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Abstract

The spectrum line due to the hyperfine transition of neutral hydrogen atom is well known as

the 21cm line whose wave length corresponds to the energy split of electron’s two spin states.

Although the time scale of this transition is too long to observe in the Earth’s laboratory, the

interstellar medium contains so much of neutral hydrogens that we can observe this transition by

the radio telescope. Therefore the 21cm line is one of the most famous spectrum line in astronomy

and powerful tool to study the Universe.

Recently, various radio survey projects which will probe the Universe from the dark ages to

the epoch of reionization (EoR) via the 21cm line from neutral hydrogen in the intergalactic

medium (IGM) are planning or on going. It is particularly worth noting that the observation via

the 21cm line can explore the distribution of baryons directly. Therefore, it allows us to observe

the dark ages, in which any shine object has not formed yet, through the distribution of neutral

hydrogen and it might be the only way to explore the dark ages. The observations with the 21cm

line from the IGM will provide us the new sight of the Universe we have not seen before and lead

us to the era of more precision cosmology.

In this thesis, we present the applications of the 21cm survey for probing the cosmological

model in more detail with future huge radio telescopes or interferometers. We estimate various

effects to the signal by using both theoretical aspects and numerical results. Then we discuss the

detectability and the accuracy of determination of cosmological parameters from future observa-

tions. We here focus on the two topics; probes for the missing baryon problem and the initial

density fluctuations with non-vanishing isocurvature fluctuations.

The abundance of each component constituting the Universe is well determined from the

observation of the cosmic microwave background (CMB). On the other hand, abundance of

baryons can determined from the observation of the late time Universe through the shining

objects such as galaxies and galaxy clusters. However the abundance of baryons is less than the

prediction from CMB. This contrariety is called missing baryon problem and it is said that most

of baryons probably remain in the IGM as cold/hot baryons. We here focus on the hyperfine

transition of not only neutral hydrogen but also isotope helium-3 in the filamentary structures

in the IGM, which may contain the high-density of them. Such signals are the direct probe of

baryons in the IGM. We carefully estimate such signals and discuss the detectability of them by

future radio surveys.

Next, we investigate the effects of the initial density fluctuations with non-vanishing isocur-

vature fluctuations to the structure formations through the 21cm line from the minihaloes (MHs)
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at high-redshifts. Such a halo can not drive the star formation and it must constrain the high-

density of neutral hydrogen without being ionized. Additionally, the observation of the 21cm

line from the IGM has possibility for differentiating the fluctuations between CDM and baryon,

which can not be realized by the observation of CMB. If isocurvature fluctuations between CDM

and baryon can be distinguished, it opens the new window to the mechanism for the generation

of matters and leads to the deeper understanding about the physics in the early Universe.

From these analyses, we found that the signals due to the hyperfine transition of both hydrogen

and isotope helium-3 from the filamentary structure have enough amplitude to detect the signal

by future radio surveys. In addition, the observed signal of the 21cm line from minihaloes is

affected by non-vanishing isocurvature fluctuations and imprinted characteristic signature, which

is caused by the incorporation processes from minihaloes into a larger halo.
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Chapter 1

Introduction

1.1 History of Radio Astronomy

The birth of radio astronomy is around the end of the 19th century. In 1888, Heinrich R.

Hertz discovered the radio wave from the discharge experiment. From 1894 to 1900, Oliver Lodge

tried detecting the radio wave from the sun with the antenna of centimeter wave. In 1890, Arthur

Kennely made the concept for detecting the radio wave from solar corona with the receiver of

long-wave. However this concept was understood as impossible because it was found that such

radio wave can not reach to the surface of the Earth, after he had discovered Earth’s ionosphere.

After that, the observation of radio wave was outside of astronomers behind the great success

and rise of the large optical telescopes. Therefore, the discovery of the cosmic radio wave and

the pioneering works for the radio astronomy were developed by radio engineers.

The first discovery of the astronomical radio source was consummated by Karl Jansky at Bell

Telephone Laboratories in 1931, while identifying the atmospheric disturbance phenomena which

might interfere with radio telephone service by using an array of dipoles and reflectors designed

to receive short wave radio signals at a frequency of 20.5 MHz and at a wave length of 14.6 m.

From the discovery of signals repeated on a cycle of around 24 hours, he figured out that it must

be extraterrestrial radio wave. In 1933, he found that the signal comes from around the center of

our galaxy, but the mechanism of such radio wave was still unknown. Fred L. Whipple discussed

the prospects of getting the signal from the thermal radiation from the interstellar medium.

A communication engineer, Grote Reber, built the first parabolic dish radio telescope with

9 m in diameter in his back yard in 1940. He conducted the first sky survey at very high fre-

quencies, 3300 MHz, 900 MHz and 160 MHz, and succeeded the detection of Junsky’s cosmic

radio wave at frequency of 162 MHz. In 1946, the radio interferometer was developed by Joseph

L. Pawsey and Martin Ryle. The radio interferometer can overcome the weak point of radio

telescopes whose resolution is far inferior to that of optical telescopes.

The discoveries of the radio wave from the sun were operated during the World War II.

J.S. Hey picked up the interference from the direction of the sun and he confirmed that the large

sunspot group crossed the front side even in the solar minimum (Hey, 1946). In addition to Hey’s
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2 CHAPTER 1. INTRODUCTION

work, G.C. Southworth tried observing the thermal radiation from the sun directly and detected

it with the wave length of 3.2 cm in 1942. Then, Reber also detected the radio wave from the

sun in 1943.

In 1964, Arno Allan Penzias and Robert Woodrow Wilson at Bell Laboratory found the

existence of the homogeneous radio wave corresponding to ∼ 3 K by using the horn reflector

antenna with very low noise level (Wilson and Penzias, 1967). This signal is a trace of the

large expansion of the Universe after the Big Bong and well known as the Cosmic Microwave

background (CMB) radiation. The development of the CMB satellite observations for these

a few decades such as COBE (Smoot et al., 1992), WMAP (Spergel et al., 2003) and Planck

(Planck Collaboration et al., 2013a) makes a remarkable improvement. COBE showed that the

spectrum of CMB is complete black body with temperature of 2.725±0.002 K and discovered the

temperature anisotropies at the first time. WMAP measured the temperature anisotropies more

precisely and determined the cosmological parameters accurately. It’s the dawn of the precision

cosmology and the Planck satellite provided the more accurate CMB map. The comparison of

the observed last scattering surface images by these CMB missions are shown in Figure 1.1.

In 1960s, A. Hewish had observed the scintillation due to the solar window by the dipole an-

tennas, which had very shot time resolution to measure the time-varying fluctuations. One of his

students, J. Bell, incidentally found the signals repeating with around 1s interval in such data.

It opened up the discovery of pulsar and the existence of neutron stars were also established,

simultaneously. J.H. Taylor and R.A. Hulse found a pulsar whose pulse period irregularly varies,

while observing the pulsars by Arecibo1 telescope. It was not only a discovery of binary pulsar

but also the indirect tribute for the gravitational wave.

Inspired by the River’s work about cosmic radio waves in 1940, H.H. Oort has been considering

to apply the cosmic radio waves for the fields of astronomy. Then, one of his students, H. van de

Hulst, found that neutral hydrogen can emit the radio wave with wave length of 21cm due to the

hyperfine transition in 1944. After the war, a competition for detecting the signal from neutral

hydrogen started among some countries, though it was unknown how much neutral hydrogen is

hosted in the interstellar medium and whether the signal can be detected. First detection of the

21cm line was reported by H.I. Ewen and E.M. Purcell in the USA. After that it is also reported

by the groups in Netherlands and Austraia, and the results of these three groups are published

simultaneously in 1951 (Pawsey, 1951; Muller and Oort, 1951; Ewen and Purcell, 1951). Neutral

hydrogen is the major component in the interstellar medium and has strong transmissivity due

to the long wave length. These advantages led to the understanding of the spiral structure in

Milky Way System at the first time via the 21cm line.

1.2 The 21cm line of neutral hydrogen

The 21cm line is the spectrum line related to the hyperfine transition of neutral hydrogen

atom. A proton and an electron in a hydrogen atom interact each other due to the magnetic

1http://www.naic.edu



1.3. FROM DARK AGES UP TO THE EOR 3

Figure 1.1: The comparison of the temperature maps in the last scttering surface observed by
the CMB missions of recent year, COBE, WMAP and Planck, increasing the resolution from left
to right. Credit: Le Figaro2.

dipole moment and can have the hyperfine structure. The energy difference of the hyperfine

transition corresponds to the frequency of ν ≃ 1420 MHz and the wave length of λ ∼ 21 cm. The

transition probability of this hyperfine transition is so low, A10 ∼ 2.9× 10−15 s−1, and known as

the forbidden transition. The time scale of this transition is so long, i.e., t ∼ 107 years, and it is

hopeless to observe such transition in the laboratory.

However hydrogen constitutes a considerable fraction of elements in the Universe and it is

enough to get the observable signal. Therefore the observation of hydrogen is the most fundamen-

tal and powerful tool to understand the distribution and movement of matters in the Universe.

Under the favor of the high transmissivity, the emission from broadly distributing rarefied hy-

drogen gas with low temperature and so on, the spectrum line of the neutral hydrogen has an

unshakable status as a way to observe the inter stellar medium in the radio astronomy.

1.3 From Dark ages up to the EoR

After recombination of a proton and an electron, the Universe is so cold and there are no

sources to shine by themselves until the first structure is formed. Therefore, such epoch is called

as the dark ages in the Universe and we have no way to observe with optical telescopes. However

the observation of the neutral hydrogen gas via the 21cm line has possibility to explore even in

the dark ages and it must be the only way to reveal the dark ages. Then, after the first objects

are formed, the Universe starts to be heated by the UV/X-rays emitted from stars and galaxies

and neutral hydrogens also begin to be ionized. Such an event is called as the reionization in the

2L’enfance de l’Univers vue par le satellite européen Planck, Le Figaro, 21 March 2013;

http://www.lefigaro.fr/sciences/2013/03/21/01008-20130321ARTFIG00444-l-enfance-de-l-univers-vue-par-le-

satellite-planck.php
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Figure 1.2: The schematic picture of the Universe after recombination to the end of the EoR.
The epoch when the Universe had no stars to bright is called “dark ages”. The slight density
fluctuations are magnified through gravity and the clumpy regions gradually form the first stars
and galaxies. Then, the UV light from such stars and galaxies ionizes the neutral gas and it
moves into the epoch of “reionization”. Credit: Nature3.

Universe. From the various kind of observations such as the CMB observation and the survey

of galaxies at high-redshifts, it is predicated that the epoch of reionization (EoR) may finish at

redshift z ∼ 7. After the EoR, the Universe is almost ionized and there are less neutral hydrogen

in the intergalactic medium (IGM). Therefore, the 21cm line from IGM is less significant and

strenuous efforts will be required to observe the IGM at low-redshifts via the 21cm line. We show

the schematic picture of the Universe after recombination to the end of EoR in Figure 1.2.

Hence, the first generation radio surveys to observe the 21cm line from IGM are targeting the

redshifts around EoR. Recently, the observations of the intergalactic medium are performed ac-

tively by various long-baseline radio interferometry surveys such as the Murchion Widefield Array

(MWA4), the Low-Frequency Array (LOFAR5) (van Haarlem et al., 2013b), the Precision Array

for Probing the Epoch of Reionization (PAPER6) and the Giant Metrewave Radio Telescope

(GMRT7). Alternatively various surveys have planed and they are under the construction; e.g.,

MeerKAT8, Australian Square Kilometre Array Pathfinder (ASKAP9) and Five-hundred-meter

Aperture Spherical Telescope (FAST) (Nan et al., 2011). One of the goals for these generation

radio surveys is to reveal the epoch of reionization (EoR) via the 21cm line of neutral hydrogen

in the IGM.

In the left panel of Figure 1.3, we show the LOFAR central stations. Thousands of small an-

tennas are placed in the LOFAR central station, and about eighteen smaller antenna fields spread

over the North of the Netherlands. Furthermore, several international stations are constructed

or planned around European countries, c.f., the right panel of Figure 1.3.

3Galaxy formation: Cosmic dawn, Nature, 29 May 2013;

http://www.nature.com/news/galaxy-formation-cosmic-dawn-1.13076

4http://www.mwatelescope.org
5http://www.lofar.org
6http://eor.berkeley.edu
7http://gmrt.ncra.tifr.res.in
8http://www.ska.ac.za/meerkat/index.php
9http://www.atnf.csiro.au/projects/askap/index.html
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Figure 1.3: The overhead view of the antenna configuration of the LOFAR mission. (Left) The
LOFAR central stations on a specially engineered field. (Right) Locations of the International
LOFAR Telescope (ILT). Credits: Aerophoto Eelde10 and ASTRON11.

The targets of the next generation radio surveys are the observation of the dark ages and the

understanding of the first structure in the Universe, and the Square Kilometre Array (SKA12) will

achieves such demands. In addition, a more ambitious survey such as the Fast Fourier Transform

Telescope (FFTT) is suggested by Tegmark and Zaldarriaga (2009), which is specialized for the

probe of cosmological aspects.

The observation of the 21cm line of neutral hydrogen in the IGM has just started but there are

still a lot of uncertainties on the theoretical side. To fully utilize the vast amounts of information

from the observation, we now have to promote the understanding the history of reionization more

and consider the more applications for the probe of cosmological aspects. The observation via

the 21cm line is one of the few ways to study the distribution of baryons directly but CDM and

the only way to reveal the dark ages. We are just about opening the new window for the Universe

we have never seen.

1.4 Current status for the EoR from observations

The EoR experiments using radio telescopes are already underway. The forefront of such

experiments is LOFAR. Similar experiments have announced the upper limits on ∆2
21cm(k) the

power spectrum of the 21cm line at EoR in a stream recently. For instance, GMRT has obtained

the upper limit of ∆2
21cm(k) ≤ (248mK)2 for k = 0.5h/Mpc at z = 8.6 (Paciga et al., 2013) and

MWA has also obtained almost same constraint such as ≤ (300mK)2 for k = 0.5h/Mpc at z = 9.5

(Dillon et al., 2013). The tightest constraint has been put on by PAPER, which is ≤ (52mK)2

for k = 0.11h/Mpc at z = 7.7 (Parsons et al., 2013).

10http://www.aerophotoeelde.nl
11http://www.astron.nl
12http://www.skatelescope.org
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Figure 1.4: The reionization history obtained from the UDF12 survey and constraints on the
neutral fraction 1−QHII claimed by the other observations; this figure is taken from Robertson
et al. (2013). The different curves represent the models that take into account for the faint
galaxies withMUV < −13 (white/solid) with 68% credibility (orange), MUV < −17 (dashed) and
MUV < −10 (dotted).

On the other hand, the constraints on the EoR have been obtained from the other kind of

observations in roundabout ways. For instance, observations of the Gunn-Peterson test (Gunn

and Peterson, 1965) trough in quasar spectra indicate that intergalactic gas has become almost

fully reionized by redshift z ∼ 5 (e.g., (Djorgovski et al., 2001; Fan et al., 2006)).

From the electron scattering optical depth inferred from CMB observations, the reionization

would have to occur as early as redshift z ≃ 10 if the universe was instantaneously reionized

(Hinshaw et al., 2013; Planck Collaboration et al., 2013a). On the other hand, the small-scale

temperature measurements, such as the Atacama Cosmology Telescope (ACT) and the South

Pole Telescope (SPT), have begun to constrain on the EoR from the contribution of patchy

reionization to the kinetic Syunyaev-Zel’dovich (kSZ) effect (Dunkley et al., 2013; Zahn et al.,

2012). For instance, the SPT data suggests an upper limit on the transition from neutral fraction

0.99 to 0.20 with redshift interval of ∆z < 4.4.

Robertson et al. (2013) has provided new constraints on the role that galaxies play in cosmic

reionization and the duration of the process from the 2012 Hubble Ultra Deep Field (UDF12)

campaign results. Their constraints on the ionization fraction in the EoR from the UDF12 survey

and the other observations are summarized in Figure 1.4. They urge that the population of star-
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forming galaxies at redshifts z ∼ 7 − 9 must likely extend in the luminosity below the UDF12

limits to absolute UV magnitudes of MUV ∼ −13 or fainter to fully reionize the Universe by

redshift z ∼ 6.

What elucidated and indicated in this thesis

In this thesis, we study the cosmological observation of IGM by future radio surveys, whose

signals are related to the hyperfine transition. The 21cm line due to the hyperfine transition

of neutral hydrogen is the most known target for the observation of IGM and one of the main

topics in this thesis. The observation of the 21cm line from IGM leads to the direct search of

baryon components. What’s more remarkable is that it can reveal the history of reionization of

the Universe and open a new window for the dark ages. The observation of the 21cm line has a

lot of possibility for the better understanding about our Universe and must provide us fruitful

information.

Fascinated by above aspects, we apply the observation of the 21cm line for various cosmological

aspects and investigate how well it can probe the Universe more accurately. Thereby, we put

forward suggestions on the application of the 21cm line survey for the next generation radio

survey missions such as SKA and FFTT.

Firstly, we estimate the signal from filamentary structures at low-redshifts to approach the

missing baryon problem. At low-redshifts, the reionization of the Universe has almost completed

and less neutral hydrogens may remain. Therefore, we focus on the other materials which can

have hyperfine structure, such as singly-ionized isotope helium (3He ii), too. Thus, we calculate

the signal related to the hyperfine transition of H i and 3He ii in the filamentary structures at

low-redshifts and discuss the prospects for detecting these signals by on-going or future radio

telescopes (Takeuchi et al., 2014).

Secondly, we calculate the signal from MHs at high-redshifts and investigate how much the

non-vanishing isocurvature fluctuations affect the 21cm signal from MHs (Takeuchi and Chong-

chitnan, 2014). The very blue-tilted isocurvature fluctuations can generate the density fluctua-

tions in small-scales and it affects the structure formation of MHs. In addition, we investigate

how well the observation of the fluctuations in the 21cm line form MHs can constrain isocurvature

fluctuations by using the Fisher matrix analysis. Such studies lead to the understanding about

the initial density fluctuations and the physics in the early Universe.

Outline of this thesis

This thesis is organized as follows. In Chapter 2, we review the cosmological background. We

drive the Friedmann equation and introduce cosmological parameters to describe the constitution

and the geometry of the Universe. Then, We introduce the statistical quantities and briefly

summarize the structure formation.

In Chapter 3, we briefly review the fundamental physics of the 21cm line and the evolution

of spin temperature. Then, we drive the expected signal of the 21cm line from IGM. We here
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obtain the observed brightness temperature and explain the evolution of ionization states and

the gas temperature in the IGM.

Our main work is presented in Chapters 4 and 5. In Chapter 4, we estimate the signal due

to the hyperfine transition for not only neutral hydrogen (H i) but also singly-ionized helium-3

(3He ii) in the filamentary structures at low-redshifts. The we discuss the prospects for detecting

such signals by on-going radio survey or future radio telescopes.

In Chapter 5, we calculate the 21cm emission signal from MHs at high-redshifts and estimate

the effect of isocurvature modes for the structure formation and the 21cm emission signal from

MHs. Furthermore we investigate how well isocurvature modes can be constrained by the future

observation of the fluctuations in the 21cm emission from MHs.

Finally, we state the conclusion and the future prospects in Chapter 6.



Chapter 2

Cosmological Background

We here review the basic cosmological background as a preparation step in this thesis. First

we derive the Friedman equation and introduce cosmological parameters to describe the consti-

tution and the geometry of the Universe. Then we give a description for the growth of density

fluctuations and define the statistical values such as power spectrum ans two point correlation

function. Finally, we briefly get onto the structure formation in the Universe and summarize the

halo mass function and bias. More detailed treatment can be found in e.g., (Dodelson, 2003;

Weinberg, 2008).

2.1 Friedman Universe

The basic cosmological model relies most heavily on “the cosmological principle”, which leads

to that our earth or our galaxy is not located in the special point and there is no particular point

in the Universe. Alternatively, our Universe bristles with lots of rich structures such as stars,

galaxies and clusters and it is observationally well known to be significantly inhomogeneous.

However, observing in the larger scale than the typical size of large-scale structures ( >∼ 100

h−1Mpc), the distribution of matters is almost homogeneous.

Such a isotropic and homogeneous universe can be described with the Robertson-Walker (RW)

metric;

ds2 = gµνdx
µdxν = −c2dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2.1)

where gµν is the metric tensor, a(t) denotes the scale factor and K denotes the curvature. Then

we define χ on the radial coordinate as

r ≡ SK(χ) =


1√
K

sin
√
Kχ (K > 0)

χ (K = 0)
1√
−K

sinh
√
−Kχ (K < 0)

, (2.2)

9
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and Eq. (2.1) can be rewritten as

ds2 = −c2dt2 + a2(t)
[
dχ2 + S2

K(χ)(dθ
2 + sin2 θdϕ2)

]
. (2.3)

The scale factor a(t) represents the relative spacial size at each time and we here normalize it

as a0 = 1 at present time t0. r is the comoving coordinates which are at rest in the coordinate

system in the Universe, whereas a(t)r is equivalent with the coordinate system which evolves

with the expansion of the Universe or a(t) and called proper coordinates.

We next evaluate the time evolution of the scale factor a(t) which describes the expansion of

the Universe. The Einstein equation relates the fabric of space-time to the energy;

Gµν =
8πG

c4
Tµν , (2.4)

where the Einstein tensor Gµν in l.h.s describe the fabric of space-time and the energy momentum

tensor Tµν in r.h.s describe the distribution of the energy, momentum and pressure in the Universe.

The Einstein tensor is composed of the Ricci tensor Rµν and Ricci scalar R, which are from

the Riemann tensor describing the curvature of space-time. Then the Einstein equation with

cosmological constant Λ is given by

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2.5)

and under the assumption of the spacial isotropy and homogeneity, the energy momentum tensor

can be given in the form of the perfect fluid;

Tµν = (ρ+ p)uµuν + pgµν , (2.6)

where uµ is the four-velocity of fluid, ρ and p represent the mass density and pressure of fluid at

the rest frame. Substituting above equation into Eq. (2.5), we get the following two independent

equations; (
ȧ

a

)2

=
8πG

3c2
ρ− c2K

a2
+
c2Λ

3
, (2.7)

ä

a
+

1

2

[(
ȧ

a

)2

+
Kc2

a2

]
= −4πG

c2
p . (2.8)

Eq. (2.7) represents the time components and show the time evolution of the scale factor for the

given matter density. This equation is called the Friedmann equation. Alternatively, Eq. (2.8)

represents the spacial components and it can be rewritten with Eq. (2.7) as

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 . (2.9)

This equation describes the energy conservation low in the Universe. Although we have gotten

the two independent equations such as Eqs. (2.7) and (2.9) which describe the time evolution
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of the scale factor in the isotropic and homogeneous universe, the functions depending on the

time are three, a, ρ and p. Therefore we need another independent equation and we focus on the

equation of state p = p(ρ) which relates the pressure to the density.

The equation of state depends on the behavior of matter which governs the Universe. The

typical components constituting the Universe are categorized into following four components; (i)

non-relativistic matter pm ≪ ρm, (ii) relativistic matter pr = ρr/3, (iii) cosmological constant

pΛ = −ρΛ, (iv) dark energy pde = wρde. The equation of state of cosmological constant is

expressed on that of dark energy as w = −1. Furthermore, these equation of states and the

energy conservation low given in Eq. (2.9) lead to the following relation between the density and

scale factor for each component; (i) ρm ∝ a(t)−3, (ii) ρr ∝ a(t)−4, (iii) ρΛ = const., (iv) ρde ∝
a(t)−3(1+w). The density of the universe is represented as the summation of each component. If

we assume a universe consisting of matter, radiation and dark energy, the density of the universe

is given by

ρ(t) = ρm + ρr + ρde,

= ρm0a(t)
−3 + ρr0a(t)

−4 + ρde0a(t)
−3(1+w) , (2.10)

where the subscript of 0 represents the value at present time.

We here consider the flat and matter dominated universe without cosmological constant;

K = 0, Λ = 0, and ρ(t) ∝ a(t)−3. (2.11)

This cosmological model is called the Einstein-de Sitter model. Under this cosmological model,

Eq. (2.7) can be rewritten as

ȧ2 =
8πG

3c2
ρ0
a
. (2.12)

From above equation, the critical energy density ρcr0 and the critical mass density ϱcr0 at present

time are defined by

ϱcr0 =
ρcr0
c2

≡ 3H2
0

8πG
≈ 2.78× 1011 h2M⊙Mpc−3 , (2.13)

where H0 is the Hubble constant, which describe the expansion rate of the Universe at present

time, and given with scale factor by

H0 =

[
1

a

da

dt

]
t=t0

= 100h km s−1Mpc−1 , (2.14)

where h is the normalized dimension less Hubble constant.
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We here define parameters as follows;

H(a) ≡ 1

a

da

dt
: Hubble parameter (2.15)

Ωi ≡
ρi
ρcr0

=
8πGρi
3H2

0c
2

: density parameter of each component (i = m, r, c, b, ν, ...) (2.16)

ΩΛ ≡ c2Λ

3H2
0

: density parameter of cosmological constant (2.17)

ΩK ≡ c2K

H2
0

: density parameter of curvature (2.18)

Then the Friedmann equation given in Eq. (2.7) can be rewritten with the parameters as

Ωm(t) + Ωr(t) + ΩΛ(t) = 1 + ΩK(t) , (2.19)

As a more realistic cosmological model, we consider a universe with non-relativistic and

relativistic matters, curvature and cosmological constant. Rewriting Eq. (2.7) with present values

as performed in Eq. (2.10) and adopting cosmological parameters defined in Eq. (2.18), we get

the the following equation;

H2(a) =
8πG

3c2
ρm0

a3
+

8πG

3c2
ρr0
a3

+
c2Λ

3
− c2K

a2
,

= H2
0

(
Ωm0

a3
+

Ωr0

a4
+ΩΛ0 −

ΩK0

a2

)
. (2.20)

Furthermore, in the matter dominated era in which non-relativistic matter governs the universe,

this equation can transcribed as

H2(a) = H2
0

(
Ωm0

a3
+ΩΛ0 −

ΩK0

a2

)
. (2.21)

This cosmological model is called the Friedmann-Lemaitre universe.

