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Abstract

The present doctoral thesis basically treats the supersonic flow over a parach-

ute system, where the compressible Navier-Stokes equations are numerically

solved. The parachute system employed here consists of a capsule and a

canopy. In some cases with a relatively small trailing distance between the

capsule and the canopy, the flow field around a parachute model shows com-

plex flow patterns including wake/shock and/or shock/shock interactions.

Therefore, the objective of the present thesis is to investigate the effects of

such wake/shock and shock/shock interactions on the flow fields, and the

aerodynamics and shape of the canopy associated with the performance of

the parachute system, where rigid or flexible canopies are employed.

In the rigid canopy case, three-dimensional calculations were performed

for two models: Model A and Model B. The former is the same as the

experiment, where the canopy is connected with the capsule by a rod, and

the whole system is supported by another rod, while the latter does not have

these rods. Numerical results show good agreement with the experimental

data in the case of the model A. In addition, it is found that the differences

in flow feature between the models A and B are rather small. On the other

hand, the unsteady flow pulsation phenomenon was observed here in this

study. In the development of this phenomenon, the bow shock is first formed

ahead of the capsule, and then inflates periodically and moves outward in

the radial direction. This is caused by upstream propagation and lateral

expansion of the complicated capsule wake/rear shock and foreshock/rear

shock interaction systems.

In the flexible canopy case, two-dimensional, axisymmetric and three-

dimensional calculations were performed, using the immersed boundary

method in the fluid-structure coupling scheme. The mass-spring-damper



(MSD) model was applied to solve the structural dynamics of the flexible

canopy. The objective of this study is to analyze the effects of aerodynamic

interference such as wake/shock interaction on the canopy dynamics and

to examine the effects of parameters such as Mach number, the ratio of

the diameter of the capsule to that of the canopy, and the trailing distance

between the capsule and canopy. As a result, it is found that the immersed

boundary method works well to solve supersonic flexible parachute prob-

lems.

In the two-dimensional parachute case, only the steady foreshock and

the wake/rear shock interaction were observed, which was produced by the

weak interference and large deformation of the canopy. In addition, in the

axisymmetric parachute case, the complicated wake/rear shock and fore-

shock/rear shock interactions were observed. In this case, as Mach number

increases, the shock wave ahead of the capsule becomes more conical in

shape, which causes stronger aerodynamic interactions, and the interaction

locations are closer to the canopy. As a result, the canopy is subject to

large deformation including shrinkage.

On the other hand, in the three-dimensional flexible parachute case, it

is found that there are two key factors for the parachute dynamics; one is

the unsteady change in the canopy shape and the other the aerodynamic

interference between the capsule wake and the canopy shock. As the trailing

distance relatively increases, the phenomenon of “ canopy area oscillation”

was generated; however, reducing the canopy size in the case of relatively

small trailing distance, the canopy was less deformed. In addition, when

Mach number was reduced to Mach 1.6, the canopy was also less deformed,

due to the weaker interactions between the capsule wake and the canopy

shock, leading to a large drag coefficient.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background

The Mars Science Laboratory (MSL) mission that was launched by NASA in 2011 will

attempt to conduct the further investigations on the Martian surface [6]. The Curiosity,

a Mars rover, successfully landed on the surface of Mars on August 6, 2012 [7]. The

descent of this spacecraft into the Martian atmosphere was decelerated from the super-

sonic to the subsonic speed by using a supersonic parachute system [8] (see Figs. 1.1

and 1.2 ), due to its low mass and high ratio of aerodynamic drag [3].

In this mission, the supersonic parachute plays a very important role in the entry,

descent, and landing of the Mars rover [9]. To date, all the Mars landing missions have

used similar entry, descent, and landing systems so as to safely land to the surface of

Mars [10]. As the capsule enters into the atmosphere of Mars, it decreases velocity by

atmospheric drag; when the capsule becomes supersonic speeds, a supersonic parachute

is deployed to slow the capsule to subsonic speeds (see Fig. 1.2 ) [10, 11].

The supersonic decelerators for planetary entry were investigated experimentally

from 1960’s by the NASA [12]. In the early stage, the main purpose of the parachute

programs was to define the requirements and functions of this aerodynamic decelerators,

which can be used to accomplish in the further planetary exploration missions [9].

With the development of the technology, NASA qualified a Disk-Gap-Band (DGB)

parachute for the Viking Lander mission to Mars [13, 14]. So far, the NASA has

achieved several successful landings on Mars by using the supersonic parachute: Viking

1
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Landers I and II successfully deployed their parachutes at Mach 1.1 for their descent

into Mars atmosphere; the deployment of parachute system performed at Mach 1.7 in

the Mars Pathfinder mission; and then the Mars Exploration Rover A and B deployed

their parachutes with correspondent Mach numbers of 1.8 and 1.9, respectively; the

Mars Phoenix system was deployed at Mach 1.9; the MSL mission employed a largest

parachute, in which the deployment is planed to take place at a Mach number of

2.0. [9, 12, 15]

Figure 1.1: In MSL mission, the Curiosity and its supersonic parachute are landing to

Mars surface; the inset picture shows a cutout of the Curiosity and MSL parachute [1]

1.1.2 Review of Related Work

Maynard [16] firstly investigated the aerodynamic characteristics of the parachutes at

supersonic speeds, and found that the drag coefficient of the parachute system depends

on such facts on canopy porosity, Mach number, the shape and size of drogue, and

the distance between the drogue and the canopy, and revealed that the forebody wake

has a big impact on the drogue-type parachute system. Johnson [17] studied that a

conical-ribbon parachute system exhibited a high-frequency canopy breathing and the

periodic overinflation at Mach number greater than 1.14. Maynard [18] carried out a

2
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Figure 1.2: The descent of Curiosity in MSL mission [2]

wind-tunnel investigation of rigid and flexible parachute models, and found that Mach

number and canopy porosity are the most important facts for the performance of the

flexible parachute, and also observed the high-frequency breathing motion of the canopy,

moreover, Mach number and the wake from the forebody seriously affect the drag

coefficient of the rigid parachute model. Based on this results, some investigations of

the improvement for supersonic decelerators were performed, including new parachute

models such as conical-inlet parachutes [19], decelerator with isotensoid design [20], and

the effect of angle of attack [21]. During that time, Eckstrom [22, 23] and Eckstrom

et al. [24] conducted the wind tunnel and flight tests of the Disk-Gap-Band parachute

system, and drew a conclusion that the DGB parachute is very stable in flight and has

an effective drag coefficient.

In 1970’s, for the Viking Lander mission to Mars, a series of wind-tunnel and flight

tests of a Disk-Gap-Band (DGB) parachute were conducted. Maybue et al. [25] demon-

strated the oscillatory drag characteristics of a DGB parachute using supersonic wind

tunnel, and indicated that the parachute showed low-frequency canopy breathing, how-

ever, as Mach number increased from 2.0 to 3.0, the variations became more severe,

and found that the canopy porosity has not significant effect on the parachute drag

3
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performance, and an increase in the canopy trailing distance causes an increase in drag

coefficient at Mach 2.5. Steinberg et al. [26] employed 10% scale, DGB parachute model

to study the drag performance at a wide range of Mach number from 0.2 to 2.6, and

examine the impact of trailing distance and the suspension line length. It was found

that the forebody wake can remarkably affect the drag coefficient, and increasing the

trailing distance, by changing the length of suspension line, can improve the drag per-

formance. In addition, it was also found that a minimum drag coefficient was obtained

at sonic Mach number, and the drag coefficient increases as Mach number is increased

to 1.4. However, as Mach number continues to increase, the drag coefficient decreases

again. Besides, several flight tests of the DGB parachute [27, 28] were carried out at

supersonic, transonic, and subsonic speeds in the wake of full-scale Viking capsule, and

found that the parachute canopy showed severe breathing and/or flapping motions until

it reached a steady state.

Twenty years later, more experimental work of the DGB parachute were conducted

for the Mars Pathfinder missions [29, 30], the Mars Exploration Rover mission [31,

32, 33, 34, 35], the Mars Phoenix mission [36, 37, 38, 39].

On the other hand, the research on the numerical simulation of supersonic parachute

start relatively late, because it is very difficult, and needs to solve the problem of the

separated, unsteady compressible flows around a flexible, bluff body, on the condi-

tion that the upstream is non-uniform [9]. Klimas [40, 41, 42] firstly proposed Vortex

Element Methods for the simulation of the parachute canopies in an inviscid, incom-

pressible flow. This method has been improved to be more effective and widely useful,

however, so far limited for incompressible flows [9]. The early computational program

for the DGB parachute system was developed to simulate the effect of the suspension

line damping coefficient on the load and motion of parachute system at supersonic

conditions [43], and analyze the dynamics and stability of the DGB parachute using

the various parachute material compute models [44, 45]. With the development of

computer technology and the advancement of numerical calculation, Computational

Fluid Dynamics (CFD) technology was employed by Nelsen [46] to conduct the early

research for predicting the supersonic flow field over the parachute model, where the

rigid and ribbon three-dimensional parachute model in subsonic and supersonic flow

were simulated by solving the compressible Navier-Stokes equations, and the results

of the flow field feature and surface pressure distributions were obtained. Lafarge et

4
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al. [47] proposed a CFD code coupled with the finite element structural analysis for

a cross parachute system to compute the pressure distribution and the aerodynamic

heating. And this coupled fluid structure simulation method had been developed and

applied for 2D, 3D ribbon parachutes and other higher Mach parachutes by Taylor

et al. [48] . The early researches on FSI coupled with Arbitrary Lagrangian Eulerian

method to simulate flexible parachute system at supersonic conditions were presented

by Lingard et al. [49, 50], and in which firstly showed the aerodynamic interference

between the wake from the capsule and the canopy shock [9], and examined the effect

of the forebody wake, Mach number and trailing distance on performance of the flexible

parachute. Karagiozis et al. [3] performed well early on the simulation of large-scale

flexible supersonic DGB parachute by using Large-Eddy Simulation coupled with a

structural membrane based on finite element model, and reproduced the area oscil-

lations of the canopy, which were often observed in the experiment at higher Mach

number.

Moreover, it should be noted that it is the first time to use Computational Fluid

Dynamics (CFD) as well as Fluid-Structures Interaction Method (FSI) to design and

qualify the supersonic parachute system in the Mars Science Laboratory mission [9].

For the qualification of MSL mission, Barnhardt et al. [51] presented numerical

simulation of a rigid parachute model by using the detached-eddy simulation (DES)

method, and found that the time-dependent deficit in the wake interacts with the

canopy shock, causing the flow field around the parachute to become highly unsteady.

Using the same numerical method, Gidzak et al. [52, 53] further conducted the valida-

tion and compared with the data from wind tunnel tests, and found that the coupling

of the capsule wake and the bow shock ahead of the canopy leads to a cyclic pressuriza-

tion in the canopy, which causes the time variations in drag of a supersonic parachute,

and further revealed that the timescale for the canopy motions is larger than the one

for its drag variations. Simultaneously Sengupta et al. [8, 12, 54, 55, 56, 57, 58, 59]

conducted a multi-phase validation program: 2.1% of full-scale MSL rigid parachute

tests was used to qualify the high fidelity CFD codes; 4% of full-scale MSL flexible

parachute test was carried out to validate the FSI code; the validated FSI tools were

applied to simulate the Mars type deployment of the full-scale MSL parachute.

The complete overview of the relative work on supersonic parachute can also refer

to Ref. [3] and Ref. [9].
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1.2 Motivation and Objective

From the past investigations, it was found that the parachute oscillation phenomenon

(see Fig. 1.3) occurs at supersonic conditions, and this area oscillations can be observed

for all types of parachutes [3]. Furthermore, the drag decreases and flow instability

increases apparently owing to the interaction of the capsule wake with the canopy bow

shock [60].

Figure 1.3: Instantaneous flow fields around the parachute system at different instants [3]

Fig. 1.3 shows a flexible parachute system in a supersonic flow, where two shocks

occur in front of the capsule and canopy, respectively; and the wake-shock interaction

can be observed in the region between the capsule and canopy, which causes the canopy

change in shape and offers the unsteadiness in the flow field [3].

Moreover, recent experimental and numerical investigations by using subscale super-

sonic parachutes [12, 51, 57, 58, 59] also demonstrated that the flow instability comes

from the aerodynamic interference due to the canopy bow shock and capsule wake,

where the time-dependent momentum deficit of the capsule wake leads the canopy

6
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shock change in shape, reducing mass enter into the canopy, and it depends on such

facts as Mach number, Reynolds number, the forebody size, and the proximity to the

forebody.

Therefore, it becomes important to fully understand the flow field interactions that

take place in such two-body systems and identify those parameters that influence the

aerodynamic interactions. The objective of this study is to predict the flow field and

analyze the effect of aerodynamic interference on the parachutes in details, and make

clear the difference between rigid and flexible cases, and use these common points

to carry out parameter analysis and design optimization in the future research; and

examine the performance of the flexible parachute system in terms of Mach number,

the ratio of a capsule to a canopy diameter, and the trailing distance between the

capsule and canopy. In addition, in this study it is necessary to make sure whether that

the immersed boundary method can be employed to simulate the supersonic flexible

parachute problems.

1.3 Thesis Outline

In this study we treat cases with a small trailing distance between the capsule and

canopy, and the supersonic flow over rigid and flexible parachute models are studied

numerically at supersonic speeds ranging from M=1.6 to M=2.2.

Chapter 2 presents the numerical methods used for the flow and structure calcula-

tions in this study, and the computational code validation is performed in Chapter 3,

where the computation results show good agreement with experimental data. In Chap-

ter 3, two rigid parachute models at a freestream Mach number of 2.0 are numerical

simulated, where the complicated aerodynamic interferences and the unsteady flow field

with pulsation phenomenon are shown and discussed in detail. Chapters 4, 5, and 6

present a way to apply the immersed boundary method to a fluid-structure interaction

problem involving supersonic flexible parachute models, including two-dimensional, ax-

isymmetric, three-dimensional models, respectively. In addition, the effect of Mach

number on the flow field is examined in all the cases, as shown in Chapters 3, 4, 5,

and 6. Moreover, the performance of the three-dimensional flexible parachute system

depends on such factors as trailing distance, the ratio of a capsule to a canopy diameter
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are investigated as shown in Chapter 6. Finally, Some general conclusions as well as

the difference between rigid and flexible cases are summarized in Chapter 7.
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Chapter 2

Computational Methods

2.1 Introduction

In this study, the supersonic flow over a parachute system was simulated by numeri-

cally solving compressible Navier-Stokes equations. Moreover, flexible case was treated

by using the immersed boundary method together with the fluid-structure coupling

scheme. In this chapter, the numerical methods for the flow and structure calcula-

tions are presented, including the fluid-structure coupling method. In addition, the

validation for the Computational Fluid Dynamics (CFD) code will be carried out by

comparing numerical results with experimental data in Chapter 3.

