Description of the Dixmier－Douady class in simplicial de Rham complexes
 （単体的ド・ラーム複体上におけるディクシミエ・ドゥアディ類の記述）
 Naoya Suzuki

Abstract

On the basis of A.L.Carey, D.Crowley, M.K.Murray's work, we exhibit a cocycle in the simplicial de Rham complex which represents the Dixmier-Douady class. We exhibit also the "Chern-Simons form" of the Dixmier-Douady class. After that, we explain that this cocycle coincides with a kind of transgression of the second Chern class when we consider a central extension of the loop group and a connection due to J.Mickelsson and J-L.Brylinski, D.McLaughlin.

Contents

1 Introduction 3
2 The double complex on simplicial manifold 5
3 Dixmier-Douady class on the double complex 8
3.1 Definition of the Dixmier-Douady class 8
3.2 Construction of the cocycle 10
3.3 Main results 14
3.4 Another description 15
3.5 "Chern-Simons form" 17
4 The String class 18
4.1 In the case of special unitary group 18
4.2 In the case of semi-direct product 23
5 Appendix: A central $U(1)$-extension of a groupoid 24
5.1 Double complex and central $U(1)$-extension 25
5.2 Bundle gerbes 26
5.2.1 The definition and basic properties 26
5.2.2 Examples of bundle gerbes 29

1 Introduction

In [7], Carey, Crowley, Murray proved that when a Lie group G admits a central $U(1)$-extension $1 \rightarrow U(1) \rightarrow \widehat{G} \rightarrow G \rightarrow 1$, there exists a characteristic class of principal G-bundle $\phi: Y \rightarrow M$ which belongs to a cohomology group $H^{2}(M, U(1)) \cong H^{3}(M, \mathbb{Z})$. Here $U(1)$ stands for a sheaf of continuous $U(1)$-valued functions on M. This class is called the Dixmier-Douady class associated to the central $U(1)$-extension $\widehat{G} \rightarrow G$.

On the other hand, for any Lie group G there is a topological space $B G$ called the classifying space such that the characteristic classes of principal G-bundles are in one-to-one correspondence with the cohomology classes in $H^{*}(B G)$. In general $B G$ is a very huge space so we can not use the usual de Rham theory on it. In order to describe the cocycle of $H^{*}(B G)$, we will use the following simplicial de Rham complex theory due to Segal [28], Bott, Shulman, Stasheff [3] and Dupont [10].

For any Lie group G, we have a simplicial manifold $\{N G(*)\}$. It is a sequence of manifolds $\left\{N G(p)=G^{p}\right\}_{p=0,1, \ldots}$ together with face maps ε_{i} : $N G(p) \rightarrow N G(p-1)$ for $i=0, \cdots, p$ satisfying the relations $\varepsilon_{i} \varepsilon_{j}=\varepsilon_{j-1} \varepsilon_{i}$ for $i<j$ (The standard definition also involves degeneracy maps but we do not need them here). Then the n-th cohomology group of the classifying space $B G$ is isomorphic to the total cohomology of the double complex $\left\{\Omega^{q}(N G(p))\right\}_{p+q=n}$. See [3] [10] [20] for details.

There is also a simplicial manifold $\{P G(*)\}$ for G which plays the role of the total space $E G$ of the universal bundle. Since $H^{*}(E G)$ is trivial if we pull-back any cocycle on $\Omega^{*}(N G)$ to $\Omega^{*}(P G)$, it becomes a exact form so there exist a cochain on $\Omega^{*-1}(P G)$ such that its coboudary coincides to the pull-back of that cocycle. Such a cochain can be called the "Chern-Simons form" of that cocycle.

In [30], the author exhibited some cocycles on $\Omega^{*}(N U(n))$ which represents the Chern character and the Chern-Simons form of the second Chern class on $\Omega^{3}(P U(n))$.

In this paper we exhibit a cocycle on $\Omega^{*}(N G(*))$ which represents the Dixmier-Douady class. It is described as follows. See Theorem 3.3.

Theorem A The universal Dixmier-Douady class associated to π and a section \hat{s} is represented by the sum of following $c_{1}(\theta)$ and $-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta)$:

$$
\begin{aligned}
& 0 \\
& \uparrow-d \\
& c_{1}(\theta) \in \Omega^{2}(G) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}} \quad \begin{array}{c}
\Omega^{2}(G \times G) \\
\uparrow d
\end{array} \\
& -\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta) \in \Omega^{1}(G \times G) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}-\varepsilon_{3}^{*}} 0
\end{aligned}
$$

As a consequence of our result, we can see that if G is given a discrete topology, the Dixmier-Douady class in $H^{3}\left(B G^{\delta}, \mathbb{R}\right)$ is 0 . We can also see if G is simply connected, the Dixmier-Douady class in $H^{3}(B G, \mathbb{R})$ is not 0 if $\widehat{G} \rightarrow G$ is not trivial as a principal $U(1)$-bundle. See Corollary 3.1 and Corollary 3.2.

Such a cocycle is also studied in a general setting by Behrend, Tu, Xu and Laurent-Gengoux [1] [2] [33] [34], and Ginot, Stiénon [12]. They described the cocycle in another way. Our construction is more explicit so that we can observe what kind of influence the section \hat{s} of $\delta \widehat{G}:=\varepsilon_{0}^{*} \widehat{G} \otimes\left(\varepsilon_{1}^{*} \widehat{G}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \widehat{G}$ have on the cocycle. We can also see the relation between such a section \hat{s} and the group structure of \widehat{G}.

Furthermore, our construction has an advantage that we can also exhibit the "Chern-Simons form" of the Dixmier-Douady class on $\Omega^{*}(P G(*))$. It is described as follows. See Theorem 3.6.

Theorem B The Chern-Simons form of the Dixmier-Douady class is a sum of following $-c_{1}(\theta)$ and $-\left(\frac{-1}{2 \pi i}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right)$:

$$
\begin{aligned}
& 0 \\
& \uparrow{ }^{d} \\
& -c_{1}(\theta) \in \Omega^{2}(G) \xrightarrow{\bar{\varepsilon}_{0}^{*}-\bar{\varepsilon}_{1}^{*}} \quad \quad \Omega^{2}(P G(1)) \\
& \uparrow-d \\
& -\left(\frac{-1}{2 \pi i}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right) \in \Omega^{1}(P G(1)) \xrightarrow{\bar{\varepsilon}_{0}^{*}-\bar{\varepsilon}_{1}^{*}+\bar{\varepsilon}_{2}^{*}} \Omega^{1}(P G(2))
\end{aligned}
$$

As a consequence, we can see that the Dixmier-Douady class is mapped to
the first Chern class of $\widehat{G} \rightarrow G$ by a kind of the transgression map in the sense of Heitsch and Lawson [13].

One of the important examples of the Lie group which have a non-trivial central $U(1)$-extension is a free loop group of a finite dimensional compact Lie group [5][18][27]. We explain that our cocycle coincides with a kind of transgression of the universal second Chern class when we use the central extension $\widehat{L S U(2)} \rightarrow L S U(2)$ and the connection form due to Mickelsson [18] and Brylinski, McLaughlin [5][6]. We consider also the case of semi-direct product $L S U(2) \rtimes S^{1}$ and construct a cocycle in a certain triple complex. Finally, as a natural development of these theory, we give a short survey of the theory of a central $U(1)$-extension of a Lie groupoid. Given a surjective submersion $\phi: Y \rightarrow M$, we obtain the groupoid $Y^{[2]} \rightrightarrows Y$, where $Y^{[2]}$ is the fiber product defined as $Y^{[2]}:=\left\{\left(y_{1}, y_{2}\right) \mid \phi\left(y_{1}\right)=\phi\left(y_{2}\right)\right\}$. A central $U(1)$-extension of the groupoid $Y^{[2]} \rightrightarrows Y$ is called a bundle gerbe over M. Bundle gerbe was invented by Murray in [21]. Murray and Stevenson showed that there is one-to-one correspondence between the isomorphism classes of bundle gerbes over M and the cohomology group $H^{3}(M, \mathbb{Z})$ [22].

The outline of this paper is as follows. Section 2 is a preliminary. We briefly recall the notion of simplicial manifold $N G$ and the relation with the classifying space $B G$. In Section 3, we recall the definition of the DixmierDouady class and construct a cocycle in $\Omega^{*}(N G(*))$ and prove the main theorem (Theorem 3.3). We also exhibit the "Chern-Simons form" of the Dixmier-Douady class. In Section 4, we discuss the case of central $U(1)$ extension of the loop group following the idea of Brylinski, McLaughlin [6] and Murray, Stevenson [23][24]. Section 5 is a short survey of the theory of a central $U(1)$-extension of a groupoid.

2 The double complex on simplicial manifold

In this section first we recall the relation between the simplicial manifold $N G$ and the classifying space $B G$.

As a convention of this paper, a Lie group means a paracompact Lie group modeled on a Hausdorff locally convex topological vector space. For example, we will consider not only the case of a finite dimensional Li group,
but also the case of an infinite dimensional loop group, unitary group acting on a Hilbert space. See Section 3.1.

For any Lie group G, we define simplicial manifolds $N G, P G$ and a simplicial G-bundle $\rho: P G \rightarrow N G$ as follows:

$$
N G(p):=\overbrace{G \times \cdots \times G}^{p-\text { times }} \ni\left(g_{1}, \cdots, g_{p}\right):
$$

face operators $\varepsilon_{i}: N G(p) \rightarrow N G(p-1)$

$$
\varepsilon_{i}\left(g_{1}, \cdots, g_{p}\right)= \begin{cases}\left(g_{2}, \cdots, g_{p}\right) & i=0 \\ \left(g_{1}, \cdots, g_{i} g_{i+1}, \cdots, g_{p}\right) & i=1, \cdots, p-1 \\ \left(g_{1}, \cdots, g_{p-1}\right) & i=p .\end{cases}
$$

$$
P G(p):=\overbrace{G \times \cdots \times G}^{p+1-\text { times }} \ni\left(\bar{g}_{0}, \cdots, \bar{g}_{p}\right):
$$

face operators $\bar{\varepsilon}_{i}: P G(p) \rightarrow P G(p-1)$

$$
\bar{\varepsilon}_{i}\left(\bar{g}_{0}, \cdots, \bar{g}_{p}\right)=\left(\bar{g}_{0}, \cdots, \bar{g}_{i-1}, \bar{g}_{i+1}, \cdots, \bar{g}_{p}\right) \quad i=0,1, \cdots, p
$$

We define $\rho: P G \rightarrow N G$ as $\rho\left(\bar{g}_{0}, \cdots, \bar{g}_{p}\right):=\left(\bar{g}_{0} \bar{g}_{1}^{-1}, \cdots, \bar{g}_{p-1} \bar{g}_{p}^{-1}\right)$.
To any simplicial manifold $X=\left\{X_{*}\right\}$, we can associate a topological space $\|X\|$ called the fat realization. Since any G-bundle $\rho: E \rightarrow M$ can be realized as the pull-back of the fat realization of $\rho,\|\rho\|$ is the universal bundle $E G \rightarrow B G$ [28].

Now we construct a double complex associated to a simplicial manifold.
Definition 2.1. For any simplicial manifold $\left\{X_{*}\right\}$ with face operators $\left\{\varepsilon_{*}\right\}$, we define double complex as follows:

$$
\Omega^{p, q}(X) \stackrel{\text { def }}{=} \Omega^{q}\left(X_{p}\right) .
$$

Derivatives are:

$$
d^{\prime}:=\sum_{i=0}^{p+1}(-1)^{i} \varepsilon_{i}^{*}, \quad d^{\prime \prime}:=(-1)^{p} \times \text { the exterior differential on } \Omega^{*}\left(X_{p}\right)
$$

For $N G$ and $P G$ the following theorem holds $[3][10][20]$.
Theorem 2.1. There exist ring isomorphisms

$$
H^{*}\left(\Omega^{*}(N G)\right) \cong H^{*}(B G), \quad H^{*}\left(\Omega^{*}(P G)\right) \cong H^{*}(E G)
$$

Here $\Omega^{*}(N G)$ and $\Omega^{*}(P G)$ mean the total complexes.

Remark 2.1. To prove this theorem, they used the property that G is an ANR (absolute neighborhood retract) and the theorem of de Rham on G holds true.

Remark 2.2. The cohomology group of the horizontal complex in the edge $\left(\Omega^{0}(N G(p)), d^{\prime}:=\sum_{i=0}^{p+1}(-1)^{i} \varepsilon_{i}^{*}\right)$ is called the smooth cohomology of G. Note that even when G is given a discrete topology, this complex and cohomology still make sense. Furthermore even the coefficient is changed to $U(1)$, we can define the smooth cohomology. It is denoted by $H^{*}(G, U(1))$.

For a principal G-bundle $Y \rightarrow M$ and an open covering $\left\{U_{\alpha}\right\}$ of M, the transition functions $\left(g_{\alpha_{0} \alpha_{1}}, g_{\alpha_{1} \alpha_{2}}, \cdots, g_{\alpha_{p-1} \alpha_{p}}\right): U_{\alpha_{0} \alpha_{1} \cdots \alpha_{p}} \rightarrow N G(p)$ induce the cohomology map $H^{*}(N G) \rightarrow H_{\text {Cech-deRham }}^{*}(M)$. The elements in the image are the characteristic class of Y [20].

Example 2.1. In the case of special orthogonal group $G=S O(2)$, the Euler class $e \in H^{2}(B S O(2), \mathbb{R})$ is represented by the cocycle below.

$$
\begin{gathered}
0 \\
\uparrow_{-d} \\
\frac{-1}{2 \pi i}\left(\operatorname{Pf}\left(h^{-1} d h\right)\right) \in \Omega^{1}(S O(2)) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}} 0
\end{gathered}
$$

Here Pf is defined as:

$$
\operatorname{Pf}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=\frac{1}{4 \pi i}\left(a_{12}-a_{21}\right)
$$

When we give a discrete topology to $S O(2)$, the cocycle above vanishes. This means that the Euler class of a flat principal $S O(2)$-bundle is a torsion class. On the other hand, in the case of special linear group $S L(2)$, the Euler class in $H^{2}(B S L(2), \mathbb{R})$ is represented as the sum of differential forms which belong
to $\Omega^{1}(S L(2))$ and $\Omega^{0}(S L(2) \times S L(2))$ (See for example [4][10, Chapter 9]). So the Euler class of a flat principal $S L(2)$-bundle is not necessarily a torsion class. You can find an example of a flat principal $S L(2)$-bundle over a closed oriented surface whose genus is g such that its Euler number is $g-1$, for instance in [10, Chapter 9].

