̄2 (5.23)

where n = 1, 2, ..., N̄ + 1.

The moment matrices of order m can be obtained by evaluating the summation

of the following two parts:

Mm ≈ M̂m = M̂1
m + M̂2

m (5.24)

where M̂1
m and M̂2

m are the integrals evaluated numerically along S̄1 and S̄2, respec-

tively, as follows:

M̂1
m =

h̄

4πi

[
F1

m(p1) + 2F1
m(p2) + 2F1

m(p3) + · · ·+ 2F1
m(pN̄) + F1

m(pN̄+1)
]

(5.25)

M̂2
m =

h̄

4πi

[
F2

m(p̄1) + 2F2
m(p̄2) + 2F2

m(p̄3) + · · ·+ 2F2
m(p̄N̄) + F2

m(p̄N̄+1)
]

(5.26)

where F1
m and F2

m are defined as follows:

F1
m(pn) = −

[
UHA−1(pn)V

]
pmn

[
1 +

iπy0
ωb − ωa

cos

(
ξn − ωa
ωb − ωa

π

)]
(5.27)

F2
m(p̄n) =

[
UHA−1(p̄n)V

]
pmn

[
1− iπy0

ωb − ωa
cos

(
ξn − ωa
ωb − ωa

π

)]
(5.28)

5.3 Numerical examples

5.3.1 Phononic structure based on Bragg scattering

A unit cell which contains a square inclusion is shown in Fig. 5.5, where domain

in gray color assumed to be a stiff and dense material (denoted by subscript ‘2’) and

the domain in white color is assumed to be a compliant and light material (denoted

by subscript ‘1’). The material constants are given in Fig. 5.1 This 2D structure is

considered to be periodic in x1 and x2 directions.

Let the wave vector k vary along the boundary of irreducible Brillouin zone M →
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Figure 5.5: A square unit cell with a square inclusion(the white denotes the material
1, the gray denotes the material 2).

Table 5.1: The material constants for the phononic structure based on the Bragg
scattering and the phononic plate

Material Density [kg/m3] Young’s modulus [Pa] Poisson’s ratio
1 ρ̄1 = 2.0× 103 E1 = 7.8× 106 ν̄1 = 0.34
2 ρ̄2 = 1.6× 104 E2 = 1.248× 108 ν̄2 = 0.34

Γ → X → M, and the eigenfrequencies ω is computed to plot the dispersion curves

as shown in Fig. 5.6. The band structure obtained by the proposed method shows a

good agreement with the result in the reference [94] which has used the same material

ratio definition: ρ̄1/ρ̄2 = 1/8, E1/E2 = 1/16, ν̄1 = ν̄2 = 0.34, and employed FEM

based on reduced Bloch mode expansion.

The parameters of the block SS method for both integration paths are as follows:

N = 128, K = 4, l = 30. The selected range for the real axis is [10, 110] [Hz].

For simplicity, k varies only along M → Γ. The comparison between the numbers of

eigenfrequencies obtained by the circular integration path and fusiform integration

path is shown in Fig. 5.7. It is found that the circular integration path extracts

more eigenfrequencies including complex and real eigenfrequencies outside the selected

range. Furthermore, at two points, the numbers of eigenfrequencies are zero, and this

means that the number of collocation points N is insufficient for observing the gap in

singular values. It is also found that the results obtained by fusiform integration path
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Figure 5.6: The band structure of phononic crystal in Fig.5.5.

are more close to the analytical solutions. The numbers of extra real eigenfrequencies

obtained by the two integration paths are also shown in Fig. 5.8. It can be seen that

more eigenfrequencies located outside the selected range are obtained by the circular

integration path. It implies that the extension of the implicit filter function for the

fusiform path is smaller than that of the filter function for circular path.

5.3.2 Phononic plate defined in unidirection with a traction-free bound-

ary condition

Let us see the simple alternative layer structure shown in Fig. 5.10. The filling

fraction for material 1 and 2 is 1:1, and the white denotes the material 1 and the

gray denotes the material 2. Different from example 1, the periodicity is only exist

in one direction, and the traction-free boundary condition is given on the top and

bottom boundaries. This structure can be considered as a phononic crystal plate in

which the irreducible Brillouin zone of the unit cell is the interval [0, π/d]. The wave

number k now is a scalar and varies from 0 to π/d. The band structure is shown

in Fig. 5.10 wherein three band gaps (gray ranges) are found in the selected range

[10, 130] [Hz]. For this structure, the numbers of eigenfrequencies obtained by the

circular and fusiform integration paths are also presented in Fig. 5.11, as k is varying
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Figure 5.7: The number of eigenfrequencies obtained by the circular path and fusiform
path.