2.2 Flow Calculation

2.2.1 3D Navier-Stokes Equations

For an unsteady compressible flow, the three-dimensional dimensionless Navier-Stokes

equations in the conservation form and Cartesian coordinates can be written as follows

(see textbook [61, 62] for details):

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= Re−1

(
∂Ev
∂x

+
∂Fv
∂y

+
∂Gv
∂z

)
(2.1)

where Q, E, F, G, Ev, Fv, Gv are given by

9
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Q =


ρ
ρu
ρv
ρw
e

 , E =


ρu

ρu2 + p
ρuv
ρuw

(e+ p)u

 , F =


ρv
ρvu

ρv2 + p
ρvw

(e+ p)v

 , G =


ρw
ρwu
ρwv

ρw2 + p
(e+ p)w

 ,

Ev =


0
τxx
τxy
τxz

uτxx + vτxy + wτxz + kTx

 ,

Fv =


0
τyx
τyy
τyz

uτyx + vτyy + wτyz + kTy

 ,

Gv =


0
τzx
τzy
τzz

uτzx + vτzy + wτzz + kTz


wherein Q represents the vector of conserved variables. ρ represents the density, u, v,

w are the velocities in x, y, z directions, respectively. e represents the total energy per

unit volume, p is the pressure. E, F and G represent the inviscid fluxes in x, y and z

directions, respectively; and Ev, Fv, and Gv represent the viscous fluxes in x, y and z

directions, respectively. τij represents the viscous stress tensor, k denotes the thermal

conductivity, Ti is the gradient of the temperature.

Here in a Newtonian fluid, the relationship between the viscous stress tensor and

the rate of strain tensor is linear, the components of the viscous stress tensor can be

written as follows (see details in Ref. [63, 64]):

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
τyz = τzy = µ

(
∂v

∂z
+
∂w

∂y

)
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τzx = τxz = µ

(
∂w

∂x
+
∂u

∂z

)
τxx = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂u

∂x
(2.2)

τyy = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂v

∂y

τzz = λ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ 2µ

∂w

∂z

in which λ is the second viscosity coefficient, µ is the dynamic viscosity coefficient.

Under the Stokes’s hypothesis [65], then we can obtain,

λ+
2

3
µ = 0 (2.3)

Furthermore, the dynamic viscosity, µ, was defined by Sutherland’s law [66, 67], the

relation with the absolute temperature, T, can be written as follows,

µ

µ∞
=
T∞ + S1
T + S1

(
T

T∞

) 3
2

(2.4)

where S1 refers to 110.4K, and T∞ refers to 273K in this study. Other relations in the

dimensionless form are as follows,

the total energy:

e =
p

ρ(γ − 1)
+

1

2

(
u2 + v2 + w2

)
(2.5)

the thermal conductivity:

k =
µ

(γ − 1)M2
∞Pr

(2.6)

where the ratio of the specific heats, γ refers to 1.4; the Prandtl number Pr is 0.72 for

laminar flow [68] in this study.

2.2.2 Navier-Stokes Equations in Generalized Coordinate System

In order to perform the calculation using arbitrary body fitted grid, it is necessary to

transform the Navier-Stokes equations in Cartesian coordinate system (x,y,z) to the

generalized coordinate system (ξ, η, ζ). The basic principles of this transformation can
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refer to Ref. [69] and Ref.[70]. The relationship between the two coordinate systems is

written as follows.

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ) (2.7)

A matrix form of Eq. 2.7 can be written as follows: dx
dy
dz

 =

 xξ xη xζ
yξ yη yζ
zξ zη zζ

 dξ
dη
dζ

 (2.8)

In the same manner, we can get the inverse transformation as Eq. 2.9. dξ
dη
dζ

 =

 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 dx
dy
dz

 (2.9)

From the relations between Eqs. 2.8 and 2.9, we can obtain Eq. 2.10 ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 =

 xξ xη xζ
yξ yη yζ
zξ zη zζ

−1 (2.10)

= J

 yηzζ − yζzη zηxζ − zζxη xηyζ − xζyη
yζzξ − yξzζ zζxξ − zξxζ xζyξ − xξyζ
yξzη − yηzξ zξxη − zηxξ xξyη − xηyξ


So

ξx = J(yηzζ − yζzη) ξy = J(zηxζ − zζxη) ξz = J(xηyζ − xζyη)
ηx = J(yζzξ − yξzζ) ηy = J(zζxξ − zξxζ) ηz = J(xζyξ − xξyζ)
ζx = J(yξzη − yηzξ) ζy = J(zξxη − zηxξ) ζz = J(xξyη − xηyξ)

(2.11)

where “J” is the transformation Jacobian, it can be obtained from Eq. 2.10 (details of

the derivation can refer to [61]).

1

J
= xξ(yηzζ − yζzη) + xη(yζzξ − yξzζ) + xζ(yξzη − yηzξ) (2.12)

Now, after using the chain rule, the partial derivative of flux vectors in Eq. 2.1 will

become:

∂

∂x
= ξx

∂E

∂ξ
+ ηx

∂E

∂η
+ ζx

∂E

∂ζ
(2.13)

∂

∂y
= ξy

∂F

∂ξ
+ ηy

∂F

∂η
+ ζy

∂F

∂ζ
(2.14)

∂

∂z
= ξz

∂G

∂ξ
+ ηz

∂G

∂η
+ ζz

∂G

∂ζ
(2.15)
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Then take the x direction for example, the following relation can be obtained as

follows (refer to Ref. [61] and Ref.[71]).

∂E

∂x
= ξx

∂E

∂ξ
+ ηx

∂E

∂η
+ ζx

∂E

∂ζ
(2.16)

= J

[
∂

∂ξ

(
ξxE

J

)
+

∂

∂η

(
ηxE

J

)
+

∂

∂ζ

(
ζxE

J

)]
= J

[
∂

∂ξ
(J−1(ξxE)) +

∂

∂η
(J−1(ηxE)) +

∂

∂ζ
(J−1(ζxE))

]
Using the same manner, the Navier-Stokes equations in generalized coordinate sys-

tem can be written as follows

∂Q̂

∂t
+
∂Ê

∂ξ
+
∂F̂

∂η
+
∂Ĝ

∂ζ
= Re−1

(
∂Êv
∂ξ

+
∂F̂v
∂η

+
∂Ĝv
∂ζ

)
(2.17)

where Q̂, Ê, Ĝ, Êv, F̂v, Ĝv are given by

Q̂ = J−1


ρ
ρu
ρv
ρw
e

 , Ê = J−1


ρU

ρuU + ξxp
ρvU + ξyp
ρwU + ξzp
(e+ p)U

 , F̂ = J−1


ρV

ρuV + ηxp
ρvV + +ηyp
ρwV + ηzp
(e+ p)V

 ,

Ĝ = J−1


ρW

ρuW + ζxp
ρvW + ζyp
ρwW + ζzp
(e+ p)W

 , Êv = J−1


0

ξxτxx + ξyτxy + ξzτxz
ξxτyx + ξyτyy + ξzτyz
ξxτzx + ξyτzy + ξzτzz
ξxβx + ξyβy + ξzβz

 ,

F̂v = J−1


0

ηxτxx + ηyτxy + ηzτxz
ηxτyx + ηyτyy + ηzτyz
ηxτzx + ηyτzy + ηzτzz
ηxβx + ηyβy + ηzβz

 , Ĝv = J−1


0

ζxτxx + ζyτxy + ζzτxz
ζxτyx + ζyτyy + ζzτyz
ζxτzx + ζyτzy + ζzτzz
ζxβx + ζyβy + ζzβz


herein U, V, and W are the contravariant velocities in the ξ, η,and ζ directions as

defined in Eq. 2.18. In addition, βx, βy, βz are given by Eq. 2.19, and the components

of the viscous stress tensor can refer to Eq. 2.2.

U = ξxu+ ξyv + ξzw
V = ηxu+ ηyv + ηzw
W = ζxu+ ζyv + ζzw

(2.18)

βx = τxxu+ τxyv + τxzw + kTx
βy = τyxu+ τyyv + τyzw + kTy
βz = τzxu+ τzyv + τzzw + kTz

(2.19)
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2.2.3 Axisymmetric Navier-Stokes Equations

In this study, the two-dimensional axisymmetric Navier-Stokes equations are applied

to model the flexible parachute problem, because the parachute model is assumed

here to be axisymmetric around the longitudinal axis. In cylindrical coordinates, the

axisymmetric form of the Navier-Stokes equations in conservation forms are as follows

(refer to Ref. [72] and Ref.[73])

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
=
∂Ev
∂x

+
∂Fv
∂y

+Q∗ (2.20)

where x, y are the axial and radial coordinates, respectively. Q represents the vector

of the conservative variables. E, F represent the inviscid fluxes in the axial and radial

directions, respectively, and Ev, Fv represent viscous fluxes in the axial and radial

direction, respectively. Q∗ represents the source term. The Q, E, F, Ev, Fv, Q
∗ are

given by:

Q =


ρ
ρu
ρv
ρe

 , E =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 , F =


ρv
ρvu

ρv2 + p
(ρe+ p)v

 ,

Ev =


0
τxx
τxy

uτxx + vτxy + kTx

 ,

Fv =


0
τyx
τyy

uτyx + vτyy + kTy

 , Q∗ =


0
0
− τθθ

r
0


where u, v is the velocity components in the axial and radial direction, respectively. e

is the total energy. θ refers to the azimuthal coordinate.

In addition, the components of the viscous stress tensor are written as

τxx = −2µ

3
∇·V + 2µ

∂u

∂x
(2.21)

τyy = −2µ

3
∇·V + 2µ

∂u

∂y
(2.22)
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τθθ = −2µ

3
∇·V + 2µ

v

y
(2.23)

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
(2.24)

where

∇·V =
∂u

∂x
+
∂v

∂y
+
v

y
(2.25)

2.2.4 Evaluation of Inviscid Flux

In this research, Simple High-resolution Upwind scheme (SHUS) [74] is widely used

for evaluating the inviscid fluxes in the numerical simulation of supersonic flow over

two-dimensional, three-dimensional parachute systems. The SHUS is one of AUSM

type schemes [75], which are very simple, robust and accurate for modeling the shock

wave and boundary layer, but has some weakness at shock front [74]. However, SHUS

scheme can be more robust and have high resolution at the simulation of the such

complex flows, exhibits strong shock wave and aerodynamic interaction [76].

Simple Low-dissipation AUSM (SLAU) [77] is applied to evaluate the numerical flux

for the simulation of the axisymmetric parachute model. SLAU scheme is also from the

AUSM type schemes [75], and also has the advantage of the robust against the shock

instability and oscillation [77]. In addition, the accuracy of these schemes is improved

by using the MUSCL scheme [78, 79] with the Van Albada flux limiter [80].

2.2.4.1 AUSM Scheme

The AUSM scheme is used to estimate the inviscid flux at the cell interface, in which

the numerical flux is split into two parts: the convective term and the pressure term.

This scheme can be written in generalized formulation as follows (more details see [74,

76, 81]),

E 1
2

=
m+ |m|

2
ψ+ +

m− |m|
2

ψ− + p̂N (2.26)

ψ =


1
u
v
w
H

 , N =


0
nx
ny
nz
0

 , (2.27)
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m = ρVn, Vn = nxu+ nyv + nzw (2.28)

where H is total enthalpy, m is the mass flux. nx, ny, nz represent the unit normal

vector to the cell-interface in x, y, z directions, respectively. In addition, p̂ is defined

based on Mach number of left (+) and right (-) value, as shown in Eq. 2.29.

p̂ = β+pL + β−pR + p∗ (2.29)

β± =


1
4 (2∓M±) (M± ± 1)2 if |M±| ≤ 1

1
2
(M±|M |)

M otherwise

(2.30)

where the subscript L and R mean physical value of left and right side of the interface,

p∗ is a pressure correction term, the details about this term can be found in Ref. [74].

2.2.4.2 SHUS Scheme

In SHUS scheme, the mass flux m is different from the other AUSM-family schemes,

and comes from Roe scheme [74], its more details can refer to Ref. [74], Ref. [81] and

Ref. [76]. it is given by

m =
1

2
{(ρVn)+ + (ρVn)− −

∣∣V̄n∣∣∆ρ
−

∣∣M̄ + 1
∣∣− ∣∣M̄ − 1

∣∣
2

ρ̄∆Vn (2.31)

−
∣∣M̄ + 1

∣∣− ∣∣M̄ − 1
∣∣− 2

∣∣M̄ ∣∣
2

∆p

c̄
}

∆ρ = ρR − ρL, ∆p = pR − pL, ∆Vn = VnR − VnL,

ρ̄ =
ρL + ρR

2
, p̄ =

pL + pR
2

, V̄n =
VnL + VnR

2
, M̄ =

V̄n
c̄

The pressure flux is

p̂ = β+pL + β−pR (2.32)

where β± can refer to Eq. 2.30.