3 Dixmier-Douady class on the double complex

3.1 Definition of the Dixmier-Douady class

To begin with, we recall the definition of a central extension of a group.
Definition 3.1. For any group G, its subgroup is called the center of G when it consists of the element of G that is commutative with any element in G. Given two groups N, G, if we can construct the group \widehat{G} such that it has the normal subgroup \bar{N} which is isomorphic to N and \widehat{G} / \bar{N} is isomorphic to G, then \widehat{G} is called a extension of G by N.
When N is abelian and the center of \widehat{G} contains N, \widehat{G} is called a central N extension of G.

Next, we recall the definition of the Dixmier-Douady class, following [7]. Let $\phi: Y \rightarrow M$ be a principal G-bundle and $\left\{U_{\alpha}\right\}$ a Leray covering of M. When G has a central $U(1)$-extension $\pi: \widehat{G} \rightarrow G$, the transition functions $g_{\alpha \beta}: U_{\alpha \beta} \rightarrow G$ lift to \widehat{G}. i.e. there exist continuous maps $\hat{g}_{\alpha \beta}: U_{\alpha \beta} \rightarrow \widehat{G}$ such that $\pi \circ \hat{g}_{\alpha \beta}=g_{\alpha \beta}$. This is because each $U_{\alpha \beta}$ is contractible so the pull-back of π by $g_{\alpha \beta}$ has a global section. Now the $U(1)$-valued functions $c_{\alpha \beta \gamma}$ on $U_{\alpha \beta \gamma}$ are defined as $\left(\hat{g}_{\beta \gamma}\left(\hat{g}_{\alpha \beta} \hat{g}_{\beta \gamma}\right)^{-1} \hat{g}_{\alpha \beta}\right) \cdot c_{\alpha \beta \gamma}:=\hat{g}_{\beta \gamma} \hat{g}_{\alpha \gamma}^{-1} \hat{g}_{\alpha \beta} \in g_{\beta \gamma}^{*} \widehat{G} \otimes\left(g_{\alpha \gamma}^{*} \widehat{G}\right)^{\otimes-1} \otimes g_{\alpha \beta}^{*} \widehat{G}$. Then it is easily seen that $\left\{c_{\alpha \beta \gamma}\right\}$ is a $U(1)$-valued Cech-cocycle on M and hence defines a cohomology class in $H^{2}(M, \underline{U(1)}) \cong H^{3}(M, \mathbb{Z})$. This class is called the Dixmier-Douady class of Y.

Remark 3.1. Let $s_{\alpha \beta \gamma}$ be a section of $\widehat{G}_{\alpha \beta \gamma}:=g_{\beta \gamma}^{*} \widehat{G} \otimes\left(g_{\alpha \gamma}^{*} \widehat{G}\right)^{\otimes-1} \otimes g_{\alpha \beta}^{*} \widehat{G}$ such that $\delta s_{\alpha \beta \gamma}:=s_{\beta \gamma \delta} \otimes s_{\alpha \gamma \delta}^{\otimes-1} \otimes s_{\alpha \beta \delta} \otimes s_{\alpha \beta \gamma}^{\otimes-1}=1$. This condition makes sence since $\widehat{G}_{\beta \gamma \delta} \otimes \widehat{G}_{\alpha \gamma \delta}^{\otimes-1} \otimes \widehat{G}_{\alpha \beta \delta} \otimes \widehat{G}_{\alpha \beta \gamma}$ is canonically trivial. Then we can define a $U(1)$-valued Čech-cocycle $c_{\alpha \beta \gamma}^{s}$ on M by the equation $s_{\alpha \beta \gamma} \cdot c_{\alpha \beta \gamma}^{s}=\hat{g}_{\beta \gamma} \hat{g}_{\alpha \gamma}^{-1} \hat{g}_{\alpha \beta}$.

The cohomology class $\left[c_{\alpha \beta \gamma}^{s}\right] \in H^{2}(M, \underline{U(1)}) \cong H^{3}(M, \mathbb{Z})$ can be also called the Dixmier-Douady class of Y.

Example 3.1. Recall that the complex spin group $\operatorname{Spin}^{\mathbb{C}}(n)$ is defined as $\operatorname{Spin}^{\mathbb{C}}(n):=\operatorname{Spin}(n) \times_{\mathbb{Z}_{2}} U(1)$. When we consider the central $U(1)-$ extension $1 \rightarrow U(1) \rightarrow \operatorname{Spin}^{\mathbb{C}}(n) \rightarrow S O(n) \rightarrow 1$, the Dixmier-Douady class of the $\operatorname{Spin}^{\mathbb{C}}(n)$-bundle coincides with the third integral Stiefel-Whitney class $w_{3}(T M)$. Let B denote the Bockstein map and $w_{2}(T M)$ the second StiefelWhitney class. Then $w_{3}(T M)=B w_{2}(T M)$ hence $w_{3}(T M)$ is a 2-torsion class.

To obtain a non-torsion class, G must be infinite dimensional (cf. for example (5] Ch. 4 p .166) and we require also G to have a partition of unity so that we can consider a connection form on the $U(1)$-bundle over G. A good example which satisfies such a condition is the loop group of a finite dimensional compact Lie group [5] [27].

Another important example is the restricted unitary group $U_{\text {res }}(H)$ [5] [27]. Here H is an infinite-dimensional, separable Hilbert space with an orthogonal decomposition $H=H_{+} \oplus H_{-}$. This group consists of the unitary operator of H such that with block decomposition $\binom{A B}{C D}, B$ and C are HilbertSchmidt operators (We can also see that these groups are ANR and the theorem of de Rham holds on them [17][26]).

Let $U(H)$ denote the group of unitary operators on H endowed with the strong operator topology and let $P U(H)=U(H) / U(1)$ be the projective unitary group with the quotient topology. Here $U(1)$ consists of scalar multiples of the identity operator on H of norm equal to 1 . The definition of the Dixmier-Douady class above is valid for the central extension $U(1) \rightarrow U(H) \rightarrow P U(H)$ and we obtain the Dixmier-Douady class for each principal $P U(H)$-bundle. It is well-known that for any topological space M, the cohomology group $H^{3}(M, \mathbb{Z})$ is isomorphic to $[M, B P U(H)]$ which is the set of homotopy classes of continuous maps from M to $B P U(H)$. So there is one-to-one correspondence between the set of isomorphism classes of principal $P U(H)$-bundles over M and the cohomology group $H^{3}(M, \mathbb{Z})$. The corresponding element in $H^{3}(M, \mathbb{Z})$ is the Dixmier-Douady class of each principal $P U(H)$-bundle.
For $g \in U(H)$, let $A d(g)$ denote the automorphism $T \rightarrow g T g^{-1}$ of \mathcal{K} which is the C^{*}-algebra of compact operators on $H . A d$ is a continuous homomorphism of $U(H)$ onto $\operatorname{Aut}(\mathcal{K})$ with kernel $U(1)$ where $\operatorname{Aut}(\mathcal{K})$ is given
the point-norm topology. Under this homomorphism we can identify $P U(H)$ with $\operatorname{Aut}(\mathcal{K})$. Since $\mathcal{K} \otimes \mathcal{K} \cong \mathcal{K}$, the set of isomorphism classes of locally trivial bundles over M with fiber \mathcal{K} and the structure group $\operatorname{Aut}(\mathcal{K})$ forms a group under the tensor product. The inverse is the conjugate bundle. Then the following theorem holds.

Theorem 3.1 (Dixmier-Douady [9]). The group of isomorphism classes of locally trivial bundles over M with fiber \mathcal{K} and the structure group $\operatorname{Aut}(\mathcal{K})$ is isomorphic to $H^{3}(M, \mathbb{Z})$.

3.2 Construction of the cocycle

Let $\pi: \widehat{G} \rightarrow G$ be a central $U(1)$-extension of a Lie group G. Following [6] [7], we recognize it as a $U(1)$-bundle. Using the face operators $\left\{\varepsilon_{i}\right\}$: $N G(2) \rightarrow N G(1)=G$, we can construct a $U(1)$-bundle over $N G(2)=G \times G$ as $\delta \widehat{G}:=\varepsilon_{0}{ }^{*} \widehat{G} \otimes\left(\varepsilon_{1}{ }^{*} \widehat{G}\right)^{\otimes-1} \otimes \varepsilon_{2}{ }^{*} \widehat{G}$. Here we define the tensor product $S \otimes T$ of $U(1)$-bundles S and T over M by

$$
S \otimes T:=\bigcup_{x \in M}\left(S_{x} \times T_{x} /(s, t) \sim\left(s z, t z^{-1}\right),(z \in U(1)) .\right.
$$

Lemma 3.1. $\delta \widehat{G} \rightarrow G \times G$ is a trivial bundle.
Proof. We can construct a bundle isomorphism $f: \varepsilon_{0}{ }^{*} \widehat{G} \otimes \varepsilon_{2}{ }^{*} \widehat{G} \rightarrow \varepsilon_{1}{ }^{*} \widehat{G}$ as follows. First we define f to be the map sending $\left[\left(\left(g_{1}, g_{2}\right), \hat{g}_{2}\right),\left(\left(g_{1}, g_{2}\right), \hat{g}_{1}\right)\right]$ such that $\pi\left(\hat{g}_{2}\right)=g_{2}, \pi\left(\hat{g}_{1}\right)=g_{1}$ to $\left(\left(g_{1}, g_{2}\right), \hat{g}_{1} \hat{g}_{2}\right)$. Then we have the inverse f^{-1} which sends $\left(\left(g_{1}, g_{2}\right), \hat{g}\right)$ such that $\pi(\hat{g})=g_{1} g_{2}$ to $\left[\left(\left(g_{1}, g_{2}\right), \hat{g}_{2}\right),\left(\left(g_{1}, g_{2}\right), \hat{g} \hat{g}_{2}^{-1}\right)\right]$ such that $\pi\left(\hat{g}_{2}\right)=g_{2}$
Remark 3.2. $\delta(\delta \widehat{G})$ is canonically isomorphic to $G \times G \times G \times U(1)$ because $\varepsilon_{i} \varepsilon_{j}=\varepsilon_{j-1} \varepsilon_{i}$ for $i<j$.

For any connection θ on \widehat{G}, there is an induced connection $\delta \theta$ on $\delta \widehat{G}[5$, Brylinski].
Proposition 3.1. Let $c_{1}(\theta)$ denote the first Chern form of \widehat{G} i.e. the 2 -form on G which hits $\left(\frac{-1}{2 \pi i}\right) d \theta \in \Omega^{2}(\widehat{G})$ by π^{*}, and \hat{s} any global section of $\delta \widehat{G}$. Then the following equation holds.

$$
\left(\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}\right) c_{1}(\theta)=\left(\frac{-1}{2 \pi i}\right) d\left(\hat{s}^{*}(\delta \theta)\right) \quad \in \Omega^{2}(N G(2))
$$

Proof. Choose an open cover $\mathcal{V}=\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ of G such that there exist local sections $\eta_{\lambda}: V_{\lambda} \rightarrow \widehat{G}$ of π. Then $\left\{\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)\right\}_{\lambda, \lambda^{\prime}, \lambda^{\prime \prime} \in \Lambda}$ is an open cover of $G \times G$ and we have induced local sections $\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{\prime}}\right)^{\otimes-1} \otimes$ $\varepsilon_{2}^{*} \eta_{\lambda^{\prime \prime}}$ on this covering.

If we pull back $\delta \theta$ by these sections, the induced form on $\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap$ $\varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)$ is $\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)$. We restrict $\left(\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\right.$ $\left.\varepsilon_{2}^{*}\right) c_{1}(\theta)$ on $\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)$ then it is equal to $\left(\frac{-1}{2 \pi i}\right) d\left(\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\right.$ $\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)$), because $c_{1}(\theta)=\sum\left(\frac{-1}{2 \pi i}\right) d\left(\eta_{\lambda}^{*} \theta\right)$.

Also

$$
d\left(\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)\right)=\left.d\left(\hat{s}^{*}(\delta \theta)\right)\right|_{\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)} .
$$

Since $\delta \theta$ is a connection form. This completes the proof.
Proposition 3.2. We take a section \hat{s} on $\delta \widehat{G}$ such that $\delta \hat{s}:=\varepsilon_{0}^{*} \hat{s} \otimes\left(\varepsilon_{1}^{*} \hat{s}\right)^{\otimes-1} \otimes$ $\varepsilon_{2}^{*} \hat{s} \otimes\left(\varepsilon_{3}^{*} \hat{s}\right)^{\otimes-1}=1$ on $\delta(\delta \widehat{G})$. Then for the face operators $\left\{\varepsilon_{i}\right\}_{i=0,1,2,3}$: $N G(3) \rightarrow N G(2)$, we have

$$
\left(\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}-\varepsilon_{3}^{*}\right)\left(\hat{s}^{*}(\delta \theta)\right)=0
$$

Proof. We consider the $U(1)$-bundle $\delta(\delta \widehat{G})$ over $N G(3)=G \times G \times G$ and the induced connection $\delta(\delta \theta)$ on it. Composing $\left\{\varepsilon_{i}\right\}: N G(3) \rightarrow N G(2)$ and $\left\{\varepsilon_{i}\right\}: N G(2) \rightarrow G$, we define maps $\left\{r_{i}\right\}_{i=0,1, \cdots, 5}: N G(3) \rightarrow G$ as follows.

$$
\begin{array}{lll}
r_{0}=\varepsilon_{0} \circ \varepsilon_{1}=\varepsilon_{0} \circ \varepsilon_{0}, & r_{1}=\varepsilon_{0} \circ \varepsilon_{2}=\varepsilon_{1} \circ \varepsilon_{0}, & r_{2}=\varepsilon_{0} \circ \varepsilon_{3}=\varepsilon_{2} \circ \varepsilon_{0} \\
r_{3}=\varepsilon_{1} \circ \varepsilon_{2}=\varepsilon_{1} \circ \varepsilon_{1}, & r_{4}=\varepsilon_{1} \circ \varepsilon_{3}=\varepsilon_{2} \circ \varepsilon_{1}, & r_{5}=\varepsilon_{2} \circ \varepsilon_{3}=\varepsilon_{2} \circ \varepsilon_{2} .
\end{array}
$$

Then $\left\{\bigcap r_{i}^{-1}\left(V_{\lambda^{(i)}}\right)\right\}$ is a covering of $N G(3)$. Since each $\bigcap r_{i}^{-1}\left(V_{\lambda^{(i)}}\right)$ is equal to

$$
\begin{aligned}
& \varepsilon_{0}^{-1}\left(\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)\right) \cap \varepsilon_{1}^{-1}\left(\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{(3)}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{(4)}}\right)\right) \\
\cap & \varepsilon_{2}^{-1}\left(\varepsilon_{0}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{(3)}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{(5)}}\right)\right) \cap \varepsilon_{3}^{-1}\left(\varepsilon_{0}^{-1}\left(V_{\lambda^{\prime \prime}}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{(4)}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{(5)}}\right)\right) .
\end{aligned}
$$

We have the following induced local sections on it.

$$
\begin{gathered}
\varepsilon_{0}^{*}\left(\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{\prime}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{\prime \prime}}\right) \otimes \varepsilon_{1}^{*}\left(\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{(3)}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{(4)}}\right)^{\otimes-1} \\
\otimes \varepsilon_{2}^{*}\left(\varepsilon_{0}^{*} \eta_{\lambda^{\prime}} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{(3)}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{(5)}}\right) \otimes \varepsilon_{3}^{*}\left(\varepsilon_{0}^{*} \eta_{\lambda^{\prime \prime}} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{(4)}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{(5)}}\right)^{\otimes-1} .
\end{gathered}
$$

From direct computations we can check that this is equal to canonical section 1 on $\delta(\delta \widehat{G})$ and the pull-back of $\delta(\delta \theta)$ by this section is equal to 0 . This means that $\delta(\delta \theta)$ is the Maurer-Cartan connection. Hence if we pull back $\delta(\delta \theta)$ by the induced section $\delta \hat{s}$, it is also equal to 0 and this pull-back is nothing but $\left(\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}-\varepsilon_{3}^{*}\right)\left(\hat{s}^{*}(\delta \theta)\right)$.