2.2 Distance

Generally, the distance we usually use means the proper distance which is interval between two

points measured at the same time. However we have to take account of the definition of distance

in the cosmology. This is because that the observed light from distant objects was emitted in the

past time and we can not define the same time at these two points. We therefore have to define

the distance related to the observations and the typical ones are the angular diameter distance

and the luminosity distance.
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2.2.1 Comoving distance

The distance measured on the comoving coordinate is called the comoving distance. The

distance light could have traveled in a time dt corresponds to a comoving distance dx = c dt/a

and given by

c η ≡
∫ t

0

c dt′

a(t′)
. (2.22)

It should be noted that regions separated by distance greater than c η are not causally connected

because no information could have propagated further than c η. η is monotonically increasing

and can be used as a time variable. Hence, it is called the conformal time, whereas t is called the

cosmic time. For instance, η can be expressed analytically as a function of a;

η ∝

{
a for radiation-dominated (RD)

a1/2 for matter-dominated (MD)
(2.23)

Then, the comoving distance out to an object at scale factor a is given by

χ(a) = c (η0 − η) =

∫ t0

t(a)

c dt′

a(t′)
=

∫ 1

a

da′

a′2H(a′)
, (2.24)

where η0 and η represent the conformal time from t = 0 to the present time (t = t0) and to the

time at t = t(a), respectively.

2.2.2 Angular diameter distance

Considering a object at the distance of dA, a observer see the object with angular separation

of θ. If the proper diameter l of that object is known and the angular separation is enough small,

the distance to that object can be defined as

dA =
l

θ
. (2.25)

This distance dA is defined as the angular diameter distance. To accommodate the expanding

universe, we first focus on the flat universe. Taking the diameter of a object with comoving

coordinates as l/a and rewriting the distance to the object with the comoving distance given

in Eq. (2.2), the angular separation is given by θ = (l/a)/χ(a). Substituting this relation into

Eq. (2.25), we get

dflatA = aχ(a) =
χ(a)

1 + z
. (2.26)

In addition, for the open or closed universe, the angular diameter distance is given by

dA =
c

H0

a√
|ΩK |

×


sinh[

√
ΩKH0χ], ΩK > 0

sin[
√
−ΩKH0χ], ΩK < 0

(2.27)

where both cases reduce to the result of flat universe in the limit of ΩK = 0.
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2.2.3 Luminosity distance

As the other method, we consider the flax of the object whose absolute luminosity is known.

For a object at the distance dL with the luminosity L, the observed flax F is given in the isotropic

and homogeneous universe without cosmic expansion by

F =
L

4πd2L
. (2.28)

Therefore we can determine the distance by observing the flax of that object and the distance

determined from above treatment is defined as the luminosity distance dL.

Then, to accommodate the expanding universe, we first take the comoving coordinates whose

origin is at the center of source object and define the luminosity passing the surface of spherical

shell with the comoving radius of SK(χ) as L(χ). The luminosity should be proportional to the

the number and energy of photons passing the spherical surface per unit time. The number of

photons passing the spherical surface is reduced by a factor of a because the physical distance

is shorter in the past time. On the other hand, the energy of a photon is reduce by a factor of

a due to the cosmic expansion. Compared to the luminosity at the past time, the luminosity is

therefore reduced by a factor of a2, i.e., L = L(χ)/a2. Then, the observed flax is given by

F =
L(χ)

4πS2
K(χ)

=
La2

4πS2
K(χ)

. (2.29)

Substituting above equation into the definition of the luminosity distance given in Eq. (2.28), we

obtain the luminosity distance in the expanding universe;

dL =
SK(χ)

a
= (1 + z)SK(χ) . (2.30)

2.3 Linear perturbation

We have considered the completely isotropic and homogeneous universe so far, however any

structures can not be formed without any inhomogeneity. Although the early universe is ex-

tremely homogeneous and only slight inhomogeneity is present, the slight inhomogeneity is am-

plified through the gravitational interaction.

We here consider the evolution of the inhomogeneity through the gravitational instability.

The equations which govern the evolution of fluctuations are following three equations; the Euilar

equation which is the equation of motion for the fluid relating the velocity field v⃗ and pressure

field p, continuity equation which represents the conservation low, and the Poisson equation which

describes the relation between the density field ρ and the gravitational potential ϕ generated by

ρ.

We here define the deviations from the isotropic and homogeneous components for the density

ρ̄(t) and the pressure p̄(t) as the density perturbation δ and the pressure perturbation δp in the
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following forms;

δ(r⃗, t) =
ρ(r⃗, t)− ρ̄(t)

ρ̄(t)
, (2.31)

δp(r⃗, t) = p(r⃗, t)− p̄(t) . (2.32)

Then the evolution equation for the perturbations in the expanding universe can be written as

follows;

∂u⃗

∂t
+ 2Hu⃗+ (u⃗ · ∇⃗)u⃗ = − ∇⃗(δp)

a2ρ̄(1 + δ)
− 1

a2
∇⃗Φ : Euler equation , (2.33)

∂δ

∂t
+ ∇⃗ · [(1 + δ)u⃗)] = 0 : Continuity equation , (2.34)

∇2Φ = 4πGa2(ρ− ρ̄δ) : Poisson equation , (2.35)

where Φ corresponds to the Newton potential in the comoving coordinates and defined by

Φ = ϕ+
1

2
aär2 . (2.36)

These three equations describe the evolution of the density field and show the history of the struc-

ture formation in the expanding universe. However these equations are the non-linear system of

partial differential equation and there is no analytic general solution. Therefore we require some

assumptions to understand the behavior of solutions.

If the quantities describing the deviation from the background quantities such as δ, δp and u⃗

are sufficiently small, the terms with second- or higher-order of these quantities can be ignored.

This process leads to the linear approximation and Eqs. (2.33) and (2.34) can be rewritten as

∂u⃗

∂t
+ 2Hu⃗+

∇⃗(δp)

a2ρ̄
+

1

a2
∇⃗Φ = 0 , (2.37)

∂δ

∂t
+ ∇⃗ · u⃗ = 0 . (2.38)

Eliminating the velocity term with above two equations and replacing Φ into δ with Eq. (2.35),

we can obtain the differential equation for the density fluctuations δ as follow;

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ − ∇⃗2(δp)

a2ρ̄
= 0 . (2.39)

Then, to obtain the relation between the pressure and the density perturbations, we assume

the equation of state given by p = p(ρ, S), where S represents the entropy of fluid in a uni mass.

For the linear approximation, the pressure perturbation is given by

δp =

(
∂p

∂ρ

)
S

ρ̄δ +

(
∂p

∂S

)
ρ̄

δS . (2.40)
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We here define the sound speed cs as the rate of change when the entropy is kept constant,

c2s =

(
∂p

∂ρ

)
S

. (2.41)

If the entropy perturbation can be ignored, the evolution equation for the density perturbation

given in Eq. (2.39) can be rewritten as

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πGρ̄δ − c2s ∇⃗2δ

a2
= 0 . (2.42)

We here consider the Fourier decomposition for the spacial components of perturbation. The

Fourier transform and its inverse transform for the density perturbation is defined by

δk(k⃗, t) =

∫
d3re−ik⃗·r⃗δ(r⃗, t) , (2.43)

δ(r⃗, t) =

∫
d3k

(2π)3
reik⃗·r⃗δk(k⃗, t) , (2.44)

and the equation for δk(k⃗, t) is given by

∂2δk
∂t2

+ 2H
∂δk
∂t

−
(
4πGρ̄+

c2sk
2

a2
δk

)
= 0 . (2.45)

Each Fourier mode is independent each other and it does not affect the other modes in the linear

regime.

We then evaluate the behavior for the solution of Eq. (2.45). The first term denotes the

acceleration of particles, the second term represents the viscous term due to the cosmic expansion

and the third term corresponds to the force due to the potential. Therefore the sign of a coefficient

in the third term, 4πGρ̄−c2sk2/a2, governs the behavior of its solution. If the sign is negative, the

density fluctuations δ decays by oscillating and can not grow. On the other hand, if the sign is

positive, the density fluctuations can grow with feeling the friction due to the cosmic expansion.

We define the wave number which corresponds to that the coefficient is zero as kJ, then it

can be written as a distance;

λJ ≡ 2πa

kJ
= cs

√
π

Gρ̄
. (2.46)

This critical length λJ is called the Jeans length, which gives indication whether the perturbation

grows through the gravitational instability and collapses to a object.

We first consider the growth for the fluctuations in the sufficiently larger scale than the Jeans

length or the fluctuations of non-relativistic matters. In both cases, the term pressure can be

ignored, then the evolution equation for the density fluctuations in the wave number space can

be given by
∂2δk
∂t2

+ 2H
∂δk
∂t

− 4πGρ̄δ = 0 . (2.47)
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The fluctuations of dark matter entering in the matter dominated era is equivalent to this case.

A special solution for this equation is δ ∝ H(a). The other solution can be obtained by putting

the solution as δ ∝ C(a)H(a) and substituting it into Eq. (2.47), then we solve the equation for

C(a). The independent two solutions are given by

D+ ∝ H(a)

∫ a

0

da′

(a′H(a′))3
(2.48)

D− ∝ H(a) (2.49)

These quantities describe the time evolution for the linear growth solution of density fluctuations

in the matter dominated ear and D+ and D− correspond to the growing and decaying modes,

respectively. The decaying mode is such solution getting smaller rapidly and it can be ignored

after a long time. We therefore take into account only the growing mode hereafter. We here

define the normalization of D+ as D+ is equivalent to a in the matter dominated era. In that

time, the Hubble parameter can be given by H(a) = H0Ω
1/2
m0 a

−3/2 and D+ is defined as

D+(a) =
5Ωm0

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
. (2.50)

D+(a) is called the linear growth factor and we hereafter denotes it as D(a). Instead of D(a),

the quantity defined by ag(a) = D(a) is also used and g(a) is called the linear growth function.

2.4 Power spectrum and Correlation function

We here consider the statistical values for the density fluctuations. It is assumed that the

density fluctuations in the Universe are generated through the stochastic processes, therefore the

behavior of fluctuations in a certain point can not be expected theoretically. What the theory can

predict is only the statistical values, which represent the global nature of density fluctuations.

Generally, the density fluctuations in the early universe are described by the Gaussian random

field, then the statistical property leads to the two points correlation function for the density

fluctuations by following form;

ξ(x− y) ≡ ⟨δ(x)δ∗(y)⟩ . (2.51)

We next consider the Fourier transform of the density perturbation;

δ(x) =

∫
d3k

(2π)3
δk(k) e

−ik·x. (2.52)

The two points correlation function in the Fourier space is defined by

⟨δk(k)δ∗k(k′)⟩ =
∫
d3xe−ik·x

∫
d3x′eik

′·x′⟨δ(x)δ∗(x′)⟩ . (2.53)



18 CHAPTER 2. COSMOLOGICAL BACKGROUND

Then, rewriting as x′ = x+ y, we get the following equation;

⟨δk(k)δ∗k(k′)⟩ =

∫
d3xe−ik·x

∫
d3yeik

′·(x+y)ξ(|y|),

= (2π)3δD(k− k′)

∫
d3y eik·yξ(|y|),

= (2π)3δD(k− k′)P (k) . (2.54)

In the last line, we defined P (k) as follow;

P (k) ≡
∫
d3y eik·xξ(|x|) . (2.55)

P (k) is called the power spectrum, which corresponds to the inverse Fourier transform of the

correlation function. By assuming the isotropy, P (k) does not depend on the direction of k.

The shape of the initial power spectrum depends on the generation mechanism of density

fluctuations. Although the inflation theory does not uniquely predict the properties of density

fluctuations, it predicts the shape of the power spectrum to be the power low of wave number k;

P (k) = Akns , (2.56)

where A is the amplitude of power spectrum and ns is the spectrum index. Most of inflation

model predicts the spectrum index to be close to ns ∼ 1 and such a spectrum with ns = 1 is

called the Harrison-Zel’dovich spectrum. The deviation from the Harrison-Zel’dovich spectrum

contains the information of the slow-roll parameters and it leads to the investigation of inflation

models.

As shown so far, the fluctuations in all scales grow following the linear growth factor D(a)

until the non-linear regime. However the shape of the power spectrum depends on whether the

scale of fluctuations is larger or smaller than the horizon scale. In the larger scale than the horizon

scale, the shape of the initial power spectrum is retained, whereas fluctuations in smaller scale

are affected by various physical processes and the shape of power spectrum is changed. In the

linear theory, the evolution equation for the density fluctuations is independent of wave number

k. Therefore such effects can be considered as the independent effects for each wave number, the

power spectrum at the time t can be defined as

P (k, t) =
T 2(k, t)D2(t)

D2(tini)
P(ini)(k) , (2.57)

where T (k, t) is the transfer function, which describes the modification of initial power spectrum

for each wave number and governs the evolution of fluctuations due to various physical effects

inside the horizon scale.

We next consider the amplitude for the power spectrum of density fluctuations, which corre-

sponds to the normalization of the power spectrum and there are two kind of manners. One is
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the way to determine from the temperature anisotropies of CMB. By observing fluctuations in

the larger scale than the horizon scale in that time, we can measure the initial power spectrum

directly.

Another way is to normalize it by using the amplitude of density fluctuations at present time.

The density fluctuations averaged over a certain scale R is given by

δM (r⃗, t) =

∫
δ(r⃗ ′, t)WR(|r⃗ − r⃗ ′|)d3r,

=
1

(2π)3

∫
δk(k⃗, t)W̃R(k) exp(−ik⃗ · r⃗)d3k , (2.58)

where δM represents density fluctuations at a mass scale of M , which is equivalent to the mass

contained within the sphere with smoothing scale R, M = 4π
3 ρ̄R

3. WR(r) and W̃R(k) represent

the window functions in the real space and the Fourier space, respectively. We here adopt the

top-hot window function given by

WR(r) =


3

4πR3
r < R,

0 r > R,
(2.59)

W̃R(k) =
3

(kR)3
[sin(kR)− kR cos(kR)] . (2.60)

Then, the variance of density fluctuations averaged over mass scale M is given by

σ2M (M, t) ≡ ⟨|δM (r⃗, t)|2⟩ = 1

(2π)3

∫
P (k, t)W̃ 2

R(k)d
3k . (2.61)

For the normalization of the power spectrum, σ8 is used, which is the variance within the sphere

with radius of R = 8h−1Mpc at present time. When the power spectrum is given by following

form;

P (k) = AknsT 2(k)D2(a), (2.62)

σ28 is evaluated by substituting above equation into Eq. (2.61) and taking the value at R =

8h−1Mpc;

σ28 = A

∫
d3k

(2π)3
knsT (k)2D2(a0)|W̃8(k)|2 . (2.63)

By determining the value of σ8 from observations, the amplitude of the initial power spectrum

A can be also determined.

2.5 Structure Formation and Dark Matter Halo

We here briefly summarize the theories characterizing the structure formation of large-scale

structures in the Universe. We first derive the halo mass function following the Press-Schechter

prescription. Alternatively, we review the halo bias which relates the distribution of matters to

that of haloes.



20 CHAPTER 2. COSMOLOGICAL BACKGROUND

2.5.1 Halo Mass Function

The objects can be formed more easily in the high density region and the number of objects

also increases. The objects such as galaxies and clusters are encompassed with spherical regions

called halo. The halo model explains that the dark matter particles distribute in the spherical

halo. Therefore the understanding of the statistical property of haloes is essential when we study

that of large-scale structures in the Universe. The number density of objects in a universe is

represented with the halo mass function, which describes how much haloes with certain mass

exist in a universe.

The theory of the Press-Schechter (Press and Schechter, 1974) is widely used in the theory of

the cosmological structure formation. This theory describe the model to estimate the abundance

of objects formed in the certain epoch. The mass function n(M, z) can be derived analytically as

the comoving number density of haloes collapsed at redshift z with mass range of M ∼M +dM .

Press-Schechter Formalism

To describe the structure formation analytically, we first consider to extrapolate the linear

solution for the growth rate of density fluctuations into the non-linear scale by the spherical

collapse model. We consider a sphere with radius of R around the certain point. If the density

fluctuations are small, the total mass M comprised in that sphere is expected with the average

density of the Universe ρ̄ = Ωmρcrit asM = 4πR3ρ̄/3. Then we can relate the radius to the mass,

and the averaged density fluctuations within that sphere can be defined as the fluctuations for

the mass scale of M , δM . If the fluctuations before the averaging process follow the Gaussian

statistics, the averaged quantities also follow the Gaussian statistics. Therefore the probability

density function can be given by

P (δM)dδM =
1√

2πσ2M

exp

(
−
δ2M
2σ2M

)
, (2.64)

where σ2M is the variance of the averaged density fluctuations δM , which is given in Eq. (2.61)

and the radius of the sphere R corresponds to the smoothing scale of the window function. In the

Press-Schcheter’s prescription, when the density fluctuations for the mass scale M , δM , which

is estimated from the linear solution of the density fluctuations, exceed the critical value δc, the

gravitational instability will be driven and the object with mass ofM will be formed. This critical

value δc corresponds to the value of the linear density fluctuations at the point of collapse in the

spherical collapse model and δc ≈ 1.686 is often used. The fraction of regions where exceed the

critical value, δM > δc, can be given with mass scale M as a cumulative probability;

fc(M) = P (> δc,M) =

∫ ∞

δc

P (δM )dδM =
1√
2π

∫ ∞

δc/σM

e−x
2/2dx . (2.65)

In other words, above equation means the fraction which the objects with larger mass than M

are formed in a unit volume.
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We next consider the correspondence between this cumulative probability and the mass func-

tion. The fraction which the objects with mass scale of M ∼M +dM is formed in a unit volume

is given with Eq. (2.64) as |fc(M + dM)− fc(M)|. On the other hand, the abundance of objects

with mass scale of M ∼M + dM is given with the mass function n(M) as n(M + dM)− n(M).

Consequently, these two quantities can be related as follow;

|fc(M + dM)− fc(M)| = [n(M + dM)− n(M)]
M

ρ̄
. (2.66)

Furthermore, considering that dn(M)dM represents the number density of haloes with mass scale

of M ∼M + dM , the mass function is given with Eq. (2.64) by

dn(M)

dM
=

1√
2π

ρ̄

M

∣∣∣∣∣ ddM
[∫ ∞

δc/σM

dxe−x
2/2

]∣∣∣∣∣ , (2.67)

=
1√
2π

ρ̄

M

∣∣∣∣d lnσMdM

∣∣∣∣ δcσM exp

(
− δ2c
2σ2M

)
. (2.68)

However the discussions so far have a little bit improper. First, the process which the objects

once collapsed incorporate into a larger object is not taken into account (cloud-ini-cloud prob-

lem)Secondly, the density fluctuations with negative value, whose density is less than the average

value, are never incorporated into objects. If we assume that the structure formation becomes

advanced sufficiently, taking the limit of σM → ∞ (M → 0) leads to fc(0) =
1
2 from Eq. (2.64).

fc(0) represents the fraction which all mass is contained within objects, and the fact that this

value results in 1
2 means that only half mass in a universe contributes to the structure formation.

In the Press-Shcechter’s prescription, this problem is avoided just by multiplying a factor of 2

to double the mass which contributes to the structure formation. Taking account this fact and

expressing the label of redshift z clearly, the Press-Shcechter’s mass function can be given by

dn(M, z)

dM
=

√
2

π

ρ̄

M

∣∣∣∣d lnσMdM

∣∣∣∣ δc(z)σM
exp

(
−δ

2
c (z)

2σ2M

)
, (2.69)

where δc(z) denotes the critical density at redshift z; δc(z) = δcD(z = 0)/D(z), and D(z)

represents the linear growth rate.

Other mass functions

The Press-Shcechter’s formalism is broadly used to describe the theory of cosmological struc-

ture formations. However, the discrepancy between the Press-Shcechter’s prediction and the

result of numerical simulations is well known; the Press-Shcechter’s prescription overestimates in

small-mass scales, whereas underestimates in large-mass scales. We show some the other mass

functions, which are based on the numerical simulation as follows.

We, first, express the halo mass function with following universal form;

n(M, z)dM =
ρ̄

M
fMF(ν)

dν

ν
, (2.70)
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with ν ≡ δc(z)/σM. The different model of the mass function can be expressed in fMF(ν). For

instance, the Press-Shcechter’s mass function, which is based on the spherical collapse model, is

given by

fPS(ν) = 2

√
ν2

2π
exp(−ν2/2) . (2.71)

Just as an example, the other models of mass function (Sheth and Tormen, 1999; Sheth et al.,

2001), which are based on the non-spherical (elliptical) collapse model, are given by

• Sheth & Tormen (Sheth and Tormen, 1999)

fST(ν) = 2A

(
1 +

1

(ν2)p

)√
ν2

2π
exp(−ν2/2) , (2.72)

with A ≃ 0.3222, p ≃ 0.3.

• Sheth, Mo & Tormen (Sheth et al., 2001)

fSMT(ν) = 2A

(
1 +

1

(qν2)p

)√
qν2

2π
exp(−qν2/2) , (2.73)

with A ≃ 0.3222, p ≃ 0.3 q ≃ 0.707.

• Warren et. al. (Warren et al., 2006)

fWarren(ν) = A

(
b+

1

σaM (ν)

)
exp(−c/σ2M (ν)) , (2.74)

with A = 0.7234, a = 1.625, b = 0.2538, c = 1.1982.

2.5.2 Halo Bias

What we can expect from theory precisely is the statistical properties of the density fluc-

tuations and the distributions of the cold dark matter. However the dark matter can not be

observed directly because it never give off a light. What we can observe is the shining objects

such galaxies, but the distribution of galaxies does not reflect that of the matter faithfully. The

difference between them is caused by different clustering properties of haloes and dark matters.

Generally, the concept relating these two properties is called bias and the relation between the

density fluctuations of haloes δh and that or (dark) matters δm is assumed following form;

δh(M, z) = b(M, z)δm(M, z) , (2.75)

where b(M, z) represents the bias, which determine the behavior of the density fluctuations of

haloes.

Peak-Background Formalism

The theory giving the instinctive understanding about the halo clustering is the peak-background

split (PBS) theory (Cole and Kaiser, 1989), and the bias in large scale where the density fluctu-
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ations linearly grow can be treated by PBS. We first assume that the density fluctuations δ can

be divided into two independent components such as the long wave modes δl and the short wave

modes, which correspond to the density fluctuations in the background and in the peak region

haloes are formed, respectively;

ρ(x) = ρ̄(1 + δ) = ρ̄(1 + δl + δs) . (2.76)

It means that the density field is considered as the superposition of these two components. In the

region where the background components is close to the peak, the object is easily formed and halo

is significantly biased by the matters within that region. Therefore the effects of the density field

of the background is explained as displacement of the critical density for the structure formation

δc and the density fluctuations have to reach the new critical value of δ∗ = δc− δl to be collapsed.

We here consider the Taylor expansion of the mass function around δl = 0;

n(δ) ≃ n(0) +
dn(δl)

dδl

∣∣∣∣
δl=0

δl +
1

2

d2n(δl)

dδ2l

∣∣∣∣
δl=0

δ2l + . . . . (2.77)

It corresponds to the behavior around the point where the critical value δ∗ is not changed. On

the other hand, the Lagrangian number density of haloes at position x, n(x) (the number density

of haloes in a unit mass), is given with the fluctuations of the long wave mode δl(x) as a function

of the statistical value of the fluctuations of the short wave mode Ps(ks). The averaged density

of haloes drags the matter fluctuations in large-scales and it is given by

n(x) = n̄(1 + bLδl) . (2.78)

Comparing this equation with Eq. (2.77) by the first-order of δl, the Lagrangian bias is given by

bL = n̄−1 ∂n

∂δl
=

1

σMfMF

dfMF

dν
. (2.79)

Then, the Lagrangian bias corresponding to the Press-Shcecheter’s mass function given by 2.69

is written by

bL(z,M) =
ν2 − 1

δc(z)
. (2.80)

The bias in the Eulerian space is required to take into account the clustering in the Eulerian

space and given by bE = 1 + bL.

Just as an example, the halo bias models corresponding to the halo mass function given by

Eqs. (2.72) - (2.74) are given as follows.

• Sheth & Tormen (Sheth and Tormen, 1999)

bL(z,M) =
1

δc(z)

[
qδc2(z)

σ2M
− 1

]
+

2p

δc(z)

[
1 +

(
qδ2c (z)

σ2M

)p]−1

, (2.81)

with p ∼ 0.3, q ∼ 0.75.
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• Sheth, Mo & Tormen (Sheth et al., 2001)

bL(z,M) =
1√

aδc(z)

[√
a(aν2) +

√
ab(a2ν2)1−c − (aν2)c

(aν2)c + b(1− c)(1− c/2)

]
, (2.82)

with a = 0.707, b = 0.5, c = 0.6.

