4 Unitary representation

In this section, we consider the following problem:
Question 4.1. Which irreducible representations in Theorem 3.27 are uni-

tary?

4.1 Inner product

Definition 4.2. Let W be a vector space over C. Amap ( , ): WxW —
C is a Hermitian form if

uy + ug,v) = (u1,v) + (ug,v) for Yui,ug,v € W,

au,v) = alu,v) for Yu,v € W and Vo € C,

u, v) = a(u,v) for Vu,v € W and Va € C,

{
{
(u,v1 + v2) = (u,v2) + (u, vy) for Vu, vivy € W,
{
{

u,v) = (v,u) for Yu,v € W.
A hermitian form ( , ) is called

e non-degenerate if for W 3 Vu # 0, there exists v € W such that
(u,v) #0,

e positive definite if for W o Vu # 0, (u,u) > 0.

Note that positive definite = non-degenerate, and 4 in general. A positive
definite hermitian form is said to be a (unitary) inner product. A represen-
tation W (of sl(2,R)) is unitary if there exists a unitary inner product ( , )
such that

(m(g)u, m(g)v) = (u,v) for Yu,v € W, Vg € G = SL(2,R).

Translate the unitarity condition into Lie algebras:
Take an element A € g =sl(2,R), put g =1+¢cA (€=¢). Then

(m(Qu, w(g)v) = (u+ern'(A)u,v+ern'(A)w) mod O(e?)
= (u,v) +e((n'(A)u,v) + (u, 7' (A)v)) mod O(e?).

Thus, since (u,v) = (7(g)u, 7(g)v), we have

(' (A)u,v) + (u, 7’ (A)v) = 0 for Yu,v € W and VA € g. (4.1)



4.2 Unitary representation of su(1,1)

We define

su(l,1) = u(1,1) ms[(2,(C) Example 2.3 (3) and Example 2.1
(ot 7Y s (2 1) S
= {( gi_aw ﬂ_*;jﬂ > | a,ﬂmeR}.

Note that < 3 Z‘_aw 5_4;27 > =wiH+[B(X+Y)+~i(X-Y), and {iH, X+

Y,i(X —Y)} is a basis of su(1,1).
Suppose A = iH. Then the condition (4.1) is

0 = (7'(iH)u,v)+ (u,7'(iH)v)
= (in'(H)u,v) + (u, 7’ (H)v)
= i /(H)U7U> - 7;<u77T,(H)U>7

U, U
U, U

and thus
(' (H)u,v) = (u, 7' (H)v). (4.2)
Note that 7’ is complex linear, i.e.,
7' (aA) = an’(A) for Va € C, VA € su(1,1).

Exercise 4.3. Other two conditions for A= X+Y and A=i(X -Y) can
be written as

(' (X)u,v) + {(u, 7 (Y)v) = 0. (4.3)

4.3 H-invariance

Lemma 4.4. Suppose W = V(A I) has a non-degenerate hermitian form
(, ) such that

(' (H)u,v) = (u, 7' (H)v) for Vu,v € W.

Then I C R, (vy,vu) # 0 for VY € I, and (vy,v) = 0 for Yy, p' € T with
o



Proof. Let p,p' € I. From
<7T,(H)U,u7vu’> = <l“},uavu’> = :U;@ua U,u’>7
<Uua W/(H)Uu’> = <vua M,Uu’> = MI<Uua Uu’>
and (4.2), we have
(1 = 1) (Vs vr) = 0. (4.4)
Since ( , ) is non-degenerate on V' (A, I),

I>Vu#0, 3y €I such that (u,u’) # 0.

Hence,
I>Vu#0, 3y €I such that u =y

In particular, since ' € pu + 27,
Imp=Imy = —Imy' = —Imp.

This shows p € R for all p € I. Moreover, if u,p/ € I C R such that
p # ', then (4.4) implies that (v,,v,) = 0. Since ( , ) is non-degenerate,
<UM7 vﬂ) 7é 0. O

From now on, we may and will assume I C pg + 2Z C R.

4.4 X,Y condition

Suppose W = V(A,I) is a unitary representation with an inner product
(, ). We examine the condition (4.3):

(" (X)u,v) + (u, 7' (Y)v) = 0 for Yu,v € W.