16



2.2 Flow Calculation

2.2.4.3 SLAU Scheme

Since the SLAU scheme [77] is used in axisymmetric case, Eq. 2.27 will be rewritten as

follow,

ψ =


1
u
v
H

 , N =


0
nx
ny
0

 , (2.33)

Moreover, the mass flux of SLAU is given by

m =
1

2
{ρL(VnL +

∣∣V̄n∣∣+) + ρR(VnR −
∣∣V̄n∣∣−)− χ

c̄
∆p} (2.34)

where ∣∣V̄n∣∣ =
ρL |VnL|+ ρR |VnR|

ρL + ρR
, (2.35)

∣∣V̄n∣∣+ = (1− g)
∣∣V̄n∣∣+ g|VnL|, (2.36)

∣∣V̄n∣∣− = (1− g)
∣∣V̄n∣∣+ g|VnR|, (2.37)

g = −max[min(ML, 0),−1] ·min[max(MR, 0), 1] ∈ [0, 1] (2.38)

The pressure flux is

p̂ =
pL + pR

2
+
β+ − β−

2
(pL − pR) + (1− χ)(β+ + β− − 1)

pL + pR
2

(2.39)

χ = (1− M̂)2 (2.40)

M̂ = min[1.0,
1

c 1
2

(
uL

2 + vL
2 + uR

2 + vR
2

2
)
1
2 ] (2.41)

M =
Vn
c 1
2

=
unx + vny

c 1
2

(2.42)

Here β± can refer to Eq. 2.30. The interface sound of speed c 1
2

is defined as follow:

c 1
2

= min(cL, cR) (2.43)
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2.2 Flow Calculation

cL/R =
ĉ2

max(ĉ,
∣∣V̄n∣∣±)

(2.44)

ĉ2 =
2(γ − 1)H

γ + 1
(2.45)

More details about SLAU scheme can read Ref. [77] and Ref. [81].

2.2.5 Time Advancement

In this study, the 3rd-order total variation diminishing (TVD) Runge-Kutta scheme [82]

is widely used to obtain time accurate results in unsteady calculations. In addition,

the classical explicit 2nd order Runge-Kutta method (eg. [61]) is also applied for the

axisymmetric flexible case and the canopy model calculation. The Runge-Kutta scheme

with the TVD property, is a very simple and effective approach to solve the flow field

with discontinuities, such as shock waves [83, 84].The governing equations of fluid flow

can be reduced to

Ut = L(U) (2.46)

The time advancement for Eq. 2.46 can be carried out by using the 3rd TVD Runge-

Kutta scheme proposed by Shu and Osher [82], which can be written as follows,

U (1) = Un + ∆tL(Un) (2.47)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1)) (2.48)

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)) (2.49)

More details about this scheme can be found in Ref. [82],Ref. [83],Ref. [84].

2.2.6 Boundary Conditions

At the inflow boundary, all conservative variables are decided by the freestream values.

At the outer boundary, the conservative variables are solved from the solution inside

the computational domain.
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2.3 Structure Calculation

For the solid body, the no-slip and adiabatic conditions [69] are used to treat the

boundary surfaces.

u = v = w = 0

(
∂T

∂n
)wall = 0

In addition, due to the axisymmetric configuration for the present problem, it is nec-

essary to consider the periodic and symmetry boundary conditions, here the average

conditions are used to treat them.

In the flexible cases, the immersed boundary method (IBM) [85, 86, 87] is applied

to deal with the moving boundary of the flexible canopy. It will be introduced in the

section 2.4 .

2.3 Structure Calculation

In this study the mass-spring-damper (MSD) model [88] was applied to solve the struc-

tural dynamics of the flexible canopy, which has been used to simulate many kinds of

fluid-flexible body interaction problems such as the parachute system including the 2D

and 3D models [88, 90] , fluid-membrane interaction [89]. This model treats a canopy

as an assembly of mass nodes attached to springs and dampers.

The governing equations of mass-spring-damper (MSD) model are computed based

on Newton’s second law at each control node of canopy [88]. The force analysis of a

mass node of the canopy surface are shown from Fig. 2.1 to Fig. 2.3. As we can see

that these forces include the tangential spring and damper forces, the pressure difference

between the inner and outer surface, the normal damper force, and the gravity force. In

addition, from Fig. 2.2, it is found that the mass node of the edge canopy has a different

force from the interior one, the tension of suspension line needs to be considered. The

equation of motion for the canopy nodes [90] can be expressed as follows,

d2xi,j
dt2

=
1

m
{
N∑
n=1

(km∆lκ + cm
d(∆lκ)

dt
)eκ

− cn(Vi,j · ni,j)ni,j + ∆Pi,j +Gi,j + Ti,j} (2.50)

where m is mass of a canopy node, km, cm, cn represent the spring constant, damping

coefficient in tangential direction, damping coefficient in normal direction, respectively.
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2.4 Fluid-Structure Coupling Method

Flexible 
Canopy 

Mass nodes 

Tension of 
suspension line 

Figure 2.1: Overview of the tangential force acting on the mass nodes of flexible canopy

surface, the red point is a mass node of canopy surface

∆lk is the deformation value of the spring. eκ represents the unit vector between two

neighboring nodes. Vi,j represents the velocity of a mass node, ni,j represents the

normal vector to the canopy surface. ∆Pi,j , Gi,j , Ti,j represent the pressure difference

between the inner and outer canopy surface, gravity force, the tension of suspension

line respectively. It should be pointed out that N=4 for a typical interior node; N=3

for a mass node at the edge part of canopy, and the effect of tension of the suspension

line is also considered.

In addition, in the canopy model calculation, the explicit 2nd-order Runge-Kutta

scheme is used to obtain the time-variations of the canopy shape.

2.4 Fluid-Structure Coupling Method

Among several ways of modeling the fluid-structure interaction, the Arbitrary La-

grangian Eulerian (ALE) method [91] has been commonly used for FSI problems.

Provided that the rotation, translation and/or deformation of a structure lie within

certain limits, this method is very effective. However, when these limits change with

time, ALE elements become ill-shaped, so that in this case the ALE method alone

blows up [92].
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2.4 Fluid-Structure Coupling Method

Mass node 

Spring-damper 

+ 

ー 

(a) a typical interior mass node [90]

Mass node 

Spring-damper 

+ 

ー Tension of 
suspension line 

(b) a special MSD model at the edge of canopy

Figure 2.2: MSD model of the canopy from Fig. 2.1

In addition, numerical simulation of the fluid-structure interaction problems involv-

ing the flexible parachute models has attracted great attention for many years, some

successful methods such as the DST/SST method [93], immersed boundary method [94,

95], front tracking method [96] were applied to solve the parachute model at low speeds,

however, there are relatively few numerical methods on solving the supersonic parachute
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2.4 Fluid-Structure Coupling Method

Gravity 

Normal  
damper force 

Mass node 

ΔP=Pinner-Pouter�

i, j 

Canopy surface 

Figure 2.3: The normal force acting on the mass nodes of flexible canopy surface

problem. Here in the present study, we present a way to apply a simple immersed

boundary method [85] to a fluid structure interaction problem involving supersonic

flexible parachute models. This method has been employed for the numerical simula-

tion of 2D and 3D flexible parachute systems at lower Mach number [85, 90], where the

history of the canopy inflation in simulation was qualitative agreement with the exper-

iment data; and for the 2D and axisymmetric flexible parachute system at supersonic

conditions [86].

Virtual cell 

Fluid cell 

Canopy Boundary 

Vi 
Vj 

nj 

Figure 2.4: Velocity vectors in fluid and virtual cell [4]
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2.4 Fluid-Structure Coupling Method

Vi 

Vj nj 
Vtij 

Vnij 

-Vnij 

Figure 2.5: Relationship between the velocities of fluid and virtual cell [4]

2.4.1 Immersed Boundary Method

The immersed boundary method [85, 90] was applied to compute the moving boundary

of a flexible canopy. The boundary conditions of the canopy surface were treated using

the approach presented by Ochi et al. [4]. It can approximately give the velocity vectors

of the virtual cells on the condition that this boundary is fixed. This method has been

modified so as to deal with the moving boundary conditions of the flexible canopy

surface. The velocity vectors in the virtual cells can obtain from the relation between

fluid and virtual cells(see Figs. 2.4 and Fig. 2.5),which can be written as follow (see

details in Ref. [4, 90]).

Vj = Vi − 2(Vi · nj)nj + Vw (2.51)

where Vi, Vj , Vw refer to the velocity vector in the fluid cell (i), virtual cell (j), canopy

velocity , respectively; and nj a unit vector normal to the canopy surface (see Figs. 2.4

and Fig. 2.5).

2.4.2 Fluid-Structure Coupling Scheme

In order to solve the coupling problem, it is first separated into the fluid and structure

parts. Fig. 2.6 shows the fluid-structure coupling method used in the present study.

The pressure distribution on the canopy surface as the fluid force is obtained from the
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Fluid Analysis Structure analysis 

Immersed boundary method 

Time Evolution 

Fluid force 

Figure 2.6: The fluid-structure coupling method used in this study [90]

result of flow simulation, which is used to calculate the displacement and velocity of each

canopy node. Then, those data are provided to calculation by the immersed boundary

method. The explicit 2nd-order Runge-Kutta scheme is used to obtain time-variations

in the canopy model calculation.

The method to solve the fluid and structure equations can be classified into weak and

strong coupling schemes; in the former the governing equations are solved separately

in a time domain, while in the latter they are solved concurrently. It is known that

the strong coupling method is more stable and robust, while the weak coupling method

is more flexible [98]. In this study in order to solve the fluid and structure equations

simultaneously, the method of strong coupling is employed for the two-dimensional

case, while the method of weak coupling is employed to solve the axisymmetric case

and three-dimensional case.
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2.4 Fluid-Structure Coupling Method

Fluid Analysis Structure Analysis 

N 

N+1 N+1 

N+2 N+2 

N+3 N+3 

N+4 N+4 

N 

(a) The scheme of strong coupling [97]

Fluid Analysis Structure Analysis 

N 

N+1 N+1 

N+2 N+2 

N+3 N+3 

N+4 N+4 

N 

(b) The scheme of weak coupling

Figure 2.7: The fluid-structure coupling scheme
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Chapter 3

Three-Dimensional Flow Around

Axisymmetric Rigid Parachute

3.1 Introduction

Here in this study a rather small trailing distance is considered, the flow field around a

parachute model shows complicated wake/shock and shock/shock interactions. In order

to fully understand the flow field and investigate the effects of such wake/shock and

shock/shock interactions on the flow instability, numerical simulation was carried out

for three-dimensional rigid models at a freestream Mach number of 2.0. The parachute

system employed here consists of a capsule and a canopy. Two models were considered:

Model A and Model B. The computational results obtained for model A will be validated

by comparing with experimental data measured at the ISAS/JAXA supersonic tunnel.

3.2 Rigid Parachute Models

The parachute system employed here consists of a capsule and a canopy. For comparing

with experiment, a rigid parachute canopy is considered, and the suspension lines are

not taken into account. Two models were employed: model A and model B, which are

shown in Fig. 3.1. In model A the capsule and canopy are connected by a rod, all of

which is supported at the top of the canopy by a thicker rod to the wind tunnel model

support system; this configuration is the same as the model used in experiment. On

the other hand, model B is basically close to model A except for having no rods. It

should be noted that the capsule takes a conical form with a half-cone angle of 20 deg
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3.2 Rigid Parachute Models

and a front diameter of 0.20D (see Fig. 3.1), and X/d refers to the trailing distance

between the capsule and canopy.

unit:mm 
d=

24
 d1=12 

X=57 

h=5 

d 2
=4

0 

D
=1

20
 

Q

Capsule 

Canopy 

(a) Model A

unit:mm 

d=
24

 

X=57 

h=5 

D
=1

20
 

Capsule 

Canopy 

(b) Model B

Figure 3.1: Models used in the present computation
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3.3 The Method of Simulation

3.3 The Method of Simulation

3.3.1 Computational Conditions

The computational conditions for the freestream in computation are the same as those

in experiment, which are listed in Table 3.1.

Table 3.1: Freestream conditions employed in the present study

M∞ Re P0 P∞ T0

2.0 2.04× 107 166kPa 21kPa 298K

3.3.2 Numerical Method

The three-dimensional compressible Navier-Stokes equations were solved to simulate

the supersonic flow field around parachute models, the calculations were performed

using a parallel in-house structured single-block code. To evaluate the inviscid fluxes,

the Simple High-resolution Upwind scheme (SHUS) [74] was adopted; the accuracy

of this scheme is improved by using the 3rd MUSCL scheme [78, 79] with the Van

Albada flux limiter [80]. On the other hand, the viscous terms were calculated by the

usual 2nd order central differencing scheme. The coefficient of viscosity was computed

according to Sutherland’s law [66, 67]. The numerical code is featured by the 3rd

total variation diminishing Runge-Kutta scheme [82] to obtain time accurate results in

unsteady calculations.

We do not use any turbulence models in the present study, because till now most

of the algebraic turbulence models were quite unreliable for separation flows [99]. In

addition, in terms of initial conditions, each variable initially takes its freestream value;

in terms of boundary conditions, non-slip and adiabatic conditions were imposed at

body surfaces.

3.3.3 Grid Generation and Grid Convergence

Owing to the axisymmetric configuration in the present problem, the single block struc-

tured grid was created by a meridional plane. Figure 3.2 shows the 3D view of these

grids.
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3.3 The Method of Simulation

(a) Model A

(b) Model B

Figure 3.2: Grids for parachute models

Three grids with different numbers of points listed in Table 3.2 were employed to

examine the grid dependence. The pressure histories at freestream Mach 2.0 for point

Q at the edge of capsule (see Fig. 3.1) were shown in Fig. 3.3. In this figure, the non-

dimensional time is defined as t1 = t∗V∞/D [100], t1 is the non-dimensional time in this
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3.3 The Method of Simulation

study. By and large, the pressure time histories are almost identical in terms of both

pressure amplitude and time period for the three grids. It is obvious that the resolution

of the coarse grid is not enough to capture the appropriate unsteady flow. The pressure

results of the medium and fine grids agree reasonably, providing comparable values in

terms of pressure amplitude and time period. Therefore, henceforth, results by the

medium grid will be shown in this study.

