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Abstract

This dissertation presents system-level design space exploration method for large-scale

embedded systems.

Embedded systems have been increasing their complexities, and they are getting more

and more functionalities. Since the functionalities of embedded systems have increased,

embedded systems need more computational power and communications capacity. Thus,

several processing elements (PEs) such as dedicated hardware and multi-core processors

have been used in embedded systems.

Embedded systems are generally required to satisfy strict requirements of the system

performances such as execution time, chip area, and power consumption since they are

used in limited environments. During the design of embedded systems using several PEs,

designers must determine a mapping which indicates the allocation of functions to these

PEs. Since the system performances depend on the mapping, it is important for designers

to find appropriate mappings efficiently from the large design space.

In order to design complex embedded systems, system-level design has been proposed.

The key points of system-level design are to design a system at a high level of abstraction

and to explore the design space. Designers first describe the system in particular model

at a high level of abstraction. Then, the model is converted to a simulation description

and a target implementation in order to evaluate the system performances. If the evaluation

results of the system performances do not satisfy the requirements, the designers modify the



model, and they again evaluate the system performances. Designers iterate modification of

the model and evaluation of the system performances in order to explore the design space.

The exploration of design space continues until the system performances can satisfy the

requirements.

System-level design tools have been developed to realize system-level design. One of

the tools is SystemBuilder. SystemBuilder automatically generates a target implementation

from the model according to a mapping decided by designers. The generated implementa-

tion can be executed on both simulation tools and Field-Programmable Gate Array. Since

SystemBuilder automatically synthesizes the target implementation and the communica-

tion interfaces among software and dedicated hardware, it is easy for designers to evaluate

system performances of several mappings.

The author first evaluated the design efficiency of SystemBuilder throughout a case

study of AES encryption system design. It is clarified that SystemBuilder is effective for

designing pipelined systems. In addition, the author unveiled three problems to design

systems efficiently, which are 1) limited mapping, 2) long evaluation time, 3) lack of sup-

port to improve the system performances. The first problem is limited mapping. Most

of system-level design tools can allocate a function to either a software or a hardware

module. The tools, however, cannot support different mappings such as several functions

share a hardware module. The second problem is long evaluation time. Even though Sys-

temBuilder automatically generates the implementations, it takes very long time for the

generation of the implementations and the evaluation of system performances. Thus, with

only SystemBuilder, it is hard to evaluate the system performances of a lot of mappings in

order to find appropriate mappings. The third problem is lack of support to improve the

system performances. SystemBuilder clarifies a bottleneck of execution time by profiling

tools. However, it is hard to consider how to improve the system performances of current

complex embedded systems with only profiling tools. These are problems of not only Sys-
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temBuilder but also the other system-level design tools. Therefore, it is important to solve

the problems in order to realize more efficient system-level design.

The author proposes three tools which can overcome the problems above. Three tools

are Extended SystemBuilder, Mapping Explorer, and Improvement Analyzer. Extended

SystemBuilder is an extension of SystemBuilder, which can generate a hardware module

which is shared by several functions. Since Extended SystemBuilder increases the type of

mapping, it solves the first problem. Mapping Explorer uses an efficient algorithm named

pareto-update search. Since pareto-update search drastically decreases the number of ex-

ploration of mappings to find appropriate mappings. Thus, Mapping Explorer can decrease

the time to evaluate the system performances, which is the second problem. Even if Map-

ping Explorer cannot find an appropriate mapping, Improvement Analyzer helps the de-

signer to identify bottlenecks. In addition, Improvement Analyzer lists several candidates

of the ways to improve the system performances so that the designer can consider how to

modify the model. Improvement Analyzer, therefore, can overcome the third problem.

Throughout the three tools, exploration of mappings and bottleneck analysis are done

automatically to accelerate the design space exploration at system-level. Therefore, system

designers can efficiently design large-scale embedded systems with multi-core processors

and dedicated hardware.

This dissertation describes the detail of three tools and evaluates them using case stud-

ies. In the case studies, efficient design space exploration is demonstrated.
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Chapter 1

Introduction

1.1 Backgrounds

Embedded systems have been widely used around the world in order to improve our lifestyles.

An embedded system is a computer system which realizes dedicated functions within a

large system. An example of embedded systems is cell phone which is an essential commu-

nication tool for our lifestyles. Cell phones are computer systems which realize dedicated

functions such as talk and message within a large telecommunication system.

Embedded systems have been increasing their complexities. For example, cell phones

used to have functions of talk and message. Recently they have functions of camera, movie,

and even Internet browsing. Along with the increase of the complexities of embedded

systems, the time to design embedded systems also tends to delay. This causes longer time-

to-market. Time-to-market is the time between the planning of a product and the release of

it. In general, the early released products have more chances in the market. Therefore, the

system designers should shorten design time in order to achieve a shorter time-to-market.

Embedded systems are generally required to satisfy strict requirements of system per-

formances such as execution time, chip area (hardware area), and power consumption since



CHAPTER 1. INTRODUCTION

they are used in limited environments. For example, cell phones are required to work un-

der low power and to be run fast for longer battery life and user-friendliness. In addition,

embedded systems consist of software and hardware. In order to realize the requirements

of system performances, both software and hardware should be optimized. System design-

ers are facing a problem to design systems efficiently under strict requirements of system

performances.

Presently embedded systems are getting more and more functionalities in order to real-

ize complex systems. Since the functionalities of embedded systems have increased, em-

bedded systems need more computational power and communications capacity. For that

reason, several processing elements (PEs, hereafter) such as dedicated hardware and multi-

core processors have been used in embedded systems. During the design of embedded sys-

tems using several PEs, designers must determine a mapping that indicates the allocation

of functions to these PEs. Since the system performances depend on the mapping, it is im-

portant for designers to find appropriate mappings from the large design space. Therefore,

it is important for designers to efficiently iterate the evaluation of system performances of

different mappings.

In order to design complex embedded systems, system-level design has been proposed.

The key points of system-level design are to design a system at a high level of abstraction

and to explore the design space. Designers first describe the system in particular model

at a high level of abstraction. Then, the model is converted to a simulation description

and a target implementation in order to evaluate the system performances. If the evaluation

results of the system performances do not satisfy the requirements, the designers modify the

model, and they again evaluate the system performances. Designers iterate modification of

the model and evaluation of the system performances in order to explore the design space.

The exploration of design space continues until the system performances can satisfy the

requirements.
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1.1. BACKGROUNDS

System-level design tools have been developed in order to realize system-level de-

sign [1]. One of the tools is SystemBuilder [2]. SystemBuilder takes a system-level de-

scription, a target architectures template, and a mapping as inputs, and automatically gen-

erates simulation descriptions and target implementations including software, hardware,

and interfaces among them. The generated simulation descriptions and the generated target

implementations can be executed on simulation tools and Field-Programmable Gate Array

(FPGA, hereafter), respectively. Since SystemBuilder automatically synthesizes the target

implementations and interfaces from the system-level description, it is easy for designers to

evaluate the system performances of several mappings. In addition, SystemBuilder cooper-

ate with profiling tools so that designers can easily analyze bottlenecks of the systems [3].

Even though SystemBuilder makes evaluation of system performances easy by auto-

matic synthesis of the target implementations, SystemBuilder still has following problems:

• Limited mapping

• Long evaluation time of a lot of mappings

• Lack of support to improve the system performances

First problem is limited mapping. A function in the system-level description can be allo-

cated to a software or a hardware module. SystemBuilder, however, cannot support differ-

ent mappings such as several functions share a hardware module. There is a possibility that

the system performances are improved by the other mappings. Thus, SystemBuilder should

support the other mappings to realize better system performances. Second problem is long

evaluation time. Even though SystemBuilder automatically generates the implementations,

it takes very long time for the generation of the implementations and the evaluation of sys-

tem performances. With only SystemBuilder, it is hard to evaluate the system performances

of a lot of mappings in order to find appropriate mappings. Thus, a strategy is needed to

support the exploration of mappings. The third problem is lack of support to improve the

3
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system performances. SystemBuilder clarifies a bottleneck of execution time by profiling

tools. However, it is hard for designers to consider how to improve the system perfor-

mances of current complex embedded systems with only profiling tools. Designers need

another support to improve system performances in order to design systems efficiently.

Not only SystemBuilder but also the other system-level design tools have been devel-

oped in order to realize efficient system-level design. SCE [4], Artemis [5], PeaCE [6],

Metropolis [7], and ARTS [8] are system-level design tools which support modeling and

evaluation of the system performances. These tools take their own system-level model and

automatically generate simulation descriptions. These tools, however, only support model-

ing and automatic synthesis of simulation descriptions. On the other hand, SystemBuilder

automatically generates both the simulation descriptions and the target implementations on

FPGAs. SystemBuilder can evaluate the system performances accurately by the target im-

plementations on FPGAs. This is an advantage of SystemBuilder against the other tools. In

addition, the other tools do not support complex simulation descriptions which has a shared

hardware module. Thus, as with SystemBuilder, these system-level design tools also have

three problems above.

There are different tools which support system-level design. System-level performance

estimation tools [9, 10, 11] have been developed in order to overcome the second problem.

As performance estimation tools use profiles recorded by system-level design tools and

FPGAs, the simulation accuracy is sufficiently high, and the evaluation time is short. Thus,

the performance estimation tools can reduce the evaluation time of a mapping. However,

despite fast simulation speed, the total evaluation time becomes longer if the tools evalu-

ate the system performances of a lot of mappings in order to find appropriate mappings.

Therefore, an efficient method to explore appropriate mappings is necessary even though

the performance estimation tools can reduce the evaluation time of a mapping.

Profiling and analyzing tools [12, 13, 14] also have been developed in order to support

4
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system-level design. As with the profiling tools of SystemBuilder, these tools can trace the

behaviors of the system and visualize the traces. With the tools, it is easy for designers

to identify the bottlenecks of the system. Designers, however, must analyze how to im-

prove the bottlenecks in order to get better system performances. Thus, another tool that

efficiently assists designers to improve the system performances is required.

As mentioned above, not only SystemBuilder but also the other current system-level

design tools have three problems above. Therefore, it is necessary to solve the problems in

order to realize efficient system-level design.

1.2 ProposedMethod

The main objective of proposed method is to realize the efficient design of embedded sys-

tems that satisfy the requirements. Proposed method consists of three tools below:

• Extended SystemBuilder

• Mapping Explorer

• Improvement Analyzer

Figure 1.1 shows relationships of three tools. The gray colored parts are works of

the author. Extended SystemBuilder is an extension of SystemBuilder. Extended System-

Builder has a regular synthesis flow provided by SystemBuilder as shown 1-1 in Figure 1.1.

Extended SystemBuilder also has an extension synthesis flow to synthesize communication

for shared hardware modules as shown 1-2 in Figure 1.1. If the mapping indicates shared

hardware, the extension synthesis flow takes place after the regular synthesis flow. Map-

ping Explorer is an exploration tool of mappings. It can finds trade-off between execution

time and hardware area efficiently. Improvement Analyzer is an analysis tool of the system

5
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1. Extended SystemBuilder

2. Mapping Explorer

3. Improvement Analyzer

1-2. Extension synthesis flow 

to synthesize communication 

for shared hardware modules

1-1. Regular synthesis flow
If shared hardware

 exists in mapping

Automatic synthesis

of implementation

Fast mapping exploration 

Bottleneck analysis

Figure 1.1: Relationships of three tools.

performances. It automatically identifies bottlenecks of the system. In addition, Improve-

ment Analyzer lists several candidates of the ways to improve the system performances so

that the designer can consider how to modify the system-level description.

Figure 1.2 shows the overview of proposed design flow. Extended SystemBuilder takes

a system-level description, a target architecture template, and mappings as inputs, and it

automatically generates target implementations including software, hardware, and inter-

faces among them. The system-level description consists of a set of applications, each of

which in turn consists of a set of processes and channels. Processes represent the func-

tions of the system and channels represent the communication among the processes. Also,

Extended SystemBuilder provides communication APIs to partition the system. Designers

easily partition the system into processes because both communication APIs and processes

are written in C language. The generated implementations can be executed on both simu-

lation tools and FPGAs to evaluate the system performances. Mapping Explorer uses the

evaluation results of the system performances.

6
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End of design space exploration

Yes

Extended 

SystemBuilder

 (communication 

synthesis for 

hardware sharing)

Mapping Explorer

 (pareto-update 

search)

Target architecture template System-level description

Is there a mapping
satisfying the requirements ?

Pareto solution between
execution time and hardware area

Generated mappings

Evaluation results

Exploration of software/hardware partitioning

No

Modification of system-level description and target architecture

Improvement Analyzer

(Bottleneck analysis)

Start point

Figure 1.2: Overview of proposed design flow.
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As the numbers of PEs and functions increase, the number of possible mappings in-

creases exponentially. Mapping Explorer can accelerates design space exploration to find

appropriate mappings from an enormous number of possible mappings. This tool uses an

efficient algorithm named pareto-update search. In pareto-update search, the concept of

pareto solution is used to explore appropriate mappings [15]. In addition, pareto-update

search focuses on the trade-off relationship between execution time and hardware area.

By using this relationship, pareto-update search can reduce the number of exploration of

mappings compared to exhaustive search.

If Mapping Explorer finds appropriate mappings that satisfy the requirements, it is the

end of the design space exploration. However, Mapping Explorer may not find a mapping

that satisfies the requirements of the system performances. For example, there may be a

case that a mapping only satisfies the requirement of the execution time. In fact, design

space exploration of mappings does not always find a mapping that satisfies the all require-

ments. Then, designers must improve the system-level description.

Improvement Analyzer is a tool that assists the designers to improve the system-level

description. It automatically identifies bottlenecks of the system, and it lists several candi-

dates of the ways to improve the system performances. Designer, then, modify the system-

level description with the list of candidates of the ways to improve the system perfor-

mances.

This design flow is iterated until the designers find appropriate mappings. With three

tools above, most of design flow are automated. Therefore, system designers can efficiently

design large-scale embedded systems with multi-core processors and dedicated hardware.

This dissertation describes the detail of three tools and evaluates them using case stud-

ies. The case studies demonstrate efficient design space exploration and easiness of design

analysis using the proposed method.
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1.3 Outlines of the Dissertation

The organization of this dissertation is as follows. First, Chapter 2 summarizes the system-

level design methodologies, related works, and a base tool named SystemBuilder. Then,

Chapter 3 shows a case study of Advanced Encryption Standard (AES, hereafter) encryp-

tion system in order to evaluate the basic design efficiency of SystemBuilder. Chapter 4 de-

scribes the detail of Extended SystemBuilder that can synthesize communication for shared

hardware modules. Chapter 5 presents Mapping Explorer and pareto-update search which

accelerate design space exploration to find appropriate mappings. Chapter 6 proposes Im-

provement Analyzer that analyzes bottlenecks of the system and supports modification of

the system-level description. Finally, Chapter 7 concludes this dissertation with a summary.
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Chapter 2

System-Level Design and the Base Tool

This chapter explains the backgrounds of system-level design, related works, an overview

of proposed method, and a base tool.

At first, section 2.1 represents the general design flow of embedded systems. Then

section 2.2 shows the details of system-level design before describing details of design

space exploration at system-level in section 2.3. Section 2.4 briefly shows related works

and section 2.5 introduces a base tool named SystemBuilder. Finally, section 2.6 represents

the overview of the proposed method.

2.1 General Design Flow of Embedded Systems

Figure 2.1 shows the general top-down design flow of embedded systems. The general

design flow starts from a step of system design at a high level of abstraction at which

software and hardware cannot be distinguished. Then, the flow goes to software design step

and hardware design step separately as shown at the middle of the figure since embedded

systems consist of software and hardware. One side corresponds to the software design

step, whereas the other side corresponds to the hardware design step. At last, software and
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Figure 2.1: General design flow of embedded systems.
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hardware are integrated to make a whole system as shown at the bottom of the figure.

In the step of system design at a high level of abstraction, system designers describe

the systems by behavioral models that consist of processes communicating via channels.