• Warren et. al. (Warren et al., 2006)

bL(z,M) =
1

δc(z)

(
2c

σ2M
− a

1 + bσaM

)
, (2.83)

with A = 0.7234, a = 1.625, b = 0.2538, c = 1.1982.



Chapter 3

Fundamental physics of the 21cm line

We here briefly review the fundamental physics of the hyperfine transition, mainly on the 21cm

line, and observed 21cm signal from IGM, c.f. (Furlanetto et al., 2006a; Mo et al., 2010; Pritchard

and Loeb, 2012). We first introduce the hyperfine transition and its spectrum line. Then we

explain the spin temperature, and derive the observed signal, i.e. brightness temperature. Finally,

we solve the evolution of ionization states and the temperature of gas in IGM.

3.1 Hyperfine transition

The splitting of energy levels due to the nuclear spin of atomic nucleus is called as hyperfine

structure, and which is categorized into the magnetic hyperfine structure and the quadrupole

hyperfine structure. The magnetic hyperfine structure is cased by the coupling of the electron’s

magnetic moment to the magnetic field produced by the proton’s magnetic moment. Such kind of

hyperfine structure rarely appears for molecules because most of molecules have paired electron

and the effect of spin is canceled out. Therefore the hyperfine structure caused by the electric

quadrupole interaction instead of the magnetic dipole interaction become of particular importance

for molecules.

Atomic hydrogen can have the magnetic hyperfine structure and the electron and the proton in

the atomic hydrogen interact each other by their magnetic moments. The grand state The electron

in the electronic grand state (1s) can have its spin state either parallel or antiparallel to the spin

state of the proton. The magnetic dipole-dipole interaction between the electron and the proton

results in the hyperfine splitting of each spin state. The antiparallel spin state with degeneracy

g0 = 1 has the lower energy, and the parallel spin state with degeneracy g1 = 2F +1 = 3 (F = 1)

has higher energy. The energy difference between these two levels ∆E cause the emission of a

photon with a wavelength λ = 21.11 cm, whose energy corresponds to ∆E = 5.87×10−6 eV, and

the electron spin flips, when the electron drops from the parallel spin state to antiparallel spin

state.

The interaction energy between nuclear spin and electron spin is given by using angular

25
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Figure 3.1: The schematic view of the hyperfine transition of neutral hydrogen.

momentum quantum numbers as

En = g(I)
m

mp

c hpRα
2

n3

{
F (F + 1)− I(I + 1)− J(J + 1)

J(J + 1)(J + 2)

}
, (3.1)

where F, I, J are respectively total angular momentum (F = I + J), nucleus’s spin angular

momentum (I), electron’s total angular momentum (J = L + S), and electron’s orbital angular

momentum (L) and electron’s spin angular momentum (S). α = 2πe2

hc is the fine-structure

constant, R = 2π2me4

ch3p
is Rydberg constant, n is the principal quantum number, m and e are mass

and charge of a electron, and mp is mass of a proton. g(I) is called as g-factor1.

For the atomic hydrogen in the grand state (n = 1 and L = 0), S = 1/2 and I = 1/2 lead to

J = 1/2, and the energy difference between the parallel spin state (F = 1) and the antiparallel

spin state (F = 0) is written by

E10 ≡ E1 − E0 = g(I)
m

mp

c hpRα
2

n3
8

3
≃ 5.87× 10−6 eV . (3.2)

From the relation between energy and frequency E10 = hpν10, this energy difference corresponds

to a frequency of ν10 ≃ 1, 420 MHz and a wavelength of λ10 ≃ 21.11 cm, and a temperature of

T10 ≡ E10/kB ≃ 0.06816. Therefore the spectrum line attributed to the hyperfine transition of

neutral hydrogen is called as the 21cm line. The schematic view of the hyperfine transition for

neutral hydrogen is shown in Figure 3.1.

Besides neutral atomic hydrogen, for instance, deuterium and singly-ionized helium-3 can also

have the hyperfine structure, and the other materials which is interesting on radio-astronomy can

be found in (Townes, 1957).

1g(I) is a proportional constant which makes a correlation among the magnetic moment of nuclear µ, nuclear

magneton µN and angular moment I. The magnetic moment of a proton µp is represented as µp = g(I)µN
ℏp I, where

µN =
eℏp

2mpc
is

(
m
mp

∼ 1
1836

)
times magnitude of the Bohr magneton µB and g(I) ∼ 5.586 for a proton.
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Figure 3.2: The level diagram for the Lyα transitions, which illustrates the WF process (Deguchi
and Watson, 1985). The hyperfine sub-levels of the 1S and 2P states of H i, D and 3He ii are
shown and the relative probabilities of the various transitions are indicated.

3.2 Spin temperature

In equilibrium, the relative abundance of the hyperfine excited state and the ground state is

determined by the spin temperature Ts (or excitation temperature) as (Field, 1958)

n1
n0

=
g1
g0

exp

[
−hpν10
kBTs

]
. (3.3)

The spin temperature characterizes the thermal equilibrium between these two spin states, and

Ts is determined by the balance between such processes as CMB photon absorption, collision

between atoms, and scattering of Lyα photons. The scattering of Lyα is well known as the

Wouthuysen-Field (WF) process (Wouthuysen, 1952; Field, 1958); a electron in the n = 1 level

with a given spin state absorbs a Lyα or a Lyman-series photon to jump to the n ≥ 2 level

and then spontaneously decays back to the n = 1 level with a different spin state. The hyperfine

sublevels of the 1S and 2P states of H i, D and 3He ii are illustrated in Figure 3.2, which describes

the level diagram for the WF process.

In general, these processes can couple the spin temperature to the kinetic temperate of the

gas Tk and the brightness temperature of the radiation field Tα

Ts =
TCMB + ycTk + yαTα

1 + yc + yα
, (3.4)

where yc and yα are the coupling factors of the collisional process and the WF process, respec-

tively.



28 CHAPTER 3. FUNDAMENTAL PHYSICS OF THE 21CM LINE

The coupling factors can be written as

yc ≡
C10

A10

T∗
Tk

=

∑
i n

iκi10
A10

T∗
Tk

, (3.5)

and

yα ≡ P10

A10

T∗
Tα

=
4

27

Pα
A10

T∗
Tα

, (3.6)

where A10 is the spontaneous decay rate from state 1 to 0, T∗ is the equivalent temperature

defined as T∗ ≡ hpν10/kB.

C10 is the rate of collisional de-excitation and κi10 is the rate coefficient for spin de-excitation

in collisions with that species (Zygelman, 2005; Sigurdson and Furlanetto, 2006; Furlanetto and

Furlanetto, 2007a; Furlanetto and Furlanetto, 2007b). We show these rates as a function of the

kinetic temperature of gas in Figure 3.3. The total coupling coefficient is given by the sum over

all species.

P10 is the rate of de-excitation due to the absorption of a Lyα photon, which is related to

the total scattering rate of Lyα photons by 4Pα/27 for H i. For instance, P10 for deuterium and

helium-3 can be written as follow;

P10 =


4Pα/27 for H i

16Pα/81 for D

4Pα/9 for 3He ii

(3.7)

In Figure 3.4, we show the evolution of the temperature for CMB (TCMB), gas in the IGM

(Tk), which corresponds to the kinetic temperature of gas, and the spin temperature (Ts). In the

right panel, we take into account only the collisional process and the coupling with the radiation

field is ignored. We here plot the result calculated from RECFAST2 (Seager et al., 1999, 2000).

On the other hand, in the right panel, we here take into account the gas heating by UV/X-ray

sources and the pumping processes by Lyα photons. To include such processes, we have to know

the evolution of UV/X-ray background or sources from observations and theoretical aspects.

We here adopt the result from the semi-numerical simulation of the high-redshift 21cm signal

(21cmFAST3) (Mesinger et al., 2011). In the following works from Chap. 4 to Chap. 5, we adopt

some prediction for the UV/X-ray background and take into account the couplings with radiation

field.

2http://www.astro.ubc.ca/people/scott/recfast.html
3http://homepage.sns.it/mesinger/DexM 21cmFAST.html



3.3. BRIGHTNESS TEMPERATURE 29

1 10 10
2

10
3

10
4

T
k
 [K]

10
-13

10
-12

10
-11

10
-10

10
-09

10
-08

κ 
[c

m
3 s-1

]

κHH

κeH

κpH

10

10

10

Figure 3.3: De-excitation rate coefficients for H-H collisions (solid/red line), H-e− collisions
(dashed/green line) and H-p collisions (dot-dashed/blue line) as a function of the kinetic tem-
perature of gas Tk.

3.3 Brightness temperature

If CMB photons propagate through a uniform cloud with Ts = const., the observed brightness

temperature at frequency ν can be written by

Tb(z) = TCMB(z)e
−τ(z) +

(
1− e−τ(z)

) hpkB
exp(hpν/kBTs)− 1

(3.8)

≃ TCMB(z)e
−τ(z) +

(
1− e−τ(z)

)
Ts(z) , (3.9)

where τ(z) is the optical depth to photons, TCMB(z) is the brightness temperature of the CMB

in the absence of absorption. In the second line of 3.9, we apply the approximation in the

Rayleigh-Jeans limit (hpν ≪ kBTs).

When the line profile is unbroadened; ϕ(ν) = δ(ν− ν0), the optical depth corresponds to that

of the IGM at redshift z. For neutral hydrogen, the optical depth of the diffuse IGM is given by

(Madau et al., 1997)

τ(z) =
3

32π

c2hpA10

ν210kBTs(z)

nHI(z)

(1 + z)(dv∥/dr∥)
, (3.10)

where A10 = 2.85×10−15 s−1 is the spontaneous decay rate from state 1 to state 0, dv∥/dr∥ is the

gradient of the proper velocity along the line of sight, which includes both the Hubble expansion

and the peculiar velocity.

The change in the brightness temperature is seen as the contrast to the CMB, and the differ-
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Figure 3.4: The evolution of the CMB (TCMB), the gas (Tk) and the spin temperature (Ts).
(Left) The spin temperature includes only collisional coupling and only adiabatic cooling and
Compton heating are involved for the IGM temperature evolution (from RECFAST). (Right)
The heating by UV/X-ray sources and the pumping process by Lyα photons are included (from
21cmFAST).

ential brightness temperature observed at the present time is given by

δTb = Tb − TCMB =
(1− e−τ(z)) [Ts(z)− TCMB(z)]

1 + z
. (3.11)

As one can see, if the spin temperature completely couples to the CMB temperature, no net

effect can not be observed as neither emission nor absorption. When the spin temperature is

larger than the CMB temperature, the signal is observed as emission line (δTb > 0). To the

contrary, when the spin temperature is lower than the CMB temperature, the signal is observed

as absorption line to (δTb < 0).

If we assume optically thin cloud, τ(z) ≪ 1, the brightness temperature given by Eq. (4.13)

is rewritten as

δTb(z) ≃ Ts(z)− TCMB(z)

1 + z
τ(z) (3.12)

≃ 10xHI(1 + δ)

(
1− TCMB(z)

Ts(z)

)
(1 + z)1/2

(
H(z)/(1 + z)

dv∥/dr∥

)
mK , (3.13)

where xHI is the ionization fraction for H i. We have substituted the velocity H(z)/(1+ z) in the

third line, but this assumption is valid only for the uniform Hubble expansion and reasonably

satisfied at high redshifts. Furthermore, we have substituted the local number density of the

neutral hydrogen in the IGM

nHI = n̄HI(1 + δ) (3.14)

= (1− Yp)(Ωb/Ωm)(ρm/mH)(1 + δ) , (3.15)
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Species State λ10 [cm] ν10 [MHz] A10 [s−1] g1/g0
H i 1S1/2 −0 S1/2 21.11 1420.4 2.876× 10−15 3/1

D 3/2S1 −1/2 S1 91.6 327.3 4.695× 10−17 3/1
3He ii 0S1/2 −1 S1/2 3.46 8665.7 1.959× 10−12 1/3

Table 3.1: The parameters related to the hyperfine transition for H i, D and 3He ii. λ10 and ν10
are the wave-length and frequency corresponding to the energy of the hyperfine transition, A10

is the spontaneous decay rate2, and g1/g0 is the statistical weight of first-excited/ground states.

where n̄HI is the mean number density of the neutral hydrogen, Yp is the helium fraction and mH

is the mass of a hydrogen atom.

In addition to the 21cm line of neutral hydrogen, there are some interesting spectra line on

radio-astronomy, for instance isotope hydrogen (deuterium; D) and singly-ionized helium-3 ion,

and we show some values related to the hyperfine transition for these materials in Table 4.1.

The brightness temperature can be given by the same form with Eq. (3.13) as follows;

δTb,D(z) ≃ 0.08xHI(1 + δ)

(
[D/H]

3× 10−5

)(
1− TCMB

Ts,D

)
(1 + z)1/2 µK , (3.16)

δTb,3HeII(z) ≃ 0.5xHeII(1 + δ)

(
[3He/H]

10−5

)(
1− TCMB

Ts,He

)
(1 + z)1/2 µK , (3.17)

where xHI and xHeII are respectively the ionization fraction of H i and He ii, and the spin tem-

perature is defined separately for D and 3He ii.

3.4 Thermal history of the IGM

To calculate the signal from H i due to the hyperfine transition, an estimation of its ionization

states and abundances is required. To achieve this, we hove to solve the balance equations

between the ionization and recombination processes. These processes are highly dependent on

the environment in the IGM, e.g., the density and the temperature of gas. The photo-ionization

and the heating processes through the IGM are also determined by the background radiation

field. We here estimate the evolution of the abundance for each ionization state and the gas

temperature in the IGM following the manner of (Fukugita and Kawasaki, 1994).

3.4.1 Ionization states of hydrogen and helium

We here assume that the system contains only H and He, the abundance of each ionization

state, i.e. H i, H ii, He i, He ii and He iii, is given by solving the balance equation between the

2The values of A10 for some materials which is interesting on radio-astronomy can be found in (Townes, 1957;

Gould, 1994; Syunyaev, 1966; Goldwire and Goss, 1967).
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ionization and recombination processes. The evolution of H i and H ii are determined by

d

dt

[
nHII

nH

]
= ΓHIne

nHI

nH
+ βHIne

nHI

nH
− αHIIne

nHII

nH
, (3.18)

where ne is the number density of electron, nHI and nHII are respectively the number densities

of the neutral and the ionized hydrogen, and nH ≡ nHI + nHII is the total number density of

hydrogen.

The evolution of He i, He ii and He iii is determined by

d

dt

[
nHeII

nHe

]
= ΓHeIne

nHeI

nHe
+ βHeIne

nHeI

nHe
− βHeIIne

nHeII

nHe

− (αHeII + ξHeII)ne
nHeII

nHe
+ αHeIIIne

nHeIII

nHe
, (3.19)

and
d

dt

[
nHeIII

nHe

]
= ΓHeIIne

nHeII

nHe
+ βHeIIne

nHeII

nHe
− αHeIIIne

nHeIII

nHe
, (3.20)

where nHeI, nHeII and nHeIII are respectively the number densities of the neutral, the singly-ionized

and the doubly-ionized helium, and nHe ≡ nHeI + nHeII + nHeIII is the total number density of

helium.

Assuming the ionization equilibrium, the electron number density is given by

ne = nHII + nHeII + 2nHeIII , (3.21)

and the abundance of each ionization state in this system is determined by these four equations,

i.e. Eqs. (3.18)-(3.21).

Then, these functions used in the ionization equations are; the photo-ionization rate ΓX, the

recombination rate αX, the dielectronic recombination rate ξX, and the collisional ionization rate

βX. The label X represents the each component, X ∈ {H i, H ii, He i, He ii, He iii}. The functions
for αX, βX and ξX, are summarized in Appendix A.1 (Spitzer, 1978; Verner and Ferland, 1996).

These values depend on the temperature of gas and we have to solve for the evolution of the

gas temperature simultaneously together with the set of above four equations for the ionization

states.

3.4.2 Evolution of the gas temperature in IGM

While the evolution of each ionization state depends on the temperature of gas in the IGM,

the gas temperature also depends on the value of the local density and the flux of the background

radiation through the heating or cooling processes. Assuming that the IGM is in the thermal

equilibrium, the entropy equation can be written as (Mo et al., 2010)

d lnTg
d ln(1 + z)

= (γ − 1)

[
3 +

1

(γ − 1)

d lnµ

d ln(1 + z)
− H− Λ

H(z)nb kBTg

]
, (3.22)
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where nb is the baryon number density, γ is the adiabatic index, µ is the mean molecular weight,

and H(z) is the Hubble parameter. H and Λ are the heating and cooling functions, respectively.

We summarize the cooling function in Appendix A.3 (Black, 1981; Cen, 1992). The first term

in the right hand side of Eq. (3.22) corresponds to the adiabatic cooling through the Hubble

expansion.
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Chapter 4

Probing large scale filaments with

H i and 3He ii

We explore the observability of the neutral hydrogen (H i) and the singly-ionized isotope

helium-3 (3He ii) in the intergalactic medium (IGM) from the Epoch of Reionization down to

the local Universe. The hyperfine transition of 3He ii, which is not as well known as the H i

transition, has energy splitting corresponding to 8 cm. It also has a larger spontaneous decay

rate than that of neutral hydrogen, whereas its primordial abundance is much smaller. Although

both species are mostly ionized in the IGM, the balance between ionization and recombination in

moderately high density regions renders them abundant enough to be observed. We estimate the

emission signal of both hyperfine transitions from large scale filamentary structures and discuss

the prospects for observing them with current and future radio telescopes. We conclude that H i

in filaments is possibly observable even with current telescopes after 100 hours of observation.

On the other hand, 3He ii is only detectable with future telescopes, such as SKA, after the same

amount of time.

4.1 Introduction

Since the prediction of the 21 cm hyperfine transition by van de Hulst (1945) and its first

detection by Ewen and Purcell (1951) and Muller and Oort (1951), forbidden quantum transition

lines have been powerful tools in exploring various astrophysical systems. The advent of new

larger and more sensitive radio telescopes makes it possible to use such tools for exploring even

higher redshifts and lower density environments. Two recent examples are the use of redshifted 21

cm for exploring the Epoch of Reionization (EoR) (see e.g., Furlanetto et al. (2006a); Pritchard

and Loeb (2012); Zaroubi (2013)); and for mapping neutral gas around redshift ∼ 1-2 to probe

the baryon acoustic peaks (Chang et al., 2008). Another line, that has been discussed in the

literature, is the singly-ionized helium-3 isotope, 3He ii (Townes, 1957; Sunyaev, 1966; Goldwire

and Goss, 1967; Rood et al., 1979; Bell, 2000; McQuinn and Switzer, 2009; Bagla and Loeb,

2009). In this study we propose to use H i and 3He ii to detect large scale filaments and the

accumulation of baryons within them as a function of redshift.

35
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At the local Universe, most of the baryons in the intergalactic space reside in filamentary

structures, the so-called cosmic web (Bond et al., 1996). These filaments are readily seen by

modern galaxy surveys, such as the 2-degree Field Galaxy Redshift Survey (Colless et al., 2001;

Erdog̃du et al., 2004), the Sloan Digital Sky Survey (York et al., 2000) and the 2-Micron All-Sky

Survey (Skrutskie et al., 2006). Unfortunately, however, such surveys are not able to probe the

baryonic content of these filaments and its distribution, where less than half of baryons at the

local Universe have been identified (Cen and Ostriker, 1999; Fukugita and Peebles, 2004).

The observation of filamentary structures in the IGM through the hyperfine transition of

neutral hydrogen can be a powerful tool that has the potential for detecting the missing baryons

in the local Universe (see e.g., Popping et al. (2009) and Popping and Braun (2011)). However,

below redshift ∼ 6, the detection of H i in the diffuse IGM becomes very difficult as the Universe

reionizes and a very small neutral fraction is left. Despite this difficulty, Chang et al. (2010) and

Masui et al. (2012) have detected H i at low redshift by cross correlating the aggregate 21-cm

glow with data from other probes of large-scale structure. Still, the signal of the auto-correlation

at low-redshifts can be interpreted as an upper bound on the 21 cm signal (Switzer et al., 2013).

Direct detection of H i from IGM filaments has not been reported yet.

Observation of 3He ii transition from the diffuse and filamentary structure in the IGM is very

difficult to carry out, mainly because of its low abundance relative to hydrogen, and therefore,

in principle in harder to detect. Furthermore, the sensitivity of the current radio telescopes at

the appropriate frequency range is too poor for such a task. However, despite the low primordial

abundance of 3He relative to hydrogen (∼ 10−5), it has some mitigating factors that render it

observationally accessible. These factors are as follows:

1. The spontaneous decay rate of 3He ii (A10 = 1.959× 10−12 s−1) is ∼680 times larger than

that of the H i (A10 = 2.876×10−15 s−1) (Gould, 1994; Sunyaev, 1966; Goldwire and Goss,

1967), which significantly increases its emission rate.

2. The ionization energy of He ii (54.4 eV) is 4 times larger than that of neutral hydrogen

(13.6 eV), namely, it requires harder photons to fully ionize. Conversely, this difference in

ionization energy causes the He iii recombination rate to be ∼5 times larger than that of

H ii (Verner and Ferland, 1996). Hence, the abundance fraction of 3He ii in the IGM should

be larger than that of H i.

3. The line transition occurs at a frequency of 8.7 GHz, in which the foreground synchrotron

radiation from our galaxy and distortions from the terrestrial ionosphere are both less

pronounced.

The overdensity of filaments in the IGM is roughly of the order of 10-100 times the mean

density of the Universe. Therefore, given the size of such filaments, one can accumulate a sizable

column density of both H i and 3He ii, in particular if they are elongated along the line of sight.

Furthermore, at these densities, the recombination rates for both species are generally shorter

than Hubble time and a reasonable fraction of H i and He ii is expected to be present. Detection

of either species will go a long way in accounting for the baryons in the Universe at the redshift
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of detection. In addition, the relative abundance of these species can constrain the hardness of

the UV background as a function of redshift.

Our aim in this study is to estimate the prospect of observing these two species within large

scale structure filaments with the present and future radio telescopes in the redshift range ∼ 0−8.

Here, we consider a number of single dish telescopes, e.g., GBT1 (Chang et al., 2010; Masui

et al., 2012) and Arecibo2(Freudling et al., 2011), and radio interferometers such as EVLA3, and

GMRT4. Note that LOFAR does not have the proper frequency range for observing either of the

two transitions, except H i at z >∼ 6 (van Haarlem et al., 2013a). We also make predictions for

future telescopes that generally have more sensitivity, a larger field of view and wider frequency

coverage: FAST5, MeerKAT6 and, of course, the mega radio telescope SKA7, which is expected

to be completed around 2024.

This chapter is organized as follow. We summarize the physical models used in the paper

for calculating the H i and 3He ii signal from large scale filamentary structure in the IGM in

Section 4.2. In the same section, we also evaluate the abundance of each ionization state, the

gas temperature in the IGM and the spin and brightness temperatures. The predicted hyperfine

transition signal of H i and 3He ii for simple models as well as for filaments from large scale

structure simulations is presented in Section 4.3. Finally we discuss the prospects of observing

the emission signal of the hyperfine transition from filamentary structures with current and future

radio telescopes in Section 4.3.3. The paper ends with a conclusion and discussion section.

Throughout this paper, we adopt the cosmological parameters from the WMAP 7 years data

(Komatsu et al., 2011).

4.2 The physical Model for H i and 3He ii

To calculate the signal from H i and 3He ii, an estimation of their ionization states and

abundances is required. To achieve this, we solve the balance equations between the ionization

and recombination processes. These processes are highly dependent on the environment in the

IGM, e.g. the density and the temperature of gas. The photo-ionization and the heating processes

through the IGM are also determined by the background radiation field. We here adopt the

UV/X-ray background model of Haardt and Madau (2012), hereafter “HM12”.

Furthermore, the signal of the hyperfine transition is related to the relative occupation number

of the excited state relative to the ground state, which determines the spin temperature. The

spin state is mainly affected by two processes; one is the collisional excitation process with other

species or itself, and the other is the Ly-α pumping of the line which is called as the Wouthuysen-

Field (WF) process (Wouthuysen, 1952; Field, 1958, 1959). We estimate the spin temperature

taking into account both these processes.

1https://science.nrao.edu/facilities/gbt
2http://www.naic.edu/
3https://science.nrao.edu/facilities/vla
4http://gmrt.ncra.tifr.res.in/
5http://fast.bao.ac.cn/en/FAST.html
6http://www.ska.ac.za/meerkat/index.php
7http://www.skatelescope.org/
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In this section, we summarize the physical models for the estimation of the hyperfine transition

and its signal from the filamentary structure in the IGM. In Sec. 4.2.1 and 4.2.2, we estimate

the evolution of the abundance for each ionization state and the gas temperature in the IGM

following the manner of (Fukugita and Kawasaki, 1994) and adopting the photo-ionization rates

Γ(z) and the heating function H(z) given by HM12. In Sec. 4.2.3, we summarize the physical

processes determining the spin state and estimate the spin temperature. Finally, we calculate

the brightness temperature and estimate the signal from the filamentary structure in Sec. 4.2.4.

4.2.1 Ionization state of hydrogen and helium

We here assume that the system contains only H and He, the abundance of each ionization

state, i.e. H i, H ii, He i, He ii and He iii, is given by solving the balance equation between

the ionization and recombination processes. The evolution of H i and H ii are determined by

Eq. (3.18), and the total number density of hydrogen is given by nH ≡ nHI + nHII.

The evolution of He i, He ii and He iii is determined by Eqs. (3.19) and (3.20), and the total

number density of helium is given by nHe ≡ nHeI + nHeII + nHeIII.

