
3 Representation

3.1 Eigenvectors and eigenvalues in linear algebra

Look at the action on monomials xm:

Hxm = (−2m + λ)xm,

Xxm = −mxm−1,

Y xm = (m − λ)xm+1,

where

H = −2x∂ + λ,

X = −∂,

Y = x2∂ − λx.

Exercise 3.1. Show the above.

Key word: Euler operator=degree-counting operator.
Let θ = x∂ = x d

dx . We have

θxm = x∂(xm) = mxm,

Hxm = (−2θ + λ)xm = (−2m + λ)xm,

Y xm = x(x∂ − λ)xm = x(θ − λ)xm.

θxm = mxm Av = v
θ: linear operator A: matrix
xm: function v: vector
m: scalar λ: scalar

Thus xm is an eigenfunction (eigenvector) of θ with an eigenvalue (spectrum)
m. In this terminology, xm is an eigenfunction of H with an eigenvalue
−2m + λ.

We will change the variable m into μ, μ = −2m + λ, and xm is denoted
by vμ. This notation vμ indicated that the eigenvalue of vμ is μ.

Remark 3.2. An eigenvalue of H is also called a weight in representation
theory.

We obtain

Hvμ = μvμ,

Xvμ =
μ − λ

2
vμ+2,

Y vμ =
−μ − λ

2
vμ−2.
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Notation: Fix μ0 ∈ C, then we define μ0 + 2Z := {μ0 + 2n | n ∈ Z}.

×××× × ×
μ0 + 4μ0 + 2μ0μ0 − 2μ0 − 4

This μ0 + 2Z is a (infinite and countable) subset of C. We often consider a
subset I ⊂ μ0 + 2Z.

Definition 3.3. Let I ⊂ μ0 + 2Z. We define a vector space

V (λ, I) :=
⊕

μ∈I

Cvμ.

Note that {vμ}μ∈I is a basis of V (λ, I).

In particular, for I = μ0 + 2Z, we often write as

V := V (λ, μ0 + 2Z) =
⊕

μ∈μ0+2Z

Cvμ =
⊕

n∈Z

Cvμ0+2n.

Note that λ and μ0 are hidden in the notation V .
We also consider the linear maps

H : V −→ V,

X : V −→ V,

Y : V −→ V

given by

X(
∑

μ

cμvμ) =
∑

μ

cμX(vμ),

Y (
∑

μ

cμvμ) =
∑

μ

cμY (vμ),

H(
∑

μ

cμvμ) =
∑

μ

cμH(vμ).

2



The vector space V together with H,X, Y is called a representation of
sl(2, C).

What happens for a general I?
When a subspace W ⊂ V is a subrepresentation?

Definition 3.4. If a subspace W ⊂ V is stable under the linear maps H,X
and Y , then W is called a subrepresentation of V . Recall that W is H-stable
(stable under H) if HW ⊂ W , that is, w ∈ W =⇒ Hw ∈ W .

Question 3.5 (above). For which I, the subspace V (λ, I) is subrepresenta-
tion?

Question 3.6. Determine all I’s such that

∀w ∈ V (λ, I) =⇒ Hw, Hw, Y w ∈ V (λ, I).

Lemma 3.7. For a subspace W ⊂ V , the following conditions are equiva-
lent:

(1) HW ⊂ W .

(2) There exist I ⊂ μ0 + 2Z such that W = V (λ, I).

Proof. (2)⇒(1) (Obvious part). Let ∀w =
∑

μ∈I cμvμ ∈ W = V (λ, I). Then

Hw =
∑

μ∈I

cμμvμ ∈ W = V (λ, I).

(1)⇒(2) (Nontrivial part). Suppose W ⊂ V such that HW ⊂ W . Define

I := {μ ∈ μ0 + 2Z | ∃w ∈ W such that w =
∑

a

cava with cμ �= 0}.

Note that, at this moment, we don’t know vμ ∈ W .
By definition, W ⊂ V (λ, I), because for ∀w =

∑
cava ∈ W , ca �= 0 ⇒

a ∈ I and
∑

cava ∈ V (λ, I).
Conversely, suppose μ ∈ I. Then ∃w =

∑
a∈A cava ∈ W such that

cμ �= 0. By definition linear combination is a finite sum. So, A is a finite
subset.

f(H) :=
∏

a∈A
a�=μ

(H − a) = (H − a1)(H − a2) · · · (H − am−1),
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where A = {a1, a2, . . . , am−1, μ}. By assumption HW ⊂ W , for any w ∈ W ,

f(H)w ∈ W.

On the other hand,

f(H)w =
∑

a∈A

caf(H)va =
∑

a∈A

caf(a)va = cμf(μ)vμ,

where we have used the fact that

f(a) = 0 if a �= μ.