An example of behavioral models is Kahn Process Network [16]. The platform model is

a typical structural model. The platform model consists of architectural components such

as processors, busses, memories, and dedicated hardware. In the step of system design at

a high level of abstraction, system designers must select an appropriate platform model,

and they determine a software/hardware partitioning which indicates the allocation of pro-

cesses and channels onto the selected platform model. The result is a refined model which

contains all decisions for software design and hardware design such as throughput, latency,

or hardware area. These refined models are then used as input to software design step and

hardware design step.

In the software design step, processes mapped to software are translated into the tasks

run on Real-Time Operating System (RTOS, hereafter) or custom runtime environments.

At this step, the algorithm of the tasks should be specified. Then the tasks are synthesized

as instructions of the selected processor. This synthesis process is typically performed by

a compiler and linker tool chain for the selected processor and RTOS.

In the hardware design step, processes which are selected to be realized as hardware

are converted to hardware components. Then, system designers design the logics of the

hardware components. The logics are synthesized and implemented as Flip-Flops and logic

gates.

Finally, instructions of software, and implementations of hardware are integrated in the

last step.
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Figure 2.2: Overview of system-level design flow.

14



2.2. SYSTEM-LEVEL DESIGN

2.2 System-Level Design

System-level design is a design methodology that focuses on higher abstraction level first

and foremost. System-level design takes place in the step of system design at a high level

of abstraction in Figure 2.1. The basic idea is to model the behavior of the entire system

at high level and evaluate system performances by a rapid prototyping in an early stage

of system design. By the evaluation of system performances in the early stage of system

design, the setback in latter design stage (e.g., software design step in Figure 2.1) can be

reduced. Thus, system-level design can bring better efficiency of system design.

Figure 2.2 shows an overview of system-level design flow. System-level design flow

consists of system specification model, architecture model, communication model, and

implementation model. The design flow starts at system specification model, and it goes

top-to-bottom by converting the models through architecture exploration, communication

synthesis, and backend steps.

System specification model defines pure system function. Since the model only defines

pure system function, the model does not considers the timing. System specification model

is converted to architecture model by architecture exploration. Architecture model defines

architectural components such as PEs. This model also indicates the allocation of func-

tions to PEs. This is called software/hardware partitioning. By communication synthesis,

architecture model is converted to communication model. Communication model has the

detail of communication between the PEs. For example, this model defines the driver of

an interface circuit and a bus protocol. Finally, communication model is converted to im-

plementation model by backend step. Implementation model consists of C/C++ and RTL

descriptions for software side and hardware side, respectively. The following describes the

details of system-level design flow.
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Figure 2.3: An example of system specification model.

System SpecificationModel

In the system-level design, a set of functions represents the functional specification, and the

execution sequences of the functions are defined. The functions are called behavior in order

to clarify differences from a function of the program. The behaviors can be executed in

sequential and in parallel. The behavior has input and output ports in order to communicate

with the outside by changing the value of the ports. Basically, the behavior gets values

from input port, calculates them, and changes the value of output ports. The behavior

communicates with the other behaviors through channels. A channel is an object which

connects several behaviors’ ports.

System specification model is a model that several behaviors execute their intended

action and communicate each other. Figure 2.3 shows an example of system specification

model. The model consist of four behaviors (B1, B2, B3, and B4) and five channels (C12,

C13, C23, C24, and C34). At first, B1 starts its execution and outputs the result to C12 and

C13 throughout the output port. B2 and B3 can run in parallel after they get data from C12

and C13 throughout the input port, respectively. They can communicate by C23 during

their run. Additionally, C23 may synchronize B3 with B2 in order to set up an order of the
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execution of B2 and B3. In general, an event is used to synchronize behaviors. An event

is produced in previous behavior (B2) and consumed by the following behavior (B3). The

following behavior must wait until the event is produced. In this manner, an order of the

execution of behaviors can be set up.

As described above, system specification model only represents pure system functions

at behavioral level. Therefore, it does not have information of timing and details of imple-

mentation.

Architecture Exploration

In general, architecture exploration is a step to convert a system specification model into an

architecture model. On this step, the allocation of PEs and a software/hardware partition-

ing are decided. First, system designers decide the allocation of PEs. In particular, system

designers decide the number and kind of architectural components such as processors, ded-

icated hardware, busses, and memories. Note that the details of the implementation of

PEs are not decided at this step. Then, system designers decide a software/hardware par-

titioning that indicates the allocation of behaviors to PEs. Figure 2.4 shows an example

of software/hardware partitioning of Figure 2.3. In the example, B1 and B2 are allocated

to PE1 which is a processor, and B3 and B4 are allocated to PE2 which is a dedicated

hardware.

ArchitectureModel

Architecture model has information of architectural components such as PEs (processors

and dedicated hardware), busses, and memories. It also has information of PEs on which

each behavior realizes.

The implementations of PEs are decided at this model. For example, some PEs are

newly designed as dedicated hardware, or existing dedicated hardware are used to realize
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Figure 2.4: An example of a software/hardware partitioning.

them. On the other hand, other PEs may be implemented as software. It is also decided

whether PEs can run in sequential or parallel. Since implementations of PEs are decided,

the execution time of each PE can be roughly predicted with the knowledge of past expe-

rience. Moreover, it is possible to simulate the model if the model is described C based

design language such as SystemC [17]. Using the prediction and simulation, system de-

signers explore an appropriate architecture during architecture exploration.

Communication Synthesis

Before converting the architecture model into the communication model, communications

among PEs must be synthesized. In particular, implementations of channels are synthe-

sized.

There are five channels in Figure 2.4. Since B1 and B2 are allocated to a processor,

channels C12 can be implemented as a shared variable of software program. However,

channels C13, C23, and C24 represent communication between software and hardware. It

is not easy to synthesize their implementation since they must be converted into a driver

for software side and an interface circuit for hardware side. It is also not easy to implement

a channel C34 representing communication in hardware. In the communication synthesis,
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Figure 2.5: An example of communication model.

the implementation of channels are decided and synthesized.

CommunicationModel

Figure 2.5 shows an example of a communication model of Figure 2.4. In this example,

a system bus is used for communication between software and hardware. Channels C12

is converted into a shared variable of software program. C34 is converted into registers,

memories, and control signals since it represents the communication in hardware. Channels

C13, C23, and C24 are communication between software and hardware. Thus, they are

allocated to the system bus. Since these channels are allocated to the same system bus,

they are integrated into a common driver for software side and a common interface circuit

for hardware side. The driver and the interface circuit should be suitable for the protocol

of the system bus.

Backend and ImplementationModel

Implementation model is converted from communication model at backend step. In the

backend step, synthesis tools are used to generate the implementation. The lowest model

of system-level design is implementation model. In the implementation model, behaviors
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Figure 2.6: A typical flow of design space exploration in system-level design.

allocated to software and the drivers synthesized during communication synthesis are con-

verted into C/C++ descriptions. Then, the C/C++ descriptions are converted into binary by

a compiler and linker tool chain. On the other hand, behaviors allocated to hardware and

the interface circuits synthesized during communication synthesis are converted into Reg-

ister Transfer Level (RTL, hereafter) descriptions. The RTL descriptions are synthesized

as Flip-Flops and logic gates through logic synthesis and place and route.

2.3 Design Space Exploration in System-Level Design

For current large-scale embedded systems, earlier phase in the design flow has more influ-

ences in final products. Therefore, design space exploration in system-level design is one

of key parts to design current large-scale embedded systems. The main purpose of design

space exploration is to find an appropriate architectural structure and a software/hardware

partitioning that satisfies the requirements of the system performances.

Figure 2.6 shows a typical flow of design space exploration which is generally per-

20



2.3. DESIGN SPACE EXPLORATION IN SYSTEM-LEVEL DESIGN
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Figure 2.8: Result B: design space exploration for dual processors with dedicated hardware.

formed at architecture exploration step in Figure 2.2. The flow of design space exploration

consists of four steps. At first, the number and kind of architectural components such as

processors, dedicated hardware, busses, and memories are explored. Then, a software/hard-

ware partitioning of behaviors is explored. After that, the system performances and costs

are estimated. The estimation results are used to evaluate them. Finally, it is judged whether

design space exploration continues or not. If the system satisfies the requirements, it is the

end of design space exploration. If not, system designers should return to the first step

of the flow. These four steps continue until system designers find an appropriate target

architectural structure and a software/hardware partitioning.

Figures 2.7 and 2.8 show different results of design space exploration of four behaviors.

Figure 2.7 shows a result that the target architecture has a single processor with dedicated

hardware. In this result, three behaviors, B1, B2, and B3, are allocated to processor A,

and a behavior B4 is allocated to dedicated hardware. Figure 2.8 shows a result that the
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Figure 2.9: An example of trade-off relation between execution time and hardware area.

target architecture has dual processors with dedicated hardware. In this result, B1 and B2

are allocated to processor A and processor B, respectively, and B3 and B4 are allocated to

dedicated hardware.

In terms of the execution time, Result B would be faster than Result A since B1 and B2,

and B3 and B4 are allocated to different processors and dedicated hardware, respectively,

in Result B. On the other hand, Result A would have less hardware area than Result B

since Result A has only a single processor and B4 is only allocated to dedicated hardware.

Figure 2.9 shows an example of trade-off relation between execution time and hardware

area. In the figure, each circle indicates a software/hardware partitioning. Two gray col-

ored circles represent Result A and Result B. As described above, the execution time of

Result B is faster than that of Result A, and hardware area of Result A is less than that

of Result B. There are the other software/hardware partitioning as shown white colored

circles in the figure. In this manner, the explorations of the target architecture and soft-

ware/hardware partitioning are closely related. Therefore, system designers should repeat

these explorations to find an appropriate architecture and software/hardware partitioning.

At the estimation and evaluation steps, simulation tools and rapid prototyping are nec-

essary. It is possible to simulate the architecture model if the model is described in C

based design language. In order to simulate software, behaviors in the model are com-

piled and linked to run on a processor simulator. In order to simulate hardware, nowadays,
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behaviors are synthesized as Hardware Description Language (HDL, hereafter) by behav-

ioral or high-level synthesis tools [18]. Recent growth of high-level synthesis tools has

enabled designers to develop hardware modules at behavioral level using C/C++ like lan-

guages [19, 20, 21, 22]. By means of compilers and high-level synthesis tools, system

designers can describe systems in a single behavioral language. Also, high-level synthesis

tools support designers to develop hardware by using optimization technics of paralleliz-

ing compilers such as loop pipelining [23, 24]. Then the HDL description is simulated on

HDL simulators. Backend program takes care of the communication between a processor

simulator and a HDL simulator. By combining several simulators, the system model is

simulated. Note that the accuracy of the estimation depends on the simulators.

Instead of the simulation tools, a rapid prototyping is used to evaluate the system perfor-

mances of the model. An example is a FPGA-based rapid prototyping [25]. On the FPGA-

based rapid prototyping, prototypes of software and hardware are realized on FPGA. Since

FPGA is a real hardware device, the accuracy of evaluation is very high.

It takes time to prepare a simulation description and realize a FPGA-based prototype.

For that reason, system-level design tools have been developed [4, 5, 6, 7, 8]. These

tools automatically generate simulation descriptions or FPGA-based prototypes. Moreover,

some tools support the explorations of target architectural structure and software/hardware

partitioning. System-level design tools can support and accelerate the design space explo-

ration for system designers.

2.4 RelatedWorks

Various researches have been conducted on system-level design tools. The tools mainly

assume heterogeneous multi-core processor system-on-a-chip as a target architecture.

System-On-Chip Environment [4] is a system-level design framework based on the
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SpecC language [26]. It realizes an interactive and an automated design flow with a consis-

tent and a seamless tool chain, and supports all the way from a specification of the system

to a hardware/software implementation.

Artemis [5] provides modeling and simulation methods, and tools for efficient perfor-

mance evaluation and exploration of heterogeneous embedded multimedia systems. Artemis’s

design flow start at a sequential application specification, and it is transformed to a concur-

rent application specification. Then, Artemis allows designers to estimate performance

through co-simulation of a concurrent application specification.

PeaCE (Ptolemy extension as a Codesign Environment) [6] is a hardware-software

codesign environment that provides seamless codesign flow from functional simulation

to system prototyping. Its target application is multimedia applications with real-time con-

straints. Unlike other system-level design tools, PeaCE is a reconfigurable environment

into which other design tools can be easily integrated.

Metropolis [7] is a modeling and simulation environment based on the platform-based

design paradigm. It provides a general, proprietary metamodel language that is used to cap-

ture separate models for behavioral model, platform model, and their binding and schedul-

ing. Metropolis itself does not define any specific design tools but rather a general frame-

work and language for modeling with the support for simulation, validation, and analysis.

ARTS [8] provides a simulation platform for modeled in SystemC. It supports multiple

PE models and network model among PEs. ARTS assumes that the application model

simulated on it is already developed and separated properly in order to explore allocation

to PEs.

2.5 SystemBuilder

In this section, the author shows a brief overview of SystemBuilder [2].
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Figure 2.10: Overview of SystemBuilder.

2.5.1 Input description

Figure 2.10 shows input descriptions and the synthesis overview of SystemBuilder. Sys-

temBuilder takes a system-level description, an architecture template, and a mapping as

inputs, and it generates a target implementation of the system.

The system-level description represents the system functionalities. The system-level

description consists of a set of applications, each of which in turn consists of a set of pro-

cesses and channels. The processes are written in the C language and the communication

APIs which are interfaces to the channels.

The channels represent communications among the processes. The channels are gener-

ally classified into two types: one is asynchronous and the other is synchronous.

Asynchronous channels are used to transfer data among processes. Non-blocking chan-
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nels are one of asynchronous channels which represent a small data storage. Two or more

processes can access non-blocking channels. Memory channels are another asynchronous

channels which are used to transfer a large data between two processes. On the other hand,

synchronous channels are mainly used to transfer events for activation of processes as well

as synchronization between processes. Blocking channels are synchronous channels. In or-

der to store multiple events, blocking channels have buffers. Typically, blocking channels

and memory channels are combined to behave as FIFOs with large data, and non-blocking

channels are used like global variables.

An architecture template represents a target architecture. The processors (CPUs) are

assumed to be homogeneous, and the number of the processors must be greater than or

equal to one. There is no limit of the number of the processors. The processors, dedicated

hardware (HW), and memories (CPU MEM, SDRAM) are connected through standard on-

chip buses. There is also no limit of the number of memories and buses.

A mapping represents an allocation of processes to PEs such as CPUs and HW. Depend-

ing on the mapping, the process is implemented as either a software task on a real-time OS

or a hardware module.

2.5.2 Automatic synthesis of target implementation

SystemBuilder automatically synthesizes a target implementation from system-level de-

scription depending on the mapping specified by the designers. The process mapped to a

processor is compiled and linked with a RTOS as a task. The process mapped to HW is first

translated to HDL from C language by a behavioral synthesis tool. Then the implementa-

tion of the HDL is synthesized by a logic synthesis tool for a target FPGA. SystemBuilder

uses TOPPERS/ASP kernel [27] and TOPPERS/FMP kernel [28] for a single processor

RTOS and multi processors RTOS, respectively. CyberWorkBench [19] and eXCite [20]

are used as behavioral synthesis tools, and Altera Quartus II [29] is used as logic synthesis
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tool and a place and route tool for a target FPGA.

The interfaces of the channels written in the processes are translated into either interface

programs or hardware logics depending on the mapping so that the processes can commu-

nicate with each other through the channels. The buffers in the channel are mapped onto

the memory. In detail, the interfaces of the channels among the processes on the processors

are implemented as API calls provided by the RTOS. Also the interfaces of the channels

among the processes on HW are converted to additional hardware logics that realize FIFO

and block RAMs in the target FPGA. The interfaces of the channels between the processes

on the processors and those on HW are realized by the device drivers for the processors

and by hardware logics that generate interrupts for the activation of the device drivers.

