
4 Unitary representation

In this section, we consider the following problem:

Question 4.1. Which irreducible representations in Theorem 3.27 are uni-
tary?

4.1 Inner product

Definition 4.2. Let W be a vector space over C. A map 〈 , 〉 : W ×W −→
C is a Hermitian form if

〈u1 + u2, v〉 = 〈u1, v〉 + 〈u2, v〉 for ∀u1, u2, v ∈ W ,

〈αu, v〉 = α〈u, v〉 for ∀u, v ∈ W and ∀α ∈ C,

〈u, v1 + v2〉 = 〈u, v2〉 + 〈u, v2〉 for ∀u, v1v2 ∈ W ,

〈u, αv〉 = α〈u, v〉 for ∀u, v ∈ W and ∀α ∈ C,

〈u, v〉 = 〈v, u〉 for ∀u, v ∈ W .

A hermitian form 〈 , 〉 is called

• non-degenerate if for W � ∀u �= 0, there exists v ∈ W such that
〈u, v〉 �= 0,

• positive definite if for W � ∀u �= 0, 〈u, u〉 > 0.

Note that positive definite ⇒ non-degenerate, and �⇐ in general. A positive
definite hermitian form is said to be a (unitary) inner product. A represen-
tation W (of sl(2, R)) is unitary if there exists a unitary inner product 〈 , 〉
such that

〈π(g)u, π(g)v〉 = 〈u, v〉 for ∀u, v ∈ W, ∀g ∈ G = SL(2, R).

Translate the unitarity condition into Lie algebras:
Take an element A ∈ g = sl(2, R), put g = I + εA (ε = ε). Then

〈π(g)u, π(g)v〉 ≡ 〈u + επ′(A)u, v + επ′(A)v〉 mod O(ε2)
≡ 〈u, v〉 + ε(〈π′(A)u, v〉 + 〈u, π′(A)v〉) mod O(ε2).

Thus, since 〈u, v〉 = 〈π(g)u, π(g)v〉, we have

〈π′(A)u, v〉 + 〈u, π′(A)v〉 = 0 for ∀u, v ∈ W and ∀A ∈ g. (4.1)
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4.2 Unitary representation of su(1, 1)

We define

su(1, 1) := u(1, 1)
⋂

sl(2, C) Example 2.3 (3) and Example 2.1

=
{(

iα β + iγ
β − iγ iδ

)
| α, β, γ, δ ∈ R

} ⋂{(
a b
c d

)
| a, b, c, d ∈ C,

a + d = 0

}

=
{(

iα β + iγ
β − iγ −iα

)
| α, β, γ ∈ R

}
.

Note that
(

iα β + iγ
β − iγ −iα

)
= αiH+β(X+Y )+γi(X−Y ), and {iH, X+

Y, i(X − Y )} is a basis of su(1, 1).
Suppose A = iH. Then the condition (4.1) is

0 = 〈π′(iH)u, v〉 + 〈u, π′(iH)v〉
= 〈iπ′(H)u, v〉 + 〈u, iπ′(H)v〉
= i〈π′(H)u, v〉 − i〈u, π′(H)v〉,

and thus

〈π′(H)u, v〉 = 〈u, π′(H)v〉. (4.2)

Note that π′ is complex linear, i.e.,

π′(αA) = απ′(A) for ∀α ∈ C, ∀A ∈ su(1, 1).

Exercise 4.3. Other two conditions for A = X + Y and A = i(X − Y ) can
be written as

〈π′(X)u, v〉 + 〈u, π′(Y )v〉 = 0. (4.3)

4.3 H-invariance

Lemma 4.4. Suppose W = V (λ, I) has a non-degenerate hermitian form
〈 , 〉 such that

〈π′(H)u, v〉 = 〈u, π′(H)v〉 for ∀u, v ∈ W.

Then I ⊂ R, 〈vμ, vμ〉 �= 0 for ∀μ ∈ I, and 〈vμ, vμ′〉 = 0 for ∀μ, μ′ ∈ I with
μ �= μ′.
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Proof. Let μ, μ′ ∈ I. From

〈π′(H)vμ, vμ′〉 = 〈μvμ, vμ′〉 = μ〈vμ, vμ′〉,
〈vμ, π′(H)vμ′〉 = 〈vμ, μ′vμ′〉 = μ′〈vμ, vμ′〉

and (4.2), we have

(μ − μ′)〈vμ, vμ′〉 = 0. (4.4)

Since 〈 , 〉 is non-degenerate on V (λ, I),

I � ∀μ �= 0, ∃μ′ ∈ I such that 〈μ, μ′〉 �= 0.

Hence,
I � ∀μ �= 0, ∃μ′ ∈ I such that μ = μ′.

In particular, since μ′ ∈ μ + 2Z,

Im μ = Im μ′ = − Im μ′ = − Im μ.

This shows μ ∈ R for all μ ∈ I. Moreover, if μ, μ′ ∈ I ⊂ R such that
μ �= μ′, then (4.4) implies that 〈vμ, vμ′〉 = 0. Since 〈 , 〉 is non-degenerate,
〈vμ, vμ〉 �= 0.

From now on, we may and will assume I ⊂ μ0 + 2Z ⊂ R.

4.4 X,Y condition

Suppose W = V (λ, I) is a unitary representation with an inner product
〈 , 〉. We examine the condition (4.3):

〈π′(X)u, v〉 + 〈u, π′(Y )v〉 = 0 for ∀u, v ∈ W.