Assuming the ionization equilibrium, the electron number density is given by Eq. (3.21) and

the abundance of each ionization state in this system is determined by these four equations, i.e.,

Eqs. (3.18)-(3.21).

Then, we adopt the value of each photo-ionization state ΓX from HM12, which takes into

account the photo-ionization heating of H i, He i and He ii , and Compton heating. The other

functions adopted in our calculation, αX, βX and ξX, are summarized in Appendix A.1 (Spitzer,

1978; Verner and Ferland, 1996). These values depend on the temperature of gas and we have to

solve for the evolution of the gas temperature simultaneously together with the set of above four

equations for the ionization states.

4.2.2 Gas temperature

While the evolution of each ionization state depends on the temperature of gas in the IGM,

the gas temperature also depends on the value of the local density and the flux of the background

radiation through the heating or cooling processes. Assuming that the IGM is in the thermal

equilibrium, the evolution of the gas temperature is given by Eq. (3.22). Then, we adopt the HM12

heating function H, wheres the cooling function used in this work is summarized in Appendix A.3

(Black, 1981; Cen, 1992).

To describe the local density contrast of baryons, we define the local number density of each

baryon component as,

nX ≡ (1 + δ) fb n̄X = ∆b n̄X , (4.1)

where δ is the density fluctuation of matter, fb represents the bias, n̄X is the average number

density of a component X, and we define the the baryon density contrast as ∆b ≡ (1 + δ) fb.

The distribution of baryons might be different from that of matter, but we assume this effect

should be small on the scales in which we are interested in this chapter, i.e. fb = 1. Therefore
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Figure 4.1: The time evolution of the ionization states for the hydrogen (Left) and the helium
(Right). The top panels show the number density of each ionization state, while the bottom
panels show their fractional abundance against the total number of hydrogen nHx/nH or helium
nHex/nHe; the label X represents the each ionization state. The ionization states for the hydrogen
are taken into account two states, H i (red) and H ii (green), while the ones for the helium are
taken into account three states, He i (blue), He ii (magenta) and He iii (orange). The different
line types represent the different values of the baryon density contrast parameter ∆b defined in
Eq. (4.1), and dashed, dotted and dashed-dot lines respectively correspond to ∆b =1, 10 and 100.

∆b = 1 corresponds to the mean number density in the IGM. The definition of the baryon density

contrast parameter ∆b includes this uncertainties.

The interaction time scale of the ionization and recombination for each species are given

by tionX = (ΓX + βXne)
−1 and trecX = (αXne)

−1, respectively. If these time scales are much

shorter than Hubble time, the assumption of the ionization equilibrium is valid. For example,

the typical time scales for hydrogen in the IGM are respectively tionHI ∼ (10−14/ΓHI)× 107 yr and

trecHII ∼ ∆−1
b × 1011 yr at z = 0. Since the recombination time scale is longer than the Hubble

expansion time at low-density region, the assumption of the ionization equilibrium is not satisfied

for hydrogen. However, the condition for the assumption of ionization equilibrium is satisfied in

the high-density region (∆b >∼ 10) such as in the case of filamentary structure in the IGM. In

such a region, the local thermal equilibrium is also reasonably satisfied, since the interactions

between the electrons and ionized species work effectively.
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Assuming equilibrium, we solve these five independent equations Eqs. (3.18)-(3.22) simulta-

neously. We show the results of the abundance for some different values of the baryon density

parameter, ∆b = 1, 10 and 100, in Figure 4.1. We should note that the assumption of the

equilibrium seems invalid for ∆b = 1, but we show for comparison purpose.

4.2.3 Spin temperature

In this section, we summarize the spin temperature and its coupling factors due to collisions

and to the Wouthuysen-Field (WF) effect for both neutral hydrogen H i and singly-ionized isotope

helium-3 3He ii.

The relative abundance of the hyperfine excited state and the ground state is determined by

the spin temperature Ts as
n1
n0

= (g1/g0) exp

[
−hpν10
kBTs

]
, (4.2)

where n1 and n0 are the numbers of hyperfine excited state and the ground state, respectively. The

factor g1/g0 is the statistical weight of first-excited/ground state, hp is the Planck constant, kB

is the Boltzmann constant, ν10 is the frequency which corresponds to the energy of the hyperfine

transition.

The spin temperature is determined by two processes. One is the collisional excitation or

de-excitation of the spin states. The other is the change of the spin states through the absorption

and spontaneous re-emission of a Lyα photon or any Lyman-series photon (Madau et al., 1997;

Shaver et al., 1999; Hirata, 2006; Furlanetto and Pritchard, 2006; Pritchard and Furlanetto, 2006).

These two processes couple the spin temperature to the gas field and radiation field as (Field,

1958)

Ts =
(TCMB + ycTk + yαTα)

(1 + yc + yα)
, (4.3)

where Tk is the kinetic temperate of gas, Tα is the brightness temperature of the radiation field,

yc and yα are the coupling factors of the collisional process and the WF process, respectively.

The coupling factors can be written as

yc =
C10

A10

T∗
Tk

, yα =
P10

A10

T∗
Tα

, (4.4)

where A10 is the spontaneous decay rate from state 1 to 0, C10 is the rate of collisional de-

excitation, P10 is the rate of de-excitation due to the absorption of a Lyα photon, and T∗ is the

equivalent temperature defined as T∗ ≡ hpν10/kB.

In general, the rate of collisional de-excitation is written as

C10 = ne

√
kBTk
πmec2

cσ̄ , (4.5)
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λ10 ν10 A10 λα fα g1/g0 primordial
Species [cm] [MHz] [s−1] [Å] abundance

H i 21.1 1420.4 2.876× 10−15 1215.67 0.4162 3/1 —
3He ii 3.46 8665.7 1.959× 10−12 303.78 0.4162 1/3 1.0× 10−5

Table 4.1: The parameters related to the hyperfine transitions for H i and 3He ii. λ10 and ν10 are
the wave-length and frequency corresponding to the energy of the hyperfine transition, A10 is the
spontaneous decay rate, λα and fα is respectively the wave-length and the oscillator length of the
Lyα transition, and g1/g0 is the statistical weight of first-excited/ground state. The primordial
abundance for 3He is expressed as the fractional abundance against hydrogen, i.e., 3He/H.

and σ̄ is the averaged cross-section for spin exchange given by

σ̄ =
1

(kBTk)2

∫ ∞

0
dEσ(E)Ee−E/(kBTk) , (4.6)

where σ(E) is the cross-section for spin exchange as a function of collision energy.

The rate of de-excitation due to the absorption of Lyα photons is written as

P10 =
4πe2fα
mec


4

27
Jα for H i

4

9
Jα for 3He ii

(4.7)

where e is the electron charge, me is the electron mass, fα is the oscillator length of the Lyα

transition, Jα is the flax at Lyα wave-length, and g1/g0 is the statistical weight of the first-

excited/ground state. These values are defined for each hyperfine structure and we summarize

some values related to these processes in Table 4.1. We give the detailed values on these rates

for H i and 3He ii in the following sections.

H i : neutral hydrogen

For the collisional excitation of the neutral hydrogen (H i), the main process is the collision

with a electron, while collisions with a proton or a neutral hydrogen atom themselves are sub-

dominant. The total rate of collisional de-excitation can be expressed as the summation of these

three processes;

CH I
10 =

[
κHH
10 (Tk)nH + κeH10 (Tk)ne + κpH10 (Tk)np

]
, (4.8)

where κHH
10 , κeH10 and κpH10 are respectively the collisional rates for H-H, e-H and p-H processes,

and we can find these values as a function of the kinetic temperature Tk in (Zygelman, 2005;

Sigurdson and Furlanetto, 2006; Furlanetto and Furlanetto, 2007a; Furlanetto and Furlanetto,

2007b).

For the WF process of H i, following Eq. (4.7), the de-excitation rate is related to the radiation
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field as

PHI
10 =

16πe2fHI
α

27mec
JLyα,HI , (4.9)

where fHI
α = 0.4162 is the oscillator length of the H i Lyα transition, and JLyα,HI is the flax at

H i Lyα wave-length (λLyα,HI = 1216Å).

3He ii : singly-ionized isotope helium-3

The most dominant process of collisional coupling for the singly-ionized isotope helium-3

(3He ii) is the collision with electrons. Then, following Eq. (4.8), the rate of collisional process

can be written as

C
3HeII
10 = ne

√
kBTk
πmec2

c σ̄e
3He , (4.10)

and σ̄e
3He is the averaged cross-section of spin exchange between 3He ii and electron, which can

be approximately given from (McQuinn and Switzer, 2009) as

σ̄e
3He ≃ 14.3eV

kBTk
a2o , (4.11)

where ao is the Bohr radius.

For the WF process of 3He ii, the de-excitation rate can be estimated from Eq. (4.7) in the

same manner as the case of H i and given by

P
3HeII
10 =

16πe2fHeII
α

9mec
JLyα,HeII , (4.12)

where fHeII
α = 0.4162 is the oscillator length of the He ii Lyα transition, and JHeII,Lyα is the flax

at He ii Lyα wave-length (λLyα,HeII = 304Å).

In both cases, i.e. for H i and 3He ii, we have to assume the Ly-α flux as a function of redshift.

Throughout this chapter, we adopt the recent model of UV/X-ray background from HM12.

We compute the spin temperature with the assumption that the kinetic temperature Tk and

the color temperature Tα are coupled to the gas temperature Tg; i.e., Tk ≃ Tα ≃ Tg. We show

the evolution of the spin temperature of H i and 3He ii in the left panel of Figure 4.2, and the

kinetic temperature Tk and the temperature of CMB TCMB are also plotted in the same panel.

Although the contribution of the radiative coupling to the spin temperature is so weak at

low-redshifts, it becomes important around the EoR. Moreover some exotic models show that

the contribution of X-ray alter the history of reionization dramatically (Furlanetto et al., 2006b;

Shchekinov and Vasiliev, 2007), and the uncertainties sill remain on the estimation of the spin

temperature around EoR or at high-redshift.
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Figure 4.2: (Left) The time evolution of the kinetic temperature Tk (orange), the spin temperature
of H i (blue) and 3He ii (green), and the temperature of CMB TCMB (red), (from top to bottom).
(Right) The evolution of the differential brightness temperature of H i and 3He ii as a function of
redshift. In both panels, the different line types represent the different values of the baryon density
contrast parameter ∆b, and the dashed, dotted and dot-dashed lines respectively correspond to
∆b = 1, 10 and 100 (from bottom to top). On the estimation of the differential brightness
temperature, we assume the filament structure with 1 Mpc/h width (∆r = 1 Mpc/h) and the
proper line-of-sight velocity to be ∆v = 300 km/s.

4.2.4 Differential brightness temperature

In radio astronomy, the emission from the hyperfine transition of H i or 3He ii are observed,

in term of the differential brightness temperature relative to the CMB, and given by

δTX
b (z) ≡ TX

b (z)− TCMB(z) =
[TX

s (z)− TCMB(z)](1− e−τX(z))

1 + z
, (4.13)

where TXb is the brightness temperature and τX(z) is the optical depth, where X marks either

H i or 3He ii. In general, the optical depth is defined as

τX(z) =
g1

g0 + g1

c2hpA10

8πν210kB

nX(z)

TX
s (z)

1

(dv∥/dr∥)
, (4.14)

where nX(z) is the number density of species X, and dv∥/dr∥ is the velocity gradient along the

line-of-sight, including both the Hubble expansion and the peculiar velocity (Kaiser, 1987).

If the optically thin regime (i.e. τ ≪ 1), Eq. (4.13) can be rewritten as

δTX
b (z) ≃

[
TX
s (z)− TCMB(z)

]
τX(z)

1 + z

≃ g1
g0 + g1

c2hpA10

8πν210kB

nX(z)∆r

(1 + z)∆v

(
1− TCMB(z)

TX
s (z)

)
, (4.15)

where ∆r denotes the line-of-sight width of the filamentary structure and ∆v denotes the proper
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Figure 4.3: A 1.4 Mpc/h slice of the density field through the N -body simulation at present
redshift. The color-bar represents the over density 1 + δ. The boxes and symbols are the
appropriately-defined filamentary structures and their center positions.

line-of-sight velocity. In the second line in Eq. (4.15), we used the optical depth given by

Eq. (4.14). Eq. (4.15) shows that the differential brightness temperature can be observed as

the emission(absorption) signal when the spin temperature is larger(smaller) than the CMB.

We show the differential brightness temperature of H i and 3He ii in the right panel of Figure

4.2 for the different values of the baryon bias parameters, ∆b = 1, 10 and 100. Here we assume

the filament with the width ∆r = 1 Mpc/h and the proper line-of-sight velocity ∆v = 300 km/s.

The H i column density of this filament corresponds to NHI = nHI∆r ≃ 1015 − 1016 cm−2 with

∆b = 100 around the present redshift.

The emission from 3He ii shows a different redshift dependence relative to that of H i. This

is because the reionization state of H i is different from that of He. The drop in δT
3HeII
b around

z ∼ 4 corresponds to the epoch of He ii reionization (He ii→He iii), where the fraction of He ii

for the total helium components decreases after that. Therefore it is expected that it becomes

more difficult to observe 3He ii emission after z ∼ 4. However the advantage of the observation

with high-frequencies at low-redshifts also motivates us to attempt to probe the missing baryon

in the filamentary structures through the emission line of the hyperfine transition of 3He ii.
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4.3 The Signal Estimation

In the previous section, we estimated the brightness temperature of the hyperfine structures

with some assumptions on the filamentary structure, which were about the density fluctuations

δ, the proper line-of-sight velocity ∆v and the width ∆r of the filament. As a next step, we

calculate the signals adopting more realistic values for the filaments from the N -body simulation

of the large-scale structures.

First, as a preparation to estimate the signal from the filamentary structure, we summarize

the N -body simulation used to make the large-scale structures and the procedure to estimate

the signal of hyperfine transition based on the N -body simulation. Furthermore, we focus on the

signal from an elongated filamentary structure and consider the signal as a result of observing

the filament from various angles. Finally we summarize the sensitivity of the current and future

radio telescopes to estimate their ability to detect the signal.

4.3.1 N-body Simulation

To make the snapshots of N -body data, we use the parallel Tree-Particle Mesh code Gadget-

2 (Springel, 2005) in its full Tree-PM mode. We employ 5123 particles 120 Mpc/h on a side,

and the minimum mass resolution corresponds to 9.68 × 108M⊙/h. The initial conditions are

generated following the standard Zel’dovich approximation and we employ the linear matter

transfer function computed from CAMB (Lewis et al., 2000) in this step. We show the matter

density field estimated through the N -body simulation at the present time in Figure 4.3. The

frames and the symbols are, respectively, the appropriately-determined filamentary structures

and their center position. We focus on the signals from these filaments later in the following

section.

We here estimate the signal of the hyperfine transition for H i and 3He ii based on the N -body

simulation of the large-scale structures. On the calculation of the brightness temperature, we

firstly divide the simulation box into 2563 grids and estimate the density contrast δ ≡ (ρ− ρ̄)/ρ̄

and the proper line-of-sight velocity ∆v with Cloud-in-Cell (CIC) interpolation on each grid.

Then we estimate the differential brightness temperature through Eq. (4.13) adopting the values

of the density contrast and the proper line-of-sight velocity on each grid. Both signals from H i

and 3He ii are estimated with above manner.

We show the thin sliced maps of the differential brightness temperature for H i and 3He ii

at some redshift slices, which are z = 0, 1, 2 and 4, in Figure 4.4 and Figure 4.5, respectively.

The depth of the slice along the line-of-sight is 1.4 Mpc/h for all, and we compute these two-

dimensional maps by accumulating the signals of some thin slices on each patch. Please note,

the depth of 1.4 Mpc/h along the line-of-sight corresponds to the frequency bandwidth of ∼0.7

MHz for the H i survey and ∼ 4 MHz for the 3He ii survey at z = 0.

We can see the filamentary structures in both cases through the brightness temperature, and

the amplitudes are δTb ∼ 10−6 K for H i and ∼ 10−9 K for 3He ii in the maps at z = 0. The

signals are lower than the signals calculated on the assumption for the filamentary structure with

∆b ≃ 100 — this also applies for higher redshifts. As we can see from Figure 4.3, the density
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Figure 4.4: The thin sliced maps of the differential brightness temperature of H i at different
redshift slices, which are at z = 0 (Top-Left), z = 1 (Top-Right), z = 2 (Bottom-Left) and z = 4
(Bottom-Right). We estimate the density contrast and the proper line-of-sight velocity from
the snapshots of the N -body simulation, then calculate the differential brightness temperature
through Eq. (4.13). All slices are 120 Mpc/h on a side and the depth along the line-of-sight are
1.4 Mpc/h.

contrast of the filaments is ∆b <∼ 100 at present redshift. We can also clearly see the drastic

drastic transition of 3He ii from z = 4 to z = 2, which reflects the He ii reionization.

4.3.2 Signal from a filamentary structure

Here we focus on the signal from a filamentary structure. As confirmed from the optical

observation of the large-scale structures, the observed filamentary structures have the elongated

shapes (Erdog̃du et al., 2004; Choi et al., 2010; Pandey et al., 2011). When a filament extends

toward the line-of-sight and the filament and the line-of-sight direction are parallel to each other,

we can expect to detect the highest signal from the filamentary structure. On the other hand,

when the filament and the line-of-sight direction are perpendicular to each other, the signal should

be lower than the former case. Therefore the signal from a filamentary structure depends on the
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Figure 4.5: Same as Figure 4.4, except the maps are for the differential brightness temperature
of 3He ii. The realization of N -body simulation is use the same one with the map of H i.

direction we observe the filament or the angle between the filament and the line-of-sight direction.

We estimate δTb for three filaments which correspond to the ones shown in Figure 4.3 and

labeled with ”a”, ”b” and ”c”. We here assume the cylindrical skewer on the x-y plane shown

in Figure 4.3 and rotate a skewer by angle θ around the center of the filament. The positional

relation between the filamentary structures and the observed skewer is shown in Figure 4.6. In

this case, we put the skewer on the same plane with the filament and the line-of-sight directions

is on the x-y plane. The angle θ represents the separation between a filament and a skewer, and

we choose θ = 0◦ when the line-of-sight direction is parallel to the filament. We show the signals

at present redshift with different angles for H i in Figure 4.8 and for 3He ii in Figure 4.9. In

those figures, we show results for the different values of the spacial resolution; rs = 1, 3, 5 and

10 Mpc/h, and the length of the skewer is adopted as R = 100 Mpc/h for all cases. We should

note that these results have no contribution from the high-density region whose density contrast

is δ ≥ 200, because our targets are the emission signals from the filamentary structures and the

signals from the high-density regions such as galaxies are out of this work, also our assumptions

are not valid anymore. On such a region, we have to take care of baryon physics or the stellar
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Figure 4.6: The positional relation between the filamentary structures and the observed skewer.
θ represents the angle between the skewer and x-axis, R and rs respectively represent the length
along the line-of-sight and the spacial resolution of skewer. The center of the filament corresponds
to the symbol shown in Figure 4.3 and the direction of the line-of-sight is fixed on the x-y plane.

production process of 3He more carefully.

From Figure 4.8 and 4.9, we can see the angular dependence of the signal on each filamentary

structure. The small spikes reflect the contributions from the other structures around the filament.

Compared to the filament-a and -b, the filament-c has more widespread structure and this is the

reason the angular dependence of the filament-c is feeble. If we observe the filament which extends

along the line-of-sight, the amplitude of the emission signal can be expected δTb ∼ 10−5 K for

H i and ∼ 10−8 K for 3He ii with spacial resolution of rs = 1 Mpc/h, and these amplitudes are

more than 10 times lager than the lowest cases.

The signal, of course, is expected to be higher, if we require the larger values of the spacial size

for the skewer. However it highly depends on the specification of rivers or the survey strategy.

In the following sections, we, discuss the prospects for observing the signals of the hyperfine

transition.

4.3.3 Observational sensitivity

In this section, we summarize the sensitivity of the radio-telescope to estimate the prospects

for observing the signals of H i and 3He ii. Here we assume some kind of different radio observa-

tions and the expressions for the noise of the radio telescope are adopted from (Furlanetto et al.,

2006a).
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The finest achievable resolution of the radio-telescope is called as ”diffraction limit” and

it depends on the largest dimension of the telescope Dmax and the observing frequency λ as

θD = λ/Dmax. Therefore the resolution is restricted by not only the specification of the telescope

but also the observing frequency.

The sensitivity or the brightness temperature uncertainty of radio telescope can be often given

as

δTN(λ) ≃
λ2/θ2s
Atot

Tsys√
∆νTobs

, (4.16)

where λ is the observing frequency, θs is the angular resolution, Tsys is the systematic temperature,

Atot is the total collecting area, ∆ν is the band width, and Tobs is the integration time of the

observation.

At low-frequencies the sky is so bright and the synchrotron radiation from the Milky Way

dominates the sky around ∼ 150 MHz where is relevant to the EoR of H i. Contrary the sky

at high-frequencies gains a great advantage, and can keep the systematics from foreground quiet

low. From some empirical rules at high-latitude, the temperature in ”quiet” portions of the sky

is given as v

Tsky ∼ 180
( ν

180MHz

)−2.6
K . (4.17)

We here assume that the foreground is the dominant component for the systematics and take

into account only the sky temperature as the systematic temperature; i.e., Tsys ≃ Tsky. Adopting

the sky temperature given in Eq. (4.17), the noise of the interferometer can be written from

Eq. (4.16);

δT sky
N (ν) ≃ 5.0

(
105 m2

Atot

)(
1′

∆θ

)2(1 + z

1

)4.6(1420MHz

ν0

)4.6(MHz

∆ν

100 hr

Tobs

)1/2

µK , (4.18)

where ν is the targeting frequency, ∆θ is the beam angular resolution, and ν0 represents the rest

frame frequency of the observed hyperfine transition; i.e., ν0=1420 MHz for H i or ν0=8667 MHz

for 3He ii.

Although the observation with high-frequencies at low-redshifts has the advantage to achieve

high-sensitivity due to less contaminants from the foreground, the receiver noise Trec dominates

the system temperature. The noise due to the receiver noise can be written from Eq. (4.16);

δT rec
N ≃ 23.9

(
Trec
30 K

)(
105 m2

Atot

)(
1′

∆θ

)2(1 + z

1

)2.0(1420MHz

ν0

)2.0(MHz

∆ν

100 hr

Tobs

)1/2

µK ,

(4.19)

where Trec is the receiver noise. Therefore, we should take into account the contribution from

the receiver noise for the reasonable estimation; Tsys ≡ Tsky + Trec, and it should be the crucial

aspects for the observation of 3He ii.

Then we define the total noise combining Eqs. (4.18) and (4.19) as

δTN =
(
δT sky

N + δT rec
N

)
×

{
1 (single dish)

1/
√
NB (interferometer)

(4.20)
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Figure 4.7: (Left) The spacial size rA with different values of the angular size θs as a function of
redshift. (Right) The relationship between the frequency band width ∆ν and the spacial length
along the line-of-sight ∆r for the H i (solid-line) and the 3He ii (dashed-line) observations.

where NB = Ndish(Ndish − 1)/2 is the number of pair-wise correlations or base lines, and Ndish is

the number of telescopes for the interferometer. The noise for the interferometer can be reduced

by the factor of 1/
√
NB.

4.3.4 Spacial resolution of Observations

The spacial size rA and the depth along the line-of-sight ∆r for a observation depend on the

cosmological model. We here summarize them and their relationship with the survey parameters.

When the angular resolution θs is given, the spacial size can be determined by

rA = θsχ(z) , (4.21)

where χ(z) is the comoving distance to the observed source at redshift z. On the other hand, the

depth along the line-of-sight is determined by the frequency band width ∆ν and the relationship

between them is given by
∆r

∆ν
≃ 1 + z

ν0

c

H(a)
, (4.22)

where ∆ν is the frequency band width and ν0 is the restframe frequency of the observed source.

Therefore this relationship differs between the H i and 3He ii observations.

We show the results with our cosmological model as a function of redshift in Figure 4.7.

We consider some on-going or future radio-telescopes, which are Green Bank Telescope (GBT),

Arecibo Radio Telescope (Arecibo), Five-hundred-meter Aperture Spherical Telescope (FAST),

Giant Metrewave Radio Telescope (GMRT), Expanded VLA (EVLA), MeerKAT and Square-

Kilometer Array (SKA), and we show the characteristic parameters for these radio telescope in

Table 4.2. We should note that the operating range of GMRT does not have enough frequency

range to observe the signal of 3He ii at low-redshifts and its achievable redshift range is z > 4.7.

The operating range of FAST also does not reach the restframe frequency of 3He ii, however the
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Telescope Rdish [m] Ndish Atot [m
2] ϵap Operating range Dmax [km]

Single dish
GBT 100 — 7,850·ϵap 0.7 100 MHz - 116 GHz 0.1
Arecibo 305 — 73,000·ϵap 0.8 47 MHz - 10 GHz 0.3
FAST 500 — 200,000 1 70 MHz - 3 GHz 0.5

Interferometer
EVLA 25 27 13,300 — 1,000 MHz - 50 GHz 1 - 36
GMRT 45 30 60,750 — 50 MHz - 1.5 GHz 25
MeerKAT (phase 2) 13.5 64 9,160 — 580 MHz - 14.5 GHz 20
SKA (phase 2) 15 1,500 300,000 — 70 MHz - 10 GHz 5c

Table 4.2: The characteristic parameters for the specification of the radio-telescopes. GBT and
Arecibo are the single dish telescopes and the others are the radio-interferometers. Rdish is the
diameter of a dish for one telescope, Ndish is the number of telescopes, and Atot is the effective
total collecting area of the telescope. The parameter ϵap represents the aperture efficiency of the
single dish telescope. Dmax is the maximum base line length of the telescope; for EVLA the value
depends on the configuration of the telescopes, and for SKA we take the extent of compact core.

future updating may allow to observe up to 8 GHz (Nan et al., 2011).