Figure 2.10 shows an example of the target implementation. In the figure, uni-directional

arrows mean that the modules work as slaves of the connected buses. Also, bi-directional

arrows mean that the modules work as slaves and masters of the connected buses. Processes

P1 and P5 are mapped to CPU1, and a process P4 is mapped to CPU2. These processes

are converted to RTOS tasks. Then they are compiled and linked with the device drivers.

Processes P2 and P3 are mapped to HW. These processes are converted to hardware mod-

ules by a behavioral synthesis tool. Channels C1 and C2 represent communication between

processors and HW. Thus, these two channels are synthesized as device registers and bus

interface circuits. A channel C4 represents communication between hardware modules. It

is synthesized as a communication circuit between hardware modules. Channels C3 and

C5 are allocated to SDRAM1 which is shared memory since they are accessed from CPU1,

CPU2, and HW. A channel C6 represents an inner processor communication. Thus, it is

allocated to CPU MEM1. Note that the decision of the mapping should be done by the

designers.

Although SystemBuilder presently only supports Altera’s FPGAs and their associated

architectures, SystemBuilder can potentially support the other devices and architectures. In
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Figure 2.11: An example of process profiler waveforms.

actual, an earlier version of SystemBuilder supported Xilinx’s architectures with Microb-

laze soft-core processors [30] and the OPB bus [31].

2.5.3 Performance Analysis

In order to refine system within a short time, SystemBuilder provides a profiling tool which

is denoted as “process profiler”. Process profiler assists the designers so that they can find

bottlenecks out from the processes executing concurrently by visualizing the execution

histories, including the activation/suspension timing and the period of each process.

Process profiler can gather the histories of all processes allocated to software and hard-

ware. The histories are provided in VCD file format. The VCD file can be visualized as

waveforms by using tools such as GTKWave [32]. Figure 2.11 shows an example of wave-

forms which are provided by process profiler. With the waveforms, the designers can find

out the processes that are bottleneck of the system. Thus, the designers can easily decide

a mapping. Process profiler is implemented in HW, and it gathers the histories at the cycle

level.

2.6 Overview of ProposedMethod

This dissertation proposes an efficient design space exploration method at system-level.

Proposed method consists of three tools which are Extended SystemBuilder, Mapping Ex-
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Figure 2.12: Entire design flow of the proposed method.

plorer, and Improvement Analyzer. By using the proposed method, system designers ef-

ficiently explore the large design space and can find a system configuration that satisfies

the system requirements in short time. This section shows an overview of the proposed

method.

Figure 2.12 shows an entire design flow of the proposed method.

First of all, system designers describe the system functions as a system-level descrip-

tion. They also decide the target architectural structure which is defined by the target

architecture template. The system-level description and the target architecture template are

inputs of Extended SystemBuilder used in next step.

Secondly, system designers explore software/hardware partitioning. Mapping Explorer

generates mappings which indicates software/hardware partitioning of the system func-

tions. Mapping Explorer generates mappings by two algorithms. Pareto-update search is

an efficient algorithm which finds a pareto solution between execution time and hardware

29



CHAPTER 2. SYSTEM-LEVEL DESIGN AND THE BASE TOOL

area. However, pareto-update search does not ensures an ideal pareto solution. On the other

hand, exhaustive search surely find an ideal pareto solution since it generates all possible

mappings.

The generated mappings are inputted to Extended SystemBuilder. Then, Extended Sys-

temBuilder generates the implementations of generated mappings in order to evaluate the

system performances of them. Unlike the other system-level design tools, Extended Sys-

temBuilder can synthesize communication for shared hardware modules in order to realize

better implementations. There is another choice, simulator, to evaluate the system perfor-

mances of the generated mappings. In order to use the simulator, two particular execution

logs, all software (hereafter, ALLSW) and all hardware (hereafter, ALLHW), are needed.

The execution logs are profiled by process profiler from two particular implementations

(ALLSW and ALLHW) which are generated by Extended SystemBuilder. ALLSW allo-

cates all processes to a single processor, whereas ALLHW allocates all processes to dedi-

cated hardware whenever possible. The simulator takes two execution logs and estimates

the execution time of inputted mappings. By using the simulator, designers can evaluate the

system performances of the generated mappings in short time. After the evaluation, Map-

ping Explorer gets feedback of the evaluation results in order to generate new mappings for

the further exploration. Until Mapping Explorer finds a pareto solution, the generation of

mappings, and the evaluation of system performances are repeated.

After the exploration of software/hardware partitioning, system designers have the

pareto solution between execution time and hardware area. Since the pareto solution is

a set of mappings on a trade-off curve, system designers can find appropriate mappings.

Thus, they can judge whether the pareto solution includes mappings that satisfy the system

requirements.

If mappings that satisfy the system requirements exist, it is the end of the design space

exploration. However, mappings that satisfy the system requirements may not exist since
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the exploration of software/hardware partitioning only changes mappings. In such case,

system designers need to modify the system-level description in order to improve bottle-

necks of the system.

Improvement Analyzer supports bottleneck analysis. Improvement Analyzer uses an

algorithm to automatically identify not only bottlenecks of the system but also a list of

improvement rates. The list of improvement rates shows the ratio of improvement that are

necessary for processes to satisfy the system requirements. Thus, the list of improvement

rates is useful for system designers to consider how to modify the system-level description

in order to improve the system performances.

Finally, system designers modify the system-level description to improve the system

performances. If necessary, they may modify the target architecture template.

The flow of design space exploration is repeated until system designers find an appropri-

ate design that satisfies the system requirements. Extended SystemBuilder assists designers

to get better target implementations. Mapping Explorer and Improvement Analyzer assist

designers to explore mappings and identify bottlenecks of the system, respectively. There-

fore, the proposed method accelerates design space exploration at system-level.
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Chapter 3

A Case Study of AES Encryption System

with SystemBuilder

3.1 Introduction

In this chapter, the author demonstrates a case study on an AES encryption system design

with SystemBuilder which is described in section 2.5. The main purpose of this case study

is to evaluate the design efficiency of SystemBuilder. In addition, this case study clarifies

good and bad points of SystemBuilder. It is important to know them in order to make

system-level design more efficient.

The main objective of SystemBuilder is to help designers efficiently explore software/hard-

ware partitioning in short time based on iterative evaluations of system performances by

executing systems actually on an FPGA. SystemBuilder takes a system-level description, a

target architecture template, and a mapping of functions to architectures as inputs, and it au-

tomatically generates target implementations including software, hardware, and interfaces

among them. Also, SystemBuilder provides communication APIs to partition the system

functions in the system-level description. It is easy for designers to partition the system
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functions because communication APIs and the system-level description are written in C

language. Since SystemBuilder automatically generates the target implementations and

interfaces from divided system-level descriptions and APIs, it is possible to easily design

coarse-grain pipelined system.

SystemBuilder has an advantage in the design time. Since interfaces among software

and hardware should be built on every change of software/hardware partitioning decision,

the interface synthesis capability especially affects time to design. With SystemBuilder,

designers can avoid describing the interfaces such as device driver programs and hardware

control logics. As a result, SystemBuilder shortens the design time. With these capabilities,

system designers do not need to consider the details of the interfaces. Thus, they can

develop a coarse-grain pipelined system in short time.

The author selected AES encryption as a target system since encryption is an essen-

tial technology to keep a large amount of data in safety these days. In addition, an AES

algorithm has become the default choice for various security services in numerous applica-

tions. For example, wide band Internet is spread and a lot of data are transferred through

the Internet. There are a lot of risks to be stolen the data through the Internet. In order

to handle a lot of data in short time, a fast AES encryption is needed. However an AES

encryption algorithm has many steps and takes long time to handle many inputs. One of

the solutions to speed up an AES encryption system is designing the system as hardware

[33]. The author has decided to improve the performance of AES encryption system by a

coarse-grain pipelined hardware implementation.

Starting from a sequential software program, the author incrementally developed a

pipeline-structured system-level description with SystemBuilder. The author present a

whole design process aiming to develop a fast AES encryption system. The AES encryp-

tion system with a pipelined hardware implementation achieved 5.0 times higher perfor-

mance than that with software implementation. This case study shows the effectiveness of
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SystemBuilder on system-level design.

This chapter is organized as follows. Section 3.2 presents a case study on an AES

encryption system design. Section 3.3 evaluates the effectiveness of SystemBuilder through

the case study, and section 3.4 concludes this chapter.

3.2 AES Encryption System Design

This section shows the four steps of developing the AES encryption system. This case

study aims to make an AES encryption system faster.

The author started an AES encryption system design from converting a software pro-

gram into a system-level description. A software program of AES is selected from CHStone

Benchmark Suite [34], and the author confirmed that it is correctly executed on a Nios II

processor with an RTOS. Next, the author partitioned the AES encryption system into six

processes. One of them can be allocated to only software, and the others can be allocated

to software and hardware. Then five processes allocated to hardware are designed with

pipeline manner. Finally some multiple, division, and modulo operations were changed

into bit operations.

3.2.1 Usage of SystemBuilder

SystemBuilder was used in two means in this case study. One is to design a software/hard-

ware intermingled system. SystemBuilder automatically generates RTL descriptions of

hardware processes, execution files of software processes and communications among pro-

cesses. The other is to generate a pipelined system. Since Communication APIs are written

in C language, they can be replaced in short time. A system is partitioned into several

processes by SystemBuilder so that the processes can run in parallel. In addition, Sys-

temBuilder provides waveforms by process profiler in order to find bottleneck processes.
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These features help a designer to let the processes run in parallel.

3.2.2 Single Process Software Design

Starting point of the AES encryption system design is an AES program written in C lan-

guage. Through this case study, any algorithm of the original AES program was not

changed. In this design, the AES encryption system consists of a single process, aes main.

The process can run as software. This design is called a “single process software design”.

The single process software design was executed on Nios II, and it took 1,236 msec.

3.2.3 Five Processes Hardware Design

The author partitioned the system into several processes before designing the coarse-grain

pipelined system. The author decided the principle to translate each function in C program

into a process. Some of the partitioned processes are designed as hardware implementa-

tions to run faster than the single process software design. The AES encryption system was

partitioned into six processes, aes main, encrypt, keyschedule, addroundkey, looppart, and

endpart, as shown in Figure 3.1. The author added communication APIs in each process

in order to communicate among six processes. Blocking channels were used for starting a

process, memory channels were used for sending encrypted data, and non-blocking chan-

nels were used for parameters. The author decided that all blocking channels have no buffer

in order to debug easily. If both partitioning of the system-level description and the addi-

tion of buffer are performed, it is difficult to determine the cause of system bugs. In this

design, encrypting data was sent as same as the single process software design. The endpart

process has a blocking channel connected to the aes main process to notify that encryption

of an integer data is completed. The aes main process is software implementation, and the

other five processes are hardware implementation. This design is called a “five processes
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Figure 3.1: System partitioning and processes.
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Figure 3.2: Waveform of the five processes hardware design.

hardware design”.

The author measured the performance of the five processes hardware design. The de-

sign took 429 msec. Its performance is 2.9 times higher than the single process software

design. Figure 3.2 shows the profiler waveform of the five processes hardware design.

In the figure, as same as the author had expected, the author confirmed three things: the

aes main process started after the endpart process had ended, only a single process runs

at the same time, and every time all processes are executed in the same order. So far, the

system was partitioned into six processes, and the data were encrypted correctly. Because

of the blocking channel connecting the endpart process and the aes main process, six pro-

cesses execute sequentially like the function call of software program. Actually, all six

processes were possible to run in parallel because one of them can be allocated to software,

whereas the others can be allocated to hardware. Next, the author shows how to design

pipelined hardware implementation.

3.2.4 Pipelined Design

The author changed the configuration of APIs and the system-level description in order to

design coarse-grain pipelined system. First the author removed the blocking channel con-

necting the endpart process and the aes main process shown in Figure 3.1. The blocking

channel was for debugging, and it was no longer necessary to design the pipelined system.

The blocking channels have buffers, and their size is configurable. Then the author in-

creased the number of buffers in the blocking channels. The author only needed to change
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Figure 3.3: Waveform of the pipelined design.

the system-level description to increase the buffer size of the blocking channel. The author

changed the buffer size from zero to one. Therefore, a process sending a message can write

data to the blocking channels until the buffer becomes full, while a process receiving a

message runs. Also the memory channel APIs and the system-level description need to be

changed in order to protect the data. If memory size is equal to transferred data size, the

data is overwritten by the producer process while it is being used by the consumer process.

To prevent that, the author added two same size memories by changing the system-level de-

scription and adding APIs for the memories. The blocking channel which starts the process

sends the address data of memory. The address data was used in order to prevent processes

from overwriting the encrypting data.

As same as the five processes hardware design, the aes main process is software im-

plementation, and the other five processes are hardware implementation. This design is

called a “pipelined design”. The pipelined design took 276 msec. Its performance is 4.5

times higher than the single process software design and also 1.5 times higher than the five

processes hardware design.

Figure 3.3 shows a profiler waveform of the pipelined design. In the figure, the author

can see that multiple processes ran in parallel. Since that, the total execution time of the

system was shortened. The author analyzed that the keyschedule process ran longer than

the other processes and the other processes had to wait for long time. The author confirmed

that the bottleneck is the keyschedule process and the execution time of the keyschedule

process need to be improved in order to shorten the total execution time of the system.
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Figure 3.4: Waveform of the operation refined design.

3.2.5 Operation Refined Design

The author checked operations used in the keyschedule process in order to shorten its ex-

ecution time. Multiply, division and modulo operations are used a lot, and most of their

operands are 2n. These three operations become multi-cycle operations when they are gen-

erated as hardware. Since most of their operands are 2n, they could be changed to bit

operations which are right shift, left shift, and AND operations. Bit operations become sin-

gle cycle operations when they are realized as hardware. Therefore, the author converted

multiply operations, division operations, and modulo operations into left shift operations,

right shift operations, and AND operations, respectively.

The author only changed keyschedule process’s operations. Then the author generated

five processes as hardware implementation and a single process as software implementation

as same as the pipelined design. This design is called a “operation refined design”. The

operation refined design took 243 msec. Its performance is 5.0 times higher than the single

process software design.

Figure 3.4 shows a profiler waveform of the operation refined design. In the figure,

the author found out that the keyschedule process of the operation refined design ran faster

than that of pipelined design. Since the keyschedule process runs faster, waiting time of the

looppart process was reduced compared to the pipelined design. Thus, the total execution

time of the system was reduced.
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Table 3.1: Performance improvement of the AES encryption system.

designs performance improvement #LE memory

Single Process Software 1,236 msec 1.0 x 7,672 1.09 Mbit

Five Processes Hardware 429 msec 2.9 x 23,866 1.26 Mbit

Pipelined 276 msec 4.5 x 29,088 1.39 Mbit

Operation Refined 243 msec 5.0 x 28,164 1.39 Mbit

3.2.6 Performance of Design

The system performance was measured by its total execution time to encrypt 10 integer

data for 100 times. Table 3.1 shows the implementation results of four designs. It shows

performances, total execution time, improvement, the number of Logic Element (LE, here-

after), and amount of memory usage of FPGA. Improvement of the performances is based

on the single process software design. High-level synthesis tools can generate a hardware

implementation like the five processes hardware design, and the performance of the hard-

ware implementation is improved from a software implementation. However, high-level

synthesis tools cannot generate coarse-grain pipelined system. SystemBuilder realizes to

design the coarse-grain pipelined system such as the pipelined design. The pipelined design

is faster than the five processes hardware design. Therefore, the generation of the pipelined

hardware implementation is effective to shorten the total execution time of the system. The

operation refined design is not improved its performance a lot from the pipelined design.

The changes of operations seem to be not effective. The design of a pipelined system is

more important than the change of operations.

3.2.7 Design Time of AES Encryption System

This section shows detail of work time and contents at each section. Figure 3.5 shows

the design time and the summary of work at each step. The author debugged the system
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Single Process Software Design: 7 hours

- Check order of functions in AES program

Five Processes Hardware Design: 33 hours

- Separate system into several processes
- Add communication description

Pipelined Design: 17 hours

- Change communication description
- Debug description of operations in an AES program

Operation Refined Design: 3 hours

- Change description of operations in an AES program

Figure 3.5: Design time and summary of work on the AES encryption system.

with software/hardware cosimulation at each step. First step is development of the single

process software design. It took seven hours to develop. In this step, the author checked

the order of functions in AES program.

