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Abstract

On the basis of A.L.Carey, D.Crowley, M.K.Murray’s work, we
exhibit a cocycle in the simplicial de Rham complex which represents
the Dixmier-Douady class. We exhibit also the “Chern-Simons form”
of the Dixmier-Douady class. After that, we explain that this cocycle
coincides with a kind of transgression of the second Chern class when
we consider a central extension of the loop group and a connection
due to J.Mickelsson and J-L.Brylinski, D.McLaughlin.
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1 Introduction

In [7], Carey, Crowley, Murray proved that when a Lie group G admits a

central U(1)-extension 1 → U(1) → Ĝ→ G→ 1, there exists a characteristic
class of principal G-bundle ϕ : Y → M which belongs to a cohomology
group H2(M,U(1)) ∼= H3(M,Z). Here U(1) stands for a sheaf of continuous
U(1)-valued functions on M . This class is called the Dixmier-Douady class

associated to the central U(1)-extension Ĝ→ G.
On the other hand, for any Lie group G there is a topological space BG

called the classifying space such that the characteristic classes of principal
G-bundles are in one-to-one correspondence with the cohomology classes in
H∗(BG). In general BG is a very huge space so we can not use the usual
de Rham theory on it. In order to describe the cocycle of H∗(BG), we will
use the following simplicial de Rham complex theory due to Segal [28], Bott,
Shulman, Stasheff [3] and Dupont [10].

For any Lie group G, we have a simplicial manifold {NG(∗)}. It is a
sequence of manifolds {NG(p) = Gp}p=0,1,··· together with face maps εi :
NG(p) → NG(p − 1) for i = 0, · · · , p satisfying the relations εiεj = εj−1εi

for i < j (The standard definition also involves degeneracy maps but we
do not need them here). Then the n-th cohomology group of the classify-
ing space BG is isomorphic to the total cohomology of the double complex
{Ωq(NG(p))}p+q=n. See [3] [10] [20] for details.

There is also a simplicial manifold {PG(∗)} for G which plays the role
of the total space EG of the universal bundle. Since H∗(EG) is trivial if
we pull-back any cocycle on Ω∗(NG) to Ω∗(PG), it becomes a exact form so
there exist a cochain on Ω∗−1(PG) such that its coboudary coincides to the
pull-back of that cocycle. Such a cochain can be called the “Chern-Simons
form” of that cocycle.

In [30], the author exhibited some cocycles on Ω∗(NU(n)) which repre-
sents the Chern character and the Chern-Simons form of the second Chern
class on Ω3(PU(n)).

In this paper we exhibit a cocycle on Ω∗(NG(∗)) which represents the
Dixmier-Douady class. It is described as follows. See Theorem 3.3.

Theorem A The universal Dixmier-Douady class associated to π and
a section ŝ is represented by the sum of following c1(θ) and −

(−1
2πi

)
ŝ∗(δθ):
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0x−d

c1(θ) ∈ Ω2(G)
ε∗0−ε∗1+ε∗2−−−−−→ Ω2(G×G)xd

−
(−1

2πi

)
ŝ∗(δθ) ∈ Ω1(G×G)

ε∗0−ε∗1+ε∗2−ε∗3−−−−−−−−→ 0

�
As a consequence of our result, we can see that if G is given a discrete

topology, the Dixmier-Douady class in H3(BGδ,R) is 0. We can also see
if G is simply connected, the Dixmier-Douady class in H3(BG,R) is not 0

if Ĝ → G is not trivial as a principal U(1)-bundle. See Corollary 3.1 and
Corollary 3.2.

Such a cocycle is also studied in a general setting by Behrend, Tu, Xu and
Laurent-Gengoux [1] [2] [33] [34], and Ginot, Stiénon [12]. They described
the cocycle in another way. Our construction is more explicit so that we can
observe what kind of influence the section ŝ of δĜ := ε∗0Ĝ⊗ (ε∗1Ĝ)⊗−1 ⊗ ε∗2Ĝ
have on the cocycle. We can also see the relation between such a section ŝ
and the group structure of Ĝ.

Furthermore, our construction has an advantage that we can also exhibit
the “Chern-Simons form” of the Dixmier-Douady class on Ω∗(PG(∗)). It is
described as follows. See Theorem 3.6.

Theorem B The Chern-Simons form of the Dixmier-Douady class is a
sum of following −c1(θ) and −

(−1
2πi

)
s̄∗ρ(δ̄ρθ):

0xd

−c1(θ) ∈ Ω2(G)
ε̄∗0−ε̄∗1−−−→ Ω2(PG(1))x−d

−
(−1

2πi

)
s̄∗ρ(δ̄ρθ) ∈ Ω1(PG(1))

ε̄∗0−ε̄∗1+ε̄∗2−−−−−→ Ω1(PG(2))

�
As a consequence, we can see that the Dixmier-Douady class is mapped to
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the first Chern class of Ĝ → G by a kind of the transgression map in the
sense of Heitsch and Lawson [13].

One of the important examples of the Lie group which have a non-trivial
central U(1)-extension is a free loop group of a finite dimensional compact
Lie group [5][18][27]. We explain that our cocycle coincides with a kind
of transgression of the universal second Chern class when we use the central

extension L̂SU(2) → LSU(2) and the connection form due to Mickelsson [18]
and Brylinski, McLaughlin [5][6]. We consider also the case of semi-direct
product LSU(2) o S1 and construct a cocycle in a certain triple complex.
Finally, as a natural development of these theory, we give a short survey of
the theory of a central U(1)-extension of a Lie groupoid. Given a surjective
submersion ϕ : Y → M , we obtain the groupoid Y [2] ⇒ Y , where Y [2]

is the fiber product defined as Y [2] := {(y1, y2)|ϕ(y1) = ϕ(y2)}. A central
U(1)-extension of the groupoid Y [2] ⇒ Y is called a bundle gerbe over M .
Bundle gerbe was invented by Murray in [21]. Murray and Stevenson showed
that there is one-to-one correspondence between the isomorphism classes of
bundle gerbes over M and the cohomology group H3(M,Z) [22].

The outline of this paper is as follows. Section 2 is a preliminary. We
briefly recall the notion of simplicial manifold NG and the relation with the
classifying space BG. In Section 3, we recall the definition of the Dixmier-
Douady class and construct a cocycle in Ω∗(NG(∗)) and prove the main
theorem (Theorem 3.3). We also exhibit the “Chern-Simons form” of the
Dixmier-Douady class. In Section 4, we discuss the case of central U(1)-
extension of the loop group following the idea of Brylinski, McLaughlin [6]
and Murray, Stevenson [23][24]. Section 5 is a short survey of the theory of
a central U(1)-extension of a groupoid.

2 The double complex on simplicial manifold

In this section first we recall the relation between the simplicial manifold NG
and the classifying space BG.

As a convention of this paper, a Lie group means a paracompact Lie
group modeled on a Hausdorff locally convex topological vector space. For
example, we will consider not only the case of a finite dimensional Li group,
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but also the case of an infinite dimensional loop group, unitary group acting
on a Hilbert space. See Section 3.1.

For any Lie group G, we define simplicial manifolds NG, PG and a sim-
plicial G-bundle ρ : PG→ NG as follows:

NG(p) :=

p−times︷ ︸︸ ︷
G× · · · ×G ∋ (g1, · · · , gp) :

face operators εi : NG(p) → NG(p− 1)

εi(g1, · · · , gp) =


(g2, · · · , gp) i = 0

(g1, · · · , gigi+1, · · · , gp) i = 1, · · · , p− 1

(g1, · · · , gp−1) i = p.

PG(p) :=

p+1−times︷ ︸︸ ︷
G× · · · ×G ∋ (ḡ0, · · · , ḡp) :

face operators ε̄i : PG(p) → PG(p− 1)

ε̄i(ḡ0, · · · , ḡp) = (ḡ0, · · · , ḡi−1, ḡi+1, · · · , ḡp) i = 0, 1, · · · , p.

We define ρ : PG→ NG as ρ(ḡ0, · · · , ḡp) := (ḡ0ḡ
−1
1 , · · · , ḡp−1ḡ

−1
p ).

To any simplicial manifold X = {X∗}, we can associate a topological
space ∥ X ∥ called the fat realization. Since any G-bundle ρ : E → M can
be realized as the pull-back of the fat realization of ρ, ∥ ρ ∥ is the universal
bundle EG→ BG [28].

Now we construct a double complex associated to a simplicial manifold.

Definition 2.1. For any simplicial manifold {X∗} with face operators {ε∗},
we define double complex as follows:

Ωp,q(X)
def
= Ωq(Xp).

Derivatives are:

d′ :=

p+1∑
i=0

(−1)iε∗i , d′′ := (−1)p × the exterior differential on Ω∗(Xp).

�
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For NG and PG the following theorem holds [3][10][20].

Theorem 2.1. There exist ring isomorphisms

H∗(Ω∗(NG)) ∼= H∗(BG), H∗(Ω∗(PG)) ∼= H∗(EG).

Here Ω∗(NG) and Ω∗(PG) mean the total complexes. �

Remark 2.1. To prove this theorem, they used the property that G is an
ANR (absolute neighborhood retract) and the theorem of de Rham on G
holds true.

Remark 2.2. The cohomology group of the horizontal complex in the edge
(Ω0(NG(p)), d′ :=

∑p+1
i=0 (−1)iε∗i ) is called the smooth cohomology of G. Note

that even when G is given a discrete topology, this complex and cohomology
still make sense. Furthermore even the coefficient is changed to U(1), we can
define the smooth cohomology. It is denoted by H∗(G,U(1)).