Table 3.2: Grid used for grid convergence

Type of grid Grid number

Coarse 542, 640

Medium 3, 296, 720

Fine 5, 897, 028

1 

3 

5 

7 

9 

8 12 16 20 24 28 32 

Coarse grid Medium grid Fine grid 

Non-dimensional time: t1 

P/
P∞

 

Figure 3.3: Pressure change due to grid

3.3.4 The Pressure Sensor in the Experiment

The pressure sensor used in this experiment is made by Kyowa Electronic Instruments

Co., Ltd., its type is PA-2KB, which can precisely measure pressure fluctuations rang-

ing from absolute zero (vacuum pressure) to 0.2MPaabs, and exclusively designed for

airborne measuring on supersonic vehicles. [5] It should be noted that its measurement

accuracy is ±0.2 kPa [5], and the main specifications of this pressure sensor are shown

in Table 3.3, and more details of the pressure sensor can refer to [5].
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3.3 The Method of Simulation

Table 3.3: The specification of pressure sensor used in this study [5]

Model PA-2KB

Rated capacity 200kPaabs(2.039kgf/cm2
abs)

Natural frequency (approx.) 5kHz

Non-linearity ±0.1%RO

Hysteresis ±0.1%RO

Rated output 2mV/V(4000× 10−6strain) or higher

3.3.5 Validation of the Numerical Method

In both the experimental and CFD the shock wave envelope histories exhibit cycle-

to-cycle variations, the oscillation frequency of the flow can be described by Strouhal

number [101], which was adopted to make a quantitative comparison (see Table 3.4).

The Strouhal number in simulation is close to that of the experiment.

In addition, as the frequency of the pressure sensor used in the experiment was

rather low (see Table 3.3), it could not capture unsteadiness of the pressure. Then, as

shown in Fig. 3.5, a dotted line was drawn for a reference value based on the experi-

mental data, which seems to correspond to the average value of unsteady pressure at

point A on the inner surface of the canopy (see Fig. 3.4). It can be seen from this figure

that the calculated pressure data (at point A) oscillates around this line.

Table 3.4: Comparison of Strouhal numbers

Strouhal number Experiment CFD
D

T×V∞ 0.2117 0.2139

The four time locations of the CFD results (see A,B,C,D in Fig. 3.7) are defined on

the pressure trace of point Q in Fig. 3.6. The four representative instantaneous flow

fields in CFD in the case of model A are shown in Fig. 3.7 at a freestream Mach number

of 2.0 along with the corresponding shadowgraph pictures in experiment. Comparing

these left and right figures in Fig. 3.7, we can see that they are in reasonable agreement.

Averaged pressure distributions on the inner surface of the canopy and the front

surface of the capsule are plotted in Fig. 3.8, along with the experimental data, where r
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Figure 3.4: The location of point A inside the canopy

0 

100 

200 

300 

0.004 0.005 0.006 0.007 0.008 0.009 

CFD Averaged pressure data (EXP.) 

t, sec 

P,
 K

Pa
 

Figure 3.5: Comparison of the experimental averaged pressure data and CFD time-

resolved data of point A (see Fig. 3.4)

represents the arc distance along the surface from the center, L the maximum arc length

of the canopy, and d the diameter of the capsule. It is seen from the figure 3.8 that the

computational results are in good quantitative agreement with the experimental data.
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3.4 Unsteady Aerodynamic Interactions

Figure 3.6: Numerical pressure histories at point Q (see Fig. 3.1), A, B, C and D corre-

spond to the time locations shown in Fig. 3.7

3.4 Unsteady Aerodynamic Interactions

From Fig. 3.9, it is found that the bow shock (foreshock) formed ahead of the capsule

inflates periodically and moves outward in the radial direction, thereafter including a

hemisphere shape. This unsteady flow mode is called “pulsation” mode [102]. In order

to investigate the mechanism of the pulsation mode for the parachute system, due to

the complicated flow field, the typical number of frames per pulsation cycle can not

be generally less than 10 [100, 103]. Following the method of analyzing this flow mode

proposed by Feszty et al. [100], in this study 14 frames per period were chosen from CFD

results to make two different types of flow visualization concurrently: Mach number

contours and pressure contours. The former can demonstrate shear layer and boundary

layer separation, while the latter enables us to identify shock wave and vortex. [100]

Here it should be noted that this paper focuses on analysis of the unsteady flow field

produced by interactions between the capsule and canopy.

Figure 3.9 shows the 14 instantaneous flow field frames, and the time interval (di-

mensionless) between two neighboring frames is 0.3. From the variation of the flow field

during the pulsation cycle, it can be demonstrated using three processes; the process

1 corresponds to frames 1-3, the process 2 to frames 4-7, and the process 3 to frames

8-14.

Figure 3.10 shows the time variations of pressure at two different places of the

parachute system, one is point Q at the edge of the capsule (see Fig. 3.11), another
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(A)

(B)

(C)

(D)

Figure 3.7: Shadowgraph pictures (left) and the corresponding density gradient contours

in simulation (right)
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(a) Inner surface of canopy

(b) Front surface of capsule

Figure 3.8: Averaged pressure distribution on surfaces of Model A

one is point O at the corner of canopy (see Fig. 3.11). These pressure traces can be

used to define the time positions of the CFD results shown in Fig. 3.9. Moreover, the

pressure difference between the canopy and the capsule can be properly identified from

comparisons of these two pressure traces.

As shown from Fig. 3.11 to Fig. 3.16, schematic symbols and schematic diagrams

are used to show and explain the various flow characteristics appearing throughout the

pulsation cycle, where W refers to the shock wave, T the triple point, P the separated

region, L the shear layer , and V the vortex region, and the number the order of its

emergence. Because the geometry is axisymmetric and the flow fields are similar, those

flow features were marked only once. It should be noted that for the schematic symbols

appearing in the detailed explanation, please refer to the schematic diagrams shown

from Fig. 3.11 to Fig. 3.16. In addition, in the following, the foreshock refers to the
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3.4 Unsteady Aerodynamic Interactions

shock wave ahead of the capsule, and the rear shock to the shock wave ahead of the

canopy.

3.4.1 Flow Features of Process 1

This process corresponds to frames 1 to 3 in Fig. 3.9. The feature of this process is that

no aerodynamic interference such as shock/shock or wake/shock interaction occur in

the flow field, where the bow shock, or the fore shock, is nearly stable, and the capsule

wake and the canopy shock are formed.

In frame 1 of Fig. 3.9, bow shock W1 (refers to Fig. 3.11,the symbols below are

similar) has already expanded to its full extent and begins to go back toward the

capsule; the boundary layer separates from the edge of capsule, so that shear layer L1

and vortex V1 generate in the wake zone.

From Fig. 3.10, we can see that during frames 1-3, the pressure inside the canopy

decreases and takes almost minimum at frame 3 (see Fig. 3.10 (b)), while the pressure

in front of the capsule becomes higher(see Fig. 3.10 (a)). This pressure difference makes

shock W2 move toward the inside of canopy (see Figs. 3.9a and 3.9b). As it moves

inward of the canopy, shock wave W2 interacts with the internal surface of canopy,

the pressure there begins to rise, and another shock W3 is produced from there (see

Fig. 3.9b and Fig. 3.11).

Moreover, as W2 goes downstream, it interacts with the boundary layer on the

connecting rod and creates a separation region, P3; and P3 gradually grows and moves

forward. At the same time a shear layer, L3, forms along the boundary of the separation

zone P3 (see Figs. 3.9a, 3.9b and Fig. 3.11).

The flow characteristics of process 1 are that the gas inside the canopy is compressed

by shock waves W2 and W3. When this compressed flow escapes from the edge of the

canopy, it becomes supersonic (see Figs. 3.9b and 3.9c). As a result, the tip of canopy

is exposed to this flow, so that a separation region, P2, forms. Following this, a shear

layer, L2, forms in the wake region, leading to the development of a vortex region, V2

(see Fig. 3.11).

3.4.2 Flow Features of Process 2

This process corresponds to frames 4-7 in Fig. 3.9. The feature of this process is that

aerodynamic interferences such as wake/shock interaction actually occur; specifically
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(a)frame1

(b)frame2

(c)frame3

(d)frame4

Figure 3.9: Pulsation mode for Mach of 2.0: Mach number contours(left) and pressure

contours (right)(cont’d)
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(e)frame5

(f)frame6

(g)frame7

(h)frame8

Figure 3.9: Pulsation mode for Mach of 2.0: Mach number contours(left) and pressure

contours (right)(cont’d)
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(i)frame9

(j)frame10

(k)frame11

(l)frame12

Figure 3.9: Pulsation mode for Mach of 2.0: Mach number contours(left) and pressure

contours (right)(cont’d)
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(m)frame13

(n)frame14

Figure 3.9: Pulsation mode for Mach of 2.0: Mach number contours(left) and pressure

contours (right)

the capsule wake interacts with the canopy shock, and the intersections go upstream.

It is seen from Fig. 3.10(a) that during frames 4-6, the pressure around the capsule

becomes smaller and reaches a minimum at the frame 6. Consequently, shock wave W1

moves closer to the capsule.

In frame 4 of Fig. 3.9, shock wave W2 almost reaches the corner, and then disap-

pears. The pressure at the corner of the canopy becomes the first peak (see Fig. 3.10b),

where shock wave W4 is produced (see Figs. 3.9d and 3.13). During this process, a

definite vortex region, V3, can be observed at the corner of canopy, which forms behind

the shock wave W4 (see Fig. 3.13). This is produced by virtue of the impact of a pen-

etrating flow with a recirculation flow. This suggests that the approaching expansion

of the trapped air in the corner is generated not only by a mass influx from upstream,

but also by the inflation due to its high pressure. The vortex, V3, exits during almost

the whole of process 2.

As shock wave W4 (see Fig. 3.12) expands toward upstream, another vortex region,
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3.4 Unsteady Aerodynamic Interactions

(a) Point Q at the edge of capsule (see Fig. 3.11)

(b) Point O at the corner of canopy (see Fig. 3.11)

Figure 3.10: Time variations of pressure at two different places in Mach 2.0 pulsation

case

V4, is generated by the interaction of W4 with the inner surface of the canopy, which

moves with W4 and reaches the edge of the canopy, as shown in frame 6 of Fig. 3.9.

This leads to the creation of a vortical region, V6 (see Fig. 3.9f and Fig. 3.12). In frame

5 of Fig. 3.9, shock wave W3 has already extended all over the entire canopy and has

moved to the location of L1, interacting with it (see Fig. 3.9e).

In frame 6 of Fig. 3.9, shock wave W4 reaches the interference region of W3 and

L1, and intersects them, so that a weak oblique shock, W5, is generated (see Figs. 3.9f

and 3.12). As a result of the wake/shock interaction, the flow velocity in the wake

region increases to become supersonic, so that the vortex region, V1, disappears (see
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P2	  
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Canopy	  

Figure 3.11: Schematic of the flow field in process 1, based on frame 2 of Fig. 3.9

Fig. 3.9f).

It is seen from Fig. 3.14 that the pressure behind shock wave W4 is higher than

that in the wake region. Consequently, this pressure difference causes a strong pressure

gradient, which induces a reverse flow; with the result that a definite vortex region,

V5, develops at the foot of the shock wave W4, as clearly observed in Fig. 3.14. This

vortex region was also observed in other pulsation phenomenon [100, 104]. The leading

function of this flow phenomenon is a flow reversal [100]. The flow reverses and goes

back to the wake region, through L1, W3 and W4 (see Fig. 3.14), which also causes the

vortex V3 to disappear, due to the lack of mass influx.

Frame 7 of Fig. 3.9 shows that shock wave W4 merges with W3, and that vortex

region V4 disappears. As a result of high pressure within the canopy, both shock wave

W3 and shear layer L1 are forced to move upstream and begin to move outward, so

that the vortex region V5 grows. At the same time, shock wave W5 rapidly extends

toward upstream, and merges with W1 (see Fig. 3.9h).
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Figure 3.12: Schematic of the flow field in process 2, based on frame 6 of Fig. 3.9

V3 

W4 Canopy 

Figure 3.13: Velocity vectors and pressure contours near the corner of canopy in frame 4
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L1 

W3 
W4 

V5 

Figure 3.14: Velocity vectors and pressure contours in the interaction region, based on

frame 6 of of Fig. 3.9

3.4.3 Flow Features of Process 3

Process 3 corresponds to frames 8-14 in Fig. 3.9. The feature of this process is that

the triple shock systems inflate; i.e., the intersections of the fore and rear shocks move

more outward in the radial direction, so that the foreshock takes a hemisphere shape.

In frames 8 and 9 of Fig. 3.9, shock wave W3 intersects W1, and generates a triple

shock system consisting of W1, W3 and W6 (see Figs. 3.9h and Fig. 3.15), where the

pressure inside the canopy reaches the second maximum (see Fig. 3.10b). It is seen from

Fig. 3.9 that during process 3, the shock system of W1, W3 and W6 move outward

in the radial direction all the time, where W1 takes a hemisphere shape. Due to this

effect, the flow from separation region P1 (see Fig. 3.12) moves toward the bottom of

the capsule, creating an oblique shock wave, W7 (see Figs. 3.9i and 3.15).

In frame 8 of Fig. 3.9, the pressure at the edge of capsule reaches a maximum

(see Fig. 3.10a), leading to shear layer L1 becoming separated from the capsule (see

Fig. 3.15). The movement of the shear layer can also be observed in another pulsation

phenomenon [100] to respond to the expansion of the interference region. Here, as a

consequence of this effect, the flow in separation region P1 (refers to the process 2)

reaches the front of the capsule, and collides with the flow originating from the front

44



3.4 Unsteady Aerodynamic Interactions

W1	  

L2	  

V5	  

V7	   P4	  

W3	  

W6	  

W7	  

W8	  

L1	  

V2	  

T1	  

W9	  

T2	  

L4	  

P5	  

Figure 3.15: Schematic of the flow field in the early stage of process 3, based on frame 8

and 9 of Fig. 3.9

area of capsule, causing a vortex region, V7, to be generated. In this process, the

supersonic flow from P1 (see Fig. 3.12) has to be decelerated before entering the vortex

region V7. Hence, the internal normal bow shock W8 is created between shear layer

L1 and the capsule. As it interacts with the boundary layer on the neck of the capsule,

another separation region, P4, occurs, and shear layer L4 forms at the boundary of P4

(see Fig. 3.9h and Fig. 3.15).

In frame 9 of Fig. 3.9, shock wave W7 interacts with W8 and produces a new shock

wave, W9, which constructs the second triple shock system (see Fig. 3.15).

In frames 10 and 11 of Fig. 3.9, as the pressure around the capsule remains high,

the shock system with W7, W8 and W9 gradually strengthens and also move outward,

which leads to the enlargement of shear layer L4 and separation region P4 as well as

the lateral movement of vortex region V7. In frame 12, the shock waves W8 and W9

merge with W7, and the vortex region V7 gradually disappears.

