3 Representation

3.1 Eigenvectors and eigenvalues in linear algebra

Look at the action on monomials z™:

Hx™ = (—2m+ \)z™,
Xa™ = —ma™ 1,
Y™ = (m—\z™,
where
H = =230+ A,
X = -0,

Y = 220 - \z.
Exercise 3.1. Show the above.

Key word: Euler operator=degree-counting operator.
Let 0 = z0 = :c%. We have
Oz = z0(z™) =ma"™,
Hz™ = (=204 X\)z™ = (—2m+ \)z™,
Ya™ = z(xd0—N)z™ =x(0 — \)z™.

0x™ = max™ Av=v
f: linear operator | A: matrix
2™ function v: vector
m: scalar A: scalar

Thus 2™ is an eigenfunction (eigenvector) of # with an eigenvalue (spectrum)
m. In this terminology, =" is an eigenfunction of H with an eigenvalue
—2m + .

We will change the variable m into pu, p = —2m + X, and 2z is denoted
by v,,. This notation v, indicated that the eigenvalue of v, is p.

Remark 3.2. An eigenvalue of H is also called a weight in representation
theory.

We obtain
Hv, = pvy,
- A
Xv, = M2 Vyt2,
o
Yv, = MQ Vy—2



Notation: Fix pp € C, then we define po + 2Z := {po + 2n | n € Z}.

X X
po —4  juo — 2 o po+2 pot+4

This uo + 2Z is a (infinite and countable) subset of C. We often consider a
subset I C g + 2Z.

Definition 3.3. Let I C pg + 2Z. We define a vector space
V(NI = @ Cuy,.

nel
Note that {v,},er is a basis of V(A I).

In particular, for I = ug + 27, we often write as

V=V po+2Z)= @ Cuu=EPCupyian.
WE Lo +27 nez

Note that A and g are hidden in the notation V.
We also consider the linear maps

H:V —1YV,

X:V—V,

Y:V—V
given by

X(Z Cuy) = Z cpX (vp),
1 1

Y(Z Culy) = Z cuY (vy),

H(Y ) = 3 euH(v,).
0 p



The vector space V together with H, X,Y is called a representation of
s((2,C).

What happens for a general 17

When a subspace W C V is a subrepresentation?

Definition 3.4. If a subspace W C V is stable under the linear maps H, X
and Y, then W is called a subrepresentation of V. Recall that W is H-stable
(stable under H) if HW C W, that is, w e W = Hw € W.

Question 3.5 (above). For which I, the subspace V (A, 1) is subrepresenta-
tion?

Question 3.6. Determine all I’s such that
Vw e V(N I) = Hw,Hw,Yw € V(A I).

Lemma 3.7. For a subspace W C V, the following conditions are equiva-
lent:

(1) HW c W.
(2) There exist I C po + 27 such that W =V (A, 1).

Proof. (2)=(1) (Obvious part). Let Vw =" ;¢ v, € W = V(A I). Then

nel
Hw = Zculwu eW=V(\I).
nel

(1)=(2) (Nontrivial part). Suppose W C V such that HW C W. Define

I:={p€po+2Z| 3w e W such that w = anva with ¢, # 0}.

a

Note that, at this moment, we don’t know v, € W.

By definition, W C V(A,I), because for Vw = > cav, € W, ¢4 # 0 =
a€land ) covg € V(A I).

Conversely, suppose p € I. Then Jw = > ., cva € W such that
¢y # 0. By definition linear combination is a finite sum. So, A is a finite
subset.

F(i) = T (H = a) = (H = a0)(H = as) -+ (H = am 1),
a€A
atp



where A = {ay,az,...,an-1,u}. By assumption HW C W, for any w € W,
f(H)w e W.
On the other hand,
FHYw =" caf(Hva =Y caf(a)va = cuf (1)vy,

acA a€A

where we have used the fact that

fla)=0if a # p.
Since ¢, f(p) #0, v, € W. Thus he I = v, € W. So V(A1) C W.
Thus W = V(A, I) which is the condition (2). O
As a corollary of Lemma 3.7, the previous Question 3.5 is rephrased as

Question 3.8. Classify all the subrepresentations W C V.