Second step is development of the five processes hardware design. This step took 33

hours. In this step, the author partitioned the system into six processes and added APIs to

communicate among processes.

Third step is development of the pipelined design. This step took 17 hours. The author

changed only the system-level description and APIs at this step. The author had a mistake

in description of memory APIs and took time to debug it.

The last step is development of the operation refined design. This step took three hours.

In this step, the author converted multiply, division, and modulo operations into bit opera-

tions in C language.

The author totally took 60 hours to develop the AES encryption system in this case

study. If the author were supposed to work eight hours a day, the pipelined AES encryption

42



3.3. EVALUATION OF SYSTEMBUILDER

system would be developed in 7.5 days, about a week.

3.3 Evaluation of SystemBuilder

The author has developed 1,000 lines of C program and has experienced RTL design in stu-

dent experiment. With SystemBuilder, an unskilled designer even can design the pipelined

hardware system in almost a week. SystemBuilder has high effectiveness to design sys-

tems, especially to design the pipelined system. The author has shown the advantages of

SystemBuilder as follows:

• Easy to partition a system into several processes.

• Inexpensive to change and add communication API calls.

• Automatic generation of communication channels.

• Easy to develop the pipelined systems with APIs.

• Easy to check and analyze the system performances.

However, the author found some problems below during this case study.

• Limited mapping

• Long evaluation time of a lot of mappings

• Lack of support to improve the system performance

The first problem is limited mapping. There are the same functions in different processes

in AES encryption system. SystemBuilder, however, cannot support a mapping that several

processes share a hardware module. Sharing a hardware module among the processes has

possibility to decrease the hardware area. Thus, SystemBuilder should support the other
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mappings to realize better system performances. The second problem is long evaluation

time. Even though SystemBuilder automatically generates the implementations, it takes

very long time to generate the implementations and evaluate the system performances.

With only SystemBuilder, it is hard to evaluate the system performances of many mappings

in order to find appropriate mappings. The third problem is lack of support to improve the

system performances. SystemBuilder clarified a bottleneck of execution time by profiling

tools. However, it is hard for designers to consider how to improve the system performances

of current complex embedded systems with only profiling tools. Designers need another

support to improve the system performances in order to design systems efficiently.

3.4 Conclusions

This chapter presented a case study of an AES encryption system design with System-

Builder. SystemBuilder can generate a target implementation of the system given as a

system-level description, an architecture template, and a mapping. The AES encryption

system has developed by converting a sequential software program. In order to achieve

better performance, the author took 4 steps to design pipelined system. During the design,

the author analyzed the behaviors of the processes by process profiler to find the bottleneck.

As a result, the author designed a system which achieve 5.0 times faster than software pro-

gram by a hardware implementation with pipelined manner on an FPGA. The author took

about 60 hours for overall design. This was realized with an automatic synthesis capability

of SystemBuilder. The author conclude that designing a pipelined system with System-

Builder is effective. In addition, this case study clarifies three problems of system-level

design.
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Chapter 4

Extended SystemBuilder: Communication

Synthesis for Hardware Sharing

4.1 Introduction

The three problems of system-level design were clarified by a case study of AES encryption

system with SystemBuilder as described in Chapter 3. One of the three problems is that

system-level design tools support limited mapping. A number of system-level design tools

supporting process and channel mapping were proposed in the past [1]. However, process-

level hardware sharing, i.e., a mapping of processes which exist in different applications

onto a single hardware module, is not supported by most of the existing system-level design

tools. This limitation lost opportunities of designers for getting better implementations.

Because most of the tools assume single-application systems, existing system-level de-

sign tools have not supported process-level hardware sharing. Although some tools assume

multiple applications, they do not allow process-level hardware sharing. Even if it is al-

lowed, the tools do not automatically synthesize the interface circuits which realizes mu-

tually exclusive accesses to the shared hardware module. Therefore, the designers need to
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implement the interface circuits manually.

This chapter presents an automatic synthesis of communications for hardware modules

which are shared by multiple applications. SystemBuilder has been extended in order to

support process-level hardware sharing. This is named Extended SystemBuilder. Extended

SystemBuilder automatically generates the interface circuits for the shared hardware mod-

ule. Since the applications may run concurrently, the interface circuits generated by Ex-

tended SystemBuilder realizes mutually exclusive accesses to the shared hardware module.

The rest of this chapter is organized as follows. Section 4.2 presents the detail of the

communication synthesis for hardware sharing. Section 4.3 shows the effectiveness of

hardware sharing through a case study, and section 4.4 concludes this chapter.

4.2 Communication Synthesis for Hardware Sharing

4.2.1 The Design Flow with Hardware Sharing

Figure 4.1 shows the design flow of Extended SystemBuilder. Designers first design appli-

cations independently as shown in (a). If hardware is not shared, Extended SystemBuilder

generates the system implementation without hardware sharing as shown in (b).

It is assumed that a system consists of more than one application. It is also assumed

that some processes in the different applications have the same functions. In the description

(a), there are two applications, Application1 and Application2, and processes P B and P Y

have the same function. If hardware is shared, Extended SystemBuilder automatically con-

verts the description (a) into an internal description (c). During the conversion, processes

P B and P Y are merged into a new process P S with the same function, where process P S

is shared by the two applications. In the proposed hardware sharing method, the number

of channels in Application1 and Application2 does not change. In other words, Applica-
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Figure 4.1: Design flow of Extended SystemBuilder with/without hardware sharing.
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tion1 and Application2 do not share the channels. Thus, no data conflict occurs within the

communication channels. Then, Extended SystemBuilder automatically synthesizes the

implementation with hardware sharing, as shown in (d) from the internal description (c).

Extended SystemBuilder automatically completes the design flow from (a) to (d) in

Figure 4.1 if a hardware sharing option is enabled in the mapping. Designers only need

to turn on the option so that the two applications share a hardware module. The design-

ers, therefore, will be able to explore a wider design space in short time. Note that more

than two applications can share a hardware module although Figure 4.1 only shows two

applications.

4.2.2 Implementation of Communication for Hardware Sharing

Process P S in Figure 4.1(c) is shared by Application1 and Applicaiton2, and thus pro-

cess P S requires two sets of channels, one for Application1 and another for Application2.

However, note that the process originally has only a single set of the channels. Also note

that the functions inside the process should not be modified for reusability and easiness of

debugging.

Extended SystemBuilder automatically inserts a wrapper to the shared process as shown

in Figure 4.2. The wrapper has two sets of external channels, i.e., one for each application.

In addition, the wrapper provides an interface to the shared process. The wrapper realizes

mutual exclusion and selects a channel to which the shared process should access. Also,

Extended SystemBuilder inserts a signal to channels which are connected to the shared

process. The signal indicates whether a buffer in the channel is empty or not.

The wrapper works as follows. First, the wrapper polls the signals whether the channels

have valid data or not. If more than one channels have valid data, the wrapper selects an

application to be served. Extended SystemBuilder supports two types of polling, priority-

based polling and round-robin one. Designers select the polling policy and decide the
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Figure 4.2: Detail of the wrapper generated by Extended SystemBuilder.

priorities of the applications in the mapping. With priority-based polling, every time the

shared process starts polling, the channel of the highest priority application is checked

first. If its signal indicates empty, the next highest priority application will be checked.

With round-robin polling, the channels are checked in a round-robin manner. The polling

continues until non-empty signal is found.

Next, data are read from the channel of the selected application, and the wrapper sends

a start event and the data to the shared process. Then, the shared process starts its execution.

The shared process may communicate with the other processes not only at entry and

exit points of its execution but also during its execution. Every time the shared process

communicates with the other processes, the wrapper passes the data between the shared

process and the channel of the selected application.
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(a) Software only (b) Software and hardware

(c) Hardware only (d) Shared hardware

(e) Four hardware share two shared hardware

Figure 4.3: Mappings of hardware sharing supported by Extended SystemBuilder.

4.2.3 Mapping of Processes with Hardware Sharing

Figure 4.3 shows five mappings of hardware sharing supported by Extended SystemBuilder.

The proposed hardware sharing method does not restrict hardware/software mapping pos-

sibilities. This means that the shared processes are able to communicate with the processes

to be implemented in software as well as ones to be implemented in hardware as shown

in Figure 4.3(a), Figure 4.3(b), and Figure 4.3(c). Furthermore, the shared processes can

communicate with the other shared processes as shown in Figure 4.3(d). Also, the proposed

hardware sharing method does not restrict the number of shared processes. For example,
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there can be two shared processes among four processes as shown in Figure 4.3(e).

4.3 A Case Study

In this section, a case study is presented in order to show the effectiveness of the proposed

hardware sharing method. Section 4.3.1 explains the target systems. Section 4.3.2 shows

the evaluation of design space exploration with hardware sharing method. Section 4.3.3

indicates the reduction of hardware area, and section 4.3.4 makes clear the relation between

polling policy and the execution time of each application.

4.3.1 Target Systems

A case study has been conducted on three systems, Dual-AES, Triple-AES, and Quad-

AES. Dual-AES, Triple-AES, and Quad-AES consist of two, three, and four AES applica-

tions [34], respectively. Each application in the systems is numbered from 1 through 4. In

other words, there are four applications named AES1, AES2, AES3, and AES4 as shown

in Figure 4.4. The four AES applications are identical, and each application encrypts and

decrypts data which consist of 16 integers for 1000 times. The AES applications consist

of four processes, aes mainX, encX (encryption), decX (decryption), and check resultX.

In the name of processes, X differs from 1 to 4 depending on the AES application. It is

assumed that each AES application runs on a dedicated processor. In case of Quad-AES, it

consists of four processors, and the four AES applications run on their own processors.

In this case study, the system designer has explored different mappings on Dual-AES,

Triple-AES, and Quad-AES as summarized in Tables 4.1, 4.2, and 4.3, respectively. The

system designer has varied the allocations of all encX processes on either a software (SW,

hereafter) or a hardware (HW, hereafter). Similarly, all decX processes are mapped to either

a SW or a HW. Thus, there are mainly four patterns of mappings below:
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Figure 4.4: Construction of Quad-AES.

• encX: SW, decX: SW (mapping No.1 in Tables 4.1, 4.2, and 4.3)

• encX: HW, decX: SW (mapping No.2 in Tables 4.1, 4.2, and 4.3)

• encX: SW, decX: HW (mapping No.5 in Tables 4.1, 4.2, and 4.3)

• encX: HW, decX: HW (mapping No.8 in Tables 4.1, 4.2, and 4.3)

If the processes encX and decX are mapped to HW, they are also mapped to shared

hardware with priority-based polling (SH-HW (Priority)) and round-robin polling (SH-

HW (Round)). For Triple-AES and Quad-AES, the mappings from No.17 to No.20 were

added in order to evaluate partially shared hardware. In these mappings, two encX pro-

cesses and/or two decX processes are mapped to SH-HW (Round). Note that, through the

design space exploration, only the mapping is changed. According to the mapping, Ex-

tended SystemBuilder automatically synthesizes the implementation which is executable

on FPGA. On an average, Extended SystemBuilder took about an hour to synthesize an

implementation. To complete the exploration of an AES system, it took less than 24 hours

by a single designer.

In this work, Altera StratixII FPGA board with four Nios II soft-core processors [29]

was used as the target architecture. The processes mapped to SW were cross-compiled and
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Table 4.1: Mappings and the polling policies of Dual-AES.

No. enc1 enc2 dec1 dec2

1 SW SW SW SW

2 HW HW SW SW

3 SH-HW (Priority) SW SW

4 SH-HW (Round) SW SW

5 SW SW HW HW

6 SW SW SH-HW (Priority)

7 SW SW SH-HW (Round)

8 HW HW HW HW

9 SH-HW (Priority) HW HW

10 SH-HW (Round) HW HW

11 HW HW SH-HW (Priority)

12 HW HW SH-HW (Round)

13 SH-HW (Priority) SH-HW (Priority)

14 SH-HW (Round) SH-HW (Round)

15 SH-HW (Round) SH-HW (Priority)

16 SH-HW (Priority) SH-HW (Round)

linked with the TOPPERS/FDMP kernel [35], which is a RTOS for multi processors, to

be executed on the Nios II soft-core processors. The processes mapped to HW and shared

HW were synthesized with a commercial behavioral synthesis tool eXCite [20]. These

compilation and synthesis tasks were automatically done by Extended SystemBuilder.

4.3.2 Design Space of Hardward Sharing

In terms of hardware area and execution time on the FPGA, the 16 mappings were eval-

uated on Dual-AES, and 20 mappings were evaluated on Triple-AES and Quad-AES as

shown in Tables 4.1, 4.2, and 4.3, respectively. Figures 4.5, 4.6, and 4.7 show the hard-
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Table 4.2: Mappings and the polling policies of Triple-AES.

No. enc1 enc2 enc3 dec1 dec2 dec3

1 SW SW SW SW SW SW

2 HW HW HW SW SW SW

3 SH-HW (Priority) SW SW SW

4 SH-HW (Round) SW SW SW

5 SW SW SW HW HW HW

6 SW SW SW SH-HW (Priority)

7 SW SW SW SH-HW (Round)

8 HW HW HW HW HW HW

9 SH-HW (Priority) HW HW HW

10 SH-HW (Round) HW HW HW

11 HW HW HW SH-HW (Priority)

12 HW HW HW SH-HW (Round)

13 SH-HW (Priority) SH-HW (Priority)

14 SH-HW (Round) SH-HW (Round)

15 SH-HW (Round) SH-HW (Priority)

16 SH-HW (Priority) SH-HW (Round)

17 SH-HW (Round) HW SH-HW (Round) HW

18 SH-HW (Round) HW HW SH-HW (Round)

19 SH-HW (Round) HW SH-HW (Round)

20 SH-HW (Round) SH-HW (Round) HW
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Table 4.3: Mappings and the polling policies of Quad-AES.

No. enc1 enc2 enc3 enc4 dec1 dec2 dec3 dec4

1 SW SW SW SW SW SW SW SW

2 HW HW HW HW SW SW SW SW

3 SH-HW (Priority) SW SW SW SW

4 SH-HW (Round) SW SW SW SW

5 SW SW SW SW HW HW HW HW

6 SW SW SW SW SH-HW (Priority)

7 SW SW SW SW SH-HW (Round)

8 HW HW HW HW HW HW HW HW

9 SH-HW (Priority) HW HW HW HW

10 SH-HW (Round) HW HW HW HW

11 HW HW HW HW SH-HW (Priority)

12 HW HW HW HW SH-HW (Round)

13 SH-HW (Priority) SH-HW (Priority)

14 SH-HW (Round) SH-HW (Round)

15 SH-HW (Round) SH-HW (Priority)

16 SH-HW (Priority) SH-HW (Round)

17 SH-HW (Round) SH-HW (Round) SH-HW (Round) SH-HW (Round)

18 SH-HW (Round) SH-HW (Round) SH-HW SH-HW (Round) SH-HW

(1&4) (1&4)

(Round) (Round)

19 SH-HW (Round) SH-HW (Round) SH-HW (Round)

20 SH-HW (Round) SH-HW (Round) SH-HW (Round)
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Figure 4.5: Trade-offs between performance and hardware area: Dual-AES.

Figure 4.6: Trade-offs between performance and hardware area: Triple-AES.
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Figure 4.7: Trade-offs between performance and hardware area: Quad-AES.

ware area (in #ALUTs) and the execution time (in milli-second) of each mapping on the

three systems. #ALUTs shows the hardware area of processors, peripherals, and processes

mapped to HW and shared HW. In the figures, the solid lines and the broken lines represent

the trade-offs of all mappings and those without hardware sharing, respectively. It is easily

observed that the solid lines (with hardware sharing) represent better trade-offs than the

broken lines (without hardware sharing) on the three AES systems. In Figure 4.6, the map-

ping No.7 (with hardware sharing), has less hardware area and better performance than the

mapping No.2 (without hardware sharing). Hardware sharing, therefore, can bring better

area-performance trade-offs.