Figure 5.8: The number of extra eigenfrequencies outside the selected range obtained
by the circular path and fusiform path .
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Figure 5.9: A unit cell composed of alternative material layers (the white denotes the
material 1, the gray denotes the material 2).

from 0 to π/d, with N = 128, K = 4, l = 30 and selected range [10, 130] [Hz]. From

Fig. 5.11, it can be seen that the complex eigenfrequencies are filtered out by the

fusiform integration path. In Fig. 5.12, similar as the previous example, at some

points, more number of extra real eigenfrequencies near to the circular integration

path are obtained than that of the extra real eigenfrequencies obtained by fusiform

integration path.

5.3.3 Three-phase phononic structure

In this numerical example, we consider a square shape stiff inclusion coated with

soft material imbedded in stiff material as shown in Fig. 5.13. The material for the

square shape inclusion is considered to be the same as the host material. Here, we

use a soft material for the coating material and the material constants shown in Fig.

5.2. The material constant ratios become as ρ̄1/ρ̄2 = 1/8, E1/E2 = 1/160. The high

contrast between the materials of the coating layer and scatterer present a band gap

as shown in Fig. 5.14. The parameters for the block SS method are N = 200, K = 4,

l = 30, and selected range for real axis [10, 70] [Hz].

In Fig. 5.15, the total numbers of eigenfrequencies obtained by the circular and

fusiform integration paths are shown as k varies from M to Γ. From Fig. 5.15, the only

one mismatch between the results obtained by the fusiform integration path and the
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Figure 5.10: The band structure of the phononic crystal composed of alternative
material layers shown in Fig. 5.10.

π/d
0

4

8

12

k

N
um

be
r o

f e
ig

en
va

lu
es

Circular path
Fusiform path
Analytical solution

Figure 5.11: The number of eigenfrequencies obtained by the circular path and
fusiform path.
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Figure 5.12: The number of extra eigenfrequencies outside the selected range obtained
by the circular path and fusiform path .

Table 5.2: The material constants for the three-phase phononic structure

Material Density [kg/m3] Young’s modulus [Pa] Poisson’s ratio
1 ρ̄1 = 2.0× 103 E1 = 7.8× 105 ν̄1 = 0.34
2 ρ̄2 = 1.6× 104 E2 = 1.248× 108 ν̄2 = 0.34

analytical solution is found and it should be noted that the number of eigenfrequencies

is one less than the analytical solution. The reason for the phenomenon is that the

missing eigenvalue is located extremely close to the left corner points of the fusiform

integration path. With the number of collocation points N = 200, the implicit

filtered function evaluated numerically at the corner points does not extend outside

the integration path but shrinks a little bit into the integration path.

5.4 Conclusion

The work is undertaken to apply the BEM to the analyses of elastic phononic

structures. In the 2D elastodynamic problem, both longitudinal and transverse waves

are considered in the calculations of band structures for the phononic crystals. The

spurious eigenfrequencies , which are resulted by the BEM formulations applied to the

multiple connected domains, in some cases, contain complex values. To avoid these

complex eigenfrequencies, a fusiform integration path is propose and it excludes the

complex eigenfrequencies with imaginary parts larger than a certain threshold from

the enclosed domain. Three typical elastic phononic structures are given:
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Figure 5.13: A unit cell with square shape inclusion coated with soft material (the
bright gray denotes the material 1, the dark gray denotes the material 2).

Figure 5.14: The band structure of the three-phase phononic structure.
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Figure 5.15: The number of eigenfrequencies obtained by the circular path and
fusiform path.

• The two-phase phononic structure which has dense/stiff scatterers imbedded in

light/soft host, presents a band gap based Bragg scattering.

• The unidirectional phononic periodic plate which has the unit cell with traction-

free boundaries, presents flat bands.

• The phononic structure which has the imbedded dense/stiff scatterers coated

with a light/soft material, presents a band gap.