3.2 Raising/ lowering operators

Now we examine the condition XW C W.
Lemma 3.9. Suppose that W =V (X, I) satisfies XW C W. Then

peEl=pu+2€l orpu=NA
Lemma 3.10. Suppose that W = V (X, I) satisfies YW C W. Then
pel=>p—-2¢cl orp=-M

Proof of Lemma 3.9. Look at

w—A
Xv, = 5 U2

The statement is equivalent to
peland py#AX=pu+2¢€l.

Suppose p € I. Then v, € W. Since XW C W, Xv, = ?7)#4_2 € W. By
p# N, vypo € W. This means p+2 € 1. O

Exercise 3.11. Prove Lemma 3.10 for Y.

Both of {0} and V are always subrepresentations of V. This fact does
not matter the values A, g € C. The subrepresentation {0} corresponds to
I=0,1ie, {0} =V(\0).

In order to classify subrepresentations, we want to know other subrep-
resentations than {0} and V.



3.3 For generic parameters

In this subsection, we assume that

A& po + 2Z.

Let I C po+27Z be a nonempty subset. Note that for Vi € I, we have \ # p
and A # —pu. So, if p € I, then p+2 € I and p—2 € I by Lemma 3.9. This
means that

X X X X X
uw—4el w—2¢€l wel w+2el w+del

Theorem 3.12. Let £\ & pg + 27Z. Then the list of subrepresentations of
V=V(\u +22) is

(1) {0},
2) V.

Feeling: For generic parameters, representation theory does not depend on
the parameters, and the theory is (rather) easy.

3.4 Highest weight submodule

In this subsection, we assume that

A€ o + 27,
—A & o + 2Z.

Remark 3.13. po + 2Z = X + 27Z.

Let I C ug + 27 be a nonempty subset. Then by Lemmas 3.10 and 3.9,
respectively

(a) if pe I, then p—2€l,
(b) if pel and pu# A, then p+2 € 1.
Lemma 3.14. (1) IfA\+2¢€ 1, then [ = A+ 2Z.



(2) If \ & 1, then I = (.
(3) If)\EI (md)\+2¢I, thenI:/\—l—ZZgo.

Proof. 1dea of a part of the proof of Lemma 3.14 (1). Suppose A + 2 € I.
Then by condition (a), A, A\ —2, A —4,... € I. By condition (b), A+ 4, A +

6,...¢€ 1. O
X X X X X X
A—6¢l A—4el N-2¢] rel A+2el?

we don’t know.

Theorem 3.15. If A € pg + 27 and —\ & pg + 27, then the list of all
subrepresentations of V.=V (A, po + 22) = V(A A + 2Z) is

(1) {0},
(2)V,
(3) V(N A+ 2Z<).
Hlustration of the weights of V (A, A 4+ 2Z<g) is

A+ 2 A+4
X X @ ¢) o

A—4 A—2 A
(x =weights, o =not weights)
here, A is called the highest weight of V (A, A + 2Z<y).

Exercise 3.16. Formulate the list of classification in the case

A& po+ 27
—)\Euo—i-QZ.

Hint: V(\, =X+ 2Z>) is one of the subrepresentations.
Picture of V/(A, =\ + 2Z>0):

—A=2
e} @ X X
-A —A+2 —A+4
here, — A is called the lowest weight of V/(\, =\ + 2Z>).



3.5 Integral weight

In this subsection, we assume that

A€ o + 27,
-\ € o + 2Z.

