2 Linear fractional transformations

2.1 Lie algebra as the tangent space

Calculus of several variables (partial differentiation)

Tangent space

Example 2.1. Let

GzSL(Q,R):{(Z 2)6M(2,R)yad_bc:1}.

How to compute the tangent space at the identity Iy € G¥

Let X = (CCL Z) € M(2,R) and g = Is + eX. We will write down

the condition to be g € G up to O(e?), i.e., just take linear terms of € and
ignore €2 or higher. This procedure corresponds to the concept of tangent

1+ea eb
space. Forg—12+£X—< e 1+5d>’

det g = (1 +¢ca)(1 +¢eb) — ebec = 1 + e(a + d) + €*(ad — be),
and thus
detg=1 mod O(e?) & a+d=0.
So, the tangent space of G = SL(2,R) at the identity Is € G is

sl(2,R) ::{(“c‘ Z)GM(Z,R) | a—{—d:()}.

Remark 2.2. S =special, G =general, L =linear,
GL(n,R) ={g € M(n,R) | detg # 0}:group and
SL(n,R) ={g € M(n,R) | detg = 1}:group,
SL(n,R) < GL(n,R).



Example 2.3 (From Lie groups to Lie algebras). (0) The tangent space of
SL(n,R) at I, is
{X € M(n,R) | tr(X) = 0}.

(1) The tangent space of O(n) at I, is
{(XeMnR) | X+!'X=0,},

where

O(n) ={g € M(n,R) | g9 = I,,}.
(2) The tangent space of U(n) at I, is
{X € M(n,C) | X +'X =0,},

where
U(n) ={g € M(n,C) | 'gg = I.}.

(8) The tangent space of U(1,1) at Iy is u(1,1), where
B 1 0\ (1 0
v ={semecrio( g % )a=(5 &)}

u(l,1) = {(Z Z)GM(Q,(C)]a—i-a:O,d d:O,b:c}
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Proof. (0) Exercise.
(1) Take X € M(n,R), and consider

g=1,+¢cX.
Then tg = I, + ¢ !X and

tgg = (In +e ' X)(I, + ¢ 'X)
=T, +e(X +'X) 4+ 1XX
=1I,+e(X +'X) mod O(?).
The condition g € O(n), i.e, ‘gg = I,, is equivalent to X + X = 0.

(2) Report (in such a case, € to be real). If g = I,,+¢X, theng = I,,+¢X
and tg =1, + ¢ tX.



(3) We start with a coordinate-free computation

X = (CCL Z)eM@,C), g=h+ecX (ccRe=7), 'g=1L+X.

The condition g € U(1,1), i.e., Ig < é _01 >g = < (1) _01 ) is equivalent

(Ig+5tX)<é _01)(12+5X):<(1) _01>

to

The LHS is

1 0 ~ (1 0 1 0 9,1 0
(0_1>+5X(0_1)+5<0_1>X+5 X<0_1>X.

Thus
u(1,1):{XeM(2,C)\tX<(1] _01>+((1) _01 >X:02}.

. . . b
Now, we use the expression in coordinates. Put the expression X = < CCL d >

in the equation above, we obtain

(o 5) (0 S)=(5 ) ),

which is Og if and only if
a+a=0, —¢+b=0,b—c=0, and —d—d=0.
Ol

Definition 2.4. The tangent space at the origin of a (Lie) group G is called
the Lie algebra of G. Tt is often written as g (the corresponding lower
German), e.g., the Lie algebra of

GzSL(Z,R):{(Z 2>€M(2,R)|ad—bc:1}

is

gzﬁ[(2,R)={<z Z>€M(2,R)|a+d:0}.



Exercise 2.5. Define |, | by [A,B] = AB — BA. Prove
(1) If A,B € o(n), then [A, B] € o(n).
(2) If A, B € u(n), then [A, B] € u(n).