For a principal G-bundle Y → M and an open covering {Uα} of M , the
transition functions (gα0α1 , gα1α2 , · · · , gαp−1αp) : Uα0α1···αp → NG(p) induce
the cohomology map H∗(NG) → H∗

Čech−deRham
(M). The elements in the

image are the characteristic class of Y [20].

Example 2.1. In the case of special orthogonal group G = SO(2), the Euler
class e ∈ H2(BSO(2),R) is represented by the cocycle below.

0x−d

−1
2πi

(Pf(h−1dh)) ∈ Ω1(SO(2))
ε∗0−ε∗1+ε∗2−−−−−→ 0

Here Pf is defined as:

Pf

(
a11 a12

a21 a22

)
=

1

4πi
(a12 − a21).

When we give a discrete topology to SO(2), the cocycle above vanishes. This
means that the Euler class of a flat principal SO(2)-bundle is a torsion class.
On the other hand, in the case of special linear group SL(2), the Euler class
inH2(BSL(2),R) is represented as the sum of differential forms which belong
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to Ω1(SL(2)) and Ω0(SL(2) × SL(2)) (See for example [4][10, Chapter 9]).
So the Euler class of a flat principal SL(2)-bundle is not necessarily a torsion
class. You can find an example of a flat principal SL(2)-bundle over a closed
oriented surface whose genus is g such that its Euler number is g − 1, for
instance in [10, Chapter 9].

3 Dixmier-Douady class on the double com-

plex

3.1 Definition of the Dixmier-Douady class

To begin with, we recall the definition of a central extension of a group.

Definition 3.1. For any group G, its subgroup is called the center of G when
it consists of the element of G that is commutative with any element in G.
Given two groups N,G, if we can construct the group Ĝ such that it has the
normal subgroup N̄ which is isomorphic to N and Ĝ/N̄ is isomorphic to G,

then Ĝ is called a extension of G by N .
When N is abelian and the center of Ĝ contains N , Ĝ is called a central N -
extension of G. �

Next, we recall the definition of the Dixmier-Douady class, following [7].
Let ϕ : Y → M be a principal G-bundle and {Uα} a Leray covering of M .

When G has a central U(1)-extension π : Ĝ → G, the transition functions

gαβ : Uαβ → G lift to Ĝ. i.e. there exist continuous maps ĝαβ : Uαβ → Ĝ such
that π◦ĝαβ = gαβ. This is because each Uαβ is contractible so the pull-back of
π by gαβ has a global section. Now the U(1)-valued functions cαβγ on Uαβγ are

defined as (ĝβγ(ĝαβ ĝβγ)
−1ĝαβ) ·cαβγ := ĝβγ ĝ

−1
αγ ĝαβ ∈ g∗βγĜ⊗(g∗αγĜ)⊗−1⊗g∗αβĜ.

Then it is easily seen that {cαβγ} is a U(1)-valued Čech-cocycle on M and
hence defines a cohomology class in H2(M,U(1)) ∼= H3(M,Z). This class is
called the Dixmier-Douady class of Y .

Remark 3.1. Let sαβγ be a section of Ĝαβγ := g∗βγĜ⊗ (g∗αγĜ)⊗−1 ⊗ g∗αβĜ such

that δsαβγ := sβγδ ⊗ s⊗−1
αγδ ⊗ sαβδ ⊗ s⊗−1

αβγ = 1. This condition makes sence

since Ĝβγδ ⊗ Ĝ⊗−1
αγδ ⊗ Ĝαβδ ⊗ Ĝαβγ is canonically trivial. Then we can define a

U(1)-valued Čech-cocycle csαβγ on M by the equation sαβγ ·csαβγ = ĝβγ ĝ
−1
αγ ĝαβ.
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The cohomology class [csαβγ ] ∈ H2(M,U(1)) ∼= H3(M,Z) can be also called
the Dixmier-Douady class of Y .

Example 3.1. Recall that the complex spin group SpinC(n) is defined
as SpinC(n) := Spin(n) ×Z2 U(1). When we consider the central U(1)-
extension 1 → U(1) → SpinC(n) → SO(n) → 1, the Dixmier-Douady class
of the SpinC(n)-bundle coincides with the third integral Stiefel-Whitney class
w3(TM). Let B denote the Bockstein map and w2(TM) the second Stiefel-
Whitney class. Then w3(TM) = Bw2(TM) hence w3(TM) is a 2-torsion
class.

To obtain a non-torsion class, G must be infinite dimensional (cf. for
example [5] Ch.4 p.166) and we require also G to have a partition of unity
so that we can consider a connection form on the U(1)-bundle over G. A
good example which satisfies such a condition is the loop group of a finite
dimensional compact Lie group [5] [27].

Another important example is the restricted unitary group Ures(H) [5]
[27]. Here H is an infinite-dimensional, separable Hilbert space with an
orthogonal decomposition H = H+ ⊕H−. This group consists of the unitary
operator ofH such that with block decomposition

(
AB
CD

)
, B and C are Hilbert-

Schmidt operators (We can also see that these groups are ANR and the
theorem of de Rham holds on them [17][26]).

Let U(H) denote the group of unitary operators on H endowed with
the strong operator topology and let PU(H) = U(H)/U(1) be the projec-
tive unitary group with the quotient topology. Here U(1) consists of scalar
multiples of the identity operator on H of norm equal to 1. The defini-
tion of the Dixmier-Douady class above is valid for the central extension
U(1) → U(H) → PU(H) and we obtain the Dixmier-Douady class for each
principal PU(H)-bundle. It is well-known that for any topological space
M , the cohomology group H3(M,Z) is isomorphic to [M,BPU(H)] which
is the set of homotopy classes of continuous maps from M to BPU(H). So
there is one-to-one correspondence between the set of isomorphism classes
of principal PU(H)-bundles over M and the cohomology group H3(M,Z).
The corresponding element in H3(M,Z) is the Dixmier-Douady class of each
principal PU(H)-bundle.
For g ∈ U(H), let Ad(g) denote the automorphism T → gTg−1 of K which
is the C∗-algebra of compact operators on H. Ad is a continuous homo-
morphism of U(H) onto Aut(K) with kernel U(1) where Aut(K) is given
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the point-norm topology. Under this homomorphism we can identify PU(H)
with Aut(K). Since K ⊗ K ∼= K, the set of isomorphism classes of locally
trivial bundles over M with fiber K and the structure group Aut(K) forms a
group under the tensor product. The inverse is the conjugate bundle. Then
the following theorem holds.

Theorem 3.1 (Dixmier-Douady [9]). The group of isomorphism classes of
locally trivial bundles over M with fiber K and the structure group Aut(K) is
isomorphic to H3(M,Z). �

3.2 Construction of the cocycle

Let π : Ĝ → G be a central U(1)-extension of a Lie group G. Following
[6] [7], we recognize it as a U(1)-bundle. Using the face operators {εi} :
NG(2) → NG(1) = G, we can construct a U(1)-bundle over NG(2) = G×G
as δĜ := ε0

∗Ĝ⊗ (ε1
∗Ĝ)⊗−1 ⊗ ε2

∗Ĝ. Here we define the tensor product S⊗T
of U(1)-bundles S and T over M by

S ⊗ T :=
∪

x∈M

(Sx × Tx/(s, t) ∼ (sz, tz−1), (z ∈ U(1)).

Lemma 3.1. δĜ→ G×G is a trivial bundle.

Proof. We can construct a bundle isomorphism f : ε0
∗Ĝ⊗ε2

∗Ĝ→ ε1
∗Ĝ as fol-

lows. First we define f to be the map sending [((g1, g2), ĝ2), ((g1, g2), ĝ1)] such
that π(ĝ2) = g2, π(ĝ1) = g1 to ((g1, g2), ĝ1ĝ2). Then we have the inverse f−1

which sends ((g1, g2), ĝ) such that π(ĝ) = g1g2 to [((g1, g2), ĝ2), ((g1, g2), ĝĝ
−1
2 )]

such that π(ĝ2) = g2

Remark 3.2. δ(δĜ) is canonically isomorphic to G × G × G × U(1) because
εiεj = εj−1εi for i < j.

For any connection θ on Ĝ, there is an induced connection δθ on δĜ [5,
Brylinski].

Proposition 3.1. Let c1(θ) denote the first Chern form of Ĝ i.e. the 2-form

on G which hits
(−1

2πi

)
dθ ∈ Ω2(Ĝ) by π∗, and ŝ any global section of δĜ.

Then the following equation holds.

(ε∗0 − ε∗1 + ε∗2)c1(θ) =

(
−1

2πi

)
d(ŝ∗(δθ)) ∈ Ω2(NG(2)).
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Proof. Choose an open cover V = {Vλ}λ∈Λ of G such that there exist local

sections ηλ : Vλ → Ĝ of π. Then {ε−1
0 (Vλ)∩ε−1

1 (Vλ′)∩ε−1
2 (Vλ′′)}λ,λ′,λ′′∈Λ is an

open cover of G×G and we have induced local sections ε∗0ηλ ⊗ (ε∗1ηλ′)⊗−1 ⊗
ε∗2ηλ′′ on this covering.