The meaningful results demonstrate the effectiveness of the proposed methodology

for the band calculation of the elastic phononic structures.
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CHAPTER VI

Infinite/Finite Unidirectional Phononic Plates

6.1 Introduction

In practical problems, it is more appropriate to consider finite models than infinite

ones of composite materials. Unlike the phononic crystals, the Bloch theorem is not

applicable for the finite structures with periodic parts. Also they are different from the

quasi-periodic situations whose solutions are converged. However, the finite structures

with periodic parts present frequency-banded nature and exhibit a gap effect as well.

For an infinite 1D periodically layered media, the transfer matrix method is com-

bined with Floquet’s theorem to predict the dispersion curves across a specified fre-

quency range [95, 96]. The investigation of the existence of band gaps in quasi-one-

dimensional phononic plate with bounded unit cell is also reported [97]. A similar

study is carried out by using the supercell plane wave method [98]. Research has

also been conducted on periodic structures with finite layers [99, 100], in which the

transfer matrix method is employed to predict the frequency-dependent transmission

in a 1D finite periodic structure. Moreover, with the method of characteristics, prop-

agation of waves in infinite and finite periodic structures are investigated [100]. The

effects of the number of the layers for unit cells on the dynamics of a bounded struc-

ture are investigated by using FEM [101, 102]. A study of the finite elastic periodic

materials and structures is presented with a perspective on both frequency and tem-

poral domains in [103], in which the correlation between the dynamic response of the

respective finite and infinite systems is discussed.

In previous chapters, the analyses of 2D acoustic/elastic phononic structures that

related to the infinite problems are presented. In this chapter, the BEM is applied to

the study of the transmission of waves in a finite structures with periodic parts which

can be considered as phononic crystal plates. With the BEM, only the boundary is
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discretized into line meshes in 2D problem. Furthermore, the matrices for the bounded

unit cell is formulated and is used repeatedly according to the number of layers. With

the proposed method, we derive a size-reduced system matrix in which quantities

on the surfaces of phononic plate and the internal boundary of cells are removed.

Moreover, we investigate the dispersion relation of the infinite structures by giving the

periodic boundary condition to a unit cell. The nonlinear Bloch eigenvalue problem

resulted by the BEM is solved by using the contour integral method. Both acoustic

and elastic structures are investigated. For the acoustic phononic plate, the acoustic

waves governed by the Helmholtz equations are considered and the cells have rigid

boundaries. For elastic structures, longitudinal and transverse waves are considered,

and a force free boundary condition is given on the surfaces of the phononic plates.

Numerical simulations are performed and the correlation between the number of layers

of the cells and the transmission is presented.

6.2 Formulations

The governing equations and boundary integral equations for acoustic and elas-

tic problems have been introduced in the previous two chapters, therefore, we start

from the derivation of the size reduced coefficient matrix for the finite unidirectional

phononic structure.

6.2.1 Transfer matrix for the unit cell of a unidirectional phononic plate



Figure 6.1: The boundary definition of the unit cell in a unidirectional phononic
crystal plate.
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Let us consider the unit cell of a unidirectional phononic structure shown in Fig.

6.1. The boundaries of the left and right interfaces of the unit cell is defined as ΓI

(input boundary) and ΓO (output boundary), respectively. The rest of the boundaries

of the unit cell including the internal boundary between different material domains,

are defined as ΓF = Γf ∪ Γi, where Γf is the traction-free boundary and Γi is the

interface boundary between the matrix and inclusion.

By following the derivation of Eq. (5.12), a system of algebraic equations for the

unit cell is obtained as follows:





HII HIO HIF

HOI HOO HOF

HFI HFO HFF









UI

UO

UF




=





GII GIO GIF

GOI GOO GOF

GFI GFO GFF









TI

TO

TF




. (6.1)

where (·)I, (·)O, and (·)F denote the quantities on the boundaries ΓI, ΓO and ΓF,

respectively.

Substituting the boundary conditions on ΓF to Eq. (6.1) and moving the unknown

quantities to the left hand side, we have





HII HIO AIF

HOI HOO AOF

HFI HFO AFF









UI

UO

XF




=





GII GIO BIF

GOI GOO BOF

GFI GFO BFF









TI

TO

YF




. (6.2)

where XF and YF contain the unknown quantities and known quantities on ΓF,

respectively.