The propositions above give the cocycle $c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta) \in \Omega^{3}(N G)$ described in the following diagram.

Then we can show:
Proposition 3.3. The cohomology class $\left[c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta)\right] \in H^{3}(\Omega(N G))$ does not depend on θ.

Proof. Suppose θ_{0} and θ_{1} are two connections on \widehat{G}. Consider the $U(1)-$ bundle $\widehat{G} \times[0,1] \rightarrow G \times[0,1]$ and the connection form $t \theta_{0}+(1-t) \theta_{1}$ on it. Then we obtain the cocycle

$$
c_{1}\left(t \theta_{0}+(1-t) \theta_{1}\right)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}\left(\delta\left(t \theta_{0}+(1-t) \theta_{1}\right)\right)
$$

on $\Omega^{3}(N G \times[0,1])$. Let $i_{0}: N G \times\{0\} \rightarrow N G \times[0,1]$ and $i_{1}: N G \times\{1\} \rightarrow$ $N G \times[0,1]$ be the natural inclusion map. When we identify $N G \times\{0\}$ with $N G \times\{1\},\left(i_{0}^{*}\right)^{-1} i_{1}^{*}: H\left(\Omega^{*}(N G \times\{0\})\right) \rightarrow H\left(\Omega^{*}(N G \times\{1\})\right)$ is the identity map. Hence $\left[c_{1}\left(\theta_{0}\right)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}\left(\delta \theta_{0}\right)\right]=\left[c_{1}\left(\theta_{1}\right)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}\left(\delta \theta_{1}\right)\right]$.

Now we consider what happens if we change the section \hat{s}. There is a natural section $\hat{s}_{n t}$ of $\delta \widehat{G}$ defined as;

$$
\hat{s}_{n t}\left(g_{1}, g_{2}\right):=\left[\left(\left(g_{1}, g_{2}\right), \hat{g}_{2}\right),\left(\left(g_{1}, g_{2}\right), \hat{g}_{1} \hat{g}_{2}\right)^{\otimes-1},\left(\left(g_{1}, g_{2}\right), \hat{g}_{1}\right)\right] .
$$

Then any other section \hat{s} such that $\delta \hat{s}=1$ can be represented by $\hat{s}=\hat{s}_{n t} \cdot \varphi$ where φ is a $U(1)$-valued smooth function on $G \times G$ which satisfies $\delta \varphi=1$. If we pull back $\delta \theta$ by \hat{s}, the equation $\hat{s}^{*}(\delta \theta)=\hat{s}_{n t}^{*}(\delta \theta)+d \log \varphi$ holds. If there exists a $U(1)$-valued smooth function φ^{\prime} on G which satisfies $\delta \varphi^{\prime}=\varphi$, the cohomology class $\left[-\left(\frac{-1}{2 \pi i}\right) d \log \varphi\right.$] is equal to 0 in $H^{3}(\Omega(N G))$. So we have the following proposition.

Proposition 3.4. Up to the cohomology class in the $U(1)$-valued smooth cohomology $H^{2}(G, U(1))$, the cohomology class $\left[c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta)\right]$ is decided uniquely by the central $U(1)$-extension $\widehat{G} \rightarrow G$.

Next we discuss about the relation between the section \hat{s} and the multiplication of \widehat{G}. Using the section \hat{s}, we can define another multiplication $m: \widehat{G} \times \widehat{G} \rightarrow \widehat{G}$ of \widehat{G} by:

$$
\hat{s}\left(g_{1}, g_{2}\right)=:\left[\left(\left(g_{1}, g_{2}\right), \hat{g}_{2}\right),\left(\left(g_{1}, g_{2}\right), m\left(\hat{g}_{1}, \hat{g}_{2}\right)\right)^{\otimes-1},\left(\left(g_{1}, g_{2}\right), \hat{g}_{1}\right)\right] .
$$

Since $\hat{s}\left(g_{1}, g_{2}\right)$ is equal to $\hat{s}_{n t} \cdot \varphi$, we can see that $m\left(\hat{g}_{1}, \hat{g}_{2}\right)=\hat{g}_{1} \hat{g}_{2}\left(\varphi\left(g_{1}, g_{2}\right)\right)^{-1}$. When \widehat{G} is given this new structure, \hat{s} is of course a natural section of $\delta \widehat{G}$. We say that $f: \widehat{G} \rightarrow(\widehat{G}, m)$ is an isomorphism between the central $U(1)$ extensions if f is a group isomorphism and $\pi(\hat{g})=\pi(f(\hat{g})), f(\hat{g} z)=f(\hat{g}) z$ holds for any $\hat{g} \in \widehat{G}$ and $z \in U(1)$. Then the theorem below holds.

Theorem 3.2. Let \hat{s} be a section of $\delta \widehat{G}$ defined by $\hat{s}:=\hat{s}_{n t} \cdot \varphi$ for a $U(1)-$ valued smooth function on $G \times G$ which satisfies $\delta \varphi=1$. When we reconstruct the the multiplication m of \widehat{G} such that \hat{s} becomes a natural section of $\delta \widehat{G}$, (\widehat{G}, m) is isomorphic to \widehat{G} if and only if $[\varphi] \in H^{2}(G, U(1))$ is 0 .
Proof. Assume that there exists a $U(1)$-valued smooth function φ^{\prime} on G which satisfies $\varphi\left(g_{1}, g_{2}\right)=\delta \varphi^{\prime}\left(g_{1}, g_{2}\right):=\varphi^{\prime}\left(g_{2}\right) \cdot\left(\varphi^{\prime}\left(g_{1} g_{2}\right)\right)^{-1} \cdot \varphi^{\prime}\left(g_{1}\right)$. We define a $\operatorname{map} f: \widehat{G} \rightarrow \widehat{G}$ by $f(\hat{g}):=\hat{g} \cdot \varphi^{\prime}(g)$. Then

$$
m\left(f\left(\hat{g}_{1}\right), f\left(\hat{g}_{2}\right)\right)=f\left(\hat{g}_{1}\right) f\left(\hat{g}_{2}\right)\left(\varphi\left(g_{1}, g_{2}\right)\right)^{-1}=\hat{g}_{1} \varphi^{\prime}\left(g_{1}\right) \hat{g}_{2} \varphi^{\prime}\left(g_{2}\right)\left(\varphi\left(g_{1}, g_{2}\right)\right)^{-1}
$$

is equal to

$$
f\left(\hat{g}_{1} \hat{g}_{2}\right)=\hat{g}_{1} \hat{g}_{2} \varphi^{\prime}\left(g_{1} g_{2}\right)
$$

and $\pi(\hat{g})=\pi(f(\hat{g})), f(\hat{g} z)=f(\hat{g}) z$. Moreover f has the inverse map $f^{-1}(\hat{g}):=\hat{g} \cdot\left(\varphi^{\prime}(g)\right)^{-1}$ hence f is an isomorphism from \widehat{G} to (\widehat{G}, m).

Conversely, assume that there exists an isomorphism f from \widehat{G} to (\widehat{G}, m). Since $\pi(\hat{g})=\pi(f(\hat{g}))$ and $f(\hat{g} z)=f(\hat{g}) z$, we can define a $U(1)$-valued map
φ^{\prime} on G by $f(\hat{g})=: \hat{g} \cdot \varphi^{\prime}(g)$. Now $m\left(f\left(\hat{g}_{1}\right), f\left(\hat{g}_{2}\right)\right)=f\left(\hat{g}_{1} \hat{g}_{2}\right)$ induces the equation $\varphi\left(g_{1}, g_{2}\right)=\varphi^{\prime}\left(g_{2}\right) \cdot\left(\varphi^{\prime}\left(g_{1} g_{2}\right)\right)^{-1} \cdot \varphi^{\prime}\left(g_{1}\right)$.

Remark 3.3. Let $H^{(n)}$ denote the separable Hilbert space $L^{2}\left(S^{1} ; \mathbb{C}^{n}\right)$ of square-summable \mathbb{C}^{n}-valued functions on the circle. The diffeomorphism $f: S^{1} \rightarrow S^{1}$ acts on functions $\left\{\xi: S^{1} \rightarrow \mathbb{C}^{n}\right\} \in H^{(n)}$ by $(f \cdot \xi)(t):=$ $\xi\left(f^{-1}(t)\right) \cdot\left|\left(f^{-1}\right)^{\prime}(t)\right|^{1 / 2}$. It is known that the inclusion Diff ${ }^{+} S^{1} \hookrightarrow U_{\text {res }}(H)$ induces the discrete topology on Diff ${ }^{+} S^{1}$ (See [27]). So the cohomology class in $H^{2}\left(U_{\text {res }}(H), U(1)\right)$ induces the cohomology class in $H^{2}\left(\right.$ Diff $\left.^{+\delta} S^{1}, U(1)\right)$. This fact may suggest some relationship between the Dixmier-Douady class and the characteristic classes of flat S^{1}-bundles.

3.3 Main results

We fix any section \hat{s} of $\delta \widehat{G}$ which satisfies $\delta s=1$. Since $g_{\beta \gamma}^{*} \widehat{G} \otimes\left(g_{\alpha \gamma}^{*} \widehat{G}\right)^{\otimes-1} \otimes$ $g_{\alpha \beta}^{*} \widehat{G}$ is the pull-back of $\delta \widehat{G}$ by $\left(g_{\alpha \beta}, g_{\beta \gamma}\right): U_{\alpha \beta \gamma} \rightarrow G \times G$, there is an induced section of $g_{\beta \gamma}^{*} \widehat{G} \otimes\left(g_{\alpha \gamma}^{*} \widehat{G}\right)^{\otimes-1} \otimes g_{\alpha \beta}^{*} \widehat{G}$. So we can define the Dixmier-Douady class by using this section.

Now we are ready to state the main theorem.
Definition 3.2. We call the sum of $c_{1}(\theta) \in \Omega^{2}(N G(1))$ and $-\left(\frac{-1}{2 \pi i}\right) \hat{s}^{*}(\delta \theta) \in$ $\Omega^{1}(N G(2))$ the simplicial Dixmier-Douady cocycle associated to π and \hat{s}.
Theorem 3.3. The simplicial Dixmier-Douady cocycle represents the universal Dixmier-Douady class associated to π and a section \hat{s}.

Proof. We show that the $\left[C_{2,1}+C_{1,2}\right]$ described in the diagram below is equal to $\left[\left\{\left(\frac{-1}{2 \pi i}\right) d \log c_{\alpha \beta \gamma}\right\}\right]$ as a Čech-de Rham cohomology class of $M=\bigcup U_{\alpha}$.

$$
\begin{aligned}
C_{2,1} & \in \prod_{\uparrow} \Omega^{2}\left(U_{\alpha \beta}\right) \\
& \uparrow-d \\
& \prod \Omega^{1}\left(U_{\alpha \beta}\right) \quad \xrightarrow{\check{\delta}} C_{1,2} \in \prod \Omega^{1}\left(U_{\alpha \beta \gamma}\right) .
\end{aligned}
$$

Here $C_{2,1}$ and $C_{1,2}$ are Čech-de Rham cocycles defined by

$$
C_{2,1}=\left\{\left(g_{\alpha \beta}^{*} c_{1}(\theta)\right)\right\}, \quad C_{1,2}=\left\{-\left(\frac{-1}{2 \pi i}\right)\left(g_{\alpha \beta}, g_{\beta \gamma}\right)^{*} \hat{s}^{*}(\delta \theta)\right\} .
$$

Since $g_{\alpha \beta}^{*} c_{1}(\theta)=\hat{g}_{\alpha \beta}^{*} \pi^{*}\left(c_{1}(\theta)\right)=d\left(\frac{-1}{2 \pi i}\right) \hat{g}_{\alpha \beta}^{*} \theta$, we can see

$$
\left[C_{2,1}+C_{1,2}\right]=\left[\check{\delta}\left\{\left(\frac{-1}{2 \pi i}\right) \hat{g}_{\alpha \beta}^{*} \theta\right\}+C_{1,2}\right]
$$

By definition $\left(\hat{s} \circ\left(g_{\alpha \beta}, g_{\beta \gamma}\right)\right)(p) \cdot c_{\alpha \beta \gamma}(p)=\left(\hat{g}_{\beta \gamma} \otimes \hat{g}_{\alpha \gamma}^{\otimes-1} \otimes \hat{g}_{\alpha \beta}\right)(p)$ for any $p \in U_{\alpha \beta \gamma}$. Hence $\left(g_{\alpha \beta}, g_{\beta \gamma}\right)^{*} \hat{s}^{*}(\delta \theta)+d \log c_{\alpha \beta \gamma}=\check{\delta}\left\{\hat{g}_{\alpha \beta}^{*} \theta\right\}$.

Corollary 3.1. If the principal G-bundle over M is flat, then its DixmierDouady class is 0 in $H^{3}(M, \mathbb{R})$.

Proof. This is because the cocycle in Theorem 3.3 vanishes when G is given a discrete topology.