As mentioned in section 4.2.3, the designers can explore the number of processes to be

shared. In Figure 4.6, the mapping No.20 has two shared HW each of which are shared by

two processes. Since the mapping No.20 is on the solid line, it is a candidate of an opti-

mized solution. This result indicates that it is important to explore the number of processes

to be shared, which is supported by the proposed hardware sharing method.
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4.3.3 The Reduction of Hardware Area

In Figure 4.5, if the mappings No.2, No.3, and No.4 are focused on, the hardware area

was reduced by 28% thanks to hardware sharing. Their only difference of the mapping is

shared or not shared. The same can be said for the mappings No.5, No.6, and No.7. Also,

if the mappings No.2, No.3, and No.4 in Figures 4.6 and 4.7 are focused on, the hardware

area was reduced by 37% and 42%, respectively. In the figures, the mappings marked with

a circle which has shared HW have the least hardware area among the mappings except

the mapping No.1 marked with black triangle which has no hardware. Thus, the proposed

hardware sharing method is effective to reduce the hardware area.

In the three systems, the ratio of the hardware area on the mappings No.3 and No.4

is almost the same, and the only difference between the mappings No.3 and No.4 is the

polling policy. The same can be said for the mappings No.6 and No.7 in the three systems.

In other word, the polling policy did not influence reduction of the hardware area if the

processes have the same mapping. The proposed hardware sharing method, therefore, can

reduce the hardware area with both priority-based polling and round-robin one.

4.3.4 The Execution Time with Polling Policy

In order to make clear the relation between the polling policy and the execution time of

each application, the execution time of each application is measured. On the three AES

systems, Figures 4.8, 4.9 and 4.10 show the execution time of each AES application in the

mappings as shown in Tables 4.1, 4.2, and 4.3, respectively.

The polling policy of the mappings No.4, No.7, No.10, No.12, and No.14 on the three

systems is only round-robin polling. Also, the mappings No.18, No.19, and No.20 on

Triple-AES and Quad-AES use only round-robin polling. In these mappings, the execution

time of each application was averaged. This result indicates that the wrapper with round-
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Figure 4.8: Execution time of AES applications: Dual-AES.

Figure 4.9: Execution time of AES applications: Triple-AES.
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Figure 4.10: Execution time of AES applications: Quad-AES.

robin polling equally selected the application running on the shared process.

The mappings No.9, No.11, and No.13 on the three systems shows typical results of

priority-based polling. In these mappings, AES1 which has the highest priority is com-

pleted at first. Then AES2, AES3, and AES4 which have the second, the third, and the

lowest priority, respectively, were completed in the order of the priorities.

In the mapping No.6 with priority-based polling, however, AES1 and AES2 on the three

systems were completed at almost the same time. Since encX processes in the mapping

No.6 were mapped to software, the execution of encX processes was not faster than that of

the shared process. In particular, when the wrapper started the polling, enc1 process was

running while enc2 process had written the data to the channel. Thus, the wrapper selected

AES2 instead of AES1 which the previous process of the shared process was running. As

a result, AES1 and AES2 were selected by round-robin manner, and they were completed

at the same time. Then, AES3 and AES4 in the mapping No.6 were completed after the

completion of AES1 and AES2 in the systems.
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Comparing the mapping No.9 with the mapping No.10 in the three systems, the map-

ping No.9 with priority-based polling took longer than the mapping No.10 with round-robin

one in the total execution time.

In the case of that the deadline of a particular application is very strict, priority-based

polling is more suitable than round-robin one. On the other hand, in the case of that the

execution times of all application should be averaged, round-robin polling is more suitable.

4.4 Conclusion

In this chapter, an automatic communication synthesis method for hardware sharing is pro-

posed. In addition, the method is implemented on system-level design tool named Ex-

tended SystemBuilder. With Extended SystemBuilder, the designers can explore wider

design space including shared hardware in short time since Extended SystemBuilder auto-

matically synthesizes communication for hardware sharing by only changing the mapping.

A case study for shared hardware has been conducted on AES applications. The case study

demonstrated that hardware sharing brought better area-performance trade-offs and a wider

design space. The case study also demonstrated that the hardware sharing reduced hard-

ware area while it kept the performance.
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Chapter 5

Mapping Explorer: A Fast Design Space

Exploration by Pareto-Update Search

5.1 Introduction

System-level design tools use models which is described at a high level of abstraction in

order to generate an implementation of the system according to its mapping. Designers can

evaluate the system performances (e.g., execution time) of the mapping by executing the

generated implementation. Because the implementations are automatically generated by

the tools according to the mapping, designers can evaluate the system performances of dif-

ferent mappings by simply changing the mapping. However, it takes a long time to generate

the implementations for design space exploration such as mapping exploration described

above. For example, it took a day to synthesize and evaluate 12 implementations of differ-

ent mappings on both a single-core processor and a dual-core processor platforms [31].

In addition, Extended SystemBuilder supports process-level hardware sharing as de-

scribed in Chapter 4. This extension brought more and more mappings. As the number of

mappings increases, the time to generate implementations also increases. Therefore, the
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Figure 5.1: Simulation-based design space exploration methods: exhaustive search.

only use of basic system synthesis tools is no longer suitable for design space explorations

of current, complex embedded systems.

To decrease the time needed to evaluate the system performances of a mapping, system-

level performance estimation tools [9, 10, 11] have been introduced. Since these tools

use profiles recorded by system-level design tools and FPGAs, the simulation accuracy

is sufficiently high, and the exploration can be accelerated. For this reason, such tools

allow for the possibility of finding the best mapping by an exhaustive search (shown in

Figure 5.1). However, despite the simulation speed, there is still a problem with exhaustive

searches. Assuming the numbers of functions and PEs are 10 and five, respectively, there

are 510, or almost 10 million, mappings. If the simulator needs one second to simulate

each mapping, it will require more than two weeks to complete the search and find the

best mapping. Such a big number of mappings do not seem to be reasonable for design

space exploration. Therefore, even though the simulators can accelerate the exploration, an
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efficient exploration method is still necessary. In order to reduce the design time, useless

mappings in Figure 5.1 should not be explored.

In order to find the best mapping during the design space exploration, the concept of

the pareto solution is used, as this indicates the candidates for the best mapping [15]. An

example of a pareto solution in relation to execution time and hardware area is illustrated

by the set of black circles in Figure 5.1. Because the pareto solution contains all candidates

for the best mapping, designers can select mappings which satisfy the requirements of the

system performances from the pareto solution. This has the potential to shorten the design

time.

There are some strategies for generating mappings in order to quickly find the pareto

solution, as shown in Figure 5.2. Using these strategies, the useless mappings shown in

Figure 5.1 will not be simulated. One famous strategy involves genetic algorithms (GAs,
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hereafter). The number of simulations is drastically reduced using a GA instead of an ex-

haustive search. Reducing the number of simulations shortens the exploration time. How-

ever, multiple executions of the exploration that increase the number of simulations may

obtain better pareto solutions, because GAs are heuristic methods. In addition, GAs require

parameters, such as the mutant probability and crossover probability, to be calibrated for

each target before starting the exploration.

The author proposes an exploration algorithm named pareto-update search for find-

ing pareto solutions between execution time and hardware area. The author also developed

Mapping Explorer which is a tool to find pareto solutions by pareto-update search as shown

in Figure 5.2. Pareto-update search starts with two mappings as initial pareto solution.

Then it repeatedly updates the pareto solution with the generation and simulation of the

mappings. In order to explore efficiently, pareto-update search tries not to generate and

simulate useless mappings. In other words, pareto-update search generates only mappings

whose probability of being in the pareto solution is high. Therefore, the number of simu-

lated mappings is reduced. On the other hand, the pareto solution found by pareto-update

search might have errors compared to an ideal pareto solution. Since the simulator con-

tains an error of up to 10%, a pareto solution found by exhaustive search with simulators

also includes errors compared to the measures from a real implementation. Hence, a pareto

solution with a small error is acceptable for designers to decide a mapping satisfying the

requirements of system performances. The goal of pareto-update search is to find a pareto

solution efficiently with a small error.

The rest of this chapter is organized as follows. The author considers some related work

in section 5.2. In section 5.3, the author defines pareto solution. Section 5.4 describes de-

tails of proposed exploration algorithm which is used in Mapping Explorer, and section 5.5

presents a case study that demonstrate the effectiveness of proposed exploration method.

Finally, section 5.6 give conclusions.
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5.2 RelatedWorks

The problem of finding a pareto solution is known as a multi-objective optimization prob-

lem [36]. In the past, many studies have tried to solve the mapping exploration problem

and find a pareto solution using heuristic algorithms [37]. In general, a multi-objective

optimization cannot be solved by dividing the optimizations. This is because the objec-

tives to be optimized are often in conflict with each other, making it almost impossible to

find a solution that optimizes all the objective processes at the same time. Many tradi-

tional optimization techniques such as simulated annealing [38] and Tabu searches [39] are

mono-objective, and they are difficult to extend to multi-objective cases, as they were not

developed to find multiple solutions in a problem.

GAs have been considered as efficient approaches for multi-objective search and op-

timization [40]. There are different approaches to GA-based multi-objective optimiza-

tion [41], divided into three types:

Type1 Approaches employing aggregation processes

Type2 Approaches without the notion of a pareto solution

Type3 Approaches based on pareto

Type1 reduces the problem of multi-objective optimization to one of single-objective

optimization by aggregating the objective processes. Type2 solves some of the complexities

encountered with Type1. However, several problems found in Type1 approaches persist,

i.e., missing certain points in concave regions. Currently, Type3 is the most successful ap-

proach to solving multi-objective optimizations. The basic algorithm consists of selecting

individuals in a pareto solution from the rest of the population. These individuals are then

allocated to the highest rank and eliminated from further contention. Another set of indi-

viduals in the pareto solution is allocated to the next highest rank by being determined from
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the remaining population. This procedure is iterated until the whole population is suitably

ranked. Multi-objective genetic algorithm uses this approaches [42] In addition, the most

extensively used approaches belonging to this class are NSGA-II [43] and SPEA2 [44].

These two approaches are based on multi-objective genetic algorithms. The differences

between NSGA-II and SPEA2 concern their ranking of individuals and elimination from

further contention.

A considerable amount of research has applied these two algorithms to design space

exploration. Hidalgo et al. applied both NSGA-II and SPEA2 to the large design space

of possible dynamically allocated data types [45]. Their results show that NSGA-II and

SPEA2 could explore the entire pareto solution faster than other heuristic algorithms. Sil-

vano et al. applied NSGA-II to their design space exploration environment to find the pareto

solution between performance and power consumption [46]. Their targets were multi-core

processors architectures with a combination of 11 configuration parameters. Ascia et al.

used SPEA2 to obtain pareto solutions between the execution time and power consumption

of a parameterized system-on-a-chip [47]. Their approach was validated on two different

parameterized architectures, one based on a RISC processor and the other based on a pa-

rameterized VLIW architecture. Compared with an exact approach, their method simulated

up to 94% fewer configurations. The pareto solutions found by their approach differed by

an average of 0.26% from the ideal pareto solution obtained by the exact approach.

There are other methods for solving multi-objective optimizations. Tiwary et al. pro-

posed a hybrid of a GA and simulated annealing to find yield-aware pareto solutions [48].

During the exploration, the GA and simulated annealing are sequentially used. The advan-

tage of this algorithm is that the GA explores the wider design space, while the simulated

annealing ensures a better stochastic search in the entire design space. As the GA and sim-

ulated annealing are combined, this algorithm is somewhat complicated, making it difficult

to apply to other exploration problems.
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Wang et.al. applied the algorithm named ants colony optimization to solve the prob-

lem of function allocation [49]. They have tried to find an allocation which minimizes the

execution time of the system under given architecture resources. Compared to the exhaus-

tive search, their method required the small number of simulations to obtain near optimal

results.

5.3 Definition of a Pareto Solution

Design space exploration is considered to be a multi-objective optimization problem, as the

elements in the objective function f(x) often compete against each other. However, max-

imizing the performance of every objective function is not feasible for a multi-objective

optimization problem; therefore, trade-offs among the different parameters should be con-

sidered. Improving the performance in one area might cause a decrease in another compet-

ing objective function. In such cases, the concept of pareto efficiency is often used.

In order to define the pareto efficiency, the author says that a set of system performances

fa is considered more efficient than fb if fa dominates fb:

fa � fb ⇐⇒ ∀( fai ≥ fbi) ∧ ∃( fai > fbi) , i = {1, ..., n}. (5.1)

A set f∗ is considered pareto efficient if it is not dominated by any other set of system

performances f. In this work, the surface generated in the given performance space by the

complete set of pareto efficient points is called the pareto solution.

5.4 Pareto-Update Search

In this section, the detail of pareto-update search is described. Pareto-update search is used

in Mapping Explorer.
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5.4.1 Assumptions and SingularMappings

For process p in the set of processes P, Exesw(p) and Exehw(p) give the execution times of

software implementation and hardware implementation, respectively. The execution time

includes both the computation time and the communication time. The author assumes that:

Exesw(p) > Exehw(p),∀p ∈ P. (5.2)

In general, the execution time of the software implementation is longer than that of the

hardware implementation for the same process, so the author considers this assumption to

be appropriate.

Exehw(p) and Exesw(p) are assumed to be static. They are not affected by the alloca-

tion of the other processes. Thus, changes in the communication time by the change of a

mapping (e.g., bus arbitration time) are not considered in this study. This assumption is

appropriate in the case that the relative error is more important than the absolute error, as

the change in the communication time is generally small compared to the entire execution

time.

The hardware interconnection area Areacom is assumed to be static, even if the num-

ber of processes that are implemented on the hardware changes. The hardware area of

processors is given by the number of processors numcpu and the hardware area of a single

processor Areacpu. It is assumed that the hardware area of the entire system is given by: ∑
p∈PHW

Garea(p)

 + numcpu × Areacpu + Areacom (5.3)

where PHW is the set of processes allocated to hardware, and Garea(p) is the hardware area

for process p in the set of processes PHW. It is assumed that any change in the hardware

interconnection area will be small compared to the entire hardware area, and so these as-

sumptions are also appropriate.

70



5.4. PARETO-UPDATE SEARCH

With the above assumptions, there are two singular mappings: ALLSW and ALLHW.

ALLSW allocates all processes to a single processor, whereas ALLHW allocates all pro-

cesses to dedicated hardware whenever possible. Thus, ALLSW has the smallest hardware

area and the longest execution time, and ALLHW has the largest hardware area and the

shortest execution time.

As there is no mapping that has a longer execution time or smaller hardware area than

ALLSW, this is surely a pareto efficient mapping; in other words, ALLSW must be in the

pareto solution. ALLHW is also considered as a pareto efficient mapping, although there is

a case in which ALLHW is not pareto efficient. This is because a mapping with the same

execution time as ALLHW but less hardware area might exist, as some processes can be

allocated to a single processor on the target. Such mappings exist if the total execution time

of processes on a processor is shorter than that of processes on dedicated hardware. Thus,

it is not always true that ALLHW is a pareto efficient mapping. However, as this situation

does not occur often, the author assumes ALLHW to be a pareto efficient mapping in this

work.

5.4.2 Generation of NewMappings

First of all, the generation of new mappings is defined. Pareto-update search uses two types

of mapping generation: mapping shift and mapping swap.

Mapping Shift

Mapping shift is a method that generates a set of new mappings from a given input mapping.

The basic idea is to change the allocation of one process to other PEs while the allocation

of the other processes remains the same. Assuming n as the number of processes and m as

the number of PEs, a mapping shift generates n× (m−1) mappings from an input mapping.

