# **3** Representation

### 3.1 Eigenvectors and eigenvalues in linear algebra

Look at the action on monomials  $x^m$ :

$$Hx^m = (-2m + \lambda)x^m,$$
  

$$Xx^m = -mx^{m-1},$$
  

$$Yx^m = (m - \lambda)x^{m+1},$$

where

$$H = -2x\partial + \lambda,$$
  

$$X = -\partial,$$
  

$$Y = x^2\partial - \lambda x.$$

Exercise 3.1. Show the above.

Key word: Euler operator=degree-counting operator. Let  $\theta = x\partial = x\frac{d}{dx}$ . We have

$$\begin{array}{lll} \theta x^m &=& x\partial(x^m) = mx^m,\\ Hx^m &=& (-2\theta + \lambda)x^m = (-2m + \lambda)x^m,\\ Yx^m &=& x(x\partial - \lambda)x^m = x(\theta - \lambda)x^m.\\ \theta x^m = mx^m\\ \theta : \mbox{ linear operator}\\ x^m : \mbox{ function}\\ m : \mbox{ scalar} & \begin{array}{lll} A\mathbf{v} = \mathbf{v}\\ A : \mbox{ matrix}\\ \mathbf{v} : \mbox{ vector}\\ \lambda : \mbox{ scalar} \end{array}$$

Thus  $x^m$  is an eigenfunction (eigenvector) of  $\theta$  with an eigenvalue (spectrum) m. In this terminology,  $x^m$  is an eigenfunction of H with an eigenvalue  $-2m + \lambda$ .

We will change the variable m into  $\mu$ ,  $\mu = -2m + \lambda$ , and  $x^m$  is denoted by  $v_{\mu}$ . This notation  $v_{\mu}$  indicated that the eigenvalue of  $v_{\mu}$  is  $\mu$ .

**Remark 3.2.** An eigenvalue of H is also called a weight in representation theory.

We obtain

$$Hv_{\mu} = \mu v_{\mu},$$
  

$$Xv_{\mu} = \frac{\mu - \lambda}{2}v_{\mu+2},$$
  

$$Yv_{\mu} = \frac{-\mu - \lambda}{2}v_{\mu-2}.$$

Notation: Fix  $\mu_0 \in \mathbb{C}$ , then we define  $\mu_0 + 2\mathbb{Z} := \{\mu_0 + 2n \mid n \in \mathbb{Z}\}.$ 

 $\times \times \times \mu_0 - 4 \qquad \begin{array}{c} \times & \times & \times & \times \\ \mu_0 - 2 & \mu_0 & \mu_0 + 2 & \mu_0 + 4 \end{array}$ 

This  $\mu_0 + 2\mathbb{Z}$  is a (infinite and countable) subset of  $\mathbb{C}$ . We often consider a subset  $I \subset \mu_0 + 2\mathbb{Z}$ .

**Definition 3.3.** Let  $I \subset \mu_0 + 2\mathbb{Z}$ . We define a vector space

$$V(\lambda, I) := \bigoplus_{\mu \in I} \mathbb{C} v_{\mu}.$$

Note that  $\{v_{\mu}\}_{\mu \in I}$  is a basis of  $V(\lambda, I)$ .

In particular, for  $I = \mu_0 + 2\mathbb{Z}$ , we often write as

$$V := V(\lambda, \mu_0 + 2\mathbb{Z}) = \bigoplus_{\mu \in \mu_0 + 2\mathbb{Z}} \mathbb{C}v_{\mu} = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}v_{\mu_0 + 2n}.$$

Note that  $\lambda$  and  $\mu_0$  are hidden in the notation V.

