Goal: The classification of irreducible unitary representations of $SL(2,\mathbb{R})$. **Aim:** Explain the standard technique of the theory of Lie groups.

Textbook: Howe-Tan, Non-Abelian Harmonic Analysis, Springer, 1992.

In the textbook, Chapter II and Chapter III §1, they use higher techniques, such as Schwartz distributions and formal vectors.

In my lecture, instead: Based on Linear algebra and on Calculus. Combination of these two will be applied to Representation theory and Lie groups.

1 Leibniz rule (Lie algebra $\mathfrak{sl}(2,\mathbb{C})$)

Recall the calculus of one variable

$$
x: \text{ variable}
$$

$$
\partial = \frac{d}{dx} : \partial f = f' = \frac{df}{dx}.
$$

Definition 1.1. Let $\lambda \in \mathbb{C}$ be a constant. We define operators

$$
X := -\partial,
$$

\n
$$
H := -2x\partial + \lambda,
$$

\n
$$
Y := x^2\partial - \lambda x.
$$

Exercise 1.2. Prove

(1)
$$
HX - XH = 2X
$$
,
\n(2) $HY - YH = -2Y$,
\n(3) $XY - YX = H$.

Proof. (2): It is enough to prove

$$
HYf - YHf = -2Yf.
$$
\n^(1.1)

We have

$$
Yf = x^2\partial f - \lambda xf = x^2f' - \lambda xf
$$

and

$$
HYf = (-2x\partial + \lambda)Yf = -2x\partial(Yf) + \lambda Yf
$$

= -2x\partial(x^2f' - \lambda xf) + \lambda(x^2f' - \lambda xf)
= -2x(x^2f - \lambda xf)' + \lambda(x^2f' - \lambda xf)
= -2x\{(2xf' + x^2f'') - \lambda(f + xf')\} + \lambda(x^2f' - \lambda xf)
= -4x^2f' - 2x^3f'' + 2\lambda xf + 2x^2\lambda f' + \lambda x^2f' - \lambda^2xf.

Therefore,

$$
Hf = -2xf' + \lambda f
$$

and

$$
YHf = x^{2}\partial(HF) - \lambda x(Hf)
$$

= $x^{2}(-2xf' + \lambda f)' - \lambda x(-2xf' + \lambda f)$
= $x^{2}\{-2(f' + xf'') + \lambda f'\} - \lambda x(-2xf' + \lambda f)$
= $-2x^{2}f' - 2x^{3}f'' + \lambda x^{2}f'' + \lambda x^{2}f' + 2\lambda x^{2}f' - \lambda xf.$

Thus, the left-hand side of (1.1) is

$$
HYf - YHf = -2x^2f' + 2\lambda xf,
$$

and the right-hand side of (1.1) is

$$
-2Yf = -2(x^2\partial f - \lambda x f) = -2x^2f' + 2\lambda x f.
$$

 \Box

I will leave (1) and (3) for one of report problems. These three relations are often called the $\mathfrak{sl}_2\textit{-relation}.$

Exercise 1.3. Compute the following operator

 $C = 2XY + 2YX + H^2$.

Proof. We will compute using the \mathfrak{sl}_2 -relation.

$$
C = 2XY + 2YX + H2 \text{ by Ex. 1.2 (3)}
$$

= 2(YX + H) + 2YX + H²
= 4YX + H² + 2H.

Now, we use the definition of X, H, Y . Then, we obtian

$$
C = 4(x2 \partial - \lambda x)(-\partial) + (-2x\partial + \lambda)2 + 2(-2x\partial + \lambda)
$$

= (-4x² \partial² + 4\lambda x\partial) + {4(x\partial)² - 4\lambda x\partial + \lambda²} + (-4x\partial + 2\lambda).

Note 1.4. $(x\partial)^2 \neq x^2\partial^2$. In fact, $x\partial f = xf'$ and $\partial xf = (xf)' = f + xf'$, then

$$
\partial x = x\partial + 1. \tag{1.2}
$$

By (1.2),

$$
(x\partial)^2 = x\partial x\partial = x(x\partial + 1)\partial = xx\partial\partial + x\partial = x^2\partial^2 + x\partial.
$$

Now, we come back to the computation of C

$$
C = -4x2\partial2 + 4(x\partial)2 + \lambda2 - 4x\partial + 2\lambda
$$

= -4x²\partial² + 4(x²\partial² + x\partial) + \lambda² - 4x\partial + 2\lambda
= \lambda² + 2\lambda.

Summarizing above: $\sqrt{ }$ \overline{J} \overline{a} $X = -\partial$ $H = -2x\partial + \lambda$ $Y = x^2\partial - \lambda x$ \mathcal{L} $\overline{\mathcal{L}}$ \overline{J} then $C = 2XY + 2YX +$

 $H^2 = \lambda^2 + 2\lambda$ is a constant.

Note 1.5. $\lambda^2 + 2\lambda = (\lambda + 1)^2 - 1$, 1 =the half sum of positive roots for $\mathfrak{sl}(2,\mathbb{C})$.

Fact 1.6 (Not proved here). The \mathfrak{sl}_2 -relation and $C = \lambda^2 + 2\lambda$ are essentially all the relation of X, H, Y defined here. In other words,

$$
\mathbb{C}[X,Y,H] \simeq \mathbb{C}\langle x,h,y \rangle / \left(\begin{array}{c} hx - xh - 2x, hy - yh + 2y, xy - yx - h, \\ 2xy + 2yx + h^2 - \lambda^2 - 2\lambda \end{array} \right),
$$

where (\cdots) means the two-sided ideal of the non-commutative free algebra $\mathbb{C}\langle x, h, y \rangle$.