We show the emission signals and the sensitivity curves for the observation of H i and 3He ii

in Figure 4.10 and 4.11, respectively. The signals are adopted the same ones shown in the right

panel of Figure 4.2, and we assume the Trec = 30 K of the receiver noise for all cases. We should

note that the sensitivity of EVLA and FAST are almost same amplitude in our assumption and

we plot only that of FAST for the illustrative purpose. We compare three types of observation

with different angular resolutions; ∆θ =30, 10 and 1 arcmin. The solid curves represent the sensi-

tivity of each telescope, and we here take into account both the sky temperature and the receiver

noise for the system temperature. Then, we assume 100 hours of integration time and ∆ν =30

MHz of frequency band width for H i and ∆ν =200 MHz for 3He ii, respectively. These values

for the band width correspond to ∼ 100 Mpc/h depth along the line-of-sight around z = 0.5.

As shown in Figure 4.4 and 4.5, the emission signal is expected to increase at higher redshifts

for both H i and 3He ii. In Figure 4.12 and Figure 4.13, we show the signal from each filamentary

structure at various redshifts, z = (0, 0.5, 1, 2, 4), for H i and 3He ii, respectively. We also plot

the sensitivity curves for each survey in the same panels. The way to estimate the signal is same

as that of shown in Figure 4.8 and 4.9, and we consider observing a filament from various angles.

Each data point shows the range of signal between maximum and minimum amplitudes, and the

symbol represents the average value.
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Figure 4.8: The signal of H i from the filamentary structures at z = 0. The angle θ represents the
angular size between a filament and the line-of-sight, rs and R represent the spacial size and the
line-of-sight width for a skewer. The different color lines show the different values of rs; which
are 10 Mpc/h (magenta), 5 Mpc/h (blue), 3 Mpc/h (green) and 1 Mpc/h (red), and the width
is fixed to be R = 100 Mpc/h for all cases. The positional relation between a filament and a
skewer is pictured in Figure 4.6. The label ”a”, ”b” and ”c” correspond to the filaments shown
in Figure 4.3.

4.4 Discussion

4.4.1 Prospect of observation

We here discuss the prospects for detecting the emission signals of H i and 3He ii with the

on-going or future radio-telescopes.

For the signals of H i, the amplitude of signal at z =0 to 1 is δTb ∼ 10−6 to 10−4 K with

rs = 3 Mpc/h from Figure 4.12. The angular resolution of ∆θ = 10 arcmin corresponds to ∼
3.9 Mpc/h spacial width at z = 0.5 and it seems that these specifications can be enough for our

purpose to observe the filamentary structures. Actually, the beam size of the present receiver for

this frequency range is adequate; g.e. 9 arcmin for GBT and ∼ 3.5 arcmin for Arecibo. Therefore

we have possibility for detecting the H i signal even by present instruments. We here assume 100

hours integration time, but GMRT, EVLA and future telescopes may have enough sensitivity to

detect the signal with shorter integration time.

On the other hand, compared to the signal of H i, the signal of 3He ii is so weak and the
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Figure 4.9: Same as Figure 4.8, but for the signals of 3He ii.

amplitude is less than the order of micro-kelvin at z = 0 to 1. When we assume a skewer with

rs = 1 Mpc/h and R = 100 Mpc/h, the amplitude is δTb ∼ 10−10 to 10−8 K at z = 0.5 from

Figure 4.13. Such level of sensitivity can be achieve by the future telescopes such as MeerKAT

and SKA. The amplitude of noise due to the sky temperature also can be lower than that of H i

under the favor of high-observing frequency at restframe frequency of 8.6 GHz for 3He ii hyperfine

transition. However the system temperature is dominated by the receiver noise rather than the

sky temperature at high-frequency. After all, the amplitude of noise for the 3He ii observation is

comparable to one of the H i observation.

The other crucial aspect is the narrow beam size at the high-frequencies. Generally the beam

size of the receiver at high-frequencies is smaller than at low-frequencies. Therefore the observing

area becomes so tiny; g.e. 1.7 arcmin for GBT and 0.7 arcmin for Arecibo, and the angular size is

rs ∼ 0.3 Mpc/h for Arecibo at z = 0.5. In general, the field-of-view for the single dish telescope

corresponds to the beam size, and the observing area is so tiny. If we require rs = 1 Mpc/h

angular size with Arecibo, we have to observe z ≥ 2. From this aspect, the single dish telescope

seems unsuitable for the detection of the 3He ii signal at low-redshifts. Wheres, the field-of-view

for the interferometer is given by the dish size of a small telescope; θFoV ≃ λ/Rdish. Therefore

the interferometer has a larger field-of-view than the single dish telescopes, and we can get the

larger skewer, e.g. θFoV ∼ 4 arcmin for EVLA and θFoV ∼ 8 arcmin for MeerKAT. The future

telescopes such as MeerKAT and SKA have enough sensitivity for detecting the 3He ii signal

around these redshifts.
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Figure 4.10: The signal and noise spectrum for the hyperfine transition of H i as a function of
redshift. The signal represents the differential brightness temperature of H i (red-lines), which is
same as shown in the right panel of Figure 4.2. The noise spectrum is adopted for the observation
at the rest frame frequency of 1.4 GHz with GBT (orange), Arecibo (green), EVLA (violet),
FAST (blue), MeerKAT(violet) and SKA (cyan). The solid curves represent the noise taking into
account only the sky temperature, and the dashed curves with same color represent the noise
taking into account both the sky temperature and the receiver noise of Trec = 30 K. The three
panels show the difference of the noise spectra with the different values of the spacial resolution
∆θ for the observation; we adopt the values to be ∆θ = 30 arcmin (Top-Left), ∆θ = 10 arcmin
(Bottom-Left), and ∆θ = 1 arcmin (Bottom-Right). The frequency band width of ∆ν = 30 MHz,
which corresponds to ∼100 Mpc/h width along the line-of-sight at z = 0.5, is adopted for all
cases. We assume the 100 hours of integration time for all telescopes.

Furthermore, at higher redshift, z ≥ 2, we still have possibility for detecting the 3He ii signal

with present instruments such as Arecibo and EVLA. The angular size increase at higher redshifts,

and the observing frequency decrease. The beam size of Arecibo reaches 3 arcmin at z = 4 and

it corresponds to the spacial size of rs ∼ 5. Around these redshifts, we can not use the galaxy

catalogs of the optical galaxy redshift survey, but the results from the observation of Ly-α can

be adopted as tracers to find the high-density regions.

We should note that GMRT seems one of the best telescope in the on-going instruments for

the observation of 3He ii, however its operating frequency range is unfortunately less than 1.5

GHz and we can not use GMRT for the prove of 3He ii at z < 4.7. Instead of GMRT, the Arecibo

telescope can be prove even at low-redshifts with similar sensitivity to GMRT.
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Figure 4.11: Same as the right panel in Figure 4.10, except the signals are the differential bright-
ness temperature of 3He ii and the noise spectra are adopted for the observation at the rest frame
frequency of 8.7 GHz. The frequency band width of ∆ν = 200 MHz, which corresponds to ∼100
Mpc/h width along the line-of-sight at z = 0.5, is adopted for all cases.

4.4.2 Systematics

Specification of Receiver

One of the benefits of the observation with high-frequencies is less contaminants from the

foreground, and the sky temperature achieves less than a few K around a few GHz observation.

However, the systematics is dominated by the receiver noise rather than the sky temperature on

the observation with high-frequencies. In Figure 4.10 and 4.11, we also show the sensitivity of each

telescope taking into account the receiver noise for systematics. The dashed-curves correspond to

the noise taking into account both the sky temperature and the receiver noise for the systematic

temperature; i.e. Tsys = Tsky + Trec, and Trec = 30 K of receiver noise is assumed here.

On the sensitivities of H i, the contribution from the receiver noise dominates the systematics

at low-redshifts. The receiver of Arecibo around 1.4 GHz range can achieve the system tem-

perature of ∼ 30 K. However the sensitivity of Arecibo is still enough to detect the signals at

low-redshifts, if we assume the angular resolution with ∆θ ≥ 30 arcmin and enough integration

time with Tobs ∼ 100 hours. On the other hand, the contribution from the receiver noise on the

observation of 3He ii is significant, and the systematics should be set by the receiver noise rather

than the sky temperature. Actually the receivers of Arecibo at high-frequency range can achieve
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Figure 4.12: The redshift evolution of the H i signals from the filamentary structures labeled as
a, b and c, and we show the results at z = 0.5, 1, 2 and 4. Each data point represents the range
of signal between maximum and minimum amplitudes, and the symbol represents the average
value. The different symbols show respectively rs = 1 Mpc/h(circle), rs = 3 Mpc/h(square) and
rs = 5 Mpc/h(diamond), and R = 100 Mpc/h is adopted for all cases.

the system temperature ∼ 30 K and the receiver of GBT also has almost same level of the system

temperature. Therefore one of the key point for the detection of the 3He ii signal at low-redshifts

is to make the receiver noise low.

3He production around star forming region

In addtion to the primordial production predicted by BBN, 3He should be produced in stars

(Goldwire and Goss, 1967; Olive et al., 1995; Rood et al., 1998). Therefore the stellar production

of 3He contaminates the measurements of the primordial abundance of 3He and estimation of the

missing baryon components. Moreover the precise measurement of the primordial 3He abundance

requires the detailed modeling of the stellar production. However, from the observations of inter-

galactic H ii regions, a significant excess against the primordial abundance is not observed (Balser

et al., 2007; Eggleton et al., 2008), and the measurement of 3He in the intergalactic regions would

be less contaminated by the stellar production of 3He.
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Figure 4.13: Same as Figure 4.12, but for the signal and sensitivity curves of 3He ii.

Contaminants from other lines

The contaminants from different lines for the absorption system of 3He ii are discussed in

(McQuinn and Switzer, 2009) in detail, and we consider the contaminants for the 3He ii signal at

low-redshifts following them. The abundance of 3He ii is quiet small compared to the universal

abundance of some atoms, and the different lines can cause the systematics on the detection of

signals of 3He ii at low-redshifts. The cosmological redshifted signals are allowed to fall into the

lower frequency even though the higher frequency transitions than the observing range of H i or
3He ii at low-redshifts.

For the hyperfine transition from metals, the most anxious line is the 4.2 GHz transition

of 14NV. While it is subdominant absorber to 3He, the redshifted emission signal of 14NV may

contaminates the diffused background at ∼ 2 GHz at δTb ∼ 10−7 K-level with the relative

abundance to Solar ⟨W ⟩ = 0.1 (Syunyaev and Churazov, 1984). However the signal of 3He ii

at such frequency is δTb ∼ 10−6 and the contaminants from the metals may be subdominant to

both H i and 3He ii signals.

For the radio recombination lines (RRLs), it has been considered as a possible contaminant

for the H i signal (Oh and Mack, 2003). If the RRL falls within a frequency channel of observing

frequency band width ∆ν, it affects the signal (Shaver, 1975). However the RRL emission may

also be subdominant and unimportant for the signal of 3He ii.

For molecular lines, the molecules rotation lines are negligible though the rotational transition



58 CHAPTER 4. PROBING LARGE SCALE FILAMENTS WITH H I AND 3HE II

rates of molecules are many orders of magnitude higher than for 3He ii. This is because that

the lowest lines of diatomic molecules rotation lines lie at high-frequency ≥ 50 GHz, and their

abundance is negligible at redshifts which the signals of 1−2 GHz band come from. On the

other hand, the redshifted signal from molecular hyperfine or rotational modes of polyatomic

molecules may be worrisome. However the abundance of polyatomic molecules is many orders of

magnitudes lower than 3He and their emission signals are also unimportant. However the bright

maser emission of 1.7 GHz OH hyperfine transitions are a possible contaminant of the H i signal,

while it is unimportant for the 3He ii signal at low-redshifts.

For the fine structure lines, the 2P3/2 → 2P1/2 transition at 10.9 GHz can appear in absorption

in H ii regions or in H i regions under some conditions pumping the 2S state. In galactic H ii

regions, collisions and recombinations work effectively, and the 2P3/2 → 2P1/2 transition appears

in absorption. On the other hand, the mechanism pumping 2S state is inefficient Dijkstra et al.

(2008) in H i regions, and it appears in emission. Therefore it is a possible contaminants for

the 3He ii signals, but the contributions to the signal at ν ≥ 2 GHz band may be unimportant

because the most of hydrogen is ionized at low-redshifts.

4.4.3 Survey strategy

Considering to try observing these signals from the intergalactic filament structures actually,

the strategy for the observing area and the targeting frequency may become the key for the

detection. The recent galaxy redshift survey such as SDSS has revealed the vast area of universe

at low-redshifts, and its galaxy catalog data can be provide the fruitful information to take aim

at the targeting area, though it is not suitable for the high-redshifts. This is also the benefit for

the observation at low-redshifts.

Statistical signals

Sometimes, the statistical signals allow us to detect the signals with high-significance even

though the sensitivity of the observation is poor. The cross-correlations with the other observables

which have high-sensitivity help extracting the faint signals of hyperfine transition.

Actually some works observe the emission signals of H i from IGM at low-redshifts; (Chang

et al., 2010) detected the aggregate 21-cm glow around z ∼ 0.8 at a significance of ∼ 4σ by

cross correlating intensity mapping data from GBT with the DEEP2 galaxy survey (Davis et al.,

2001), and (Masui et al., 2012) improved (Chang et al., 2010) by cross correlating new intensity

mapping data by GBT with the WiggleZ Dark Energy Survey (Drinkwater et al., 2010).

Therefore we can apply the intensity mapping for the signal of 3He ii and the statistical

signal helps to detect the signal of 3He ii with higher confidence level than the direct observation.

However we keep this topics as a future work.
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4.5 Summary

We have also discussed whether current telescopes can reach the sensitivities required for

observing H i and 3He ii emission from our filament models. Despite the low signal of H i, we

have shown in this paper that these levels of sensitivity can be reached even by the present

instruments, such as GBT, EVLA, and Arecibo with 100 hours of integration time. The 3He ii

signal is much weaker than that of H i and is very hard to detect with present instruments.

However, we show that detecting both H i and 3He ii from large scale filaments is possible with

future telescopes, such as the full MeerKAT and SKA, given a reasonable amount of integration

time.

At higher redshifts one benefits from larger signal, however, other issues start to become

important. Most importantly, the beam size at higher frequencies becomes smaller, along with

the field of view. The smaller beam size means that more distant filaments will not fill the beam,

leading to a smaller detected signal. The field of view issue will limit the size of the filaments

we can detect, especially if the filament is mostly elongated perpendicular to the line-of-sight.

However, as we show the 3He ii signal around z ∼ 4 is still in principle detectable even with the

present instrument such as GMRT and Arecibo.

Obviously, one of the benefits of observing the two lines in the same filament is to give us

a handle on the UV/X-ray background. In this work, we have adopted a single model for the

background, but in future work this aspect will be explored in more detail.

In this chapter we focus only on the direct detection of these signals. Less direct detections,

e.g., statistical methods or cross-correlation approaches are also possible and, in some cases of

H i been discussed by other authors (Chang et al., 2008). This is clearly an exciting route that

promise to yield results in the foreseeable future.

It should be mentioned that we have not considered a number of effects that might make it

more difficult to observe the signal, e.g., foregrounds, contamination from recombination lines,

meta lines, etc. This will be dealt with in a future publication.
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Chapter 5

Constraints on the isocurvature

modes by the 21cm line from

minihaloes

We investigate the effects of isocurvature perturbations on the 21cm radiation from mini-

haloes (MHs) at high redshifts and examine constraints on the isocurvature amplitude and power

spectrum using the next generation of radio telescopes such as the Square Kilometre Array. We

find that there is a realistic prospect of observing the isocurvature imprints in the 21cm emission

from MHs, but only if the isocurvature spectral index is close to 3 (i.e. the spectrum is blue).

When the isocurvature fraction increases beyond ∼ 10% of the adiabatic component, we observe

an unexpected decline in the 21cm fluctuations from small-mass MHs, which can be explained by

the incorporation small MHs into larger haloes. We perform a detailed Fisher-matrix analysis,

and conclude that the combination of future CMB and 21cm experiments (such as CMBPol and

the Fast-Fourier-Transform Telescope) is ideal in constraining the isocurvature parameters, but

will stop short of distinguishing between CDM and baryon types of isocurvature perturbations,

unless the isocurvature fraction is large and the spectrum is blue.

5.1 Introduction

Recent measurements of the anisotropies in the cosmic microwave background (CMB) by

the Planck satellite have placed constraints of unprecedented accuracy on the amplitude of the

primordial density fluctuations (Planck Collaboration et al., 2013a,c). Planck also revealed that

these fluctuations are consistent with having originated from adiabatic initial conditions, charac-

terized by the constancy of the ratios of density contrasts of various particle species in the early

Universe (see Kodama and Sasaki (1984); Bardeen (1980) for reviews). This is in agreement

with previous CMB measurements by the WMAP satellite (Hinshaw et al., 2013; Bennett et al.,

2013). On the other hand, if the aforementioned ratios of density contrasts are not constant,

the fluctuations are said to be generated from isocurvature initial conditions, of which there are

four types, namely, the cold-dark-matter (CDM), baryon, neutrino-density and neutrino-velocity

61
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isocurvature perturbations (Bucher et al., 2000). Constraints from Planck limit any isocurvature

contributions to the CMB temperature anisotropies to less than ∼ 10 percent.

The simplest model of inflation involving a single, slowly rolling scalar field predicts that

density fluctuations are generated from purely adiabatic initial conditions. Hence, the detec-

tion of any isocurvature contribution would be a window to novel physical mechanisms in the

inflationary era. Such mechanisms include the curvaton mechanism (Lazarides et al., 2004; Lan-

glois and Vernizzi, 2004; Moroi et al., 2005; Moroi and Takahashi, 2005; Ichikawa et al., 2008a;

Langlois et al., 2008), the axion and gravitino CDM (Rajagopal et al., 1991; Covi et al., 2001,

2002; Brandenburg and Steffen, 2004) and the modulated reheating scenarios (Dvali et al., 2004;

Kofman, 2003; Ichikawa et al., 2008b; Takahashi et al., 2009; Takahashi et al., 2009) as well as

various combinations of such scenarios. In most of these models, a large isocurvature fraction

can be produced at the expense of the introduction of a few additional parameters (Moroi and

Takahashi, 2002; Lyth et al., 2003; Lyth and Wands, 2003; Beltran, 2008; Moroi and Takahashi,

2009; Takahashi et al., 2009).

According to our current understanding of cosmology, inflation-stretched primordial quantum

fluctuations subsequently grow via gravitational instability into the observed cosmic structures.

One of the earliest cosmic structures to form were minihaloes (MHs), which are virialized haloes

of dark and baryonic matter with typical mass 104 − 108 M⊙, and temperature ≲ 104 K, at very

high redshift (z ∼ 6 − 20). Minihaloes typically host a high density of neutral hydrogen, which

can be detected by the 21cm absorption/emission line due to the transition of the hydrogen atom

from a parallel to anti-parallel spin state. MHs are typically at such high temperatures that their

21cm signal appears in emission with respect to the CMB (Iliev et al., 2002). The 21cm signals

from MHs give us information on the small-scale density fluctuations at high redshifts, and their

detection will therefore lead to a deeper understanding of small-scale physics during the earliest

structure-formation epoch.

The 21cm signal from MHs has previously been studied by Chongchitnan and Silk (2012), who

showed that the 21cm emissions from MHs are a sensitive probe of primordial non-Gaussianity,

due to a strong dependence of the MH number density and bias on the amplitude of non-

Gaussianity. Tashiro et al. (2013) calculated the 21cm fluctuations due to MHs in cosmic wakes

produced by cosmic strings.

In this paper, we present a new probe of isocurvature fluctuations using the 21cm signal from

MHs. We will show that the fluctuations in the 21cm emission from MHs are a viable probe of

isocurvature fluctuations. We also give forecasts on the isocurvature fraction and spectral index

using the next generation of large arrays of radio interferometers, which are expected to measure

the cosmic 21cm signals over a wide range of redshifts, from the cosmic Dark Ages (z ∼ 30− 50)

down to the Epoch of Reionization (EoR) at z ∼ 6. Such radio surveys include: the Low-

Frequency Array (LOFAR∗), the Murchion Widefield Array (MWA†), and the Giant Metrewave

Radio Telescope (GMRT‡), all of which focus on 6 <∼ z <∼ 30, as well as more ambitious future

∗http://www.lofar.org
†http://www.mwatelescope.org
‡http://gmrt.ncra.tifr.res.in
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arrays such as the Square Kilometre Array (SKA§), and the Fast Fourier Transform Telescope

(FFTT) (Tegmark and Zaldarriaga, 2009), which can probe the radio Universe at z >∼ 30.

There have only been a handful of works exploring the link between 21cm cosmology and

isocurvature perturbations: Barkana and Loeb (2005) and Lewis and Challinor (2007) discussed

the prospects for differentiating between the CDM and baryon isocurvature fluctuations using

21cm signals. Further work by Kawasaki et al. (2011) showed that 21cm surveys can effectively

probe the difference between CDM and baryon isocurvature fluctuations if the spectrum of isocur-

vature perturbations is strongly blue tilted (we revisit this claim later). Gordon and Pritchard

(2009) investigated the constraints on isocurvature modes from 21cm observations, focusing on

the so-called compensated isocurvature perturbations.

This chapter is organized as follows: we summarize the 21cm radiation from minihaloes and

its sensitivity to the presence of isocurvature modes in Sec. 5.2. The effects of isocurvature

modes on the fluctuations of this signal are explained in Sec. 5.3. Forecasts on the constraints

of isocurvature parameters from future radio surveys are discussed in Sec. 5.4 and 5.5. Finally,

Sec. 5.6 and 5.7 contain further discussions and a summary of our main conclusions.

Throughout this work, we assume a flat Universe and adopt the cosmological parameters from

Planck (Planck Collaboration et al., 2013b).

5.2 21cm emission line from minihaloes

Whether the 21cm line appears in emission or absorption signal against the CMB temperature

depends on the spin temperature. The spin temperature is determined by the balance between

collisional and radiative excitation or de-excitation of spin states by atoms, electrons and photons.

These processes couple the spin temperature to the gas field and radiation field as (Field, 1958)

Ts =
TCMB + yαTα + ycTk

1 + yα + yc
, (5.1)

where Tα is the color temperature of the Lyα photons, Tk is the kinetic temperature of gas,

yα and yc are the radiative and collisional excitation efficiencies (Madau et al., 1997). We now

assume that bright UV and X-ray sources have not formed yet or the MHs are isolated from such

sources, then we neglect the radiative coupling and can set yα = 0.

The 21cm signal from a halo depends on the profiles of the density, the velocity and the

temperature in a halo. We adopt the model called as a truncated isothermal sphere (TIS)

(Shapiro et al., 1999; Iliev and Shapiro, 2001), where a MH of a given mass is modeled with

radius rt, temperature Tk, dark matter density profile ρ(r) and velocity dispersion σV .

The MHs host the high density of neutral hydrogen and the gas temperature inside them is

heated enough to decouple from the CMB temperature. Therefore even a single minihalo can

§http://www.skatelescope.org
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produce an observable 21cm signal. The observed brightness temperature along a line-of-sight

through a halo at comoving distance r from the center of the halo is given by

Tb(r) = TCMB(z)e
−τ(r) +

∫ τ(r)

0
Tse

−τ ′dτ ′ , (5.2)

where τ(r) is the total optical depth of neutral hydrogen to photons at frequency ν through a

halo along a line-of-sight from the center of a halo, and can be expressed as (Furlanetto and Loeb,

2002)

τ(ν) =
3c2A10T∗
32πν20

∫ ∞

−∞

nHI(ℓ)ϕ(ν, ℓ)

Ts(ℓ)
dR , (5.3)

where R and ℓ are radial comoving distances satisfying ℓ2 = R2+(αrt)
2; α is the impact parameter

in unit of rt, and nHI is the number density of neutral hydrogen. ϕ(ν) is the intrinsic line profile

modeled as a Doppler-broadened given by

ϕ(ν) =
1

∆ν
√
π
exp

[
−
(
ν − ν0
∆ν

)2
]
, (5.4)

with ∆ν = (ν0/c)
√

2kBTk/mH.

When the line profile is unbroadened; ϕ(ν) = δ(ν− ν0), the optical depth corresponds to that

of the IGM at redshift z and can be given by (Madau et al., 1997)

τIGM(ν; z) =
3c3A10T∗nHI(z)

32πν30Ts(z)H(z)
, (5.5)

where A10 and ν10 are the spontaneous decay rate and the restframe frequency for the 21cm

transition, T∗ is the equivalent temperature defined as T∗ ≡ hpν10/kB. Then we can rewrite the

total optical depth as

τ(ν,R) = τIGM(ν) +
3c2A10T∗
32πν20

∫ R

−∞

nHI(ℓ
′)ϕ(ν, ℓ′)

Ts(ℓ′)
dR′ . (5.6)

The first and second terms respectively represent the contribution from IGM and a halo.