We also consider the linear maps

$$\begin{split} H:V \longrightarrow V, \\ X:V \longrightarrow V, \\ Y:V \longrightarrow V \end{split}$$

given by

$$X(\sum_{\mu} c_{\mu} v_{\mu}) = \sum_{\mu} c_{\mu} X(v_{\mu}),$$
$$Y(\sum_{\mu} c_{\mu} v_{\mu}) = \sum_{\mu} c_{\mu} Y(v_{\mu}),$$
$$H(\sum_{\mu} c_{\mu} v_{\mu}) = \sum_{\mu} c_{\mu} H(v_{\mu}).$$

The vector space V together with H, X, Y is called a *representation* of  $\mathfrak{sl}(2, \mathbb{C})$ .

What happens for a general I?

When a subspace  $W \subset V$  is a subrepresentation?

**Definition 3.4.** If a subspace  $W \subset V$  is stable under the linear maps H, X and Y, then W is called a *subrepresentation* of V. Recall that W is H-stable (stable under H) if  $HW \subset W$ , that is,  $w \in W \implies Hw \in W$ .

**Question 3.5** (above). For which I, the subspace  $V(\lambda, I)$  is subrepresentation?

Question 3.6. Determine all I's such that

 $\forall w \in V(\lambda, I) \implies Hw, Hw, Yw \in V(\lambda, I).$ 

**Lemma 3.7.** For a subspace  $W \subset V$ , the following conditions are equivalent:

- (1)  $HW \subset W$ .
- (2) There exist  $I \subset \mu_0 + 2\mathbb{Z}$  such that  $W = V(\lambda, I)$ .

*Proof.* (2) $\Rightarrow$ (1) (Obvious part). Let  $\forall w = \sum_{\mu \in I} c_{\mu} v_{\mu} \in W = V(\lambda, I)$ . Then

$$Hw = \sum_{\mu \in I} c_{\mu} \mu v_{\mu} \in W = V(\lambda, I).$$

 $(1) \Rightarrow (2)$  (Nontrivial part). Suppose  $W \subset V$  such that  $HW \subset W$ . Define

$$I := \{ \mu \in \mu_0 + 2\mathbb{Z} \mid \exists w \in W \text{ such that } w = \sum_a c_a v_a \text{ with } c_\mu \neq 0 \}.$$

Note that, at this moment, we don't know  $v_{\mu} \in W$ .

By definition,  $W \subset V(\lambda, I)$ , because for  $\forall w = \sum c_a v_a \in W$ ,  $c_a \neq 0 \Rightarrow a \in I$  and  $\sum c_a v_a \in V(\lambda, I)$ .

Conversely, suppose  $\mu \in I$ . Then  $\exists w = \sum_{a \in A} c_a v_a \in W$  such that  $c_{\mu} \neq 0$ . By definition linear combination is a finite sum. So, A is a finite subset.

$$f(H) := \prod_{\substack{a \in A \\ a \neq \mu}} (H - a) = (H - a_1)(H - a_2) \cdots (H - a_{m-1}),$$

where  $A = \{a_1, a_2, \dots, a_{m-1}, \mu\}$ . By assumption  $HW \subset W$ , for any  $w \in W$ ,  $f(H)w \in W$ .

On the other hand,

$$f(H)w = \sum_{a \in A} c_a f(H)v_a = \sum_{a \in A} c_a f(a)v_a = c_\mu f(\mu)v_\mu,$$

where we have used the fact that

$$f(a) = 0$$
 if  $a \neq \mu$ .

Since  $c_{\mu}f(\mu) \neq 0, v_{\mu} \in W$ . Thus  $h \in I \Rightarrow v_{\mu} \in W$ . So  $V(\lambda, I) \subset W$ . Thus  $W = V(\lambda, I)$  which is the condition (2).

As a corollary of Lemma 3.7, the previous Question 3.5 is rephrased as Question 3.8. Classify all the subrepresentations  $W \subset V$ .

#### **3.2** Raising/ lowering operators

Now we examine the condition  $XW \subset W$ .