For example, assuming three processes (P1, P2, P3), three PEs (CPU1, CPU2, HW)
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and an input mapping (P1 = CPU1, P2 = CPU2, P3 = HW), there are a total of six shifted

mappings, as shown below:

No.1: (P1 = CPU2, P2 = CPU2, P3 = HW)

No.2: (P1 = HW, P2 = CPU2, P3 = HW)

No.3: (P1 = CPU1, P2 = CPU1, P3 = HW) *duplication of No.1

No.4: (P1 = CPU1, P2 = HW, P3 = HW)

No.5: (P1 = CPU1, P2 = CPU2, P3 = CPU1)

No.6: (P1 = CPU1, P2 = CPU2, P3 = CPU2)

As the target architecture uses homogeneous processors, mappings No.1 and No.3 are

the same. Duplicated mappings are not generated in order to reduce the number of simula-

tion.

Mapping Swap

Mapping swap also generates a set of new mappings from an input mapping. The basic

idea is to swap the allocation of two processes while those of the other processes remain

untouched. As there are several processes, new swapped mappings are generated by swap-

ping the allocation of all combinations of two processes.

Assuming three processes (P1, P2, P3), three PEs (CPU1, CPU2, HW), and an input

mapping (P1 = CPU1, P2 = CPU2, P3 =HW), there are a total of three swapped mappings:

No.1: (P1 = CPU2, P2 = CPU1, P3 = HW)

No.2: (P1 = HW, P2 = CPU2, P3 = CPU1)

No.3: (P1 = CPU1, P2 = HW, P3 = CPU2)
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Table 5.1: An example set of processes with their execution time (Exe) and hardware area.

Process name Exe on SW Exe on HW Hardware area

[time units] [time units] [area units]

A 10 4 10

B 7 5 6

C 6 3 7

D 5 4 8

As for the mapping shift method, any duplicated mappings are not actually generated by a

mapping swap.

5.4.3 Overview of the Pareto-Update Search

In this section, the author discusses how to efficiently find a pareto solution. In Table 5.1,

an example set of processes (named A, B, C, and D) is shown, together with their execution

times for a software implementation and a hardware implementation. The hardware area

of each process is also shown, but the hardware area of the processor is not included in the

table.

There are data dependencies between A and B, B and C, and C and D. For this reason,

all processes are assumed to run in a pipeline. Thus, depending on the process allocation,

the entire execution time is calculated as the sum of the execution times of each process. In

the following, two cases are discussed separately.

Target I: Single Processor with Dedicated Hardware

In this section, the author considers the use of a mapping shift for a target with a single

processor and dedicated hardware. It is assumed that ALLSW is in an ideal pareto solution

(see Section 5.4.1). In Figure 5.3, each point indicates a mapping. There are four mappings

generated from ALLSW through the mapping shift, labeled 1A, 1B, 1C, and 1D. Shifting
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Figure 5.3: Example of exploration from ALLSW.

the allocation of a process from software to hardware reduces the execution time and in-

creases the hardware area for the target. For that reason, all four shifted mappings have a

shorter execution time and larger hardware area than ALLSW. Details of their execution

time and hardware area are shown in Table 5.2. Among the four mappings, 1A, 1B, and 1C

are pareto efficient, whereas 1D is not.

The mappings labeled 2AB, 2AC, and 2BC are generated from 1A, 1B, and 1C. The

allocation of the processes A, B, or C is changed to HW from 1A, 1B, and 1C using a

mapping shift. Duplicated mappings are not shown in the figure or the table. The mappings

labeled 2DA, 2DB, and 2DC are generated from 1D. The allocation of the processes A, B,

or C is changed to HW from 1D using a mapping shift. Under the assumptions, shifting

the allocation of a process in the second mapping shift will give the same reduction in

the execution time and increase in the hardware area as in the first mapping shift. Hence,
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Table 5.2: Execution time and hardware area of the entire system for the example set of
processes.

ID AS* 1A 1B 1C 1D 2AB 2AC 2BC 2DA 2DB 2DC

Map A SW HW SW SW SW HW HW SW HW SW SW

Map B SW SW HW SW SW HW SW HW SW HW SW

Map C SW SW SW HW SW SW HW HW SW SW HW

Map D SW SW SW SW HW SW SW SW HW HW HW

Exe 28 22 26 25 27 20 19 23 21 25 24

Area 0 10 6 7 8 16 17 13 18 14 15

* AS : ALLSW

there is a high probability that mappings 2AB, 2AC, and 2BC will become pareto efficient

because they are generated from pareto efficient mappings. In contrast, mappings 2DA,

2DB, and 2DC cannot become pareto efficient mappings as they are generated from 1D,

which is not pareto efficient. Among these six mappings, it is clear from Figure 5.3 that

2AC, 2AB, and 2BC exhibit more pareto efficiency than 2DA, 2DC, and 2DB.

A similar argument can be made for the mappings generated from 2AC, 2AB, 2BC,

2DA, 2DC, and 2DB. Mapping 2BC is not pareto efficient at this time, as it is less efficient

than 1A. The mappings generated from 2AC and 2AB have a high probability of being

pareto efficient mappings, whereas those generated from other mappings cannot be pareto

efficient. As a result, it is not necessary to explore mappings generated from those that are

not themselves pareto efficient.

Thus, the author explores an entire pareto solution by repeated generation from pareto

efficient mappings. This reduces the number of simulations by ignoring mappings that

are not pareto efficient during the exploration. As the exploration starts with ALLSW, the

outcome can be an ideal pareto solution.

The same exploration method can be adapted to ALLHW. From ALLHW, the execution

time is increased and the hardware area is reduced step-by-step. As mentioned previously,
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it is not always true that ALLHW is a pareto efficient mapping. In such a case, more pareto

efficient mappings are included in those generated from ALLHW. The generated mappings

then take the place of ALLHW as the pareto efficient mapping. Thus, the exploration can

be started from ALLHW as well as ALLSW.

Target II: Multiple Processors with Dedicated Hardware

The hardware area is certainly reduced when the allocation of processes is changed from

HW to SW on a target with a single processor and dedicated hardware. This does not nec-

essarily happen on a target with multiple processors and dedicated hardware. For example,

when the allocation of a process in a pareto efficient mapping is changed from CPU1 to

CPU2 using a mapping shift, the hardware area remains the same but the execution time

of the entire system changes. The same case happens when the allocation of two processes

on different processors is changed by a mapping swap. If the execution time decreases,

the new mapping becomes the pareto efficient mapping. In this case, the longest execution

time among the processors decreases, and the execution time for one of the other processors

increases. Thus, iterative mapping generation from the pareto efficient mapping averages

the execution times for processors, and that can shorten the entire execution time.

However, there is a possibility that the mapping will become locally optimal, because it

may require several process allocations to be changed at the same time in order to change

the pareto efficient mapping. The exploration may stop at a locally optimal solution when

the allocation of a process is shifted or that of processes is swapped among the processors.

Even though the exploration stops at a locally optimal solution, the execution times for

processors are averaged. It is ideal that the execution times for the processors are equal.

Thus, the mapping that the execution times for the processors are averaged can be a near

optimal solution.

When the allocation of a process is changed from SW to HW or vice versa, pareto
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1: Pareto⇐ {ALLS W, ALLHW}
2: BaseMaps⇐ {ALLS W, ALLHW}
3: while BaseMaps , φ do
4: GeneratedMaps⇐ LocalS earch(BaseMaps)
5: Pareto⇐ U pdate(Pareto,GeneratedMaps)
6: BaseMaps⇐ S electBaseMaps(Pareto)
7: end while
8: Output Pareto

Figure 5.4: The pareto-update algorithm.

efficient mappings can be found as described in Section 5.4.3. Therefore, repeating the

generation of new mappings from pareto efficient mappings effectively explores a near

ideal pareto solution for a target that has multiple processors and dedicated hardware.

5.4.4 The Algorithm of Pareto-Update Search

The algorithm of pareto-update search is depicted in Figure 5.4. In the figure, left

arrows indicate an assignment of the set. On lines 1 and 2, Pareto and BaseMaps are

initialized by the set of ALLSW and ALLHW.

Lines 4 to 6 are repeated until Pareto reaches a steady state. The local search at line 4

consists of two steps: the generation of new mappings, and the simulation of generated

mappings. New mappings are generated from those in BaseMaps through mapping shifts

and mapping swaps. Note that the same mapping is only generated once during the explo-

ration. After the generation of new mappings, the execution time and hardware area of each

generated mapping is estimated by the simulator, and mappings that are not pareto efficient

are discarded. The remaining mappings are used to update Pareto on line 5.

On line 6, two mappings are selected from Pareto as the input to a local search. Starting

from ALLSW, the pareto efficient mappings should increase in the hardware area, as the

initial value of the hardware area is minimized. Similarly, pareto efficient mappings should

move from larger to smaller hardware areas when starting from ALLHW. Thus, one of
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Figure 5.5: Processes in MPEG-4 decoder application.

the mappings has the largest hardware area and the other has the smallest hardware area

among the mappings that are not selected in Pareto. Under this selection rule, one mapping

evolves step-by-step from the largest hardware area to a smaller hardware area, and vice

versa for the other mapping. As the exploration proceeds, there may come a point where

only one mapping can be selected. In such a case, this mapping is added to BaseMaps.

There may also be a point where no mapping can be selected. This is the end of the

exploration, as all possible mappings have already been generated by mapping shift and

mapping swap from the current pareto efficient mappings. Through these three steps, the

entire set of pareto efficient mappings and the pareto solution can be found.

5.5 A Case Study onMPEG-4 Decoder Application

5.5.1 Target Systems and Evaluation of Pareto Solutions

The author explored pareto solutions between execution time and hardware area with Map-

ping Explorer. A target system is MPEG-4 decoder application [50] which consists of 11
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Table 5.3: Number of ALUTs.

CPU & com # ALUTs Process # ALUTs Process # ALUTs

Nios II 2,062 pframe 2,839 get mv2 4,281

Interconnect 280 get block 2,601 dequant 1,188

— — idct 3,199 catch 748

— — interpolate 6,613 transfer 3,970

— — yuv2rgb 1,933 display 1,080

processes as shown in Figure 5.5. The arrows in the figure indicate the data dependen-

cies of blocking channels among the processes. The process named mp4 main can only

be allocated to processors, and other processes can be allocated to processors or dedicated

hardware.

The author explored four architectures named “Single-core-HW”, “Dual-core-HW”,

“Triple-core-HW”, and “Quad-core-HW” which have one, two, three, and four Nios II

processors [29], respectively, and all these architectures have dedicated hardware as PEs.

For example, Dual-core-HW has two processors and dedicated hardware as PEs. There are

three PEs in total onto which processes are mapped.

In order to estimate the execution time, the author used a simulation tool developed by

Shibata et al. [11]. In order to estimate the hardware area, the author first measured the

hardware area of all processes and processors on Altera Stratix II FPGA board. Depending

on the mapping, the hardware area is calculated by formula 5.3 with measured number of

ALUTs shown in Table 5.3. Note that the hardware area of communications (e.g., bus) are

included in Interconnect.

The author used two algorithms to find pareto solutions between execution time and

hardware area on all target architectures. The algorithms are exhaustive search and pareto-

update search. The author compared pareto solutions found by pareto-update search and

exhaustive search in terms of two items, the number of simulated mappings and the error of
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Figure 5.6: Calculation on the area of a pareto solution.

pareto solution. The number of simulated mappings indicates how efficient the algorithm

is. The error is evaluated by the area of pareto solution [51]. Figure 5.6 shows how to

calculate the area of a pareto solution. Two points, (Xmin, Ymax) and (Xmax, Ymin) in

the figure, are brought from the pareto solution of exhaustive search. The area of a pareto

solution is painted in gray, and it is enclosed with dotted lines and solid lines. Two dotted

lines are drawn from (Xmin, Ymin) to (Xmin, Ymax) and from (Xmin, Ymin) to (Xmax,

Ymin). The error is a ratio of the areas of pareto solutions explored by pareto-update search

and exhaustive search.

5.5.2 Exploration Results

Figure 5.7 shows the pareto solutions between execution time and hardware area on Quad-

core-HW. In the figure, dots with circle and dots with cross are mappings in pareto solutions

of exhaustive search and that of pareto-update search, respectively. The figure indicates that

pareto-update search found almost the same pareto solution as that exhaustive search found.

Hence, it can be said that pareto-update search could find a near ideal pareto solution.

The details of the exploration results are shown in Table 5.4. The results indicate that

pareto-update search is very efficient and accurate enough to find a pareto solution between
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Table 5.4: Exploration results on MPEG-4 decoder application.

architecture algorithm # simulated mappings error [%]

Single-core-HW Exhaustive search 1,024 —

Pareto-update search 346 (33.789%) 0.000

Dual-core-HW Exhaustive search 59,049 —

Pareto-update search 1,485 (2.515%) 0.066

Triple-core-HW Exhaustive search 524,800 —

Pareto-update search 2,607 (0.497%) 0.091

Quad-core-HW Exhaustive search 1,657,470 —

Pareto-update search 2,899 (0.175%) 0.092
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Figure 5.7: Pareto solutions of MPEG-4 on Quad-core-HW architecture.
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execution time and hardware area. The number of simulated mappings with pareto-update

search is very small. Compared to exhaustive search, the numbers of simulated mappings

are reduced to 33.8% and 0.18% which are the worst and the best reduction, respectively.

Since exploration time is proportional to the number of simulated mappings, pareto-update

search is very fast to find a pareto solution. Furthermore, applying pareto-update search to

wider design space is more effective since the ratio of the number of simulated mappings

decreases on wider design space. Therefore, pareto-update search seems to be useful to

explore the design space of complex systems.

As mentioned before, the goal is to efficiently find a pareto solution whose error is less

than the error of simulators themselves. The errors of pareto solutions found by pareto-

update search are very low, even the worst error is less than 0.1% in this case study. In

particularly, the error is 0.0% on Single-core-HW. Since the allocation of each process is

either SW or HW on Single-core-HW, mappings generated by mapping shift covers the

all mappings which are in the pareto solution. Hence, mappings in the pareto solution of

exhaustive search are generated during the local search on Single-core-HW. Even though

pareto-update search only generates shifted and swapped mappings, the mappings found

by pareto-update search can be the same as the ideal pareto solution on Single-core-HW.

Additionally, an advantage of pareto-update search is that the error does not tend to

increase exponentially even when the number of simulated mappings of exhaustive search

increases exponentially. This is important to explore more complex systems. Pareto-update

search not only reduces the number of simulated mappings but also finds a pareto solution

with very small error. Therefore, pareto-update search is notably effective to find a pareto

solution between execution time and hardware area.
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5.6 Conclusion

The time to design embedded systems increases along with their complexity. The increase

of complexity has brought unacceptable long times to design space exploration. In this

chapter, the author proposed pareto-update search which is a fast exploration method to

find a pareto solution between execution time and hardware area. In addition, the author

developed a tool, Mapping Explorer, which uses pareto-update search in order to realize ef-

ficient system-level design. Pareto-update search starts the exploration with two mappings

whose probability of being in the pareto solution is high. The exploration repeats both local

search for mappings in the pareto solution and the update of the pareto solution with the

result of local search. The proposed method reduced the number of simulated mappings

to 0.18% compared to that of exhaustive search on a MPEG-4 decoder application. More-

over, the error of the pareto solutions is less than 0.1%. Therefore, pareto-update search is

notably effective to find a pareto solution between execution time and hardware area.
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Chapter 6

Improvement Analyzer: Performance

Improvement with Bottleneck Analysis

6.1 Introduction

For embedded systems, it is important to satisfy the requirements of system performances

such as execution time and hardware area. In Chapter 5, the author proposed pareto-update

search to find mappings on a pareto solution between execution time and hardware area.

However, mappings on a pareto solution may not satisfy the requirements of the system per-

formances. In this manner, system designers are facing a problem that they must efficiently

design a system satisfying the requirements of the system performances.

Figure 6.1 shows an example of design flow for embedded systems with dedicated hard-

ware. It starts from changing software description to system-level description. Then, de-

signers conduct exploration of software/hardware partitioning by Mapping Explorer. Dur-

ing the exploration of software/hardware partitioning, system designers try to find a map-

ping that satisfies the requirements of the system performances by changing the allocation

of processes. This process is accelerated by Mapping Explorer as described in Chapter 5.
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Figure 6.1: Entire design flow.