The observed 21cm brightness temperature is expressed as the differential brightness temper-

ature respect to the CMB and given by

δTb =
1

1 + z

(∫
dATb(r)

A
− TCMB(z)

)
, (5.7)

where Tb is averaged over the halo cross-section A = πr2t . Then the mean 21cm emission from

an ensemble of MHs in the mass range [Mmin,Mmax] is given by (Iliev et al., 2002)

δTb =
c(1 + z)4

ν0H(z)

∫ Mmax

Mmin

∆νeffδTb(M)A
dn

dM
dM , (5.8)
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where νeff = [ϕ(ν0)(1+z)]
−1 is the effective redshifted line-width, and we adoptMmax correspond-

ing to the virial temperature of 104 K andMmin corresponding to the Jeans massMJ, respectively.

The rms fluctuations in the 21cm emission for a pencil-beam survey with frequency width ∆ν

and angular size ∆θ is given by

⟨δT 2
b ⟩1/2 = σp(z,∆ν,∆θ)β(z)δTb(z) , (5.9)

where σp is the variance in a cylinder and β is the flux weighted average of bias.

The variance in a cylinder is given by

σp(z,∆ν,∆θ) = 2π

∫
dkz
kz

[
k3zP (kz)

2π2

] ∫ ∞

1/R
dkr

[
2

krR(z)
j0

(
kzL(z)

2

)
J1 (krR(z))

]2
, (5.10)

where L and R respectively represent the width along the line-of-sight and the spacial resolution

of survey, P (k) is the matter power spectrum, and ν0 is the restframe frequency of 21cm line; i.e.

ν0 = 1.420 GHz.

The flux weighted average of bias is given by

β(z) =

∫Mmax

Mmin
b(M, z)F(M) dndM dM∫Mmax

Mmin
F(M) dndM dM

, (5.11)

where F(M) ∝ Tbr
2
t σV is the effective flux from the MHs and b(M, z) is the halo bias which we

adopt the model of (Sheth et al., 2001) in this work.

5.3 Effects of isocurvature modes

As a preliminary step for estimating the effects from isocurvature modes, we parameterize

the primordial power spectrum for isocurvature fluctuations as

PSi(k) ≡ PSi(k0)

(
k

k0

)ni
s−1

, (5.12)

where i = c and b respectively indicate CDM and baryon isocurvature modes, PSi(k0) and n
(i)
s are

respectively the amplitude and the spectra index for the mode i defined at the reference scale k0.

In this work, we take the reference scale k0 as k0 = 0.05 Mpc−1. Then we define the primordial

isocurvature fraction as

rcdm ≡ PSc(k0)

Pζ(k0)
, rbar ≡

PSb
(k0)

Pζ(k0)
, (5.13)

where Pζ(k0) is the amplitude of the primordial power spectrum for the adiabatic (curvature)

perturbation ζ. For simplicity, we adopt the same values for the spectra indices of CDM and

baryon isocurvature modes with nisos (i.e. ncs = nbs = nisos ).
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Figure 5.1: The matter power spectra of the adiabatic and pure CDM isocurvature fluctuations
at redshifts z = 6, 10, 20 and 40 (from left to right). The spectral indices of the isocurvature
mode are assumed as nisos = 1, 2 and 3, (from top to bottom). In each panel, the different
curves represent the matter power spectrum of the adiabatic fluctuations (solid/red) and the
CDM isocurvature fluctuations with rcdm = 10−1 (dashed/green), 10−3 (doted/blue) and 10−5

(dash-dotted/magenta).

Before discussing the 21cm emission from MHs, we show the effects of isocurvature modes for

the matter power spectra in Figure 5.1 at some redshifts (z = 6, 10, 20 and 40). We here adopt the

pure CDM isocurvature mode and vary the fractional amplitude (rcdm = 10−5, 10−3 and 10−1)

and the spectra index (nisos = 1, 2 and 3). For the very blue-tilted spectrum, nisos = 3, the effects

of the CDM isocurvature mode can be identified clearly in small-scales, whereas the contribution

of the isocurvature mode with scale-invariant spectrum (nisos = 1) is only a small effect for the

matter power spectrum even with relatively large amplitude of isocurvature fluctuations.

In addition, we show deviation of the halo mass function due to isocurvature fluctuations in

Figure 5.2, which is calculated from the matter power spectrum shown in Figure 5.1, and we

here adopt the prescription of Press and Schechter (1974) for the reference model. The effect

of the isocurvature mode becomes prominent in small-mass scales, and the effect appears more

notably in higher-redshifts. We should note that isocurvature modes with very blue-tilted spec-

trum (nisos = 3) show the completely different features from the other spectrum with nisos = 1 or

2, their contribution to the halo mass function no longer show the smooth trend according to the
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Figure 5.2: The deviations of the halo mass function for the case with pure CDM isocurvature
fluctuations from the adiabatic case at redshifts z = 6, 10, 20 and 40 (from left to right), and we
adopt the prescription of Press-Schechter. The thick lines represent positive values, whereas the
thin lines represent negative values. The spectral indices of the isocurvature mode are assumed
as nisos = 1, 2 and 3, (from top to bottom). In each panel, the different curves represent the
deviation for the case with the CDM isocurvature fluctuations with rcdm = 10−1 (dashed/green),
10−3 (doted/blue) and 10−5 (dash-dotted/magenta).

fractional amplitudes rcdm. The blue-tilted isocurvature spectrum enhances the fluctuations in

small-scales, and leads to the increase of small haloes. However, if the contribution of isocurva-

ture modes get more significant, the small haloes might become incorporated into a larger halo.

As a result of such a process, the significant contribution of isocurvature modes causes such a

strange feature that the abundance of haloes increases in the large-mass scales, but decreases in

the small-mass scales. Such a feature appears in the mass-range of MHs, i.e. M = [Mmin,Mmax],

and it can be expected that the 21cm signal from MHs may also trace such a trend.

Finally, we show the r.m.s. fluctuations in the 21cm emission from MHs ⟨δT 2
b ⟩1/2 in Figure 5.3,

and we here assume the pure CDM isocurvature modes. The sensitivity curves are for the LOFAR,

SKA and FFTT missions, and the details on the sensitivity of each telescope are explained in the

following section later. The contribution from the flat-isocurvature spectrum (nisos =1) is so small

and the difference from the adiabatic mode is <∼ 10−4 mK even with rcdm = 0.1 and to distinguish
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the isocurvature mode from the adiabatic mode should be hard work in this case. Even with more

blue-tilted isocurvature spectrum (nisos = 2), the contribution to the 21cm emission from MHs is

still faint, but the model with rcdm = 0.1 enhances the signal by more than a few percent around

the peak redshifts. For the very blue-tilted isocurvature spectrum (nisos = 3), the case with large

amplitude of isocurvature fluctuations predicts the large signal at high-redshifts, whereas such

spectrum shows the smaller amplitude of the fluctuations in the 21cm emission form MHs around

z <∼ 20 than that with smaller amplitude of the isocurvature fluctuations. This is the results of

the incorporation of MHs into a larger halo, which is discussed above section. Because of such

a process, the abundance of MHs decreases due to the significant contribution of isocurvature

modes and the similar features can be seen on the halo mass function shown in Figure 5.2.

The detection of isocurvature modes through the fluctuations in the 21cm emission from MHs

can be possible by future telescopes such as SKA and FFTT. If isocurvature fluctuations has very

blue-tilted spectrum and the amplitude of rcdm ≃ 10−3, the signals from the isocurvature mode

might be detected at low redshifts even by LOFAR. However, the case with the larger amplitude

of rcdm is impossible because the larger amplitude of rcdm drives the incorporation of MHs into

a larger halo and suppress the signal at z <∼ 20. We discuss the systematics or uncertainties on

the estimation of the 21cm signal from MHs in more detail later in Sec. 5.6.

In the following sections, we investigate how accurately we can put he constraints on isocur-

vature modes from the observation of the 21cm emission form MHs with future radio telescopes.

5.4 Forecasts

We put the constraints on the cosmological parameters from the expected measurements of

CMB and the fluctuations in the 21cm line from MHs with the Fisher matrix analysis. We define

the total Fisher information matrix by combining the CMB and the 21cm line surveys as

Fαβ = F
(CMB)
αβ + F

(21cm)
αβ , (5.14)

where α, β refer to the model parameters, and F
(CMB)
αβ and F

(21cm)
αβ respectively represent the

contributions from CMB and 21cm observations, which are explained below. We adopt following

12 model parameters for our analysis;

p = {Ωbh
2, Ωch

2, ΩΛ, τ
reion, ns, As, w, Yp, αs, rcdm, rbar, n

iso
s } , (5.15)

where Ωb, Ωc and ΩΛ are the density parameter of baryon, CDM and cosmological constant,

respectively; h is the dimension less Hubble constant; w is the equation of state for dark energy;

Yp is the primordial abundance of Helium; τ reion is the optical depth at the EoR ¶ ; ns and As

are the spectra index and the amplitude of the initial power spectrum for the adiabatic mode,

¶We treat τ reion as a model parameter only for CMB and τ reion does not affect the signal of 21 cm lines in our
analysis. Therefore the constraint of τ reion comes only from CMB.
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Figure 5.3: Top panels: The r.m.s. fluctuations in the 21-cm emission from MHs ⟨δTb2⟩1/2
and the sensitivity curves for LOFAR (orange), SKA (cyan) and FFTT (purple) missions. In
each panel, we adopt the the prescription of Press-Schechter for the halo mass function, and the
different curves represent the case for the adiabatic condition (solid/red) and the case with pure
CDM isocurvature fluctuations with rcdm = 10−1 (dashed/green), 10−3 (doted/blue) and 10−5

(dash-dotted/magenta).. Bottom panels: The deviations from the adiabatic case and each curve
corresponds to that of top panel. The spectral indices are assumed as nisos = 1, 2 and 3, (from
left to right).

respectively; αs is the running for the primordial power spectrum; rcdm and rbar are the ratios

of the amplitude of the initial power spectrum for the CDM and baryon isocurvature modes,

respectively; nisos is the spectra index for isocurvature modes.

5.4.1 CMB

The Fisher information matrix for the CMB survey is given by (Tegmark et al., 1997)

F
(CMB)
αβ = fCMB

sky

lmax∑
ℓ=2

2ℓ+ 1

2
Tr
[
Cℓ;αC

−1
ℓ Cℓ;βC

−1
ℓ

]
, (5.16)

where α, β refer to the model parameters, fCMB
sky is the sky coverage of the CMB survey, Cℓ is the

covariance matrix and Cℓ;α represents its derivative by the parameter pα; Cℓ;α ≡ ∂Cℓ/∂pα. As

for the CMB observables, we consider the temperature anisotropies (T ), the E-mode polarization

E, and the CMB lensing potential (ψ), then the covariance matrix of the CMB observables is
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Experiment ν [MHz] θFWHM [arcmin] ∆T
ν [µK arcmin] ∆P

ν [µK arcmin]

CMBPol 45 17 5.85 8.27
70 11 2.96 4.19
100 8 2.29 3.24
150 5 2.21 3.13
220 3.5 3.39 4.79

Table 5.1: The specification for the CMBPol (EPIC-2m) mission used in our analysis. ν refers the
frequency of each channel, θFWHM is the angular resolution, ∆T

ν , and ∆P
ν respectively represent

the sensitivity for the temperature and polarization.

defined as

Cℓ ≡

 CTTℓ +NTT
ℓ CTEℓ CTψℓ

CTEℓ CEEℓ +NEE
ℓ CEψℓ

CTψℓ CEψℓ Cψψℓ +Nψψ
ℓ

 , (5.17)

where Cℓ and Nℓ represent the angular power spectrum and the noise spectrum, respectively.

For simplicity, we assume that the cross-correlation between E-mode polarization and the CMB

lensing potential can be negligible (i.e. CEψℓ = 0) ∥. The noise spectra of the CMB observation

is given by (Knox, 1995)

NT,P
ℓ =

[∑
ν

{(
∆T,P
ν θFWHM

)2
e−ℓ(ℓ+1)θ2FWHM/8 ln 2

}−1
]−1

, (5.18)

where ∆T,P
ν denotes the sensitivity for the temperature or polarization, and θFWHM represents

the angular resolution. We estimate the noise spectrum for the CMB lensing potential following

the manner in (Hu and Okamoto, 2002; Okamoto and Hu, 2003).

In this work, we assume the projected CMBPol (Baumann et al., 2009) mission and we adopt

fCMB
sky =1 and ℓmax=4000. We use the specification for the mid-cost CMBPol (EPIC-2m) mission

which is shown in Table 5.1.

5.4.2 21cm line from minihaloes

For the 21cm emission line survey, we define the Fisher information matrix as

F
(21cmMH)
αβ = f21cmsky

∑
i

∑
pixel

(
∂Si

∂pα

)
1

2(Si +N i)2

(
∂Si

∂pβ

)
, (5.19)

∥The E-mode polarization is generated via the Thomson scattering around last scattering surface wheres the
source of CMB lensing is the large-scale structures from the last scattering surface to us, therefore this assumption
is almost valid. However, strictly speaking, they should have non-vanishing cross-correlation, because the E-mode
polarization can be generated during the EoR and the structures in such era also contribute to the lensing sources
(Lewis et al., 2011).
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where i refers to the redshift slices, f21cmsky is the sky coverage for the 21cm survey, Si and N i

represent the signal and the noise in the i-th redshift slice. In our analysis, we define the signal

and the noise as Si ≡ ⟨δT 2
b (zi)⟩1/2 and N i ≡ δTN (zi), respectively, and δTN (z) is given by

(Furlanetto et al., 2006a)

δTN (z) = 20mK
104m2

Atot

[
10′

∆θ

]2 [1 + z

10

]4.6 [MHz

∆ν

100hr

tint

]1/2
, (5.20)

where Atot is the effective collecting area of the telescope, ∆θ is the spacial angular resolution,

∆ν is the frequency band width , and tint is total integration time. The noise thresholds for

each sensitivity curve shown in Figure 5.3 assume total effective areas Atot = 104 m2 (LOFAR),

Atot = 105 m2 (SKA) and Atot = 107 m2 (FFTT), and tint = 1000 hours integration time is

adopted in each case.

As a fiducial survey model in our analysis, we mainly focus on the observation by the FFTT

survey and we assume the following survey parameters; Atot=107 m2, ∆θ=10 arcmin, ∆ν=1

MHz, and tint=1000 hours.

5.5 Result

We summarize the constraints on isocurvature modes from CMB and the fluctuations in the

21cm emission of MHs in Figure 5.4. The contours show the projected 1σ (68%) and 2σ (95%)

CL constraints expected from CMBPol alone and the combination with the 21cm line survey such

as SKA or FFTT. We here choose the redshift range of z = [6, 40] at certain intervals of ∆z = 1.

As shown in the previous section, the contribution from the scale-invariant isocurvature spec-

trum to the fluctuations in the 21cm emission from MHs is less significant, and the improvement

from the constraint by CMBPol alone is also less significant. On the other hand, the improvement

by adding the information of the 21cm survey can be possible for the blue-tilted isocurvature spec-

tra. Compared to the constraint from CMB, the constraint from the 21cm survey alone is so poor

due to the strong degeneracies with the other cosmological parameters even for the blue-tilted

isocurvature spectra. However the information from CMB helps to break the degeneracies.

Comparing the constrains from SKA and FFTT, both constraints show the almost consistent

results except the fiducial mode with very blue-tilted isocurvature fluctuations (nisos = 3), but the

constraint from FFTT is a little bit tighter than that from SKA. We here adopt the maximum

redshift of zmax = 40, As a conservative results, we show the constrains from FFTT by utilizing

the information from lower-redshifts in Figure 5.5. The contours show the 1σ CL areas expected

from CMBPol and FFTT and we here adopt the maximum redshift of zmax = 20, 30 and 40.

If we use the information up to zmax ∼ 40, we can see the signature differentiating CDM and

baryon isocurvature modes. We have checked that the constraints from SKA are saturate with

zmax >∼ 20.

For the flat spectrum (nisos = 1), the constraint on the rcdm-rbar plane is dominated by CMB
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Figure 5.4: Projected 1σ (68 %) and 2σ (95 %) CL constraints on rcdm and rbar from CMB
alone (solid/blue line) and CMB + 21-cm (shaded/red region). We assume the CMBPol mission
for the CMB observation and the SKA (top panels) or FFTT (bottom panels) mission for the
observation of the 21-cm emission from MHs. As for the fiducial model, the spectral indices of
isocurvature modes are assumed as nisos = 1, 2 and 3 (from top to bottom), and the amplitude is
adopted as (rcdm, rbar)=(0.1, 0) in all cases.

and the contribution from the 21cm line survey is less important, whereas the constraint on the

spectra index of isocurvature fluctuations nisos is improved by the 21cm line survey. The 21cm

survey has potential to improve the constraints for the blue-tilted isocurvature spectra and to

put the tighter constraints on isocurvature fluctuations than CMB. Therefore the information

of the fluctuations in the 21cm emission from MHs works extremely well for the prove of blue-

tilted isocurvature fluctuations, and we hereafter focus on the constraints for the very blue-tilted

isocurvature fluctuations (nisos = 3). The detection of such isocurvature fluctuations may open

the new window for the physics in the early Universe and some models predict very blue-tilted

isocurvature spectrum with nisos = 2 - 4, which are discussed in (Kasuya and Kawasaki, 2009).

To understand which redshift slices put the constraints on isocurvature modes the most effec-

tively, we show the some diagonal components for the inverse matrix of the Fisher information

matrix (F−1)αα, which correspond to the marginalized 1σ error, and unmarginalized 1σ error in

Figure 5.6; for rcdm, rbar and n
iso
s . The observation of the 21cm survey is assumed with FFTT,
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Figure 5.5: The 68 % CL constraints from the CMBPol and FFTT surveys. The fiducial model
is the adiabatic mode plus the pure CDM isocurvature mode with rcdm = 0.1 and nisos = 3. The
different colors represent the maximum redshift range of the 21cm line survey; zmax = 20 (red),
30 (blue), 40 (orange), and the minimum redshift of zmin = 6 is adopted in all cases.

and we add the CMB prior from the CMBPol survey in each redshift slice.

For the unmarginalize error, the minimum points of 1σ errors appear around z ∼ 20, and

which is a little bit higher than the peaks of the 21cm signal from MHs. This is because the

effects of isocurvature modes appear more prominently at higher-redshifts, though the the signal-

to-noise ratio of the 21cm emission from MHs has peak around z ∼ 10. On the other hand,

the marginalized errors show the different trends from the unmarginalized errors for rcdm and

rbar. It is related to the strong degeneracy between CDM and baryon isocurvature modes, or

degeneracies with the other cosmological parameters. As discussed in Kawasaki et al. (2011), the

difference between CDM and baryon isocurvature modes become prominent in large-scales, and

the observation at higher-redshift allow to take the larger correlation length with same angular

scale. Therefore the marginalized constraints on rcdm and rbar are reduced with the increase of

the observing redshift. However the constraint from a single redshift slice is not so significant.

For the tighter constraints on isocurvature modes, the tomographic survey which combines the

information from different redshift slices is essential.

Finally we estimate the effects of survey area for the constraint of isocurvature modes. As

a reference survey design for the observation of the 21cm line, we assume the ambitious all sky

survey. We compare the constraints from the fluctuations in the 21cm emission of MHs with

different values of the survey area; fsky = 0.01, 0.1, 0.5 and 1, and show the 1σ CL areas in

Figure 5.7. To get the tight constraint which exclude rcdm = 0 with 1σ CL, more than half sky

survey is essential for our reference survey model. On the other hand, the spectra index can be
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Figure 5.6: The unmarginalize (top panels) and marginalize (bottom panels) 1σ errors expected
from each single redshift slice with CMB prior. The fiducial model is the adiabatic mode plus the
pure CDM isocurvature fluctuations with (rcdm,rbar)=(0.1,0) and nisos = 3.0, and the observations
by the CMBPol and FFTT missions are assumed. The spatial and frequency resolutions are
adopted with ∆θ=9 arcmin and ∆ν=1 MHz in each redshift slice.

determined by a few percent accuracy even with fsky = 0.1.

5.6 Discussion

We here consider some ambiguous aspects on the estimation of the 21cm signal from MHs,

which come from either the difficulty to understand the non-linear physics on small-scales, which

is related to the MHs, or the uncertainty of the history of reionization. Following the discussion

in (Chongchitnan and Silk, 2012), we also focus on the three aspects; (i) halo mass function, (ii)

uncertainty of mass range of MHs, (iii) radiative coupling through the Lyα pumping, and inves-

tigate the effects from them to the 21cm signal from MHs and the constraints on isocurvature

modes.

MHs are extremely small objects and their dynamics are governed by non-linearity on small-

scales, therefore we have to lean much on the N-body simulations. However it is quite hard
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Figure 5.7: Projected 68 % CL constraints from CMBPol and FFTT with different survey area;
fsky = 0.01 (red), 0.1 (green), 0.5 (blue) and 1.0 (orange). The fiducial model is the adiabatic
mode plus the pure CDM isocurvature fluctuations with rcdm = 0.1 and nisos = 3, and the
maximum redshift of zmax = 40 is assumed for all cases.

to resolve the such scale of MHs in N-body simulations, and the 21cm signal from MHs shall

depend on the model of halo mass function. We here investigate how the 21cm emission from

MHs is affected by the choice of mass function. In the left panels of Figure 5.8, we show the 21cm

fluctuations for (rcdm, rbar) = (0.1, 0) (top) and (rcdm, rbar) = (10−3, 0) (bottom) using the halo

mass functions of Press and Schechter (1974), Sheth and Tormen (1999), Tinker et al. (2008) and

(Warren et al., 2006).

For the case of smaller contribution of isocurvature fluctuations (rcdm = 10−3), as claimed

in (Chongchitnan and Silk, 2012), the Press-Schechter and Tinker prescriptions similarly high

amplitudes of the signal from MHs, whereas the Warren and Sheth-Tormen prescriptions show

lower amplitudes. Then the trends are reversed for high-redshifts. Even for the case of larger

contribution of isocurvature fluctuations (rcdm = 0.1), similar trends still remains except the

Press-Schechter prescription and the reversed trends can not be seen in this redshift range. In

any case, the uncertainty in the mass function hardly affects the prospects for the detection so

significantly.

In Figure 5.9, we show the constraints adopting the different models of the halo mass func-

tion. Each model of the halo mass function predicts the different constraints and correlations

of parameters, and the model which predicts the larger amplitudes of ⟨δTb2⟩1/2 show relatively

tighter constraints. Especially the Press-Schechter prescription shows small-correlations on the

nisos − rcdm plane, and has possibility to overestimate the constraints on isocurvature modes.

The other uncertainty of the signal from MHs is the mass range of MHs. For instance, the
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large relative velocity between dark matter and baryons cause the adovection of baryons out of

dark matter potential and may lead to such situation of Mmin > MJ (Tseliakhovich et al., 2011).

The lower bound alter the signal more significantly than the upper bound because of the sharp

depression of halo mass function and there are much more haloes in small-mass scales than in

large-mass scales. In this work, we determined the lower bound of MHs from the Jeans mass

MJ, however the Jeans mass is just the mass scale which the objects start to collapse by their

self-gravity and the minimum mass of haloes might be actually larger than MJ. The signals for

the different values of Mmin are shown in the middle panel of Figure 5.8 and we here adopt the

value of the minimum mass of MHs as 10MJ, 50MJ and 100MJ.

The increase of the value ofMmin suppresses the signal over all redshifts and the effects become

more prominent at higher-redshifts. Basically the increase of Mmin reduces the total number of

MHs . Compared to the lower-redshifts, there are less haloes with large mass in higher-redshifts

and the total number of MHs falls to an extremely low level when Mmin is increased.

In the middle panels in Figure 5.9, we show the constraints on isocurvature modes when the

minimum mass of MHs is varied toMmin = 1MJ, 10MJ, 50MJ, and 100MJ. The signal gets lower

when Mmin is increased, and the constraints on isocurvature modes become poor. The effects of

isocurvature modes appears relatively prominently at higher-redshifts, therefore the suppression

of signal at higher-redshifts is crucial for the constraints on isocurvature modes.

Finally, we estimate the effects of the coupling with radiation field for the 21cm signal from

MHs and constraints on isocurvature modes. We assume that the radiative coupling can be neglect

and adopt yα = 0 thus far, but we here adopt the Ly-α coupling factor given by (Chuzhoy and

Shapiro, 2006)

yα = 1.3× 10−12

[
JαT∗
A10Tk

] exp(−0.3(1 + z)1/2T
−2/3
k

)
1 + 0.4T−1

k

, (5.21)

where Jα denotes the fraction to the typical value for the flux intensity of radiation field. We

show the effects of Ly-α pumping for the signal from MHs in the right panel of Figure 5.8 and

we here adopt the value of Jα as 0.1 0.5 and 1.0.

The effects of Ly-α pumping can be seen especially around the EoR and less prominent

at higher-redshifts. The radiation intensity increase then the spin temperature couples to the

temperature of radiation sources, and the emission from MHs will be suppressed due to the huge

absorption signal from the IGM. However there are less radiation sources at higher-redshifts and

the effects of Ly-α will be small (due to the exponential dumping in Eq. (5.21)).