Corollary 3.2. If the first Chern class of $\pi: \widehat{G} \rightarrow G$ is not 0 in $H^{2}(G, \mathbb{R})$, the corresponding Dixmier-Douady class of the universal G-bundle is not 0. Especially, if G is simply connected and $\pi: \widehat{G} \rightarrow G$ is not trivial as a principal $U(1)$-bundle, then the corresponding Dixmier-Douady class of the universal G-bundle is not 0 .

Proof. In that situation, any differential form $x \in \Omega^{1}(N G(1))$ does not hit $c_{1}(\theta) \in \Omega^{2}(N G(1))$ by $d: \Omega^{1}(N G(1)) \rightarrow \Omega^{2}(N G(1))$.

3.4 Another description

On the other hand, there is a simplicial manifold $N \widehat{G}$ and face operators $\hat{\varepsilon}_{i}$ of it. Using this, Behrend and Xu described the cocycle which represents the Dixmier-Douady class in another way.

Proposition $3.5([1][2])$. Let $\widehat{G} \times \widehat{G} \rightarrow G \times G$ be a product $(U(1) \times U(1))$ bundle. Then the 1 -form $\left(\hat{\varepsilon}_{0}^{*}-\hat{\varepsilon}_{1}^{*}+\hat{\varepsilon}_{2}^{*}\right) \theta$ on $\widehat{G} \times \widehat{G}$ is horizontal and $(U(1) \times$ $U(1))$-invariant, hence there exists the 1 -form χ on $G \times G$ which satisfies $(\pi \times \pi)^{*} \chi=\left(\hat{\varepsilon}_{0}^{*}-\hat{\varepsilon}_{1}^{*}+\hat{\varepsilon}_{2}^{*}\right) \theta$.

Proof. For example, see [12, G.Ginot, M.Stiénon].
Behrend and Xu proved the theorem below in [2].
Theorem $3.4([1][2])$. The cohomology class $\left[c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \chi\right] \in H^{3}(\Omega(N G))$ represents the universal Dixmier-Douady class.

Now we show our cocycle in Section 3.2 satisfies the required condition in Proposition 3.5 when we choose a natural section $s_{n t}: G \times G \rightarrow \delta \widehat{G}$.

Theorem 3.5. The equation $(\pi \times \pi)^{*} s_{n t}^{*}(\delta \theta)=\left(\hat{\varepsilon}_{0}^{*}-\hat{\varepsilon}_{1}^{*}+\hat{\varepsilon}_{2}^{*}\right) \theta$ holds.
Proof. Choose an open covering $\mathcal{V}=\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$ of G such that all the intersections of open sets in \mathcal{V} are contractible and there exist local sections $\eta_{\lambda}: V_{\lambda} \rightarrow \widehat{G}$ of π. Then $\left\{\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)\right\}_{\lambda, \lambda^{\prime} \lambda^{\prime \prime} \in \Lambda}$ is an open cover of $G \times G$ and there are the induced local sections $\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{\prime}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{\prime \prime}}$ on this covering.

If we pull back $\delta \theta$ by these sections, the induced form on $\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap$ $\varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)$ is $\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)$.

We define $U(1)$-valued functions $\tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}$ on $\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)$ by

$$
\left(\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{\prime}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{\prime \prime}}\right) \cdot \tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}=s_{n t} .
$$

Then $\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)+\tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}^{-1} d \tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}$ is equal to $s_{n t}^{*} \delta \theta$ hence we obtain $(\pi \times \pi)^{*} s_{n t}^{*} \delta \theta=(\pi \times \pi)^{*}\left(\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)\right)+(\pi \times$ $\pi)^{*} \tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}^{-1} d \tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}}$.

Let $\tilde{\varphi}_{\lambda}: \pi^{-1}\left(V_{\lambda}\right) \rightarrow V_{\lambda} \times U(1)$ be a local trivialization of π. We put $\varphi_{\lambda}:=\operatorname{pr}_{2} \circ \tilde{\varphi}_{\lambda}: \pi^{-1}\left(V_{\lambda}\right) \rightarrow U(1)$. For any $\hat{g} \in \pi^{-1}\left(V_{\lambda}\right)$ the equation $\hat{g}=$ $\eta_{\lambda} \circ \pi(\hat{g}) \cdot \varphi_{\lambda}(\hat{g})$ holds so we can see

$$
\hat{\varepsilon}_{i}^{*} \theta=\hat{\varepsilon}_{i}^{*}\left(\pi^{*}\left(\eta_{\lambda}^{*} \theta\right)\right)+\hat{\varepsilon}_{i}^{*} \varphi_{\lambda}^{-1} d \varphi_{\lambda}=(\pi \times \pi)^{*} \varepsilon_{i}^{*}\left(\eta_{\lambda}^{*} \theta\right)+\hat{\varepsilon}_{i}^{*} \varphi_{\lambda}^{-1} d \varphi_{\lambda}
$$

on $\hat{\varepsilon}_{i}^{-1}\left(\pi^{-1}\left(V_{\lambda}\right)\right)=(\pi \times \pi)^{-1}\left(\varepsilon_{i}^{-1}\left(V_{\lambda}\right)\right)$.
Therefore on $(\pi \times \pi)^{-1}\left(\varepsilon_{0}^{-1}\left(V_{\lambda}\right) \cap \varepsilon_{1}^{-1}\left(V_{\lambda^{\prime}}\right) \cap \varepsilon_{2}^{-1}\left(V_{\lambda^{\prime \prime}}\right)\right)$ there is a differential form $\hat{\varepsilon}_{0}^{*} \theta-\hat{\varepsilon}_{1}^{*} \theta+\hat{\varepsilon}_{2}^{*} \theta=(\pi \times \pi)^{*}\left(\varepsilon_{0}^{*}\left(\eta_{\lambda}^{*} \theta\right)-\varepsilon_{1}^{*}\left(\eta_{\lambda^{\prime}}^{*} \theta\right)+\varepsilon_{2}^{*}\left(\eta_{\lambda^{\prime \prime}}^{*} \theta\right)\right)+\hat{\varepsilon}_{0}^{*} \varphi_{\lambda}^{-1} d \varphi_{\lambda}-$ $\hat{\varepsilon}_{1}^{*} \varphi_{\lambda^{\prime}}^{-1} d \varphi_{\lambda^{\prime}}+\hat{\varepsilon}_{2}^{*} \varphi_{\lambda^{\prime \prime}}^{-1} d \varphi_{\lambda^{\prime \prime}}$.

Since $\hat{\varepsilon}_{i}=\left(\eta_{\lambda} \circ \pi \circ \hat{\varepsilon}_{i}\right) \cdot \varphi_{\lambda} \circ \hat{\varepsilon}_{i}=\left(\eta_{\lambda} \circ \varepsilon_{i} \circ(\pi \times \pi)\right) \cdot \varphi_{\lambda} \circ \hat{\varepsilon}_{i}$, we can see that $\hat{\varepsilon}_{0} \otimes \hat{\varepsilon}_{1}^{\otimes-1} \otimes \hat{\varepsilon}_{2}: \widehat{G} \times \widehat{G} \rightarrow \delta \widehat{G}$ is equal to

$$
\left(\left(\varepsilon_{0}^{*} \eta_{\lambda} \otimes\left(\varepsilon_{1}^{*} \eta_{\lambda^{\prime}}\right)^{\otimes-1} \otimes \varepsilon_{2}^{*} \eta_{\lambda^{\prime \prime}}\right) \circ(\pi \times \pi)\right) \cdot\left(\varphi_{\lambda} \circ \hat{\varepsilon}_{0}\right)\left(\varphi_{\lambda^{\prime}} \circ \hat{\varepsilon}_{1}\right)^{-1}\left(\varphi_{\lambda^{\prime \prime}} \circ \hat{\varepsilon}_{2}\right) .
$$

We have $\tau_{\lambda \lambda^{\prime} \lambda^{\prime \prime}} \circ(\pi \times \pi)=\left(\varphi_{\lambda} \circ \hat{\varepsilon}_{0}\right)\left(\varphi_{\lambda^{\prime}} \circ \hat{\varepsilon}_{1}\right)^{-1}\left(\varphi_{\lambda^{\prime \prime}} \circ \hat{\varepsilon}_{2}\right)$ because $s_{n t} \circ(\pi \times \pi)=$ $\hat{\varepsilon}_{0} \otimes \hat{\varepsilon}_{1}^{\otimes-1} \otimes \hat{\varepsilon}_{2}$, so it follows that $\left(\hat{\varepsilon}_{0}^{*}-\hat{\varepsilon}_{1}^{*}+\hat{\varepsilon}_{2}^{*}\right) \theta=(\pi \times \pi)^{*} s_{n t}^{*} \delta \theta$. This completes the proof.

3.5 "Chern-Simons form"

As mentioned in Section 2, $P G$ plays the role of the universal G-bundle and $N G$, the classifying space $B G$. So, the pull-back of the cocycle in Definition 3.1 to $\Omega^{*}(P G)$ by $\rho: P G \rightarrow N G$ should be a coboundary of a cochain on $P G$. In this section we shall exhibit an explicit form of the cochain, which can be called Chern-Simons form for the Dixmier-Douady class.
Recall $P G(1)=G \times G$ and $\rho: P G(1) \rightarrow N G$ is defined as $\rho\left(\bar{g}_{0}, \bar{g}_{1}\right)=\bar{g}_{0} \bar{g}_{1}^{-1}$. Then we consider the $U(1)$-bundle $\bar{\delta}_{\rho} \widehat{G}:=\bar{\varepsilon}_{0}^{*} \widehat{G} \otimes \rho^{*} \widehat{G} \otimes\left(\widehat{\varepsilon}_{1}^{*} \widehat{G}\right)^{\otimes-1}$ over $G \times G$ and the induced connection $\bar{\delta}_{\rho} \theta$ on it. We can check that $\bar{\delta}_{\rho} \widehat{G}$ is a trivial bundle by using the same argument in Lemma 3.1, and we take a section \bar{s}_{ρ} of it as

$$
\bar{s}_{\rho}\left(\bar{g}_{0}, \bar{g}_{1}\right):=\left[\left(\left(\bar{g}_{0}, \bar{g}_{1}\right), \hat{\bar{g}}_{1}\right),\left(\left(\bar{g}_{0}, \bar{g}_{1}\right), \hat{\bar{g}}_{0} \hat{\bar{g}}_{1}^{-1}\right),\left(\left(\bar{g}_{0}, \bar{g}_{1}\right), \hat{\bar{g}}_{0}\right)^{\otimes-1}\right] .
$$

Theorem 3.6. The cochain $-c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right) \in \Omega^{2}(P G)$ is a ChernSimons form of $c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \hat{s}_{n t}^{*}(\delta \theta) \in \Omega^{3}(N G)$ i.e. the following equation holds.

$$
\begin{aligned}
& \rho^{*}\left(c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \hat{s}_{n t}^{*}(\delta \theta)\right)=\left(d^{\prime}+d^{\prime \prime}\right)\left(-c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right)\right) . \\
& 0 \\
& \uparrow d \\
& -c_{1}(\theta) \in \Omega^{2}(G) \xrightarrow{\bar{\varepsilon}_{0}^{*}-\bar{\varepsilon}_{1}^{*}} \quad \quad \Omega^{2}(P G(1)) \\
& \uparrow-d \\
& -\left(\frac{-1}{2 \pi i}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right) \in \Omega^{1}(P G(1)) \xrightarrow{\vec{\varepsilon}_{0}^{*}-\bar{\varepsilon}_{1}^{*}+\vec{\varepsilon}_{2}^{*}} \Omega^{1}(P G(2))
\end{aligned}
$$

Proof. Repeating the same argument as that in Proposition 3.1, we can see $\left(\bar{\varepsilon}_{0}^{*}+\rho^{*}-\bar{\varepsilon}_{1}^{*}\right)\left(\left(c_{1}(\theta)\right)=\left(\frac{-1}{2 \pi i}\right) d\left(\bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right)\right) \in \Omega^{2}(P G(1))\right.$. Because $\left(\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right) \circ \rho=$ $\left(\rho \circ \overline{\varepsilon_{0}}, \rho \circ \overline{\varepsilon_{1}}, \rho \circ \overline{\varepsilon_{2}}\right)$, we can see that $\left(\bar{\varepsilon}_{0} * \bar{\delta}_{\rho} \widehat{G}\right) \otimes\left(\bar{\varepsilon}_{1} * \bar{\delta}_{\rho} \widehat{G}\right)^{\otimes-1} \otimes\left(\bar{\varepsilon}_{2}^{*} \bar{\delta}_{\rho} \widehat{G}\right)$ is $\rho^{*}(\delta \widehat{G})$. Hence $\left(\bar{\varepsilon}_{0}^{*}-\bar{\varepsilon}_{1}^{*}+\bar{\varepsilon}_{2}^{*}\right) \bar{s}_{\rho}^{*}\left(\bar{\delta}_{\rho} \theta\right)=\rho^{*}\left(\hat{s}_{n t}^{*}(\delta \theta)\right)$.

By restricting the Chern-Simons form on $\Omega^{*}(P G)$ to the edge $\Omega^{*}(P G(0))$, we obtain a cocycle on $\Omega^{*}(G)$. So there is an induced map of the cohomology class $H^{*}(B G) \cong H\left(\Omega^{*}(N G)\right) \rightarrow H^{*-1}(G)$. This map coincides with the transgression map for the universal bundle $E G \rightarrow B G$ in the sense of

Heitsch and Lawson in [13]. Hence as a corollary of Theorem 3.6, we obtain an alternative proof of the following proposition from [7, Theorem 4.1] [29, Theorem 4.1].

Proposition 3.6. The transgression map of the universal bundle $E G \rightarrow B G$ maps the Dixmier-Douady class to the negative of the first Chern class of π : $\widehat{G} \rightarrow G$.

4 The String class

Using the idea of Brylinski, McLaughlin [6] and Murray, Stevenson [23][24], we discuss the case of central $U(1)$-extension of a loop group.