From frames 13 and 14 of Fig. 3.9 and Fig. 3.16, it is seen that the shock system

45



3.4 Unsteady Aerodynamic Interactions

W1	  

L2	  
V5	  

P6	  

W3	  

W7	  

L1	  

V2	  

T1	  

L5	  

V9	  

V8	  

P7	  

W6	  

Figure 3.16: Schematic of the flow field in the late stage of process 3, based on frame 13

of Fig. 3.9

W1-W3-W6 has reached the periphery of the canopy and continues to move in the

radial direction. However, this system has already been weakened, and will disappear

before going to the frame 2 of next cycle, due to the low pressure within the canopy

and around the capsule. As a result, shear layer L1 and vortex region V5 also vanish

gradually. Moreover, we can see that shear layer L1 and vortex region V5 hold and

develop during almost the whole interaction process. Thus, this is a key factor to drive

the pulsation phenomenon considered here in this study [100].

As seen in frames 13 of Fig. 3.9, as shock wave W7 moves downstream due to the

pressure difference, it interacts with the boundary layer on the connecting rod, so that

a new separation region, P6, is created. At the same time the flow escapes from within

the canopy, where the fluid is pressurized, and is accelerated in the vicinity of the

canopy edge. Consequently, it collides with separated region P5 (see Fig. 3.15), and

generates a vortex region, V8. In frame 14 of Fig. 3.9, shock wave W7 reaches to the

canopy edge, and vortex region V8 disappears.

During process 3, the unsteady upstream flow has a relatively large effect on the

flow behind the canopy. In the early stage (see Fig. 3.15), the high pressure fluid

escapes from inside the canopy, and moves downstream at supersonic speed, where
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3.5 Effect of Connecting Rod

(a) Inner surface of canopy

(b) Front surface of capsule

Figure 3.17: Comparison of averaged pressure distribution on typical surfaces between

model A and model B

shear layer L2 and vortex region V2 are depressed; On the other hand, in the late stage

(see Fig. 3.16), as the triple shock system T1 becomes weakened, the flow behind the

canopy moves upstream, and collides with the outer surface of the canopy, causing a

separation region, P7, to be generated.

3.5 Effect of Connecting Rod

Model A is used to compare with the experiment. In real conditions, the connecting rod

is impossible. In order to examine the effect of the connecting rod on the aerodynamic

interaction for the parachute, model B is employed. From Fig. 3.17, it is seen that the
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3.6 Effect of Mach Number

Figure 3.18: Mach number contours of model B in two instantaneous flow fields: frame

6 (left) and frame 8 (right)

averaged pressure distribution on the typical surfaces of model B are in fair agreement

with the ones of model A.

Two representative instantaneous aerodynamic interaction flow fields of model B in

Fig. 3.18. Comparing with the same frames of model A, one can see that they are in

good agreement. Except for some differences in the shape of the shock wave envelope

because of the connecting rod, the pulsation mechanism of model B is identical to model

A. Therefore, model A is reasonable and meaningful.

3.6 Effect of Mach Number

In experiment, we can increase Reynolds number by increasing the flow speed. However,

it is difficult to change Mach number while keeping Reynolds number constant. On the

contrary, in CFD, this can be easily achieved by changing the model size [105]. Here

based on this approach, computation was carried out for two cases: M=1.6 and M=2.2

under the same conditions as the case where M=2.0.

From Fig. 3.19 and 3.20, it can be seen that for other Mach numbers the unsteady

flow mode is consistent with that for Mach of 2.0. As the freestream Mach number

is different, the period of a pulsation cycle becomes different. Here two representative

instantaneous flow fields with aerodynamic interactions similar to the frames 6 and

8 for Mach of 2.0 are shown in Figs. 3.19 and 3.20. Comparing these three cases,
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3.6 Effect of Mach Number

(A) (B)

Figure 3.19: Mach number contours of model A in two instantaneous flow fields for Mach

1.6 case

(A) (B)

Figure 3.20: Mach number contours of model A in two instantaneous flow fields for Mach

2.2 case

it can be seen that when Mach number is 2.2, the bow shock ahead of the capsule

moves closer toward the capsule, and becomes more conical in shape, leading to a

decrease in the distance between the capsule bow shock and the canopy bow shock (see

Fig. 3.20A). Consequently, coupling of the capsule wake with the canopy bow shock

becomes stronger, and the region with aerodynamic interaction comes closer to the
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3.7 Summary

(a) Inner surface of canopy

(b) Front surface of capsule

Figure 3.21: Effect of Mach number on averaged pressure distribution on parachute

surfaces

edge of canopy at higher Mach number (see Fig. 3.20B), which causes the pressure on

the parachute surfaces become larger, as shown in Fig. 3.21.

3.7 Summary

The unsteady flow field with pulsation phenomenon, which occurs in the flow over a

parachute model placed in a freestream with a Mach number of 2.0, was numerically

simulated. The results obtained in this study can be summarized as follows:

• The computational results of model A, which has a connecting rod between the

capsule and canopy, agreed with experimental data.
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3.7 Summary

• When reducing the trailing distance between the capsule and canopy, complicated

wake/rear shock and foreshock/rear shock interactions were observed.

• There were two key factors for the present pulsation phenomenon; one was the

pressure difference between the capsule and the canopy, and the other the shear

layer and vortex region produced by the wake/rear shock and the foreshock/rear

shock intersections.

• Judging from the results of models A and B, the effects of the connecting rod on

the flow field and pressure distribution on the body surfaces were rather small;

the pulsation mechanism for model B was identical to that for model A.

• The unsteady flow pulsation phenomenon examined in this study can be demon-

strated using three processes during one cycle. 1) At process 1, the bow shock

ahead of the capsule was nearly stable. 2) At process 2, the capsule wake inter-

acted with the canopy shock, and the movement of the wake-rear shock interaction

was predominant. 3) At process 3, intersections of the fore and the rear shocks

moved more outward in the radial direction.

• In the unsteady flow pulsation mode, the bow shock formed ahead of the capsule

periodically inflated and moved outward in the radial direction, which was caused

by upstream propagation and lateral movement of the complicated wake/rear

shock and foreshock/rear shock interaction systems.

• The mechanism for the unsteady flow mode was found to be consistent at su-

personic speeds ranging from Mach 1.6 to 2.2. As the freestream Mach number

increased, the bow shock ahead of the capsule moved closer toward the capsule,

and the capsule wake interacted more strongly with canopy bow shock, and the

aerodynamic interaction region came closer to the edge of the canopy, which led

to the pressure on the parachute surfaces becoming larger.
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Chapter 4

Two-Dimensional Flexible

Parachute

4.1 Introduction

In this chapter, two-dimensional flexible parachute model are numerically simulated on

Cartesian grids using the IBM as a coupling method at supersonic speeds ranging from

M = 1.6 to M = 2.1. One of the features in the present method is a coupling scheme,

where the fluid and structure are considered as a single part, and the equations that

govern the both parts are solved simultaneously in a time domain. This is critical for

the accuracy and efficiency of the method.

The objective of this study is to make sure whether that the IBM can be employed

to solve the supersonic flexible parachute problems, and to analyze the effect of aero-

dynamic interference on the performance of the parachute system in detail. Moreover,

the effect of Mach number on the flexible parachute system will be examined.

4.2 Computational Method and Conditions

The present calculation for this case was carried out using an in-house structured single

block code, where the compressible Navier-Stokes equations were solved to simulate

the supersonic flow field around the parachute models. To evaluate the inviscid fluxes,

Simple High-resolution Upwind Scheme (SHUS) [74] was employed, and the accuracy of

the scheme was improved by using the 3rd-order MUSCL scheme [78, 79] with the Van

Albada flux limiter [80], while viscous terms were evaluated by the 2nd-order central
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4.3 Two-Dimensional Parachute Model

differencing scheme. As one of features in the present numerical method, the 3rd-order

total variation diminishing Runge-Kutta scheme [82] is used to obtain time accurate

results in unsteady calculations. The coefficient of viscosity was computed according

to Sutherland’s law [66, 67]. Initial conditions in the calculations were set to the free

stream values. The freestream conditions used in the current study is the same with

the rigid parachute case, as shown in table 3.1 of Chapter 3. Non-slip and adiabatic

conditions were applied to the body surfaces.

In the present study, the immersed boundary method [85, 86] was employed to deal

with the boundary of a flexible canopy. The IBM based on Cartesian grid has some

advantages; however, it is limited in solving the complex turbulent flows [106]. Thus,

here no turbulence models are used, which is also consistent with the rigid case and

easy to compare with each other.

A mass-spring-damper (MSD) model [88] was applied to solve the structural dy-

namics of the parachute, where the parachute was treated as an assembly of mass nodes

attached to springs and dampers. The explicit 2nd-order Runge-Kutta scheme is used

to obtain time-variations in the canopy model calculation.

Here in order to solve the fluid and structure equations simultaneously, the method

of strong coupling (see Fig. 2.7 of Chapter 2) is employed for the two-dimensional case.

4.3 Two-Dimensional Parachute Model

In this case, a two-dimensional flexible canopy is connected by suspension lines to a

capsule, as shown in Fig. 4.1. The shape of canopy is a semicircle, and its radius is 55

mm. The capsule is fixed, and its size is shown on the right side of Fig. 4.1, where its

base length, d, is 24mm. The axial distance from the capsule base to the inlet of the

canopy, X, is 57mm, and the trailing distance, X/d, is 2.375. The canopy employed

here is modeled by 1607 mass nodes connected by springs and dampers. The uniform

flow is noted as U, and the gravity force is also considered ,which acts in the negative z

direction. It should be pointed out that canopy nodes of the edge parts are compelled

to just move along a circular path, with its center placed at the capsule location, since

the radial components Xr and Zr of the forces in the x and z directions are equal to

the tension force of suspension lines [85].
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Figure 4.1: Two-dimensional parachute model

0.22 

0.24 

0.26 

0.28 

0.3 

0.32 

0.34 

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 

0.000s 
0.005s 
0.010s 
0.025s 
0.036s 

x, m 

z,
 m

 

Figure 4.2: Time variations of canopy shape
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4.4 Canopy Shape Variation

4.4 Canopy Shape Variation

Fig. 4.2 shows the time variations of the canopy shape, where the initial canopy diameter

is defined at z=0.23m as the distance between the two edges. Furthermore, it can be

seen that the edge part of the canopy shrinks all the time. In addition, it moves in the

z direction. This phenomenon will be interpreted in the next section.

(a) t=0.0023s (b) t=0.0099s

(c) t=0.0201s (d) t=0.0353s

Figure 4.3: Pressure contours at four different times
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Figure 4.4: Time variations of pressure coefficient at point A (see Fig. 4.1)

4.5 Unsteady Aerodynamic Interaction

Four representative instantaneous pressure contours around the parachute are shown

in Fig. 4.3. In Fig. 4.3(a), we can see that the shock wave is formed ahead of the

canopy (rear shock), which forces the edge of canopy to shrink toward the center. In

addition, separation vortices are formed on each side of the canopy, which lead to

large pressure differences between the inner and outer surfaces of the canopy. Thus the

canopy is inflated in the x direction and moves in the z direction. In Figs. 4.3(b)-(d), the

separation vortices linger over the canopy top, and these pressure differences continue

to cause the canopy to rise up. The shock waves ahead of the canopy continue to

contract its edge parts. In Figs. 4.3(c) and 4.3(d), it can be seen that the aerodynamic

interaction between capsule wake and canopy shock goes upstream due to the severe

contraction of the canopy, which causes the pressure inside the canopy become smaller.

It should be noted that the shock wave ahead of the capsule (foreshock) remains steady

all the time.

The time history of the pressure coefficient, Cp , at point A (see Fig. 4.1) is shown

in Fig. 4.4, which indicates the pressure inside the canopy has a cyclic change. Here

the pressure coefficient, Cp, is defined as follows(see Ref. [107]):

Cp =
2

γM2
∞

(
P

P∞
− 1) (4.1)

After about 0.02s, its amplitude becomes smaller, because the canopy severely shrinks

and the aerodynamic interaction goes upstream (see Fig. 4.3). The time history of
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Figure 4.5: Time variations of payload force on two sides

payload force exerted on the right and left edges are shown in Fig. 4.5, where the x and

z directions are shown in Fig. 4.1. The x directional force on the left edge is negative

due to a balance with the tension of suspension lines . From this figure we can see that

the payload force also has a periodic change due to the cyclical variation of the flow

field, and that the amplitude fluctuations gradually becomes smaller over time. It is

noted that the payload force rises at first, in response to the larger pressure differences
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4.6 Effect of Mach Number

between the inner and outer canopy surfaces by the separation vortices. After about

0.01s, the separation vortices linger over the top of the canopy, the pressure difference

between both sides of the canopy becomes small, so that the payload force falls. In

addition, the z directional force is always greater than the x directional one, which is

associated with angles of the suspension lines.
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Figure 4.6: Time variations of pressure coefficient of point A inside the canopy (see

Fig. 4.1) at three Mach number cases

4.6 Effect of Mach Number

In experiments, it is difficult to vary the Mach number while holding constant the

Reynolds number, since increase in the speed leads to increase in the Reynolds number.

In computational studies, this is easily realized; specifically we changes the model
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Figure 4.7: Comparison of canopy shape at two different times for the Mach number

cases

size [105]. Here in this study, based on this approach, computation was carried out at

M=1.6 and M=2.1 under the same computational conditions.

The comparison of time variations of pressure coefficient at point A (see Fig. 4.1)

for three Mach number cases are shown in Fig. 4.6. From Fig. 4.6, we can see that the

frequency of change in pressure coefficient at point A (see Fig. 4.1) is very high due

to the unsteady flow field. Therefore, in order to see the differences more easily, we

consider two stages: initial and last stages. From these figures, it is noticed that as Mach

number decreases, the pressure coefficient at point A becomes larger. Moreover, in the

last stage both the pressure coefficient and its vibration amplitude become smaller,

which reveals that the flow inside the canopy turns to less unstable than that in the

initial stage. Seeing Fig. 4.3(c) and Fig. 4.3(d), when the canopy shape becomes smaller,

the canopy shock detaches from the edge, and then interacts with the wake in the region

between the capsule and canopy. This interaction has no obvious vibrational motion

in this stage, due to the stable foreshock. As a result, this aerodynamic interference

pressures the canopy edge all the time, reduce the mass flow into the canopy, and cause

the change of pressure become small.