The constraints on isocurvature modes are shown in the right panels of Figure 5.9. Compared

to the choice of the mass function and the uncertainty of the minimum mass value of MHs, the

uncertainty of the coupling with the radiation field seems less serious. Stating a little bit more in

detail, a large change can be seen between Jα = 0.1 and 0.5. Although the signal is suppressed by

Ly-α pumping, the constraints are improved for the strong effects from Ly-α pumping. Through

the Ly-α pumping, the mean 21cm emission δTb is submerged under the absorption signal from

IGM and suppressed with increase of Jα, while the variance of density field σp and the bias β are
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Figure 5.8: Systematics of the fluctuations in the 21-cm emission from MHs. The fiducial model
is the case with pure CDM isocurvature with rcdm = 0.1 (top-panels) or 10−3 (bottom-panels)
and nisos = 3 and we adopt the PS’s halo mass function. (Left) The model of halo mass function;
PS (Press and Schechter, 1974), ST (Sheth and Tormen, 1999), Tinker (Tinker et al., 2008) and
Warren (Warren et al., 2006). (Middle) The minimum mass of MHs; Mmin = 1MJ, 10MJ, 50MJ

and 100MJ. (Right) The effects of Ly-α pumping; Jα = 0.0, 0.1, 0.5 and 1.0.

hardly affected by the Ly-α pumping. Therefore the deviation of parameter which is sensitive

to σp or β stands out and leads to the increase information related such parameter. For these

reasons, the constraints of some parameters (e.g. Ωbh
2 and Ωch

2) are improved. Then the pa-

rameter degeneracies between the isocurvature fluctuations and such parameters are also broken

and it leads to the improvement of the constraints on isocurvature modes.

5.7 Summary

We estimated the effects of isocurvature modes for the 21cm emission lines from MHs at high-

redshifts. For the isocurvature fluctuations with scale-invariant primordial spectra hardly affect

the abundance of MHs and change the 21cm signal from MHs by less than a few percent around its
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zmax = 40, when the halo mass function (Left), the minimum mass of MHs Mmin (Middle), or Jα
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peak. However, strongly blue-tilted spectrum of isocurvature modes lead to a significant increase

in the amplitude of the fluctuations and the huge radio telescope in the next generation such as

SKA and FFTT have potential for detecting the signals from such isocurvature modes.

Furthermore we confirmed the characteristic signature on the abundance of MHs and the

21cm signal from MHs due to isocurvature modes. In some cases, the isocurvature fluctuations

with larger amplitude predicts the smaller abundance of MHs and 21cm signal from MHs than

that with smaller amplitude at low-redshifts. We considered that this is because of the interpola-

tions of MHs into the larger haloes. Although the very blue-tilted isocurvature spectrum enhance

the fluctuations in small-scales and will create more MHs, too much of fluctuations induce the

incorporation of MHs and collapse into a larger halo if the density fluctuations around such MHs

reaches the critical density.

Then we investigated how well the fluctuations in the 21cm emission of high-redshift MHs

can constrain on isocurvature modes by the Fisher matrix analysis. For the isocurvature fluctu-

ations with scale-invariant primordial spectra, it seems to be difficult to improve the constraints

from the observation of CMB and the difference between the CDM and the baryon isocurvature

fluctuations can not be seen even with the FFTT and CMBPol surveys. However, the very blue-

tilted isocurvature spectrum can distinguish CDM and baryon isocurvature modes if we observe

high-redshifts z >∼ 40.
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We discussed the systematics on the estimation of the 21cm signal from MHs, which are

about the uncertainties of the halo mass function, the effect of radiative coupling through pumping

processes by the Ly-α photons, and the mass range of MHs. The uncertainty of halo mass function

should be the most significant for the detection of isocurvature modes. Due to the incorporation

processes of MHs on the existence of isocurvature modes, the signals show irregular trends for the

model of halo mass function in some cases. However the signal remains enough large to observe

and can be detect by the SKA or FFTT surveys. The uncertainty of the mass range of MHs

changes the signal over all redshifts and the increase of the lower bound mass suppresses the

signals at high-redshifts significantly even by a order of magnitude. On the other hand, the Ly-α

pumping processes suppress the signal around the EoR, but shall be negligible at high-redshifts.

Furthermore we estimate the effects for the constraints on isocurvature modes for each case.

The constraints on isocurvature modes significantly depends on the model of mass function, and

especially the prediction of Press-Schechter has possibilities to under-estimate the constraints.

The effect of the Ly-α pumping is significant around the EoR, but the tight constraints on the

isocurvature modes comes from the higher-redshifts. Therefore the effect of the Ly-α pumping

has lesser impact on the constraints. On the other hand, the increase of the lower mass bound of

the MHs suppress the signals at high-redshifts significantly, and the constraints are also severely

affected.

The verification of isocurvature modes by the fluctuations in the 21cm signal from MHs

will be a power full tool, especially for the very blue-tilted isocurvature spectrum. For the

observation of CMB, the detection of very blue-tilted isocurvature spectrum is difficult because

the CMB spectrum dumps rapidly in small-scales. Furthermore the observation of the 21cm

line has potential to distinguish the CDM and baryon isocurvature modes and can give some

important implications for the mechanism of the CDM and baryon matter generations.

Our analysis focused on the pure CDM or baryon isocurvature modes, but we have not taken

into account the degree of correlation between the isocurvature mode and the adiabatic mode.

Although the addition of these parameters leads to a large number of degrees of freedom, the

values of the parameters can be limited to certain values from the theoretical or the phenomeno-

logical aspects in some cases. Therefore our future analyses should be extended to the specific

cases.

[Note: prior to the publication of this work, we became aware of the work by Sekiguchi et al.

(2013), which significantly overlaps with our work. The conclusions in their work are similar to

ours.]
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Chapter 6

Conclusion

It has been expected that the upcoming huge radio interferometer missions can probe the

history of the cosmic reionization through the observation of the 21cm line from the IGM at

EoR and the competitive race for detecting the signal from EoR has already started. To utilize

data from such surveys exhaustively, the more careful theoretical understanding on the physics

around EoR. Furthermore, the investigations for the detectability of signals and the accuracies

of determination for model parameters are also strongly required for the next generation radio

surveys such as SKA and FFTT.

First, we studied the signals due to the hyperfine transition of not only hydrogen but also

isotope helium-3 from filamentary structures in the IGM at low-redshifts with a view to probe

the missing baryon problem. After the EoR, the Universe has been fully ionized and most of

hydrogen remains to be ionized. Therefore the expected signal of the 21cm line from the IGM

also becomes so weak drastically. On the other hand, the signal from 3He is due to the hyperfine

transition from 3He ii to 3He iii, and the spontaneous decay rate of 3He ii is ∼ 800 times larger

than that of H i. We have our sights set on the filamentary structures which is the high-density

cloud and must contains a number of baryons and investigate the signals from a filamentary

structure.

We found that, contrary to our expectation, the signal of H i is enough high to detect with

on-going radio survey such as GMRT. On the other hand, the signal of 3He ii is around a few µK

at present time. If we observe a filament which is parallel to the line-of-sight at z ∼ 4, the signal

can be detected with some present instruments. However the next generation radio telescope

such as SKA can detect the 3He ii signal from a filament at present time. The detection of signal

of H i or 3He ii from IGM at low-redshifts is challenging but only it can definitely probe the

baryons hidden in the IGM.

Secondly, We studied the 21cm line fromMHs at high-redshifts and the effects of non-vanishing

initial isocurvature fluctuations to the structure formation. Such a small halo can not drive the

star formation, so it must contain a number of neutral hydrogen. Furthermore there are a lot of

such MHs in the Universe at high-redshifts and it should be the dominant sources of the 21cm

line.
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We calculate the observed 21cm line from MHs and investigate how non-vanishing initial

isocurvature fluctuations can affect such signal. We found that the blue-tilted isocurvature spec-

trum enhance the signal form MHs because such a blue-tilted spectrum generate the density

fluctuations in small-scales and it leads to the increase of the number of MHs. However, by

contraries, too much contribution of isocurvature fluctuations suppress the signal. Although the

density fluctuations in small-scales are still enhanced, the abundance of MHs decrease because of

the incorporation processes of MHs into a larger halo.

Furthermore we investigated how well the isocurvature modes can be constrained from the

observation the 21cm line from MHs by using the Fisher matrix analysis. The constraint from

such a survey alone is not so much tight due to the parameter degeneracies, but by combining

with the CMB observation, we could get the significant improvement. The constraints from the

observation of MHs via the 21cm line has potential to put a tighter constraint on the blue-tilted

isocurvature fluctuations than that from CMB and to distinguish CDM and baryon isocurvature

modes, which can not be realized by CMB. If we differentiate these two isocurvature modes, it

leads to the probe for the matter generation mechanism and to the deep understanding of the

physics in the early Universe.

We hope the studies in this thesis can provide fruitful insight for the application of upcoming

data from various radio surveys and the survey strategy for the next generation radio surveys.



Appendix A

Recombination/Ionization Rates and

Cooling/Heating Coefficients

We here summarize the recombination and collisional ionization rates, and the cooling function

we adopt in this work. We take these values from (Fukugita and Kawasaki, 1994; Mo et al., 2010)

and the similar expressions also can be found in (Menzel and Pekeris, 1935; Matsuda et al., 1971;

Spitzer, 1978; Black, 1981; Cen, 1992; Verner and Ferland, 1996).

A.1 Recombination and Collisional ionization rates

A.1.1 Collisional ionization

H i → H ii :

βHI = 5.85× 10−11T 1/2
(
1 + T

1/2
5

)−1
exp(−1.578/T5) cm

3 · sec−1 . (A.1)

He i → He ii :

βHeI = 2.38× 10−11T 1/2
(
1 + T

1/2
5

)−1
exp(−2.853/T5) cm

3 · sec−1 . (A.2)

He ii → He iii :

βHeII = 5.68× 10−12T 1/2
(
1 + T

1/2
5

)−1
exp(−6.315/T5) cm

3 · sec−1 . (A.3)

A.1.2 Recombination

H ii → H i : (free → n ≥ 1)

αHII = 3.96× 10−13T−0.7
4

(
1 + T 0.7

6

)−1
cm3 · sec−1 . (A.4)
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He ii→ He i : (free → n ≥ 1)

αHeII = 4.31× 10−10T−0.6353
4 cm3 · sec−1 . (A.5)

He iii→ He ii : (free → n ≥ 1)

αHeIII = 2.12× 10−12T−0.7
4

(
1 + 0.379T 0.7

6

)−1
cm3 · sec−1 . (A.6)

A.1.3 Dielectric recombination

He ii → He i : (dielectric recombination) (Nussbaumer and Storey, 1983; Osterbrock, 1989)

ξHeII = 6.0× 10−10T−1.5
5 exp(−4.7/T5) [1 + 0.3 exp(−0.94/T5)] cm3 · sec−1 . (A.7)

A.2 Photoionization rate

Photoionization is the process in which an atom is ionized by the absorption of a photon.

The photoionization rate is proportional to the number density of ionizing photons and to the

photoionization cross-section σpi, and it can be written by

Γ =

∫ ∞

νt

c σpi(ν)Nγ(ν)dν , (A.8)

where νt is the threshold frequency of ionization and Nγ(ν)dν is the number density of photons

with frequencies in the rage ν to ν + dν, which is related to the energy flux of the radiation field

J(ν) by

Nγ(ν) =
4ıJ(ν)

chpν
. (A.9)

Thus, the photoionization rate depends on the energy flux of the radiation field we need a model

of radiation field. We here adopt the model of Haardt and Madau (2012), which takes into

account quasars and galaxies, and show the photo-ionization rates of H i, He i and He ii in the

IGM as a function of redshift in Figure A.1.

A.3 Cooling function

We define the cooling function Λ as;

Λ =
∑

i=HI,HeI,HeII

ζineni +
∑

i=HI,HeI,HeII

ψineni +
∑

i=HII,HeII,HeIII

ηineni

+ ωHeII ne nHeIII + λc + θff (nHII + nHeII + 4nHeIII)ne , (A.10)

where the first term represents the collisional-ionization cooling, the second term represents the

collisional excitation cooling, the third term represents the recombination cooling, the fourth term
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Figure A.1: Photoionization rates of H i, He i and He ii in the IGM for the quasars + galaxies
model in Haardt and Madau (2012).

represents the dielectron recombination cooling, the fifth term represents the Compton cooling

and the last term represents the free-free cooling. The symbols, ζi, ψi, ηi, and ωi, represent

the each cooling coefficient due to atomic state i, λc is the Compton cooling rate, and θff is the

free-free cooling coefficient. We summarize the detail expressions of these values below.

A.3.1 Collisional ionization cooling

H i :

ζHI = 1.27× 10−21T 1/2
(
1 + T

1/2
5

)−1
exp(−1.58/T5) erg · cm3 · sec−1 . (A.11)

He i :

ζHeI = 9.38× 10−22T 1/2
(
1 + T

1/2
5

)−1
exp(−2.85/T5) erg · cm3 · sec−1 . (A.12)

He i (23S) :

ζHeI,23S = 5.01× 10−27T−0.1687
(
1 + T

1/2
5

)−1
exp(−5.53/T4)nenHeII/nHeI erg · cm3 · sec−1 .

(A.13)

He ii :

ζHeII = 4.95× 10−22T 1/2
(
1 + T

1/2
5

)−1
exp(−6.31/T5) erg · cm3 · sec−1 . (A.14)

A.3.2 Collisional excitation cooling

H i :

ψHI = 7.5× 10−19
(
1 + T

1/2
5

)−1
exp(−1.18/T5) erg · cm3 · sec−1 . (A.15)
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He i :

ψHeI = 9.10× 10−27T−0.1687
(
1 + T

1/2
5

)−1
exp(−1.31/T4)nenHeII/nHeI erg · cm3 · sec−1 .

(A.16)

He ii :

ψHeII = 5.54× 10−17T−0.397
(
1 + T

1/2
5

)−1
exp(−4.73/T5) erg · cm3 · sec−1 . (A.17)

A.3.3 Recombination cooling

H ii :

ηHII = 2.82× 10−26T 0.3
3 (1 + 3.54T6)

−1 erg · cm3 · sec−1 . (A.18)

He ii :

ηHeII = 1.55× 10−26T 0.3647 erg · cm3 · sec−1 . (A.19)

He iii :

ηHeIII = 1.49× 10−25T 0.3 (1 + 0.885T6)
−1 erg · cm3 · sec−1 . (A.20)

A.3.4 Dielectronic recombination cooling

He ii :

ωHeII = 1.24× 10−13T−1.5 (1 + 0.3 exp(−9.4/T4))
−1 exp(−4.7/T5) erg · cm3 · sec−1 . (A.21)

A.3.5 Free-free cooling

θff = 1.42× 10−27gff T
1/2 , (A.22)

where gff is the mean Gaunt factor and the values of gff are between 1.1 and 1.5 for T = 104-108

K (Spitzer, 1978) and we adopt the value of gff = 1.1 in this paper.

A.3.6 Compton cooling

λc = 4kB(T − Tγ)
π2

15

(
kBTγ
ℏpc

)3( kBTγ
me c2

)
ne σT c , (A.23)

where σT denotes the cross-section for the Thomson scattering.

A.4 Heating function

The photoelectric absorption process creates a photoelectron with kinetic energy K:

X+(i) + hpν → X+(i+1) + e− +K . (A.24)
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Figure A.2: Photo-heating rates per ion of H i, He i, He ii and the Compton heating rates for the
quasars and galaxies model of Haardt and Madau (2012).

The probability per unit time for photoionization is given by Eq. A.8. each photoionization event

injects a photoelectron with kinetic energy, hpν−hpνt, in to the plasma. Hence, the heating rate

per unit volume from the photoionization process is given by

H = n(X+(i))

∫ ∞

νt

c σph(ν)N (hpν − hpνt)dν . (A.25)

Therefore, the photoionization process also depends on the energy flux of radiation field through

Nγ(ν).

On the other hand, the photons and the gas couple through Compton heating. The Compton

scattering between an electron and a photon transfers energy from the photon to the electron if

the gas is ionized and has a temperature lower than the effective Compton temperature of the

radiation field. As a result, the gas gets heated through Compton scattering and such a heating

process is a non-negligible process of heating for very underdense, highly ionized regions.

More detail treatment for the photoionization and the Compton heating processes can be

found in e.g. Draine (2011); Rybicki and Lightman (1986); Spitzer (1998). We show the photo-

heating rates per ion of H i, He i, He ii for the quasars and galaxies model of Haardt and Madau

(2012) as a function of redshift in Figure A.2. The Compton heating rate is also plotted in the

same panel.



88
APPENDIX A. RECOMBINATION/IONIZATION RATES AND COOLING/HEATING

COEFFICIENTS



Appendix B

Truncated Isothermal Sphere (TIS)

In Chapter 5, we have assumed each minihalo is in virial and hydrostatic equilibrium and

adopt a non-singular, truncated isothermal sphere (TIS) (Shapiro et al., 1999; Iliev and Shapiro,

2001; Iliev et al., 2002) as a model for the halo profiles.

We here review the TIS halo model following Shapiro et al. (1999) and show the convenient

analytic formulae provide by Iliev and Shapiro (2001) in Sec. B.5.

B.1 The Top-Hat Model

B.1.1 Before collapse: the exact nonlinear solution

The spherical top-hat model is an uncompensated spherical perturbation of uniform overden-

sity within a finite radius (Gunn and Gott, 1972). We here consider top-hat perturbations in the

Einstein de Sitter (EdS) model.

We can describe the evolution of the density inside the top-hat solely in terms of its overdensity

δ with respect to the background, because the density inside the top-hat stays uniform during

collapse. The solution for the linear evolution of the density perturbation δL(t) is described by

the following parametric form (e.g., (Padmanabhan, 1993))

δ =
9

2

(θ − sin θ)2

1− cos θ)3
− 1 , (B.1)

and

δL =
3

5

(
3

4

)2/3

(θ − sin θ)2/3 . (B.2)

The critical density contrast δc is defined as the linear solution extrapolated to the epoch at

which the nonlinear solution predicts an infinite density. We here define zcoll as the redshift

which corresponds to the epoch of infinite collapse, at which δ = ∞, at time tcoll.
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B.1.2 After collapse: uniform sphere in virial equilibrium

A perfectly symmetric top-hat collapse results does not lead to the formation of virialized

structures. To overcome such a problem, the processes like violent relaxation is usually assumed,

and which leads to form a static, virialized structure. Assuming that the total energy is conserved

during the collapse, we can connect the initial top-hat to the final state.

We solve for the final radius rvir of the virialized sphere by applying the virial theorem to the

final state. The conserved total energy E of the sphere is described in terms of the radius rm at

maximum expansion. When the sphere expands maximumly, the sphere is cold and at rest and

its energy is entirely gravitational potential energy. Therefore, the energy for a uniform sphere

with mass M0 and radius rm at this point is given by

E =Wm =
3

5
GM2

0 rm . (B.3)

After collapse, when the system settles down to a virial equilibrium, the total potential energy is

given by

Wvir =
3

5
GM2

0 rvir . (B.4)

According to the virial theorem, the kinetic and gravitational potential energies are related by

3(γ − 1)K +W = 0 , (B.5)

where K = Uth +Tkin, Uth and Tkin are the thermal and kinetic energy, respectively, and γ is the

ratio of specific heats and we take γ = 5/3. The conservation of energy, E = K +W , leads to

E = −W/2 and the total energy is related to the virial radius according to

E = − 3

10

GM2
0

rvir
, (B.6)

Then, equating the total energy E in Eqs. (B.3) and (B.6) yields rvir = rm/2. The kinetic energy

in the virialized state and the thermal energy are expressed by

Kvir = E −Wvir =
3

10

GM2
0

rvir
, (B.7)

Uth =
3

2

kBT

m
M0 , (B.8)

where m is the mean mass per gas particle. If mH is the mass of a hydrogen atom, then m = µmH

where µ is the mean molecular weight. Since the kinetic energy is the energy of internal motions

only, which leads to Tkin = 0, the equivalent virial temperature for the standard uniform sphere

(SUS) model is

TSUS =
1

5

GM0m

kBrvir
=

2

5

GM0m

kBrm
. (B.9)

For the case of a collisionless gas, the virial temperature Tvir can be replaced by the virial velocity
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dispersion,

σ2V =
⟨v2⟩
3

=
kBTvir
m

. (B.10)

This approach is commonly used to estimate the virial temperature and radius, but it is not

a realistic model. A more realistic approach is to assume a final state of hydrostatic equilibrium,

which corresponds to the state with an isotropic Maxwellian velocity distribution in the case of

collisionless particles, instead of the isothermality and the uniform density.

B.2 Isothermal Spheres

When we describe the virialized object as an isothermal sphere in hydrostatic equilibrium,

we treat is in the usual non-cosmological way (Binney and Tremaine, 1987). Because the final

virialized object is decoupled from the expanding cosmological background from which which it

condensed.

The Poisson equation, ∇2Φ = 4πGρ, for the gravitational potential in the case of spherical

symmetry is
1

r2
d

dr

(
r2
dΦ

dr

)
= 4πGρ . (B.11)

Then, the hydrostatic equilibrium equation, ∇ = ρg, where g = −∇Φ, becomes

kBT

m

dρ

dr
= −ρGM(r)

r2
, (B.12)

where M(r) is the mass inside radius r. Multiplying above equation by r2/ρ, and taking the

derivative with respect to r, we obtain

d

dr

(
r2
d(ln ρ)

dr

)
= −4π

Gm

kBT
r2ρ . (B.13)

In the case of collisionless particles, the the equilibrium velocity distribution of the particles

is given by a Maxwellian distribution,

f(v) =
ρ0

(2πσ2V )
3/2

exp

(
Φ− v2/2

σ2V

)
, (B.14)

where ρ0 is the central density, if we take Φ(r = 0) = 0, and σV is the one-dimensional velocity

dispersion. After integrating over velocity, we obtain

ρ =

∫
f(v)dv = ρ0 exp

(
Φ

σ2v

)
, (B.15)

and by substituting into Eq. (B.11), we get

d

dr

(
r2
d(ln ρ)

dr

)
= − 4π

σ2V
Gρr2 . (B.16)
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Then, we obtain the mean squared velocity,

⟨v2⟩ = 3σ2V , (B.17)

and the equivalent temperature can be calculated from

⟨v2⟩
2

=
3

2

kBT

m
. (B.18)

To make the non-dimensional equation, we introduce new dimensionless variables

ρ̃ = ρ̃ρ0 , ζ =
r

r0
, (B.19)

where ρ0 is the central density and r0 is defined as

r0 = σV /
√

4πGρ0 . (B.20)

Then, Eq. (B.16) becomes
d

dζ

(
ζ2
d(ln ρ̃)

dζ

)
= −ρ̃ζ2 . (B.21)

A simple solution which satisfies above equation is that of a singular isothermal sphere (SIS),

which is often used in models due to to its simplicity;

ρ(r) =
σ2V

2πGr2
, (B.22)

σ2V =
1

2

GM(r)

r
= const. . (B.23)

For more realistic model, which have a core, i.e., r0 ̸= 0, we must solve above equation with

boundary conditions as follows;

ρ̃(0) = 1 ,
dρ̃

dζ
(0) = 0 . (B.24)

To describe some realistic finite structure in terms of this model, we must truncate the sphere

at some radius, rt, because the isothermal sphere has infinite mass. The total mass of the

isothermal sphere M0 is given by

M0 =M(rt) =

∫ rt

0
4πρ(r)r2dr = 4πρ0r

3
0M̃(ζt) , (B.25)

where ζt = rt/r0 and M̃(ζt) is the dimensionless mass, which is defined by

M̃(ζt) ≡
M(rt)

4πr30ρ0
=

∫ ζt

0
ρ̃(ζ)ζ2dζ . (B.26)
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Finally, we obtain

σ2V = G(4πρ0)
1/3

(
M0

M̃t

)2/3

, (B.27)

T =
Gm

kB
(4πρ0)

1/3

(
M0

M̃t

)2/3

, (B.28)

where we newly define M̃t ≡ M̃(ζ̃t). However, the requirement of a truncation radius leads to

the necessity of an external pressure to keep the system in equilibrium. Therefore a significant

correction to the form of the virial theorem stated here is required.

B.3 The Virial Theorem for TIS

We here consider the general isothermal sphere density profile and add a correction by includ-

ing an external pressure to keep the system in equilibrium. From the ideal gas low, the pressure

inside as a function of the radius is given by

p(r) =
kBT

m
ρ(r) = σ2ρ(r) , (B.29)

and at the outer edge, r = rt, pt = p(rt) = σ2ρ(rt). The mean pressure inside the sphere is given

by

ρ̄ =

∫
pdV∫
dV

=
3
∫ ζt
0 ρ̃(ζ)ζ2dζ

ζ3t ρ̃(ζt)
pt =

3M̃(ζt)

ζ3t ρ̃(ζt)
pt ≡ α(ζt)pt (B.30)

where ζt ≡ rt/r0. The limit ζt = ∞. Hereafter we puts α as α = α(ζt), c.f., α = 3 leads to the

case of a singular isothermal sphere (SIS).

The virial theorem for a static sphere in the presence of a surface pressure pt reads

3(γ − 1)K +W + Sp = 0 , (B.31)

whereW is the gravitational potential energy, K is just Uth, thermal energy, and Sp is the surface

pressure term. The thermal energy for a gas with a ratio of specific heats γ = 5/3 is given by

Uth =
1

γ − 1

∫
pdV =

3

2
α(ζt)ptV , (B.32)

where V is the total volume. The surface term is given by

Sp = −
∫
p r · dS . (B.33)

Hence, according to the virial theorem, the gravitational potential energy term is given by

W = −2Uth − Sp = −2
α− 1

α
Uth , (B.34)
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and the total energy is

E =
2− α

α
Uth . (B.35)

In order for the halo to be bound, the condition that E < 0 (and Uth > 0) leads to α > 2. Then,

the virial temperature of the isothermal sphere is

TTIS =
2α

5(α− 2)

GM0m

kBrm
. (B.36)

Since α/(α − 1) > 1 for any α, the temperature TTIS is always higher than the standard value

for a uniform sphere TSUS. The virial radius vvir in this case is thus the size of the truncated

isothermal sphere, rvir = rt.