**Lemma 3.9.** Suppose that  $W = V(\lambda, I)$  satisfies  $XW \subset W$ . Then

 $\mu \in I \Rightarrow \mu + 2 \in I \text{ or } \mu = \lambda.$ 

**Lemma 3.10.** Suppose that  $W = V(\lambda, I)$  satisfies  $YW \subset W$ . Then

 $\mu \in I \Rightarrow \mu - 2 \in I \text{ or } \mu = -\lambda.$ 

Proof of Lemma 3.9. Look at

$$Xv_{\mu} = \frac{\mu - \lambda}{2}v_{\mu+2}.$$

The statement is equivalent to

$$\mu \in I \text{ and } \mu \neq \lambda \Rightarrow \mu + 2 \in I.$$

Suppose  $\mu \in I$ . Then  $v_{\mu} \in W$ . Since  $XW \subset W$ ,  $Xv_{\mu} = \frac{\mu - \lambda}{2}v_{\mu+2} \in W$ . By  $\mu \neq \lambda, v_{\mu+2} \in W$ . This means  $\mu + 2 \in I$ .

Exercise 3.11. Prove Lemma 3.10 for Y.

Both of  $\{0\}$  and V are always subrepresentations of V. This fact does not matter the values  $\lambda, \mu_0 \in \mathbb{C}$ . The subrepresentation  $\{0\}$  corresponds to  $I = \emptyset$ , i.e.,  $\{0\} = V(\lambda, \emptyset)$ .

In order to classify subrepresentations, we want to know other subrepresentations than  $\{0\}$  and V.

## 3.3 For generic parameters

In this subsection, we assume that

$$\pm \lambda \not\in \mu_0 + 2\mathbb{Z}.$$

Let  $I \subset \mu_0 + 2\mathbb{Z}$  be a nonempty subset. Note that for  $\forall \mu \in I$ , we have  $\lambda \neq \mu$ and  $\lambda \neq -\mu$ . So, if  $\mu \in I$ , then  $\mu + 2 \in I$  and  $\mu - 2 \in I$  by Lemma 3.9. This means that

**Theorem 3.12.** Let  $\pm \lambda \notin \mu_0 + 2\mathbb{Z}$ . Then the list of subrepresentations of  $V = V(\lambda, \mu_0 + 2\mathbb{Z})$  is

- $(1) \{0\},\$
- (2) V.

Feeling: For generic parameters, representation theory does not depend on the parameters, and the theory is (rather) easy.

### 3.4 Highest weight submodule

In this subsection, we assume that

$$\lambda \in \mu_0 + 2\mathbb{Z}, -\lambda \notin \mu_0 + 2\mathbb{Z}.$$

Remark 3.13.  $\mu_0 + 2\mathbb{Z} = \lambda + 2\mathbb{Z}$ .

Let  $I \subset \mu_0 + 2\mathbb{Z}$  be a nonempty subset. Then by Lemmas 3.10 and 3.9, respectively

- (a) if  $\mu \in I$ , then  $\mu 2 \in I$ ,
- (b) if  $\mu \in I$  and  $\mu \neq \lambda$ , then  $\mu + 2 \in I$ .

**Lemma 3.14.** (1) If  $\lambda + 2 \in I$ , then  $I = \lambda + 2\mathbb{Z}$ .

- (2) If  $\lambda \notin I$ , then  $I = \emptyset$ .
- (3) If  $\lambda \in I$  and  $\lambda + 2 \notin I$ , then  $I = \lambda + 2\mathbb{Z}_{\leq 0}$ .

*Proof.* Idea of a part of the proof of Lemma 3.14 (1). Suppose  $\lambda + 2 \in I$ . Then by condition (a),  $\lambda, \lambda - 2, \lambda - 4, \ldots \in I$ . By condition (b),  $\lambda + 4, \lambda + 6, \ldots \in I$ .

**Theorem 3.15.** If  $\lambda \in \mu_0 + 2\mathbb{Z}$  and  $-\lambda \notin \mu_0 + 2\mathbb{Z}$ , then the list of all subrepresentations of  $V = V(\lambda, \mu_0 + 2\mathbb{Z}) = V(\lambda, \lambda + 2\mathbb{Z})$  is

- $(1) \{0\},\$
- (2) V,
- (3)  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0}).$

Illustration of the weights of  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0})$  is

here,  $\lambda$  is called the highest weight of  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0})$ .