The comparison of canopy shape for the three Mach number cases is shown in
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4.6 Effect of Mach Number

(a) t=0.003s (b) t=0.020s

(c) t=0.028s

Figure 4.8: Pressure contours at three different times at Mach 1.6

Fig. 4.7. The computation was carried out by changing the model size, but the sizes

of canopy at Mach 1.6 and 2.1 are converted to the original one for easy comparison.

It can be seen that at t=0.012s the deformation of canopy shape has the same trend

in the three cases, and that as Mach number increases, the shrinkage becomes larger,

in particular the edge part. This is because the capsule wake always interacts with the

canopy shock near the canopy edge at higher Mach number. However, at t=0.028s,

in Mach 1.6 case, the foreshock moves downstream and the aerodynamic interaction

between the capsule wake and canopy shock becomes stronger, so that the shape of
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4.6 Effect of Mach Number

(a) t=0.003s (b) t=0.020s

Figure 4.9: Pressure contours at two different times at Mach 2.1

canopy has a larger shrinkage. On the other hand, the changes in canopy shape at

Mach 2.0 and 2.1 keep the same trend as the initial stage.

Instantaneous pressure contours around the flexible parachute at Mach 1.6 and 2.1

are shown in Fig. 4.8 and Fig. 4.9, respectively. Comparison at the same time among

the three Mach number cases, we can see that the case of Mach 1.6 is quite different

from the other cases. This is because the shape of shock and the detachment distance

depend on freestream Mach number [108]. In this case the shock wave ahead of the

capsule is not conical and moves upstream due to the effect of periodically pressurizing

the canopy. In this stage the wake from the capsule is weak. It is interesting to see that

in Fig. 4.8(c), the canopy shape becomes much smaller, and that the shock wave ahead

of the capsule moves downstream due to the low pressure region around the parachute.

In this stage the wake becomes stronger and interacts with the shock wave ahead of

the canopy. Pressure decreases inside the canopy (see Fig. 4.6), which accelerates the

contraction of the canopy. In addition, the flow field characteristics and the change

trends are the same by and large for the Mach 2.0 and 2.1 cases. This is the reason for

the phenomena shown in Fig. 4.7.
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4.7 Summary

In the chapter, two-dimensional flexible parachute models were simulated numerically

at supersonic conditions. The results obtained are summarized as follows:

• Time variations of change in the canopy shape for two-dimensional parachute

models were successfully simulated on Cartesian grids using the immersed bound-

ary method as well as the strong coupling scheme at supersonic speeds ranging

from M=1.6 to M=2.1.

• In the two-dimensional parachute case, only the steady foreshock and the wake/rear

shock interaction were observed, due to the weak interference and severe defor-

mation of the canopy.

• In the two-dimensional parachute case, as the shape of shock and the detachment

distance depend on freestream Mach number, at Mach 1.6 the shock wave ahead

of the capsule was not conical and moved upstream under the effect of the cyclic

pressurization to canopy. When the canopy shape became much smaller, the

foreshock moved downstream. On the other hand, as Mach number decreased, the

pressure coefficient at point A on the canopy surface became larger. In addition,

the flow field characteristics and the change trends were the same by and large

for Mach 2.0 and 2.1 cases.
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Chapter 5

Axisymmetric Flexible Parachute

5.1 Introduction

In this chapter, axisymmetric flexible parachute models are numerically simulated on

Cartesian grids using the IBM together with the weak fluid-structure coupling method

at supersonic speeds ranging from M = 1.6 to M = 2.1. In order to solve the coupling

problem, the fluid and structure are considered as a single part, and the equations that

govern the both parts are solved separately in a time domain.

The objective of this study is to predict the flow field and analyze the effects of

aerodynamic interaction and Mach number on the flexible parachute system. In addi-

tion, it is necessary to do further validation that the IBM can be employed to solve the

supersonic flow over the axisymmetric flexible parachute models.

5.2 Computational Method and Conditions

The axisymmetric compressible Navier-Stokes equations were solved to simulate a flex-

ible parachute by using an in-house CFD code. For spatial discretization, inviscid nu-

merical fluxes were evaluated by Simple Low-dissipation AUSM scheme (SLAU) [77],

the accuracy of this scheme was improved by the 2nd-order MUSCL scheme [78, 79] with

the Van Albada flux limiter [80]. The viscous terms were evaluated by the 2nd-order

central differencing scheme. Regarding time integration, the 2nd-order Runge-Kutta

scheme was used to obtain time accurate results in unsteady calculations. The coeffi-

cient of viscosity was computed according to Sutherland’s law [66, 67]. Initial conditions

in the calculations were set to the free stream values. The freestream conditions used
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(a) t=0.00004s (b) t=0.00392s

(c) t=0.01190s (d) t=0.01534s

(e) t=0.02397s (f) t=0.02821s

Figure 5.1: Time variations of canopy shape
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5.2 Computational Method and Conditions

(a) t=2T/9 (b) t=4T/9

(c) t=6T/9 (d) t=8T/9

Figure 5.2: Density gradient contours around the flexible parachute at Mach 2.0; T is a

period

in the current study is also consistent with the table 3.1 of Chapter 3. Non-slip and

adiabatic conditions were applied to the body surfaces. No turbulence models were

used because of the same reasons as the two-dimensional case.

In the present case, the immersed boundary method [85, 86] was also employed to

deal with the boundary of a flexible canopy, the mass-spring-damper (MSD) model [88]

was applied to solve the structural dynamics of the parachute. The explicit 2nd-order

Runge-Kutta scheme was used to obtain time-variations in the canopy model calcula-

tion. In addition, the method of weak coupling (see Fig. 2.7 of Chapter 2) was employed

for the axisymmetric flexible parachute case.
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Figure 5.4: Pressure coefficient at point A (see Fig. 4.1 of Chapter 4) on the canopy

surface

5.3 Axisymmetric Parachute Model

In this chapter, an axisymmetric model of a flexible parachute was employed to simu-

late the flow field and the deformation of canopy with aerodynamic interactions. The

values of the model size are the same as those in two-dimensional case (see Fig. 4.1 of

Chapter 4).
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Figure 5.5: Time history of payload force

5.4 Canopy Shape Variation

The time variations of canopy shape are shown in Fig. 5.1, where the colors represent

the pressure on the inner and outer canopy surfaces. From this figure, we can see

that the edge of canopy contracts all the time, and that the pressure inside the canopy

changes periodically, and the pressure at the edge of the outer canopy surface also has

a large change.

5.5 Unsteady Aerodynamic Interaction

Four representative instantaneous flow fields are shown in Fig. 5.2, where the colors of

the canopy represent the pressure on the inner and outer canopy surfaces, and wake/rear

shock and foreshock/rear shock interactions are observed. During the interactions, the

shock wave ahead of the canopy is always located near the edge part, which first inter-

acts with the wake (see Fig. 5.2 (b)) and then foreshock (see Fig. 5.2 (c)). This produces

high pressure force and causes the edge part to shrink. It is noted that the bow shock

formed ahead of the capsule is periodically inflated and moves radially outward, includ-

ing a hemispherical shape, this unsteady flow mode is called a “pulsation” mode [102],

which is caused by the lateral expansion of the wake/rear shock and foreshock/rear

shock interactions.

Figure 5.3 shows the time variations of the ratio of the projected frontal area of the

canopy to its initial area S0. This curve suggests a geometrical interpretation of the
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5.5 Unsteady Aerodynamic Interaction

(a) t=4T/9 (b) t=6T/9

(c) t=8T/9

Figure 5.6: Density gradient contours around the flexible parachute at Mach 1.6; T is a

period

canopy behavior, which is related with the drag [3]. From this figure, it can be seen

that this curve looks like a wavy line, and the projected frontal area shows an almost

linear decrease, because the shock ahead of the canopy is always located near the edge

of the canopy during a pulsation cycle (see Fig. 5.2), which leads the edge part to shrink

all the time. In addition, the time period of this pulsation cycle is rather small (about

0.00095s), so it seems that the canopy shape shrinks almost linearly in Fig. 5.3. This

change causes the corresponding change in drag.

The time history of pressure coefficient at point A (see Fig. 4.1 of Chapter 4) on

the canopy surface is shown in Fig. 5.4. This indicates that the pressure inside the
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5.5 Unsteady Aerodynamic Interaction

(a) t=4T/9 (b) t=6T/9

Figure 5.7: Density gradient contours around the flexible parachute at Mach 2.1; T is a

period

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.005  0.01  0.015  0.02  0.025  0.03

C
p

t,s

M1.6
M2.0
M2.1
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the canopy surface for the effect of Mach number

canopy changes cyclically. The time history of payload force is shown in Fig. 5.5. From

this figure, we can see that after about 0.005s the payload force changes cyclically due

to cyclic pressurization in the canopy. In addition, since the aerodynamic interaction

occurs far away from the canopy at first, the payload force becomes smaller.
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5.6 Effect of Mach Number

Here in this axisymmetric case, based on the approach for evaluating the effect of Mach

number [105] employed in the former cases, computation was carried out at M=1.6 and

M=2.1 under the same computational conditions.

The instantaneous flow fields with aerodynamic interactions around the flexible

parachute at Mach 1.6 and 2.1 are shown in Fig. 5.6 and Fig. 5.7, respectively. From

comparison between the three Mach number cases, it is seen that the case of Mach 1.6

is quite different from the other case. Because the shape of shock and the detachment

distance depend on freestream Mach number [108], until t=8T/9 the shock wave ahead

of the capsule interacts with the shock wave ahead of the canopy weakly in Fig. 5.6.

From Fig. 5.6 and Fig. 5.7, we can see that as Mach number is large, the shock wave

ahead of the capsule is more conical, which causes stronger wake/rear shock and fore-

shock/rear shock interactions, and that the interaction location is closer to the canopy,

which also leads to more severe deformation of the canopy shape, especially in the edge

part.

Comparison of the time variation of pressure coefficient at point A (see Fig. 4.1

of Chapter 4) between the three Mach number cases is shown in Fig. 5.8. From this

figure, it is observed that the pressure coefficient exhibits the cyclic changes in all the

cases. Moreover, at the initial stage (before about 0.005s), at Mach 1.6, its amplitude is
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smallest because of the weaker aerodynamic interference; as Mach number is large, the

vibration of pressure becomes more severe, which shows more unstable flow fields, due

to the stronger aerodynamic interactions. However, after 0.005s, it can be seen that

there is a greater vibration in pressure coefficient at Mach 1.6, which illustrates that the

aerodynamic interactions becomes stronger, and that the pressure coefficient maintains

higher, so that the canopy changes more slowly (see Fig. 5.9). On the other hand, at

higher Mach number cases, the canopy shape contracts faster (see Fig. 5.9), which leads

to a change in the location of the shock ahead of the canopy and the distance between

the canopy and capsule, and weakens the aerodynamic interactions, and causes the

pressure coefficient reducing. In addition, it can be seen that the canopy has a faster

contraction at Mach 2.1 (than that at Mach 2.0, see Fig. 5.9), which correspondingly

increases faster the distance between the canopy and the capsule, leading to a longer

pulsation cycle. As a result, the canopy deformation at M2.1 slows down after about

0.02s as shown in Fig. 5.9. Moreover, as the canopy shape becomes smaller and smaller

in all the cases (see Fig. 5.9), the pressure coefficient becomes gradually smaller (see

Fig. 5.8), although there is a time difference.

5.7 Summary

In this chapter, the axisymmetric flexible parachute models were simulated numerically

at supersonic conditions. The results obtained are summarized as follows:

• Time variations of change in the canopy shape for the axisymmetric parachute

model were successfully simulated on Cartesian grids using the immersed bound-

ary method together with the weak coupling scheme at supersonic speeds ranging

from M=1.6 to M=2.1.

• When the trailing distance between the capsule and canopy was small, the com-

plicated wake/rear shock and foreshock/rear shock interactions were observed in

axisymmetric flexible cases. In the unsteady flow mode, the bow shock formed

ahead of the capsule periodically inflated and moved radially outward. This

was caused by the lateral expansions of complicated wake/rear shock and fore-

shock/rear shock interactions. However, in the 2D flexible case, only the steady
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5.7 Summary

foreshock and the wake/rear shock interaction were observed because of the weak

flow interference and severe deformation of the canopy.

• As Mach number increased, the shock wave ahead of the capsule was more conical,

which led to stronger wake/rear shock and foreshock/rear shock interactions,

and the interaction location was closer to the canopy. This caused more severe

shrinkage deformation of the canopy shape.

• In the axisymmetric flexible case, at Mach 1.6, as the shape of shock was not

conical, until t=8T/9 the shock wave ahead of the capsule interacted with the

shock wave ahead of the canopy weakly. In the 2D flexible case, at Mach 1.6 the

shock wave ahead of the capsule was also not conical and moved upstream under

the effect of the cyclic pressurization to canopy. When the canopy shape became

much smaller, the foreshock moved downstream.

• The pressure coefficient at Mach 1.6 underwent from weak to strong vibration,

which illustrated that the weak aerodynamic interactions turned stronger, and

the pressure coefficient maintained higher (than other Mach cases), so that the

canopy changed more slowly. On the other hand, as Mach number increased, the

vibration of pressure coefficient became from strong to weak, which showed that

the strong aerodynamic interactions became weaker, due to the faster canopy

shape shrinkage deformation. However, as the canopy shape became smaller and

smaller in all the cases examined here, the pressure coefficient became gradually

smaller, although there was a time difference.
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Chapter 6

Three-Dimension Flexible

Parachute

6.1 Introduction

In this chapter, three-dimensional flexible parachute models are numerically simulated

at supersonic speeds ranging from M=1.6 to M=2.1. The parachute system adopted

here consists of a capsule and a canopy, and the flow fields around the parachute models

show strong aerodynamic interactions with complicated flow patterns. The objective

of this study is to further confirm that the IBM can be properly applied to solve the

supersonic flow over the flexible three-dimensional parachute models, and to further

investigate the effect of aerodynamic interference on the performance of the flexible

three-dimensional parachute system in detail. Moreover, the effects of Mach number,

the trailing distance and canopy to capsule size on the flexible parachute system will

be examined.