If μ, μ + 2 ∈ I, then

0 = 〈π′(X)vμ, vμ+2〉 + 〈vμ, π′(Y )vμ+2〉
= 〈μ − λ

2
vμ+2, vμ+2〉 + 〈vμ,

−μ − 2 − λ

2
vμ〉

=
μ − λ

2
〈vμ+2, vμ+2〉 − μ + 2 + λ

2
〈vμ, vμ〉. (4.5)

Thus

〈vμ+2, vμ+2〉
〈vμ, vμ〉 (μ − λ)(μ + 2 + λ) = (μ + 2 + λ)(μ + 2 + λ)

= |μ + 2 + λ|2 ≥ 0.
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If μ, μ + 2 ∈ I, then (μ − λ)(μ + 2 + λ) ∈ R≥0. Since (μ − λ)(μ + 2 + λ) =
(μ + 1)2 − (λ + 1)2, we have

(λ + 1)2 ∈ (μ + 1)2 + R≥0 ⊂ R. (4.6)

So, λ + 1 ∈ R or λ + 1 ∈ √−1R.

4.5 The case (1) in Theorem 3.27

We consider V (λ, I) with the case I = μ0 + 2Z, λ ∈ C with ±λ �∈ I.

4.5.1 The case λ + 1 ∈ √−1R

If λ + 1 �= 0, then ±λ �∈ I is automatic, since λ �∈ R.

If λ + 1 = 0, then the condition ±λ �∈ I exclude the case

I = 1 + 2Z = {odd integers}.

Note that for all μ ∈ I, we have

μ + 2 + λ

2
=

μ + 1 + 1 + λ

2
=

μ + 1 − (1 + λ)
2

= μ − λ �= 0.

This and (4.5) imply that

〈vμ+2, vμ+2〉 = 〈vμ, vμ〉 for all μ ∈ I.

This show that {vμ | μ ∈ μ0 +2Z} is an orthonormal basis basis of V (λ, μ0 +
2Z) with respect to the inner product 〈 , 〉. This class of unitary represen-
tations V (λ, μ0 + 2Z), λ + 1 ∈ √−1R, μ0 + 2Z ⊂ R such that

(λ, μ0 + 2Z) �= (−1, {odd integers})
is called (unitary) principal series representations.

4.5.2 The case λ + 1 ∈ R, λ + 1 �= 0

The necessary condition (4.6):

(λ + 1)2 ≤ (μ + 1)2 for all μ ∈ I. (4.7)

We may and will take μ0 with −2 < μ0 ≤ 0 as a representative of I = μ0+2Z.
Note that

(μ0 + 1)2 = min{(μ + 1)2 | μ ∈ I}.
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Then the condition (4.7) is equivalent to

(λ + 1)2 ≤ (μ0 + 1)2,

that is,
−|μ0 + 1| ≤ λ + 1 ≤ |μ0 + 1|.

The irreducibility condition ±λ �∈ μ0 + 2Z implies that

±(λ + 1) �∈ (μ0 + 1) + 2Z,

that is,
−|μ0 + 1| < λ + 1 < |μ0 + 1|.

This class of unitary representations V (λ, μ0 + 2Z), −2 < μ0 ≤ 0, λ ∈ R,
0 < |λ + 1| < |μ0 + 1| is called complementary series representations.

4.6 The case (2)
(
and (3)

)
in Theorem 3.27

We consider V (λ, I) with I = λ + 2Z≤0 ⊂ R, λ �∈ Z≥0. We apply (4.6) for
μ = λ − 2. Then we obtain λ ≤ 0. The condition λ �∈ Z≥0 implies λ < 0.
For the case (3), we consider V (λ, I) with

I = −λ + 2Z≥0 ⊂ R, λ �∈ Z≥0.

We apply (4.6) for μ = −λ. Then we obtain λ ≤ 0. The condition λ �∈
Z≥0 implies λ < 0. These classes of representations V (λ, λ + 2Z≤0) and
V (λ,−λ + 2Z≥0) with λ < 0 are called discrete series representations.

4.7 The case (4) in Theorem 3.27

We consider V (λ, I) with I = [−λ, λ], λ ∈ Z≥0. For λ ∈ Z>0, we apple
(4.6) for μ = λ − 2. Then we obtain λ ≤ 0, which is a contradiction. Then
the case λ < 0 is not unitary. The representation V (0, {0}) = C is called a
trivial representation.

4.8 Irreducible unitary representations

As a summary:

Theorem 4.5. The list of irreducible unitary representations of su(1, 1) of
the form V (λ, I) is

(1) V (λ, μ0+2Z); λ+1 ∈ √−1R, μ0+2Z ⊂ R, (λ, μ0+2Z) �= (−1, {odd}),
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(1′) V (λ, μ0 + 2Z); −2 < μ0 ≤ 0, λ ∈ R, 0 < |λ + 1| < |μ0 + 1|,
(2) V (λ, λ + 2Z≤0); λ < 0,

(3) V (λ,−λ + 2Z≥0); λ < 0,

(4) V (0, {0}) = C.

irreducible λ + 1: pure imaginary λ + 1: real
(1) (1): principal series (1′): complementary series

(2),(3) no (2),(3): discrete series
(4) no (4): trivial

Remark 4.6. In order to obtain the complete list of irreducible unitary
representations of su(1, 1), we need the following:

• Every irreducible unitary representation does arise as a subrepresen-
tation of some V (λ, μ0 + 2Z).

• We only discuss the necessary conditions to be unitary. We need to
show that every representations above are actually unitary.

• We have not introduced the notion of isomorphism of representations.
There are a few nontrivial isomorphism between the representations
above. For example,

V (λ, μ0 + 2Z) ∼= V (−λ − 2, μ0 + 2Z).

To obtain the complete list, we should exclude such duplications.

These matters are omitted in this note.
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