Let XF be represented by the remaining quantities:

XF = −A−1
FFHFIUI −A−1

FFHFOUO

+A−1
FFGFITI +A−1

FFGFOTO +A−1
FFBFFYF.

Then, unknowns in Eq. (6.2) can now be represented by quantities only of ΓI and
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ΓO: 

 HIO −AIFA
−1
FFHFO −GIO +AIFA

−1
FFGFO

HOO −AOFA
−1
FFHFO −GOO +AOFA

−1
FFGFO







 UO

TO





=



 −HII +AIFA
−1
FFHFI GII −AIFA

−1
FFGFI

−HOI +AOFA
−1
FFHFI GOI −AOFA

−1
FFGFI







 UI

TI





+



 BIF −AIFA
−1
FFBFF

BOF −AOFA
−1
FFBFF




(

YF

)
.

(6.3)

For each periodic cell, Eq. (6.3) can be obtained, therefore, we can write Eq. (6.3) in

a more general form:

MXl+1 = NXl + LYF, (6.4)

where Xl+1 and Xl are the vectors that contain the quantities on ΓO and ΓI, respec-

tively.

6.2.2 Size-reduced system matrix

Let us consider a finite structure comprising the input domain ΩI, the output

domain ΩO, and the finite layers of the periodic structures as shown in Fig. 6.2. The

input domain’s boundary that is shared with the periodic part is defined as Γ1
O, and

the remaining boundary of the input domain is defined as ΓL. The output domain’s

boundary that is shared with the periodic part is defined as Γn
I , and the remaining

boundary of the output domain is defined as ΓR.

Also for domains ΩI and ΩO, the system of algebraic equations can be also formu-

lated, as follows:

ALX
L +AL1X

1 = YL, (6.5)

ARnX
n +ARX

R = YR, (6.6)

where XL, XR, X1, and Xn are the vectors that contain the known quantities on the

boundary ΓL, ΓR, Γ1
O, Γn

I , respectively.

Let the number of layers for the periodic part NL = n−1. By combining Eqs. (6.4),

(6.5) and (6.6), we have the system of algebraic equations for the whole structure, as
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Figure 6.2: The definition of the boundaries of input and output domain of a finite
structure.

follows: 



AL AL1 0 0 0 0 0

0 −N M 0 0 0 0

0 0 −N M 0 0 0

0 0 0
. . . . . . 0 0

0 0 0 0 −N M 0

0 0 0 0 0 ARn AR









XL

X1

X2

...

Xn

XR





=





YL

LYF

LYF

...

LYF

YR





. (6.7)

Let nF and nIO be the numbers of elements for boundary ΓF and ΓI (or ΓO) of

a unit cell, respectively. There are two material collocation cases for the periodic

part: one is that the materials are different at the connection interfaces between

adjacent cells; the other one is that the same materials are used across the interfaces

between adjacent cells. For the former case, the boundary at the interfaces between

the adjacent cells are the real one, and it can be seen that the dimension of the system

equation for the structure in Fig. 6.2 is reduced by nFNL by employing Eq. (6.7). For

the latter case, obviously, the interfaces between adjacent cells are virtual ones, so the

reduction of the dimension of system marix becomes NL(nF−nIO)+nIO. Usually, for

a complicated structured unit cell consisting of plural materials, we have nF > nIO.

6.2.3 Bloch eigenvalue problem for infinite phononic structures

Let us return to the unit cell depicted in Fig. 6.1. For infinite periodic structures,

the Bloch theorem makes the following relation hold:

UO = UI exp(ikd), (6.8)

TO = TI(− exp(ikd)), (6.9)
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where k is the wave number, d is the lattice vector, and for 1D phononic periodic

structures, d becomes a scalar as the length of a unit cell. Since the outward normal

directions at ΓI and ΓO are opposite to each other, a minus sign is needed in Eq.

(6.9).

One can write Eq. (6.1) in another form as follows:

[
HI HO HF

]



UI

UO

UF



 =
[
GI GO GF

]



TI

TO

TF



 . (6.10)

Applying the periodic boundary condition in Eqs. (6.8) and (6.9), and homogeneous

boundary condition to Eq. (6.10), a nonlinear eigenvalue problem is obtained as fol-

lows:

[
HI +HO exp ikd −(GI −GO exp ikd) AF

]



UI

TI

XF



 = 0, (6.11)

where the eigenvalue parameter ω is involved in each element of the coefficient matrix

nonlinearly. Let Eq. (6.11) be represented in a compact form:

F(ω, k)X = 0. (6.12)

For unidirectional phononic structure, k is set to vary from 0 to π/d, and the disper-

sion curves can be obtained by solving eigenvalues ω determined by Eq. (6.12).