. (1 0 (01 (00
Exercise 2.6. LetH(O —1)’X<O 0>andY<1 O>'

Prove H, X, Y € sl(2,R) and compute

[H, X] =?
[H,Y] =7
X, V] =7

2.2 Linear fractional transformation

Let g = < CCL 2 ) € SL(2,C) and = be a variable.

ar—+b
cr+d

p(g)r =

is called linear fractional transformation.

Exercise 2.7. Prove

p(g192)x = p(g1)p(g2)z for g1,92 € SL(2,C). (2.1)

Proof(elegant). Use the homogeneous/inhomogeneous coordinates of projec-
tive line P!, and use the associativity of the multiplications of matrices

(AB)v = A(B(v)), A, B € SL(2,C), v € M(2,1).

Proof(elephant). Let g1 = < ch Z ) ,go = ( ; £ ) € SL(2,C) and

B J\ _ [ ae+bg af+0bh
9192 = 1 )=\ cetdg cf+dnh )°

The left-hand side of (2.1) is

T .

ir+j  (ae+bg)r+af + bh
kx+1  (ce+dg)x +cf +dh’

4



and the right-hand side of (2.1) is

e$+f_a-z—i£+b_ (ae +bg)x + af + bh

QJHLh_c-;fE%{L—i—d_ (ce+dg)x + cf +dh

p(g1)

Thus
p(g192)r = p(g1)p(g2)x for g1,g2 € SL(2).

Let f = f(z) be a function on z. We define m(g) by
(m(9)f)(z) == fp(g~")z).
Exercise 2.8. Prove
m(g9192) = m(g1)m(g2) for g1,92 € SL(2,C).
Meaning of Exercise 2.8 is
((9192) f) () = (7w (g1) (7 (g2).f)) (=)-

Proof.

RHS = (m(g1)f)(p(g;")x) by def. of w(g2)
= fp(gi p(gy Dx) by def. of m(g1)
= flp(9r'9:")x)  byex. 2.7
= LHS by def. of w(g192).

Exercise 2.9. If you would define

then which do you obtain either

7(9192) = 7(g1)7(92)

m(9192) = m(g2)m(g1)-



2.3 Taylor expansion of 7(g)

1 0
0 -1

. 1 (14 0 I+ 0
1_ _ 2
g _1_52< 0 1—5)—( 0 1—5) mod O(<")

Let g=1,+¢cH, H = < ) Then we obtain

and

(1-e)z+0 1-¢

—1
plg ) 0z+(lte) 1+e
2
= (1_ngz(1—2€)x mod O(e?).

(m(9)f)(x) = flplg™H)z) = fa — 2ex)
= f(z) = 2exf'(z) = f(z) — 2c2df(z) mod O(e?),

where we have used the fact that
ﬂwﬂw=ﬂ@+f@%+%ﬂ@%“~~Eﬂ@+f@%+owa

Thus 7(g)f = f — 2exdf mod O(£?).
Summarize: We define 7'(H) = —220, then

m(ls+eH)f = f+en’(H)f mod O(£?).
Exercise 2.10. Compute ©'(X) and ©'(Y), so that
m(Iy +eX)f = f +er’'(X)f mod O(?),

t(la+eY)f = f+en’(Y)f mod O(g?).

The answer will be
m(X)=-0

7' (Y) = x20.



2.4 Where is \
Definition 2.11. Fix A € C. For a function f = f(z) of one variable z, we

define another function F = F ( :Zj ) with two variables x and y by

(ml)@) =GP (7).

What is the effect of \?
We have

(ma(I+eH)f)(x) = (7(I+ecH)F)
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z) mod O(e?) by def. of F'

1—-¢
1 A
1+ 7
= (L+e)(f+er'(H)f) mod O(e?) by §2.3
= fHe(@'(H)f+)\f) mod O(?),
where we have used the fact that Taylor expansion
(14¢e)* =1+er+ 0(?).
So, if we define 7\ (H) = mx(H) + A, then
(I +eH)f = f+erh(H)f mod O(?).
Exercise 2.12. Compute 7\ (X) and 7\ (Y").
Now, we give the following table:
L
X | -0 —0
H | —20 | =220+ A
Y | 220 | 220 — \x