Exercise 3.16. Formulate the list of classification in the case

$$\lambda \notin \mu_0 + 2\mathbb{Z} \\ -\lambda \in \mu_0 + 2\mathbb{Z}.$$

*Hint:*  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0})$  is one of the subrepresentations.

Picture of  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0})$ :

$$\begin{array}{c} -\lambda - 2 \\ \circ \\ -\lambda \\ -\lambda \\ -\lambda \\ -\lambda + 2 \\ -\lambda + 4 \end{array}$$

here,  $-\lambda$  is called the lowest weight of  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0})$ .

### 3.5 Integral weight

In this subsection, we assume that

$$\lambda \in \mu_0 + 2\mathbb{Z}, \\ -\lambda \in \mu_0 + 2\mathbb{Z}.$$

Remark 3.17.

$$\lambda \in \mathbb{Z}, \\ \mu_0 + 2\mathbb{Z} \subset \mathbb{Z}$$

*Proof.* There exist  $n_1, n_2 \in \mathbb{Z}$  such that  $\lambda = \mu_0 + 2n_1$  and  $-\lambda = \mu_0 + 2n_2$ . Thus  $\lambda - (-\lambda) = 2(n_1 - n_2)$  and  $\lambda = n_1 - n_2 \in \mathbb{Z}$ . So,  $\mu_0 \in \mathbb{Z}$  and  $\mu_0 + 2\mathbb{Z} \subset \mathbb{Z}$ .

We separate this case into two cases according to  $\lambda \in \mathbb{Z}_{\geq 0}$  and  $\lambda \in \mathbb{Z}_{<0}$ .

**3.5.1** The case  $\lambda \in \mathbb{Z}_{\geq 0}$  and  $\lambda - \mu_0 \in 2\mathbb{Z}$ 

Recall

$$Xv_{\mu} \neq 0 \text{ unless } \mu = \lambda,$$
  
$$Yv_{\mu} \neq 0 \text{ unless } \mu = -\lambda.$$

Graphical expression

$$\cdots$$
  $v_{-\lambda-2}$   $v_{-\lambda}$   $\cdots$   $v_{\lambda}$   $v_{\lambda+2}$   $\cdots$ 

.

This shows that

- if  $\exists \mu \in I$  such that  $\mu \in \lambda + 2\mathbb{Z}$  and  $\mu > \lambda$ , then  $-\lambda + 2\mathbb{Z}_{\geq 0} \subset I$ ,
- if  $\exists \mu \in I$  such that  $\mu \in \lambda + 2\mathbb{Z}$  and  $\mu < -\lambda$ , then  $\lambda + 2\mathbb{Z}_{\leq 0} \subset I$ ,
- if  $\exists \mu \in I$  such that  $\mu \in \lambda + 2\mathbb{Z}$  and  $-\lambda \leq \mu \leq \lambda$ , then  $[-\lambda, \lambda] \subset I$ , where

$$[-\lambda,\lambda] := \{\mu \in \lambda + 2\mathbb{Z} \mid -\lambda \le \mu \le \lambda\}$$

**Theorem 3.18.** Suppose  $\lambda \in \mathbb{Z}_{\geq 0}$  and  $\lambda - \mu_0 \in 2\mathbb{Z}$ , then list of all subrepresentations of  $V = V(\lambda, \mu_0 + 2\mathbb{Z}) = V(\lambda, \lambda + 2\mathbb{Z})$  is

(1)  $\{0\}$ : zero,

- (2)  $V = V(\lambda, \lambda + 2\mathbb{Z})$ : whole,
- (3)  $V(\lambda, [-\lambda, \lambda])$ : finite dimensional representation,
- (4)  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0})$ : highest weight representation,
- (5)  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0})$ : lowest weight representation.

We note that dim  $V(\lambda, [-\lambda, \lambda]) = \lambda + 1$ .