Since cμf(μ) �= 0, vμ ∈ W . Thus h ∈ I ⇒ vμ ∈ W . So V (λ, I) ⊂ W .
Thus W = V (λ, I) which is the condition (2).

As a corollary of Lemma 3.7, the previous Question 3.5 is rephrased as

Question 3.8. Classify all the subrepresentations W ⊂ V .

3.2 Raising/ lowering operators

Now we examine the condition XW ⊂ W .

Lemma 3.9. Suppose that W = V (λ, I) satisfies XW ⊂ W . Then

μ ∈ I ⇒ μ + 2 ∈ I or μ = λ.

Lemma 3.10. Suppose that W = V (λ, I) satisfies Y W ⊂ W . Then

μ ∈ I ⇒ μ − 2 ∈ I or μ = −λ.

Proof of Lemma 3.9. Look at

Xvμ =
μ − λ

2
vμ+2.

The statement is equivalent to

μ ∈ I and μ �= λ ⇒ μ + 2 ∈ I.

Suppose μ ∈ I. Then vμ ∈ W . Since XW ⊂ W , Xvμ = μ−λ
2 vμ+2 ∈ W . By

μ �= λ, vμ+2 ∈ W . This means μ + 2 ∈ I.

Exercise 3.11. Prove Lemma 3.10 for Y .

Both of {0} and V are always subrepresentations of V . This fact does
not matter the values λ, μ0 ∈ C. The subrepresentation {0} corresponds to
I = ∅, i.e., {0} = V (λ, ∅).

In order to classify subrepresentations, we want to know other subrep-
resentations than {0} and V .
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3.3 For generic parameters

In this subsection, we assume that

±λ �∈ μ0 + 2Z.

Let I ⊂ μ0 +2Z be a nonempty subset. Note that for ∀μ ∈ I, we have λ �= μ
and λ �= −μ. So, if μ ∈ I, then μ+2 ∈ I and μ− 2 ∈ I by Lemma 3.9. This
means that

× × ×××
μ ∈ I μ + 2 ∈ I μ + 4 ∈ Iμ − 2 ∈ Iμ − 4 ∈ I

Theorem 3.12. Let ±λ �∈ μ0 + 2Z. Then the list of subrepresentations of
V = V (λ, μ0 + 2Z) is

(1) {0},
(2) V .

Feeling: For generic parameters, representation theory does not depend on
the parameters, and the theory is (rather) easy.

3.4 Highest weight submodule

In this subsection, we assume that

λ ∈ μ0 + 2Z,

−λ �∈ μ0 + 2Z.

Remark 3.13. μ0 + 2Z = λ + 2Z.

Let I ⊂ μ0 + 2Z be a nonempty subset. Then by Lemmas 3.10 and 3.9,
respectively

(a) if μ ∈ I, then μ − 2 ∈ I,

(b) if μ ∈ I and μ �= λ, then μ + 2 ∈ I.

Lemma 3.14. (1) If λ + 2 ∈ I, then I = λ + 2Z.
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(2) If λ �∈ I, then I = ∅.
(3) If λ ∈ I and λ + 2 �∈ I, then I = λ + 2Z≤0.

Proof. Idea of a part of the proof of Lemma 3.14 (1). Suppose λ + 2 ∈ I.
Then by condition (a), λ, λ − 2, λ − 4, . . . ∈ I. By condition (b), λ + 4, λ +
6, . . . ∈ I.

× × ×××
λ + 2 ∈ I?λ ∈ Iλ − 2 ∈ I

×
λ − 4 ∈ Iλ − 6 ∈ I

we don’t know.

Theorem 3.15. If λ ∈ μ0 + 2Z and −λ �∈ μ0 + 2Z, then the list of all
subrepresentations of V = V (λ, μ0 + 2Z) = V (λ, λ + 2Z) is

(1) {0},
(2) V ,

(3) V (λ, λ + 2Z≤0).

Illustration of the weights of V (λ, λ + 2Z≤0) is

××× × × ◦ ◦
λλ − 2λ − 4

λ + 2 λ + 4

(× =weights, ◦ =not weights)

here, λ is called the highest weight of V (λ, λ + 2Z≤0).

Exercise 3.16. Formulate the list of classification in the case

λ �∈ μ0 + 2Z

−λ ∈ μ0 + 2Z.

Hint: V (λ,−λ + 2Z≥0) is one of the subrepresentations.

Picture of V (λ,−λ + 2Z≥0):

×××××◦
−λ −λ + 2

−λ − 2

−λ + 4
here, −λ is called the lowest weight of V (λ,−λ + 2Z≥0).
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3.5 Integral weight

In this subsection, we assume that

λ ∈ μ0 + 2Z,
−λ ∈ μ0 + 2Z.

Remark 3.17.
λ ∈ Z,

μ0 + 2Z ⊂ Z.