If we pull back δθ by these sections, the induced form on ε−1
0 (Vλ) ∩

ε−1
1 (Vλ′) ∩ ε−1

2 (Vλ′′) is ε∗0(η
∗
λθ) − ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ). We restrict (ε∗0 − ε∗1 +

ε∗2)c1(θ) on ε−1
0 (Vλ)∩ ε−1

1 (Vλ′)∩ ε−1
2 (Vλ′′) then it is equal to

(−1
2πi

)
d(ε∗0(η

∗
λθ)−

ε∗1(η
∗
λ′θ) + ε∗2(η

∗
λ′′θ)), because c1(θ) =

∑ (−1
2πi

)
d(η∗λθ).

Also

d(ε∗0(η
∗
λθ) − ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ)) = d(ŝ∗(δθ))|ε−1

0 (Vλ)∩ε−1
1 (Vλ′ )∩ε−1

2 (Vλ′′ ).

Since δθ is a connection form. This completes the proof.

Proposition 3.2. We take a section ŝ on δĜ such that δŝ := ε∗0ŝ⊗(ε∗1ŝ)
⊗−1⊗

ε∗2ŝ ⊗ (ε∗3ŝ)
⊗−1 = 1 on δ(δĜ). Then for the face operators {εi}i=0,1,2,3 :

NG(3) → NG(2), we have

(ε∗0 − ε∗1 + ε∗2 − ε∗3)(ŝ
∗(δθ)) = 0.

Proof. We consider the U(1)-bundle δ(δĜ) over NG(3) = G × G × G and
the induced connection δ(δθ) on it. Composing {εi} : NG(3) → NG(2) and
{εi} : NG(2) → G, we define maps {ri}i=0,1,··· ,5 : NG(3) → G as follows.

r0 = ε0 ◦ ε1 = ε0 ◦ ε0 , r1 = ε0 ◦ ε2 = ε1 ◦ ε0 , r2 = ε0 ◦ ε3 = ε2 ◦ ε0

r3 = ε1 ◦ ε2 = ε1 ◦ ε1 , r4 = ε1 ◦ ε3 = ε2 ◦ ε1 , r5 = ε2 ◦ ε3 = ε2 ◦ ε2.

Then {
∩
r−1
i (Vλ(i))} is a covering of NG(3). Since each

∩
r−1
i (Vλ(i)) is equal

to

ε−1
0 (ε−1

0 (Vλ) ∩ ε−1
1 (Vλ′) ∩ ε−1

2 (Vλ′′)) ∩ ε−1
1 (ε−1

0 (Vλ) ∩ ε−1
1 (Vλ(3)) ∩ ε−1

2 (Vλ(4)))

∩ε−1
2 (ε−1

0 (Vλ′)∩ε−1
1 (Vλ(3))∩ε−1

2 (Vλ(5)))∩ε−1
3 (ε−1

0 (Vλ′′)∩ε−1
1 (Vλ(4))∩ε−1

2 (Vλ(5))).

We have the following induced local sections on it.

ε∗0(ε
∗
0ηλ ⊗ (ε∗1ηλ′)⊗−1 ⊗ ε∗2ηλ′′) ⊗ ε∗1(ε

∗
0ηλ ⊗ (ε∗1ηλ(3))⊗−1 ⊗ ε∗2ηλ(4))⊗−1

⊗ε∗2(ε∗0ηλ′ ⊗ (ε∗1ηλ(3))⊗−1 ⊗ ε∗2ηλ(5)) ⊗ ε∗3(ε
∗
0ηλ′′ ⊗ (ε∗1ηλ(4))⊗−1 ⊗ ε∗2ηλ(5))⊗−1.
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From direct computations we can check that this is equal to canonical section
1 on δ(δĜ) and the pull-back of δ(δθ) by this section is equal to 0. This means
that δ(δθ) is the Maurer-Cartan connection. Hence if we pull back δ(δθ) by
the induced section δŝ, it is also equal to 0 and this pull-back is nothing but
(ε∗0 − ε∗1 + ε∗2 − ε∗3)(ŝ

∗(δθ)).

The propositions above give the cocycle c1(θ) −
(−1

2πi

)
ŝ∗(δθ) ∈ Ω3(NG)

described in the following diagram.

0x−d

c1(θ) ∈ Ω2(G)
ε∗0−ε∗1+ε∗2−−−−−→ Ω2(G×G)xd

−
(−1

2πi

)
ŝ∗(δθ) ∈ Ω1(G×G)

ε∗0−ε∗1+ε∗2−ε∗3−−−−−−−−→ 0

Then we can show:

Proposition 3.3. The cohomology class [c1(θ)−
(−1

2πi

)
ŝ∗(δθ)] ∈ H3(Ω(NG))

does not depend on θ.

Proof. Suppose θ0 and θ1 are two connections on Ĝ. Consider the U(1)-

bundle Ĝ× [0, 1] → G× [0, 1] and the connection form tθ0 + (1 − t)θ1 on it.
Then we obtain the cocycle

c1(tθ0 + (1 − t)θ1) −
(
−1

2πi

)
ŝ∗(δ(tθ0 + (1 − t)θ1))

on Ω3(NG× [0, 1]). Let i0 : NG× {0} → NG× [0, 1] and i1 : NG× {1} →
NG× [0, 1] be the natural inclusion map. When we identify NG× {0} with
NG× {1}, (i∗0)

−1i∗1 : H(Ω∗(NG× {0})) → H(Ω∗(NG× {1})) is the identity
map. Hence [c1(θ0) −

(−1
2πi

)
ŝ∗(δθ0)] = [c1(θ1) −

(−1
2πi

)
ŝ∗(δθ1)].

Now we consider what happens if we change the section ŝ. There is a
natural section ŝnt of δĜ defined as;

ŝnt(g1, g2) := [((g1, g2), ĝ2), ((g1, g2), ĝ1ĝ2)
⊗−1, ((g1, g2), ĝ1)].
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Then any other section ŝ such that δŝ = 1 can be represented by ŝ = ŝnt · φ
where φ is a U(1)-valued smooth function on G×G which satisfies δφ = 1.
If we pull back δθ by ŝ, the equation ŝ∗(δθ) = ŝ∗nt(δθ) + dlogφ holds. If there
exists a U(1)-valued smooth function φ′ on G which satisfies δφ′ = φ, the
cohomology class [−

(−1
2πi

)
dlogφ] is equal to 0 in H3(Ω(NG)). So we have

the following proposition.

Proposition 3.4. Up to the cohomology class in the U(1)-valued smooth co-
homology H2(G,U(1)), the cohomology class [c1(θ)−

(−1
2πi

)
ŝ∗(δθ)] is decided

uniquely by the central U(1)-extension Ĝ→ G. �

Next we discuss about the relation between the section ŝ and the mul-
tiplication of Ĝ. Using the section ŝ, we can define another multiplication
m : Ĝ× Ĝ→ Ĝ of Ĝ by:

ŝ(g1, g2) =: [((g1, g2), ĝ2), ((g1, g2),m(ĝ1, ĝ2))
⊗−1, ((g1, g2), ĝ1)].

Since ŝ(g1, g2) is equal to ŝnt ·φ, we can see that m(ĝ1, ĝ2) = ĝ1ĝ2(φ(g1, g2))
−1.

When Ĝ is given this new structure, ŝ is of course a natural section of δĜ.
We say that f : Ĝ → (Ĝ,m) is an isomorphism between the central U(1)-
extensions if f is a group isomorphism and π(ĝ) = π(f(ĝ)), f(ĝz) = f(ĝ)z

holds for any ĝ ∈ Ĝ and z ∈ U(1). Then the theorem below holds.

Theorem 3.2. Let ŝ be a section of δĜ defined by ŝ := ŝnt · φ for a U(1)-
valued smooth function on G×G which satisfies δφ = 1. When we reconstruct
the the multiplication m of Ĝ such that ŝ becomes a natural section of δĜ,
(Ĝ,m) is isomorphic to Ĝ if and only if [φ] ∈ H2(G,U(1)) is 0.

Proof. Assume that there exists a U(1)-valued smooth function φ′ onG which
satisfies φ(g1, g2) = δφ′(g1, g2) := φ′(g2) · (φ′(g1g2))

−1 · φ′(g1). We define a

map f : Ĝ→ Ĝ by f(ĝ) := ĝ · φ′(g). Then

m(f(ĝ1), f(ĝ2)) = f(ĝ1)f(ĝ2)(φ(g1, g2))
−1 = ĝ1φ

′(g1)ĝ2φ
′(g2)(φ(g1, g2))

−1

is equal to
f(ĝ1ĝ2) = ĝ1ĝ2φ

′(g1g2)

and π(ĝ) = π(f(ĝ)), f(ĝz) = f(ĝ)z. Moreover f has the inverse map

f−1(ĝ) := ĝ · (φ′(g))−1 hence f is an isomorphism from Ĝ to (Ĝ,m).

Conversely, assume that there exists an isomorphism f from Ĝ to (Ĝ,m).
Since π(ĝ) = π(f(ĝ)) and f(ĝz) = f(ĝ)z, we can define a U(1)-valued map
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φ′ on G by f(ĝ) =: ĝ · φ′(g). Now m(f(ĝ1), f(ĝ2)) = f(ĝ1ĝ2) induces the
equation φ(g1, g2) = φ′(g2) · (φ′(g1g2))

−1 · φ′(g1).