6.2 Computational Method and Conditions

The present calculation for this case was performed using the in-house structured single

block code, where the three-dimensional compressible Navier-Stokes equations were

solved to simulate the supersonic flow field around the parachute models. To evaluate

the inviscid fluxes, Simple High-resolution Upwind Scheme (SHUS) [74] was employed,

and its accuracy was improved by using the 3rd-order MUSCL scheme [78, 79] with
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d=
24

 

X 

D
 

Capsule 

Canopy 

Unit:mm 

Figure 6.1: Parachute system in the present computation

Figure 6.2: Grid for case C (see Table 6.1) in this study, the yellow region refers to the

capsule body, and the red region the canopy surface.

the Van Albada flux limiter [80], while viscous terms were calculated by the 2nd-

order central differencing scheme. One of features of the present numerical method is

use of the 3rd-order total variation diminishing Runge-Kutta scheme [82] for accurate
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6.2 Computational Method and Conditions

(a) t = 0s (b) t = 0.001s

(c) t = 0.003s (d) t = 0.004s

Figure 6.3: Time-variations of canopy shape for case A

unsteady calculation.

The coefficient of viscosity was computed from Sutherland’s law [66, 67]. Moreover,

initial conditions in the calculations were set to the free stream values, and non-slip

and adiabatic conditions were applied to the body surfaces. The freestream conditions

used in the current study refer to table 3.1 of Chapter 3.

No turbulence model was employed here to show the results for laminar flow. In

the previous study for a rigid parachute (see Chapters 3), turbulence model was not

used, the results of which were in good agreement with experimental data obtained at

ISAS/JAXA. The flow calculation code for the rigid case was employed here. In addi-

tion, we are afraid that at this moment reliable turbulence models were not available

for complicated separation flows [99].

In addition, the immersed boundary method [85, 86] was also applied to deal with
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6.3 Three-Dimensional Flexible Parachute Model

(a) t = 0s (b) t = 0.001s

(c) t = 0.003s (d) t = 0.007s

Figure 6.4: Time-variations of canopy shape for case B

the moving boundary of the three dimensional flexible canopy. The mass-spring-damper

(MSD) model [88] was applied to solve the structural dynamics of the parachute.

The explicit 2nd-order Runge-Kutta scheme was used to obtain time-variations in the

canopy model calculation. Furthermore, the method of weak coupling(see Fig. 2.7 of

Chapter 2) was used to compute the three-dimensional flexible parachute case.

6.3 Three-Dimensional Flexible Parachute Model

The three-dimensional parachute model employed here consists of a capsule and a

canopy. The flexible canopy is connected by suspension lines to a capsule. The number

of suspension lines is about 400, and the effect of these lines refers to section 2.3

of Chapter 2, but the effect on the flow field are not taken into account here. In
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6.3 Three-Dimensional Flexible Parachute Model

(a) t = 0s (b) t = 0.001s

(c) t = 0.004s (d) t = 0.007s

(e) t = 0.0156s (f) t = 0.0223s

Figure 6.5: Time-variations of canopy shape for case C

addition, the radial reinforcement cables from the canopy apex to the skirt and the

canopy porosity have not been considered for the present study, the configuration of
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6.3 Three-Dimensional Flexible Parachute Model

(a) Case A

Figure 6.6: General flow features around the parachute systems. Mach number contours

for cases A , B and C at one instant in time(cont’d)

this parachute system is shown in Fig. 6.1, which is basically the same as that of the

rigid parachute model employed in the previous rigid case, except the thickness of

canopy here is zero in a geometrical sense.

Table 6.1: Specification for three cases A, B and C

Case X d D X/d d/D Grid number

A 57mm 24mm 110mm 2.375 0.218 759, 696

B 114mm 24mm 110mm 4.750 0.218 1, 059, 576

C 171mm 24mm 110mm 7.125 0.218 1, 059, 576

The original shape of canopy is a hemisphere with the diameter D. The capsule

is fixed, and the diameter of its frontal surface, d=24mm. It should be noted that

the capsule takes a conical form with a half-cone angle of 20 degree (see Fig. 6.1).

X is the axial distance from the capsule base (the frontal surface) to the inlet of the

canopy, and X/d refers to the parachute trailing distance between the capsule and the

canopy. In this study, the trailing distance takes smaller values (from 2.375 to 7.125)

than that one of NASA tests (about 10) [57], since under this condition of these values,
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6.3 Three-Dimensional Flexible Parachute Model

(b) Case B

(c) Case C

Figure 6.6: General flow features around the parachute systems. Mach number contours

for cases A, B and C at one instant in time

complicated aerodynamic interference was observed in the case of the rigid parachute

system in our previous research [86]. Therefore, it seems to be worth examining whether

such phenomena will also occur in the case of the three-dimensional flexible parachute
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6.4 The Effect of Parachute Trailing Distance

(a) t = 0.0025s

(b) t = 0.0037s (c) t = 0.0045s

Figure 6.7: Pressure cycle on parachute canopy for case C

system.

6.4 The Effect of Parachute Trailing Distance

Three simulations were conducted to investigate the effect of trailing distance (X/d)

on the dynamic behavior of canopy. The values of parachute parameters are listed in

Table 6.1. It should be noted that the diameter of canopy was fixed to D=110mm in

the three cases.
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Figure 6.8: The comparison of drag coefficient for cases A, B and C

Because of the axisymmetric configuration for the parachute system, a structured

grid with a single-block was generated by a meridional plane. To see grid convergence,

we took up the case C as an example and results in two grid cases were compared; a

fine case has 3,037,608 grid points, and the baseline case has 1,059,576. Consequently,

results of the pressure distribution and flow field seem to show fair agreement between

these two cases. To save the calculation time, the baseline grid was employed in this

study, as shown in Fig. 6.2, where the grid density in the canopy region was intentionally

made large. The control points of the canopy, whose number is 902×441, were searched

within this region, and the canopy surface was created as shown in the red region of

Fig. 6.2. It should be noted that the number of control points becomes 402×401, as the

canopy size decreases in this study. Furthermore, the total number of grid points for

the cases in this study take the similar grid densities, which are shown in next sections.

It should be noted that in the calculation of examining the effect of Mach number, the

grid is the same with that one in case C.

Time-variations of the canopy shape for the three cases are shown in Figs. 6.3-

6.5, where we can see the change from the mesh of canopy. It can be found from this

comparison that the canopy in the case A experiences severe deformation, and continues

to shrink during this time period. The case B also has the similar deformation trend,
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6.4 The Effect of Parachute Trailing Distance

(a) t = 0s (b) t = 0.001s

(c) t = 0.004s (d) t = 0.006s

Figure 6.9: Time-variations of canopy shape for case D

however, the speed of deformation is slower than that in the case A. On the other hand,

the phenomenon of the “area oscillation” [12] of the canopy can be observed in the case

C, which is quite different from the cases A and B. The causes of these differences will

be explained in the following.

For the parachute system located in a supersonic flow, the representative instan-

taneous flow fields for cases A, B and C are shown in Fig. 6.6. In the case C the

canopy shock moves upstream of the parachute mouth, and interacts with the capsule

wake, which is a main source of the unsteadiness in the flow field [3, 12]. This causes

repetition of the pressure change inside the canopy, as seen in Fig. 6.7.

By contrast, in the cases B the capsule wake interacts with the canopy shock near

the canopy edge, which produces a higher pressure outside the canopy, leading to the

contraction of the canopy. However, in the initial period of the case B, the canopy shock
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6.4 The Effect of Parachute Trailing Distance

(a) t = 0s (b) t = 0.001s

(c) t = 0.005s (d) t = 0.0097s

Figure 6.10: Time-variations of canopy shape for case E

also moves upstream, and momently interferes with the wake from the capsule, due to

the longer distance between the capsule and canopy, which produces the high pressure

inside the canopy and slows down deformation of the canopy. After that, the capsule

wake grows stronger, and the interference moves close to the parachute, as shown in

Fig. 6.6(b). On the other hand, in the case A, it should be pointed out that both the

aerodynamic interactions between the capsule wake and the canopy shock, the capsule

shock and the canopy shock are simultaneously observed(see Fig. 6.6(a)), due to the

shorter trailing distance, which causes that the canopy experiences the fastest severe

contraction. This phenomenon of aerodynamic interference is different from the 3D

rigid and axisymmetric flexible cases with the same trailing distance.

In all the cases, strong flow instability creates large unsteadiness in the drag force ex-

erted on the canopy. This force acts in the freestream flow direction and was calculated
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Figure 6.11: Force analysis of edge parts in the cross section (y=0) of the parachute

system

from the differences in pressure between the inner and outer canopy surfaces elements.

Here, instead of the drag force, the drag coefficient [58] of Eq. 6.1 was examined.

Cd =
Fd

q 14πD
2

(6.1)

Here the dynamic pressure q is obtained from the static pressure and Mach num-

ber [108], as shown in Eq. 6.2. This agrees with the method of Ref. [59] , where P refers

to the freestream pressure, and M the freestream Mach number.

q =
γ

2
PM2 (6.2)

Figure 6.8 shows the comparison of the drag coefficient for the three cases. In the

initial stages of all three cases, the canopy maintains almost the original, hemispheri-

cal shape and severely interacts with the capsule wake, which produces high pressure

vibrations inside the canopy, and accordingly causes the change in the drag coefficient.

As the pressure tends to the wave trough, the canopy drag coefficient becomes very

small, and simultaneously the parachute starts to shrink. After about 0.003s the drag
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6.4 The Effect of Parachute Trailing Distance

(a) Case D

(b) Case E

Figure 6.12: Instantaneous pressure contours around canopy for cases D and E

coefficient of the case C becomes the highest within a periodic change due to the cycli-

cal deformation in canopy shape. In addition, as the trailing distance becomes shorter,

the drag coefficient becomes very small and tends to zero owing to the severe canopy

deformation.
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Figure 6.13: Time history of drag coefficient for cases A, D and E

Moreover, as the trailing distance is longer, the period of pressure vibration becomes

larger. In the case B, the interaction location has moved from the upstream location

to the canopy edge, just like from Fig. 6.6(c) to (b). Thus the change in canopy shape

becomes slower, but at length it appears intense and fast, with a change in the resultant

drag coefficient. On the other hand, in the case C, the canopy bow shock moves

cyclically close to the parachute mouth and upstream of the parachute mouth, and

interacts with the wake flow, This produces large pressure fluctuations in the canopy

with corresponding variations of the drag coefficient. In short, reasonably increasing

the value of trailing distance creates a higher value of the canopy drag coefficient, which

agrees with the experimental finding obtained by Reichenau [109].

In addition, the maximum drag coefficient for a realistic supersonic parachute (Huy-

gens, X/d=10, see Ref. [50]) at Mach 2.0 is about 0.46, and its nominal value is about

0.38. On the other hand, in the case C of the present study (X/d=7.125, M=2.0),

in the stable phase (after about 0.003s in Fig. 6.8), the maximum drag coefficient is

about 0.46, and the mean value is about 0.33. Moreover, as the trailing distance of the

present case is smaller than 10, it is reasonable to assume that the drag coefficient of

the case C is smaller than that of Huygens [50].
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6.5 The Effect of the Capsule and Canopy Size

(a) t = 0s (b) t = 0.001s

(c) t = 0.007s (d) t = 0.0135s

Figure 6.14: Time-variations of canopy shape for case F

6.5 The Effect of the Capsule and Canopy Size

6.5.1 Capsule Size

In this section, we consider the case that the capsule has been reduced to a point, where

the effect of capsule can be ignored. This model can be used to capture the canopy

bow shock and get its drag. Two cases (D and E) are carried out in this study, which

are listed in Table 6.2. Here X is the distance from the fixed point (capsule) to the

canopy inlet.

Time-variations of the canopy shape for the cases D and E are shown in Figs. 6.9

and 6.10 , respectively. It can be seen from the comparison of the two cases that as

X increases, the canopy shape has smaller deformation. In addition, as compared with

the case A (X=57mm), the canopy has a very small change in shape in the case D. It is
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(a) t = 0s (b) t = 0.001s

(c) t = 0.007s (d) t = 0.0137s

Figure 6.15: Time-variations of canopy shape for case G

Table 6.2: Values of parameters for cases D and E

Case X d/D Grid number

D 57mm 0 542,640

E 230mm 0 542,640

clear from this that the capsule wake has a large impact on the parachute performance.

Moreover, in order to more clearly understand the effect of distance X on the

parachute performance, the force analysis of edge parts in the cross section (y=0)

of the parachute system was made (see Fig. 6.11), where the relations of the forces

acting on the control points on the canopy edges are described. They are expressed by

Eqs. 6.3 - 6.6.
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(a) Case F

(b) Case G

Figure 6.16: Instantaneous pressure contours around canopy for cases F and G

Xa = Xr +Xθ (6.3)
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Figure 6.17: Time history of drag coefficient for cases B, C, F and G

Xθ = Xa ∗ sinθ (6.4)

Za = Zr + Zθ (6.5)

Zθ = Za ∗ cosθ (6.6)

In Fig. 6.11, the mass nodes of the canopy edges are compelled to just move along a

circular path, with its center placed at the capsule location, since the radial components

Xr and Zr of the forces in the x and z directions are equal to the tension force of

suspension lines, T. [85]

As the distance from the capsule to the canopy inlet, X, is increased, the angle

between the suspension line and the x direction, θ , becomes larger, so that Xθ becomes

larger, and Zθ becomes smaller from Eqs. 6.4 and 6.6, respectively. Therefore, the

canopy of the case E (X=230mm) shrinks less than that of the case D (X=57mm).

The representative instantaneous flow fields for the cases D and E are shown in

Fig. 6.12, A stationary bow shock is predicted in front of canopy, but its location is

different due to the difference in the trailing distance. The shock wave becomes closer
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(a) t = 0s (b) t = 0.003s

(c) t = 0.007s (d) t = 0.0156s

Figure 6.18: Time-variations of canopy shape for case H

to the canopy edge in the case D, which causes the canopy edge to shrink toward the

center. Consequently, the canopy of the case D has a larger contraction.

The time histories of drag coefficient for cases A, D and E are shown in Fig. 6.13.