Exercise 3.19. Give a proof of Theorem 3.18.

**3.5.2** The case  $\lambda \in \mathbb{Z}_{<0}$  and  $\lambda - \mu_0 \in 2\mathbb{Z}$ 

**Theorem 3.20.** Suppose  $\lambda \in \mathbb{Z}_{<0}$  and  $\lambda - \mu_0 \in 2\mathbb{Z}$ , then the list of all subrepresentations of  $V = V(\lambda, \mu_0 + 2\mathbb{Z}) = V(\lambda, \lambda + 2\mathbb{Z})$  is

- (1)  $\{0\} = V(\lambda, \emptyset),$
- (2)  $V = V(\lambda, \lambda + 2\mathbb{Z}),$
- (3)  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0}),$
- (4)  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0}),$
- (5)  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0}) \bigoplus V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0}) = V(\lambda, (\lambda + 2\mathbb{Z}_{\leq 0}) \bigcup (-\lambda + 2\mathbb{Z}_{\geq 0})).$

See Remark 3.25.

We give a graphical expression



Exercise 3.21. Prove it.

#### 3.6 Irreducible/indecomposable

- **Definition 3.22.** A representation (of  $\mathfrak{sl}(2,\mathbb{C})$ ) is called *reducible* if it has proper nonzero subrepresentation.
  - A representation is called *decomposable* if it is a direct sum of two proper subrepresentations.
  - A representation is called *irreducible* if it is not reducible.

• A representation is called *indecomposable* if it is not decomposable.

**Remark 3.23.** • *irreducible*  $\Rightarrow$  *indecomposable*.

• *irreducible*  $\neq$  *indecomposable*.

**Theorem 3.24.**  $V(\lambda, \mu_0 + 2\mathbb{Z})$  is irreducible  $\Leftrightarrow \pm \lambda \notin \mu_0 + 2\mathbb{Z}$ .

*Proof.* It is from Theorems 3.12, 3.15, Exercise 3.16, Theorem 3.18 and 3.20.  $\hfill \Box$ 

**Remark 3.25.** The representation of type (5) in Theorem 3.20 is an example of a decomposable representation. In the special case  $\lambda = -1$ , the representation of type (5) is

$$V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0} = \{-1, -3, -5, \ldots\}) \bigoplus V(\lambda, -\lambda + 2\mathbb{Z} = \{1, 3, 5, \ldots\}) = V.$$

This means that, if  $\lambda = -1$ , then (2)=(5) in Theorem 3.20, so we should omit either (2) or (5) in the case  $\lambda = -1$ , in order to obtain the complete list.

**Exercise 3.26.** Any other representation  $V(\lambda, \mu_0 + 2\mathbb{Z})$  than  $V(-1, 1 + 2\mathbb{Z})$  is indecomposable.

**Theorem 3.27.** The list of all irreducible subrepresentation of  $V(\lambda, \mu_0+2\mathbb{Z})$ (of  $\mathfrak{sl}(2,\mathbb{C})$ ) is

- (1)  $V(\lambda, \mu_0 + 2\mathbb{Z}); \pm \lambda \notin \mu_0 + 2\mathbb{Z},$
- (2)  $V(\lambda, \lambda + 2\mathbb{Z}_{\leq 0}); \lambda \notin \mathbb{Z}_{\geq 0}$ : highest weight representation,
- (3)  $V(\lambda, -\lambda + 2\mathbb{Z}_{\geq 0}); \lambda \notin \mathbb{Z}_{\geq 0}$ : lowest weight representation,
- (4)  $V(\lambda, [-\lambda, \lambda]); \lambda \in \mathbb{Z}_{\geq 0}$ : finite dimensional representation.

Exercise 3.28. Prove Theorem 3.27.

**Remark 3.29.** For a compact (finite) group, a indecomposable representation (over  $\mathbb{C}$ ) is irreducible. We are in the different context, so that the list in Theorem 3.24 is different from the list in Theorem 3.27.