Remark 3.3. Let H(n) denote the separable Hilbert space L2(S1; Cn) of
square-summable Cn-valued functions on the circle. The diffeomorphism
f : S1 → S1 acts on functions {ξ : S1 → Cn} ∈ H(n) by (f · ξ)(t) :=
ξ(f−1(t)) · |(f−1)′(t)|1/2. It is known that the inclusion Diff+S1 ↪→ Ures(H)
induces the discrete topology on Diff+S1 (See [27]). So the cohomology class
in H2(Ures(H), U(1)) induces the cohomology class in H2(Diff+δS1, U(1)).
This fact may suggest some relationship between the Dixmier-Douady class
and the characteristic classes of flat S1-bundles.

3.3 Main results

We fix any section ŝ of δĜ which satisfies δs = 1. Since g∗βγĜ⊗ (g∗αγĜ)⊗−1 ⊗
g∗αβĜ is the pull-back of δĜ by (gαβ, gβγ) : Uαβγ → G×G, there is an induced

section of g∗βγĜ⊗ (g∗αγĜ)⊗−1 ⊗ g∗αβĜ. So we can define the Dixmier-Douady
class by using this section.

Now we are ready to state the main theorem.

Definition 3.2. We call the sum of c1(θ) ∈ Ω2(NG(1)) and −
(−1

2πi

)
ŝ∗(δθ) ∈

Ω1(NG(2)) the simplicial Dixmier-Douady cocycle associated to π and ŝ.

Theorem 3.3. The simplicial Dixmier-Douady cocycle represents the uni-
versal Dixmier-Douady class associated to π and a section ŝ.

Proof. We show that the [C2,1 +C1,2] described in the diagram below is equal
to [{

(−1
2πi

)
d log cαβγ}] as a Čech-de Rham cohomology class of M =

∪
Uα.

C2,1 ∈
∏

Ω2(Uαβ)x−d∏
Ω1(Uαβ)

δ̌−−−→ C1,2 ∈
∏

Ω1(Uαβγ).

Here C2,1 and C1,2 are Čech-de Rham cocycles defined by

C2,1 = {(g∗αβc1(θ))}, C1,2 =

{
−

(
−1

2πi

)
(gαβ, gβγ)

∗ŝ∗(δθ)

}
.

14



Since g∗αβc1(θ) = ĝ∗αβπ
∗(c1(θ)) = d

(−1
2πi

)
ĝ∗αβθ, we can see

[C2,1 + C1,2] = [δ̌{
(
−1

2πi

)
ĝ∗αβθ} + C1,2].

By definition (ŝ ◦ (gαβ, gβγ))(p) · cαβγ(p) = (ĝβγ ⊗ ĝ⊗−1
αγ ⊗ ĝαβ)(p) for any

p ∈ Uαβγ . Hence (gαβ, gβγ)
∗ŝ∗(δθ) + d log cαβγ = δ̌{ĝ∗αβθ}.

Corollary 3.1. If the principal G-bundle over M is flat, then its Dixmier-
Douady class is 0 in H3(M,R).

Proof. This is because the cocycle in Theorem 3.3 vanishes when G is given
a discrete topology.

Corollary 3.2. If the first Chern class of π : Ĝ → G is not 0 in H2(G,R),
the corresponding Dixmier-Douady class of the universal G-bundle is not 0.
Especially, if G is simply connected and π : Ĝ→ G is not trivial as a principal
U(1)-bundle, then the corresponding Dixmier-Douady class of the universal
G-bundle is not 0.

Proof. In that situation, any differential form x ∈ Ω1(NG(1)) does not hit
c1(θ) ∈ Ω2(NG(1)) by d : Ω1(NG(1)) → Ω2(NG(1)).

3.4 Another description

On the other hand, there is a simplicial manifold NĜ and face operators ε̂i

of it. Using this, Behrend and Xu described the cocycle which represents the
Dixmier-Douady class in another way.

Proposition 3.5 ([1][2]). Let Ĝ× Ĝ→ G×G be a product (U(1) × U(1))-

bundle. Then the 1-form (ε̂∗0 − ε̂∗1 + ε̂∗2)θ on Ĝ× Ĝ is horizontal and (U(1)×
U(1))-invariant, hence there exists the 1-form χ on G × G which satisfies
(π × π)∗χ = (ε̂∗0 − ε̂∗1 + ε̂∗2)θ.

Proof. For example, see [12, G.Ginot, M.Stiénon].

Behrend and Xu proved the theorem below in [2].

Theorem 3.4 ([1][2]). The cohomology class [c1(θ)−
(−1

2πi

)
χ] ∈ H3(Ω(NG))

represents the universal Dixmier-Douady class.
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Now we show our cocycle in Section 3.2 satisfies the required condition
in Proposition 3.5 when we choose a natural section snt : G×G→ δĜ.

Theorem 3.5. The equation (π × π)∗s∗nt(δθ) = (ε̂∗0 − ε̂∗1 + ε̂∗2)θ holds.

Proof. Choose an open covering V = {Vλ}λ∈Λ of G such that all the in-
tersections of open sets in V are contractible and there exist local sections
ηλ : Vλ → Ĝ of π. Then {ε−1

0 (Vλ) ∩ ε−1
1 (Vλ′) ∩ ε−1

2 (Vλ′′)}λ,λ′,λ′′∈Λ is an open
cover ofG×G and there are the induced local sections ε∗0ηλ⊗(ε∗1ηλ′)⊗−1⊗ε∗2ηλ′′

on this covering.
If we pull back δθ by these sections, the induced form on ε−1

0 (Vλ) ∩
ε−1
1 (Vλ′) ∩ ε−1

2 (Vλ′′) is ε∗0(η
∗
λθ) − ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ).

We define U(1)-valued functions τλλ′λ′′ on ε−1
0 (Vλ) ∩ ε−1

1 (Vλ′) ∩ ε−1
2 (Vλ′′)

by
(ε∗0ηλ ⊗ (ε∗1ηλ′)⊗−1 ⊗ ε∗2ηλ′′) · τλλ′λ′′ = snt.

Then ε∗0(η
∗
λθ) − ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ) + τ−1

λλ′λ′′dτλλ′λ′′ is equal to s∗ntδθ hence
we obtain (π × π)∗s∗ntδθ = (π × π)∗(ε∗0(η

∗
λθ) − ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ)) + (π ×

π)∗τ−1
λλ′λ′′dτλλ′λ′′ .
Let φ̃λ : π−1(Vλ) → Vλ × U(1) be a local trivialization of π. We put

φλ := pr2 ◦ φ̃λ : π−1(Vλ) → U(1). For any ĝ ∈ π−1(Vλ) the equation ĝ =
ηλ ◦ π(ĝ) · φλ(ĝ) holds so we can see

ε̂∗i θ = ε̂∗i (π
∗(η∗λθ)) + ε̂∗iφ

−1
λ dφλ = (π × π)∗ε∗i (η

∗
λθ) + ε̂∗iφ

−1
λ dφλ

on ε̂−1
i (π−1(Vλ)) = (π × π)−1(ε−1

i (Vλ)).
Therefore on (π×π)−1(ε−1

0 (Vλ)∩ε−1
1 (Vλ′)∩ε−1

2 (Vλ′′)) there is a differential
form ε̂∗0θ− ε̂∗1θ+ ε̂∗2θ = (π × π)∗(ε∗0(η

∗
λθ)− ε∗1(η

∗
λ′θ) + ε∗2(η

∗
λ′′θ)) + ε̂∗0φ

−1
λ dφλ −

ε̂∗1φ
−1
λ′ dφλ′ + ε̂∗2φ

−1
λ′′ dφλ′′ .

Since ε̂i = (ηλ ◦ π ◦ ε̂i) · φλ ◦ ε̂i = (ηλ ◦ εi ◦ (π × π)) · φλ ◦ ε̂i, we can see

that ε̂0 ⊗ ε̂⊗−1
1 ⊗ ε̂2 : Ĝ× Ĝ→ δĜ is equal to

((ε∗0ηλ ⊗ (ε∗1ηλ′)⊗−1 ⊗ ε∗2ηλ′′) ◦ (π × π)) · (φλ ◦ ε̂0)(φλ′ ◦ ε̂1)
−1(φλ′′ ◦ ε̂2).

We have τλλ′λ′′◦(π×π) = (φλ◦ε̂0)(φλ′◦ε̂1)
−1(φλ′′◦ε̂2) because snt◦(π×π) =

ε̂0⊗ε̂⊗−1
1 ⊗ε̂2, so it follows that (ε̂∗0−ε̂∗1+ε̂∗2)θ = (π×π)∗s∗ntδθ. This completes

the proof.
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3.5 “Chern-Simons form”

As mentioned in Section 2, PG plays the role of the universal G-bundle and
NG, the classifying space BG. So, the pull-back of the cocycle in Definition
3.1 to Ω∗(PG) by ρ : PG → NG should be a coboundary of a cochain on
PG. In this section we shall exhibit an explicit form of the cochain, which
can be called Chern-Simons form for the Dixmier-Douady class.
Recall PG(1) = G×G and ρ : PG(1) → NG is defined as ρ(ḡ0, ḡ1) = ḡ0ḡ

−1
1 .

Then we consider the U(1)-bundle δ̄ρĜ := ε̄∗0Ĝ⊗ ρ∗Ĝ⊗ (ε̄∗1Ĝ)⊗−1 over G×G

and the induced connection δ̄ρθ on it. We can check that δ̄ρĜ is a trivial
bundle by using the same argument in Lemma 3.1, and we take a section
s̄ρof it as

s̄ρ(ḡ0, ḡ1) := [((ḡ0, ḡ1), ˆ̄g1), ((ḡ0, ḡ1), ˆ̄g0 ˆ̄g
−1
1 ), ((ḡ0, ḡ1), ˆ̄g0)

⊗−1].