4.1 In the case of special unitary group

It is known that the second Chern class $c_{2} \in H^{4}(B S U(2))$ of the universal $S U(2)$-bundle $E S U(2) \rightarrow B S U(2)$ is represented in $\Omega^{4}(N S U(2))$ as the sum of following differential forms $C_{1,3}$ and $C_{2,2}$ (see for example [15] or [30]):

$$
\begin{gathered}
\quad \begin{array}{l}
\uparrow_{-d} \\
C_{1,3} \in \Omega^{3}(S U(2)) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}} \\
\Omega_{d}^{3}(S U(2) \times S U(2)) \\
\uparrow_{d}
\end{array} \\
C_{2,2} \in \Omega^{2}(S U(2) \times S U(2)) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}-\varepsilon_{3}^{*}} 0 \\
C_{1,3}=\left(\frac{-1}{2 \pi i}\right)^{2} \frac{-1}{6} \operatorname{tr}\left(h^{-1} d h\right)^{3}, \quad C_{2,2}=\left(\frac{-1}{2 \pi i}\right)^{2} \frac{1}{2} \operatorname{tr}\left(h_{2}^{-1} h_{1}^{-1} d h_{1} d h_{2}\right) .
\end{gathered}
$$

Pulling back this cocycle by the evaluation map

$$
e v: L S U(2) \times S^{1} \rightarrow S U(2),(\gamma, z) \mapsto \gamma(z)
$$

and integrating along the circle, we obtain the cocycle in $\Omega^{3}(N L S U(2))$. Here $L S U(2)$ is the free loop group of $S U(2)$ and the map $\int_{S^{1}} e v^{*}$ is also called the transgression map.

Now we pose the following problem. Is there corresponding central extension of $L S U(2)$ and connection form on it such that the Dixmier-Douady class in $\Omega^{3}(N L S U(2))$ constructed previous section coincides with $\int_{S^{1}} e v^{*}\left(C_{1,3}+\right.$ $C_{2,2}$)? In this section, we explain that the central extension and the connection form constructed by Mickelsson and Brylinski, McLaughlin in [5] [6] [18] meet such a condition.

To begin with, we recall the definition of the $U(1)$-bundle $\pi: Q(\nu) \rightarrow$ $\operatorname{LSU}(2)$ and the multiplication $m: Q(\nu) \times Q(\nu) \rightarrow Q(\nu)$ in [5] [6]. We fix any based point $x_{0} \in S U(2)$ and denote $\gamma_{0} \in L S U(2)$ the constant loop at x_{0}. For any $\gamma \in L S U(2)$, we consider all paths $\sigma_{\gamma}:[0,1] \rightarrow L S U(2)$ that satisfies $\sigma_{\gamma}(0)=\gamma_{0}$ and $\sigma_{\gamma}(1)=\gamma$. Then the equivalence relation \sim on $\left\{\sigma_{\gamma}\right\} \times S^{1}$ is defined as follows:

$$
\left(\sigma_{\gamma}, z\right) \sim\left(\sigma_{\gamma}^{\prime}, z^{\prime}\right) \Leftrightarrow z=z^{\prime} \cdot \exp \left(\int_{I^{2} \times S^{1}} 2 \pi i F^{*} \nu\right)
$$

Here $F: I^{2} \times S^{1} \rightarrow S U(2)$ is any homotopy map that satisfies

$$
F(0, t, z)=\sigma_{\gamma}(t)(z), \quad F(1, t, z)=\sigma_{\gamma}^{\prime}(t)(z)
$$

and

$$
\nu=C_{1,3}=\left(\frac{-1}{2 \pi i}\right)^{2} \frac{-1}{6} \operatorname{tr}\left(h^{-1} d h\right)^{3} .
$$

It is well known $\nu \in \Omega^{3}(S U(2))$ is a closed, integral form hence this relation is well-defined. Now the fiber $\pi^{-1}(\gamma)$ of $Q(\nu)$ is defined as the quotient space $\left\{\sigma_{\gamma}\right\} \times S^{1} / \sim$.
We can adapt the same construction for any closed integral 3-form on $S U(2)$.
Let η, η^{\prime} be such forms and suppose there is a 2 -form β with $d \beta=\eta^{\prime}-\eta$. Then the isomorphism from $Q(\eta)$ to $Q\left(\eta^{\prime}\right)$ is constructed as:

$$
\left[\left(\sigma_{\gamma}, z\right)\right]_{\eta} \mapsto\left[\left(\sigma_{\gamma}, z \cdot \exp \left(\int_{I^{1} \times S^{1}} 2 \pi i \sigma_{\gamma}^{*} \beta\right)\right)\right]_{\eta^{\prime}}
$$

Here we regard σ_{γ} as a map from $[0,1] \times S^{1}$ to $S U(2)$.
For the face operators $\left\{\varepsilon_{i}\right\}: S U(2) \times S U(2) \rightarrow S U(2)$ (we use the same notation for the face operators $L S U(2) \times L S U(2) \rightarrow L S U(2)$), we can check that $\varepsilon_{0}^{*} Q(\nu) \otimes \varepsilon_{1}^{*} Q(\nu)^{\otimes-1} \otimes \varepsilon_{2}^{*} Q(\nu)$ is isomorphic to $Q\left(\varepsilon_{0}^{*} \nu-\varepsilon_{1}^{*} \nu+\varepsilon_{2}^{*} \nu\right)=$
$Q\left(-d C_{2,2}\right)$ over $\operatorname{LSU}(2) \times \operatorname{LSU}(2)$. The isomorphism from $Q(0)$ to $Q\left(-d C_{2,2}\right)$ is given by

$$
\left[\left(\sigma_{\gamma_{1}}, \sigma_{\gamma_{2}}, z\right)\right]_{0} \mapsto\left[\left(\sigma_{\gamma_{1}}, \sigma_{\gamma_{2}}, z \cdot \exp \left(\int_{I^{1} \times S^{1}} 2 \pi i\left(\sigma_{\gamma_{1}}, \sigma_{\gamma_{2}}\right)^{*} C_{2,2}\right)\right)\right]_{-d C_{2,2}} .
$$

Now we can define a section s_{L} of $\varepsilon_{0}^{*} Q(\nu) \otimes \varepsilon_{1}^{*} Q(\nu)^{\otimes-1} \otimes \varepsilon_{2}^{*} Q(\nu)$ over $L S U(2) \times$ $L S U(2)$ by:

$$
s_{L}\left(\gamma_{1}, \gamma_{2}\right):=\left[\left(\sigma_{\gamma_{1}}, \sigma_{\gamma_{2}}, \exp \left(\int_{I^{1} \times S^{1}} 2 \pi i\left(\sigma_{\gamma_{1}}, \sigma_{\gamma_{2}}\right)^{*} C_{2,2}\right)\right)\right]_{-d C_{2,2}} .
$$

The multiplication $m: Q(\nu) \times Q(\nu) \rightarrow Q(\nu)$ is defined by the following equation
$s_{L}\left(\gamma_{1}, \gamma_{2}\right)=\left(\left[\sigma_{\gamma_{1}}, z_{1}\right]_{\varepsilon_{0}^{*} \nu}\right) \otimes\left(\left(\gamma_{1} \gamma_{2}\right), m\left(\left[\sigma_{\gamma_{1}}, z_{1}\right]_{\nu},\left[\sigma_{\gamma_{2}}, z_{2}\right]_{\nu}\right)\right)^{\otimes-1} \otimes\left(\left[\sigma_{\gamma_{2}}, z_{2}\right]_{\varepsilon_{2}^{*} \nu}\right)$.
Next we recall how Brylinski and McLaughlin constructed the connection on $Q(\nu)$. Let denote $P_{1} S U(2)$ the space of paths on $S U(2)$ which starts from based point x_{0} and $f: P_{1} S U(2) \rightarrow S U(2)$ a map that is defined by $f(\gamma)=\gamma(1)$. It is well known that f is a fibration. Then we define the 2-form ω on $P_{1} S U(2)$ as:

$$
\omega_{\gamma}(u, v)=\int_{0}^{1} \nu\left(\frac{d \gamma}{d t}, u(t), v(t)\right) d t
$$

Note that $d \omega=f^{*} \nu$ holds. Let $\mathcal{U}=\left\{U_{\iota}\right\}$ be an open covering of $S U(2)$. Since $S U(2)$ is simply connected, we can take \mathcal{U} such that each U_{ι} is contractible and $\left\{L U_{\iota}\right\}$ is an open covering of $L S U(2)$. For example, we take $\mathcal{U}=\left\{U_{x}:=\right.$ $S U(2)-\{x\} \mid x \in S U(2)\}$.
Now we quote the lemma from [6].
Lemma 4.1 (Brylinski, McLaughlin [6]). (1) There exists a line bundle L over each $f^{-1}\left(U_{\iota}\right)$ with a fiberwise connection such that its first Chern form is equal to $\left.\omega\right|_{f^{-1}\left(U_{t}\right)}$. This line bundle is called the pseudo-line bundle.
(2) There exists a connection ∇ on each pseudo-line bundle L such that its first Chern form R satisfies the condition that $R-\left.\omega\right|_{f^{-1}\left(U_{\iota}\right)}$ is basic.

Let K be a 2 -form on U_{ι} which satisfies $f^{*} K=2 \pi i\left(R-\left.\omega\right|_{f^{-1}\left(U_{\iota}\right)}\right)$. Then the 1 -form θ_{ι} on $L U_{\iota}$ is defined by $\theta_{\iota}:=\int_{S^{1}} e v^{*} K$. It is easy to see $\left(\frac{-1}{2 \pi i}\right) d \theta_{\iota}=$
$\left.\left(\int_{S^{1}} e v^{*} \nu\right)\right|_{L U_{\iota}}$.
There is a section s_{ι} on $L U_{\iota}$ defined by $s_{\iota}(\gamma):=\left[\sigma_{\gamma}, H_{\sigma_{\gamma}}(L, \nabla)\right]$. Here $H_{\sigma_{\gamma}}(L, \nabla)$ is the holonomy of (L, ∇) along the loop $\sigma_{\gamma}: S^{1} \rightarrow f^{-1}\left(U_{\iota}\right)$. We also have the corresponding local trivialization $\varphi_{\iota}: \pi^{-1}\left(U_{\iota}\right) \rightarrow U_{\iota} \times U(1)$.

Above all, we have the connection form θ on $Q(\nu)$ defined by $\left.\theta\right|_{\pi^{-1}\left(U_{t}\right)}:=$ $\pi^{*} \theta_{\iota}+d \log \left(\operatorname{pr}_{2} \circ \varphi_{\iota}\right)$. Its first Chern form $c_{1}(\theta)$ is $\int_{S^{1}} e v^{*} \nu$ and $d \delta \theta$ is equal to

$$
(-2 \pi i) \cdot \int_{S^{1}} e v^{*}\left(\left(\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}\right) \nu\right)=(-2 \pi i) \cdot \pi^{*}\left(-d \int_{S^{1}} e v^{*} C_{2,2}\right) .
$$

Hence $\delta \theta+(-2 \pi i) \cdot \pi^{*} \int_{S^{1}} e v^{*} C_{2,2}$ is a flat connection on $\delta Q(\nu)$. Since $\operatorname{LSU}(2)$ is simply connected, it is a trivial connection so

$$
s_{L}^{*}\left(\delta \theta+(-2 \pi i) \cdot \pi^{*} \int_{S^{1}} e v^{*} C_{2,2}\right)=0 .
$$

So as a reformulation of the Brylinski and McLaughlin's result in [6], we obtain the proposition below.

Proposition 4.1. Let $(Q(\nu), \theta)$ be a $U(1)$-bundle on $L S U(2)$ with connection and s_{L} be a global section of $\delta Q(\nu)$ constructed above. Then the cocycle $c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) s_{L}^{*}(\delta \theta)$ on $\Omega^{3}(N L S U(2))$ is equal to $\int_{S^{1}} e v^{*}\left(C_{1,3}+C_{2,2}\right)$, i.e. the map $\int_{S^{1}} e v^{*}$ sends the second Chern class $c_{2} \in H^{4}(B S U(2))$ to the DixmierDouady class (associated to $Q(\nu))$ in $H^{3}(B L S U(2))$.

Remark 4.1. We explain what happens if we adapt this construction to the loop group of the unitary group. In the case of unitary group $U(2)$, the second Chern class is represented as the sum of following $C_{1,3}^{U}$ and $C_{2,2}^{U}$ described in the diagram below (see [30]):

$$
\begin{aligned}
& 0 \\
& \uparrow-d \\
& C_{1,3}^{U} \in \Omega^{3}(U(2)) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}} \quad \Omega^{3}(U(2) \times U(2)) \\
& \uparrow d \\
& C_{2,2}^{U} \in \Omega^{2}(U(2) \times U(2)) \xrightarrow{\varepsilon_{0}^{*}-\varepsilon_{1}^{*}+\varepsilon_{2}^{*}-\varepsilon_{3}^{*}} 0
\end{aligned}
$$

$$
\begin{aligned}
& C_{1,3}^{U}=\left(\frac{-1}{2 \pi i}\right)^{2} \frac{-1}{6} \operatorname{tr}\left(h^{-1} d h\right)^{3} \\
& C_{2,2}^{U}=\left(\frac{-1}{2 \pi i}\right)^{2} \frac{1}{2} \operatorname{tr}\left(h_{2}^{-1} h_{1}^{-1} d h_{1} d h_{2}\right)-\left(\frac{-1}{2 \pi i}\right)^{2} \frac{1}{2} \operatorname{tr}\left(h_{1}^{-1} d h_{1}\right) \operatorname{tr}\left(h_{2}^{-1} d h_{2}\right) .
\end{aligned}
$$

We recognize $U(2)$ as a semi-direct group $S U(2) \rtimes U(1)$. Let denote by $\Omega U(1)$ the based loop group of $U(1)$. Then any element γ in $L U(2)$ is decomposed as $\gamma=\left(\gamma_{1}, \gamma_{2}, z\right) \in L S U(2) \rtimes(\Omega U(1) \rtimes U(1))$. Each connected component of $L U(2)$ is parametrized by the mapping degree of γ_{2}. We write $\Omega U(1)_{n}, L U(2)_{n}$ the connected component which includes a based loop γ_{2} whose mapping degree is n. We can see $\pi_{1}\left(L U(2)_{0}\right)=\pi_{1}(L S U(2)) \oplus$ $\pi_{1}\left(L U(1)_{0}\right)=\pi_{1}\left(L U(1)_{0}\right)=\pi_{1}\left(\Omega U(1)_{0}\right) \oplus \pi_{1}(U(1)) \cong \mathbb{Z}$. There is a homeomorphism from $\Omega U(1)_{0}$ to $\Omega U(1)_{n}$ defined by $\gamma \mapsto \gamma \cdot\left(e^{i s} \mapsto e^{i n s}\right)$ for any n so $\pi_{1}\left(L U(2)_{n}\right)$ is also isomorphic to \mathbb{Z}. The generator ψ_{n} of $\pi_{1}\left(L U(2)_{n}\right) \cong$ $H_{1}\left(L U(2)_{n}\right)$ is the map defined as

$$
\psi_{n}\left(e^{i t}\right):=\left(e^{i s} \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 e^{i(n s+t)}
\end{array}\right)\right) .
$$

Hence any cycle $a \in Z_{1}\left(L U(2)_{n}\right)$ can be written as $m \psi_{n}+\partial \varrho$ for some 2-chain ϱ.
Since $L U(2)$ is not simply connected we need the differential character k to construct a principal $U(1)$-bundle over $L U(2)$. Differential character is a homomorphism from $Z_{1}(L U(2))$ to $U(1)$ such that there exists a specific 2form ω satisfying $k(\partial \varrho)=\exp \left(\int_{\varrho} 2 \pi i \omega\right)$ for any 2 -singular chains ϱ of $L U(2)$ ([8] see also [24]).