6.3 Numerical examples

6.3.1 Acoustic unidirectional phononic plate

A finite structure having periodic parts is depicted in Fig.6.3. Square input and

output domains are connected by NL layers of square cells with rigid cylinder scatters,

and all sides of the square structures are assumed to be 1[m]. The parameters of the

example are defined as: the sound velocity is 337 [m/s]; the density is 1.22 [kg/m3];

the filling fraction is 0.503; the length of cell is 1 [m]. A nonsymmetrical excitation

is given as the particle velocity v = 1[m/s] on 70% of the edge of the input domain,

while in the output domain, 30 observation points are distributed. The points from

number 1 to 10, 11 to 20 and 21 to 30 have the same y coordinates as y = 0.5,
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Figure 6.3: Input and output domains connected by square cells. The cross symbols
denote the observation points.

y = 0.25, y = 0.75 respectively, while x coordinates for the each 10 points are 0.05,

0.15, · · · , 0.95, and unit is [m]. Assuming that the unit cell is one layer of an infinite

one directional periodic structure and solving the nonlinear eigenvalue problem given

by Eq.(6.12) using the BEM based on Burton-Miller’s method, the band structure

is obtained. For the Block SS method, solved range is assumed as [500, 4500]. The

numerical results for the dispersion curves obtained by the conventional BEM and

that based on Burton-Miller’s method are shown in Figs. 6.4 and 6.5, respectively.

Since the spurious eigenvalues are constants when the wave number k varies from 0

to π, there are horizontal lines showing spurious eigenvalues in Fig. 6.4.

Next, let us consider the transmission problem and use different models by chang-

ing the layers of the connection parts. The transmissivities of the finite periodic

structure with 12, 25, 50, 100 layers are shown in Figs.6.6 to 6.9, in which the sound

pressures at 30 observation points are plotted, and in Figs.6.6(b) to 6.9(b) are shown

their projections on ω-p plane. From the figures of transmissivity, it is found that the

transmissivity becomes very low in the band gaps particularly when the number of

the layers is larger than 25.

To obtain the band gaps of the finite structure, the block SS method is directly

applied to compute the eigenfrequencies of the size-reduced system matrix Eq. (6.7)

that is also of a nonlinear eigenvalue problem. The eigenfrequencies of models with

12, 25, 50, 100 layers are shown in Figs. 6.10 to 6.13, respectively, corresponding to

the solved range [500,1500] in which 1 band gap is included. Eigenfrequencies out

of this range are also obtained. From these numerical results, it is found that the

distribution of the eigenvalues along the real-axis have the band gap shown in Fig.

6.5. However, as is found in Figs. 6.10 to 6.13, two eigenfrequencies 1252.513 and

1262.504 are always found in the range of band gap. These eigenfrequencies do not

change even when the number of layers is increased, hence the two eigenfrequencies
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Figure 6.4: Dispersion curves (by conventional BEM) with spurious eigenvalues (hor-
izontal lines).

can be considered as those corresponding to eigenmodes which have large amplitude

in input and output domains while small amplitude in connection part.

6.3.2 Elastic unidirectional phononic plates

6.3.2.1 Example 1

A unit cell composed of alternating layers of two different materials is shown in Fig.

6.14, where the domain shown in black color corresponds to a stiff and dense material

(denoted by subscript ‘2’), while the domain shown in white color corresponds to a

compliant and light material (denoted by subscript ‘1’). The material constants are

shown in Table 6.1.

Table 6.1: The material constants
Material Density [kg/m3] Young’s modulus [Pa] Poisson’s ratio

1 ρ1 = 2.0× 103 E1 = 7.8× 106 ν1 = 0.34
2 ρ2 = 1.6× 104 E2 = 1.248× 108 ν2 = 0.34

The unit cell proposed in this example has different materials at the two sides of
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Figure 6.5: Dispersion curves (by the Burton-Miller method) and band gaps (shade).

the interfaces of the adjacent cells. This means that the reduced dimension of the

system matrix is nFNL.