Theorem 3.6. The cochain −c1(θ) −
(−1

2πi

)
s̄∗ρ(δ̄ρθ) ∈ Ω2(PG) is a Chern-

Simons form of c1(θ) −
(−1

2πi

)
ŝ∗nt(δθ) ∈ Ω3(NG) i.e. the following equation

holds.

ρ∗(c1(θ) −
(
−1

2πi

)
ŝ∗nt(δθ)) = (d′ + d′′)(−c1(θ) −

(
−1

2πi

)
s̄∗ρ(δ̄ρθ)).

0xd

−c1(θ) ∈ Ω2(G)
ε̄∗0−ε̄∗1−−−→ Ω2(PG(1))x−d

−
(−1

2πi

)
s̄∗ρ(δ̄ρθ) ∈ Ω1(PG(1))

ε̄∗0−ε̄∗1+ε̄∗2−−−−−→ Ω1(PG(2))

Proof. Repeating the same argument as that in Proposition 3.1, we can see
(ε̄∗0+ρ

∗−ε̄∗1)((c1(θ)) =
(−1

2πi

)
d(s̄∗ρ(δ̄ρθ)) ∈ Ω2(PG(1)). Because (ε0, ε1, ε2)◦ρ =

(ρ ◦ ε̄0, ρ ◦ ε̄1, ρ ◦ ε̄2), we can see that (ε̄0
∗δ̄ρĜ) ⊗ (ε̄1

∗δ̄ρĜ)⊗−1 ⊗ (ε̄∗2δ̄ρĜ) is

ρ∗(δĜ). Hence (ε̄∗0 − ε̄∗1 + ε̄∗2)s̄
∗
ρ(δ̄ρθ) = ρ∗(ŝ∗nt(δθ)).

By restricting the Chern-Simons form on Ω∗(PG) to the edge Ω∗(PG(0)),
we obtain a cocycle on Ω∗(G). So there is an induced map of the cohomol-
ogy class H∗(BG) ∼= H(Ω∗(NG)) → H∗−1(G). This map coincides with
the transgression map for the universal bundle EG → BG in the sense of
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Heitsch and Lawson in [13]. Hence as a corollary of Theorem 3.6, we obtain
an alternative proof of the following proposition from [7, Theorem 4.1] [29,
Theorem 4.1].

Proposition 3.6. The transgression map of the universal bundle EG→ BG
maps the Dixmier-Douady class to the negative of the first Chern class of π :
Ĝ→ G. �

4 The String class

Using the idea of Brylinski, McLaughlin [6] and Murray, Stevenson [23][24],
we discuss the case of central U(1)-extension of a loop group.

4.1 In the case of special unitary group

It is known that the second Chern class c2 ∈ H4(BSU(2)) of the universal
SU(2)-bundle ESU(2) → BSU(2) is represented in Ω4(NSU(2)) as the sum
of following differential forms C1,3 and C2,2 (see for example [15] or [30]):

0x−d

C1,3 ∈ Ω3(SU(2))
ε∗0−ε∗1+ε∗2−−−−−→ Ω3(SU(2) × SU(2))xd

C2,2 ∈ Ω2(SU(2) × SU(2))
ε∗0−ε∗1+ε∗2−ε∗3−−−−−−−−→ 0

C1,3 =

(
−1

2πi

)2 −1

6
tr(h−1dh)3, C2,2 =

(
−1

2πi

)2
1

2
tr(h−1

2 h−1
1 dh1dh2).

Pulling back this cocycle by the evaluation map

ev : LSU(2) × S1 → SU(2), (γ, z) 7→ γ(z)

and integrating along the circle, we obtain the cocycle in Ω3(NLSU(2)).
Here LSU(2) is the free loop group of SU(2) and the map

∫
S1 ev

∗ is also
called the transgression map.
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Now we pose the following problem. Is there corresponding central exten-
sion of LSU(2) and connection form on it such that the Dixmier-Douady class
in Ω3(NLSU(2)) constructed previous section coincides with

∫
S1 ev

∗(C1,3 +
C2,2)? In this section, we explain that the central extension and the connec-
tion form constructed by Mickelsson and Brylinski, McLaughlin in [5] [6] [18]
meet such a condition.

To begin with, we recall the definition of the U(1)-bundle π : Q(ν) →
LSU(2) and the multiplication m : Q(ν)×Q(ν) → Q(ν) in [5] [6]. We fix any
based point x0 ∈ SU(2) and denote γ0 ∈ LSU(2) the constant loop at x0.
For any γ ∈ LSU(2), we consider all paths σγ : [0, 1] → LSU(2) that satisfies
σγ(0) = γ0 and σγ(1) = γ. Then the equivalence relation ∼ on {σγ} × S1 is
defined as follows:

(σγ, z) ∼ (σ′
γ, z

′) ⇔ z = z′ · exp

(∫
I2×S1

2πiF ∗ν

)
.

Here F : I2 × S1 → SU(2) is any homotopy map that satisfies

F (0, t, z) = σγ(t)(z), F (1, t, z) = σ′
γ(t)(z)

and

ν = C1,3 =

(
−1

2πi

)2 −1

6
tr(h−1dh)3.

It is well known ν ∈ Ω3(SU(2)) is a closed, integral form hence this relation
is well-defined. Now the fiber π−1(γ) of Q(ν) is defined as the quotient space
{σγ} × S1/ ∼.
We can adapt the same construction for any closed integral 3-form on SU(2).
Let η,η′ be such forms and suppose there is a 2-form β with dβ = η′ − η.
Then the isomorphism from Q(η) to Q(η′) is constructed as:

[(σγ, z)]η 7→ [(σγ, z · exp

(∫
I1×S1

2πiσ∗
γβ

)
)]η′ .

Here we regard σγ as a map from [0, 1] × S1 to SU(2).
For the face operators {εi} : SU(2) × SU(2) → SU(2) (we use the same

notation for the face operators LSU(2)×LSU(2) → LSU(2)), we can check
that ε∗0Q(ν) ⊗ ε∗1Q(ν)⊗−1 ⊗ ε∗2Q(ν) is isomorphic to Q(ε∗0ν − ε∗1ν + ε∗2ν) =
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Q(−dC2,2) over LSU(2)×LSU(2). The isomorphism fromQ(0) toQ(−dC2,2)
is given by

[(σγ1 , σγ2 , z)]0 7→ [(σγ1 , σγ2 , z · exp

(∫
I1×S1

2πi(σγ1 , σγ2)
∗C2,2

)
)]−dC2,2 .

Now we can define a section sL of ε∗0Q(ν)⊗ε∗1Q(ν)⊗−1⊗ε∗2Q(ν) over LSU(2)×
LSU(2) by:

sL(γ1, γ2) := [(σγ1 , σγ2 , exp

(∫
I1×S1

2πi(σγ1 , σγ2)
∗C2,2

)
)]−dC2,2 .

The multiplication m : Q(ν) × Q(ν) → Q(ν) is defined by the following
equation

sL(γ1, γ2) = ([σγ1 , z1]ε∗0ν) ⊗ ((γ1γ2),m([σγ1 , z1]ν , [σγ2 , z2]ν))
⊗−1 ⊗ ([σγ2 , z2]ε∗2ν).

Next we recall how Brylinski and McLaughlin constructed the connection
on Q(ν). Let denote P1SU(2) the space of paths on SU(2) which starts
from based point x0 and f : P1SU(2) → SU(2) a map that is defined by
f(γ) = γ(1). It is well known that f is a fibration. Then we define the
2-form ω on P1SU(2) as:

ωγ(u, v) =

∫ 1

0

ν

(
dγ

dt
, u(t), v(t)

)
dt.

Note that dω = f ∗ν holds. Let U = {Uι} be an open covering of SU(2). Since
SU(2) is simply connected, we can take U such that each Uι is contractible
and {LUι} is an open covering of LSU(2). For example, we take U = {Ux :=
SU(2) − {x}|x ∈ SU(2)}.
Now we quote the lemma from [6].

Lemma 4.1 (Brylinski, McLaughlin [6]). (1) There exists a line bundle L
over each f−1(Uι) with a fiberwise connection such that its first Chern form
is equal to ω|f−1(Uι). This line bundle is called the pseudo-line bundle.
(2) There exists a connection ∇ on each pseudo-line bundle L such that its
first Chern form R satisfies the condition that R− ω|f−1(Uι) is basic.

Let K be a 2-form on Uι which satisfies f ∗K = 2πi(R− ω|f−1(Uι)). Then
the 1-form θι on LUι is defined by θι :=

∫
S1 ev

∗K. It is easy to see
(−1

2πi

)
dθι =
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(
∫

S1 ev
∗ν)|LUι .

There is a section sι on LUι defined by sι(γ) := [σγ, Hσγ (L,∇)]. Here
Hσγ (L,∇) is the holonomy of (L,∇) along the loop σγ : S1 → f−1(Uι). We
also have the corresponding local trivialization φι : π−1(Uι) → Uι × U(1).

Above all, we have the connection form θ on Q(ν) defined by θ|π−1(Uι) :=
π∗θι + dlog(pr2 ◦ φι). Its first Chern form c1(θ) is

∫
S1 ev

∗ν and dδθ is equal
to

(−2πi) ·
∫

S1

ev∗((ε∗0 − ε∗1 + ε∗2)ν) = (−2πi) · π∗
(
−d

∫
S1

ev∗C2,2

)
.