Proof. There exist n1, n2 ∈ Z such that λ = μ0 + 2n1 and −λ = μ0 + 2n2.
Thus λ − (−λ) = 2(n1 − n2) and λ = n1 − n2 ∈ Z. So, μ0 ∈ Z and
μ0 + 2Z ⊂ Z.

We separate this case into two cases according to λ ∈ Z≥0 and λ ∈ Z<0.

3.5.1 The case λ ∈ Z≥0 and λ − μ0 ∈ 2Z

Recall

Xvμ �= 0 unless μ = λ,

Y vμ �= 0 unless μ = −λ.

Graphical expression

v−λ−2 v−λ vλ vλ+2

This shows that

• if ∃μ ∈ I such that μ ∈ λ + 2Z and μ > λ, then −λ + 2Z≥0 ⊂ I,

• if ∃μ ∈ I such that μ ∈ λ + 2Z and μ < −λ, then λ + 2Z≤0 ⊂ I,

• if ∃μ ∈ I such that μ ∈ λ + 2Z and −λ ≤ μ ≤ λ, then [−λ, λ] ⊂ I,
where

[−λ, λ] := {μ ∈ λ + 2Z | − λ ≤ μ ≤ λ}.

Theorem 3.18. Suppose λ ∈ Z≥0 and λ − μ0 ∈ 2Z, then list of all subrep-
resentations of V = V (λ, μ0 + 2Z) = V (λ, λ + 2Z) is

(1) {0}: zero,
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(2) V = V (λ, λ + 2Z): whole,

(3) V (λ, [−λ, λ]): finite dimensional representation,

(4) V (λ, λ + 2Z≤0): highest weight representation,

(5) V (λ,−λ + 2Z≥0): lowest weight representation.

We note that dimV (λ, [−λ, λ]) = λ + 1.

Exercise 3.19. Give a proof of Theorem 3.18.

3.5.2 The case λ ∈ Z<0 and λ − μ0 ∈ 2Z

Theorem 3.20. Suppose λ ∈ Z<0 and λ − μ0 ∈ 2Z, then the list of all
subrepresentations of V = V (λ, μ0 + 2Z) = V (λ, λ + 2Z) is

(1) {0} = V (λ, ∅),
(2) V = V (λ, λ + 2Z),

(3) V (λ, λ + 2Z≤0),

(4) V (λ,−λ + 2Z≥0),

(5) V (λ, λ+2Z≤0)
⊕

V (λ,−λ+2Z≥0) = V (λ, (λ+2Z≤0)
⋃

(−λ+2Z≥0)).

See Remark 3.25.

We give a graphical expression

vλ vλ+2 v−λ−2 v−λ

Exercise 3.21. Prove it.

3.6 Irreducible/indecomposable

Definition 3.22. • A representation (of sl(2, C)) is called reducible if
it has proper nonzero subrepresentation.

• A representation is called decomposable if it is a direct sum of two
proper subrepresentations.

• A representation is called irreducible if it is not reducible.
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• A representation is called indecomposable if it is not decomposable.

Remark 3.23. • irreducible ⇒ indecomposable.

• irreducible �⇐ indecomposable.

Theorem 3.24. V (λ, μ0 + 2Z) is irreducible ⇔ ±λ �∈ μ0 + 2Z.

Proof. It is from Theorems 3.12, 3.15, Exercise 3.16, Theorem 3.18 and
3.20.

Remark 3.25. The representation of type (5) in Theorem 3.20 is an ex-
ample of a decomposable representation. In the special case λ = −1, the
representation of type (5) is

V (λ, λ + 2Z≤0 = {−1,−3,−5, . . .})
⊕

V (λ,−λ + 2Z = {1, 3, 5, . . .}) = V.

This means that, if λ = −1, then (2)=(5) in Theorem 3.20, so we should
omit either (2) or (5) in the case λ = −1, in order to obtain the complete
list.

Exercise 3.26. Any other representation V (λ, μ0 +2Z) than V (−1, 1+2Z)
is indecomposable.

Theorem 3.27. The list of all irreducible subrepresentation of V (λ, μ0+2Z)
(of sl(2, C)) is

(1) V (λ, μ0 + 2Z); ±λ �∈ μ0 + 2Z,

(2) V (λ, λ + 2Z≤0); λ �∈ Z≥0: highest weight representation,

(3) V (λ,−λ + 2Z≥0); λ �∈ Z≥0: lowest weight representation,

(4) V (λ, [−λ, λ]); λ ∈ Z≥0: finite dimensional representation.

Exercise 3.28. Prove Theorem 3.27.

Remark 3.29. For a compact (finite) group, a indecomposable representa-
tion (over C) is irreducible. We are in the different context, so that the list
in Theorem 3.24 is different from the list in Theorem 3.27.
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