The finite structure composed of the input domain, the output domain and NL

layers of cells is depicted in Fig. 6.15, where an excitation T̄ = (1.0, 0.0) [N/m] is

given on the left side boundary of the leftmost square domain in gray color which

is considered as the input domain, and a roller support condition is specified on the

right side boundary of the rightmost square in gray color which is considered as the

output domain. The traction-free boundary condition is specified on the remaining

part of the boundaries. The materials of the input and output domains are assumed

as material 2. Moreover, 30 observation points (cross symbols) are chosen in the

output domain. With the assumption that the left bottom corner point of the output

domain is the origin of the coordinate system, the coordinates of the observation

points numbered 1 ∼ 10 are (0.1, 1), (0.3, 1), ..., (1.9, 1), points 11 ∼ 20 are (0.1, 0.5),

(0.3, 0.5), ..., (1.9, 0.5), and points 21 ∼ 30 are (0.1, 1.5), (0.3, 1.5), ..., (1.9, 1.5).

Let us see first the band structure shown by the dispersion curves in Fig. 6.16,

where the circular frequency range is chosen as 10 ∼ 90 [Hz]. It should be noted that

the band structure is determined by a infinite system with the unit cell shown in Fig.
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Figure 6.6: Transmissivity of finite periodic structure with 12 layers.

92












































(a)

    























(b)

Figure 6.7: Transmissivity of finite periodic structure with 25 layers.
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Figure 6.8: Transmissivity of finite periodic structure with 50 layers.
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Figure 6.9: Transmissivity of finite periodic structure with 100 layers.
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Figure 6.10: Eigenfrequencies of finite periodic structure with 12 layers.

      















Figure 6.11: Eigenfrequencies of finite periodic structure with 25 layers.
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Figure 6.12: Eigenfrequencies of finite periodic structure with 50 layers.
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Figure 6.13: Eigenfrequencies of finite periodic structure with 100 layers.
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6.14. Here, only two band gaps represented by the shaded ranges are considered.

For the finite structure, the displacement response |U| =
√

U2
x + U2

y of the ob-

servation points of the output domain with different numbers of layers 10, 20, 30,

40 and their projections to ω-|U| plane are plotted in Fig. 6.17 to Fig. 6.20. It can

be seen that the displacement transmitting to the output domain becomes smaller in

accordance with the increase in the number of layers.

To obtain a more elaborate illustration of the correlation between transmission

and number of layers, we choose 4 points in the frequency domain: 15, 30, 40, and

60 [Hz], in which 15 and 40 [Hz] are located in the pass band while 30, 60 [Hz] are

located in the stop band. In Figs. 6.21 and 6.22, the transmissions of displacement

|U| corresponding to the frequencies located in the pass band are presented, in which

a small decrease in the transmission at frequency 40 [Hz] in the pass band can be

observed. In Figs. 6.23 and 6.24, transmissions corresponding to the frequencies

located in the stop bands are shown. The reduction of the displacement transmission

is found not only in the former case, but also occurs in the pass band. Furthermore,

the reduction of the transmission in stop bands is much faster than that in the pass

bands.













Figure 6.14: The unit cell (the stiff/dense material phase is shown in black and the
compliant/light material phase is shown in white).
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Figure 6.15: Two square domains connected (input domain is the left square domain
in gray and output domain is the right square domain in gray) by NL layers of cells

in example 1 and the cross symbols denote the observation points.
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Figure 6.16: The band structure for the infinite structure (shade ranges denote the
concerned band gaps).
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Figure 6.17: The transmission of |U| of 10-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.18: The transmission of |U| of 20-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.19: The transmission of |U| of 30-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.20: The transmission of |U| of 40-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.21: The transmission of |U| at 15Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.22: The transmission of |U| at 40Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.23: The transmission of |U| at 30Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.24: The transmission of |U| at 60Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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6.3.2.2 Example 2

This structure does not have real interfaces between adjacent cells. The virtual

interfaces require additional boundary elements so the system matrix’s dimension is

reduced by NL(nF − nIO) + nIO. In particular, the eigenfrequencies of the structure,

which has finite layers of cells, are extracted by using the BEM and the block SS

method.