Hence δθ+(−2πi)·π∗ ∫
S1 ev

∗C2,2 is a flat connection on δQ(ν). Since LSU(2)
is simply connected, it is a trivial connection so

s∗L(δθ + (−2πi) · π∗
∫

S1

ev∗C2,2) = 0.

So as a reformulation of the Brylinski and McLaughlin’s result in [6], we
obtain the proposition below.

Proposition 4.1. Let (Q(ν), θ) be a U(1)-bundle on LSU(2) with connection
and sL be a global section of δQ(ν) constructed above. Then the cocycle
c1(θ)−

(−1
2πi

)
sL

∗(δθ) on Ω3(NLSU(2)) is equal to
∫

S1 ev
∗(C1,3+C2,2), i.e. the

map
∫

S1 ev
∗ sends the second Chern class c2 ∈ H4(BSU(2)) to the Dixmier-

Douady class (associated to Q(ν)) in H3(BLSU(2)). �

Remark 4.1. We explain what happens if we adapt this construction to the
loop group of the unitary group. In the case of unitary group U(2), the second
Chern class is represented as the sum of following CU

1,3 and CU
2,2 described in

the diagram below (see [30]):

0x−d

CU
1,3 ∈ Ω3(U(2))

ε∗0−ε∗1+ε∗2−−−−−→ Ω3(U(2) × U(2))xd

CU
2,2 ∈ Ω2(U(2) × U(2))

ε∗0−ε∗1+ε∗2−ε∗3−−−−−−−−→ 0
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CU
1,3 =

(
−1

2πi

)2 −1

6
tr(h−1dh)3

CU
2,2 =

(
−1

2πi

)2
1

2
tr(h−1

2 h−1
1 dh1dh2) −

(
−1

2πi

)2
1

2
tr(h−1

1 dh1)tr(h
−1
2 dh2).

We recognize U(2) as a semi-direct group SU(2) o U(1). Let denote
by ΩU(1) the based loop group of U(1). Then any element γ in LU(2)
is decomposed as γ = (γ1, γ2, z) ∈ LSU(2) o (ΩU(1) o U(1)). Each con-
nected component of LU(2) is parametrized by the mapping degree of γ2.
We write ΩU(1)n,LU(2)n the connected component which includes a based
loop γ2 whose mapping degree is n. We can see π1(LU(2)0) = π1(LSU(2))⊕
π1(LU(1)0) = π1(LU(1)0) = π1(ΩU(1)0) ⊕ π1(U(1)) ∼= Z. There is a home-
omorphism from ΩU(1)0 to ΩU(1)n defined by γ 7→ γ · (eis 7→ eins) for any
n so π1(LU(2)n) is also isomorphic to Z. The generator ψn of π1(LU(2)n) ∼=
H1(LU(2)n) is the map defined as

ψn(eit) :=

(
eis 7→

(
1 0

0ei(ns+t)

))
.

Hence any cycle a ∈ Z1(LU(2)n) can be written as mψn+∂ϱ for some 2-chain
ϱ.
Since LU(2) is not simply connected we need the differential character k
to construct a principal U(1)-bundle over LU(2). Differential character is a
homomorphism from Z1(LU(2)) to U(1) such that there exists a specific 2-
form ω satisfying k(∂ϱ) = exp(

∫
ϱ
2πiω) for any 2-singular chains ϱ of LU(2)

([8] see also [24]).
We set Φ :=

∫
S1 ev

∗CU
1,3. If we define k as

k(a) := exp(

∫
ϱ

2πiΦ)

this is well-defined since Φ is integral and we obtain the U(1)-bundle QU over
LU(2) by using this differential character k instead of exp(

∫
I2×S1 2πiF ∗ν) in

Section 4.1. But unfortunately k(a1a2) is not equal to exp(
∫

(ϱ1,ϱ2)
2πiε∗1Φ)

in general. So in this way we can not obtain a section sU
L of δQU nor a

multiplication mU : QU ×QU → QU .
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4.2 In the case of semi-direct product

In this section we deal with the semi-direct LGo S1 for G = SU(2).
First we define a bisimplicial manifold NLG(∗) o NS1(∗). A bisimplicial
manifold is a sequence of manifolds with horizontal and vertical face and
degeneracy operators which commute with each other. A bisimplicial map is
a sequence of maps commuting with horizontal and vertical face and degen-
eracy operators. We define NLG(∗) oNS1(∗) as follows:

NLG(p) oNS1(q) :=

p−times︷ ︸︸ ︷
LG× · · · × LG×

q−times︷ ︸︸ ︷
S1 × · · · × S1 .

Horizontal face operators εLG
i : NLG(p)oNS1(q) → NLG(p−1)oNS1(q)

are the same with the face operators of NLG(p).
Vertical face operators εS1

i : NLG(p)oNS1(q) → NLG(p)oNS1(q−1)
are defined by

εS1

i (γ⃗, z1, · · · , zq) =


(γ⃗, z2, · · · , zq) i = 0

(γ⃗, z1, · · · , zizi+1, · · · , zq) i = 1, · · · , q − 1

(γ⃗zq, z1, · · · , zq−1) i = q.

Here γ⃗ = (γ1, · · · , γp).
We define a bisimplicial map ρo : PLG(p)×PS1(q) → NLG(p)oNS1(q)

by
ρo(γ⃗, z1, · · · , zq+1) = (ρ(γ⃗)zq+1, ρ(z1, · · · , zq+1)).

Now we fix a semi-direct product operator ·oof LGoS1 as (γ, z) ·o (γ′, z′) :=
(γ · (γ′z), zz′), then LG o S1 acts on PLG(p) × PS1(q) by right as (γ⃗, z⃗) ·
(γ, z) = (γ⃗ · z−1(γ), z⃗z). Since ρo(γ⃗, z⃗) = ρo((γ⃗, z⃗) · (γ, z)), one can see that
ρo is a principal (LG o S1)-bundle. ∥ PLG(∗) × PS1(∗) ∥ is ELG × ES1

and ∥ NLG(∗) oNS1(∗) ∥ is homeomorphic to (ELG×ES1)/(LGoS1), so
∥ NLG(∗) oNS1(∗) ∥ is a model of B(LGo S1).

Definition 4.1. For a bisimplicial manifold NLG(∗) o NS1(∗), we have a
triple complex as follows:

Ωp,q,r(NLG(∗) oNS1(∗)) def
= Ωr(NLG(p) oNS1(q)).

Derivatives are:

d′ =

p+1∑
i=0

(−1)i(εLG
i )∗, d′′ =

q+1∑
i=0

(−1)i(εS1

i )∗ × (−1)p.
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d′′′ = (−1)p+q × the exterior differential on Ω∗(NLG(p) oNS1(q)).

�
The following proposition can be proved by adapting the same argument in
the proof of Theorem 2.1 (See [32]).

Proposition 4.2. There exists an isomorphism

H(Ω∗(NLGoNS1) ∼= H∗(B(LGo S1)).

Here Ω∗(NLGoNS1) means the total complex. �

Now we want to construct the cocycle in Ω3(NLGoNS1) which coincides
with c1(θ) −

(−1
2πi

)
sL

∗(δθ) when it is restricted to Ω3(NLG).
To do this, it suffices to construct the differential form τ on Ω1(LGoS1)

such that dτ = (−εS1

0

∗
+ εS1

1

∗
)c1(θ) and (εLG

0
∗ − εLG

1
∗

+ εLG
2

∗
)τ = (εS1

0

∗ −
εS1

1

∗
)
(−1

2πi

)
sL

∗(δθ) and (−εS1

0

∗
+ εS1

1

∗ − εS1

2

∗
)τ = 0. We consider the trivial

U(1)-bundle (εS1

0

∗
Q)⊗−1 ⊗ εS1

1

∗
Q and the induced connection form δoθ on it.

We define the section so : LG o S1 → (εS1

0

∗
Q)⊗−1 ⊗ εS1

1

∗
Q as so(γ, z) :=

(γ̂, z)⊗−1⊗(γ̂z, z) and set τ :=
(−1

2πi

)
so

∗(δoθ) then we can see that τ satisfies
the required conditions.

5 Appendix: A central U(1)-extension of a

groupoid

This section is a short survey of the theory of a central U(1)-extension of a
Lie groupoid.

At first we recall the definition of Lie groupoids following [19].

Definition 5.1. A Lie groupoid Γ1 over a manifold Γ0 is a pair (Γ1,Γ0)
equipped with following differentiable maps:
(i) surjections s, t : Γ1 → Γ0 called the source and target maps respectively;
(ii) m : Γ2 → Γ1 called multiplication, where Γ2 := {(x1, x2) ∈ Γ1 ×
Γ1| t(x1) = s(x2)};
(iii) an injection e : Γ0 → Γ1 called identities;
(iv) ι : Γ1 → Γ1 called inversion.
These maps must satisfy:
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(1) (associative law) m(m(x1, x2), x3) = m(x1,m(x2, x3)) if one is defined, so
is the other;
(2) (identities) for each x ∈ Γ1, (e(s(x)), x) ∈ Γ2, (x, e(t(x))) ∈ Γ2 and
m(e(s(x)), x) = m(x, e(t(x))) = x;
(3) (inverses) for each x ∈ Γ1, (x, ι(x)) ∈ Γ2, (ι(x), x) ∈ Γ2,m(x, ι(x)) =
e(s(x)), and m(ι(x), x) = e(t(x)).

In this paper we denote a Lie groupoid by Γ1 ⇒ Γ0.