For comparison with the non-singular TIS model, we calculate the virial temperature for a

truncated singular isothermal sphere (SIS), which is algebraically simpler and whose results can

be obtained analytically. According to the ideal gas low and ρ(r) = σ2/2πGr2, the pressure at

radius r is given by

p(r) = pt

(
r

rt

)−2

, (B.37)

where the boundary pressure at r = rt is given by pt = σ2ρt = σ4/2πGr2t . The average pressure

inside the truncated isothermal sphere is then, p̄ = 3pt, i.e., with α = 3. The thermal energy and

the potential energy in this case are given by

Uth =
3

2

∫
pdV =

3

4

GM2
0

rt
(B.38)

W = −2Uth − Sp = −GM
2
0

rt
(B.39)

with the surface pressure term in the virial theorem equation given by

Sp = −
∫
pr · dS = −4πr3t pt = −1

2

GM2
0

rt
. (B.40)

Then, the total energy becomes

E = Uth +W = −1

4

GM2
0

rt
. (B.41)

The SIS virial temperature is given by

TSIS =
6

5

GM0m

kBrm
. (B.42)

Figure B.1 shows the comparisons of the postcollapse equilibrium density profiles and their

logarithmic slopes for TIS, SIS and SUS models. A plot of ρ/ρSUS as a function of normalized

radius r/rm demonstrates the the significant differences of density profiles from that of SUS
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model.

B.4 The Minimum-Energy Solution

Although the mass and total energy of the top-hat are conserved through collapse and viri-

alization, the solution is not uniquely determined. Even for any truncated isothermal sphere of

mass M0 which confined by a given external pressure pt, we can uniquely identify a special value

of the truncated radius ζt or equivalently of the total energy E. In order to find a unique solu-

tion, following Ansatz is adopted; such a “minimum-energy solution” is the unique TIS solution

preferred in nature as the outcome of the virialization of the sphere in the presence of a fixed

external pressure.

The result so far is for the EdS universe (Ω0 = 1, ΩΛ0 = 0). Iliev and Shapiro (2001)

generalized the results of Shapiro et al. (1999) to the case of a low-density universe, either open

and matter dominated (Ω0 < 1, ΩΛ0 = 0), or flat with a cosmological constant (Ω0 = 1−ΩΛ0). In

the presence of the cosmological constant or dark energy, the final virialized objects also decouples

from the expanding cosmological background from which is condensed, but it continues to be

affected by the cosmological constant or dark energy because of the modification that component

causes to the gravity force.

For the case with a cosmological constant, the differences with respect to the EdS solution

for the TIS model is the necessarily to take proper account of non-zero Λ for the solution in

the spherical top-hat problem, the virial theorem, the conservation of energy, and the isothermal

Lane-Emden equation. Figure B.2 shows the effects of a cosmological constant for the modi-

fied isothermal Lane-Emden spheres. According to (Iliev and Shapiro, 2001), we summarize the

minimum-energy solution for the TIS model as follows.

The dimensional parameters for the dimensionless TIS solution are specified for a given mass

M0 and collapse redshift zcoll). For a given θ, the mean overdensity of the virialized object in the

TIS model with respect to the critical density of the universe at zcoll is given by

∆c,TIS ≡ ρ̄

ρcrit(zcoll)
=

Ω0 a
3
0

θ η3TIS(θ)

[
ρcrit(zcoll)

ρcrit,0

]−1

, (B.43)

where Ω0 a
3 = ΩΛ0 for Ω0+ΩΛ0 = 1 and the corresponding overdensity for the standard uniform

sphere ∆c,SUS are related as ∆c,TIS = (ηSUS/ηTIS)
3∆c,SUS. The dependence of θ on collapse

redshift zcoll for a given background cosmology is expressed by θ is given by

θ =
Ω0 a

3
0

∆c,SUS η3SUS

[
h(zcoll)

h

]−2

. (B.44)



96 APPENDIX B. TRUNCATED ISOTHERMAL SPHERE (TIS)

Dimensionless Parameters

SUS SIS TIS

θ = 1− 0.5

η/ηSUS 1 0.833 1.11-1.04

T/TSUS 1 3 2.16-2.26

ρ0/ρt 1 ∞ 514-575

⟨ρ⟩/ρt 1 3 3.73-3.59

rt/r0 -NA- ∞ 29.4-31.7

∆c/∆c,SUS 1
(
6
5

)3
= 1.728 1.36-1.12

K/|W | 0.5 0.75 0.683-0.707

Figure B.1: The comparisons of the postcollapse equilibrium density profiles for TIS (solid line),
SIS (dashed line) and SUS (dotted line); this figure is taken from Shapiro et al. (1999). The radius
is in units of the radius of the tophat at maximum expansion for each model and all densities
are plotted in units of the postcollapse density of the SUS approximation, i.e., 18π2ρ(tcoll). The
right table summarizes the dimensionless parameters for each model.

For a given mass M0 and ∆c,TIS can be expressed as follows:

rt =

(
3M0

4π∆c,TISρcrit(zcoll)

)1/3

, (B.45)

= 187.2×
(

M

1012M⊙

)1/3

F (zcoll)
−1h−2/3kpc ,

rm =
rt
ηTIS

=
ζt
ηTIS

r0 , (B.46)

= 337.7×
(

M

1012M⊙

)1/3

F (zcoll)
−1h−2/3kpc ,

r0 = 6.367×
(

M

1012M⊙

)1/3

F (zcoll)
−1h−2/3kpc . (B.47)
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Figure B.2: The effects of a cosmological constant for the modified isothermal Lane-Emden
spheres; this figure is taken from Iliev and Shapiro (2001). Each panel shows the density profile
in units of the central density ρ0, the logarithmic slopes of these density profiles and the circular
velocity profiles vc normalized by the velocity dispersion of the halo σV versus dimensionless radius
normalized by the core radius r0, from top to bottom. Each label represents the abundance of a
cosmological constant; ρ̃Λ = 0.1 (label 1), ρ̃Λ = 10−3 (label 2), ρ̃Λ = 10−5 (label 3), ρ̃Λ = 10−7

(label 4), and ρ̃Λ = 0 (label 5), respectively. Each plot extends out to its natural cut-off at
ρ = 2ρΛ, except the matter-dominated one (curve 5).

ρ0 =
ζ3t
3M̃t

ρ̄ =
ζ3t
3M̃t

∆c,TIS ρcrit(zcoll) , (B.48)

= 3.382× 10−25F (zcoll)
3 h2 g cm−3 ,

σ2V = 4πGρ0 r
2
0 =

[
4π

3
∆c,TIS ρcrit(zcoll)

]1/3 ζ

M̃t

GM
2/3
0 , (B.49)

= 1.098× 104
(

M

1012M⊙

)2/3

F (zcoll)h
2/3 km2s−2 ,

T =
m

kB
σ2V (B.50)

= 7.843× 105
( µ

0.59

)( M

1012M⊙

)2/3

F (zcoll)h
2/3K ,

vc(r) =

[
GM(r)

r

(
1− 2

ρΛ
ρ(r)

)]1/2
, (B.51)



98 APPENDIX B. TRUNCATED ISOTHERMAL SPHERE (TIS)

where

F (zcoll) ≡
[
h(zcoll)

h

]2 ∆c,TIS(zcoll,ΩΛ0)

∆c,TIS(ΩΛ0 = 0)

=

[
Ω0

Ω(zcoll)

∆c,SUS

18π2

]1/3
(1 + zcoll) . (B.52)

Here µ is the mean molecular weight, where µ = 0.59(1.22) for an ionized(neutral gas of H and

He with [He]/[H]=0.08 by number.

B.5 Analytic Fitting Formulae

A convenient set of analytic fitting formulae for the dimensionless TIS parameters, such as ζt

and ηTIS, are given for two overlapping intervals of θ, with different fractional errors.

In the range, 0 ≤ θ ≤ 0.123, the fits are given by

ζt = 29.40031 + 11.4652 θ − 13.8428 θ2 − 12.8453 θ3 , (B.53)

α = 3.7296− 0.866069 θ + 1.92742 θ2 − 1.70326 θ3 , (B.54)

ηTIS = 0.554384− 0.45529 θ + 0.21258 θ2 + 0.02128 θ3 , (B.55)

M̃t = 61.485 + 23.8887θ − 32.9854θ2 − 14.0272θ3 . (B.56)

The relative errors of these fits are < 0.01 per cent.

The fits in the full allowed range, 0 ≤ θ ≤ 0.5, are given by

ζt = 29.38931 + 12.0474θ − 20.752θ2 + 11.732θ3 , (B.57)

α = 3.72913− 0.843068 θ + 1.71017 θ2 − 1.20963 θ3 , (B.58)

ηTIS = 0.554437− 0.45804θ + 0.23999θ2 − 0.04279θ3 , (B.59)

M̃t = 61.4683 + 24.782θ − 43.8578θ2 + 25.8869θ3 . (B.60)

The relative errors of these fits are < 0.1 per cent.

The analytic fit to the TIS density profile is obtained by

ρ(ζ) +
A

a2 + ζ2
− B

b2 + ζ2
, (B.61)

where ζ = r/r0 for ζ ≤ ζt with (A, a2, B, b2)TIS = (21.38, 9.08, 19.81, 14.62). The fit has an

accuracy of better than 3 per cent.

The corresponding fit to the TIS halo circular velocity profile, i.e., the rotation curve, is

obtained by

vc(r) = σV

[
A−B +

r0
r

{
bB arctan

(
r

br0

)
− aA arctan

(
r

ar0

)}]1/2
. (B.62)
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This fit to σc/σV is good to < 1 per cent for r < 2rt/3, while at larger radii the error could be

larger but that is ≤ 6 per cent at rt.
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Appendix C

Fisher matrix analysis

For a given data, estimating how well model parameters can be determined is often required

not only in cosmology but also in various fields. Following (Tegmark et al., 1997), we here

summarize the Fisher matrix analysis (Fisher, 1935), which is often utilized in the cosmological

field.

C.1 Fisher Information Matrix

In cosmological field, the Fisher matrix analysis is often used to investigate how well model

parameters can be determined from the assumed observation. The Fisher matrix analysis is one

of the parameter estimation methods based on the maximum likelihood estimation method. The

accuracy of determination of parameters are estimated by defining the quantity corresponding

to the curvature of the maximum likelihood function in the parameter space, which is called the

Fisher Information Matrix.

We define the vectors for M model parameters and N data as follows;

parameter vector (theory) : θ = (θ1, θ2, · · · , θM ). (C.1)

data vector (observation) : d = (d1, d2, · · · , dN ). (C.2)

where θ and d are the theoretical value the observed value, respectively. When we assume a

future observation, the data vector is given by d = Sth + Nex, with theoretical signal Sth and

noise assumed from a observation Nex, which include the information of the future observation.

Then, we consider the probability of obtaining the theoretical value which corresponds to the

model parameters θ when a data set d is given. If we assume that the distributions of parameters

follow the Gaussian distribution, the probability can be given by

P [d |θ] ≡ L(d ; θ) =
1√

2π (detC)
exp

[
−1

2
(d− µ)C−1(d− µ)T

]
, (C.3)

where L is the likelihood function and the logarithmic likelihood function is defined by L ≡ − lnL.

µ and C are respectively the mean value (theoretical value) and its covariance matrix for the

101
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given θ;

C = ⟨(d− µ)(d− µ)T ⟩ . (C.4)

In the same manner, the data vector D is defined by

D ≡ (d− µ)(d− µ)T . (C.5)

Finally, we define the quantity which corresponds to the curvature of logarithmic likelihood L in

the parameter space as follow;

Fij ≡
⟨

∂2L
∂θi∂θj

⟩
, (C.6)

where Fij is called the Fisher Information Matrix.

From Eq. (C.3), the logarithmic likelihood L can be rewritten as

2L = ln(2π) + ln(detC) + (d− µ)C−1(d− µ)T (C.7)

Furthermore, ln detC = Tr lnC leads to

2L = ln(2π) + Tr[lnC +C−1D] . (C.8)

To drive the r.h.s in Eq. (C.6), we differentiate partially L with a parameter θi and define the

differential operation as follow;

C,i ≡
∂C

∂θ,i
. (C.9)

In the same manner, we describe the same notations for D and L. Adopting the following

relations for the differential operation of matrix;

(C−1),i = −C−1C,iC
−1 , (C.10)

(lnC),i = C−1C,i (C.11)

the differential operation of the likelihood function can be written by

2L,i = Tr[C−1C,i −C−1C,iC
−1D +C−1D,i], (C.12)

and

2L,ij = Tr[−C−1C,iC
−1C,j +C−1C,ij +C−1(C,iC

−1C,j +C,jC
−1C,i)C

−1D

−C−1(C,iC
−1D,j +C,jC

−1D,i)−C−1C,ijC
−1D +C−1D,ij . (C.13)

If the true parameter θ = Θ is given, the theoretical value µ and the covariance matrix C are

written as ⟨d⟩ = µ and ⟨ddT ⟩ = C + µµT , respectively, and which can drive the following
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equations;

⟨D⟩ = C, (C.14)

⟨D,i⟩ = 0, (C.15)

⟨D,ij⟩ = µ,iµ
T
,j + µ,jµ

T
,i , (C.16)

Taking the ensemble average of Eq. (C.12) leads ⟨L,i⟩ = 0, and the likelihood function has a

extremal value at the point where θ = Θ. Adopting the relation, Tr(AB) = Tr(BA), for

Eq. (C.13) and taking the ensemble average, the Fisher information matrix can be rewritten as

Fij = ⟨L,ij⟩ =
1

2
Tr
[
C−1C,iC

−1C,j +C−1⟨D,ij⟩
]
. (C.17)

On the other hand, when the expectation value ⟨θ̂⟩ of estimator θ̂ corresponds to the true value

of parameters, θ̂ is called the unbiased estimator of parameter θ. The scatter of estimated param-

eter from this unbiased estimator has the minimum value, which is led from the Cramér-Rao’s

inequalityBy using the Cramér-Rao’s inequality, the relationship between the Fisher information

matrix and the scatter of each parameter is given by

var(θ̂)ij = F−1
ij (θ). (C.18)

C.2 Cramér-Rao Inequality

We here briefly summarize the Cramér-Rao inequality, which is adopted to put the minimum

value on the scatter of estimated parameter from the unbiased estimator.

We introduce the random sample from f(x; θ) as X1, X2, · · · , Xn and define the joint proba-

bility density function as

L =
n∏
i=1

f(xi) , (C.19)

where θ is a scalar value. To simplify the expression, we describe the n-multiple integration as∫
· · ·
∫

︸ ︷︷ ︸
n

→
∫ (n)

, then Eq. (C.19) can be rewritten as

∫ (n)

Ldx1 · · · dxn = 1 . (C.20)

By differentiating both sides with θ, we can get the following equation;∫ (n) ∂L

∂θ
dx1 · · · dxn = 0 . (C.21)
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Therefore the expectation value of
∂ logL

∂θ
can be given by

E

(
∂ logL

∂θ

)
=

∫ (n)( 1

L

∂L

∂θ

)
Ldx1 · · · dxn = 0 . (C.22)

Furthermore, differentiating Eq. (C.22) with θ again leads to the following result∫ (n){( 1

L

∂L

∂θ

)
∂L

∂θ
+ L

∂

∂θ

(
1

L

∂L

∂θ

)}
dx1 · · · dxn = 0 . (C.23)

Then, by using the following equations;(
1

L

∂L

∂θ

)
∂L

∂θ
=

(
1

L

∂L

∂θ

)2

L =

(
∂ logL

∂θ

)2

L , (C.24)

and
∂

∂θ

(
1

L

∂L

∂θ

)
=

∂

∂θ

(
∂ logL

∂θ

)
=
∂2 logL

∂θ2
, (C.25)

Eq. (C.23) cab be rewritten as

∫ (n)
{(

∂ logL

∂θ

)2

+

(
∂2 logL

∂θ2

)}
Ldx1, · · · dxn = 0 . (C.26)

More specifically, following equation can be obtained;

E

[(
∂ logL

∂θ

)2
]
= −E

(
∂2 logL

∂θ2

)
. (C.27)

We here define θ̄ as an arbitrary unbiased estimator of θ.

E(θ̄) =

∫ (n)

θ̄ L dx1 · · · dxn , (C.28)

leads to ∫ (n)

θ̄ L dx1 · · · dxn = θ . (C.29)

By differentiating both sides of above equation with θ, we obtain the following equation;∫ (n)

θ̄

(
∂ logL

∂θ

)
Ldx1 · · · dxn = 1 . (C.30)

From Eq. (C.22), ∫ (n)

θ

(
∂ logL

∂θ

)
Ldx1 · · · dxn = 0 , (C.31)
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and combining above equation and Eq. (C.30) leads to the following result;∫ (n)

(θ̄ − θ)

(
∂ logL

∂θ

)
Ldx1 · · · dxn = 1 . (C.32)

We next introduce variables as follows;

g(x1, · · · , xn) = gn , (C.33)

h(x1, · · · , xn) = hn , (C.34)

then, the Cauchy-Schwarz inequality can be given by[∫ (n)

gn hn Ldx1 · · · dxn

]2
≤

[∫ (n)

g2n Ldx1 · · · dxn

]2 [∫ (n)

h2n Ldx1 · · · dxn

]2
. (C.35)

When we adopt

gn = θ̄ − θ , (C.36)

hn =
∂ logL

∂θ
, (C.37)

it leads following equations;∫ (n)

g2n Ldx1 · · · dxn = E(θ̄ − θ)2 = var(θ̄) , (C.38)∫ (n)

h2n Ldx1 · · · dxn = E

(
∂ logL

∂θ

)2

, (C.39)∫ (n)

gn hn Ldx1 · · · dxn =

∫ (n)

(θ̄ − θ)

(
∂ logL

∂θ

)
Ldx1 · · · dxn = 1 . (C.40)

Inserting these equations into the Cauchy-Schwarz inequality, we get the following result;

1 ≤ var(θ̄)E

(
∂ logL

∂θ

)2

. (C.41)

As a result, we can obtain the following inequality;

var(θ̄) ≥ 1

E

(
∂ logL

∂θ

)2 . (C.42)

On the other hand, Eq. (C.42) can be rewritten with Eq. (C.27) as follow;

var(θ̄) ≥ − 1

E

(
∂2 logL

∂θ2

) . (C.43)
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Eq. (C.42) or Eq. (C.43) is called the Cramér-Rao inequality. The variance for the unbiased

estimator of θ (θ̄) has boundary and the minimum variance can be given by

1

E

(
∂ logL

∂θ

)2 = − 1

E

(
∂2 logL

∂θ2

) . (C.44)

Above minimum variance is called Cramér-Rao bound.

We introduce the following quantity;

S(θ;x) =
∂ logL

∂θ
, (C.45)

which is called Score and Eq. (C.21) leads to

E(S) = 0 ,

var(S) = Cramér− Rao bound .

The variance of the Cramér-Rao bound is often expressed by

E

(
∂ logL

∂θ

)2

= −E
(
∂2 logL

∂θ2

)
= F (θ) , (C.46)

where F (θ) corresponds to the Fisher information matrix and F (θ) leads to the relation between

an arbitrary unbiased estimator of θ ((θ̃));

var(θ̃) ≤ [F (θ)]−1 . (C.47)

When θ is the vector with k unknown parameters, not scholar,

θ =


θ1

θ2
...

θk

 , (C.48)

we define the vector of an arbitrary unbiased estimator for θ and the covariance matrix as θ̃ and

var(θ̃), respectively. Then the Fisher information matrix can be given by

F (θ) = −E
[
∂2 logL(θ)

∂θ∂θ′

]
= −


E

(
∂2 logL(θ)

∂θ21

)
· · · E

(
∂2 logL(θ)

∂θ1∂θk

)
...

...

E

(
∂2 logL(θ)

∂θk∂θ1

)
· · · E

(
∂2 logL(θ)

∂θ2k

)
 , (C.49)
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and the Cramér-Rao Inequality can be generalized for the vector as

var(θ̃)− F (θ)−1 : positive definite . (C.50)

C.3 Application for the CMB experiment

We here estimate the noise spectrum and derive the likelihood function and the Fisher in-

formation matrix for the the CMB observation, assuming to utilize the temperature anisotropies

and the polarization data.

C.3.1 Beam pattern and Noise spectrum

We here estimate the noise for the CMB observation. We detect the light coming into multiple

pixels as signals and the signal has finite extent in each pixel. Therefore the signal detected in the

i-th pixel si is given with the beak pattern of the i-th detector Bi and the observed temperature

fluctuations Θ as

si =

∫
dn̂Θ(n̂)Bi(n̂) . (C.51)

In the same manner, the polarization component can also given with the same manner as the

temperature fluctuations Θ. The beam pattern Bi reflect the specification of the detector and

we here assume the Gaussian beam pattern;

Bi(x⃗) =
1

2πσ2
exp

(
−(x⃗− x⃗i)

2

2σ2

)
. (C.52)

This assumption is known as the good approximation for most of the CMB experiments. The

Fourier transformation of this also has the Gaussian form and given by

B̃i(⃗l) =
1

2πσ2

∫
d2xe−i⃗l·x⃗ exp

(
− x2

2σ2

)
,

= e−l
2σ2/2 , (C.53)

where σ represents the angular resolution of the detector and this equation implies that the

information in the smaller scales than the beam size is smoothed out and can not be observed.

Under such assumption, B̃ is independent of the direction of l⃗ and. The angular resolution σ can

be associated with the full width at half-maximum (FWHM), which corresponds to the double

value of x making B(x⃗) half of the maximum value (Knox, 1995; Tegmark and Efstathiou, 1996);

σ ≡ θFWHM/
√
8 ln 2 = 0.4245 θFWHM , (C.54)

where θFWHM represents the angular size corresponding to the FWHM.

Next, we here estimate the noise spectrum. The actually observed power spectrum ĈXYl con-

tains the primary signal power spectrum CXYl and the homogeneously distributed noise spectrum
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NXY
l . Furthermore, if there are no correlations between the signal and the noise, the observed

power spectrum is given by

ĈXYl = e−l
2θ2FWHM/8 ln 2(CXYl +NXY

l ) , (C.55)

with

NXY
l δll′δmm′ ≡ ⟨nXlmnY ∗

l′m′⟩el
2θ2FWHM/8 ln 2 , (C.56)

where X, Y are represent the label for the temperature anisotropies and the polarization com-

ponents. If there are no correlations between the temperature anisotropies and polarization, the

cross-correlation noise spectrum reads to be zero; NXY
l = 0 (X ̸= Y ).

In Eq. (C.55), el
2θ2FWHM/8 ln 2 represents the resolution of a detector, ⟨nXlmnY ∗

l′m′⟩ represents the
sensitivity of a detector. The sensitivity of a detector σX is given with the homogeneous CMB

temperature TCMB by
σX
TCMB

≡ nX . (C.57)

Then the noise spectrum NXX
l is given by

NXX
l δll′ ≡

(
σX
TCMB

)2

el
2θ2FWHM/8 ln 2 . (C.58)

In addition, the observation is often performed with multi-frequency bands. In such a case,

by combining the observed CMB maps in each frequency band, it can scale back the influence of

noise contamination. The frequency band corresponds to a frequency of νi is called a channel,

the total noise Nl after combining the noise at each channel Nl, i can be given by

N−1
l =

∑
i

(Nl, i)
−1 =

√∑
i≤j

2

NiNj(1 + δij)
. (C.59)

C.3.2 Likelihood function and Fisher information matrix

We here define the likelihood function for the CMB observation and derive the Fisher infor-

mation matrix, following Perotto et al. (2006). As a fundamental case, we consider only two

components for the CMB data, such as the temperature anisotropies T and E-mode polarization

E.

We first define the data vector d as

d = {aTlm, aElm} . (C.60)

For Eq. (C.4), the average value is defined as µ = 0 for the CMB observables, then the covariance
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matrix can be given by

C(θ) = δll′

⟨(
aTlm
aElm

)(
aT ∗
lm aE ∗

lm

)⟩
=

(
CTTl CTEl
CTEl CEEl

)
, (C.61)

where θ denotes the parameter vector.

In such a case that the likelihood function follows the Gaussian distribution, it is given by

L(d;θ) =
1√

2πdetC(θ)
exp

(
−1

2
d∗C(θ)−1d

)
. (C.62)

Following the definition in Eq. (C.17), its second term reads to be D,ij = 0 from the definition

of the average value and only the first term remains. Then the Fisher information matrix can be

given by

Fij =

lmax∑
lmin

2l + 1

2
Tr

(
C−1
l

∂Cl

∂θi
C−1
l

∂Cl

∂θj

)
, (C.63)

where Cl is the matrix consisting of power spectrum of each component CXYl and defined by

Cl ≡

(
CTTl CTEl
CTEl CEEl

)
. (C.64)

The information obtained from the observation is limited by the resolution of a detector and.

Therefore the available value of maximum multipole ℓmax is finite and it is reflected to the fact

ℓmax→ ∞ is not realized. On the other hand, the observed area is also finite. Although the ideal

observation can get 2l + 1 modes for each ℓ, actually the number is proportional to the fraction

of observable area fsky. Then the Fisher information matrix can be approximately as

Fij =

lmax∑
lmin

(2l + 1)fsky
2

Tr

(
C−1
l

∂Cl

∂θi
C−1
l

∂Cl

∂θj

)
. (C.65)
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