After the exploration of software/hardware partitioning, the designers must check whether

a mapping satisfies all requirements of the system performances because exploration of

software/hardware partitioning may not find a mapping that satisfies them. For example, a

mapping satisfies the requirements of hardware area but may not satisfy that of execution

time. From this mapping, changing an allocation of a process from software to hardware

makes execution time faster. However, it brings bigger hardware area. As the result, new

mapping satisfies the requirements of execution time but may not satisfy that of hardware

area. Thus, exploration of software/hardware partitioning does not always find a mapping

that satisfies all requirements of the system performances. In such case, designers need

improve the system-level description.

There are two big problems to improve the design description. The first problem is

identification of bottlenecks on the system. In the existing design method, designers iden-

tify the bottlenecks using analysis tools. Fei et al. divided execution logs into particular

behavior groups and analyze the behavior groups [12]. Valle et al. proposed a method

to make logging of the system performances easy [13]. The second problem is identi-
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fication of improvement rates (IRs, hereafter) of the bottlenecks. In the existing design

methods, designers must identify how much they have to improve the bottlenecks to sat-

isfy the requirements of the system performances. Then, they consider how to change the

system-level description to improve the system performances. The existing design methods

take more time of designers to identify how much they must improve the bottlenecks than

to consider how to change the system-level description.

In this chapter, the author proposes Improvement Analyzer which is a tool to automat-

ically identify not only the bottlenecks but also a list of IRs of the bottlenecks that are

necessary to satisfy the requirements of the system performances. With Improvement An-

alyzer, designers no longer identify how much they must improve the bottlenecks because

Improvement Analyzer automatically identifies that. It is ideal for designers to know the

essential IRs of the bottlenecks. In addition, Improvement Analyzer lists up several can-

didates to improve the system performances. Thus, Improvement Analyzer brings shorter

time to identify the IRs of the bottlenecks, and designers can take more time to consider

various ways to improve the system-level description.

The main contribution is to propose a method to explore the IRs of the bottlenecks. In

addition, Improvement Analyzer explores IRs of not only execution time but also hardware

area. A case study on AES shows the effectiveness of Improvement Analyzer.

The rest of this chapter is organized as follows. Section 6.2 presents entire design

flow. Section 6.3 presents the detail of Improvement Analyzer. Section 6.4 shows the

effectiveness of Improvement Analyzer through the case studies, and section 6.5 concludes

this chapter.
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6.2 Overview of the Design Flow

Figure 6.1 shows the entire design flow. The beginning of design flow is initial design of

the system. At this step, designers make a system-level description. In detail, designers

are assumed to make a system-level description of Extended SystemBuilder. Extended

SystemBuilder takes three inputs, a target architecture template, a mapping, and a system-

level description that consists of processes written in C and channels among the processes.

Depending on the mapping and the target architecture template, Extended SystemBuilder

automatically generates the implementation of processes and channels.

After initial design step, designers explore software/hardware partitioning by Mapping

Explorer. With Mapping Explorer, designers can easily get different implementations by

only changing mappings. Thus, it can accelerate the exploration of software/hardware par-

titioning. At this step, designers evaluate the execution time and hardware area of various

system implementations by only changing mappings. Note that designers do not change

the system-level description at this step. If a mapping that satisfies the requirements of the

execution time and hardware area is found during the exploration of software/hardware par-

titioning, the exploration ends. On the other hand, there may be no mapping that satisfies

the requirements of the system performances in spite of evaluating all possible mappings.

In such case, improvement of system-level description is the only way to get better system

performances.

In order to efficiently improve the system-level description, Improvement Analyzer is

used at next step. Improvement Analyzer identifies the bottlenecks of the system perfor-

mances at first. Then, IRs of the bottlenecks are explored. IRs are ratio of improvement on

the bottleneck that are necessary to satisfy the requirements of the system performances.

After the exploration of IRs, designers get a list of candidates showing IRs. With the list,

designers consider how to change the system-level description to improve the system per-

88



6.3. EXPLORATION OF IMPROVEMENT RATE OF THE BOTTLENECK

formances. If the list is not helpful to improve the system performances, designers can try

to explore IRs of the bottlenecks with different conditions of the exploration.

After the consideration of improvement, designers change the system-level description

at redesign step. Then, they again explore software/hardware partitioning with improved

system-level description. The design flow repeats the exploration of software/hardware

partitioning, exploration of IRs of the bottlenecks, and changing system-level description

with explored IRs until designers get a mapping that satisfies the requirements of the system

performances.

6.3 Exploration of Improvement Rate of the Bottleneck

This section describes how Improvement Analyzer identifies bottlenecks and a list of IRs.

6.3.1 Definition of Bottleneck Process

A process X is defined as a bottleneck process if reduction of the execution time of process

X shortens the entire execution time of the system without any change of the mapping.

Figure 6.2 shows an example of bottleneck processes. The example has four processes.

The original execution time of processes A, B, C, and D are 300, 400, 100, and 700, respec-

tively. Processes A, B, and C are mapped to a processor (CPU), and process D is mapped to

dedicated hardware (HW). The original entire execution time is 800 as shown on the right

side of the figure.

Case I shows that process A is a bottleneck process. The execution time of process A

is assumed to be 210 (A’), that is 70% of process A. The entire execution time of Case I is

reduced to 710 because the execution time of process A’ is applied. Reducing the execution

time of process A causes to shorten the entire execution time. Therefore, process A is a

bottleneck process under the definition.
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Figure 6.2: An example of IRs and bottleneck processes.
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With the definition, several processes may become bottleneck processes at the same

time as shown in Case II. The entire execution time also becomes shorter than original one

when the execution time of processes B and D are assumed to be 240 (B’) and 630 (D’),

respectively. Thus, processes B and D are bottleneck processes.

6.3.2 Definition of Improvement Rate

IR indicates the ratio to shorten the execution time or to reduce the hardware area of a

process compared to original one. Examples of IR are also shown in Figure 6.2. Each

process has two types of IR, one for execution time and the other for hardware area. For

example, the original execution time and hardware area of process D are 700 and 200,

respectively. In Case II, it has 10% of IR of execution time and 5% of IR of hardware area.

Thus, the execution time and hardware area of process D are assumed to be 630 and 190,

respectively.

6.3.3 Exploration of the Improvement Rates on Bottleneck Processes

Under the definition of a bottleneck process and that of IR, estimating the entire execution

time with IRs identifies bottleneck processes. If the entire execution time is reduced, pro-

cesses that have IRs are bottlenecks. Thus, increasing the value of IRs clarifies whether the

processes are bottlenecks or not.

Figure 6.3 shows an exploration flow of Improvement Analyzer to identify IRs of bot-

tleneck processes. The inputs are a mapping which is used to explore the IRs, and the

requirements of execution time and hardware area. The output is a set of IRs that is needed

to satisfy the requirements of the system performances.

At the beginning, all IRs in a set of IRs (base set IRs) are initialized to 0% (Initialize).

At the same time, evaluation value of base set IRs (base set IRs.eval) is initialized to max-
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Input:

-A mapping to explore

-Requirements of the system performances

STEP I

sets_IRs = GenerateNewSetsIRs (base_set_IRs); 

STEP III

each set_IRs in sets_IRs{

    set_IRs.eval = costFunction(set_IRs);

}

STEP IV

min_eval = base_set_IRs.eval;

base_set_IRs = MinEval(sets_IRs);

Output:

A set of IRs to satisfy the requirements 

of the system performances

Yes

no

Initialize(base_set_IRs);

base_set_IRs.eval = 

             maximum value; 

STEP II

each set_IRs in sets_IRs{

    set_IRs.exe = 

        EstimateExe(set_IRs);

    set_IRs.area = 

        EstimateArea(set_IRs);

}

base_set_IRs.satisfyRequirments? 

|| base_set_IRs.eval > min_eval

yes

Figure 6.3: Exploration flow of Improvement Analyzer to identify IRs of bottleneck pro-
cesses.
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imum value. After the initialization, four steps are repeated. At step I, new sets of IRs are

generated from A to increase values of IRs. At step II, execution time and hardware area

are estimated with generated sets of IRs. At step III, all generated sets of IRs are evaluated

by the cost function because increasing the same value of IR causes to produce an unreal-

izable IR such as 100%. At step IV, the best set of IRs is selected for further exploration.

After step IV, the exploration ends if a set of IRs satisfies the requirements of the system

performances or there is no better set of IRs.

After an exploration, designers get a mapping and its best set of IRs of bottleneck pro-

cesses. The best set of IRs indicates how much bottleneck processes should be improved

to satisfy the requirements of the system performances on the mapping. In addition, explo-

ration on different mappings may bring better ones. Thus, designers can easily find the best

mapping and its set of IRs of bottleneck processes among several pairs of them.

The detail of each step is described in following.

STEP I

From base set IRs, new sets of IRs are generated by a function GenerateNewSetsIRs. Only

an IR in base set IRs is increased at once. Since a new sets of IRs are generated from each

process’s IR of execution time and hardware area, the number of new sets is twice the

number of processes in maximum. Before the exploration, designers must define static

increasing value of IR.

STEP II

Execution time and hardware area are estimated for all sets of IRs in sets IRs. A trace-

based estimation tool [11] is assumed to be used to estimate the entire execution time with

IRs. The tool usually takes profiles of execution time of processes as input. For that,

the tools can estimate the entire execution time which is applied IRs by reconfiguring the
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profiles of execution time depending on IRs. Hardware area is estimated by summation of

the area of hardware modules. Area of hardware module is reduced when the hardware

area is estimated by applying IRs.

STEP III

Sets of IRs are evaluated by the cost function (costFunction) to determine the best set of

IRs. Better set of IR is assumed to have smaller value. Without this evaluation, only an

IR of a process may increase. This causes to produce an unrealizable value of IR such as

100%. The definition of the cost function is described in section 6.3.4.

STEP IV

A function, MinEval, returns a set of IRs that has minimum evaluated value. Because better

set of IRs has smaller value, this step selects the best set of IRs among the generated sets

of IRs. The selected set of IRs become base set IRs for further exploration.

6.3.4 Detail of Cost Function

Increase of IRs certainly satisfies the requirements of the system performances. An exam-

ple is that IRs of 100% for execution time on all processes bring 0 second of the entire

execution time. It is impossible to realize such IRs. From this point, a set of minimum IRs

that satisfies the requirements of the system performances should be explored.

In order to determine a better set of IRs, the author proposes a cost function. It is

assumed that smaller value of cost function is better. The main purpose of cost function is

to find a set of minimum IRs that satisfies the requirements of the system performances. For

that reason, the value of cost function must decreases if the estimated system performances

which are applied IRs gets close to the requirements of the system performances. On the

other hand, the value must increase in order to avoid impossible rates if IRs get bigger.
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In addition, some processes may be no longer improved. Such processes should not be

listed to be improved more. Thus, the easiness of improvement on all processes should be

user-settable. For that reason, cost function should have three features below:

1. The value gets smaller (better) if the estimated performances with a set of IRs get

close to the requirements.

2. The value should be bigger on large IRs.

3. Designers can set easiness of improvement on all processes separately.

In the following, detail of cost function is described. For the first feature, distance

between estimated values and the requirements of the system performances is used. For

the second feature, penalty depending on IRs is added to cost function. The third feature is

handled by introducing value of easiness to improve process.

There are three kind of parameters determined by designers before the exploration

starts. Note that xxx should be either “exe” or “area” indicating execution time or hardware

area, respectively.

• targetxxx : value of the requirements of exe/area

• easep xxx : value of easiness of exe/area to improve process p

• maxxxx : maximum value of exe/area

The inputs of the cost function are a set of IRs (ratep xxx) and estimated values of execu-

tion time (estexe) and hardware area (estarea). The cost function consists of penalty (penal)

of IRs and distance (dis) between the estimated values and the requirements of the sys-

tem performances. From formula (6.1) to formula (6.3) show calculation of dis. Because

the proposed method deals with two requirements, execution time and hardware area, dis-

tances for execution time (disexe) and hardware area (disarea) are calculated as shown in
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formula (6.2) before calculating dis.

di fxxx = estxxx − targetxxx (6.1)

disxxx =


3 × di fxxx + 0.1 (di fxxx > 0)

0.001 × di fxxx (others)
(6.2)

With disexe and disarea, distance dis is calculated by formula (6.3).

dis =
disexe + disarea

2
(6.3)

The calculation of penalty (penal) is shown below. In the formula, ratep exe and ratep area

indicate the IRs of execution time and hardware area of process p ∈ P, respectively. Note

that P is a set of processes in the system-level description. Standard value of easiness to

improve process p (easep xxx) is one. If it is bigger than one, it means that the process p is

hard to improve. If it is smaller than one, it means that the process p is easy to improve.

Values of easiness to improve process must be determined by designers before the explo-

ration starts. The penalty of execution time (penalexe) and hardware area (penalarea) are

calculated by formula (6.4).

penalxxx =

∑
p∈P (ratep xxx ∗ easep xxx)3

|P| (6.4)

The total penalty (penal) is given by formula (6.5). It is an average of penalties of

execution time (penalexe) and hardware area (penalarea) given by (6.4).

penal =
penalexe + penalarea

2
(6.5)
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Finally, the cost function returns its value (eval) by formula (6.6).

eval = dis + penal (6.6)

6.4 A Case Study

This section shows a case study on AES encryption and decryption application (hereafter,

AES application) in CHStone [34]. The author improved the system performances of AES

application twice along with the design flow shown in Figure 6.1.

The target architecture is Altera Stratix II FPGA board which has a single Nios II soft-

core processor and dedicated hardware [29]. The system performances are evaluated in

terms of execution time and hardware area. The author used the number of ALUTs in

FPGA as hardware area.

6.4.1 Calibration of Coefficients in the Cost Function

Before the author improved AES application, the author had calibrated the coefficients in

cost function by MPEG-4 decoder application that consists of 11 processes. There are

three target architectures. The author used five combinations of the requirements, and the

author explored five mappings on each combination of requirements on target architecture.

In total, the author explored 75 patterns with various coefficients. Note that the easiness of

improvement was set to one on all of them. From the various tries, the author found out the

value of coefficients used in formula (6.2).

6.4.2 Initial Design of AES Encryption and Decryption

AES application is written in C language, and the number of lines is 716. In addition, the

number of “if”, “switch”, and “for” sentences are 26, 10, and 24, respectively.
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Figure 6.4: The structure of AES encryption and decryption application.

Table 6.1: Summary of improvement on AES application. (Exe. and Area indicate execu-
tion time and hardware area, respectively)

Allocation of process / Difference from Initial † Measured
Design EnF EnL DeF DeL Exe. [sec] Area [#ALUTs]
Initial HW HW HW HW 1.31 19,244
Imp1 SW HW HW HW /M, L 0.83 16,573
Imp2 HW / S HW / S HW SW /M 1.29 12,501
†M: reducing memory accesses, L: loops are unrolled,
S: Option of high-level synthesis tool is set to use a single ALU

At first, the author divided the AES application into five processes as shown in Fig-

ure 6.4 so that the author can use Extended SystemBuilder and explore software/hardware

partitioning. The global arrays in C description are changed to shared-memory commu-

nication. Because the process named “top” is the sequencer of the application, it is not a

target of improvement and exploration of software/hardware partitioning. EnF and EnL are

the first half and last half of encryption, respectively. Also, DeF and DeL are the first half

and last half of decryption, respectively. AES application repeats the encryption and de-

cryption for 100 times. On each time, it encrypts and decrypts 10 blocks of data consisting

of 16 integers. Note that the author did not optimize the system-level description at this

step. The system-level description without any optimization is shown as Initial.
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6.4.3 Improvement of System-Level Description

The aim to improve AES application is that the hardware area reduces while the execution

time remains less than Initial design.