Example 5.1. Suppose that G is a Lie group acting on a manifold M by
left. Then we have a groupoid Γ1 = G ×M , Γ0 = M . The source map s is
defined as s(g, u) = u and the target map t is defined as t(g, u) = gu. This
groupoid M o G ⇒ M is often called an action groupoid and denoted by
M//G.

Example 5.2. Suppose that M is a manifold and {Uα} is a covering of M .
Then we have a groupoid Γ1 =

⨿
(Uα∩Uβ), Γ0 =

⨿
Uα. The source map s is

an inclusion map into Uα and the target map t is an inclusion map into Uβ.

5.1 Double complex and central U(1)-extension

Let Γ1 ⇒ Γ0 be a Lie groupoid and denote by s, t,m the source and tar-
get maps, and the multiplication of it respectively. Then we can define a
simplicial manifold NΓ as follows:

NΓ(p) := {(x1, · · · , xp) ∈
p−times︷ ︸︸ ︷

Γ1 × · · · × Γ1 | t(xj) = s(xj+1) j = 1, · · · , p− 1}

face operators εi : NΓ(p) → NΓ(p− 1)

εi(x1, · · · , xp) =


(x2, · · · , xp) i = 0

(x1, · · · ,m(xi, xi+1), · · · , xp) i = 1, · · · , p− 1

(x1, · · · , xp−1) i = p.

The double complex Ω∗,∗(NΓ) is also defined in a similar way.

Example 5.3. In the case of an action groupoid M oG ⇒ M for a smooth
manifold M and a compact Lie group G which acts on M , H(Ω∗(NΓ)) is
isomorphic to the Borel model of the equivariant cohomology H∗

G(M) :=
H∗(EG×G M) (see for example [11]).
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Example 5.4. In the case of the groupoid
⨿

(Uα ∩ Uβ) ⇒
⨿
Uα for a good

covering {Uα} in Example 5.2, H(Ω∗(NΓ)) is isomorphic to H∗(M).

Now we recall the notion of a central U(1)-extension of a groupoid in
[2] [33]. A central U(1)-extension of a Lie groupoid Γ1 ⇒ Γ0 consists of a
morphism of Lie groupoids

Γ̂1
π−→ Γ1

� �
Γ0

id−→ Γ0

and a right U(1)-action on Γ̂1, making π : Γ̂1 → Γ1 a principal U(1)-bundle.

For any z1, z2 ∈ U(1) and (x̂1, x̂2) ∈ N Γ̂(2) := {(ŷ1, ŷ2) ∈ Γ̂1 × Γ̂1|t(ŷ1) =
s(ŷ2)}, the equation m̂(x̂1z1, x̂2z2) = m̂(x̂1, x̂2)z1z2 holds.

Note that there is a section ŝst of δΓ̂1 defined as

ŝst(x1, x2) := [((x1, x2), x̂2), ((x1, x2), m̂(x̂1, x̂2))
⊗−1, ((x1, x2), x̂1)].

Furthermore, because of the associative law of Γ1 ⇒ Γ0, δ(δΓ̂1)) is canonically
isomorphic to the product bundle and δŝst = 1 holds.

Let Γ̂1 → Γ1 ⇒ Γ0 be a central U(1)-extension of a groupoid and θ

be a connection form of the U(1)-bundle Γ̂1 → Γ1. Then we can use the
same argument in Section 3.2 and obtain the cocycle on Ω∗(NΓ(∗)). In
[1][2] and related papers, they call θ a pseudo-connection of a central U(1)-

extension of a groupoid Γ̂1 → Γ1 ⇒ Γ0 and when −
(−1

2πi

)
ŝ∗st(δθ) ∈ Ω1(NΓ(2))

vanishes they call θ a connection of Γ̂1 → Γ1 ⇒ Γ0. If the horizontal complex

Ω1(NΓ(1))
d′−→ Ω1(NΓ(2))

d′−→ Ω1(NΓ(3)) is exact, a connection of Γ̂1 → Γ1 ⇒
Γ0 exists.

5.2 Bundle gerbes

5.2.1 The definition and basic properties

In this section, we recall the definition of bundle gerbes and some basic
properties of them.
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Definition 5.2 (Murray-Stevenson, [21][22]). Given a surjective submersion
ϕ : Y →M , we obtain the groupoid Y [2] ⇒ Y where Y [2] is the fiber product
defined as Y [2] := {(y1, y2)|ϕ(y1) = ϕ(y2)}. The source and target maps are
defined as s(y1, y2) = y2, t(y1, y2) = y1 respectively.

A bundle gerbe over M is a pair of ϕ : Y → M , a principal U(1)-bundle

Ŷ [2] over Y [2] and a section ŝ of δŶ [2] which satisfies δŝ = 1.

Remark 5.1. Without the assumption of the existence of ŝ, δŶ [2] is not neces-

sarily trivial. By using ŝ, we can construct a multiplication m̂ : Ŷ [2]× Ŷ [2] →
Ŷ [2] such that ŝ is a natural section of δŶ [2]. Hence we can recognize bundle
gerbe as a kind of a central U(1)-extension of a Lie groupoid.

Bundle gerbe was invented by Murray in [21]. It is often denoted by G.
Here we recall the classification theory of bundle gerbe due to Murray and
Stevenson.

Remark 5.2. In the case that the surjective submersion is given by
⨿
Uα →M

and groupoid is
⨿

(Uα∩Uβ) ⇒
⨿
Uα for a good covering {Uα} in Example 5.2,

the bundle gerbe (Γ̂1 →
⨿

(Uα ∩Uβ) ⇒
⨿
Uα, ŝ) is called Hitchin-Chatterjee

gerbe data ([14]).

Definition 5.3 ([21][22]). The bundle gerbe (Ŷ [2] → Y [2] ⇒ Y, ŝ) is called
trivial if there exists a principal U(1)-bundle R over Y and a section v :

Y [2] → δR⊗−1 ⊗ Ŷ [2] such that δv = ŝ. Such a pair (R, v) is called a trivial-

ization of the bundle gerbe (Ŷ [2] → Y [2] ⇒ Y, ŝ).

Definition 5.4 ([21][22]). Bundle gerbes (Ŷ [2] → Y [2] ⇒ Y, ŝ) and (Ŷ ′[2] →
Y ′[2] ⇒ Y ′, ŝ′) are stably isomorphic if there exists following date:
(i) a surjective submersion W →M ;
(ii) smooth maps ϕ : W → Y and ϕ′ : W → Y ′ which are compatible with
projections onto M ;

(iii) a trivialization of (ϕ∗(Ŷ [2])⊗−1 ⊗ ϕ′∗Ŷ ′[2] → W [2] ⇒ W,ϕ∗ŝ⊗−1 ⊗ ϕ′∗s′).

Definition 5.5 ([21]). We define the product G ⊗ G ′ of bundle gerbes G =

(Ŷ [2] → Y [2] ⇒ Y, ŝ) and G ′ = (Ŷ ′[2] → Y ′[2] ⇒ Y ′, ŝ′) as

(Ŷ [2] ⊗ Ŷ ′[2]
→ Y [2] ×(π,π′) Y

′[2] ⇒ Y ×(π,π′) Y
′, ŝ⊗ ŝ′).
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Here Y ×(π,π′)Y
′ is defined as Y ×(π,π′)Y

′ := {(y, y′) ∈ Y ×Y ′|π(y) = π′(y′)}.
The inverse G−1 of G = (Ŷ [2] → Y [2] ⇒ Y, ŝ) is ((Ŷ [2])⊗−1 → Y [2] ⇒ Y, ŝ⊗−1).

Then the following theorem holds true.

Theorem 5.1 ([21][22]). The isomorphism classes of bundle gerbes over M
are parametrized by H3(M,Z). �

Proof. We construct the characteristic class in H3(M,Z). Let {Uα} be a
Leray covering of M and sα : Uα → Y |Uα local sections of ϕ. Then there is

an induced section ψαβ : Uαβ : Uα ∩ Uβ → (sα, sβ)∗Ŷ [2]. Now a U(1)-valued
function gαβγ on Uαβγ is defined as ((sα, sβ, sγ)

∗ŝ) · gαβγ := ψαβ ⊗ ψβγ ⊗
ψγα. Then it is easily seen that {gαβγ} is a U(1)-valued Čech-cocycle on M
and define a cohomology class in H2(M,U(1)) ∼= H3(M,Z). This class is

called the Dixmier-Douady class of bundle gerbe G = (Ŷ [2] → Y [2] ⇒ Y, ŝ).
We denote it D(G). We can check that D(G ⊗ G ′) = D(G) + D(G ′) and
if G is trivial then D(G) is the trivial class in H3(M,Z). Therefore G 7→
D(G) is well-defined monomorphism. Finally we check the surjectivity of this
map. Given any U(1)-valued Čech-cocycle {gαβγ} of M , we can construct

the bundle gerbe G by Y :=
⨿
Uα, Ŷ [2] := Y [2] × U(1) and ŝ := {gαβγ}.

There is a practical method to calculate the Dixmier-Douady class in
H3(M,R). To explain this, we quote the following basic proposition from
[23].

Proposition 5.1 ([21]). The complex

0 → Ω∗(M)
ϕ∗
−→ Ω∗(Y )

d′−→ Ω∗(Y [2])
d′−→ Ω∗(Y [3])

d′−→ · · ·

is exact.