Since the pressure inside the canopy in the cases without capsule is higher than that

in the cases with capsule, the drag force in the former becomes higher than that in the

latter; the drag coefficients has the same trend, which agrees with the experimental

finding in NASA test [12, 55]. In addition, as X increases, the canopy experiences

smaller deformation, so that the drag force becomes larger, leading to larger drag

coefficient because the reference area used to calculate Cd is a constant, nominal value.
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(a) t = 0s (b) t = 0.003s

(c) t = 0.007s (d) t = 0.0156s

Figure 6.19: Time-variations of canopy shape for case I

6.5.2 Canopy Size

In this section, we take into account the effect of canopy size on the canopy behavior.

Two cases: F and G were calculated, which are listed in Table 6.3. These cases have

a reduced value of the canopy diameter D, compared with the previous cases B and C

(see Table 6.1).

Table 6.3: Values of parameters for cases F and G

Case X d D X/d d/D Grid number

F 114mm 24mm 55mm 4.750 0.436 939, 114

G 171mm 24mm 55mm 7.125 0.436 939, 114
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6.5 The Effect of the Capsule and Canopy Size

(a) Mach 1.6 (Case H)

(b) Mach 2.0 (Case C)

Figure 6.20: Instantaneous pressure contours around canopy for cases C, H and I(cont’d)

The time-variations of canopy shape for cases F and G are shown in Figs. 6.14

and 6.15, respectively. Basically, the canopies of the cases F and G are less deformed

compared with those of the cases B and C; in particular it is pronounced in the case F.

However, the trend in change is similar in the small and large canopies, and the area
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6.5 The Effect of the Capsule and Canopy Size

(c) Mach 2.1 (Case I)

Figure 6.20: Instantaneous pressure contours around canopy for cases C, H and I
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Figure 6.21: Time history of drag coefficient for cases C, H and I

oscillation can be observed in the both cases. Lingard et al. [50] has suggested that the

trailing distance should be X/d > 6+D/d, which can avoid the phenomenon observed in

cases A or B. Therefore, we need attention to the following. When reducing the canopy
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6.6 The Effect of Mach Number

size in the appropriate X/d condition, where for instance, the case B is modified to the

case F, it can improve the unfavorable deformation, and prevent the strong coupling of

the subsonic flow from the capsule wake with the flow inside the parachute, causing a

decrease in pressure (see Fig. 6.6(a) and (b)).

The flow fields for the cases F and G around the parachute system are shown in

Fig. 6.16, which suggests that the interaction between the capsule wake and the canopy

shock wave is a main source of the unsteadiness in the flow field [3, 12], leading to large

pressure fluctuations inside the canopy with a consequential shape change.

The time histories of drag coefficient for cases F and G are shown in Fig. 6.17. As

the canopy size decreases, the drag coefficient increases, especially in the smaller trailing

distance case. That is to say, they can provide higher values of the drag coefficient (not

the drag force).

6.6 The Effect of Mach Number

In experiment, it is difficult to vary Mach number while keeping Reynolds number con-

stant, since Reynolds number increases with the flow speed. However, in computation,

this can be easily realized by changing the model size [105]. In this study, based on

this approach, the computation was carried out at M=1.6 and M=2.1 under the same

computational conditions as case C (see Table 6.1. Here we consider two cases listed

in Table 6.4.

Table 6.4: Values of parameters for cases H and I

Case Mach number X/d d/D Grid number

H 1.6 7.125 0.218 1, 059, 576

I 2.1 7.125 0.218 1, 059, 576

The time-variations of canopy shape for cases H and I are shown in Figs. 6.18

and 6.19, respectively. Compared with the case C with Mach 2.0, we can see that at

M=1.6, the canopy undergoes smaller deformation although the Mach 2.1 case has a

slightly larger change in canopy shape than the Mach 2.0 case.

The representative, instantaneous flow fields for cases C, H and I are shown in

Fig. 6.20. In the higher Mach number cases, the location of the interaction between

95



6.7 Summary

the capsule wake and the canopy shock becomes closer to the canopy, and the canopy

shock continues to stay near the canopy edge, so that the canopy experiences a severe

deformation with vibration.

The time history of drag coefficient for the three cases C, H and I are shown in

Fig. 6.21. Mach 1.6 case has a larger drag coefficient, because the smaller change in

canopy shape can maintain the higher pressure difference between the inner and outer

of the canopy. In the Mach 2.1 case, since the flow has higher energy, the stronger

interference causes higher pressure inside the canopy, leading to a higher drag coeffi-

cient. After about t=0.004s, there are small differences between the cases C and I with

regard to the drag coefficient, since the strong interaction in the Mach 2.1 case causes

larger deformation, which mitigates the effect of higher pressure inside the canopy. In

conclusion, the parachute drag coefficient reduces with increasing Mach number, which

is consistent with the bluff-body flow and Mach dependence in parachute performances

in wind tunnel and flight tests [12, 50].

6.7 Summary

In the present study three-dimensional flexible parachute models were numerically sim-

ulated using the immersed boundary method at supersonic speeds. The results obtained

in this study can be summarized as follows:

• Time-variations of change in canopy shape for three-dimensional flexible parachute

models were successfully simulated using the immersed boundary method together

with the weak coupling scheme between fluid flow and structure dynamics. The

flow speed ranges from M=1.6 to M=2.1.

• In the case with a non-dimensional trailing distance of 7.125 and with a smaller

ratio of capsule diameter to canopy diameter, the area oscillation of canopy shape

was observed, due to the strong aerodynamic interaction of the capsule wake

with the canopy shock, This causes a large drag coefficient. On the other hand,

in a rather small trailing distance, the wake plays a more important role in the

interference, which causes the canopy shock to continue to stay at the canopy

edge part, leading to shrinking of the canopy.
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6.7 Summary

• When we neglect the capsule size, the distance from the fixed point, at which

the capsule lies, to the canopy inlet has a big impact on the canopy behavior.

As this distance decreases, the canopy shock location moves closer to the canopy,

which results in a bigger contraction of canopy shape as well as a smaller drag

coefficient. In addition, from comparison between the cases with capsule and

without capsule, it was found that the capsule leads to a negative effect on the

parachute system.

• Reducing the canopy size under a rather small trailing distance can improve the

canopy deformation due to strong aerodynamic interference, and increase the drag

coefficient.

• Mach number seriously affects the dynamics of canopy behavior. At Mach 1.6, the

canopy shape goes through a smaller deformation than a higher Mach number,

because of the weaker interactions between the capsule wake and the canopy

shock, which also produces a larger drag coefficient.

• Comparing all the cases in the 3D flexible calculation for the drag coefficient, it

was found that two parameters: i.e., the capsule size and the trailing distance,

have the largest impact on the drag coefficient of the parachute system. That is,

the smaller the capsule size becomes, or the longer the trailing distance becomes,

the larger the drag coefficient becomes. In addition, the canopy size has a large

effect on the drag coefficient; that is, with a relatively small trailing distance,

smaller canopy size can produce larger drag coefficient. On the other hand, in

the longest trailing distance cases examined in this study, smaller Mach number

can produce larger drag coefficient.

• There are two key factors for the dynamics of the flexible parachute system; one is

the unsteady change in canopy shape, and the other the aerodynamic interference

between the capsule wake and the canopy shock.

• The performance of the flexible parachute system depends on several factors: i.e.,

the trailing distance, Mach number, and the ratio of the capsule diameter to the

canopy diameter.

97



6.7 Summary

• When the trailing distance is rather small, in the 2D flexible case only the steady

foreshock and the wake/rear shock interaction were observed because of the weak

flow interference and severe deformation of the canopy. In the axisymmetric flexi-

ble case the rear shock always stays near the edge part of the canopy, periodically

interacting first with the wake and then with the foreshock, and the unsteady

flow mode is pulsation. In the 3D flexible case the canopy shock interacts with

the wake and foreshock concurrently near the edge part of the canopy during a

time period, and the unsteady flow mode is not pulsation.

98



Chapter 7

Conclusion

The supersonic flow over rigid and flexible parachute models were studied by numer-

ically solving the compressible Navier-Stokes equations. The parachute system em-

ployed in the present thesis consists of a capsule and a canopy. In this study the cases

with a rather small trailing distance between the capsule and canopy were treated. As

a result, the flow field around the parachute system showed complicated wake/shock

and/or shock/shock interactions. Moreover, the effects of aerodynamic interference on

the performance of the flexible parachute system were analyzed, and the effects of Mach

number, the trailing distance, and the ratio of canopy diameter to capsule diameter on

the flexible parachute system were also examined in detail. In the following, the wake

refers to the capsule wake, the foreshock to the bow shock formed ahead of the capsule,

and the rear shock to the bow shock formed ahead of the canopy. The results obtained

in this study can be summarized as follows:

Table 7.1: Comparison between rigid and flexible parachute cases with respect to aero-

dynamic interference for Mach of 2.0 (“◦” = occur, “×” = does not occur)

Case Dimension X/d Wake/Shock Shock/Shock Pulsation

Rigid 3D 2.375 ◦ ◦ ◦

Flexible

2D 2.375 ◦ × ×
Axisymmetric 2.375 ◦ ◦ ◦

3D 2.375/4.750/7.125 ◦/ ◦ /◦ ◦/× /× ×/× /×

• Reducing the trailing distance, X/d, between the capsule and the canopy, the

complicated capsule wake/rear shock and foreshock/rear shock interactions were
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observed in the 3D rigid, axisymmetric flexible, and 3D flexible cases (see Ta-

ble 7.1). However, in the 2D flexible case, only the steady foreshock and the

wake/rear shock interaction were seen because of the weak flow interference and

severe deformation of the canopy.

• The comparison in the 3D rigid parachute case between results of the model A,

which has a rod, and the model B, which has no rod, shows that the effects of a

connecting rod on the flow field and the pressure distribution on the body surfaces

are rather small. The pulsation phenomenon for the model B is identical to that

for the model A.

• In the 2D, axisymmetric and 3D cases with the flexible parachute models, time

variations of change in the canopy shape as well as the complicated unsteady

flow field with aerodynamic interferences were successfully captured at supersonic

speeds ranging from M=1.6 to M=2.1. In this simulation the immersed boundary

method was employed together with the fluid-structure coupling method. In the

2D, axisymmetric and 3D flexible cases, where the trailing distance was held

constant, it was found that with a small trailing distance, the shock ahead of

the canopy is always located near the edge part of the canopy, which causes the

canopy to shrink all the time. Moreover, it was found that by calculating the 3D

flexible canopy case the performance of the flexible parachute can be sufficiently

analyzed in terms of the parameters that influence the aerodynamic interference,

and that the phenomenon of area oscillation of the canopy can be successfully

captured with a large trailing distance.

• Regarding aerodynamic interactions, there are some differences between the rigid

(3D) case and the flexible case (axisymmetric and 3D), as shown in Table 7.1.

In the rigid case, the rear shock periodically moves upstream and first interacts

with the wake and then with the foreshock, where the unsteady flow mode is a

pulsation mode. On the other hand, in the axisymmetric flexible case, due to a

shrinkage deformation of the edge part of the canopy, the rear shock always stays

near the edge part of the canopy, periodically interacting first with the wake and

then with the foreshock. In addition, in the 3D flexible case, the capsule wake

plays a more significant role in interference as well as a great contraction of the
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canopy shape, so that the canopy shock interacts concurrently with the wake and

the foreshock near the edge part of the canopy during a time period, where the

unsteady flow mode is not a pulsation.

• The unsteady pulsation mode of flow was captured in the three-dimensional rigid

case and the axisymmetric flexible case (see Table 7.1), where the bow shock

formed ahead of the capsule inflates periodically and moves outward in the radial

direction. This is caused by upstream propagation and/or lateral expansion of the

complicated wake/rear shock and foreshock/rear shock interactions. There are

two key factors for the pulsation phenomenon observed here; one is the pressure

difference between the capsule and the canopy, and the other the shear layer and

the vortex region produced by the wake/rear shock and the foreshock/rear shock

intersections.

• The unsteady flow mode was found to be consistent at supersonic speeds ranging

from Mach 1.6 to 2.2 in the 3D rigid case or to 2.1 in the axisymmetric flexible

case. In the 3D rigid case, as the freestream Mach number increases, the bow

shock formed in front of the capsule moves closer to the capsule, and the capsule

wake more strongly interacts with the canopy bow shock. Accordingly, the aero-

dynamic interaction region comes closer to the center of the parachute system, so

that the pressure on the parachute surfaces becomes larger. On the other hand,

in the axisymmetric flexible case, as Mach number increases, the pressure inside

the canopy undergoes a large change, which causes the canopy shape to deform

more with a shrink.

• Reduction in Mach number has a large effect on the performance of the flexi-

ble parachute system. In the 2D parachute case, at Mach 1.6, the shock wave

formed in front of the capsule is not conical in shape, and moves upstream with

a cyclic change of pressure inside the canopy. When the canopy takes a rather

small shape, the foreshock moves downstream. In addition, as Mach number

decreases, the pressure coefficient on the canopy surface becomes larger. In the

axisymmetric flexible case, the pressure coefficient itself oscillates with time and

its amplitude changes from small to large at Mach 1.6, which illustrates that the

weak aerodynamic interaction turns stronger with the pressure coefficient main-

tained at a higher value than in other Mach number cases. As a result, the canopy
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shape changes more slowly. On the other hand, in the 3D flexible parachute case,

the canopy has a smaller deformation than in higher Mach number cases, due to

weaker interactions between the capsule wake and the canopy shock. Therefore,

in this case the value of drag coefficient becomes higher.

• There are two key factors with respect to dynamics of the flexible parachute sys-

tem; one is unsteady change in the canopy shape, and the other the aerodynamic

interference between the capsule wake and the canopy shock.

• The performance of the flexible parachute system depends on several factors: i.e.,

the trailing distance, Mach number, and the ratio of the capsule diameter to the

canopy diameter.

• From the comparison of all the cases treated in the 3D flexible calculation, it was

found that two parameters: i.e., the capsule size and the trailing distance, have

the largest impact on the drag coefficient of the parachute system. That is, the

smaller the capsule size becomes, or the longer the trailing distance becomes, the

larger the drag coefficient becomes. In addition, the canopy size has a large effect

on the drag coefficient; that is, with a relatively small trailing distance, smaller

canopy size can produce larger drag coefficient. On the other hand, in the longest

trailing distance cases examined in this study, smaller Mach number can produce

larger drag coefficient.
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