Remark 3.17.
ANEZ,

Proof. There exist ny,ne € Z such that A = pg + 2n; and —\ = pg + 2ne.
Thus A — (=A) = 2(ny —n2) and A = ny —ny € Z. So, up € Z and
to + 27 C 7. O

We separate this case into two cases according to A € Z>p and A € Zy.
3.5.1 The case A € Z>p and A\ — 9 € 2Z
Recall

Xwv, # 0 unless p = A,
Ywv, # 0 unless p = —\.

Graphical expression

. V_2—2 V- . . VX Ux+2 .

This shows that
e if dyy € I such that p € A +2Z and pp > A, then —\ + 2Z>¢ C I,
e if dyy € I such that € A+ 2Z and pp < — A\, then X\ + 2Z<¢ C I,

e if 3y € I such that p € A4+ 2Z and —\ < p < A, then [-\, \] C I,
where
[—NA i ={peX+2Z | —A<pu<AL

Theorem 3.18. Suppose A € Z>q and X\ — g € 27, then list of all subrep-
resentations of V.=V (A, po + 2Z) = V(A X+ 2Z) is

(1) {0}: zero,



(2) V. =V(A\A+2Z): whole,

(8) V(A [=\,A]): finite dimensional representation,

(4) V(AN X+ 2Z<p): highest weight representation,

(5) V(A, =\ +2Z>q): lowest weight representation.
We note that dim V (A, [=A\, A]) = A+ 1.

Exercise 3.19. Give a proof of Theorem 3.18.

3.5.2 The case A € Z.p and \ — py € 27Z

Theorem 3.20. Suppose A € Zo and X\ — pug € 27, then the list of all
subrepresentations of V.=V (A, po + 22Z) = V(A A + 2Z) is

(1) {0} =V (A,0),

(2) V=V(\\+27Z),

(3) V(A + 2Z<),

(4) V(A=A +2Zx0),

(5) VIMA+2Z<0) DV (A, —A+2Z50) = V(A (A+2Z<0) U(=A+2Z30)).
See Remark 3.25.

We give a graphical expression

. () Ux+-2 N . V-_x-2 CESY .

Exercise 3.21. Prove it.

3.6 Irreducible/indecomposable

Definition 3.22. o A representation (of s((2,C)) is called reducible if
it has proper nonzero subrepresentation.

e A representation is called decomposable if it is a direct sum of two
proper subrepresentations.

e A representation is called irreducible if it is not reducible.



e A representation is called indecomposable if it is not decomposable.
Remark 3.23. e irreducible = indecomposable.

e irreducible <= indecomposable.
Theorem 3.24. V(A uo + 22Z) is irreducible < £\ & ug + 27Z.

Proof. 1t is from Theorems 3.12, 3.15, Exercise 3.16, Theorem 3.18 and
3.20. 0

Remark 3.25. The representation of type (5) in Theorem 3.20 is an ex-
ample of a decomposable representation. In the special case A = —1, the
representation of type (5) is

VIMA+2Z<0 = {-1,-3,-5,.. NP V(A -A+2Z={1,3,5,..}) = V.

This means that, if A\ = —1, then (2)=(5) in Theorem 3.20, so we should
omit either (2) or (5) in the case A = —1, in order to obtain the complete
list.

Exercise 3.26. Any other representation V (X, o +2Z) than V(—1,1+27Z)
s indecomposable.

Theorem 3.27. The list of all irreducible subrepresentation of V. (A, po+27)
(of 51(2,C)) is

(1) V(X pio + 2Z); £\ & po + 27,

(2) V(A A+ 2Z<p); A € Z>o: highest weight representation,

(3) VN, =\ +2Z>0); A & Z>¢: lowest weight representation,
VX,

(4)
Exercise 3.28. Prove Theorem 3.27.

[—\, A]); A € Z>g: finite dimensional representation.

Remark 3.29. For a compact (finite) group, a indecomposable representa-
tion (over C) is irreducible. We are in the different context, so that the list
in Theorem 8.24 is different from the list in Theorem 3.27.