Since the complex Ω1(Y [2])
d′−→ Ω1(Y [3])

d′−→ Ω1(Y [4]) is exact hence there

exists a connection θ of principal U(1)-bundle Ŷ [2] → Y [2] such that ŝ∗θ =

0. We call this a connection of bundle gerbe Ŷ [2] → Y [2] ⇒ Y . Let θ ∈
Ω1(Y [2]) be any connection form of bundle gerbe Ŷ [2] → Y [2] ⇒ Y . Then
there exists a 2-form H on Y which satisfies pr∗2H − pr∗1H = c1(θ) because

Ω2(Y )
d′−→ Ω2(Y [2])

d′−→ Ω2(Y [3]) is exact. This 2-form is called a curving of
the bundle gerbe. Furthermore, there exists a closed 3-form D on M such
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that ϕ∗D = dH since 0 → Ω3(M)
ϕ∗
−→ Ω3(Y )

d′−→ Ω3(Y [2]) is also exact.
The cohomology class [D] does not depend on the choice of connection and

curving, and coincides with the Dixmier-Douady class of (Ŷ [2] → Y [2] ⇒ Y, ŝ)
in H3(M,R).

In the case of a central U(1)-extension of group G, the Dixmier-Douady
class of a principal G-bundle is a torsion class if G is a finite dimensional Lie
group. In the case of bundle gerbe, like the bundle gerbe (

⨿
Uαβ × U(1) →⨿

Uαβ ⇒
⨿
Uα, ŝ := {gαβγ}) in the proof of Theorem 5.1, there are some

bundle gerbes whose Dixmier-Douady class is not torsion class even though
their submersion has a finite dimensional fiber.

In general, the following theorem holds.

Theorem 5.2 (Murray-Stevenson, [25]). Let (Ŷ [2] → Y [2] ⇒ Y, ŝ) be a bun-
dle gerbe over a simply connected manifold M with connected, finite dimen-
sional fiber F of submersion ϕ : Y →M . Then its Dixmier-Douady class is a
torsion class. �

We can check the necessity of the conditions in Theorem 5.2 by consid-
ering the examples of bundle gerbes given in the next section.

5.2.2 Examples of bundle gerbes

Example 5.5. Let π : M → Σg be an oriented S1-bundle over a closed
oriented surface whose genus is g. It is well-known that H3(M,Z) ∼= Z. Here
we show how to construct the bundle gerbe whose Dixmier-Douady class is
the generator of H3(M,Z).

We take an open ball D2 ∈ Σg and a point p ∈ D2. Then π−1(D2) ≈
D2 × U(1) and π−1(Σg\{p}) ≈ (Σg\{p}) × U(1) because their first Chern
classes are 0. For convenience we set V1 := π−1(D2) and V2 := π−1(Σg\{p}).
Let denote Y the disjoint union V1 ⊔ V2 and define a surjective submersion
ϕ : Y →M as an inclusion. Then the fiber product Y [2] is (V1 × V1)⊔ d(V1 ∩
V2) ⊔ d(V2 ∩ V1) ⊔ (V2 × V2) where d(V1 ∩ V2) is the space of the diagonal
elements {(u, u)|u ∈ V1 ∩ V2)} ⊂ (V1 ∩ V2) × (V1 ∩ V2).

Since d(V1 ∩ V2) is homotopic to S1 × S1 and there is the principal
U(1)-bundle P over d(V1 ∩ V2) whose first Chern class c1 is the generator
of H2(d(V1 ∩ V2),Z) ∼= H2(S1 × S1,Z) ∼= Z.

We define a principal U(1)-bundle Q over Y [2] as the disjoint union of P
over d(V2 ∩ V1) and P⊗−1 over d(V1 ∩ V2), and a product bundle on (V1 ×
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V1) ⊔ (V2 × V2). Then δQ over Y [3] is canonically isomorphic to Y [3] × U(1)
so we take a section as ŝ = 1.

Proposition 5.2. The Dixmier-Douady class of the bundle gerbe (Q →
Y [2] ⇒ Y, ŝ) is the generator of H3(M,Z) ∼= Z.

Proof. Let θ be a connection of bundle gerbe (Q → Y [2] ⇒ Y, ŝ), i.e. θ is a
connection form of the principal U(1)-bundle Q which satisfies ŝ∗(δθ) = 0.
Then there is a 2-form H on Y which satisfies pr∗2H−pr∗1H = c1(θ). There is
also the closed 3-formD on E which satisfies ϕ∗D = dH. Then [D] represents
the Dixmier-Douady class of Q→ Y [2] ⇒ Y with R-coefficients.

Now c1(θ) is the generator of H2(d(V1 ∩ V2),R), and the map H2(d(V1 ∩
V2),R) ∋ c1(θ) 7→ [D] ∈ H3(M,R) is nothing but the connecting homomor-
phism in the Mayer-Vietoris sequence of (V1, V2) on the de Rham cohomology,
so [D] represents the generator of H3(M,R). This completes the proof.

Example 5.6. There is an important example of bundle gerbes so-called lift-
ing bundle gerbe defined as follows. Let Ĝ→ G be a central U(1)-extension
of a Lie group G and ϕ : Y →M be a principal G-bundle. We define a map
ζ : Y [2] → G as y1ζ(y1, y2) = y2. Then (ζ∗Ĝ → Y [2] ⇒ Y, ŝnt) is a bundle
gerbe. The Dixmier-Douady class of the lifting bundle gerbe coincides with
the Dixmier-Douady class of ϕ : Y →M .

Remark 5.3. We take M as in Example 5.5 then we can construct the princi-
pal PU(H)-bundle over M whose Dixmier-Douady class is the generator of
H3(M,Z) using the bundle gerbe in Example 5.5.

First we make trivial principal PU(H)-bundles over V1 and V2. We denote
them by R1 and R2. Since U(H) → PU(H) is a model of the universal U(1)-
bundle, there is a continuous map ϕ12 : V1 ∩ V2 → PU(H) such that the first
Chern class of ϕ∗

12U(H) is the generator of H2(V1 ∩ V2,Z). We also take ϕ21

as the inverse valued map of ϕ12. Now by gluing R1 and R2 by ϕ12, we obtain
a principal PU(H)-bundle ρ : R1 ∪ϕ12 R2 →M .

Proposition 5.3. The Dixmier-Douady class of the principal PU(H)-bundle
R1 ∪ϕ12 R2 is the generator of H3(M,Z) ∼= Z.

Proof. For convenience we write R := R1 ∪ϕ12 R2. Then there is a map
ζ : R[2] → PU(H) which is defined by r1 · ζ(r1, r2) = r2 for (r1, r2) ∈ R[2].
By pulling back U(H) → PU(H) on R[2] by ζ, we obtain the lifting bundle
gerbe ζ∗U(H) → R[2] ⇒ R.
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Now we show that ζ∗U(H) → R[2] ⇒ R is stably isomorphic to Q →
Y [2] ⇒ Y in Example 5.5. We define the surjective submersion

f : W := (V1 ⊔ V2) × PU(H) →M

as the projection into the first factor. There are also natural projections
f1 : (V1 ⊔ V2) × PU(H) → R and f2 : (V1 ⊔ V2) × PU(H) → (V1 ⊔ V2) which
satisfy f = ρ ◦ f1 = i ◦ f2. Then f∗

1 (ζ∗U(H))⊗−1 ⊗ f ∗
2Q is canonically trivial

since the diagram below is commutative.

W [2] f1−−−→ R[2]

f2

y yζ

(V1 ⊔ V2)
[2] {ϕij}−−−→ PU(H)

The statement of the proposition follows from this.

We give an example of bundle gerbes whose section ŝ is not trivial. This
construction is given by Johnson in [16] and Murray, Stevenson in [25].

Example 5.7. We can construct the bundle gerbe over the torus T 3 =
S1 ×S1 ×S1 whose Dixmier-Douady class is the generator of H3(T 3,Z) ∼= Z
in the following way.

We set Y := R3 and define the submersion ϕ : Y → T 3 by t→ exp(2πit).
We write an element of Y as x⃗ = (x1, x2, x3). Then (x⃗, y⃗) ∈ Y [2] means
x⃗− y⃗ ∈ Z3. We take a principal U(1)-bundle Q over Y [2] as a product U(1)-
bundle and define the section ŝ of δQ by ŝ(x⃗, y⃗, z⃗) := exp(2πiγ(x⃗, y⃗, z⃗)) where
γ is defined by γ(x⃗, y⃗, z⃗) := (y1 − z1)(x2 − y2)x3. Then we can check that
δŝ = 1.

There is a projection map (x⃗, y⃗, z⃗) 7→ x⃗ and we have R3-valued differential
1-form dx⃗ on Y [3]. Similarly dy⃗ and dz⃗ are defined. Since x⃗ − y⃗ ∈ Z3 and
y⃗ − z⃗ ∈ Z3, the equation dx⃗ = dy⃗ = dz⃗ holds. Note that each dxi are pull-
backs of 1

2π
dθi ∈ Ω1(S1×S1×S1) by ϕ where dθi is the volume form of i-th S1.

We define the connection θ and the curving H as θ := −2πi(x1 − y1)x2dx3,
H := −x1dx2 ∧ dx3. Then dH = dx1 ∧ dx2 ∧ dx3 so the Dixmier-Douady
class is [ 1

8π3dθ1 ∧ dθ2 ∧ dθ3] ∈ H3(T 3,R).
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stacks, Ann. Sci. École Norm. Sup. 37 (2004) (6) 841-910.

[34] J.-L. Tu, P. Xu, Chern character for twisted K-theory of orbifolds, Adv.
Math. 207(2006), no.2, 455-483.

34