The structure of the unit cell is depicted in Fig. 6.25, where the same materials

and their subscripts are used as those in the previous example. The square inclusion

shown in gray color is assumed to be stiff and dense (material 2), while that shown

in white color is compliant and light (material 1). A similar collocation of excitation

and constraints is described in Fig. 6.26 and correspondingly, the coordinates of the

observation points numbered as 1 ∼ 10 are (0.15, 1.5), (0.45, 1.5), ..., (2.85, 1.5),

numbered as 11∼ 20 are (0.15, 2.25), (0.45, 2.25), ..., (2.85, 2.25), and those numbered

as 21 ∼ 30 are (0.15, 0.75), (0.45, 0.75), ..., (2.85, 0.75), with the left bottom corner

point of the right square output domain regarded as the origin of the coordinate axes.







Figure 6.25: The unit cell (the stiff/dense material phase is shown in gray and the
compliant/light material phase is shown in white).
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Figure 6.26: Two square domains connected (input domain is the left square domain
in gray and output domain is the right square domain in gray) by NL layers of cells

in example 2 and the cross symbols denote the observation points..

Fig. 6.27 shows the dispersion relation which is based on an infinite periodic

structure composed by the unit cell shown in Fig. 6.25. Two band gaps represented

by the shaded ranges are found in the band structure of the selected range.

The displacement transmissions of the finite structure shown in Fig. 6.26 with

different number of layers are plotted in Figs. 6.28 to Fig. 6.31. When NL = 40, an

apparent effect of the frequency bands can be observed because of the scattering and

dispersion. The reduction of transmission is significant at the stop bands which is

determined by infinite periodic structure. This means that the finite structure with

a sufficient number of layers still keeps the frequency-banded nature.
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Figure 6.27: The band structure for the infinite structure (shade ranges denote the
concerned band gaps).

109



      
































(a)

      



















(b)

Figure 6.28: The transmission of |U| of 10-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.29: The transmission of |U| of 20-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.30: The transmission of |U| of 30-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).
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Figure 6.31: The transmission of |U| of 40-Layer sturcture ((a)) and the projection
to ω-|U| plane ((b)).

The reductions of the transmissions in the finite structure at the frequencies in

concerned pass band and stop band shown in Fig. 6.27 are plotted in Fig. 6.32 ∼ Fig.

6.35. The frequencies at 25, 65 Hz and 50, 85 Hz are chosen in the pass bands and stop

bands, respectively. In this example, we do not find the reduction of transmissions

at the frequencies in pass bands. The reductions centralize mainly in stop bands.
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Figure 6.32: The transmission of |U| at 25Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.33: The transmission of |U| at 50Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.34: The transmission of |U| at 65Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.35: The transmission of |U| at 85Hz against different number of layers ((a))
and the projection to ω-|U| plane ((b)).
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Figure 6.36: The eigenfrequency distribution of the finite structure (shade ranges
denote the stop bands).

The calculation of the eigenfrequencies for the finite structure in Fig. 6.26 is also

carried out. The system matrix in Eq. (6.7) involves the circular frequency ω in the

nonlinear form in each component of the matrix. We solve this nonlinear eigenvalue

problem also by using the block SS method. The locations of the eigenfrequencies
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display a banded distribution. In Fig. 6.36, three eigenfrequencies and one eigenfre-

quency are found in the first and second bands, respectively. These eigenfrequencies

appearing in the stop bands are found to be constants, when the number of layers of

unit cells is increased. They correspond to the local resonances of the input and output

domains. More unit cells make a denser eigenfrequency distribution in the pass bands,

but no more eigenfrequency appears in the stop bands. The banded distribution of

eigenfrequencies also implies that the finite structure presents a frequency-banded

nature.

6.4 Conclusion

In this chapter, infinite/finite unidirectional phononic structures in 2D have been

investigated using the BEM. The analyses cover both acoustic and elastic problems.

The band structure of the unidirectional infinite phononic plates is computed

by using the proposed methodology that has been employed in the previous two

chapters. To investigate the wave transmission in a finite structure, a size-reduced

system matrix is derived by utilizing the transfer matrix formulated by using the

BEM repeatedly. The wave transmission is calculated against the frequency and the

number of layers. With a sufficient number of layers of cells, the finite structure

also exhibits a frequency-banded nature that coincides with the band structure of the

infinite structure and can be enhanced through increase in number of the unit cells.