We set $\Phi:=\int_{S^{1}} e v^{*} C_{1,3}^{U}$. If we define k as

$$
k(a):=\exp \left(\int_{\varrho} 2 \pi i \Phi\right)
$$

this is well-defined since Φ is integral and we obtain the $U(1)$-bundle Q^{U} over $L U(2)$ by using this differential character k instead of $\exp \left(\int_{I^{2} \times S^{1}} 2 \pi i F^{*} \nu\right)$ in Section 4.1. But unfortunately $k\left(a_{1} a_{2}\right)$ is not equal to $\exp \left(\int_{\left(\varrho_{1}, \varrho_{2}\right)} 2 \pi i \varepsilon_{1}^{*} \Phi\right)$ in general. So in this way we can not obtain a section s_{L}^{U} of δQ^{U} nor a multiplication $m^{U}: Q^{U} \times Q^{U} \rightarrow Q^{U}$.

4.2 In the case of semi-direct product

In this section we deal with the semi-direct $L G \rtimes S^{1}$ for $G=S U(2)$.
First we define a bisimplicial manifold $N L G(*) \rtimes N S^{1}(*)$. A bisimplicial manifold is a sequence of manifolds with horizontal and vertical face and degeneracy operators which commute with each other. A bisimplicial map is a sequence of maps commuting with horizontal and vertical face and degeneracy operators. We define $N L G(*) \rtimes N S^{1}(*)$ as follows:

$$
N L G(p) \rtimes N S^{1}(q):=\overbrace{L G \times \cdots \times L G}^{p-\text { times }} \times \overbrace{S^{1} \times \cdots \times S^{1}}^{q-\text { times }} .
$$

Horizontal face operators $\varepsilon_{i}^{L G}: N L G(p) \rtimes N S^{1}(q) \rightarrow N L G(p-1) \rtimes N S^{1}(q)$ are the same with the face operators of $N L G(p)$.

Vertical face operators $\varepsilon_{i}^{S^{1}}: N L G(p) \rtimes N S^{1}(q) \rightarrow N L G(p) \rtimes N S^{1}(q-1)$ are defined by

$$
\varepsilon_{i}^{S^{1}}\left(\vec{\gamma}, z_{1}, \cdots, z_{q}\right)= \begin{cases}\left(\vec{\gamma}, z_{2}, \cdots, z_{q}\right) & i=0 \\ \left(\vec{\gamma}, z_{1}, \cdots, z_{i} z_{i+1}, \cdots, z_{q}\right) & i=1, \cdots, q-1 \\ \left(\vec{\gamma} z_{q}, z_{1}, \cdots, z_{q-1}\right) & i=q .\end{cases}
$$

Here $\vec{\gamma}=\left(\gamma_{1}, \cdots, \gamma_{p}\right)$.
We define a bisimplicial map $\rho_{\rtimes}: P L G(p) \times P S^{1}(q) \rightarrow N L G(p) \rtimes N S^{1}(q)$ by

$$
\rho_{\rtimes}\left(\vec{\gamma}, z_{1}, \cdots, z_{q+1}\right)=\left(\rho(\vec{\gamma}) z_{q+1}, \rho\left(z_{1}, \cdots, z_{q+1}\right)\right)
$$

Now we fix a semi-direct product operator ${ }_{\rtimes}$ of $L G \rtimes S^{1}$ as $(\gamma, z) \cdot \rtimes\left(\gamma^{\prime}, z^{\prime}\right):=$ $\left(\gamma \cdot\left(\gamma^{\prime} z\right), z z^{\prime}\right)$, then $L G \rtimes S^{1}$ acts on $P L G(p) \times P S^{1}(q)$ by right as $(\vec{\gamma}, \vec{z})$. $(\gamma, z)=\left(\vec{\gamma} \cdot z^{-1}(\gamma), \vec{z} z\right)$. Since $\rho_{\rtimes}(\vec{\gamma}, \vec{z})=\rho_{\rtimes}((\vec{\gamma}, \vec{z}) \cdot(\gamma, z))$, one can see that ρ_{\rtimes} is a principal $\left(L G \rtimes S^{1}\right)$-bundle. $\left\|P L G(*) \times P S^{1}(*)\right\|$ is $E L G \times E S^{1}$ and $\left\|N L G(*) \rtimes N S^{1}(*)\right\|$ is homeomorphic to $\left(E L G \times E S^{1}\right) /\left(L G \rtimes S^{1}\right)$, so $\left\|N L G(*) \rtimes N S^{1}(*)\right\|$ is a model of $B\left(L G \rtimes S^{1}\right)$.
Definition 4.1. For a bisimplicial manifold $N L G(*) \rtimes N S^{1}(*)$, we have a triple complex as follows:

$$
\Omega^{p, q, r}\left(N L G(*) \rtimes N S^{1}(*)\right) \stackrel{\text { def }}{=} \Omega^{r}\left(N L G(p) \rtimes N S^{1}(q)\right)
$$

Derivatives are:

$$
d^{\prime}=\sum_{i=0}^{p+1}(-1)^{i}\left(\varepsilon_{i}^{L G}\right)^{*}, \quad d^{\prime \prime}=\sum_{i=0}^{q+1}(-1)^{i}\left(\varepsilon_{i}^{S^{1}}\right)^{*} \times(-1)^{p}
$$

$d^{\prime \prime \prime}=(-1)^{p+q} \times$ the exterior differential on $\Omega^{*}\left(N L G(p) \rtimes N S^{1}(q)\right)$.

The following proposition can be proved by adapting the same argument in the proof of Theorem 2.1 (See [32]).

Proposition 4.2. There exists an isomorphism

$$
H\left(\Omega^{*}\left(N L G \rtimes N S^{1}\right) \cong H^{*}\left(B\left(L G \rtimes S^{1}\right)\right)\right.
$$

Here $\Omega^{*}\left(N L G \rtimes N S^{1}\right)$ means the total complex.

Now we want to construct the cocycle in $\Omega^{3}\left(N L G \rtimes N S^{1}\right)$ which coincides with $c_{1}(\theta)-\left(\frac{-1}{2 \pi i}\right) s_{L}{ }^{*}(\delta \theta)$ when it is restricted to $\Omega^{3}(N L G)$.

To do this, it suffices to construct the differential form τ on $\Omega^{1}\left(L G \rtimes S^{1}\right)$ such that $d \tau=\left(-\varepsilon_{0}^{1^{*}}+\varepsilon_{1}^{S^{1 *}}\right) c_{1}(\theta)$ and $\left(\varepsilon_{0}^{L G^{*}}-\varepsilon_{1}^{L G^{*}}+\varepsilon_{2}^{L G^{*}}\right) \tau=\left(\varepsilon_{0}^{S^{1^{*}}}-\right.$ $\left.\varepsilon_{1}^{S^{*}}\right)\left(\frac{-1}{2 \pi i}\right) s_{L}{ }^{*}(\delta \theta)$ and $\left(-\varepsilon_{0}^{S^{*}}+\varepsilon_{1}^{S^{1 *}}-\varepsilon_{2}^{S^{1 *}}\right) \tau=0$. We consider the trivial $U(1)$-bundle $\left(\varepsilon_{0}^{S^{1 *}} Q\right)^{\otimes-1} \otimes \varepsilon_{1}^{S^{1 *}} Q$ and the induced connection form $\delta_{\rtimes} \theta$ on it. We define the section $s_{\rtimes}: L G \rtimes S^{1} \rightarrow\left(\varepsilon_{0}^{S^{1 *}} Q\right)^{\otimes-1} \otimes \varepsilon_{1}^{S^{1 *}} Q$ as $s_{\rtimes}(\gamma, z):=$ $(\hat{\gamma}, z)^{\otimes-1} \otimes(\hat{\gamma} z, z)$ and set $\tau:=\left(\frac{-1}{2 \pi i}\right) s_{\rtimes}{ }^{*}\left(\delta_{\rtimes} \theta\right)$ then we can see that τ satisfies the required conditions.

5 Appendix: A central $U(1)$-extension of a groupoid

This section is a short survey of the theory of a central $U(1)$-extension of a Lie groupoid.

At first we recall the definition of Lie groupoids following [19].
Definition 5.1. A Lie groupoid Γ_{1} over a manifold Γ_{0} is a pair $\left(\Gamma_{1}, \Gamma_{0}\right)$ equipped with following differentiable maps:
(i) surjections $s, t: \Gamma_{1} \rightarrow \Gamma_{0}$ called the source and target maps respectively;
(ii) $m: \Gamma_{2} \rightarrow \Gamma_{1}$ called multiplication, where $\Gamma_{2}:=\left\{\left(x_{1}, x_{2}\right) \in \Gamma_{1} \times\right.$ $\left.\Gamma_{1} \mid t\left(x_{1}\right)=s\left(x_{2}\right)\right\} ;$
(iii) an injection $e: \Gamma_{0} \rightarrow \Gamma_{1}$ called identities;
(iv) $\iota: \Gamma_{1} \rightarrow \Gamma_{1}$ called inversion.

These maps must satisfy:
(1) (associative law) $m\left(m\left(x_{1}, x_{2}\right), x_{3}\right)=m\left(x_{1}, m\left(x_{2}, x_{3}\right)\right)$ if one is defined, so is the other;
(2) (identities) for each $x \in \Gamma_{1},(e(s(x)), x) \in \Gamma_{2},(x, e(t(x))) \in \Gamma_{2}$ and $m(e(s(x)), x)=m(x, e(t(x)))=x$;
(3) (inverses) for each $x \in \Gamma_{1},(x, \iota(x)) \in \Gamma_{2},(\iota(x), x) \in \Gamma_{2}, m(x, \iota(x))=$ $e(s(x))$, and $m(\iota(x), x)=e(t(x))$.

In this paper we denote a Lie groupoid by $\Gamma_{1} \rightrightarrows \Gamma_{0}$.
Example 5.1. Suppose that G is a Lie group acting on a manifold M by left. Then we have a groupoid $\Gamma_{1}=G \times M, \Gamma_{0}=M$. The source map s is defined as $s(g, u)=u$ and the target map t is defined as $t(g, u)=g u$. This groupoid $M \rtimes G \rightrightarrows M$ is often called an action groupoid and denoted by $M / / G$.

Example 5.2. Suppose that M is a manifold and $\left\{U_{\alpha}\right\}$ is a covering of M. Then we have a groupoid $\Gamma_{1}=\coprod\left(U_{\alpha} \cap U_{\beta}\right), \Gamma_{0}=\coprod U_{\alpha}$. The source map s is an inclusion map into U_{α} and the target map t is an inclusion map into U_{β}.

5.1 Double complex and central $U(1)$-extension

Let $\Gamma_{1} \rightrightarrows \Gamma_{0}$ be a Lie groupoid and denote by s, t, m the source and target maps, and the multiplication of it respectively. Then we can define a simplicial manifold $N \Gamma$ as follows:

$$
N \Gamma(p):=\{\left(x_{1}, \cdots, x_{p}\right) \in \overbrace{\Gamma_{1} \times \cdots \times \Gamma_{1}}^{p-\text { times }} \mid t\left(x_{j}\right)=s\left(x_{j+1}\right) j=1, \cdots, p-1\}
$$

face operators $\varepsilon_{i}: N \Gamma(p) \rightarrow N \Gamma(p-1)$

$$
\varepsilon_{i}\left(x_{1}, \cdots, x_{p}\right)= \begin{cases}\left(x_{2}, \cdots, x_{p}\right) & i=0 \\ \left(x_{1}, \cdots, m\left(x_{i}, x_{i+1}\right), \cdots, x_{p}\right) & i=1, \cdots, p-1 \\ \left(x_{1}, \cdots, x_{p-1}\right) & i=p\end{cases}
$$

The double complex $\Omega^{*, *}(N \Gamma)$ is also defined in a similar way.
Example 5.3. In the case of an action groupoid $M \rtimes G \rightrightarrows M$ for a smooth manifold M and a compact Lie group G which acts on $M, H\left(\Omega^{*}(N \Gamma)\right)$ is isomorphic to the Borel model of the equivariant cohomology $H_{G}^{*}(M):=$ $H^{*}\left(E G \times_{G} M\right)$ (see for example [11]).

Example 5.4. In the case of the groupoid $\coprod\left(U_{\alpha} \cap U_{\beta}\right) \rightrightarrows \amalg U_{\alpha}$ for a good covering $\left\{U_{\alpha}\right\}$ in Example 5.2, $H\left(\Omega^{*}(N \Gamma)\right.$) is isomorphic to $H^{*}(M)$.

Now we recall the notion of a central $U(1)$-extension of a groupoid in [2] [33]. A central $U(1)$-extension of a Lie groupoid $\Gamma_{1} \rightrightarrows \Gamma_{0}$ consists of a morphism of Lie groupoids

$$
\begin{array}{lll}
\widehat{\Gamma}_{1} & \xrightarrow{\pi} & \Gamma_{1} \\
\downarrow & & \downarrow \\
\Gamma_{0} & \xrightarrow{\text { id }} & \Gamma_{0}
\end{array}
$$

and a right $U(1)$-action on $\widehat{\Gamma}_{1}$, making $\pi: \widehat{\Gamma}_{1} \rightarrow \Gamma_{1}$ a principal $U(1)$-bundle. For any $z_{1}, z_{2} \in U(1)$ and $\left(\hat{x_{1}}, \hat{x_{2}}\right) \in N \widehat{\Gamma}(2):=\left\{\left(\hat{y_{1}}, \hat{y_{2}}\right) \in \widehat{\Gamma}_{1} \times \widehat{\Gamma}_{1} \mid t\left(\hat{y_{1}}\right)=\right.$ $\left.s\left(\hat{y_{2}}\right)\right\}$, the equation $\hat{m}\left(\hat{x_{1}} z_{1}, \hat{x_{2}} z_{2}\right)=\hat{m}\left(\hat{x_{1}}, \hat{x_{2}}\right) z_{1} z_{2}$ holds.