If pyp+2 € 1, then

0 = <7r’(X)v#, ”u+2> + <U;u W/(Y)U/HZ)

W= A —u—2—=A

= 5 Vpt 2y Up+2) + (Vps f”;ﬁ
w—A p+2+A

= o (U2 Vps2) = o (U ) (4.5)

Thus
@ﬂﬁ%ﬂﬁu—nm+2+ﬂ = (24N (p+2+ N
(Vs V)
= jp+2+A*>0.



If p,p+2 €1, then (p—A)(p+24+X) € Rxp. Since (p—A)(p+2+X) =
(n+1)2 — (A +1)2, we have

A+1)2 e (u+1)*+Rso CR. (4.6)

So, A\ +1€Ror A+1¢€+/—1R.

4.5 The case (1) in Theorem 3.27
We consider V' (A, I) with the case I = ug + 2Z, A € C with £\ & I.

4.5.1 The case A+1 € v—1R
If A+ 10, then £\ & I is automatic, since \ € R.

If A+ 1 =0, then the condition =\ ¢ I exclude the case

I =1+ 27 = {odd integers}.

Note that for all 4 € I, we have

p+24+A  p+l+1+A  p+1—(1+AN)
2 N 2 N 2

This and (4.5) imply that

=pu—A#0.

(Vpt2, Vug2) = (v, vy) for all p e I.

This show that {v, | 1 € po+2Z} is an orthonormal basis basis of V' (A, 1o+
27) with respect to the inner product ( , ). This class of unitary represen-
tations V(A po + 2Z), A+ 1 € V—1R, po + 2Z C R such that

(A, o + 2Z) # (—1, {odd integers})

is called (unitary) principal series representations.

4.5.2 Thecase A\+1€R, A+1#0
The necessary condition (4.6):
A+1)2< (u+1)? forall pel. (4.7)

We may and will take pg with —2 < o < 0 as a representative of I = pg+27Z.
Note that
(o +1)* = min{(p + 1)* | p € I}.



Then the condition (4.7) is equivalent to
(A +1)% < (o +1)%,

that is,
—lpo+ 1] < A+1 < |po+ 1.

The irreducibility condition £\ ¢ pg + 2Z implies that
A +1) & (po +1) +2Z,

that is,
—lpo+ 1] < A+1 < |puo+1].

This class of unitary representations V (A, uo + 2Z), =2 < po < 0, A € R,
0 < |A+1] <|po + 1] is called complementary series representations.
4.6 The case (2) (and (3)) in Theorem 3.27

We consider V(A I) with I = A+ 2Z<g C R, A € Z>o. We apply (4.6) for
= A — 2. Then we obtain A < 0. The condition A ¢ Z>( implies A < 0.
For the case (3), we consider V (A, I) with

I:—>\+QZZOCR, )\QZE().

We apply (4.6) for 4 = —A. Then we obtain A < 0. The condition \ ¢
Z>o implies A < 0. These classes of representations V (A, A + 2Z<() and
V(A=A 4+ 2Z>p) with A < 0 are called discrete series representations.

4.7 The case (4) in Theorem 3.27

We consider V(A I) with I = [-\,A], A € Z>o. For A € Z~(, we apple
(4.6) for 4 = A — 2. Then we obtain A < 0, which is a contradiction. Then
the case A < 0 is not unitary. The representation V(0,{0}) = C is called a
trivial representation.

4.8 Irreducible unitary representations

As a summary:

Theorem 4.5. The list of irreducible unitary representations of su(1,1) of
the form V(X I) is

(1) V(M po+22); A+1 € V=IR, pg+2Z C R, (A, pio+2Z) # (—1,{odd}),



(1) VO o +22); 2 <o <0, NER, 0 < A+ 1] < |uo + 1],
(2) V(LA +2Z<0); A <0,
(3) VA, =X+ 2Z>0); A <0,

(

(4) V(0,{0}) =

irreducible H A+ 1: pure imaginary ‘ A+ 1: real

(1) (1): principal series | (1'): complementary series
(2),(3) no (2),(3): discrete series
(4) no (4): trivial

Remark 4.6. In order to obtain the complete list of irreducible unitary
representations of su(1,1), we need the following:

e Fvery irreducible unitary representation does arise as a subrepresen-
tation of some V (A, po + 2Z).

o We only discuss the necessary conditions to be unitary. We need to
show that every representations above are actually unitary.

o We have not introduced the notion of isomorphism of representations.

There are a few nontrivial isomorphism between the representations
above. For example,

V(A po+22) =2 V(=X—2,up + 2Z).

To obtain the complete list, we should exclude such duplications.

These matters are omitted in this note.