This nature can also be confirmed by the natural frequency calculation of the finite

structure. A reduction of transmission may also happen in the finite structure at the

frequencies in the pass bands of the infinite structure with an increase in number of

the cells comprising alternating layers of materials. However, this reduction is much

slower than that at the frequency in the stop bands.
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CHAPTER VII

Conclusions

In this thesis, a new BEM-based methodology for the band calculation of phononic

structures is constructed. Unlike those methods which employ a quasi-periodic struc-

tures, our approach does not have the issue of convergence for the wave function. Also

different from the domain methods, the proposed approach requires only boundary

discretization which make the preprocessing easier. The block SS method is employed

to overcome the difficulties that stem from the nonlinear property of the fundamental

solutions adopted in the BEM. As very basis, the propose approach is applied to the

resonance of acoustic cavities. Then various phononic structure are investigated by

using the constructed methodology. The following results are obtained:

1. As a starting point for the application of the proposed BEM-based methodology

to a periodic structure, the eigenfrequencies for resonance of acoustic cavities

are extracted by using the BEM combined with the block SS method. Accurate

numerical solutions are obtained and compared with the close form. By checking

the behavior of the singular values of Hankel matrix, an appropriate threshold

for the rank detection is chosen. The real spurious eigenfrequencies which are

related to the internal boundary of a multiply connect domain are produced by

CBIE. The real spurious eigenfrequencies are identified by using Burton-Miller’s

method, by which the shift of real spurious eigenfrequencies are observed.

2. Since the preparation works of the calculation of the eigenfrequencies for multi-

ply connected domains have been done, the BEM is applied to the band calcula-

tion of the acoustic phononic structures. The effectiveness of the methodology

are demonstrated by solving the band structures for two typical structures:

homogeneous medium with rigid scatterers, composite mediums. The spuri-

ous eigenfrequencies in the Bloch eigenvalue problem appear as horizontal lines
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in the band structures of both phononic structures. By using Burton-Miller’s

method, these horizontal lines are removed effectively and band gaps are ob-

served in the band structures.

3. Applying the methodology to a more complicated propagation of both longi-

tudinal and transverse waves in elastic solids, three typical elastic phononic

structures are proposed: a two-phase 2D phononic structure base on Bragg

scattering, a unidirectional 2D bounded phononic structure with traction-free

boundaries and a three-phase phononic structure.

4. Besides the analyses of infinite phononic structures to which the Bloch theorem

can be applied, finite unidirectional periodic structures are proposed for the im-

portance of practical problem. Instead of formulating the whole system matrix,

the transfer matrix based on the BEM serves repeatedly to form a size-reduced

coefficient matrix for the transmission problem. The transmission of sound pres-

sure/displacement from a input domain to a output domain that are connected

by the unidirectional phononic cells is investigated with models containing dif-

ferent number of cells. The results show that reductions of transmission happen

in the band gaps of the corresponding infinite structures. The reduction effect

can be enhanced by increasing the number of cells between the input and output

domains. Thus the finite structures also present a frequency-banded nature. A

slight reduction is also observed at pass band as the number of cells is increas-

ing, however, this reduction is negligible, compared with that in band gaps.

Furthermore, the eigenfrequencies of the finite structures are extracted by the

proposed approach. As a direct inspection for their frequency-banded nature,

locations of eigenfrequencies for the finite structures are found to have a band

distribution.

In summary, a new BEM-based methodology aimed at solving the band structure

of phononic crystals is proposed. Numerical simulations cover various eigenvalue

problems in homogeneous and phononic periodic structures. The numerical results

demonstrate the effectiveness of our approach. Moreover, meaningful conclusions on

infinite/finite phononic structures are obtained.

With the proposed methodology in the thesis, one can calculate the eigenfre-

quencies in a desired range by using the BEM without any domain discretization or

interpolation. Also because of this, accurate solutions can be obtained. For the band

calculation of phononic structures, the complexity of the designed unit cell does not

affect the effectiveness of the method.
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The further investigation will be conducted on the complicated 3D phononic struc-

tures with fast BEM algorithms whose codes are being developed. With the BEM,

a simpler phononic BEM model that has only a scatterer, is enough for the band

calculation if the quasi-periodic fundamental solution is employed. This means that

size of the coefficient matrix can be reduced further. In particular, it may provide a

easier algorithm as the basis of topological optimization of phononic structures, since

the BEM model just has the boundary of the scatterer whose topological structure

needs to be modified.
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