In this case study, the author improved system-level description twice along with the

proposed design flow as shown in Figure 6.1. Table 6.1 shows a summary of improvements

on AES application. Initial, Imp1, and Imp2 indicate initial design, first improved design,

and second improved design, respectively. The first round of improvements indicates get-

ting Imp1 from Initial. The second round of improvements indicates getting Imp2 from

Imp1.

After two rounds of improvements, the author finally got a design named Imp2 (1.29

seconds of the execution time and 12,501 in #ALUTs) that has shorter execution time than

Initial design (1.31 seconds of the execution time and 19,244 in #ALUTs). Imp2 design

also has the hardware area which is reduced by 35% from Initial design. The following

presents the details of two rounds of improvements.

First Round of Improvement

At first, the author explored software/hardware partitioning of Initial design. As AES ap-

plication has four processes that can be allocated to software and hardware, so there are

16 mappings in total. The mappings were generated by Mapping Explorer with exhaus-

tive search. The author evaluated the system performances by implementing all generated

mappings onto the FPGA board using Extended SystemBuilder. The author found that

the shortest execution time and the number of ALUTs were 1.31 seconds and 19,244, re-

spectively, as shown Initial in Table 6.1. The author decided that the aim to improve AES

application is that the hardware area reduces while the execution time keeps faster than

1.31 seconds.
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Table 6.2: A list of IRs for Initial design. (requirement of execution time: 1.3 seconds,
requirement of hardware area: 18,000)

Mapping IR of Exe. [%]] IR of Area [%]
ID EnF EnL DeF DeL EnF EnL DeF DeL EnF EnL DeF DeL
1 SW HW HW HW — — — 5 — 5 — 5
2 SW HW SW HW 25 — 15 5 — — — —
3 HW SW SW HW — 40 15 5 — — — —

In order to improve the system performances, the author decided the requirements of

1.3 seconds for the execution time and 18,000 for the hardware area. For all processes,

the easiness to improve process was set to one. From the exploration of software/hardware

partitioning of Initial design, the author found 11 mappings in the pareto solution between

execution time and hardware area. The author explored IRs for those 11 mappings under

the requirements of the system performances described above by Improvement Analyzer.

After the exploration, the author had 11 sets of IRs. The best three results are shown in

Table 6.2. In the table, “Mapping”, “IR of Exe.”, and “IR of Area” indicate the allocation

of processes, IRs of execution time, and IRs of hardware area, respectively.

From the result of mapping ID1, DeL is identified as a bottleneck for execution time.

Its execution time must be reduced 5% in order to satisfy the requirements of the system

performances. By comparing three results, ID1, ID2, and ID3, mapping ID1 had least IRs

in total. From that reason, the author selected the mapping ID1. Then, the author tuned

the source code in order to reduce the number of memory accesses in DeL. The author

also unrolled the loop instructions in DeL in order to improve the performance because it

is implemented on dedicated hardware. Then the author implemented the tuned design of

mapping ID1 shown in Table 6.2 onto the FPGA board. This design is called Imp1.
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Table 6.3: A list of IRs for Imp1 design. (requirement of execution time: 1.3 seconds,
requirement of hardware area: 14,000)

Mapping IR of Exe. [%]] IR of Area [%]
ID EnF EnL DeF DeL EnF EnL DeF DeL EnF EnL DeF DeL
4 HW HW HW SW — — — — 5 35 — —
2 SW HW SW HW 20 — 15 — — — — 10
5 SW HW HW SW 5 — — 50 — — — —

Second Round of Improvement

The author explored software/hardware partitioning in the system-level description of Imp1.

The mappings were generated by Mapping Explorer with exhaustive search. Then they

were implemented onto the FPGA board by Extended SystemBuilder. After the explo-

ration, the pareto solution consists of 10 mappings. Among the 10 mappings, the mapping

of Imp1 in Table 6.1 had the execution time of 0.83 seconds and hardware area of 16,573

in #ALUTs. This design actually satisfied the requirements of the system performances.

However, the execution time of Imp1 (0.83 seconds) was shorter than the requirement of

the execution time (1.3 seconds). In general, it is possible to reduce hardware area by low-

ering the performance of execution time. For that reason, the author decided to lower the

performance of execution time in order to reduce the hardware area. Since the hardware

area of Imp1 was decreased 2,500 from that of Initial, the author decided the requirement

of 1.3 seconds for the execution time and the requirement of 14,000 for the hardware area

which was decreased 2,500 from that of Imp1 (16,573).

The author explored IRs of those 10 mappings in pareto solution. The best three results

are shown in Table 6.3. From the result, mapping ID4 had the least IRs in total. In addition,

mapping ID4 only required to reduce hardware area. In general, a easy way to reduce

hardware area is to change the option of high-level synthesis tool. In this way, the designer

does not have to change the system-level description. For that reason, the author decided

to change mapping ID4 and the option of high-level synthesis tool of processes EnF and
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Table 6.4: A list of IRs for Initial design. (requirement of execution time: 1.3 seconds,
requirement of hardware area: 17,000)

Mapping IR of Exe. [%]] IR of Area [%]
ID EnF EnL DeF DeL EnF EnL DeF DeL EnF EnL DeF DeL
1 SW HW HW HW — — — 5 — 5 — 20
2 SW HW SW HW 25 — 15 5 — — — —
3 HW SW SW HW — 40 15 5 — — — —

EnL. In detail, the option was changed from “a use of several ALUs” into “a use of a single

ALU” in order to reduce hardware area. Note that only the option of high-level synthesis

tool was changed. This design is called Imp2. Then, the author explored software/hardware

partitioning of Imp2, and the author got a mapping whose execution time and hardware area

were 1.29 seconds and 12,501 in #ALUTs, respectively, as shown Imp2 in Table 6.1. The

mapping satisfied the requirements, and the system design ended.

6.4.4 Improvement of System-LevelDescription withDifferentRequire-

ments

In previous section, the requirements of the system performances were decided by the au-

thor’s own. In order to show an efficiency of Improvement Analyzer, this section indicates

the possibility to get almost the same design as Imp2 by selecting different requirements of

the system performances. In detail, the author decided hardware requirement of 17,000 for

the first round of improvement. The author also decided hardware requirements of 15,000

and 13,000 for the second round of improvement.

On the first round of improvement, Table 6.4 shows the result of exploration of IRs

under the requirements of 1.3 seconds for the execution time and 17,000 for the hardware

area. From the result, mapping ID1 had the least IRs in total. In addition, DeL was identi-

fied as a bottleneck of execution time on mapping ID1, and EnL and DeL were identified

as a bottleneck for hardware area on mapping ID1. Although the value of IR is different,
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Table 6.5: A list of IRs for Imp1 design. (requirement of execution time: 1.3 seconds,
requirement of hardware area: 15,000)

Mapping IR of Exe. [%]] IR of Area [%]
ID EnF EnL DeF DeL EnF EnL DeF DeL EnF EnL DeF DeL
4 HW HW HW SW — — — — — 15 — —
2 SW HW SW HW 20 — 15 — — — — —
5 SW HW HW SW 5 — — 50 — — — —

Table 6.6: A list of IRs for Imp1 design. (requirement of execution time: 1.3 seconds,
requirement of hardware area: 13,000)

Mapping IR of Exe. [%]] IR of Area [%]
ID EnF EnL DeF DeL EnF EnL DeF DeL EnF EnL DeF DeL
2 SW HW SW HW 20 — 15 — — 5 — 20
5 SW HW HW SW 5 — — 50 — — — —
6 HW SW HW SW — 55 — — — — — —

identified bottleneck processes are the same as Table 6.2. Thus, it is possible to get the

same design with Imp1 shown in Table 6.1.

On second round of improvement, Table 6.5 shows the result of exploration of IRs

under the requirements of 1.3 seconds for the execution time and 15,000 for the hardware

area. From the result, mapping ID4 had the least IRs in total. In addition, mapping ID4 was

only required to reduce hardware area of process EnL. In order to reduce hardware area of

process EnL, the option of high-level synthesis tool was changed from “a use of several

ALUs” into “a use of a single ALU”. Note that only the option of high-level synthesis

tool was changed. In the result, the execution time and the hardware area of mapping ID4

were 1.29 seconds and 13,037 in #ALUTs, respectively. The result is almost the same with

Imp2 shown in Table 6.1 which is the result under the requirements of 1.3 seconds for the

execution time and 14,000 for the hardware area.

Moreover, on the second round of improvement, Table 6.6 shows the result of explo-

ration of IRs under the requirements of 1.3 seconds for the execution time and 13,000 for

the hardware area. From the result, mapping ID2 had a lot of processes to be improved.
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Table 6.7: The quantity of work spent by designers.

Method Time to analyze bottleneck Action items for improvement
Existing method 7 hours Consideration of how to improve,

Exploration of IRs
Improvement Analyzer 0 hour Consideration of how to improve

In addition, mappings ID5 and ID6 have a few processes to be improved, and they need

more than 50% of improvement in total. Thus, the author judged that it was very difficult

to improve the system-level description. In such case, the designers should relax the re-

quirements of the system performances and explore IRs. In other word, it is possible to

explore IRs under the requirements of 14,000 and 15,000 for the hardware area by relaxing

the requirement of the hardware area. As a result, the designers could get the same design

with Imp2 shown in Table 6.1.

Therefore, even if the designers select different requirements from the two rounds of

improvement in section 6.4.4, the designers could improve the system-level description as

same as Imp2 shown in Table 6.1.

6.4.5 Design Efficiency

This section compares design efficiency between existing method and Improvement Ana-

lyzer. As shown in Figure 6.1, the way to analyze bottleneck processes is different between

existing method and Improvement Analyzer. With existing method, the designers analyze

bottleneck processes by visualizing the execution logs. By this way, IRs cannot be ex-

plored. Thus, designers must explore IRs by themselves. On the other hand, Improvement

Analyzer automatically explores IRs.

Table 6.7 shows time to analyze bottleneck processes. With existing method, the author

needed to analyze the execution logs of 21 mappings in total on two rounds of improve-

ment. Since it is assumed to take 20 minutes in average to analyze a execution log, it
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is estimated to take 420 minutes (7 hours) to analyze the execution logs in total. On the

other hand, Improvement Analyzer used an algorithm to explore IRs. The author did not

take time to analyze bottleneck processes with Improvement Analyzer. Thus, Improvement

Analyzer shortened the time to analyze bottleneck processes.

Table 6.7 also shows action items for the improvement of the system-level description

which were done by the author. Since existing method did not provide specific IRs, the

author had to explore IRs by himself. On the other hand, Improvement Analyzer explored

IRs and analyzed bottleneck processes at the same time. In addition, the author had to

consider how to improve the system in both existing method and Improvement Analyzer.

Thus, Improvement Analyzer has less action items for improvement, and it shortened the

time to improve the system-level description. Therefore, Improvement Analyzer is effective

to efficient the system design.

6.5 Conclusion

The author proposed Improvement Analyzer which is a tool to identify system bottlenecks

and explore improvement rates of them for embedded systems. Because Improvement An-

alyzer automatically identifies not only bottlenecks but also a list of improvement rates that

is necessary to satisfy the requirements of the system performances, Improvement Analyzer

helps designers to improve the system-level description without a time-consuming analysis.

The case study on AES encryption and decryption application showed that Improvement

Analyzer surely identified system bottlenecks automatically. It also showed that the entire

design time of AES encryption and decryption system is shortened by Improvement An-

alyzer. In addition, by using Improvement Analyzer, designers can focus on to consider

how to improve the system-level description with the list of improvement rates. Therefore,

Improvement Analyzer is effective to improve the embedded systems efficiently.
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Chapter 7

Conclusions

7.1 Summary of Contributions

This dissertation presented efficient system-level design space exploration method for em-

bedded systems. The proposed method consists of three tools: Extended SystemBuilder,

Mapping Explorer, and Improvement Analyzer.

In Chapter 2, the author explained a system-level design methodology and System-

Builder. SystemBuilder is a tool to realize system-level design. SystemBuilder automati-

cally synthesizes a target implementation with multi-core processors and dedicated hard-

ware from system-level description of the target system. Since SystemBuilder automat-

ically generates the target implementations from system-level description, it is easy for

designers to design coarse-grain pipelined system.

In Chapter 3, the author presented a case study on an AES encryption system in order

to evaluate the basic design efficiency of SystemBuilder. In the case study, sequential de-

scription of AES encryption system was divided into five processes with pipelined parallel

structure. This case study clarified that SystemBuilder has high effectiveness of designing

systems, especially designing pipelined system. During the case study, the author found
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three problems that current system-level design tools have. For that reason, the author

proposed the solutions of these three problems, which are described in Chapter 4, 5, and 6.

In Chapter 4, the author proposed automatic communication synthesis for hardware

sharing. The proposed method realizes automatic synthesis of communications for hard-

ware modules which are shared by multiple applications. SystemBuilder has been extended

so that it generates interface circuitry for the shared hardware module, which is named Ex-

tended SystemBuilder. Since the applications may run concurrently, the interface circuitry

generated by Extended SystemBuilder realizes mutually exclusive accesses to the shared

hardware module. The case study demonstrated that hardware sharing brought better area-

performance trade-offs and a wider design space.

As the design space becomes wider, the number of possible mappings increases expo-

nentially. Even if Extended SystemBuilder makes evaluation of the system performances

easy by automatic generation of target implementation, it is hard to evaluate an enormous

number of mappings. In Chapter 5, the author proposes an efficient exploration algorithm

named pareto-update search. The author also developed a tool, Mapping Explorer, which

uses pareto-update search in order to accelerates the exploration of software/hardware par-

titioning for finding appropriate mappings. Pareto-update search focuses on the trade-off

relationship between execution time and hardware area. By using this relationship, pareto-

update search can reduce the number of mappings which should be evaluated the system

performances compared to exhaustive search. In a case study of MPEG-4 decoder applica-

tion, pareto-update search reduced the number of simulated mappings to 0.18% compared

to that of exhaustive search.

In Chapter 6, the author proposed Improvement Analyzer which is a tool to analyze bot-

tlenecks of the system by the exploration of improvement rates. Improvement rates indicate

the ratios to shorten the execution time and reduce the hardware area of a process compared

to original ones. Improvement Analyzer automatically identifies not only bottlenecks but
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also a list of improvement rates that is necessary to satisfy the requirements of the system

performances. In addition, Improvement Analyzer lists up several candidates to improve

the system-level description. Thus, Improvement Analyzer is useful for designers in case

that they cannot find an appropriate mapping during the exploration of software/hardware

partitioning. By using the results of Improvement Analyzer, designers easily improve the

system-level description to get better system performance such as execution time and hard-

ware area. The case study on AES encryption and decryption application surely showed

that the bottlenecks of the system are automatically identified by Improvement Analyzer.

As shown in the case studies on AES application and MPEG-4 decoder application in

the chapters, system designers can explore design space at system-level efficiently with

three tools above .

7.2 Future Directions

As mentioned in Chapter 3, Extended SystemBuilder is suitable to design pipelined system

such as AES application and MPEG-4 decoder application. Because the proposed method

is based on Extended SystemBuilder, the proposed method is effective to design pipelined

systems. However, embedded systems are not only pipelined systems. They are variety.

An example of an embedded system that is not pipelined is a control system.

The control systems are now getting more and more complex, and designers are requir-

ing efficient design methodology. As presented in this dissertation, system-level design has

potential to be a solution. In order to apply system-level design tools to design of control

systems, the tools must be able to handle communication with sensors. There are two types

of communication between sensors and PEs. One is data transfer and the other is interrupt

signal. Because Extended SystemBuilder only supports communication among the pro-

cesses, it cannot handle communication with sensors. Not only Extended SystemBuilder
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but also other system-level design tools have the same issue.

One of the promising solutions to the above problem is to extend system-level design

tools. The point of extension is how to handle the interrupt signals and the processes

activated by interrupt. Because the behavioral model does not consider asynchronous event,

interrupt signals and processes activated by interrupt are a big problem to extend the model.

By extending system-level design tools, the problems can be solved, and design efficiency

of control systems can be increased. The author expects that further advance of these

technologies will be helpful in the future complex embedded system design.
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