Note that there is a section $\hat{s}_{s t}$ of $\delta \widehat{\Gamma}_{1}$ defined as

$$
\hat{s}_{s t}\left(x_{1}, x_{2}\right):=\left[\left(\left(x_{1}, x_{2}\right), \hat{x}_{2}\right),\left(\left(x_{1}, x_{2}\right), \hat{m}\left(\hat{x}_{1}, \hat{x}_{2}\right)\right)^{\otimes-1},\left(\left(x_{1}, x_{2}\right), \hat{x}_{1}\right)\right] .
$$

Furthermore, because of the associative law of $\left.\Gamma_{1} \rightrightarrows \Gamma_{0}, \delta\left(\delta \widehat{\Gamma}_{1}\right)\right)$ is canonically isomorphic to the product bundle and $\delta \hat{s}_{s t}=1$ holds.

Let $\widehat{\Gamma}_{1} \rightarrow \Gamma_{1} \rightrightarrows \Gamma_{0}$ be a central $U(1)$-extension of a groupoid and θ be a connection form of the $U(1)$-bundle $\widehat{\Gamma}_{1} \rightarrow \Gamma_{1}$. Then we can use the same argument in Section 3.2 and obtain the cocycle on $\Omega^{*}(N \Gamma(*))$. In [1][2] and related papers, they call θ a pseudo-connection of a central $U(1)-$ extension of a groupoid $\widehat{\Gamma}_{1} \rightarrow \Gamma_{1} \rightrightarrows \Gamma_{0}$ and when $-\left(\frac{-1}{2 \pi i}\right) \hat{s}_{s t}^{*}(\delta \theta) \in \Omega^{1}(N \Gamma(2))$ vanishes they call θ a connection of $\widehat{\Gamma}_{1} \rightarrow \Gamma_{1} \rightrightarrows \Gamma_{0}$. If the horizontal complex $\Omega^{1}(N \Gamma(1)) \xrightarrow{d^{\prime}} \Omega^{1}(N \Gamma(2)) \xrightarrow{d^{\prime}} \Omega^{1}(N \Gamma(3))$ is exact, a connection of $\widehat{\Gamma}_{1} \rightarrow \Gamma_{1} \rightrightarrows$ Γ_{0} exists.

5.2 Bundle gerbes

5.2.1 The definition and basic properties

In this section, we recall the definition of bundle gerbes and some basic properties of them.

Definition 5.2 (Murray-Stevenson, [21][22]). Given a surjective submersion $\phi: Y \rightarrow M$, we obtain the groupoid $Y^{[2]} \rightrightarrows Y$ where $Y^{[2]}$ is the fiber product defined as $Y^{[2]}:=\left\{\left(y_{1}, y_{2}\right) \mid \phi\left(y_{1}\right)=\phi\left(y_{2}\right)\right\}$. The source and target maps are defined as $s\left(y_{1}, y_{2}\right)=y_{2}, t\left(y_{1}, y_{2}\right)=y_{1}$ respectively.

A bundle gerbe over M is a pair of $\phi: Y \rightarrow M$, a principal $U(1)$-bundle $\widehat{Y^{[2]}}$ over $Y^{[2]}$ and a section \hat{s} of $\delta \widehat{Y^{[2]}}$ which satisfies $\delta \hat{s}=1$.

Remark 5.1. Without the assumption of the existence of $\hat{s}, \delta \widehat{Y^{[2]}}$ is not necessarily trivial. By using \hat{s}, we can construct a multiplication $\hat{m}: \widehat{Y^{[2]}} \times \widehat{Y^{[2]}} \rightarrow$ $\widehat{Y^{[2]}}$ such that \hat{s} is a natural section of $\delta \widehat{Y^{[2]}}$. Hence we can recognize bundle gerbe as a kind of a central $U(1)$-extension of a Lie groupoid.

Bundle gerbe was invented by Murray in [21]. It is often denoted by \mathcal{G}. Here we recall the classification theory of bundle gerbe due to Murray and Stevenson.
Remark 5.2. In the case that the surjective submersion is given by $\amalg U_{\alpha} \rightarrow M$ and groupoid is $\coprod\left(U_{\alpha} \cap U_{\beta}\right) \rightrightarrows \coprod U_{\alpha}$ for a good covering $\left\{U_{\alpha}\right\}$ in Example 5.2, the bundle gerbe $\left(\widehat{\Gamma}_{1} \rightarrow \coprod\left(U_{\alpha} \cap U_{\beta}\right) \rightrightarrows \coprod U_{\alpha}, \hat{s}\right)$ is called Hitchin-Chatterjee gerbe data ([14]).
Definition 5.3 ([21][22]). The bundle gerbe ($\left.\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ is called trivial if there exists a principal $U(1)$-bundle R over Y and a section v : $Y^{[2]} \rightarrow \delta R^{\otimes-1} \otimes \widehat{Y}{ }^{[2]}$ such that $\delta v=\hat{s}$. Such a pair (R, v) is called a trivialization of the bundle gerbe $\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$.
Definition 5.4 ([21][22]). Bundle gerbes $\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ and $\left(\widehat{Y}^{[2]} \rightarrow\right.$ $\left.Y^{[2]} \rightrightarrows Y^{\prime}, \hat{s}^{\prime}\right)$ are stably isomorphic if there exists following date:
(i) a surjective submersion $W \rightarrow M$;
(ii) smooth maps $\phi: W \rightarrow Y$ and $\phi^{\prime}: W \rightarrow Y^{\prime}$ which are compatible with projections onto M;
(iii) a trivialization of $\left(\phi^{*}\left(\widehat{Y}^{[2]}\right)^{\otimes-1} \otimes \phi^{\prime *} \widehat{Y}^{[2]} \rightarrow W^{[2]} \rightrightarrows W, \phi^{*} \hat{S}^{\otimes-1} \otimes \phi^{\prime *} s^{\prime}\right)$.

Definition 5.5 ([21]). We define the product $\mathcal{G} \otimes \mathcal{G}^{\prime}$ of bundle gerbes $\mathcal{G}=$ $\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ and $\mathcal{G}^{\prime}=\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y^{\prime}, \hat{s}^{\prime}\right)$ as

$$
\left(\widehat{Y}^{[2]} \otimes \widehat{Y}^{[2]} \rightarrow Y^{[2]} \times_{\left(\pi, \pi^{\prime}\right)} Y^{[2]} \rightrightarrows Y \times_{\left(\pi, \pi^{\prime}\right)} Y^{\prime}, \hat{s} \otimes \hat{s}^{\prime}\right)
$$

Here $Y \times_{\left(\pi, \pi^{\prime}\right)} Y^{\prime}$ is defined as $Y \times_{\left(\pi, \pi^{\prime}\right)} Y^{\prime}:=\left\{\left(y, y^{\prime}\right) \in Y \times Y^{\prime} \mid \pi(y)=\pi^{\prime}\left(y^{\prime}\right)\right\}$. The inverse \mathcal{G}^{-1} of $\mathcal{G}=\left(\widehat{Y}{ }^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ is $\left(\left(\widehat{Y}^{[2]}\right)^{\otimes-1} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}^{\otimes-1}\right)$.

Then the following theorem holds true.
Theorem 5.1 ([21][22]). The isomorphism classes of bundle gerbes over M are parametrized by $H^{3}(M, \mathbb{Z})$.

Proof. We construct the characteristic class in $H^{3}(M, \mathbb{Z})$. Let $\left\{U_{\alpha}\right\}$ be a Leray covering of M and $s_{\alpha}:\left.U_{\alpha} \rightarrow Y\right|_{U_{\alpha}}$ local sections of ϕ. Then there is an induced section $\psi_{\alpha \beta}: U_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow\left(s_{\alpha}, s_{\beta}\right)^{*} \widehat{Y}{ }^{[2]}$. Now a $U(1)$-valued function $g_{\alpha \beta \gamma}$ on $U_{\alpha \beta \gamma}$ is defined as $\left(\left(s_{\alpha}, s_{\beta}, s_{\gamma}\right)^{*} \hat{s}\right) \cdot g_{\alpha \beta \gamma}:=\psi_{\alpha \beta} \otimes \psi_{\beta \gamma} \otimes$ $\psi_{\gamma \alpha}$. Then it is easily seen that $\left\{g_{\alpha \beta \gamma}\right\}$ is a $U(1)$-valued Cech-cocycle on M and define a cohomology class in $H^{2}(M, \underline{U(1)}) \cong H^{3}(M, \mathbb{Z})$. This class is called the Dixmier-Douady class of bundle gerbe $\mathcal{G}=\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$. We denote it $D(\mathcal{G})$. We can check that $D\left(\mathcal{G} \otimes \mathcal{G}^{\prime}\right)=D(\mathcal{G})+D\left(\mathcal{G}^{\prime}\right)$ and if \mathcal{G} is trivial then $D(\mathcal{G})$ is the trivial class in $H^{3}(M, \mathbb{Z})$. Therefore $\mathcal{G} \mapsto$ $D(\mathcal{G})$ is well-defined monomorphism. Finally we check the surjectivity of this map. Given any $U(1)$-valued Cech-cocycle $\left\{g_{\alpha \beta \gamma}\right\}$ of M, we can construct the bundle gerbe \mathcal{G} by $Y:=\coprod U_{\alpha}, \widehat{Y}^{[2]}:=Y^{[2]} \times U(1)$ and $\hat{s}:=\left\{g_{\alpha \beta \gamma}\right\}$.

There is a practical method to calculate the Dixmier-Douady class in $H^{3}(M, \mathbb{R})$. To explain this, we quote the following basic proposition from [23].

Proposition 5.1 ([21]). The complex

$$
0 \rightarrow \Omega^{*}(M) \xrightarrow{\phi^{*}} \Omega^{*}(Y) \xrightarrow{d^{\prime}} \Omega^{*}\left(Y^{[2]}\right) \xrightarrow{d^{\prime}} \Omega^{*}\left(Y^{[3]}\right) \xrightarrow{d^{\prime}} \cdots
$$

is exact.
Since the complex $\Omega^{1}\left(Y^{[2]}\right) \xrightarrow{d^{\prime}} \Omega^{1}\left(Y^{[3]}\right) \xrightarrow{d^{\prime}} \Omega^{1}\left(Y^{[4]}\right)$ is exact hence there exists a connection θ of principal $U(1)$-bundle $\widehat{Y}^{[2]} \rightarrow Y^{[2]}$ such that $\hat{s}^{*} \theta=$ 0 . We call this a connection of bundle gerbe $\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y$. Let $\theta \in$ $\Omega^{1}\left(Y^{[2]}\right)$ be any connection form of bundle gerbe $\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y$. Then there exists a 2-form H on Y which satisfies $\operatorname{pr}_{2}^{*} H-\operatorname{pr}_{1}^{*} H=c_{1}(\theta)$ because $\Omega^{2}(Y) \xrightarrow{d^{\prime}} \Omega^{2}\left(Y^{[2]}\right) \xrightarrow{d^{\prime}} \Omega^{2}\left(Y^{[3]}\right)$ is exact. This 2-form is called a curving of the bundle gerbe. Furthermore, there exists a closed 3-form D on M such
that $\phi^{*} D=d H$ since $0 \rightarrow \Omega^{3}(M) \xrightarrow{\phi^{*}} \Omega^{3}(Y) \xrightarrow{d^{\prime}} \Omega^{3}\left(Y^{[2]}\right)$ is also exact. The cohomology class $[D]$ does not depend on the choice of connection and curving, and coincides with the Dixmier-Douady class of $\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ in $H^{3}(M, \mathbb{R})$.

In the case of a central $U(1)$-extension of group G, the Dixmier-Douady class of a principal G-bundle is a torsion class if G is a finite dimensional Lie group. In the case of bundle gerbe, like the bundle gerbe $\left(\amalg U_{\alpha \beta} \times U(1) \rightarrow\right.$ $\left.\amalg U_{\alpha \beta} \rightrightarrows \coprod U_{\alpha}, \hat{s}:=\left\{g_{\alpha \beta \gamma}\right\}\right)$ in the proof of Theorem 5.1, there are some bundle gerbes whose Dixmier-Douady class is not torsion class even though their submersion has a finite dimensional fiber.

In general, the following theorem holds.
Theorem 5.2 (Murray-Stevenson, [25]). Let $\left(\widehat{Y}^{[2]} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ be a bundle gerbe over a simply connected manifold M with connected, finite dimensional fiber F of submersion $\phi: Y \rightarrow M$. Then its Dixmier-Douady class is a torsion class.

We can check the necessity of the conditions in Theorem 5.2 by considering the examples of bundle gerbes given in the next section.

5.2.2 Examples of bundle gerbes

Example 5.5. Let $\pi: M \rightarrow \Sigma_{g}$ be an oriented S^{1}-bundle over a closed oriented surface whose genus is g. It is well-known that $H^{3}(M, \mathbb{Z}) \cong \mathbb{Z}$. Here we show how to construct the bundle gerbe whose Dixmier-Douady class is the generator of $H^{3}(M, \mathbb{Z})$.

We take an open ball $D^{2} \in \Sigma_{g}$ and a point $p \in D^{2}$. Then $\pi^{-1}\left(D^{2}\right) \approx$ $D^{2} \times U(1)$ and $\pi^{-1}\left(\Sigma_{g} \backslash\{p\}\right) \approx\left(\Sigma_{g} \backslash\{p\}\right) \times U(1)$ because their first Chern classes are 0 . For convenience we set $V_{1}:=\pi^{-1}\left(D^{2}\right)$ and $V_{2}:=\pi^{-1}\left(\Sigma_{g} \backslash\{p\}\right)$. Let denote Y the disjoint union $V_{1} \sqcup V_{2}$ and define a surjective submersion $\phi: Y \rightarrow M$ as an inclusion. Then the fiber product $Y^{[2]}$ is $\left(V_{1} \times V_{1}\right) \sqcup d\left(V_{1} \cap\right.$ $\left.V_{2}\right) \sqcup d\left(V_{2} \cap V_{1}\right) \sqcup\left(V_{2} \times V_{2}\right)$ where $d\left(V_{1} \cap V_{2}\right)$ is the space of the diagonal elements $\left.\left\{(u, u) \mid u \in V_{1} \cap V_{2}\right)\right\} \subset\left(V_{1} \cap V_{2}\right) \times\left(V_{1} \cap V_{2}\right)$.

Since $d\left(V_{1} \cap V_{2}\right)$ is homotopic to $S^{1} \times S^{1}$ and there is the principal $U(1)$-bundle P over $d\left(V_{1} \cap V_{2}\right)$ whose first Chern class c_{1} is the generator of $H^{2}\left(d\left(V_{1} \cap V_{2}\right), \mathbb{Z}\right) \cong H^{2}\left(S^{1} \times S^{1}, \mathbb{Z}\right) \cong \mathbb{Z}$.

We define a principal $U(1)$-bundle Q over $Y^{[2]}$ as the disjoint union of P over $d\left(V_{2} \cap V_{1}\right)$ and $P^{\otimes-1}$ over $d\left(V_{1} \cap V_{2}\right)$, and a product bundle on $\left(V_{1} \times\right.$
$\left.V_{1}\right) \sqcup\left(V_{2} \times V_{2}\right)$. Then δQ over $Y^{[3]}$ is canonically isomorphic to $Y^{[3]} \times U(1)$ so we take a section as $\hat{s}=1$.

Proposition 5.2. The Dixmier-Douady class of the bundle gerbe $(Q \rightarrow$ $\left.Y^{[2]} \rightrightarrows Y, \hat{s}\right)$ is the generator of $H^{3}(M, \mathbb{Z}) \cong \mathbb{Z}$.

Proof. Let θ be a connection of bundle gerbe $\left(Q \rightarrow Y^{[2]} \rightrightarrows Y\right.$, $\left.\hat{s}\right)$, i.e. θ is a connection form of the principal $U(1)$-bundle Q which satisfies $\hat{s}^{*}(\delta \theta)=0$. Then there is a 2 -form H on Y which satisfies $\operatorname{pr}_{2}^{*} H-\operatorname{pr}_{1}^{*} H=c_{1}(\theta)$. There is also the closed 3-form D on E which satisfies $\phi^{*} D=d H$. Then $[D]$ represents the Dixmier-Douady class of $Q \rightarrow Y^{[2]} \rightrightarrows Y$ with \mathbb{R}-coefficients.

Now $c_{1}(\theta)$ is the generator of $H^{2}\left(d\left(V_{1} \cap V_{2}\right), \mathbb{R}\right)$, and the map $H^{2}\left(d\left(V_{1} \cap\right.\right.$ $\left.\left.V_{2}\right), \mathbb{R}\right) \ni c_{1}(\theta) \mapsto[D] \in H^{3}(M, \mathbb{R})$ is nothing but the connecting homomorphism in the Mayer-Vietoris sequence of $\left(V_{1}, V_{2}\right)$ on the de Rham cohomology, so $[D]$ represents the generator of $H^{3}(M, \mathbb{R})$. This completes the proof.

Example 5.6. There is an important example of bundle gerbes so-called lifting bundle gerbe defined as follows. Let $\widehat{G} \rightarrow G$ be a central $U(1)$-extension of a Lie group G and $\phi: Y \rightarrow M$ be a principal G-bundle. We define a map $\zeta: Y^{[2]} \rightarrow G$ as $y_{1} \zeta\left(y_{1}, y_{2}\right)=y_{2}$. Then $\left(\zeta^{*} \widehat{G} \rightarrow Y^{[2]} \rightrightarrows Y, \hat{s}_{n t}\right)$ is a bundle gerbe. The Dixmier-Douady class of the lifting bundle gerbe coincides with the Dixmier-Douady class of $\phi: Y \rightarrow M$.

Remark 5.3. We take M as in Example 5.5 then we can construct the principal $P U(H)$-bundle over M whose Dixmier-Douady class is the generator of $H^{3}(M, \mathbb{Z})$ using the bundle gerbe in Example 5.5.

First we make trivial principal $P U(H)$-bundles over V_{1} and V_{2}. We denote them by R_{1} and R_{2}. Since $U(H) \rightarrow P U(H)$ is a model of the universal $U(1)$ bundle, there is a continuous map $\phi_{12}: V_{1} \cap V_{2} \rightarrow P U(H)$ such that the first Chern class of $\phi_{12}^{*} U(H)$ is the generator of $H^{2}\left(V_{1} \cap V_{2}, \mathbb{Z}\right)$. We also take ϕ_{21} as the inverse valued map of ϕ_{12}. Now by gluing R_{1} and R_{2} by ϕ_{12}, we obtain a principal $P U(H)$-bundle $\rho: R_{1} \cup_{\phi_{12}} R_{2} \rightarrow M$.

Proposition 5.3. The Dixmier-Douady class of the principal $P U(H)$-bundle $R_{1} \cup_{\phi_{12}} R_{2}$ is the generator of $H^{3}(M, \mathbb{Z}) \cong \mathbb{Z}$.

Proof. For convenience we write $R:=R_{1} \cup_{\phi_{12}} R_{2}$. Then there is a map $\zeta: R^{[2]} \rightarrow P U(H)$ which is defined by $r_{1} \cdot \zeta\left(r_{1}, r_{2}\right)=r_{2}$ for $\left(r_{1}, r_{2}\right) \in R^{[2]}$. By pulling back $U(H) \rightarrow P U(H)$ on $R^{[2]}$ by ζ, we obtain the lifting bundle gerbe $\zeta^{*} U(H) \rightarrow R^{[2]} \rightrightarrows R$.

Now we show that $\zeta^{*} U(H) \rightarrow R^{[2]} \rightrightarrows R$ is stably isomorphic to $Q \rightarrow$ $Y^{[2]} \rightrightarrows Y$ in Example 5.5. We define the surjective submersion

$$
f: W:=\left(V_{1} \sqcup V_{2}\right) \times P U(H) \rightarrow M
$$

as the projection into the first factor. There are also natural projections $f_{1}:\left(V_{1} \sqcup V_{2}\right) \times P U(H) \rightarrow R$ and $f_{2}:\left(V_{1} \sqcup V_{2}\right) \times P U(H) \rightarrow\left(V_{1} \sqcup V_{2}\right)$ which satisfy $f=\rho \circ f_{1}=i \circ f_{2}$. Then $f_{1}^{*}\left(\zeta^{*} U(H)\right)^{\otimes-1} \otimes f_{2}^{*} Q$ is canonically trivial since the diagram below is commutative.

The statement of the proposition follows from this.

We give an example of bundle gerbes whose section \hat{s} is not trivial. This construction is given by Johnson in [16] and Murray, Stevenson in [25].

Example 5.7. We can construct the bundle gerbe over the torus $T^{3}=$ $S^{1} \times S^{1} \times S^{1}$ whose Dixmier-Douady class is the generator of $H^{3}\left(T^{3}, \mathbb{Z}\right) \cong \mathbb{Z}$ in the following way.

We set $Y:=\mathbb{R}^{3}$ and define the submersion $\phi: Y \rightarrow T^{3}$ by $t \rightarrow \exp (2 \pi i t)$. We write an element of Y as $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$. Then $(\vec{x}, \vec{y}) \in Y^{[2]}$ means $\vec{x}-\vec{y} \in \mathbb{Z}^{3}$. We take a principal $U(1)$-bundle Q over $Y^{[2]}$ as a product $U(1)-$ bundle and define the section \hat{s} of δQ by $\hat{s}(\vec{x}, \vec{y}, \vec{z}):=\exp (2 \pi i \gamma(\vec{x}, \vec{y}, \vec{z}))$ where γ is defined by $\gamma(\vec{x}, \vec{y}, \vec{z}):=\left(y_{1}-z_{1}\right)\left(x_{2}-y_{2}\right) x_{3}$. Then we can check that $\delta \hat{s}=1$.

There is a projection map $(\vec{x}, \vec{y}, \vec{z}) \mapsto \vec{x}$ and we have \mathbb{R}^{3}-valued differential 1 -form $d \vec{x}$ on $Y^{[3]}$. Similarly $d \vec{y}$ and $d \vec{z}$ are defined. Since $\vec{x}-\vec{y} \in \mathbb{Z}^{3}$ and $\vec{y}-\vec{z} \in \mathbb{Z}^{3}$, the equation $d \vec{x}=d \vec{y}=d \vec{z}$ holds. Note that each $d x_{i}$ are pullbacks of $\frac{1}{2 \pi} d \theta_{i} \in \Omega^{1}\left(S^{1} \times S^{1} \times S^{1}\right)$ by ϕ where $d \theta_{i}$ is the volume form of i-th S^{1}. We define the connection θ and the curving H as $\theta:=-2 \pi i\left(x_{1}-y_{1}\right) x_{2} d x_{3}$, $H:=-x_{1} d x_{2} \wedge d x_{3}$. Then $d H=d x_{1} \wedge d x_{2} \wedge d x_{3}$ so the Dixmier-Douady class is $\left[\frac{1}{8 \pi^{3}} d \theta_{1} \wedge d \theta_{2} \wedge d \theta_{3}\right] \in H^{3}\left(T^{3}, \mathbb{R}\right)$.

Acknowledgments.

I am indebted to my supervisor, Professor Hitoshi Moriyoshi for an enlightening discussion and invaluable suggestion. I am grateful to Professor Kiyonori Gomi for explaining the properties of bundle gerbes to me.

I would also thank the professors, staffs, graduate students I have met at Graduate School of Nagoya University and who have made my time here so enjoyable.

Finally, I would like to thank my parents, Yasuyuki and Mitsuko, for their constant encouragement. Thanks are also due to my brothers, Yasumitsu and Ryota, for their continual support.

References

[1] K. Behrend, P. Xu, S^{1}-bundles and gerbes over differentiable stacks, C.R.Acad. Sci. Paris Sér. I 336(2003) 163-168.
[2] K. Behrend, P. Xu, Differentiable stacks and gerbes. J.Symplectic Geom. 9 (2011), no.3, 285-341.
[3] R. Bott, H. Shulman, J. Stasheff, On the de Rham Theory of Certain Classifying Spaces, Adv. in Math. 20 (1976), 43-56.
[4] R. Bott, On characteristic classes and continuous cohomology. Supersymmetry and its applications: superstrings, anomalies and supergravity (Cambridge,1985), 29-40, Cambridge Univ.Press, Cambridge, 1986.
[5] J-L. Brylinski, Loop spaces, Characteristic Classes and Geometric Quantization. Birkhäuser Boston, Inc.,Boston, MA, 1993.
[6] J-L. Brylinski and D. McLaughlin, The geometry of degree-4 characteristic classes and of line bundles on loop spaces. .Duke Math. J.75(1994), no.3, 603-638.
[7] A.L. Carey, D. Crowley, M.K. Murray, Principal Bundles and the Dixmier-Douady Class, Communications in Mathematical Physics, 193(1):171-196, 1997.
[8] J. Cheeger and J. Simons, Differential characters and geometric invariants, Lecture Notes in Math. 1167(1985), Springer Verlag, 50-80
[9] J. Diximier and A. Douady, Champs continus d'espaces hilbertiens et de C^{*}-algébres, Bull. Soc. Math. Fr. 91(1963), 227-284
[10] J.L. Dupont, Curvature and Characteristic Classes, Lecture Notes in Math. 640, Springer Verlag, 1978.
[11] E. Getzler, The equivariant Chern character for non-compact Lie groups, Adv. Math. 109(1994), no.1, 88-107.
[12] G. Ginot, M. Stiénon, G-gerbes, principal 2-group bundles and characteristic classes, math.AT/08011238.
[13] J.L. Heitsch, H.B. Lawson, Transgressions, Chern-Simons invariants and the classical groups, J.Differential Geom. 9 (1974), 423-434.
[14] N. Hitchin, Lectures on Special Lagrangian Submanifolds. Winter School on Mirror Symmetry, Vector Bundles and Lagrangian submanifolds(Cambridge, MA, 1999), 151-182, AMS/IP Stud. Adv. Math.,23,Amer.Math.Soc.,Providence, RI,2001.
[15] L. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math.J.77(1995)407-429.
[16] S. Johnson, 'Constructions with Bundle Gerbes', PhD Thesis, University of Adelaide, 2003, arXiv:math/0312175v1.
[17] A. Kriegl, P. Michor, The Convenient Setting of Global Analysis, Math. Surveys and Monographs 53, Amer.Math.Soc.,1997.
[18] J. Mickelsson, Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization, Comm. Math. Phys.110(1987),173-183
[19] K. Mikami, A. Weinstein, Moments and reduction for symplectic groupoids, Publ. Res. Inst. Math. Sci. 24(1988),121-140.
[20] M. Mostow, J. Perchick, Notes on Gel'fand-Fuks Cohomology and Characteristic Classes (Lectures by Bott),In Eleventh Holiday Symposium. New Mexico State University, December 1973.
[21] M.K. Murray, Bundle Gerbes, J.Lond. Math. Soc. 54, 403-416(1996), dg-ga/9407015.
[22] M.K. Murray and D. Stevenson, Bundle gerbes: stable isomorphism and local theory.J.London Math.Soc.(2) 62 (2000), no.3, 925-937.
[23] M.K. Murray, D. Stevenson, Yet another construction of the central extension of the loop group. In Geometric analysis and applications (Canberra, 2000), volume 39 of Proc. Centre Math. Appl. Austral. Nat. Univ.,pages 194-200. Austral. Nat. Univ., Canberra, 2001.
[24] M.K. Murray and D. Stevenson. Higgs fields, bundle gerbes and string structures. Comm. Math. Phys.,243(3):541-555, 2003.
[25] M.K. Murray and D. Stevenson. A note on bundle gerbes and infinitedimensionality. J.Aust. Math. Soc. 90(2011), no.1,81-92.
[26] R.S. Palais, Homotopy theory of infinite dimensional manifolds, Topology, 5(1966), 1-16.
[27] A. Pressley, G. Segal, Loop groups. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1986. Oxford Science Publications.
[28] G. Segal, Classifying spaces and spectral sequences, Inst.Hautes Études Sci.Publ.Math.No. 341968 105-112
[29] D. Stevenson, 'The Geometry of Bundle Gerbes', PhD Thesis, University of Adelaide, 2000, math.DG/0004117.
[30] N. Suzuki, The Chern Character in the Simplicial de Rham Complex, math.DG/13065949
[31] N. Suzuki, The Dixmier-Douady class in the Simplicial de Rham Complex, Kodai Mathematical Journal, Vol.36, No.3, pp.479-486, (2013). math.DG/12064460
[32] N. Suzuki, The equivariant simplicial de Rham complex and the classifying space of the semi-direct product group, math.AT/13023294
[33] J.-L. Tu, P. Xu, C. Laurent-Gengoux, Twisted K-theory of differentiable stacks, Ann. Sci. École Norm. Sup. 37 (2004) (6) 841-910.
[34] J.-L. Tu, P. Xu, Chern character for twisted K-theory of orbifolds, Adv. Math. 207(2006), no.2, 455-483.

